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RATIONALE: Anthropogenic organic inputs to freshwaters can exert detrimental effects on aquatic 

ecosystems, raising growing concern for both environmental conservation and water security. Current 

regulation by the EU water framework directive (European Union, 2000/60/EC) relates to organic 

pollution by monitoring selected micropollutants, however, aquatic ecosystem responses requires a 

comprehensive understanding of dissolved organic matter (DOM) composition.1 The introduction of 

high-resolution mass spectrometry (HRMS) is set to greatly increase our understanding of the 

composition of DOM of both natural and anthropogenic origin derived from diffuse and point sources.   

METHODS: DOM was extracted from riverine and treated sewage effluent using solid phase 

extraction (SPE) and analysed using dissolved organic carbon (DOC) analysis, direct infusion-high 

resolution Orbitrap™ mass spectrometry (DI-HRMS) and high-performance liquid chromatography 

(HPLC/HRMS). The data obtained were analysed using univariate and multivariate statistics to 

demonstrate differences in background DOM, anthropogenic inputs and in-river mixing. Compound 

identifications were achieved based on MS2 spectra searched against on-line databases.   

RESULTS: DI-HRMS spectra showed the highly complex nature of all DOM SPE extracts. 

Classification and visualisation of extracts containing many thousands of individual compounds were 

achieved using PCA and hierarchical cluster analysis. Kruskal-Wallis analyses highlighted significant 

discriminating ions originating from the sewage treatment works for more in-depth investigation by 

HPLC/HRMS. The generation of MS2 spectra in HPLC/HRMS provided the basis for identification of 

anthropogenic compounds including; pharmaceuticals, illicit drugs, metabolites and polymers, although 

many thousands of compounds remain unidentified.  
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CONCLUSIONS: This new approach enables comprehensive analysis of DOM in extracts without any 

preconceived ideas of the compounds which may be present. This approach has the potential to be used 

as a high throughput, qualitative, screening method to determine if the composition of point sources 

differs from that of the receiving water bodies, providing a new approach to the identification of hitherto 

unrecognised organic contribution to water bodies.  

Keywords: Dissolved organic matter, sewage effluent, DI-HRMS, HPLC-HRMS, data visualisation, 

difference algorithm. 

Introduction  

Fresh surface water is a fundamental resource not only for drinking water and irrigation, but also for 

supporting terrestrial and aquatic ecosystems.2 DOM is ubiquitous to all aquatic systems and is an  

extremely complex mixture of organic compounds although its composition has remained intractable 

due to the lack of suitable analytical methods.3 DOM has been asserted to be a nutrient for autotrophs.2,3 

The range of compounds comprising DOM includes compounds generated naturally and through 

anthropogenic activities, and can include potentially toxic micropollutants which attract  much attention 

in water quality legislation as these have been shown to have adverse impacts upon organisms within 

the aquatic ecosystems.4–6 Despite individual anthropogenically derived compounds being at low 

concentration, the chronic exposure of stream biota to these compounds has been shown to have a wide 

range of acute ecotoxicological and chronic adverse effects on organisms.4–7 These  include the 

disruption of  reproduction,8,9 a reduction in biodiversity,10 and, dysmorphia in the maturation of 

organisms.11 Furthermore, different compounds which affect organisms in a similar way can work 

synergistically amplifying the impact.7,12 Regulations only cover a very minor proportion of the 

commonly identified micropollutants, and many others almost certainly remain to be discovered.   

Micropollutants have been identified in different discharges including sewage treatment works.13,14 

Sewage treatment works have been found to be a major gateway for the release of pharmaceuticals,15 

personal care products16 and plasticisers17 into the environment. The concentration and 

presence/absence of target compounds across different sewage treatment works has been found to vary 

between different sites and over time.13,15,16,18,19 With over 9000 sewage treatment works in the UK and 

numerous other point sources the identification of potentially ecotoxicological compounds remains a 

challenge. Without identifying these micropollutants; the determination of ecotoxicity, effective 

mitigation solutions and environmental monitoring cannot be carried out.  

The most common approach to the determination of organic compounds in both wastewater and the 

natural aquatic environment ecosystem is targeted analysis using MS approaches focusing on known or 

suspected compounds.4,20 Optimised extraction methods are used to isolate and concentrate the target 

analytes with subsequent interrogation involving gas chromatography (GC)21,22 or high-performance 



 

 

liquid chromatography (HPLC)13,23 linked MS. Targeted studies have largely focused on 

pharmaceuticals,15,24 personal care products16,25 and pesticides,21,26 with their concentrations or load in 

the riverine environment being used to assess the effectiveness of sewage treatment and local 

sources.13,15,27 The obvious limitation of targeted analysis is that it requires a predetermined list of 

known compounds. Targeted analysis will only determine the selected compounds and exclude other 

compounds originating from a point source or the environment. The use of electrospray ionisation (ESI) 

and HRMS has revolutionised the analysis of complex mixtures of water soluble compounds, such as 

DOM, allowing the exact mass of individual molecular ions to be determined.28,29 The ionisation of 

intact molecules and their mass analysis using instruments with high resolving power and high mass 

accuracy means that each ion in a spectrum potentially corresponds to a unique compound (taking 

account of other adducts and isotopes). Application of this approach has revealed the extraordinary 

complexity and heterogeneity of DOM in the natural environment, as evidenced by the DI-HRMS 

spectra containing many thousands of resolved ions.30,31  

One of the major challenges of utilising these HR mass spectra of DOM lies in the interrogation of the 

data.  Attempts have been made to assign formulae to the observed ions in the spectra, using rule-based 

calculations.32–34 All studies include carbon, oxygen, nitrogen and hydrogen, however, the inclusion of 

heteroatoms, e.g. P, Cl and S vary between studies.30,35,36 Increasing the number of heteroatoms results 

in an exponential increase in the number of possible formulae for a single ion, resulting in a high level 

of uncertainty and false positives.33 Isotopes and adducts, i.e. [M+Na]+, [M+K]+, [M+Cl]- , will be 

present in all DI-HRMS spectra, but are rarely accounted for. Hence, despite the high mass resolution 

attainable using modern Fourier-transform ion cyclotron resonance (FTICR) or Orbitrap™ MS 

instruments, the exceptional complexity of the mass spectra obtained largely defies conventional 

approaches to handling these unusual data sets.   

