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N2D: (Not Too) Deep Clustering via Clustering the Local Manifold of

an Autoencoded Embedding

Ryan McConville∗ Raúl Santos-Rodŕıguez ∗ Robert J Piechocki † Ian Craddock †

Abstract

Deep clustering has increasingly been demonstrating
superiority over conventional shallow clustering algo-
rithms. Deep clustering algorithms usually combine
representation learning with deep neural networks to
achieve this performance, typically optimizing a cluster-
ing and non-clustering loss. In such cases, an autoen-
coder is typically connected with a clustering network,
and the final clustering is jointly learned by both the au-
toencoder and clustering network. Instead, we propose
to learn an autoencoded embedding and then search this
further for the underlying manifold. For simplicity, we
then cluster this with a shallow clustering algorithm,
rather than a deeper network. We study a number of
local and global manifold learning methods on both the
raw data and autoencoded embedding, concluding that
UMAP in our framework is able to find the best clus-
terable manifold of the embedding. This suggests that
local manifold learning on an autoencoded embedding
is effective for discovering higher quality clusters. We
quantitatively show across a range of image and time-
series datasets that our method has competitive perfor-
mance against the latest deep clustering algorithms, in-
cluding out-performing current state-of-the-art on sev-
eral. We postulate that these results show a promising
research direction for deep clustering. The code can be
found at https://github.com/rymc/n2d.

1 Introduction

Clustering is a fundamental pillar of unsupervised ma-
chine learning. It is widely used in a range of tasks
across disciplines and well-known algorithms such as k-
means have found success in many applications. For
example, in science, data exploration and understand-
ing is a fundamental task which clustering facilitates
by uncovering the hidden structure of the data. How-
ever, k-means [17], along with many conventional clus-
tering algorithms such as Gaussian Mixture Models
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(GMMs) [23], DBSCAN [4], and hierarchical algo-
rithms [12] typically require hand engineered features
to be created for each dataset and task. Further, these
features may then be analysed using another process,
feature selection, in order to eliminate redundant or
poor quality features. This task is even more challeng-
ing in the unsupervised setting. Additionally, it is a
time-consuming and brittle process, with the choice of
features having a large influence over the subsequent
performance of the clustering algorithm.

However, recent advances in deep learning have
paved the way for algorithms which can effectively learn
from raw data, bypassing the need for manual feature
extraction and selection. One such popular method
which learns powerful representations of the data au-
tomatically is an autoencoder [26]. Autoencoders effec-
tively seek to learn the intrinsic structure of the data
with a deep neural network, and do so by learning to
reconstruct the original data, regularized for example,
via a bottleneck inducing a compressed representation.
This representation learned from the raw data is then
typically used in a range of tasks, such as an input to a
supervised classifier.

This line of research has also impacted the unsu-
pervised domain, where deep clustering has become a
popular area of study. Deep clustering refers to the pro-
cess of clustering with deep neural networks, typically
with features automatically learned from the raw data
by CNNs [30] or autoencoders [28] and clustered with a
deep neural network.

These algorithms have reported large performance
gains on various benchmark tasks over conventional
non-deep clustering algorithms. For example, Guo
et al. [7] pre-train an autoencoder, then initialize the
weights of a deep clustering network with k-means.
Following this, the autoencoder continues to learn a
representation, but jointly with the clustering network
which seeks a good clustering.

In this work, we propose a simple approach, N2D,
that effectively replaces the clustering network with a
manifold learning technique on top of the autoencoded
representation. Specifically, we intend for it to find
a distance preserving manifold within this representa-
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tion. Given this updated embedding, we can then clus-
ter it with conventional non-deep clustering algorithms.
By doing so, N2D replaces the complexity of the clus-
tering network with a manifold learning method and
straightforward non-deep clustering algorithm, reduc-
ing the deepness of the deep clustering, yet achieving
superior performance via the extra manifold learning
step.

