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ABSTRACT

Recent trends in computational architecture design are yielding processors with deep and
complex memory hierarchies consisting of small capacity caches and large capacity main
memory. CPU parallelism is also hierarchical, consisting of SIMD vector units contained
within multiple computational cores with one or more packages in a multi-socket sys-
tem. Solving the deterministic discrete ordinates transport equation effectively on these
architectures requires extracting and effectively mapping concurrent work to the process-
ing elements to leverage performance close to the maximum attainable. This challenge
becomes more acute when an unstructured spatial domain is required, where the sweep
dependency between neighbouring spatial cells/elements is not implicit as for a struc-
tured grid. In this paper we introduce the transport community to the UnSNAP mini-app,
a port of the well known SNAP proxy application. UnSNAP was developed to investigate
the performance of arbitrarily high-order discontinuous Galerkin finite element unstruc-
tured deterministic transport codes on advanced architectures. Approaches to local matrix
assembly and solution are evaluated in order to assess their performance for different ele-
ment orders, and discuss the trade-offs with respect to performance and memory capacity
limits of advanced architectures. The performance limiting factors will be explored on
many-core architectures, including CPUs from Intel, AMD and Marvell (Arm). We will
also discuss performing unstructured sweeps on GPU devices highlighting the associated
challenges.
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1. INTRODUCTION

The solution of the deterministic discrete ordinates Boltzmann transport equation is computation-
ally expensive. Indeed, it was observed that 50–80% of simulation time on Department of Energy
supercomputers is taken by solving transport [1]. The inversion of the streaming-collision operator
typically dominates the runtime of the solver. This operation introduces an upwind dependency re-
sulting in the requirement for a sweep across the spatial mesh for each discrete ordinates direction.
The high dimensionality of the solution demands a large memory footprint often utilising close to
the available memory capacity of the system.

The use of unstructured meshes has gained importance within this community. An unstructured
mesh can offer better representation of the problem domains, however the connectivity between
neighbouring elements must be explicitly defined. As such, the sweep dependency must be cal-
culated directly as the wavefront is no longer implied simply from structured cell coordinates.
Additionally, a different spatial discretisation method must be used as the finite difference method
(used for a structured mesh) is no longer directly applicable. For our study, we use a discontin-
uous Galerkin finite element discretisation of the spatial domain. Lagrange elements are used of
arbitrary order, with the 3D spatial basis functions constructed from tensor products of 1D basis
functions. The method is considered ‘matrix-free’ as the large global matrix is not assembled; the
local matrices associated to each element are assembled and solved directly. To practically inves-
tigate the performance of such a finite element transport code, SNAP has been ported to use this
method, with the port nicknamed UnSNAP [2]. Those unfamiliar with SNAP and the discretisa-
tions, data and iterative schemes are recommended to consult the technical report that accompanies
the proxy app [3] or the thesis of the lead author [4].

UnSNAP provides the vehicle for serious study into the performance of unstructured transport on
current and future supercomputing architectures. This paper makes the following contributions:

• The performance of assembling the local matrix on-the-fly is compared to precomputing the
inverse of the local matrix. We explore this for varying element order and assess the feasibility
of this approach on modern many-core architectures with respect to memory footprint.

• The performance limiting factors of unstructured sweeps are investigated on many-core CPU
architectures from multiple vendors: Intel, IBM and Marvell (Arm).

• We present porting efforts of unstructured sweeps to GPU architectures and highlight which
techniques can give a viable path to exploit this architecture for this algorithm.

2. THE UNSNAP MINI-APP

The UnSNAP mini-app has been developed to explore the performance of solving the transport
equation on 3D unstructured meshes using the finite element method [2]. It has been formed as
a port of the open-source SNAP proxy application from Los Alamos National Laboratory: a per-
formance proxy for solving transport on structured grids. The stationary transport equation solved
by our UnSNAP mini-app is given in Eq. (1), as taken from the SNAP proxy application. The
application of the finite element method to Eq. (1) has been omitted for brevity. The total cross
section σ and scattering cross section σs data and external source qex are taken directly from SNAP,