An alternative approach is to move toward data visualisation rather than more conventional peak 

identification approaches. One such approach is the use of van Krevelen diagrams. Such diagrams use 

the ratios of carbon:hydrogen and carbon:oxygen of the formulae assigned to ions as a basis for the 

comparison of DOM in water extracts. 37–41 These elemental ratios of formulae are used to classify ions 

to a compound class.30,31,40,41 However, the interpretation of a van Krevelen diagram relies on the correct 

assignment of formulae, including appropriate numbers of heteroatoms. Incorrect assignments will lead 

to the inaccurate interpretations of differences in the composition of DOM extracts. Furthermore, a 

single ion in a DI-HRMS spectrum maybe the result of multiple isomers and therefore, the full 

complexity is not fully revealed. In addition, the correct classification using a van Krevelen diagram of 

a compound class for one isomer maybe incorrect for another isomer with the same formulae. Despite 

this van Krevelen diagrams have found utility in visualising differences in composition of DOM extracts 



 

 

from different aquatic systems, addressing a range of questions relating DOM source and variability 

between ecosystems, e.g. differences between water bodies in different geographical locations.38,42,43  

While van Krevelen diagrams have proved useful for visualising differences between DOMs extract 

chemistries, the approach is non-statistical and is rather restricted in truly exploiting the full complexity 

of the data, e.g. ion intensities and molecular species of unassigned formulae.  An alternative, but still 

less widely applied approach, is multivariate statistics, in particular PCA of DI-HRMS spectra. The 

latter has been used to determine and visualise differences between the composition of DOM extracts 

from different SPE extraction methods44 and different water bodies within the same pristine 

catchment.42 PCA requires only the detected ions and their intensities in different DI-HRMS spectra to 

determine if extracts are different. However, this has not been applied to point sources in comparison 

to their receiving environment.  

Herein, we address the challenge of how to deal with the question of the complexity of riverine DOM 

analysis by HRMS.  We have taken a comprehensive approach in order to retain a broad view of DOM 

composition and developed a method for data reduction based on a difference algorithm to highlight 

complex anthropogenic DOM contributions against a natural or semi-natural DOM background. To 

achieve this, we first record DI-HRMS spectra of DOM recovered by SPE, then use PCA as a rapid 

qualitative screening method to determine if differences exist between DOM extracts of point sources 

and the receiving aquatic environment. Following this the difference algorithm, employing univariate 

statistics (Kruskal-Wallis analysis), was applied to allow the anthropogenic point source components 

to be identified in DI-HRMS spectra. Heatmaps and hierarchical cluster analysis are then used as data 

visualisation tools, which allow compositional differences to be recognised. The anthropogenic 

components highlighted through the untargeted difference analysis formed the basis for structural 

identification of specific molecular species by HPLC/HRMS/MS.  

Experimental 

Sampling 

The sewage treatment works (at 51° 21' 21.8052'' N, 2° 37' 2.262'' W) is situated on the River Chew in 

Somerset, UK, which drains NW from its source at Chewton Mendip to the sewage works, and then NE 

to its confluence with the Bristol Avon at Keynsham (at 51° 25' 7.7196'' N, 2° 29' 32.118'' W). It is 

located downstream of Chew Valley Lake, a significant reservoir supplying water to the city of Bristol, 

UK. This site was selected to test and develop this method as it was close enough to the University of 

Bristol to allow rapid stabilisation of samples in cold storage following collection in the field (details 

of which are given below). The treatment methods used at the sewage treatment works include: (i) 

Preliminary solid removal of large particulates, (ii) Primary settling to further allow smaller particulates 

to flocculate and settle out of the water, (iii) Secondary treatment using trickle filter beds to biologically 



 

 

break-down organic matter. The sewage treatment works has a tertiary treatment which includes 

phosphorous stripping. The final treated effluent is discharged into the river downstream of the 

reservoir.  

Three comparative water samples (5.25 L) were collected in amber glass bottles. The first was taken 

ca. 60 m upstream of the sewage treatment outfall. The second was taken directly from the discharging 

sewage outfall and the third ca. 50 m downstream. Five procedural controls of HPLC grade water (1 L, 

Fischer Scientific, Loughborough, UK) were extracted with the water samples collected. The water was 

divided into 1 L aliquots, which were vacuum filtered using an all glass filter apparatus (47 mm, Merck 

Millipore, Feltham, UK) through glass fibre filters (0.5 µm, 47 mm, Advantec, Cole-Palmer, Hanwell, 

UK) within 24 hrs of collection. Both the filter and filtration apparatus were pre-combusted before use 

(450 oC, 4 h). An additional 20 ml of each water sample was filtered using the same apparatus and 

retained to determine the concentration of DOC. The filtered water samples (1 L) were acidified to pH 

2 using hydrochloric acid (30%, TraceSelect, Sigma–Aldrich, Dorset, UK) and extracted using Oasis 

Hydrophilic-Lipophillic Balance (HLB) solid phase extraction cartridges (SPE, 400 mg bed mass, 60 

µm particle size, Waters Ltd, Elstree, UK). The cartridges were conditioned using HPLC grade 

methanol (3 ml, Rathburn Chemicals Ltd. Walkerburn, UK) and HPLC grade water (3 mL, Fischer 

Scientific) before the acidified filtered water (1 L) was extracted. After extraction, the cartridges were 

rinsed with acidified HPLC grade water (3 mL, Fischer Scientific) and dried under vacuum for 30 min. 

