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A single-cell micro-trench platform 
for automatic monitoring of 
cell division and apoptosis 
after chemotherapeutic drug 
administration
E. I. Chatzopoulou1, P. Raharja-Liu2, A. Murschhauser1, F. Sekhavati1, F. Buggenthin2, 
A. M. Vollmar3, C. Marr  2 & J. O. Rädler1

Cells vary in their dynamic response to external stimuli, due to stochastic fluctuations and non-uniform 
progression through the cell cycle. Hence, single-cell studies are required to reveal the range of 
heterogeneity in their responses to defined perturbations, which provides detailed insight into signaling 
processes. Here, we present a time-lapse study using arrays of micro-trenches to monitor the timing of 
cell division and apoptosis in non-adherent cells at the single-cell level. By employing automated cell 
tracking and division detection, we precisely determine cell cycle duration and sister-cell correlations for 
hundreds of individual cells in parallel. As a model application we study the response of leukemia cells to 
the chemostatic drug vincristine as a function of cell cycle phase. The time-to-death after drug addition 
is found to depend both on drug concentration and cell cycle phase. The resulting timing and dose-
response distributions were reproduced in control experiments using synchronized cell populations. 
Interestingly, in non-synchronized cells, the time-to-death intervals for sister cells appear to be 
correlated. Our study demonstrates the practical benefits of micro-trench arrays as a platform for high-
throughput, single-cell time-lapse studies on cell cycle dependence, correlations and cell fate decisions 
in general.

Cell-to-cell variability in responses to external stimuli is a pervasive feature of cellular systems, which prevails 
even in isogenic cell populations1,2. Such heterogeneity can be caused by epigenetic modifications, differences 
in cell cycle phase, or stochastic variations in gene expression and metabolic state. To dissect the sources of 
heterogeneity, the contextual role of cell cycle timing in the response to the stimulus needs to be investigated. 
Ideally, responses should be monitored in single cells over time to avoid the typical averaging effect intrinsic to 
population measurements. Time-lapse imaging has often been employed for this purpose, since it allows one to 
record cell divisions, track the fates of individual cells and reveal genealogical relationships3–5. To study the effect 
of cell cycle phase on stimulus response with high statistical power, large numbers of single cells must be observed 
continuously.

Tracking of cells, especially of non-adherent cultures, constitutes the typical bottleneck in implementing 
high-throughput time-lapse microscopy analyses. Various tracking algorithms have been proposed and evalu-
ated6,7, but for practical purposes, the crucial parameter is the ratio of the time required to manually track single 
cells to the workload involved in correcting erroneous automated tracks8. For long-term tracking of fast-moving 
cells at high cell densities, efficient manual tracking is often the method of choice9,10. Spatial confinement of 
cells reduces the incidence of tracking errors and facilitates the application of tracking algorithms. Among the 
techniques available for capturing non-adherent cells for long-term observation, microfluidic devices11 as well 
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as microwell platforms12–20 have been developed. Micro-fabricated arrays that sequester proliferating single cells 
and thus lead to spatially separated progeny clones serve as an especially useful tool for high-throughput inves-
tigations of cell cycle length, sister-cell correlations, and the impact of cell cycle phase differences on cell-to-cell 
variability.

The implications of cell-to-cell heterogeneity are of paramount importance for cancer progression and treat-
ment21. Tumors of all types not only exhibit genetic diversity, they also display in response kinetics when exposed 
to chemotherapy22–24. Most state-of-the-art chemotherapeutic agents in clinical use target rapidly dividing cells 
and trigger apoptosis. Thus, vincristine, an antitumor vinca alkaloid, binds to tubulin and blocks chromosome 
segregation during metaphase25,26. In contrast, daunorubicin, an anthracycline aminoglycoside antineoplastic, 
intercalates into DNA and inhibits the function of the enzyme topoisomerase II during transcription and rep-
lication27. Both drugs are routinely used to treat a number of neoplasms28,29, including acute myeloid leukemia 
(AML)30,31. Yet, their exact effects on the timing of apoptosis at the single-cell level have not yet been explored.

