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Abstract: Various aryl- and heteroaryl-substituted 2-bromo-
biaryls are converted to cyclometalated lanthanum intermedi-
ates by reaction with nBu2LaCl·4 LiCl. These resulting lantha-
num heterocycles are key intermediates for the facile prepara-
tion of functionalized 2,2’-diiodobiaryls, silafluorenes, fluoren-
9-ones, phenanthrenes, and their related heterocyclic ana-
logues. X-ray absorption fine structure (XAFS) spectroscopy
was used to rationalize the proposed structures of the involved
organolanthanum species.

Organolanthanides are important organometallic inter-
mediates in catalysis and organic synthesis.[1] Functionalized
aryl- and heteroaryllanthanum reagents, which are readily
prepared via an iodine- or bromine-lanthanum exchange, are
of special interest.[2] The low electronegativity of lanthanum
(1.1)[3] comparable to that of lithium (0.98) confers to the
carbon–lanthanum bond a high ionic character and therefore
high reactivity. Furthermore, the high valence of lanthanum-
(III) imparts this metal center with high oxophilicity and
excellent Lewis acidity. Both of these properties have been
extensively exploited for forming new carbon–carbon and
carbon–heteroatom bonds.[4] Herein, we report that readily
prepared 2-biaryllanthanum derivatives of type 1 obtained
from the corresponding 2-bromobiaryls of type 2 by reaction
with nBu2LaCl·4 LiCl[5a] undergo a mild intramolecular C@H
metalation[6] leading to the cyclometalated biaryls of type 3
below room temperature within 0.5 h (Scheme 1A). The
organolanthanum species involved in this reaction process
were detected by X-ray absorption fine structure (XAFS)

Scheme 1. A) Cyclolanthanation of 2-bromobiaryls of type 2. B) La L3-
edge k2-weighted EXAFS spectra (top) and Fourier transforms
(bottom) for [La002] (left) and [La003] (right). Solid black lines show
the experimental data and dashed red lines are the best fitting results.
C) Subsequent functionalization of 3 leading to products 4–7.
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measurements (Scheme 1B).[5] The putative lanthanum–het-
erocycles 3 prove to be versatile intermediates that can be
converted to a range of polyfunctional biaryl derivatives of
types 4–7 under mild conditions (Scheme 1C).

Compounds 4–7 are valuable precursors for functional-
ized organic materials with optical and electronic applica-
tions.[7] Yoshikai has shown that 2-iodobiaryls could be
converted to 2,2’-diiodobiaryls of type 4 via an oxidation–
iodination process by a copper catalyst.[8] Silafluorenes of type
5 were previously prepared by conventional nucleophilic
substitution reactions[9] or transition-metal-catalyzed cou-
plings using 2,2’-difunctionalized biaryl precursors such as
halides, silanes, triflates, or boronic acids.[10] Alternatively,
intramolecular C@H silylation of 2-biarylsilanes toward sila-
fluorenes has been developed by a number of groups, using
1) a rhodium-catalyzed synthesis as demonstrated by Kuni-
nobu and Takai,[11a,b] He,[11c,d] and Mitsudo and Suga,[11e] 2) a
sila-Friedel–Crafts (SEAr) reaction as shown by Kobayashi
and Kawashima,[12a] Ingleson,[12b] and Oestreich,[12c,d] and 3) a
radical silylation reaction as reported by Studer,[13a] Li,[13b] and
Jiang.[13c] Palladium-catalyzed cyclocarbonylation of o-halo-
biaryls with CO leading to fluoren-9-ones of type 6 has been
reported by Larock,[14] and other carbonyl sources such as
furfural, formaldehyde, and phenyl formate have been
employed in this cyclocarbonylation.[15] Also, the dehydro-
genative arylation of 2-arylbenzaldehydes has been realized
as an expedient method to synthesize benzocyclic ketones.[16]

Phenanthrenes of type 7 have been previously prepared by
palladium-catalyzed [4++2] annulation of alkynes with 2-
iodobiaryls as reported by Heck[17a] and Larock.[17b] Takahashi
described a stoichiometric CrCl3-mediated annulation of
halobiaryls.[18] Alternatively, the annulation of alkynes with
2-magnesiated biaryls has been demonstrated by Naka-
mura[19a] and Yoshikai,[19b] under iron and chromium catalysis,
respectively. The annulation of alkynes with other coupling
reagents such as 2-phenylbenzoic acid,[20a] 9-chloro-9-bora-
fluorene,[20b] and dibenzosilole[20c] has been achieved recently.
The annulation of 1,2-bis(pinacolatoboryl)alkenes with 2,2’-
dibromobiaryls under palladium catalysis also allowed the
preparation of phenanthrenes of type 7.[21]