The extracts were eluted from the SPE cartridges with HPLC grade methanol (6 x 1 mL, Rathburn 

Chemicals Ltd.) and dried under a steady stream of nitrogen. Dried extracts were dissolved in a mixture 

of HPLC grade methanol/water (1:1, v/v, 1 mL, Rathburn Chemicals Ltd., Fischer Scientific). 

An aliquot of each extract (100 µL) was mixed to create a pooled quality control (QC) and an aliquot 

of each extract (50 μL) was removed and dried under a steady stream of nitrogen for DOC analysis. 

The pooled QC and all extracts were then stored at –85 oC until required for analysis.  

DOC analysis 

The dried 50 µl aliquots of the extracts were dissolved in water (20 ml, MilliQ) before DOC analysis. 

Filtered water samples were analysed directly. All analyses were carried out using a Shimadzu TOC-L 

analyser using the non-purgeable organic carbon (NPOC) method recommended by Shimadzu for the 

analysis of environmental water samples. The mean of three to five injections of 150 µL, where the 

coefficient of variance for replicate injections was < 2%. The results are is presented in Table 1.    

DI-HRMS analysis  

DI-HRMS were recorded in positive ion mode using an Orbitrap™ Elite Hybrid Ion Trap-Orbitrap™ 

Mass Spectrometer (Thermo Scientific, Hemel Hempstead, UK) with a heated electrospray ionisation 

source (HESI).The instrument was calibrated using Thermo Scientific Pierce LTQ ESI Positive Ion 



 

 

Calibration Solution. The instrument was calibrated and had a mass error of 3.2 ppm and resolution of 

m/Δm 197,389 at m/z 524.257 and upon tuning the S-lens radio frequency level was 61.81 %. Extracts 

were directly infused at a rate of 5 μL min-1 into the HESI. The source voltage was set to 3.0 kV, sheath 

gas (nitrogen) flow rate to 10 arbitrary units (arb), the auxiliary gas (nitrogen) flow rate to 5 arb and the 

sweep gas (nitrogen) flow rate to 5 arb and capillary temperature to 275 oC. The mass spectrometer was 

set to acquire in the mass range of m/z 150 to 2000 for 100 scans, and the ions detected were recorded 

in profile using the nominal resolving power “240,000”. The maximum injection time was set at 200 

ms and the automatic gain control (AGC) target was set to 1,000,000. The TIC was assessed for any 

losses in signal during analysis. Extracts were analysed in random order. The mixed QC and calibration 

solution was analysed after every 5 extracts the mass drift was 1.8 ppm over all analyses.  

HPLC/HRMS and HPLC/HRMS/MS analysis  

The SPE extracts (10 µL) were analysed using HPLC/HRMS using a Dionex Ulitmate HPLC system 

coupled to an Orbitrap™ Elite Hybrid Ion Trap-Orbitrap™ Mass Spectrometer (Thermo Scientific) 

with a HESI. Chromatographic separation used an ACE UltraCore Super C18 column (150 x 2.1 mm 

i.d., 25 Å particle size, Hichrom, Reading, UK). The column was kept at a constant temperature of 50 

oC. A gradient program with HPLC grade water (Fischer Scientific) as mobile phase A and HPLC grade 

acetonitrile (Fischer Scientific) as mobile phase B both with a 0.1 % formic acid (Fischer Scientific) 

modifier was used. The flow rate was kept constant at 350 μL min-1. The gradient program was as 

follows: 5% B for 1 min, 5% to 95% linear gradient for 30 min and 95% held for 5 min before returning 

to 5% in 1 minute and remaining at 5 % for 4 min. All spectra were recorded using the nominal resolving 

power at “120,000” in positive ion mode for the mass range m/z 150 to 2000 in centroid and the AGC 

target was set to 1,000,000. The source voltage was set to 3.5 kV, source temperature 80 oC, sheath gas 

(nitrogen) flow rate to 30 arbitrary units (arb), the auxiliary gas (nitrogen) flow rate to 10 arb and the 

sweep gas (nitrogen) flow rate to 10 arb and capillary temperature to 275 oC. Between each analysis a 

solvent blank of HPLC water (Fischer Scientific) was run to ensure that there was no carry over between 

samples.  

The data dependant acquisition (DDA) method was used for the acquisition of MS2 spectra for a target 

mass list of ions and their retention times. The HPLC method and source settings were consistent 

between the HPLC/HESI-HRMS and HPLC/HESI-HRMS/MS runs. Ions detected in the HPLC-MS 

within 10 ppm of the m/z of ions determined to be significant from the Kruskal-Wallis analysis were 

compiled into a target mass list of m/z and retention time. A stepwise method consisting of 7 scan events 

was used. A full scan event recorded using the nominal resolving power at “120,000” to identify the 

presence of a target mass ion. If a target mass ion was detected within the retention time range of 30 

sec, then a series of 6 MS2 scans were recorded in the Orbitrap™ using the nominal resolving power at 



 

 

“7000” at different CID energies of 10, 20, 30, 40, 50 and 60 eV. The same target ion could be recorded 

twice before it was excluded for 30 sec.   