One important question is which manifold learning
technique to apply to the autoencoded representation.
There are many possible methods, such as the well-
known Principal Component Analysis (PCA) [1]. PCA
seeks to learn a linear transformation of data into a
new space, typically via the use of eigendecomposition
of the covariance matrix, or by computing the Singular
Value Decomposition (SVD) of the data. However,
PCA is a linear method and does not perform well in
cases where relationships are non-linear. Thankfully,
alternative non-linear manifold learning methods exist,
and can be categorised by their focus on finding local or
global structure. Well known globally focused methods
include Isomap [25], while t-SNE [18] is a well known
locally focused method. More recently, UMAP [19] has
been proposed, which while also local, has been shown
to better preserve global structure. All of these methods
seek to utilize the distances between points in order to
better learn the underlying structure, and we posit that
they will improve the clusterability of an autoencoded
embedding. To better understand this, we study the
performance of each of these manifold learning methods
on both the raw data and the autoencoded embedding.

Thus, we propose a framework, N2D, where in
contrast to recent deep clustering techniques, we replace
the deep clustering network with a manifold learning
method, and shallow cluster the resulting re-embedded
space. We empirically observe that this method is
competitive (top-3) with state-of-the-art deep clustering
algorithms across a range of datasets. Further, we
observe that it out-performs state-of-the-art algorithms
on several others. Code and weights to reproduce the
results are available here https://github.com/rymc/

n2d.

2 Related Work

Clustering algorithms can be broadly categorized into
two different categories, hierarchical clustering and par-
titional clustering. Hierarchical clustering [14] algo-
rithms themselves can be categorized into divisive and
agglomerative, where the former repeatedly splits clus-
ters as it moves down the hierarchy, and the latter
merges clusters as it moves up the hierarchy. Paritional
clustering algorithms are an alternative approach which
divides a dataset into typically non-overlapping subsets

at a single level. Gaussian Mixture Models (GMMs) [23]
and k-means [17] are two well-known partitional cluster-
ing algorithms. k-means divides a dataset into k disjoint
clusters by typically minimizing the sum of squared er-
rors between each datapoint and their closest cluster
centroid. GMMs are a probabilistic model that can
be considered as generalized k-means to utilize covari-
ance structure information and the centers of the latent
Gaussians.

As the performance of various machine learning al-
gorithms, including clustering algorithms, is heavily de-
pendent on the choice of features, much work has oc-
curred in the area of automatically learning these fea-
tures, or representations of the data. There exist deep
learning based methods, such as autoencoders, which
seek to autoencode a high dimensional mapping to a
lower one, such that the higher dimensional mapping
can be reconstructed again. There is also significant
work in non-deep methods such as PCA [1] , ICA [10],
Local Linear Embedding (LLE) [24] and Isomap [25].
Methods such as PCA seek preserve the important
structure of the data, while other methods such as LLE
and Isomap, which preserve the geometric and neigh-
bour properties of the data.

A relatively recent area of study that combines
both of these lines of research is deep clustering. Deep
clustering methods use deep neural networks to cluster,
typically involving two different processes, one where
a representation is learned, and one where the actual
clustering occurs. This process may occur separately or
jointly.

The deep neural networks used for deep clustering
are diverse, and include MLPs [28], Convolutional Neu-
ral Networks (CNNs) [30] and Generative Adversarial
Networks (GANs) [20]. When used in the representa-
tion learning step these methods will optimize a specific
loss, such as the reconstruction loss or generative ad-
versarial loss. However, in addition, a clustering loss
is added to guide the algorithm to find more cluster
friendly features. These losses may include a k-means
loss [29] or a cluster hardening loss [28]. These losses
are then typically combined in some way, such as with
joint training, where the clustering loss is usually given
much lower weight than the non-clustering loss [7].

Along these lines, IDEC [7] and ASPC-DA [6] both
use an autoencoder for their initial pre-training step.
Based on this learned representation, these methods
initialize the weights of a new clustering network with
k-means. IDEC and ASPC-DA then jointly trained
this clustering network with the autoencoder. These
approaches have been shown to perform well on a
number of clustering tasks.

An alternative to using two different losses is to use
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a single combined loss, such as DEC [28] or JULE [30].
JULE uses CNNs as the representation learning step,
integrating the learning of the representation and clus-
tering into the backward and forward passes of a single
recurrent model. The downside of their approach is that
it is quite inefficient due to the recurrent nature of the
model.