Here, we introduce arrays of micro-trenches that facilitate continuous observation of individual, non-adherent 
cells. We demonstrate that automated image analysis using automated cell tracking permits precise determination 
of the distribution of cell cycle duration and detection of sister-cell correlations. We then study the time-to-death 
dynamics after administration of vincristine or daunorubicin, and compare the responses of chemically synchro-
nized and non-synchronized populations. We find that, in the presence of the anti-mitotic agent vincristine, the 
time-to-death interval decreases as the cell cycle progresses. In contrast, no such effect is observed in the case of 
the topoisomerase II inhibitor daunorubicin. These results are consistent with experiments using cells that were 
synchronized using standard thymidine cell cycle arrest. Moreover, we find the time-to-death of sister cells to be 
strongly correlated in the unsynchronized population.

Results
The single-cell micro-trench platform. To facilitate tracking of non-adherent cells over several gener-
ations in a label-free manner, we designed arrays of micro-trenches made of the biocompatible hydrogel poly-
ethylene(glycol) diacrylate (PEG-DA; the fabrication of these arrays is described in Materials and Methods). The 
trenches are 30 μm wide, 120 μm long and 20 μm deep and can accommodate up to six non-adherent cells of the 
human leukemia cell line MOLM-13 (Fig. 1a,b), used here as a cancer model system. The ratio of the width of a 
micro-trench to the diameter of a cell is around 2. Time-lapse experiments were carried out for up to 40 h, which 
is sufficient to observe two consecutive cell divisions and hence the first and second generations of daughter cells 
derived from the single starting cell per trench (Fig. 1c).

Error-free tracking of single cells in time-lapse experiments is complicated by cell movement, interaction of 
cells, different fields of view, and image quality8. Use of micro-trench arrays simplifies the task considerably by 
(i) compartmentalizing the cell population and allowing one to monitor single cell lineages, (ii) avoiding inter-
actions between the progenies of different starting cells, thus preventing errors due to mixed lineages, and (iii) 
reducing the problem of tracking thousands of cells simultaneously to many small, trench-specific tasks, which 
speeds up computation. To track the cells in an automated fashion (see Materials and Methods) we acquired 
slightly defocused phase-contrast images (focus at 20 μm below focal plane), which results in images with slightly 
blurred but clearly peaked intensity distributions32,33. In this study, we automatically track single starting cells in 
micro-trenches then filter out unreliable tracks and analyze cell cycle times and drug responses in more than 2700 
single cells in two experiments (Tables 1 and 2). Figure 1d shows representative tracks of a single starting cell that 
undergoes two consecutive divisions.

Distribution of cell cycle duration in single cell lineages. After the first division of a single starting 
cell, a micro-trench contains two daughter cells that can be separately tracked (Fig. 2). For each cell, we deter-
mine the first division time point t0, the division of the first daughter cell at time t1, and the division of the second 
daughter cell at t2 (Fig. 2a). In our experiments 320 MOLM-13 starting cells were observed for 40 h through at 

Figure 1. The micro-trench array enables long-term observation of single cell lineages. (a) Phase-contrast 
microscopy image of micro-trenches loaded with cells. (b) Schematic 3D representation of the 20 μm deep 
micro-trenches. The green spheres represent non-adherent cells. (c) Schematic diagram of cell division events 
within a single micro-trench. (d) Single cells can be automatically identified (purple circles around the cells) and 
followed over time in the time-lapse phase-contrast images (blue, cyan and yellow trajectories) of single micro-
trenches. The trajectories in each frame show the last 10 steps. The length of the micro-trench is 120 μm.
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Detected micro-trenches in total 13994

Cells detected in micro-trenches at t = 0 3306

Micro-trenches with a single starting cell at t = 0 2765

Micro-trenches with two starting cells at t = 0 465

Micro-trenches with three starting cells at t = 0 63

Single starting cells that divide before drug addition 1443

Single starting cells that divided once before drug addition 442

Genealogies with one division before drug addition and apoptotic cells 172

Table 1. Cells analyzed in the unsynchronized population.

Detected micro-trenches in total 13428

Cells detected in micro-trenches at t = 0 2546

Micro-trenches containing a single cell at t = 0 2224

Micro-trenches containing two cells at t = 0 287

Micro-trenches containing three cells at t = 0 35

Micro-trenches with single cells during measurement 1927

Table 2. Cells analyzed in the synchronized population.