where their values are constant at all finite element nodes within a cell. Note that the sources com-
puted from the cross section data and scalar flux do vary with spatial location and so in UnSNAP
the sources are calculated for each spatial node in the element; extending to spatially differing
cross sections within an element is a straightforward extension to the source routines which would
have limited impact on our conclusions in this work. The iterative scheme is formed from simple
iterations on the scattering source (the right-hand side of Eq. (1)), using Jacobi iterations for the
group-to-group coupling in the source as described by Baker [5]. As such, as in SNAP, energy
groups can be swept concurrently and this assumption is maintained in UnSNAP. Angles within
each octant are swept concurrently in SNAP and this is one source of concurrency in a 3D un-
structured mesh too; however we have found that parallelising this dimension on multi-core CPUs
results in a prohibitively costly atomic reduction to compute the scalar flux from the angular flux
and hence the angular dimension is serialised in UnSNAP [2]. The element nodes form an addi-
tional level of concurrency in the assembly and solution of the local linear system that forms the
heart of the finite element solve for each element/group/angle. Further details on the assembly are
found in Section 4. It is important to note that although we do not include the time-dependent term
(and the resulting diamond difference update), the angular flux ψ is still stored in its entirety. Note
too that the SNAP mini-app only performs the diamond difference update to the angular flux in
time once per timestep (once the source terms have converged) and so we do not include this detail
for simplicity.

Ω̂·~∇ψ(~r, Ω̂, E)+σ(~r, E)ψ(~r, Ω̂, E) = qex(~r, Ω̂, E)+

∫
dE ′

∫
dΩ′σs(~r, E

′ → E, Ω̂′·Ω̂)ψ(~r, Ω̂′, E ′)

(1)

An upwind sweep schedule is constructed and followed to organise the compute within each com-
putational node (each MPI rank). OpenMP threads are used for parallelism. Each sweep schedule
corresponding to an angular direction is executed in turn (serially) to remove the need for synchro-
nisation in updating the scalar flux in parallel. Threads are used to parallelise across the energy
group domain and the elements within each sweep with upwind conditions satisfied — that is
those elements along each wavefront. Automatic compiler vectorisation is used (with the help of
OpenMP’s simd directives) along the nodes within each element. For example, when assembling
the matrix for the element/group/angle currently being computed, SIMD instructions operate in
parallel on a row of the matrix. The Gaussian Elimination step also uses SIMD instructions to
update each row of the matrix.

An unstructured mesh data structure is used to maintain the position of element nodes and element
connectivity, in particular the cell-to-cell connectivity and the mappings between nodes, faces and
cells. A one-dimensional index is assigned to each element as a labelling scheme, and so all
data arrays with a spatial component use this index. Each element is a hexahedral element with
multiple nodes according to the chosen element order. Curved elements are allowed, although the
upwinding along a curved face is averaged which is an approximation deemed appropriate for the
scope of this work. In order to strike the appropriate balance for proxy applications, the mini-
app does not use any interpolation of fluxes during upwinding which would occur in the case of
multiple neighbouring elements such as in an AMR mesh. It would be simple to add this to the
mini-app, however this is an unnecessary complication for our work on the performance of the
method. The unstructured mesh is populated with the SNAP meshes, with twists applied to ensure



that the mesh is not perfectly structured. Note that it is important to remember that at no point are
any of the assumptions about a structured mesh utilised within the algorithms implemented and
therefore none of the ‘shortcuts’ that could be used in a relatively structured mesh are employed; as
such our approaches apply to unstructured meshes in generality. We use the spatial decomposition
as recommended by Pautz and Bailey to distribute the mesh between MPI processors; an approach
which was often shown to provide the best performance for unstructured meshes [6].

2.1. PERFORMANCE RESULTS ON MANY-CORE

In order to provide context to the work described in this paper, this section presents and discusses
performance results for the UnSNAP mini-app on a range of many-core architectures. Results
are presented on Intel Xeon, Marvell ThunderX2 and IBM Power CPU processors, as well as
early results on NVIDIA GPUs. This selection of architectures represents the cutting edge HPC
processor technologies available today.