The concept of manifold learning on embeddings
has been explored by Hasan and Curry [8]. In this work
they specifically study the setting of applying LLE to
existing word embeddings, improving the performance
of word embeddings in word similarity tasks. They show
how this method has theoretical foundations in metric
recovery [9]. We note that in this work they apply LLE
to windows of the embedding and use it to transform
test vectors from the original embedding, whereas we
are interested in learning the manifold of the entire
embedding, optimizing for clusterability.

Others have studied the integration of local con-
straints into autoencoder learning. Wei et al. [27]
propose a semi-supervised method for document repre-
sentation which utilizes an autoencoder to jointly learn
from both the document itself, and neighbouring doc-
uments. They then demonstrate that by incorporating
locality they improve performance in both document
clustering and classification.

3 Method

Our method relies primarily on the combination of
two different manifold learning methods. The first is
an autoencoder, which while learning a representation,
does not explicitly take local structure into account. We
will show that by augmenting the autoencoder with a
manifold learning technique which explicitly takes local
structure into account, we can increase the quality of
the representation learned in terms of clusterability.

3.1 Autoencoder An autoencoder is a deep neural
network consisting of two key components. The first is
the encoder, which attempts to learn a function which
maps the input x to a new feature vector (h = f(x)).
The second component is the decoder, which attempts
to learn a function which maps the learned feature space
back to the original input space (r = g(h). In other
words, it is a neural network which attempts to copy its
input to its output. This is typically achieved via a form
of regularization, for example by forcing the network to
compress the input into a lower dimensional space.

The learning process can be described as minimizing
the loss function L(x, g(f(x))), where L is a function
which penalizes g(f(x)) for being dissimilar to x. One
such loss may be the Mean Squared Error (MSE).

While autoencoders have been shown to perform

well at many feature representation tasks, they do not
explicitly preserve the distances of the data in the
representation that they learn. We believe that by
integrating this into the autoencoders representation,
we can improve the quality.

3.2 Isomap There are a multitude of manifold learn-
ing techniques that explicitly seek to preserve distances
within the data. Isomap [25] is a nonlinear method
which extends multidimensional scaling (MDS) to incor-
porate geodesic distances imposed by a weighted graph.
Geodesic distance is the distance between two points
measured over the manifold, and thus by using the
geodesic distance Isomap can learn the manifold struc-
ture. A k-nearest neighbourhood graph is constructed
from the data, where the shortest distance between two
nodes is considered the geodesic distance. Isomap con-
structs a global pairwise geodesic similarity matrix be-
tween all points in the data, on which classical scaling is
applied. Thus, Isomap can be considered a global man-
ifold learning technique as it seeks to retain the global
structure of the data. While Isomap is a global approach
and our hypothesis is that a learning a local manifold on
the autoencoded embedding will lead to better results,
we will investigate the use of Isomap within N2D, specif-
ically to understand how a global method performs and
test our hypothesis.

We consider Isomap to have a two key parameters
in our setting, the first is the number of components,
which is the top n eigenvectors of the geodesic distance
matrix which represent the co-ordinates in the new
space. The next parameter of importance is the number
of neighbours to consider, which is simply the number
of k-nearest neighbours to consider as local to a point.

3.3 t-SNE t-SNE (t-distributed Stochastic Neighbor
Embedding) [18] is a nonlinear method with a specific
objective of optimizing local distances when creating the
embedding. The first stage of the t-SNE algorithm is
to construct a probability distribution over pairs within
the data in such away that similar points will have a high
probability of being chosen while dissimilar points have
an extremely low probability of being chosen. In the
second stage t-SNE defines a probability distribution
over the mapped points, minimising the KullbackLeibler
(KL) divergence between the two distributions.

As with Isomap, t-SNE can choose the number of
components in which to embed the data. It also requires
a perplexity value which is related to the number of
nearest neighbours used in Isomap. However, t-SNE is
typically not very sensitive to this value.



3.4 UMAP A recently proposed manifold learning
method is UMAP (Uniform Manifold Approximation
and Projection) [19], which seeks to accurately represent
local structure, but has been shown to also better
incorporating global structure. Compared to t-SNE it
has a number of benefits to motivate the comparison
with t-SNE in our framework. While t-SNE typically
struggles with large datasets, UMAP has been shown
to scale well. Further, as UMAP better preserves
global structure, while remaining focused on preserving
distances within local neighbourhoods, it may inherit
benefits from both local and global methods.