Figure 2. Micro-trenches enable precise determination of the distribution of cell cycle durations. (a) Schematic 
representation of cell division events. The axis at the bottom indicates the time (in h) and shows representative 
phase-contrast images at selected time-points. (b) Measured distribution of the cell cycle duration for an 
ensemble of 320 cells (MOLM-13) with a mean of 19.7 h and standard deviation of 2.6 h. The dotted red line 
corresponds to a log-normal fit and the dashed blue line to a gamma distribution fit. (c) Distribution of the 
difference between the cell cycle durations for sister-cell pairs. Differences in cell cycle duration are fitted 
with an exponential curve (red line). (d) The cell cycle durations of sister cells (black dots) show higher 
correlation (Pearson correlation coefficient r = 0.85 ± 0.04) than those of randomly paired cells (grey triangles, 
r = 0.25 ± 0.09).
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least two divisions. The distribution of cell cycle durations, with a mean of 19.7 ± 2.6 h (mean ± std, n = 320 cells) 
is well described by both a log-normal distribution and a gamma distribution (Fig. 2b). For clones in which both 
t1 and t2 were observed (n = 320), we analyzed the difference between the cell cycle durations for sister cells, t1 – t2. 
The distribution of sister-cell differences has a mean of 2.3 ± 2.7 h (n = 85 pairs of sister cells) and is well fitted 
with an exponential distribution (Fig. 2c). Compared to randomly paired cells, the cell cycle durations of sister 
cells are highly correlated, with a Pearson correlation coefficient of r = 0.85 ± 0.04, as compared to r = 0.25 ± 0.09 
for randomly paired cells.

Case study: Vincristine/daunorubicin-induced apoptosis. It is generally accepted that regulation of 
the cell cycle is perturbed in cancer. Chemotherapeutic drugs can have either a cytostatic or cytotoxic effect, 
depending on the phase of the cell cycle at which they first encounter their target cells34. Here, we utilize our 
micro-trench set-up to monitor cell cycle progression based on phase-contrast images, and the time-to-death 
from fluorescence image analysis. We test whether the activity of two widely used chemotherapeutic drugs, vin-
cristine and daunorubicin, is affected by the phase of the cell cycle of MOLM-13 cells. The first division of the 
starting cell t0 is used as a reference point. Based on the previously measured cell cycle duration distribution 
(Fig. 2b) each drug was added after 20 h, when most starting cells had divided once (Fig. 3a). Phase-contrast 
images were taken every 10 min and fluorescence images every 30 min. Cell death was assessed via a detectable PI 
fluorescence (see Materials and Methods). An exemplary movie of cells dividing and undergoing apoptosis after 
addition of vincristine can be seen in Supplementary Movie 1.

The measured time-to-death distribution, i.e. the time elapsed between the addition of the drug and the death 
of the cell is shown in Fig. 3b for increasing drug concentrations. As expected, only a few cells die under control 
conditions, when no drug is added, while the number of dead cells rises with increasing vincristine concentration. 
At 10 and 100 nM vincristine, the number of dead cells increases considerably after 12 hours of exposure, indi-
cating a time scale for the delay between drug addition and cell death. The scatter plots in Fig. 3c, for each drug 
treatment, correlate the stage in the cell cycle at which the cell first encounters the drug (where the duration for 
each phase is calculated based on the phase durations proposed in35) with the time-to-death. While in the control 
the correlation is slightly positive, with increasing vincristine concentration the correlation becomes increasingly 
negative. At the highest concentration, 1000 nM, no correlation is observed, indicating that side-effect toxic-
ities are prominent. The negative correlation between the extent of progression through the cell cycle and the 
time-to-death in the case of vincristine is expected, since it is known that at high concentration, vincristine 
stimulates microtubule depolymerization and mitotic spindle destruction, while at lower, clinically relevant con-
centrations, it blocks mitotic progression36. Hence, the longer the time elapsed since a cell’s previous division, the 
closer it should be to the M-phase, and should therefore have a shorter time-to-death. In the case of daunorubicin 
(10 and 100 nM), no correlation between the time since the previous division and the time-to-death was observed 
(Supplementary Fig. 3b).

To investigate the role of cell cycle phases further, we used our pipeline with a cell population that had been 
synchronized with the “double thymidine block” procedure37 using micro-trenches (Fig. 4). Thymidine block 
arrests cells at the transition between G1 and S, just prior to the initiation of DNA replication. Cells were released 
3 h from the block before the start of imaging and seeded in micro-trenches, and the drug was added just before 
the onset of image acquisition (Fig. 4a). For all vincristine concentrations, the peak of the time-to-death distri-
bution (Fig. 4b) occurs more than 12 h after starting imaging, similar to that observed in the unsynchronized 
population (Fig. 3b). The time-to-death distributions associated with daunorubicin exposure are similar for both 
unsynchronized and synchronized cells (Supplementary Figs 3a, 4a,b).