The theoretical peak performance capabilities of these processors are detailed in Table 1. The
GW4/EPSRC supercomputer, ‘Isambard’, was used to collect results on all processors with the
exception of Skylake. We used Intel Skylake processors from the Cray XC50 supercomputer,
‘Swan’. We used the Cray compiler for the Broadwell and ThunderX2, the Intel compiler for
Skylake, and GCC for the Power 9.

Table 1: Processor peak performance information

Architecture Cores Clock GHz Peak FP64 FLOP/s Main memory bandwidth GB/s

Intel Broadwell 18× 2 2.1 1.21 154

Intel Skylake 28× 2 2.1 3.76 256

Marvell ThunderX2 32× 2 2.5 1.28 288

IBM Power 9 20× 2 3.2 1.02 340

NVIDIA P100 60 SMs 1.13 4.04 732

NVIDIA V100 84 SMs 1.37 7.01 900

Figure 1 shows the solve time of UnSNAP running on a variety of architectures for different finite
element orders compared to the baseline performance achieved on the Broadwell processors (5.33s,
21.66s and 177.09s for the increasing orders). The problem consisted of 512 cells, 80 angles and
32 energy groups representing 1.3 million DoF (degrees of freedom) in the transport equation, and
as we are solving for the angular flux the DoF is multiplied by the number of nodes in the elements;
for linear elements there are 10.5 million DoF, quadratic 35.4 million DoF and cubic 83.9 million
DoF. A single time step was run, with up to 15 outer and 5 inner iterations per outer under SNAP’s
source iteration scheme with a convergence of 1E-4. One OpenMP thread was used per physical
core on the CPU platforms.

For all element orders, the Intel Xeon Skylake processors provide the fastest runtime offering be-
tween 1.5–4.1X speedup over the Intel Broadwell processors. The Marvell ThunderX2 processor
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Figure 1: Relative speedup of the solve on a variety of architectures

provides the second best performance for all element orders, and for linear elements the perfor-
mance is similar to Skylake. At higher orders, ThunderX2 is still 2X faster than Broadwell but does
not match the performance of Skylake. The Power 9 processor does not provide a performance
improvement over the Broadwell processor for any element orders tested for our input problem.
Section 3 will explore performance bounds of the algorithm further as simple conclusions cannot
be drawn comparing the achieved speedups to relative performance increases of the processors in
Table 1.

We include the results of our early efforts in porting UnSNAP to GPU and it is clear that further
optimisation is required. UnSNAP was ported to CUDA so that precise control of the parallelism
could be exposed through the ‘threads’ and ‘thread-blocks’ available in that programming model.
The concurrent scheme for this first version has the same concurrency as is exposed in the CPU
version. CUDA threads are used in place of the vectorised loops of the CPU version; that is
each thread-block contains threads equal to the number of finite element nodes in each element.
The threads concurrently assemble and update rows of the matrix. A kernel is launched for each
wavefront level in the sweep schedule, which maintains the strict sweep dependency between the
cells. Each kernel is launched with the number of thread-blocks set to the product of the number
of energy groups and the number of cells on that level of the sweep schedule graph. The number
of thread-blocks is equal to the number of iterations operated on by OpenMP threads in the CPU
version. The other kernels in UnSNAP were also ported to CUDA so that the data can remain
resident in device memory to reduce host-to-device transfers.

The P100 in particular does not show promising performance, however the V100 does offer some
performance speedups although less than for the CPU architectures. The peak performance of the
metrics shown in Table 1 indicate that faster runtimes are indeed expected on this architecture if
bound by either main memory bandwidth or floating-point operations. The bound is not this simple
on CPU architectures, as we will discuss in Section 3.

In profiling the GPU implementation, it is clear that there is insufficient parallelism exposed with



the approach described above. In particular there are too few ‘threads’ per ‘thread-block’ to provide
enough work within each block, especially for linear elements where only 8 threads are used.
On the NVIDIA Pascal architecture, threads will execute in a lock-stepped batch of 32 (known
as a ‘warp’) and so the approach clearly underutilises the device; the Volta architecture offers
improvements in this area by integrating program counters per thread thus increasing the ability
to progress partial warps. As such, the GPU implementation requires further research and we are
currently developing algorithmic changes which may better suit a GPU architecture. The agility of
UnSNAP as a mini-app provides an ideal vehicle in which to explore this space.

