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Abstract
The bacterial genome is organized by a variety of associated proteins inside a structure called the
nucleoid. These proteins can form complexes onDNA that play a central role in various biological
processes, including chromosome segregation. A prominent example is the large ParB-DNA complex,
which forms an essential component of the segregationmachinery inmany bacteria. ChIP-Seq
experiments show that ParB proteins localize around centromere-like parS sites on theDNA towhich
ParB binds specifically, and spreads from there over large sections of the chromosome. Recent
theoretical and experimental studies suggest thatDNA-bound ParB proteins can interact with each
other to condense into a coherent 3D complex on theDNA.However, the structural organization of
this protein-DNA complex remains unclear, and a predictive quantitative theory for the distribution
of ParB proteins onDNA is lacking.Here, we propose the looping and clusteringmodel, which
employs a statistical physics approach to describe protein-DNA complexes. The looping and
clusteringmodel accounts for the extrusion ofDNA loops from a cluster of interactingDNA-bound
proteins that is organized around a single high-affinity binding site. Conceptually, the structure of the
protein-DNA complex is determined by a competition between attractive protein interactions and
loop closure entropy of this protein-DNA cluster on the one hand, and the positional entropy for
placing loopswithin the cluster on the other. Indeed, we show that the protein interaction strength
determines the ‘tightness’ of the loopy protein-DNA complex. Thus, ourmodel provides a theoretical
framework for quantitatively computing the binding profiles of ParB-like proteins around a cognate
(parS) binding site.

1. Introduction

Understanding the biophysical principles that govern chromosome structure in both eukaryotic and
prokaryotic cells remains an outstanding challenge [1–7].Many bacteria have a single chromosomewith a length
three orders ofmagnitude longer than the cell itself, posing a daunting organizational problem.Owing to recent
technological advances in live-cell imaging and chromosome conformation capture based approaches, it is
becoming increasingly clear that theDNA is not coiled like a simple amorphous polymer inside the cell [8–10],
but rather exhibits a high degree of organization over a broad range of lengthscales [11]. It remains unclear,
however, how this spatial and dynamic organization of the chromosome is established andmaintained inside
living bacteria [12]. A host of nucleoid-associated proteins (NAPs) have been shown to play a central role in the
spatial organization of the bacterial chromosome [12–14]. SuchNAPs bind to theDNA in large numbers, and by
interactingwith each other andwithDNA in both sequence-dependent and sequence-independentmanners
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they can collectively structure theDNApolymer and control chromosome organization, e.g. byDNA looping.
More generally, the formation of loops appears to play a fundamental role in structuringDNA in both bacterial
DNA and eukaryotic chromatin and further theoretical and simulation studies are needed to clarify the
mechanisms at play [15, 16].

Inmany bacterial species, the broadly conserved ParABS system is responsible for chromosome and plasmid
segregation [12, 17]. A central component of this system is the partitioningmodule, which is formed by a large
protein-DNA complex of ParB proteins that assembles around centromere-like parS sites, frequently located
near the origin of replication. The ParBS complexes can subsequently interact with ParAATPases, leading to the
segregation of replicated origins [18–25]. How is this ParBS partitioningmodule physically organized on the
DNA? ParB is known to bind specifically to parS, triggering the formation of a large protein-DNA cluster, which
is visible as a tight focus inmicroscopy images offluorescently labeled ParB [17, 21, 26, 27]. The propensity of
ParB to form foci around parS has been exploited in recent studies, which used exogenous expression of
fluorescently labeled ParB alongwith parS insertion to label DNA loci for live-cell imaging [28, 29]. In the
F-plasmid ofEscherichia coli cells, each ParB focus contains roughly 300 proteins, together representing 90%of
all ParB present in the cell [27]. High-precisionChIP-Seq experiments on this systemprovide quantitative ParB
binding profiles along theDNA,which are strongly peaked around parSwith a broad decay over a distance of up
to 13 kilobasepairs (kb), consistent with earlier observations [26, 30].