Data processing 

DI-HESI-HRMS files were converted from Thermo .raw to .mzML using MSConvert. All 100 scans 

were merged using an openMS spectramerger module in KNIME.45,46 This was done as the XCMS for 

the peak picking of DI-HRMS expects a single mass spectrum. Ion picking and alignment was done 

using XCMS package (v 1.52.0) in R (v 3.4.0) to create a data matrix of ion intensities aligned by 

mass.47 The changes in the mass accuracy across the analytical run were assessed using the accurate 

mass of standard ions and ions were aligned using a mass tolerance of 5 ppm. The ion had to be present 

in 3 out of 5 of the replicate DI-HRMS analyses.  

Files from the HPLC/MS analysis were converted from Thermos .raw to .mzML using MSConvert.48 

Peak picking and alignment were performed using XCMS (v 1.52.0)  package in R (v 3.4.0) to create a 

data matrix of sample intensities aligned by mass and retention time.47,49,50 The method used for peak 

picking was the centWave algorithm which is recommended for peak picking and alignment of 

HPLC/HRMS data. Peaks were picked above a signal-to-noise ratio of 10, the mass tolerance allowed 

was 10 ppm and a retention time tolerance range of 15 to 60 s. The peaks were then aligned across 

samples if the mass was within 0.002 Da and retention times overlapped by 10 s. 

HPLC/MS/MS files were converted from Thermos .raw to .mzML using MSConvert.48 Peak picking 

was done using XCMS (v 1.52.0) package in R (v 3.4.0). 47,49,50 A data matrix of product ions and 

intensities was created corresponding to a specific precursor ion’s mass, retention time and the 

fragmentation energy. Product ion spectra were compared to two databases mzCloud and MassBank. 

Statistical analyses and visualisation methods 

All calculation and visualisation of the statistical analyses of the DI-HRMS spectra were carried out 

using Mass Profiler Professional (Agilent Technologies Ltd, Abington, UK). The intensity of the ions 

was transformed using log2 scale. The position and clustering of the mixed QC in the PCA was used to 

determine if there were any changes caused by analytical variance or data processing. Once this was 

shown to be minimal the QC and blank data were removed and the PCA and hierarchical cluster analysis 

were calculated to determine the differences between the sample groups. Heat maps are generated 

automatically as part of the hierarchical cluster analysis and visualise the difference in ion intensity 

between extract mass spectra. Kruskal-Wallis analysis was then used to compare the sewage effluent 

and upstream DOM composition based on ion distributions and their intensities to determine 

statistically significant ions (based on p values) which vary between the mass spectra. Ions with a p 

value < 0.005 and were found to increase in intensity when comparing the upstream and sewage outfall 



 

 

DI-HRMS spectra were compiled into a target list for further investigation using HPLC/HRMS 

(described above).      

Results and Discussion 

The analytical approach described above aimed to identify the complex array of anthropogenic 

compounds discharged in treated sewage DOM against a background of riverine DOM. One of our 

primary objectives was to retain a comprehensive overview of DOM composition in order that 

contributions that would be missed in targeted analyses can be routinely detected. This relates to our 

wider objective of developing a holistic understanding of the role of DOM in driving aquatic ecosystem 

ecology, rather than the more common goal of targeted analyses for the regulation of priority pollutants. 

The approach used proceeds in three phases: (i) DI-HRMS analysis of water samples to identify the 

ions derived from the sewage effluent DOM against the background of natural riverine DOM, (ii) 

application of statistical methods to allow significant compositional differences to be determined and 

visualised diagrammatically, and (iii) use of HPLC/HRMS to further explore the complexity of DOM 

to identify individual molecular species through MS2 spectra.    

DOC analyses of the DOM and SPE extracts 

The DOC concentrations of the filtered water collected from each sampling site, the concentration of 

organic carbon recovered by SPE and hence, the extraction efficiency of the SPE are shown in Table 1. 

These data reveal little difference in the DOC concentrations and the SPE extracts of the water samples 

from the sewage outfall and the river. DOC concentrations were similar for all samples at ca. 3 mg C 

L-1, sitting within the range of variation previously reported for UK rivers, including in this study, which 

ranged from 0.76 mg C L-1 in chalk catchments to >26 mg C L-1 in peat catchments.51 These data 

emphasise the ineffectiveness of DOC concentrations in revealing differences in the composition of the 

DOM pool, where markedly different compound mixes can share similar DOC concentration. The DOC 

determinations do, however, provide a useful means of assessing the SPE recovery efficiencies of DOM 

from all three water samples, i.e. ca. 40%, which is typical of the recoveries recorded for the HLB phase 

in other studies.44,52 It should be noted that this SPE phase was chosen as it has been widely used in 

targeted13,15,53 and untargeted analyses54,55 and passive sampling.56,57 The similarities in DOC 

concentration and extraction efficiencies emphasise the need to explore alternative, i.e. molecular 

approaches, to gain an in depth understanding of the composition characteristics and potential 

ecological impacts in relation to DOM source.    

DI-HRMS analysis of SPE extracts  

The DI-HRMS spectra of the upstream, sewage outfall and downstream extracts are shown in Figure 1. 

The spectra of all three DOM SPE extracts show the remarkable complexity of the composition of both 

the riverine and sewage effluent extracts. The full mass range spectra show clear differences between 



 

 

sources. The upstream spectrum (Figure 1(a.i)) shows a similar character to SPE extracts of DOM from 

other studies of riverine DOM.30,58 The spectrum shows an extremely high density of ions in the range 

m/z 150 to 750, maximising at m/z 288.1956. In contrast, the sewage effluent and downstream extracts 

differ markedly in composition from the upstream extract. These two extracts are characterised by a 

prominent series of ions extending well-beyond m/z 1000 (Figure 1(b.i & c.i)). The differences in 

composition between these two extracts and the upstream DOM reveals a very significant contribution 

from the sewage works to the riverine DOM, suggesting overprinting of the river background DOM by 

the anthropogenic contribution. Preliminary assessment of this contribution reveals a prominent series 

of ions with a 58 Da mass defect with the intensities describing a slightly skewed normal distribution, 

suggestive of the presence of a polymer, or perhaps more correctly a mixture of oligomers. 