3. PERFORMANCE ANALYSIS

The results shown in Section 2.1 do not correlate with the commonplace performance bounds.
The (cache aware) Roofline model defines computational intensity as the number of floating-point
operations per byte of memory read [7]. The nature of the compute kernel primarily consists of
assembling a small linear system from a number of different arrays, and then solving the system
with Gaussian elimination. The assembly section of this routine has a low operational intensity,
collating data from a number of arrays to form rows of the matrix. The Gaussian elimination step
performs simple multiply-add operations on each row of the matrix, and contains one division
operation per row. The size of the linear system is determined by the finite element order, and so
the systems are relatively small for our purposes. As such, the whole routine will not be considered
“floating-point bound” under the Roofline model on any modern architecture for the element orders
considered in this study. Therefore the Roofline model would be classify the kernel as “memory
bandwidth bound”.

Modern CPU architectures are complex, hierarchical constructions of computational units and
memory caches. It is also common to then design a supercomputer with two sockets per physical
node, resulting in NUMA regions. The processor design is usually formed from replication of
a ‘core’, connected to other cores and some shared infrastructure using a network-on-chip. It is
common that the core consists of the functional units (for our purposes we consider the floating-
point pipeline) and one or two levels of cache. Adding more cores therefore increases the peak
floating-point performance of the processor, but perhaps less commonly thought of, more cores
increases the capacity and aggregate bandwidth of the closest levels of the memory hierarchy.
However, adding more cores to a single processor does not increase the performance of the shared
infrastructure, and for this study we consider this to be the last level cache (LLC) and main memory
bandwidth. Adding a second socket does clearly increase the memory bandwidth of the node. It is
important to note that main memory bandwidth is saturated on these processors when not all the
cores of a socket are utilised.

We are fortunate that the high core count of today’s processors allows us to perform the following
experiment, as suggested by Voysey [8]: (1) Run the code using all cores of a single socket;
then (2) Run the code using half the cores of two sockets. Practically this requires first utilising all
physical cores of a single socket using the appropriate number of OpenMP threads, and then evenly
distributing these threads across the two sockets. Both these runs use the same number of physical
cores, and so the total amount of ‘core’ resources is identical. Specifically, the peak floating-point
performance provided is the same, as is the bandwidth and capacity of the close caches. However,
in the second case, there are more external resources in the form of LLC capacity and main memory



bandwidth. For a code bound by the main memory bandwidth, one would expect that the second
run therefore is significantly faster than the first.

We performed this experiment on the UnSNAP mini-app on the CPU processors using the same
input as before. The ‘numactl’ tool was used to select the cores for each configuration. Our
results are shown in Fig. 2, detailing the relative performance increase of the two-socket experiment
compared to the one-socket experiment.
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Figure 2: Relative solve time using identical thread counts on one socket fully populated and
two sockets each half populated.

For the vast majority of the results parity runtimes are seen. This clearly indicates that the applica-
tion is bound by on-core resources, with the increased out-of-core resources providing no benefit.
As such, the main memory bandwidth is not the performance limiting factor for any of the orders
tested on these CPU architectures.

For linear order elements on the Broadwell and Power 9 processors, the experiment shows that
adding in an additional socket reduces the performance significantly. Using the CrayPAT perfor-
mance profiling tool on the Broadwell system, the number of L2 cache hits is severely reduced
from 53% to 7% hits. Note that in both runs, the L1 hit rate is exceptionally high at over 95% hits.

One must also expect NUMA effects to come into play, and that can be seen by observing the
total memory allocated to each socket is not even. The transport algorithm requires data arrays of
different extents and dimensions, not all of which operate over the parallel domain (for example SN

angular quadrature). These arrays will be allocated and initialised in one NUMA domain, however
are small enough to exist in the caches of each socket; however if they fall out of cache a latency
penalty for reading them from a different NUMA region will apply.