For both, the unsynchronized and synchronized populations, the total number of dead cells as a function of 
vincristine concentration is similar (Fig. 5a). The IC50 value derived from these data for the unsynchronized 
population is 652 ± 90 nM, while for the synchronized cells is 9 ± 2 nM. Thus, we observe that synchronized 
cells are more sensitive to the vincristine treatment. Whether a drug is more potent against synchronized cells 
is context specific. Previously it has been reported that cell cycle arrested HeLa cells become resistant to dox-
orubicin and cisplatin treatment38. On the other hand, cell cycle arrest increased TRAIL-induced apoptosis39. 
Also the time-to-death distributions are similar for both populations (Fig. 5b). However, while in the unsyn-
chronized population, the time-to-death correlation between sister cells in the same micro-trench is evident 
(Fig. 5c, Pearson correlation coefficient r = 0.54, p-value 1.15 × 10−7), we see no correlation between unrelated 
cells (r = 0.05, p-value 0.05) in the synchronized population experiment.

Discussion
The data presented above show that arrays of micro-trenches facilitate automated tracking of cells in parallel and 
allow one to deduce the lengths of individual cell cycles without the use of cell cycle-specific molecular markers. 
Using automated image analysis, we determined the time of the first cell division in each trench, which provides 
a reference point for the initiation of each ensuing cell lineage. Compartmentalization of a cell population into 
small groups enables time-lapse analysis of both adherent and non-adherent cells over periods exceeding 48 h. 
When plated on a plain surface, cells quickly escape from the field of view and misidentification of adjacent cells 
leads to errors, such that extensive computational power and time is required to ensure single-cell tracking. We 
observed that the distribution of cell cycle durations in non-synchronized mammalian cells is well fitted by a 
log-normal distribution; this also holds for cell size as reported previously40,41. Moreover, in agreement with a 
previous study42, we found cell cycle durations to be correlated between sister cells.

We have demonstrated the practicability of clinically relevant, time-resolved single-cell studies in the 
micro-trench platform by measuring the time-to-death after the addition of the cancer drugs vincristine and 
daunorubicin. We found that the time-to-death in the presence of vincristine is negatively correlated with the 
extent of progression through the cell cycle at the time of its administration, and that this correlation becomes 
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more prominent with increasing vincristine concentration up to 100 nM. However, there is no correlation at the 
highest concentration of vincristine (1000 nM). Phase-independent apoptosis induced by microtubule-targeting 
agents has been reported in previous studies utilizing other cell lines and relatively high drug concentra-
tions25,43,44, which suggests that the lack of correlation at 1000 nM vincristine might be due to the accumulation 
of side-effects over the course of the whole cell cycle. It has been shown that, after exposure to antimitotic drugs, 
cells display complex fate profiles, ranging from unequal cell divisions that generate aneuploid daughter cells to 
exit from the cell cycle without undergoing cell division (mitotic slippage), and leaving G1 and undergoing apop-
tosis or senescence3. We furthermore found that the time-to-death is correlated in sister-cell pairs derived from 
unsynchronized populations. Variability in sister-cell responses is a striking phenomenon, since it provides hints 
as to whether different phenotypes stem from genetic differences or adventitious differences in the compositions 
of cellular proteomes. It has previously been reported that sister cells tend to undergo apoptosis quite synchro-
nously45,46. However, in the presence of antimitotic drugs, the fate of one sister was found to be independent of the 

r = 0.26 (p = 0.57) r = -0.15 (p = 0.27) r = -0.29 (p = 0.86) r = -0.34 (p = 0.01) r = 0.0 (p = 0.97)

Figure 3. Vincristine induced time-to-death in an unsynchronized cell population is drug concentration 
dependent. (a) Schematic description of the experimental procedure. Image acquisition starts at time 0 h and 
after a defined time (20 h), vincristine is added. Tracking of the individual cells reveals the time at which each 
mother cell divides, which is different in each micro-trench, and the time-to-death of the two daughter cells. 
Images show a representative cell that has divided before drug addition; both of its daughter cells die (overlay 
of the in-focus phase-contrast and PI fluorescence images). (b) Distribution of the time-to-death for all tracked 
cells. The black lines represent the kernel density estimation of the probability density function for each drug 
treatment. (c) Correlation plots between the time passed in (i.e., extent of progression through) the cell cycle 
and the time-to-death. The blue line is a linear fit to the scatter plot for each drug treatment. The Pearson 
correlation coefficient (r) for each drug concentration is shown above each graph, together with the p-value 
of the correlation test (in parenthesis). The colored areas denote the different cell cycle phases, based on the 
average division time presented in Fig. 2b. Green stands for the G1, pink for the S and blue for the G2/M phase.
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fate of the other3. In another study, the response to TRAIL-induced apoptosis was correlated between sister cells, 
as was the time-to-death, although the latter correlation decayed as a function of time within the 8 h observation 
window47. All these observations, as well as those reported here, are possibly explained by transient heritability, a 
model which assumes that fluctuations in protein synthesis promote cell phenotype divergence47.