UMAP relies on three assumptions, namely that the
data is uniformly distributed on a Riemannian manifold,
that the Riemannian metric is locally constant that
that the manifold is locally connected. From these
assumptions it is possible to model the manifold with a
fuzzy topological structure. The embedding is found by
searching for a low dimensional projection of the data
that has the closest possible equivalent fuzzy topological
structure.

UMAP is similar to Isomap [25] in that it uses
a k-neighbour based graph algorithm to compute the
nearest neighbours of points. At a high level, UMAP
first constructs a weighted k-neighbour graph, and from
this graph a low dimensional layout is computed. This
low dimensional layout is optimized to have as close
a fuzzy topological representation to the original as
possible based on cross entropy.

It has a number of important hyperparameters that
influence performance. The first is the number of neigh-
bours to consider as local. This represents the trade-off
between the granularity of how much local structure
is preserved and how much of the global structure is
captured. As we are primarily concerned with the in-
tegration of local structure into our embedding, we will
typically choose lower values for the number of neigh-
bours. The second is the dimensionality of the target
embedding. In our method we set the dimensionality to
be the number of clusters we are seeking to find. UMAP
also requires the minimum allowed separation between
points in the embedding space. Lower values of this
minimum distance will more accurately capture the true
manifold structure, but may lead to dense clouds that
make visualization difficult.

3.5 N2D We posit that by learning the manifold
of the autoencoded embedding, specifically learning a
manifold with a specific emphasis on locality, we can
achieve a more cluster friendly embedding. However,
as there is generally no ability to cross-validate hyper-
parameters in the unsupervised setting, it is therefore
important to choose sensible default parameters for each

approach. For all manifold learning methods, we set the
number of components or dimensions to be the number
of clusters in the data. For Isomap and UMAP We
consider the number of neighbours to be an important
parameter, and we set it to a sensible default value of 5
for Isomap, and 20 for UMAP. UMAP also has another
parameter we believe will be influential, which is the
minimum distance between points. We believe that a
default minimum distance of 0 is ideal for our method,
as our prime motivation is not visualization and thus
a more accurate representation of the true manifold is
preferred.

We summarize the high level steps of our proposed
method N2D as:

• Apply an autoencoder to the raw data to learn an
initial representation.

• We re-embed the autoencoded embedding by
searching for a more clusterable manifold with a
manifold learning method which preserves local dis-
tances.

• Finally, given this new, more clusterable embed-
ding, we apply a final shallow clustering algorithm
to discover the clusters.

We will study three manifold learning methods to
understand the effect of the various approaches when
applied to both the raw data and the autoencoded
embedding, showing how one specific method, UMAP,
achieves superior performance when applied to the em-
bedding. On the question of why combine an autoen-
coder with a manifold learning method, we will demon-
strate empirically in Section 4.4 the contribution of each
step to the overall performance, showing how this step
can significantly increase performance. We will also
demonstrate in Section 4.4 how it is competitive with
the state-of-the-art across a range of datasets, both im-
age and time-series, and itself achieves state-of-the-art
results on several.

4 Experiments

In order to validate our idea, we conduct experiments on
a range of diverse datasets, including standard datasets
used to evaluate deep clustering algorithms.

4.1 Datasets

• MNIST: A traditional benchmark dataset consist-
ing of 70,000 handwritten digits belong to 10 dif-
ferent classes.

• MNIST-test: A subset of the MNIST dataset,
containing only the test set of 10,000 images.



(a) MNIST (b) MNIST-test (c) USPS

(d) Fashion (e) pendigits (f) HAR

Figure 1: Visualization of N2D applied to all six datasets. For visualization purposes we set the number of
dimensions to 2. In contrast, when we use N2D for clustering and not visualization, we cluster in higher dimensions
(where the number of dimensions is the number of clusters) and achieve higher clustering performance.

• USPS: A dataset of 9298 images belonging to
10 different classes. Whereas MNIST images are
28x28, these images are 16x16.

• Fashion: A more challenging alternative to the
MNIST dataset, consisting of 70,000 images of
clothing, for a total of 10 classes.

• pendigits: A time series dataset consisting of sam-
pled points from a pressure sensitive tablet as ten
different digits are written. Each digit is repre-
sented by 8 coordinates of the stylus when writing
a specific digit. There are 10992 data points.

