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Tobias Saule,1,2 Maximilian Högner,1,2 Nikolai Lilienfein,1,2 Oliver de Vries,3
Marco Plötner,3 Vladislav S. Yakovlev,1,2 Nicholas Karpowicz,1
Jens Limpert,4,5,6 and Ioachim Pupeza1,a
1Max-Planck-Institute of Quantum Optics, Hans-Kopfermann-Str. 1, 85748 Garching,
Germany
2Ludwig-Maximilians-University Munich, Am Coulombwall 1, 85748 Garching, Germany
3Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Str. 7,
07745 Jena, Germany
4Friedrich-Schiller-University Jena, Institute for Applied Physics, Albert-Einstein-Str. 15,
07745 Jena, Germany
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Modern ultrafast laser architectures enable high-order harmonic generation (HHG) in
gases at (multi-) MHz repetition rates, where each atom interacts with multiple pulses
before leaving the HHG volume. This raises the question of cumulative plasma effects
on the nonlinear conversion. Utilizing a femtosecond enhancement cavity with HHG
in argon and on-axis geometric extreme-ultraviolet (XUV) output coupling, we exper-
imentally compare the single-pulse case with a double-pulse HHG regime in which
each gas atom is hit by two pulses while traversing the interaction volume. By varying
the pulse repetition rate (18.4 and 36.8 MHz) in an 18.4-MHz roundtrip-frequency
cavity with a finesse of 187, and leaving all other pulse parameters identical (35-fs,
0.6-µJ input pulses), we observe a dramatic decrease in the overall conversion effi-
ciency (output-coupled power divided by the input power) in the double-pulse regime.
The plateau harmonics (25–50 eV) exhibit very similar flux despite the twofold
difference in repetition rate and average power. We attribute this to a spatially inhomo-
geneous plasma distribution that reduces the HHG volume, decreasing the generated
XUV flux and/or affecting the spatial XUV beam profile, which reduces the effi-
ciency of output coupling through the pierced mirror. These findings demonstrate
the importance of cumulative plasma effects for power scaling of high-repetition-rate
HHG in general and for applications in XUV frequency comb spectroscopy and in
attosecond metrology in particular. © 2018 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5037196

INTRODUCTION

Frequency upconversion of ultrashort, intense visible/near-infrared (VIS/NIR) laser pulses to the
extreme-ultraviolet (XUV) spectral region via high-order harmonic generation (HHG) in noble gases
lies at the core of table-top sources of broadband, coherent XUV radiation.1 Customarily, the master-
oscillator-power-amplifier (MOPA) systems driving HHG operate at pulse repetition rates in the range
of several kHz, as a result of the trade-off between the high peak powers necessary for HHG and
constraints on the average power in amplifiers. At these pulse repetition rates, the atoms interacting
with the HHG-driving pulses usually leave the interaction volume long before the arrival of the
subsequent pulse. In this highly relevant and widespread single-pass regime, the process of HHG has
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been extensively studied.1 The recent advent of ultrafast laser technologies affording pulses suitable
for HHG at repetition rates in the multi-MHz range2–16 has opened the door to applications barely
fathomable with the well-established kHz technologies. Among those, precision spectroscopy with
XUV frequency combs5,6,17 and high-speed multi-dimensional laser-dressed XUV photoemission
spectroscopy18,19 are particularly prominent examples. However, for these repetition rates, the period
between two pulses becomes comparable to—or shorter than—the time atoms take to travel through
the volume where they can interact with the laser pulses. Consequently, the quantitative study of the
cumulative plasma effects arising from the interaction of each atom with multiple pulses is necessary
for designing and optimizing applications in this high-repetition-rate regime of HHG.

In this paper, we present an experimental comparison of HHG in the single-pulse (SP) regime
(each atom is hit only once) with the case in which each atom interacts with two pulses of the
driving laser (double-pulse, DP). To this end, we set up an 18.4-MHz-repetition-rate femtosecond
enhancement cavity with either one circulating pulse or two circulating pulses and systematically
evaluated the spectra and flux of the XUV radiation coupled out through a pierced mirror following
the HHG focus. To investigate the cumulative plasma effects on the HHG process, the only parameter
varied between these two cases was the pulse repetition frequency (18.4 MHz or 36.8 MHz), while the
pulse parameters in the cavity (pulse energy, duration, and spatial profile) were kept constant within
the accuracy of the diagnostics. To ensure that optimum generation conditions for each harmonic
order and repetition rate are covered by the experiment, we performed complete scans of the target
gas density and nozzle position along the optical axis. We observed a dramatic dependence of the
conversion efficiency on the repetition rate, which can be attributed to cumulative plasma effects in
the HHG target.