In conclusion, one must turn to the features contained within the core architecture for a perfor-
mance limiting factor to unstructured transport. The incredibly high L1 data cache hit rate will
mean that almost all the memory accesses will be served by these caches. The relative aggre-
gate cache bandwidths for the CPUs architectures tested do not correlate well with the results in
Fig. 1 [9], and so L1 cache bandwidth alone cannot be attributed to be the limit on performance.



The cache systems and the differences between them for the architectures used in this study are
complicated to characterise. Therefore, whilst we have shown that the performance limiting factor
for unstructured transport on CPU architectures lies within the cache hierarchy, the exact nature of
this bound is a topic for future study.

4. APPROACHES TO LOCAL MATRIX ASSEMBLY

When solving the transport equation (1) using source iterations, a ‘global matrix-free’ finite ele-
ment discretisation requires the construction and solution of a small linear system for each angle-
element-group. These systems are constructed and solved following the upwind sweep dependency
for each angular direction, and utilise nodal angular flux data from upwind neighbouring elements.
We explore two approaches: (1) ‘on-the-fly’ assembly where the system is assembled from its con-
stituent operators, solved and discarded; and (2) where the local matrices are assembled, inverted
and stored ahead of the sweep.

The integration of multiplicative pairs of the basis functions fifj (and their derivatives fi∂fj/∂x,
fi∂fj/∂y and fi∂fj/∂z) are always precomputed at the start of each timestep for each element
using Gaussian quadrature rules over the volume and the faces; essentially these are the mass
matrix, volumetric gradients and face matrices. These are computed and stored each timestep.
Similarly, the normals to each face are precomputed and stored within the mesh data structure.

The first approach we explore (‘on-the-fly’ assembly) is to construct the linear system from the
streaming-collision operator and upwind angle/normal coefficients (Ω̂ · ~n), and the right-hand-side
vector from the source term and upwind angular flux data. As such, the ‘on-the-fly’ assembly re-
quires constructing the system from the already computed small basis pair arrays, problem data (SN

quadrature directions and total cross sections) and the latest source term in the iterative scheme.
Additionally neighbouring angular fluxes are required for the upwinding dependency.

This system is then solved directly using Gaussian Elimination to compute the updated angular flux
and subsequently the scalar flux required for the next source iteration. Although Gaussian Elim-
ination is well known for limited numerical stability due to floating-point round-off after division
by small numbers, this issue has not been noticed within UnSNAP. We explored more stable ma-
trix factorisation approaches for solution using Intel’s Math Kernel Library, but they have reduced
performance in this context [2]. This may be a result of a lack of optimisation within the library for
the small matrices, but also no reuse of the factored matrix within the algorithm; a property often
relied on to offset the cost of factorisation in such linear algebra libraries. In the same study, we
explored the relative cost of assembling the matrix versus solving the system: for linear elements
34% of the time was in the solve, increasing to 75% for higher orders.

The alternative approach that we explore (‘precomputed’) in this paper leverages the fact that only
the right-hand side of the linear system need be updated for each source iteration. The left-hand
side matrix only requires cross section and SN quadrature data and so is not dependent on the it-
erative scheme for updating the source. The right-hand vector on the other hand requires updating
every source iteration (as the source has changed) and the upwinded angular flux term which is up-
dated as the sweep progresses which contributes to the next source update in the subsequent source
iteration. As such, the left-hand side matrix for each angle-element-group may be constructed and
inverted only once per timestep, before the source iterations commence, at the expense of increased



memory footprint. This leads to a much simpler computational kernel within the sweep to com-
pute the new fluxes: building the right-hand side vector from the source and upwind neighbours
and performing a matrix-vector multiplication with the already inverted matrix.