Eighteen oligomeric series containing 156 ions were identified with a mass difference of 58.0419 + 

0.005 indicates a structural motif of [CH2CH2CH2O], consistent with the presence of oligomers of the 

synthetic industrial polymer polypropylene glycol (PPG). Further investigation of the DI-HRMS 

spectrum points to the presence of a number of variants of PPG series, which will be discussed in detail 

below. Based on this preliminary assessment alone, the sewage outfall DOM has clearly profoundly 

affected the composition of the river DOM.  

Figure 1(ii & iii) show examples of two selected mass range windows, i.e. m/z 250 to 300 (blue 

highlighted mass window in the Figure 1(i) spectra) and m/z 272.0 to 274.0 (purple highlighted mass 

window in Figure 1(i & ii) spectra), of the full DI-HRMS spectra. These spectra illustrate the exquisite 

compositional detail revealed through use of high mass resolution (m/m = “240,000”), in particular, 

differences in composition between the upstream, sewage works discharge and downstream DOM. In 

Figure 1, the highlighted bars in the spectra for the three sampling locations show two narrower mass 

windows. Without any prior knowledge of the identities of the components giving rise to the various 

ions, simple visual comparisons between spectra offer insights into ions specific to the reservoir river 

outflow and sewage works DOM extracts. Figure 1(c.iii), clearly represents the effects of mixing of the 

two sources. Notable differences include the major ion at m/z 272.1642 present in the upstream DOM 

but absent from the sewage effluent. However, the downstream river DOM shows this ion at lower 

relative abundance due to the addition of compounds from the sewage outfall. In contrast, the dominant 

ion at m/z 274.2007 in the sewage works discharge spectrum remains the most abundant ion in the 

downstream extract despite dilution. All the other ions in the 4 amu mass window shown in Figure 1(iii) 

display similar behaviours relating to source specificity and dilution effects. However, it was quickly 

recognised that that continuing with manual comparisons of this sort across the full spectral range would 

be prohibitively time-consuming due to the many thousands of ions present in these mass spectra. Set 

out below is a new protocol for processing such a dataset to allow in depth interrogation of source 

contributions.     



 

 

Statistical comparisons of DOM based on DI-HRMS spectra 

The starting for the statistical analyses is to establish if differences exist between the compositions of 

extracts in relation to the ions present and their intensities. The latter proceeds with creation of a data 

matrix of the ions aligned by their accurate mass and intensities for each DI-HRMS spectrum. After 

this “peak picking” step the DI-HRMS spectra were aligned to reveal 3237 ions detectable above a s/n 

5. PCA was then applied to the generated data matrix to initially assess whether differences existed in 

composition between the extracts; the results are shown in Figure 2. In both PCAs the extracts clearly 

cluster in their respective replicate extraction groups . Figure 2(a) shows the mixed QC (purple), clusters 

between the downstream and sewage effluent replicate extracts, showing it is compositionally more 

similar to the latter extracts than the upstream. The mixed QCs position on the PCA plot can be 

explained by the presence of the compounds contributed by the sewage outfall, but which are absent 

from the upstream extract. The DI-HRMS spectra of the mixed QC, recorded every 5 extracts analysed 

throughout the analytical run, plot close together in the PCA, confirming no major significant 

differences are attributable to analytical variance or data processing errors.   

The PCA of the DOM extracts shown in Figure 2(b), highlights that there are distinct compositional 

differences between the upstream (green), sewage effluent (red), and downstream (blue) extracts; 

separation in principal component 1 (PC1) explains 46.9 % of the total variance. The sewage outfall 

and upstream extracts are end members, confirmed by PC1 showing they are least similar in 

composition. As expected, the downstream extract plots between these groups, which is consistent with 

it being a mixture of the point source and reservoir riverine DOM.    

Hierarchical cluster analysis (Figure 3(a)) confirms that upstream, downstream and sewage outfall 

extracts cluster in their respective replicate groups. However, the dendrogram also shows that overall 

the downstream and sewage outfall are more similar in composition, as these separate further down the 

dendrogram than the downstream and upstream extracts. This further demonstrates the profound effect 

the sewage outfall point source had on the downstream riverine DOM composition.  

The heatmap visualises the differences in intensity of all the detected ions not easily determined when 

comparing DI-HRMS spectra directly. The heatmap shows ions changing in intensity across the mass 

range of the DI-HRMS spectra. As discussed above when comparing the raw DI-HRMS spectra directly 

(Figure 1), ions were present in the downstream and sewage outfall spectra of higher mass (m/z >900), 

which were not seen in the upstream mass spectra; this can be clearly seen using the heatmap. 

Expanding the heatmap in this mass range shown in Figure 3(c), the ions in this area of the heatmap are 

represented consistently in red indicating a high intensity in the sewage outfall extract, blue indicating 

low intensity in the upstream extract, and yellow/orange in the downstream extract, showing that the 

intensity falls between the upstream and sewage outfall extracts. This demonstrates the expected 

behaviour of compounds originating from the point source, i.e. that these are highest concentration in 



 

 

the sewage outfall, low concentration/absent upstream and diluted upon entering the river in proportion 

to the river flow. 