We began our study by optimizing the cyclometalation
conditions of 2-bromobiphenyl (2a). As shown in Table 1,
neither the lithiation nor magnesiation of 2a led to any
cyclometalated product (entries 1 and 2). Br/Sm exchange[4c]

provided the cyclometalated intermediate in only moderate
yields, as shown by the iodolysis leading to 2,2’-diiodobi-
phenyl (4a) in only 31–40 % yield (entries 3 and 4). However,
the use of nBu2LaCl·4LiCl gave satisfactory results. A
reaction time of 30 min and a reaction temperature from
@50 88C to 0 88C gave the optimal results (entries 5–8). Thus, the
quenching of the reaction of 2a with iodine under optimum
conditions produced 4a in 79% isolated yield (entry 7).

The scope of this synthesis of 2,2’-diiodobiaryl derivatives
4 was studied (Scheme 2). Thus, the presence of various
substituents at position 4’ of the aromatic ring of 2-bromo-
biaryls 2b–2 f was possible (R = F, Cl, Br, OMe, SiMe3), which
after iodolysis of the corresponding lanthanum heterocycles
3b–3 f provided the diiodides 4b–4 f in 61–84% yield.
Remarkably, an extra bromine atom in 2d could be tolerated

in the cyclolanthanation reaction. The presence of a substitu-
ent at a nonsymmetrical position in 2 as exemplified by 2-
bromo-3’-methoxybiphenyl (2g) led to a mixture of two
regioisomers 4ga and 4gb in a 4:1 ratio. Interestingly, in the
case of 2-bromo-3’-trifluoromethylbiphenyl (2h) a fully regio-

Table 1: Optimization of conditions for cyclometalation of 2-bromobi-
phenyl (2a).

Entry Reagent
(1.1 equiv)

T
[88C]

t
[min]

Conv.
[%][b]

Yield
[%][b,c]

1 nBuLi[a] @50 30 100 0
2 nBu2Mg rt 60 23 0
3 nBu2SmMe·5LiCl @30 to rt 30 100 31[d]

4 nBu2SmCl·4LiCl @30 to rt 30 100 40[d]

5 nBu2LaCl·4LiCl @50 60 100 61[e]

6 nBu2LaCl·4LiCl @50 to rt 30 100 89[e]

7 nBu2LaCl·4LiCl @50 to 0 30 100 90(79[f ])
8 nBu2LaCl·4LiCl @50 to 0 60 100 80

[a] 2.2 equiv was used. [b] Determined by GC analysis. [c] The observed
byproducts were mostly biphenyl, 2-butylbiphenyl, and 2-iodobiphenyl.
[d] 2-Butylbiphenyl was mainly generated. [e] 2-Butylbiphenyl was
observed in minor amounts. [f ] Yield of isolated, analytically pure
product.

Scheme 2. Synthesis of 2,2’-diiodobiaryl derivatives 4 and 2-bromo-2’-
iodobiaryl derivatives 8. [a] The cyclometalated lanthanum intermediate
of type 3 was generated in situ at @50 88C to @20 88C after 0.5 h. [b] The
product was obtained by a modified method as shown in the
Supporting Information. [c] The reaction was conducted with iPrMgCl·-
LiCl (1.0 equiv) at @40 88C for 1 h and then quenched by 1,2-dibromo-
tetrachloroethane. [d] NMR analysis reveals two isomers (4:1), and the
major isomer is shown here.
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selective C@H activation took place certainly due to the
repulsive effect of the CF3 substituent (absence of attractive
van der Waals interactions). Further annulated biaryls such as
1-(2-bromophenyl)naphthalene (2 i) provided the expected
diiodide 4 i in 57% yield. Various heterocyclic ring systems
bearing a 2-bromophenyl substituent underwent a related C@
H metalation providing the corresponding diiodides 4j–4o in
66–83% yield. Notably, 2-bromo-1,1,2-triphenylethylene (2p)
was converted to the diiodide 4 p in 58% yield via a modified
procedure (see the Supporting Information). Interestingly,
the diiodides of type 4 bearing two aryl rings with different
electron densities could be regioselectively converted to their
corresponding monomagnesium intermediate via a reaction
with iPrMgCl·LiCl.[22] Thus, the diiodide 4b underwent
preferentially (100% selectivity) an I/Mg exchange on the
more electron-poor ring. A subsequent reaction with 1,2-
dibromotetrachloroethane produced the 2-bromo-4-fluoro-2’-
iodobiphenyl (8a) in 84% isolated yield. The 2,2’-diiodo-4-
methoxybiphenyl (4e) underwent an I/Mg exchange with
iPrMgCl·LiCl mostly at the less electron-rich ring readily
after bromolysis to give 8b in 89% yield (4:1 regioselectivity).
Finally, the heterocyclic diiodide 4m underwent an exclusive
I/Mg exchange on the thienyl ring providing the 3-bromo-2-
(2-iodophenyl)thiophene (8c) in 78 % yield (Scheme 2).