Time-resolved studies will be instrumental in scrutinizing the time dependence of molecular determinants 
within cellular decision-making networks. The investigation of chemotherapeutic drug dynamics in particular can 
be extended to the application of multiple drugs, as used in combination therapy, in order to explore the effect of 
time-delayed applications and the optimal timing for the administration of combinations of drugs. For these inves-
tigations with potentially subtle effects on the single-cell level, a large number of measured cells are required. To 
this end, micro-trenches combined with time-lapse microscopy and automated image analysis represent a meth-
odological advance, which enables versatile high-throughput long-term observations with large statistical power.

Materials and Methods
Cell culture. The acute monocytic leukemia (AML-M5a) cell line MOLM-13 was cultured in RPMI 1640 
GlutaMAX medium (Gibco®) supplemented with 20% (vol/vol) Fetal Bovine Serum (FBS, Gibco®), both pur-
chased from Life Technologies GmbH, Darmstadt, Germany

Fabrication of micro-trench arrays. Photolithography of the SU-8 wafer. The SU-8 (MicroChem Corp, 
USA) wafer was fabricated in an in-house cleanroom facility using a ProtoLaser LDI system (LPKF Laser & 
Electronika, Naklo, Slovenia) with a 375 nm wavelength laser and 1 μm spot diameter.

Soft lithography and micromolding. Polydimethylsiloxane (PDMS) prepolymer solution was mixed with the 
cross-linker in a 10:1 ratio (w/w) (Sylgard 184, Dow Corning, USA) and then degassed under vacuum. PDMS was 
then poured onto the SU-8 wafer, degassed and cured at 50 °C. The resulting PDMS stamp was then peeled off the 
wafer and cut into appropriate shapes. The PDMS pieces, patterned with pillars 20 μm high, were activated with 
argon plasma and immediately placed upside down on a silanized TMSPMA (3-(trimethoxysilyl)propyl meth-
acrylate, Sigma-Aldrich, Germany) glass coverslip. A drop of freshly prepared solution of PEG-DA (Mn = 258) 
containing 2% (v/v) 2-hydroxy-2-methylpropiophenone (both from Sigma-Aldrich, Germany) was placed at the 
edge of the PDMS stamp, which fills it by capillary flow. PEG-DA is then polymerized in an UV-ozone cleaning 
system (UVOH 150 LAB, FHR, Ottendorf, Germany). Next, the PDMS stamps were peeled off and the resulting 
micro-trenches of cross-linked PEG-DA are dried in an oven (Binder GmbH, Tuttlingen, Germany) overnight 
at 50 °C. Finally, the slides were sonicated in the presence of 70% ethanol in distilled water before a sticky slide is 
attached on top (8-well sticky slide, ibidi GmbH, Munich, Germany). The ibidi® 8-well slide compartmentalizes 
the glass slide in 8 different parts. The advantage is that 8 different conditions, in our case 8 different drug concen-
trations, can be monitored simultaneously. Each compartment contains about 2500 micro-trenches, which cover 
about the 1/3 of the available surface of the compartment. However, to keep the time resolution at an acceptable 
level, namely 10 minutes, we monitored on average 1750 micro-trenches per condition. This protocol is based on 
a method previously described48.

Time-lapse fluorescence microscopy. Sample preparation. Freshly prepared slides, each bearing about 
20,000 micro-trenches, were sterilized with 80% ethanol for 2 h and then coated with a (35 μg/mL) fibronec-
tin solution (YO Proteins, Huddinge, Sweden) for 45 min. The cell medium used during the measurements was 
RMPI 1640 (without phenol red) supplemented with 20% (v/v) FBS, 2 mM GlutaMAX, penicillin and strep-
tomycin (100 units/mL and 100 μg/mL respectively), and 1 mM sodium pyruvate (all from Life Technologies 
GmbH, Darmstadt, Germany). Cells were seeded in the wells at a low concentration (45,000 cells/mL), to achieve 
single-cell occupation in each micro-trench. To detect dead and apoptotic cells, propidium iodide (PI; Novus 
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Biologicals, Littleton, USA) and Cell Event™ Caspase 3/7 (ThermoFischer Scientific, MA, USA) markers were 
used at 5 μl/mL and 80 μl/mL, respectively. Since daunorubicin is autofluorescent in the red region, the PI marker 
was omitted in that case.