The ions in the mass range used in Figure 1(iii) are shown in the expanded heatmap in the Figure 3(b). 

The contrasting changes in intensity for m/z 272.1642 and m/z 274.2007 (discussed above) can also be 

seen in the heat map, occurring consistently across all extraction replicates. In addition, using the heat 

map, more subtle changes can be seen, e.g. the ions m/z 273.1482 and 273.1670 exhibit the same high 

intensity in the sewage effluent and downstream extracts as shown by ion m/z 274.2007, which was not 

easily identifiable from directly comparing the DI-HRMS spectra. This visualisation tool creates a quick 

approach to compare changes in the intensity of particular ions between the DI-HRMS spectra and 

extraction replicates.  

The upstream and sewage effluent DI-HRMS spectra were compared using Kruskal-Wallis analysis to 

highlight significant discriminating ions which differ between the mass spectra of the various extracts. 

A significance threshold p value <0.005 was chosen and only ions with a higher intensity in the sewage 

outfall when compared to the upstream were retained, as these compounds were deemed most likely to 

derive from the sewage outfall. It was found that of the 3237 ions detected, 510 ions were found to meet 

these criteria, hence, these ions were selected for further analysis by MS/MS. The complexity of the 

DI-HRMS spectra show there are multiple ions within a 1 Da mass range as illustrated by Figure 1(iii). 

Furthermore, each ion could be multiple structural isomers. Isolation of precursor ions for further MS2 

experiments from such a complex mixture would result in in chimeric product ion spectra, difficult to 

deconvolute and match to reference spectra. This made it unfeasible even with the Orbitrap™ MS to 

isolate a single ion from such a complex mixture,59 therefore, tandem HPLC/HRMS/MS was used to 

identify specific components. 

HPLC/HRMS and HPLC/HRMS/MS analyses 

The total ion chromatograms (TICs) of each of the SPE extracts shown in Figure 4(d-f) suggest poor 

chromatographic separation, because there are no individually resolved chromatographic peaks in the 

TICs. However, plotting accurate mass extracted ion chromatograms (EICs) shows that individual 

compounds are separated chromatographically, and the apparently poor resolution actually arises from 

extensive co-elutions inevitable in these extremely complex mixtures. Thus, HPLC/HRMS offers the 

following possibilities: (i) further exploration of extract composition and attribution of components to 

source, and (ii) isolation of individual ions allowing MS2 experiments to be carried out to identify 

compounds.  

Even higher complexity is revealed through HPLC/HRMS than was apparent in the DI-HRMS. The 

“peak picking” algorithm detected 14,325 individual components across all extracts, which was 

recognised by aligning their unique masses and retention times (m/z@rt), producing a second data 



 

 

matrix of peak areas. A components peak area was compared in ratio form across the three different 

extracts using a ternary plot (Figure 5). The components found in each of the three extracts show three 

main trends: (i) the green area of the ternary plot highlights components where < 5 % of the total peak 

area is attributable to the upstream extract, confirming these components derive from the sewage outfall 

and downstream extracts. As shown by the ternary plot most components have a higher contribution 

from the sewage outfall as these plot between 50-100 % on the axis of the sewage outfall. This reflects 

their absence/low abundance in the river background (upstream), high abundance in the sewage 

effluent, and reduced abundance downstream due to in-stream dilution. (ii) the blue area of the plot 

highlights components where < 5% of the total peak area is attributable to the sewage outfall. This 

shows that these components are predominantly found in the river (downstream and upstream extracts). 

(iii) the red area highlights components where >5 % of the peak areas is found in all three sources 

showing that these components are common to all SPE extracts. The ternary plot facilitates the overall 

comparison of the different components detected in the HPLC/HRMS analysis, which is simply not 

possible through manual direct comparison.   

Turning to the second use of HPLC/HRMS we focussed on the 510 ions determined in the DI-HRMS 

as deriving uniquely from the sewage effluent. Using the accurate mass (± 5 ppm) 420 of these masses 

were detected as 681 components in the HPLC/HRMS. This showed that a substantial proportion of the 

individual ions in the DI-HRMS analysis comprise more than one structure and that 90 of the masses 

were undetectable in the HPLC/HRMS for a variety of reasons. The majority of 681 components 

detected in HPLC/HRMS analysis plot in the green area of the ternary plot, confirming that these 

components derive from the sewage outfall.  

These 681 components were compiled into a target list and analysed by HPLC/HRMS/MS as described 

above. The chromatographic separation allows the isolation of individual compounds for which product 

ion spectra can be recorded over multiple collision energies. Ninety-six components were identified and 

the EICs of these are shown in Figure 4(a-c). The EICs of the identified compounds show that all 96 

are only present in the downstream and sewage effluent extracts and none are detectable in the upstream 

extract, unequivocally confirming these compounds originate from the sewage treatment works. 

Interestingly, there is clearly a decrease in the peak area in the downstream extract compared to the 

sewage effluent extract, resulting from dilution of the point source by the river flow.   

Of the 96 components identified, 72 related to the polymer PPG, eluded to above and discussed further 

below. The other 24 compounds were a mixture of pharmaceuticals, illicit drugs, flame retardants and 

metabolites, as summarised in Table 2. Twenty two of the compounds characterised have been 

previously identified in other sewage treatment effluents and/or surface water13,15,60,61. Two novel 

compounds were identified, namely the antiretroviral raltegravir and also piperine, which is a natural 

product derived from black pepper. The antiretroviral raltegravir was tentatively identified based on 



 

 

multiple CID spectra recorded at a range of energies. Further evidence for the identification of 

raltegravir was obtained using higher energy collision dissociation at the same collision energies used 

to record the reference spectra recorded in mzCloud (10-100 eV).   