EXPERIMENTAL SETUP

In femtosecond enhancement cavities (EC), the pulses of a mode locked laser are coherently
stacked and their energy is enhanced by up to several orders of magnitude. Peak intensities of several
1013 W/cm2 at a cavity focus can be achieved, permitting HHG at repetition rates of several tens
of MHz.5–12,18–22 ECs have been successfully used for a number of seminal HHG experiments at
high repetition frequencies like direct XUV frequency comb spectroscopy,6 the determination of
the coherence time of XUV frequency combs5 at 154 MHz repetition rate, and the generation of
100-eV frequency combs.10,11 However, despite affording circulating pulses shorter than 10 optical
cycles with average powers on the 10-kW level,10–12 the number of XUV photons per pulse obtained
with cavity-enhanced HHG cannot compete with direct, single-pass HHG.3 These results indicate
that the presence of gas ionized by the preceding driving pulses reduces the HHG efficiency (per
pulse), and the scaling of XUV power with the laser repetition rate deviates strongly from a linear
dependence in this regime. For a direct and quantitative investigation of this effect, we designed an
EC such that its repetition period equals the traversing time of the gas atoms through the interaction
volume. Thus, when seeded with twice its fundamental repetition rate, each atom interacts with two
pulses.

The experimental setup is shown in Fig. 1(a). The frontend seeding the enhancement cavity is
described in Ref. 25. In brief, a titanium-sapphire (Ti:Sa) seed oscillator emits a 73.6-MHz pulse
train, whose repetition frequency can be picked by an integer factor.23 Chirped-pulse amplification
employing Yb-doped fibers delivers 250-fs pulses with an energy of more than 1 µJ for repetition rates
down to a few MHz. Spectral broadening in a large-mode-area (LMA) fiber with a 25-µm core and
subsequent temporal compression with chirped mirrors (CM) deliver 0.6-µJ, 35-fs pulses spectrally
centered at 1030 nm, with repetition-rate-independent characteristics.25 These pulses impinge on a
16.3-m (corresponding to the single round-trip distance for a repetition rate of 18.4-MHz) EC with
an input coupler transmission of 3%. The EC has a finesse of 187 (considering the losses of 0.32%
at the 150-µm pierced output-coupling mirror). Compared to other output-coupling methods, this
geometric method allows for broadband XUV output coupling of photon energies of 100 eV and
higher and provides phase-locked collinear NIR pulses.18

In the experiments reported here, the EC was seeded with pulse trains of either 18.4 MHz or
36.8 MHz, resulting in comparable intra-cavity pulse parameters [Figs. 1(b)–1(d)]. An argon gas
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FIG. 1. (a) Experimental setup consisting of a Ti:Sa seed, an acousto-optic frequency shifter (AOFS) pulse picker,23 an
Yb-power-amplifier,24 spectral broadening, chirped-mirror (CM) compression, and a 16.3-m enhancement cavity with either
one (18.4 MHz, SP) circulating pulse or two (36.8 MHz, DP) circulating pulses. The spectral broadening is achieved in a
solid-core large-mode-area (LMA) fiber with a 25-µm core diameter providing identical pulses at 36.8 MHz and 18.4 MHz,
with 0.6 µJ and 35 fs.25 The XUV radiation is coupled out through a pierced mirror11 and guided to an XUV spectrometer
by two multi-layer beam splitters (BS). Intracavity pulse parameters in the presence of the nonlinear gas target, for the two
repetition rates: (b) autocorrelation (AC, τgauss = 38 fs), (c) spectrum with Fourier-limits (FL) of 36 fs and 37 fs, respectively,
(d) beam profile on the pierced mirror, imaged to the CCD camera. (e) Gas velocity along the flow direction of a 100-µm
nozzle, derived by a 1D model26 and confirmed via Comsol MultiPhysics. Complete replenishment of the gas target within
54 ns (repetition period of the SP regime) is achieved for velocities >450 m/s, at a beam waist of 12.3 µm.