• HAR: A time series dataset consisting of sensor
data from a smart phone. It was collected from 30
people performing various activities of daily living,
and contains 6 different activities; walking, walking
upstairs, walking downstairs, sitting, standing and
laying.

4.2 Evaluation Metrics We will use two standard
evaluation metrics for validating the performance of
unsupervised clustering algorithms. In both cases,
values range between 0 and 1, where higher values
correspond to better clustering performance.

4.2.1 Accuracy In clustering, accuracy (ACC) is
defined as the best match between the ground truth

and the predicted clusters.

(4.1) ACC = max
m

∑n
i=1 1{yi = m(ci)}

n

where y are the ground truth labels, c are the cluster
labels, and m enumerates mappings between clusters
and labels.

4.2.2 Normalized Mutual Information The Nor-
malized Mutual Information (NMI) can be viewed as
a normalization of the mutual information to scale the
results between 0 and 1, where 0 has no mutual infor-
mation and 1 is perfect correlation. More concretely,
NMI is defined as:

(4.2) NMI =
2I(y, c)

[H(y) + H(c)]

where y are the ground truth labels, c are the cluster
labels, H measures the entropy, and I is the mutual
information between the ground truth labels and the
cluster labels.

4.3 Experimental Settings We base our autoen-
coder on the architecture described by Xie et al. [28],
which is a fully connected Multi-Layer Perceptron
(MLP). The dimensions are inspired by those chosen by
van der Maaten et al. in t-SNE [18], which are d-500-
500-2000-c, where d is the dimensionality of the data



Table 1: Evaluating the performance of each component of the proposed method. AE, UMAP and N2D each
have a GMM clustering step post-manifold learning. Results for Isomap were sometimes not available (—) as it
exhausted memory on our 64GB machine.

MNIST MNIST-test USPS Fashion pendigits HAR
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

GMM 0.389 0.333 0.464 0.465 0.562 0.541 0.463 0.514 0.674 0.683 0.585 0.648
AE 0.809 0.835 0.769 0.745 0.707 0.705 0.569 0.591 0.807 0.757 0.552 0.483
Isomap — — 0.896 0.755 0.781 0.787 — — 0.756 0.792 0.608 0.677
N2D (Isomap) — — 0.797 0.77 0.660 0.727 — — 0.826 0.820 0.632 0.580
TSNE 0.768 0.810 0.806 0.823 0.720 0.830 0.608 0.651 0.893 0.872 0.647 0.736
N2D (TSNE) 0.978 0.940 0.948 0.883 0.810 0.858 0.588 0.658 0.785 0.826 0.768 0.670
UMAP 0.825 0.880 0.857 0.819 0.804 0.845 0.588 0.656 0.819 0.856 0.552 0.696
N2D (UMAP) 0.979 0.942 0.948 0.882 0.958 0.901 0.672 0.684 0.885 0.863 0.801 0.683

and c is the number of clusters. As typical with autoen-
coders, the decoder network is a mirror of the encoder.
All layers use ReLU activation [21]. The optimizer is
Adam [15]. We train the autoencoder on for 1000 epochs
for all datasets.

We use UMAP with the following default parameter
set across all datasets. The number of neighbours is
20, the number of dimensions is the number of clusters,
and the minimum distance between each point in the
manifold is 0.

We use a GMM for the final clustering algorithm,
where each component has its own general covariance
matrix, and there are c components, where c is the
number of clusters.

4.4 Results Figure 1 shows the resulting clusters
when using N2D for visualization purposes. However,
in order to better understand the effectiveness of our
method at clustering we will study each individual
component of N2D via measuring the accuracy and
NMI, as well as how the full N2D algorithm compares
with a range of other clustering algorithms.

4.5 Role of Each Component of N2D Table
1 shows details of the accuracy and NMI of each
individual component of N2D. This table shows that
the performance of the non-deep clustering algorithm
GMM is typically poorest across all datasets. When we
introduce manifold learning methods, and cluster those
embeddings, we see improvements in cluster accuracy
and NMI.