As discussed above in relation to the DI-HRMS 18 series of ions were highlighted with a 58 Da mass 

defect in the downstream and sewage outfall extracts. The HPLC/HRMS TIC of these extracts showed 

no distinct series of chromatographically separated peaks with a normal distribution(s) which would be 

indicative of a synthetic polymer.  However, using the accurate masses of the ions in each series 

(determined from DI-HRMS) the EIC shown in Figure 4(b-c), reveal 2 distinct normally distributed 

series of peaks, presumed to correspond to 2 series of oligomers. The first series elutes between 8 to 27 

min with the most abundant oligomer eluting at 11.5 min and the second series eluting between 25 to 

35 min with the abundant oligomer eluting at 31 min. Oligomeric ions from 5 of the series were found 

to coincide with the earlier eluting distribution and 3 were found to coincide with the later eluting series. 

This indicates that these co-eluting series are isotopes and adducts of the 2 different oligomer series.  

The HPLC/HRMS/MS analyses of selected parent oligomeric ions from both series were found to 

produce series of product ions with a mass defect of 58.0419, consistent with the cleavage of the ether 

bond in PPG. Using the accurate mass of the parent and product ions it was possible to determine that 

each series had different end groups. For the earlier eluting series, the end groups were determined to 

be dihydroxy, while the later eluting series possessed hydroxyl and butyl end groups. It was not possible 

to identify the remaining 10 series of ions found to possess a 58 Da mass defect from the DI-HRMS 

spectra.  

Conclusion 

The results presented herein confirm the advantages of using an untargeted HRMS approach to the 

analysis of DOM contributed from point sources. The major findings of the research are:  

(i) The DI-HRMS molecular ‘fingerprints’ of the DOM extracts of river water obtained using 

SPE reveal the exceptional compositional complexity and very wide range of DOM 

compounds in waters which are not currently quantified, identified or controlled under 

current water quality legislation. The DI-HRMS spectra of the DOM extracted from the 

upstream, downstream and sewage outfall water, show how a point source can dramatically 

alter the composition of the riverine DOM. 

(ii) Manual assessments of the DOM composition, while revealing specific spectral features 

driving differences in DOM composition, emphasise the need to use chemometric statistical 

methods to interrogate data sets of this complexity.  

(iii) PCA analysis of the DI-HRMS spectra was readily able to resolve the different DOM 

sources, including in-stream mixing. Hierarchical cluster analysis showed that the 



 

 

composition of the downstream DI-HRMS spectra was more similar to the sewage outfall 

spectra than those of upstream extracts, confirming the importance of the point source 

contribution to the overall DOM. 

(iv) Heatmapping facilitated visualisation of the changes in the intensity of ions between DI-

HRMS spectra including the determination of ion intensity changes which were not readily 

identifiable directly comparing the DI-HRMS spectra.  

(v) Comparison of the sewage outfall and upstream DI-HRMS spectra using Kruskal-Wallis 

analysis provided a critical statistical data reduction step to identify the most important 

molecular species driving the differences in composition between the DOM extracts.    

(vi) HPLC/HRMS TIC shows extensive co-elution for the DOM extracts. However, EIC of 

individual ions showed that compounds were separated chromatographically, with peak 

picking revealing over 14,325 components. Ternary plotting provided a visual means of 

attributing components to sources.  

(vii) A wide range of compounds were tentatively identified from the sewage outfall including 

pharmaceuticals, plasticisers, metabolites and illicit drugs. Many have been identified in 

previous studies as originating from sewage treatment works. Others remain to be 

investigated to determine their environmental behaviour and potential ecosystem impact in 

waters. 

(viii) Industrially-produced oligomeric PPGs were identified using DI-HRMS and HPLC/HRMS 

in sewage effluent for the first-time.  

Overall, the results demonstrate considerable value exists in combining DI-HESI-Orbitrap™-HRMS 

and HPLC/HESI-Orbitrap™-HRMS for the analysis of complex DOM extracts. Our approach also 

highlights the value of applying statistically approaches to the assessment of complex data sets to 

determine the components differing between sources. Such an approach would have value in assessing 

compositional differences of any point source in river systems or between temporal events driven 

biologically, seasonally and/or anthropogenically.   
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Figure 1. DI-HRMS spectra of the (A) upstream, (B) sewage outfall, and (C) downstream, SPE extracts 

displaying the mass ranges m/z 150 to 1200 (A.i, B.i, and C.i) m/z 250 to 300 (A.ii, B.ii, and C.ii) and 

m/z 272.0 to 274.4 (A.iii, B.iii, and C.iii). 



 

 

 

Figure 2.  (A) PCA of the DI-HRMS spectra of the upstream (■), sewage outfall (■), downstream (■), 

blank (■) and mixed quality control (■) DOM extracts. (B) PCA of the DI-HRMS spectra of the 

upstream (■), sewage outfall (■), and downstream (■) DOM extracts. 

 

  



 

 

 

Figure 3. (A) Hierarchical cluster analysis of the upstream (■), sewage outfall (■), and downstream (■) 

DOM extracts and heatmap of the ions detected in the DI-HRMS. Comparison of the log2 of the intensity 

of the ions represented by colour with higher intensity hotter (red) and lower intensity colder (blue). 

Two narrower mass ranges (B) m/z 272.0 to 274.5 and (C) m/z 982.0 to 1259.0 from the heatmap.    

 



 

 

 

 

 

Figure 4. (A) EIC of mass of the precursor ions identified in the upstream SPE extract, (B) EIC of the 

precursor ions identified in the sewage effluent SPE extract, (C) EIC of the precursor ions identified in 

the downstream SPE extract, (D) TIC of upstream SPE extracts, (E) TIC of the sewage outfall SPE 

extracts, and (F) TIC of the downstream SPE extracts.  