target delivered by a 100-µm fused-silica end-fire nozzle was positioned at the focal region. The gas
flow velocity at a distance of ∼100 µm from the nozzle orifice was estimated to be 450 m/s [Fig. 1(e)]
by a 1D model26 as well as flow simulations using Comsol MultiPhysics. The curved mirrors of the EC
(f = 100 mm) and the position in the stability range were chosen such that the beam waist was 12.3 µm.
This results in peak intensities of several 1013 W/cm2 and ensured SP configuration for the 18.4-MHz
pulse train, meaning that an atom traverses the 1/e2–intensity beam diameter within one repetition
period. At 36.8 MHz, the atoms traverse this distance within 2 shots and, thus, we refer to this regime
as the double-pulse (DP) configuration. The generated harmonics were coupled out of the cavity
through a 150-µm opening in the mirror following the focus11 and split from the fundamental beam
by two multi-layer Nb2O5 beam splitters. To prevent hydrocarbon contaminations of the optics, we
flushed the two cavity mirrors and two beam splitters subsequent to the XUV generation with ozone.
The XUV beam was then directed to a grating spectrometer whose linearity with respect to the XUV
flux was confirmed in a previous experiment. To exclude thermal effects in the system, all experiments
reported here were performed at a maximum repetition rate of 36.8 MHz, corresponding to average
powers of 11 W and 0.6 kW impinging on and circulating in the EC, respectively. For both repetition
rates, stable operation of the system under constant conditions was possible for measurement times
longer than 10 h.

RESULTS

To study the cumulative effects in a controlled way and to ensure comparable pulse parameters
for the two repetition rates, for each data point, we recorded the intracavity average power, the pulse
duration, and the beam profile on one mirror, in an actively locked10 steady state. This measurement
also allows for the precise determination of the position of the nozzle with respect to the focus
by evaluating the plasma-induced power clamping20 for different target positions along the cavity
beam. This delivers 2D maps for all the intra-cavity parameters regarding the backing pressure and
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FIG. 2. [(a) and (b)] Normalized intra-cavity average power clamping maps for the SP and the DP, respectively. They demon-
strate how the intra-cavity power level clamps as a function of the nozzle position and backing pressure. The experimentally
determined focus position (see the text) is set to 0 µm. One immediate observation is that the DP configuration experiences
stronger clamping in the focus region. (c) Ratio of the mode area of the DP versus the SP on the pierced mirror. The larger
ratios in the focus region stem from changes in the DP mode area, while the relative changes in the SP mode area stay below
2.7%. (d) Ratio of the peak intensities (calculating from the mode size, average power, pulse duration, and target position) for
the two repetition rates.

target position; they are depicted in Figs. 2(a)–2(d). Figures 2(a) and 2(b) show the average power
in the cavity with the gas target being present, normalized to the average power in the empty cavity
for the same input pulse parameters for the SP and the DP, respectively. They demonstrate that
cumulative effects affect the cavity operation as the DP configuration clamps to 70% of the linear
cavity, whereas the SP only clamps to 80% in the focus. Figure 2(c) illustrates the evolution of the
DP cavity eigenmode on the pierced mirror with respect to the SP configuration by showing the
ratio of the mode area of the DP to SP case for different experimental parameters. Here, the change
in the mode area in the DP dominates the ratio, whereas the changes in the SP contribute little
(<2.7%). The map reveals an opposing behavior compared to the average power [see (a) and (b)].
Taking these mode distortions into account, we can calculate the intra-cavity peak intensity by utilizing
the mode size, average power, pulse duration, and target position. The data reveal similar values
for both repetition rates [see Fig. 2(d)], which fits to the identical XUV cutoff in the following
experiments.

With the focus as a reference point for the optical axis and well-characterized experimental
conditions, we examined the output coupled XUV flux. Figure 3(a) shows the relative XUV flux
per harmonic (integrated counts within one harmonic) for the SP (1st row) and the DP (2nd row)
configuration, as a function of the nozzle position and backing pressure, for six different harmonics.
The color scales are the same for each harmonic to facilitate the comparison between the two rep-
etition rates. Figure 3(b) shows the XUV spectrum at the gas target pressure and position marked
in (a), circles, for both repetition rates, where the flux of the 33rd harmonic is optimal for the
SP configuration. In Fig. 3(c), each harmonic is plotted at its optimum values within the maps in
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FIG. 3. (a) XUV flux measured as a function of the gas target position and backing pressure, for six different harmonics, for
SP (1st row) and DP (2nd row). For each harmonic, the color scales are common to the SP and DP maps; they are normalized
to the highest flux. The nozzle position of 0 µm marks the cavity focus determined as explained in the text. (b) XUV spectra for
both repetition rates measured for the parameters indicated in (a) by the circles. (c) Stitched XUV spectrum for individually
optimized conditions for SP and DP, taken from the positions on the maps with the highest flux. The dots represent the
integrated flux within these harmonics.