As well as the autoencoder, we use 3 different
manifold learning methods with different properties.
The first is Isomap, which is a globally focused manifold
learner. It outperforms t-SNE, the local manifold
learning technique, on 2 of the 4 datasets it was able
to process. On 2 of the 6 datasets it was unable

to complete the learning as it exhausted all memory
on our 64GB system. Therefore, on two datasets t-
SNE performed better than Isomap, and on two others,
Isomap outperformed t-SNE.

However, when Isomap and t-SNE are each ap-
plied to the autoencoded embedding, on only 1 of the 4
datasets does N2D with Isomap outperform N2D with
t-SNE. This suggests that on some datasets the clusters
are better discovered by a global method, and others
by a local method. However, when applied the autoen-
coded embedding, the more local methods appear to be
the better choice.

This intuitively suggests that a technique which
is primarily locally focused but captures global struc-
ture better than t-SNE may lead to further improve-
ments. Therefore, when we experiment with UMAP,
which meets this criteria, we see that UMAP is the
superior approach on 3 of the 6 raw datasets. How-
ever, when applied to the autoencoded embedding, N2D
with UMAP outperforms both Isomap and t-SNE on all
datasets. This supports the hypothesis that a manifold
learner, which, while locally focused, also captures a de-
gree of the global structure, is best suited for discovering
the clusterable manifold of an autoencoded embedding.

The largest gains between our approach N2D and
the sub-components is on HAR, where there is a 25
percentage point increase in performance compared to
the AE and UMAP, while on MNIST and USPS, where
there is an around a 15 percentage point increase in
accuracy when using N2D.

In Table 3 we show the amount of time it takes for
each stage of the method in seconds, as well as the total
time. From this, it is clear that our method is efficient,
clustering MNIST and Fashion-MNIST in around 18
minutes, while clustering the remaining 4 datasets in
between two and four minutes.



Table 2: A comparison of our method with both shallow clustering algorithms, along with the latest deep-
clustering algorithms. Results were retrieved from the literature, or computed by us when not found and possible
to compute. The top 3 performing scores are highlighted in bold. Note that our method is consistently in the
top-3 across 5 of the 6 datasets, including the best accuracy and NMI for Fashion, pendigits and HAR. Algorithms
that are missing scores for datasets are because the paper did not originally test on this dataset and it was not
easily possible to get this score.

MNIST MNIST-test USPS Fashion pendigits HAR
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

k-means [17] 0.532 0.450 0.546 0.501 0.668 0.626 0.474 0.512 0.666 0.681 0.599 0.588
SC [22] 0.680 0.759 0.667 0.712 0.656 0.796 0.551 0.630 0.724 0.784 0.538 0.741
GMM [23] 0.389 0.333 0.464 0.465 0.562 0.540 0.463 0.514 0.673 0.682 0.585 0.648
DeepCluster [2] 0.797 0.661 0.854 0.713 0.562 0.54 0.542 0.510 — — — —
DCN [29] 0.830 0.810 0.802 0.786 0.688 0.683 0.501 0.558 .72 .69 — —
DEC [28] 0.863 0.834 0.856 0.830 0.762 0.767 0.518 0.546 0.701 0.678 0.565 0.587
IDEC [7] 0.881 0.867 0.846 0.802 0.761 0.785 0.529 0.557 0.784 0.723 0.642 0.609
SR-k-means [11] 0.939 0.866 0.863 0.873 0.901 0.912 0.507 0.548 — — — —
VaDE [13] 0.945 0.876 0.287 0.287 0.566 0.512 0.578 0.630 — — — —
ClusterGAN [20] 0.964 0.921 — — — — 0.630 0.640 0.770 0.730 — —
JULE [30] 0.964 0.913 0.961 0.915 0.950 0.913 0.563 0.608 — — — —
DEPICT [5] 0.965 0.917 0.963 0.915 0.899 0.906 0.392 0.392 — — — —
DBC [16] 0.964 0.917 — — — — — — — — — —
DAC [3] 0.978 0.935 — — — — — — — — — —
ASPC-DA [6] 0.988 0.966 0.973 0.936 0.982 0.951 0.591 0.654 — — — —
N2D 0.979 0.942 0.948 0.882 0.958 0.901 0.672 0.684 0.885 0.863 0.801 0.683

l

Table 3: Showing the efficiency of each stage of the
method on each dataset, in minutes. AE refers to the
autoencoder architecture defined earlier, trained for for
1000 epochs on a Nvidia RTX 2080 Ti, and Manifold
refers to manifold learning with UMAP. We do not use
early stopping with the autoencoder training.