Imaging was performed with an inverted Nikon Ti Eclipse microscope equipped with a motorized stage 
(Tango XY Stage Controller, Märzhäuser Wetzlar GmbH & Co. KG, Germany), a CFI Plan Fluor DL 10X objective, 
a pco.edge 4.2 camera (PCO AG, Kelheim, Germany) and a Lumencor Spectra LED fluorescence lamp. For detec-
tion of the caspase 3/7 and the PI marker, the following filters were used respectively, 474/27 nm, 554/23 (excita-
tion) and 515/35 nm, 595/35 nm (emission). Defocused (−20 μm) phase-contrast images were taken every 10 min 
and in-focus phase-contrast and fluorescence images were acquired every 30 minutes for 48 hours. Vincristine or 
daunorubicin was added 20 h after the beginning of the imaging. During the recording, samples were kept at a 
constant temperature of 37 °C and CO2 concentration using an Okolab heating and CO2 box (OKOLAB S.R.L., 
NA, Italy). To synchronize the cell population used for comparative purposes, the double thymidine block pro-
tocol was followed. Briefly, MOLM-13 cells in the exponential growth phase were incubated in blocking medium 
(culture medium supplemented with 2 mM thymidine (CAS 50-89-5, Calbiochem®, Germany)) for 24 h. Cells 
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were then released from the block, incubated in culture medium for 8 h and finally in blocking medium for 12 h. 
After 2 h, the synchronized population was seeded in the slide bearing the micro-trenches, together with the 
markers and drugs under the conditions used for the unsynchronized population, and imaged for 24 h.

Image processing and data analysis. Tracking in the phase-contrast channel. Each out-of-focus phase- 
contrast image was processed, using the Jython plugin in Fiji, as follows. First, a Gaussian blur correction49 is 
applied followed by local contrast normalization and minimum error thresholding50. To reduce static noise (such 
as micro-trench margins), a mean correction is applied by subtracting from each slice a time-independent mean 
intensity averaged over all slices. This creates a mask that is subtracted from the phase-contrast image, and single 
cells are identified using the Laplacian of Gaussian detection method. The detected cells are concatenated into 
tracks and cell trees using the Linear Assignment Problem51 in the TrackMate plug-in in Fiji. The image analysis 
pipeline is visualized in Supplementary Fig. S1. The following equation describes the cells successfully tracked 
automatically in the phase-contrast channel: N0 = Nt + Nnot divided + Nlosses here, N0 is the number of single start-
ing cells at the beginning of the measurement (t = 0), Nt the number of cells that were tracked and underwent 
division, Nnot divided is the number of cells that did not divide but were successfully tracked by the algorithm, and 
Nlosses is the number of cells that the algorithm lost. With our approach, we were able to track 50% of the whole 
cell population tested.

Tracking in the fluorescent channel. Fluorescence images are used to detect cell death. Unlike the defocused phase- 
contrast channel, these images undergo only brightness and contrast adjustment, followed by mean correction of 
static noise as described above. The rest of our image computing pipeline is identical (see Fig. S2).

Slit assignment of tracks. To assign tracked clones to micro-trenches, the mask of the trench array is used to 
associate tracks imaged by both phase-contrast and fluorescence. Each contour in the mask image (seen as black 
rod-like forms) is assigned a unique identity, which is then used as the association identifier for tracks in both 
phase-contrast and fluorescent data (see Fig. S2). The time of cell death is determined from the onset of the PI or 
caspase 3/7 signal.

Estimating time-to-death using phase-contrast and fluorescence tracking data. The fluorescence tracks were 
used to determine the time-to-death. When a fluorescent cell track was detected in the same micro-trench 
as a phase-contrast cell track, the first measured time point of the fluorescent track was used to calculate 
time-to-death.

Availability
The image and tracking data was combined and post-processed using Python scripts utilizing OpenCV, NumPy, pan-
das and Matplotlib. Our code is available at: https://github.com/raharjaliu/microtrench-chemotherapeutic-vision.
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