Fig. 3(a). The data points connected with solid lines depict the counts spectrally integrated over each
harmonic order.

DISCUSSION

Figure 3(a) shows that further increasing the pressure does not improve the flux for harmonic
orders up to 39, which indicates that we achieved optimized phase matching conditions (under the
boundary conditions of the EC) for these harmonics at both repetition rates. The target position was
scanned over a large enough range to include the optimum positions.

Evidently, the SP configuration is preferable in terms of the total output coupled flux [Fig. 3(c)]
and conversion efficiency. Figure 4(a) depicts the ratio of the XUV flux of the DP configuration and
the SP one for each harmonic order. While a ratio of two would correspond to a linear scaling of the
XUV flux with the repetition rate (keeping the pulse parameters constant), most harmonics manifest
a ratio below unity, i.e., the DP yields even less flux than the SP configuration, despite twice the
driving average power. This corresponds to a dramatic decrease in the overall conversion efficiency
(output-coupled power divided by seed power) by up to a factor of 4 due to cumulative plasma effects.

At the same time, for all harmonics, the optimum generation conditions (target gas density and
position) are very similar for the two repetition rates. This indicates that the ionization fraction in the
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FIG. 4. (a) Ratio of the output coupled flux for the DP versus the SP configuration. A value of 2 corresponds to the same
conversion efficiency (output-coupled power divided by the input power) as double the average seed power is available for the
DP configuration. (b) Ratio of the calculated peak intensity for the DP versus the SP case. The peak intensity was calculated
from the mode size, focusing geometry, intra-cavity pulse duration, and calibrated intra-cavity power.

contributing part of the target gas is similar for both the SP and the DP, and the substantial decrease
in flux can rather be attributed to a decrease in the generation volume: in the DP regime, the gas
target is spatially partitioned into a part that was already hit by the previous pulse and propagated
off-axis, contributing little to the flux (e.g., due to preionization), and a part with “fresh” ground-
state gas atoms. This would affect the output coupled flux in two ways: first, fewer atoms contribute
to HHG and second, the reduced generation volume results in a larger divergence of the harmonic
beam and, thus, a lower output coupling efficiency. To confirm and disentangle these effects, a
similar experiment with a Brewster plate8,12 or a diffraction-based output coupling method6,7 can be
performed. This way the decrease in output coupling efficiency due to changes in the XUV beam
profile can be scrutinized and possibly more profound conclusions about the physical processes can
be extracted. Another meaningful single-pass experiment could be the generation of high harmonics
with two slightly delayed pulses, analyzing the HHG yield and XUV mode profile with respect to the
delay.

To exclude that the decrease in the flux in the DP configuration is due to a stronger intensity
clamping of the driving field [Fig. 2(a)], we computed the peak intensity in the target for each point of
the parameter scan, accounting for the measured pulse duration, cavity mode size, and target position.
Figure 2(d) shows the peak intensity ratio between the DP and SP cases. It can be seen that the peak
intensity is very similar in the two configurations, even though the average power clamping suggests
otherwise. This can be attributed to small changes in the cavity mode size [see Fig. 2(c)]. At optimum
parameters for each harmonic, the DP configuration even exhibits a slightly higher peak intensity
[see Fig. 4(b)].

In conclusion, these findings elucidate the importance of cumulative plasma effects in multi-
pass HHG, whose effects are already significant at the onset of the cumulative regime (two passes).
The phase-matched plateau harmonics clamp to the same flux independently of the repetition rate.
Our data show that this reduction of XUV flux is not a result of distortions of the circulating IR
field. By contrast, we attribute these findings to a spatially inhomogeneous plasma distribution that
hinders the output coupling efficiency of the pierced mirror and/or of the HHG generation itself.
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For applications requiring multi-MHz, high-photon-energy, high-flux XUV pulses, these findings
elucidate the benefit of a single-pulse regime achievable by adapting the repetition rate of the system
and/or by speeding up the gas.7,10 With the same experimental setup, the repetition rate scalability
of HHG in solids27–29 can in principle be examined by replacing the gas target with a thin Brewster
plate.
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