AE (m) Manifold (m) Total (m)
MNIST 18.0 1.5 19.5
MNIST-test 2.6 0.4 3.0
USPS 2.1 0.4 2.5
Fashion 18.0 1.5 19.5
pendigits 2.2 0.3 2.5
HAR 3.6 0.2 3.8

4.6 Comparison with other methods In Table 2
we show the accuracy and NMI results for a wide set
of clustering algorithms on six different datasets. The
clustering algorithms chosen include a number of con-
ventional non-deep methods, such as k-means, spectral
clustering (SC) and GMMs. They also include recent
deep-clustering based methods, such as ClusterGAN,
IDEC, JULE and ASPC-DA. These methods make sig-
nificant use of deep networks, and typically outperform
the non-deep clustering methods.

The most similar methods to N2D are IDEC and
ASPC-DA. Both of these approaches pre-train an au-
toencoder before jointly training a second deep network

with a clustering and non-clustering (reconstruction)
loss. The clustering network weights are initialized with
a non-deep clustering algorithm such as k-means.

In contrast, we replace the second deep network
with a manifold learning method, UMAP, and then use
a non-deep clustering algorithm, a GMM, to cluster
the resulting embedding. Hence, our less deep method,
N2D, benefits from less complexity, but as can be seen
in Table 2, has competitive or superior performance to
all other methods.

On five of the six datasets tested, our approach is
in the top 3 for at least one of the metrics. On MNIST-
test we are around 1 percentage point lower in accuracy
than JULE and DEPICT, and 2 percentage points lower
than ASPC-DA which is top. However, on the Fashion
dataset, we achieve the highest accuracy, around 5
absolute percentage points higher than ClusterGAN,
and 8 absolute percentage points higher than ASPC-
DA.

We also include two non-image datasets, pendig-
its and HAR, to validate performance on different
types of data. Many of the best-performing deep-
clustering methods are intended for image clustering
(e.g., JULE [30], DBC [16], DAC [3]), and thus we were
unable to find or easily obtain results on these datasets.
However, for the algorithms for which we could ob-
tain or produce results, our method also achieved the
best performance. For both datasets we compare our



method with some of the most similar deep clustering
approaches, DEC and IDEC. On pendigits, we achieve
11 percentage points higher accuracy than the closest
approach IDEC and on HAR a 15 percentage point
increase in accuracy. In fact, consistently across all
datasets, we achieve higher accuracy and NMI scores
than these methods.

We also note that one of the closest competitors,
ASPC-DA, which typically slightly outperforms our
method on several datasets, achieves this performance
due to data augmentation. When data augmentation
is removed from ASPC-DA, they typically achieve less
competitive performances, e.g. an accuracy of 0.924
(vs 0.988) on MNIST, 0.785 (vs 0.973) on MNIST-test
and 0.688 (vs 0.982) on USPS. For future work we
would like to evaluate our proposed method with data
augmentation.

5 Conclusion

In this paper we propose a simple deep clustering
method, N2D, which reduces the deepness of typical
deep clustering algorithms by replacing the clustering
network with an alternative framework which seeks to
find the manifold within the autoencoder embedding,
and clusters this new embedding with a shallow clus-
tering architecture. We studied both global and local
manifold learning algorithms, with our results support-
ing the hypothesis that learning the local manifold of
an autoencoded embedding, while also preserving global
structure as UMAP does, is better able to discover the
most clusterable manifold of an autoencoded embed-
ding. N2D is the resulting combination which is shown
to be effective on a range of datasets, including im-
age and time-series datasets. We compare N2D with
both conventional shallow clustering algorithms, and
the latest state-of-the-art deep clustering algorithms. In
the empirical comparison, we show how our proposed
method is competitive with the current state-of-the-art
clustering approaches, achieving top-3 performance in
five of the six datasets datasets tested. Further, we
outperform the state-of-the-art on several datasets, in-
cluding surpassing the next best algorithm by around
5 absolute percentage points in accuracy on Fashion-
MNIST and 15 percentage points on the activity recog-
nition dataset HAR.
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