 

 

 

Figure 5. Ternary plot of ratios the peak areas of individual components detected in the SPE extracts. 

Green points highlight peaks where < 5% of the component derives from the upstream contribution. 

Blue area highlights peaks where < 5% of the component derives from sewage outfall. Red highlights 

peaks where > 5% of the component can be attributed to all three sources.   

  



 

 

Table 1. DOC of the filtered water, concentration of organic carbon extracted using SPE and the 

extraction efficiency of the extraction procedure 

 DOC filtered 

water (mg C L-1) 

DOC 

concentration of 

extracts 

(mg C L-1)  

Extract 

efficiencies (%) 

Upstream  3.39 1.50 ± 0.04 42.11 ± 0.5 

Sewage Outfall  3.19 1.29 ± 0.05 40.49 ± 1.7 

Downstream 3.45 1.40 ± 0.06 40.34 ± 0.8 

Blank  N/A 0.18 ± 0.02 N/A 



 

 

Table 2. Summary of the 24 identified compounds from the sewage effluent extract.   1 

Precursor 
(m/z) 

Retention 
Time (min) 

Fragmentation 
energy (eV) 

p 
value   

Formulae   Compound  Product ions (m/z)  

300.1592 3.67 40 0.0013 C18H21NO3 Codeine  282.1497, 267.1260, 253.1231, 243.1023, 225.0917, 215.1074, 199.0760, 193.0648, 

187.0754, 183.0811, 175.0760, 165.0701, 161.0603 

268.1544 3.93 30 0.0016 C14H21NO4  Atenolol acid  250.1441, 233.1176, 226.1079, 208.0971,191.0706, 165.0547, 145.0471, 116.1067, 
98.0960 

325.1915 5.47 30 0.0013 C20H24N2O2 Quinine  307.1782, 279.1521, 278.1570, 264.1315, 253.1296, 226.1199, 210.0940, 202.0851, 

198.0880, 186.0918, 184.0739, 174.0926, 172.0744, 166.1228, 160.0798, 134.0914, 
110.0951 

290.1392  5.89 30 0.0013 C16H19NO4 Benzoylecgonine 272.1288, 168.1023, 150.0917, 124.1123, 122.0964, 119.0493, 91.0545 

256.0152 5.9 40 0.0013 C9H7Cl2N5 Lamotrigine  229.0052, 221.0468, 220.0390, 213.9925, 210.9831, 193.0408, 186.9827, 185.9878, 

183.9712, 179.0245, 173.9880, 171.9716, 166.0299, 165.0214, 158.9768, 151.0190 

266.1657 6.07 40 0.0013 C17H19N3 Mirtazapine  235.1230, 223.1230, 209.1073, 195.0917 

304.1549 7.04 40 0.0013 C17H21NO4 Cocaine  272.1281, 182.1176, 150.0913, 108.0807 

253.0978 7.76 30 0.0013 C15H12N2O2 Carbamazepine 10,11-epoxide 254.0817, 236.071, 210.09187,180.0809  

278.2113 8.14 30 0.0013 C17H27NO2 Venlafaxine  261.206, 215.1435, 121.0641 

373.1586 8.75 30 0.0013 C20H24N2O3S Desacetyl diltiazem 373.1580, 328.1002, 223.0900, 178.0321, 150.04 

260.1647 8.82 30 0.0013 C16H21NO2 Propranolol  242.1540, 218.1171, 183.0804, 157.0647, 132.1020, 116.1067, 98.0961, 86.0960   

325.1711 9.68 30 0.0024 C20H21FN2O Citalopram  325.1721, 307.1614, 280.1139, 262.1033, 234.0721, 166.0656, 156.0813, 116.0496, 

109.0449 

415.1456 10.06 30 0.0013 C17H20F6N2O3 Flecainide 415.1454, 398.1189, 386.12,370.0870, 332.1345, 330.05569,318.0558, 315.1075 

301.0297 

264.1752 11.15 30 0.0013 C19H21N Nortriptyline 264.0840, 233.1331, 191.0860, 155.0861, 117.0700, 105.0700, 91.0543 

278.1909 11.29 30 0.0013 C20H23N Amitriptyline 278.1918, 233.1332, 191.0861, 179.0859, 155.0861, 117.0701, 105.0700, 91.0543 

502.2957 11.53 30 0.0013 C32H39NO4 Fexofenadine 484.2830, 466.2726,262.1591, 250.5923, 246.1489, 233.1174,171.1168 

237.1028 11.61 30 0.0013 C15H12N2O Carbamazepine  237.0708, 220.0758, 194.0966, 192.0810 

192.1388 13.54 30 0.0041 C12H17NO N,N-Diethyl-3-methylbenzamide, (DEET) 192.13829, 119.05, 100.07569, 91.0542 

445.1636 13.21 30 0.0013 C20H21FN6O5 Raltegravir 361.1326, 318.1261, 278.0944, 253.0943, 236.0678, 193.07800 168.0780, 
140.0824, 109.0451 

286.1443 16.63 30 0.0013 C17H19NO3 Piperine 287.1490, 215.1071 ,201.0551, 173.0599, 150.0919, 135.0443, 112.0757 

399.2512 21.99 40 0.0013 C18H39O7P Tri(butoxyethyl) phosphate  299.1627, 243.1001, 225.0894, 199.0736, 143.0108, 124.0100, 101.0963, 98.9841 

273.1855 22.32 30 0.0013 C18H24O2 Galaxolidone  255.1743, 227.1794, 203.107, 175.1117 
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