Results comparing these methods are shown in Fig. 3 for varying finite element order running on
the Intel Broadwell system using the Cray compiler 8.6.4. The problem size used is the same as that
earlier in this study. The left bars show the first approach of assembling and solving the system on-
the-fly, and the right bars showing the second approach of precomputing inverses transforming the
sweep kernel to mainly matrix-vector operations. The results show that precomputing the inverse
in advance is an attractive solution in terms of runtime. For the main computational work of
assembling and inverting a linear system the precomputed approach is 1.9X, 2.1X and 3.2X faster
for first, second and third order finite elements respectively. This is a significant improvement for
all element orders tested. These improvements are also seen across the CPU architectures tested
which can be seen in Fig. 4 which shows the improvements in solve time using the precomputed
inverse approach. It is future work to explore this approach on GPUs.
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Figure 3: Performance of local assembly methods: on-the-fly (left) and precompute (right)

The improvements observed can be attributed to better data reuse. Constructing the matrices once
per timestep as they are invariant across the scattering source iteration scheme ensures that the
many data arrays (SN quadrature, cross sections and basis functions) are read less often thus re-
ducing the memory movement. Computing the inverses unlocks much more regular parallelism
than is available in the sweep too, and allows for easier reuse of the shared data: the basis func-
tions of a given element are the same for all energy groups and so this data can be reused. The
precomputation step itself is still relatively cheap compared to the sweep operation, taking only
up to 25% of the sweep time for the higher-order elements. In a large calculation utilising mul-
tiple computational nodes, each node may perform this precompute step in parallel as it requires
no communication (“embarrassingly parallel”), and the sweep time will likely increase due to be-
coming bound by the network [10]. Importantly too, note that we now no longer perform a linear
solve during the sweep and only need perform a small matrix-vector multiplication which is much
cheaper. Indeed, the inversion which uses a similar Gaussian elimination method to the solve is
now only performaned in the precompute steps. Thus we see a larger improvement in runtime than
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Figure 4: Relative improvement of inverse precomputation vs on-the-fly

just elimination of the cost of the solve during the sweep (recall this was up to 75% as above).

Some extra overhead is present in the current implementation of UnSNAP for the precomputed
method, as seen in the ‘Remainder’ part of Fig. 3. This is from the memory allocation of the
inverted matrices where in the current version many small allocations are used, but it is a simple
optimisation to reduce this overhead by using a single bulk allocation instead.

These improvements come at a memory footprint cost for the storage of the inverted matrices for
each element, group and angle. This creates a memory requirement larger than the angular flux
— the number of nodes per element times larger at 8, 27 and 64 times larger for 1st–3rd order.
For the problem in this paper, the storage requirements for the precomputed matrices are 0.67 GB,
7.64 GB and 42.95 GB for 1st–3rd order respectively.

This is a significant memory capacity requirement when compared to the capacity offered by mem-
ory technology on many-core devices. Devices such as the V100 GPU offer 32 GB of HBM2
(high-bandwidth memory), and we predict that other devices based on similar technology will
offer only modest increases in capacity. Therefore, for third order with around 1 million trans-
port DoF per node, the precomputed approach is not viable on such architectures simply due to the
memory footprint. Fortunately, it is common in the meshing community to use high order elements
in order to reduce the spatial resolution therefore reducing the number of cells and subsequently
the number of DoF. Some mesh coarsening will be required in order to fit the capacity constraints
of modern many-core architectures. This is difficult to explore within the context of a mini-app as
the mesh design is often problem dependent and so we have to defer this to future work. For low
order elements, and in particular second-order, the increased memory footprint from storing the
inverted matrices is likely to be a palatable trade-off for the performance improvements.

5. CONCLUSIONS

Solving the deterministic transport equation on unstructured meshes on modern many-core archi-
tectures demonstrates a number of challenges. We have used the UnSNAP mini-app to study the



performance of such methods on many-core CPUs from a variety of vendors and have begun our
study into its performance on GPU architectures. Precomputing and storing the inverse of the finite
element matrix offers some reasonable performance improvements on all CPU architectures, most
noticeably for second-order elements. However, this comes at the expense of an increase in mem-
ory footprint. Optimising for the data movement at the expense of increased footprint is practical
at low orders, but for the highest order meshes this may be infeasible given the memory capacity
constraints of the memory technologies being introduced into the processors. We have explored
the performance limiting factors on CPU architectures. The typical bounds of main memory band-
width and floating-point operations do not bound the performance of the application. Rather the
bound is found in the cache hierarchy for all element orders, which is unusual for an application
with such a large memory footprint that exceeds cache sizes.
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