Remarkably, silafluorenes of type 5 were directly pre-
pared by cyclolanthanation of 2-bromobiaryls. As shown in
Scheme 3, the cyclometalated biaryls of type 3 reacted

smoothly with dichlorodialkylsilanes (Me2SiCl2 and MePh-
SiCl2) to provide the corresponding silafluorenes (5a–5d) in
79–91% yield. When substrates bearing a heterocyclic ring
were used, the desired heterocyclic silafluorene derivatives
(5e–5 l) were obtained in 42–78% yield. Interestingly, the
silafluorene 5d was submitted to a second cyclometalation
using nBu2LaCl·4 LiCl and after treatment with Me2SiCl2 the
disilylpentacyclic derivative 9a was obtained in 82% yield.
Similarly, a second cyclolanthanation was performed on 5 l to
provide a polycyclic molecule 9 b bearing seven contiguous
annulated rings in 87% yield. Such ladder p-conjugated
compounds are of interest for their photophysical proper-
ties.[7b, 9c] Besides, the lanthanum heterocycle 3a was con-
verted to spirosilabifluorene 9c in 67% yield and other
heterofluorenes such as the stannafluorene 10 and phospha-
fluorene 11 in 81% and 62 % yield, respectively.

Interestingly, inspired by XiQs study on the reaction of 1,4-
dilithio-1,3-butadienes with CO2 producing cyclopentadiene
derivatives,[23] we examined the high reactivity of the lantha-
num heterocycles of type 3, which underwent a direct cyclo-
carbonylation upon reaction with CO2 (1.0 atm). Thus,
various 2-bromobiphenyls were converted to fluoren-9-ones
6a–6c in 50–74 % yield (Scheme 4). Starting from hetero-
cyclic 2-bromobiaryl substrates provided the expected heter-
ocyclic fluorenone derivatives (6 d–6 f) in 63–72% yield
(Scheme 4).

Finally, we used the 2-bromobiaryl substrates to prepare
various phenanthrene derivatives. An optimization study
shows that the cyclometalated lanthanum species (3a) did not
react directly with diphenylacetylene (Table S2, entry 1) and
that CrCl2 was not effective for this [4++2] annulation
(entries 2 and 3). However, the use of CrCl3 in stoichiometric
amounts as shown by Takahashi gave satisfactory results
(entries 4 and 5).[18] Nevertheless, it was found that a catalytic
ring closure was possible using Fe(acac)3, FeCl3, or FeCl2 as
a catalyst (10 mol%) (entries 6–9).[24] The most convenient
catalyst FeCl3 (10 mol %) produced the desired phenanthrene
(7a) in 79 % yield after workup. Similarly, several disubsti-
tuted alkynes were used to provide the corresponding
phenanthrenes (7b–7d) in 51–67 % yield. Using heterocyclic

Scheme 3. Synthesis of silafluorene derivatives (5 and 9) and other
heterofluorenes (10 and 11). [a] The cyclometalated lanthanum inter-
mediate of type 3 was generated in situ at @50 88C after 0.5 h. [b] SiCl4
(0.45 equiv) was used. [c] Me2SnCl2 (1.2 equiv) was used. [d] PhPCl2
(1.5 equiv) was used.

Scheme 4. Synthesis of fluoren-9-one derivatives 6. [a] The cyclometa-
lated lanthanum intermediate of type 3 was generated in situ at
@50 88C after 0.5 h.
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substrates bearing a 2-bromophenyl ring furnished the
expected heterocyclic aromatic hydrocarbon derivatives
(7e–7h) in 65–90% yield. Finally, using 1,4-diphenylbuta-
1,3-diyne as substrate and reacting it with 3a led to the
atropisomeric product (7 i) in 54% yield (Scheme 5).

In summary, we have shown that various 2-bromobiaryl
derivatives underwent a smooth cyclolanthanation reaction
below 0 88C within 0.5 h with nBu2LaCl·4LiCl. The resulting
cyclometalated lanthanum reagents proved to be versatile
intermediates that could be readily converted to various
polyfunctional 2,2’-diiodobiaryls, silafluorenes, fluoren-9-
ones, phenanthrenes, and their related heterocyclic analogues,
showing the exceptional reactivity of aryl- and heteroaryllan-
thanum derivatives and the potential utility of this method for
preparing condensed aromatics for new materials. Besides,
structural investigation of the involved organolanthanum
species was performed using XAFS analysis. Further explo-
ration of the reactivity of organolanthanum reagents is
underway in our laboratories.
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