Variousmodels have been introduced to explain the distribution of ParB alongDNA around parS sites. An
early study of the distribution of ParB proposed that ParB proteins spread from the parS sequence by nearest-
neighbor interactions, forming a continuous filament-like structure along theDNA [30]. Thismodel was termed
the spreadingmodel. However, this is effectively a 1Dmodel with short range interactions. On general statistical
physical grounds, such a 1Dmodel cannot be expected to account for the formation of a large coherent protein-
DNA complex, given physiological protein interaction strengths [31]. Furthermore, the number of ParB
proteins available in the cell is not sufficient to allow enrichment by simple 1Dpolymerization of ParB along
DNAat genomic distances from parS as large as observed experimentally [27]. To resolve the puzzle of howParB
proteins organize around a parS site, we recently introduced a novel theoretical framework to study the
collective behavior of interacting proteins that can bind to aDNApolymer [31]. Thismodel suggested that ParB
assembles into a three-dimensional complex on theDNA, as illustrated infigures 1(a) and (b). Singlemolecule
experiments provided direct evidence for the presence of 3Dbridging interactions between twoParB proteins on
DNA [32, 33].We showed that a combination of such a 3Dbridging bond and 1D spreading bonds between ParB
proteins constitutes aminimalmodel for the condensation of ParB proteins onDNA into a coherent complex
[31], consistent with the observation that ParB-GFP fusion proteins form a tightfluorescent focus on theDNA
[17, 21, 26, 27].

Figure 1. Schematic illustration of two recentmodels proposed to describe the ParB partition complex (left) accompanied by a typical
distribution of ParB on extendedDNA (middle), and the average distribution profile (right). The spreading and bridgingmodel [31] is
shownwith (a) strong coupling  ¥JS , where thermalfluctuations cannot break the bonds between proteins such that all bridging
and spreading interactions are satisfied, and (b) intermediate couplingwhere the energetic cost of breaking a spreading bond
combinedwith the cost in loop closure entropy competes with the positional entropy of placing loopswithin the cluster.With the
looping and clustering approach presented here, we propose a simple analytic description for this regime. (c)The stochastic binding
model assumes a spherical region of high concentration of ParB around parS [27]. Thismodel can be seen as taking the limit of the
spreading bond strength to zero ( J 0S ), and thus the formation of loops is not hampered by protein–protein bonds. In this limit,
the binding profile can be described as the return of the polymer to an origin offinite size, such that the profile is given by

µ + n-( ) ( )P s s C d , where d is the dimension, ν is the Flory exponent, andC is a constant.
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The statistical properties of the 3D structure of ParB-DNAcomplexes determines the binding profile of ParB
onDNA,which can be accuratelymeasured inChIP-Seq experiments. However, it is computationally
demanding to simulate these binding profiles with the spreading and bridgingmodel. The protein binding
profiles can be easily calculated analytically in the limit of strong protein–protein interactions, where the cluster
of ParB on theDNAbecomes compact with a corresponding triangular distribution of ParB alongDNA. The
protein binding profiles can also be estimated in the limit of weak protein–protein interactionswith the so-called
stochastic bindingmodel, where a sphere of high ParB concentration is assumed to exist withinwhich aDNA
polymer freelyfluctuates [27] (see figure 1(c)). The description of the average protein binding profile is thus
similar to the return statistics of the polymer into the ParB sphere [34], suggesting a long range (power-law)
distribution of ParB proteins alongDNA. Importantly, however, neither of these two existing approaches
provide a simpleway of computing ParB binding profiles around parS sites over the full relevant range of system
parameters. In addition, it remains unclear how the spreading and bridgingmodel and the stochastic binding
model relate to each other.

Here, we propose a theoretical approach to describe the distribution of ParB proteins around parS sites on
theDNA in terms ofmolecular interaction parameters and protein expression levels. To this end, we develop a
simplemodel for protein-DNA clusters that explicitly accounts for the competition between the positional
entropy associatedwith placing the loops on the cluster, which favors a looser cluster configuration, and both
protein–protein interactions and loop closure entropy, which tend to favor a compact cluster. This looping and
clustering (LC)model represents a reduced, approximate version of the full spreading and bridgingmodel that
incorporates the key physical ingredients needed to provide a clearer understanding and at the same time greatly
facilitates calculations of the distribution profile of ParB (or other proteins that formprotein-DNA clusters).
Thus, our approach can be used to estimatemolecular interactions between proteins from experimentally
determined protein binding profiles.

2. The looping and clustering (LC)model

To theoretically describe the protein binding profiles of ParB onDNA,wefirst consider aDNApolymer of
length L that canmove in space on a 3D cubic lattice andwith afinite number of proteinsm. Since the number of
ParB proteins in the protein-DNA cluster has been observed to include the vastmajority of proteins in the cell
[27], we employ a canonical ensemblewith a fixed number of ParB proteinsm in the ParB complex. These
proteins are able to diffuse along theDNA. Importantly, in thismodel theDNA itself is also dynamic and
fluctuates between different three-dimensional configurations, which are affected by the presence of interacting
DNAbound proteins.When proteins are bound to theDNA, they are assumed to be able to interact attractively
with each other by contact interactions in two distinct ways: (i) 1D spreading interactions with coupling strength
JS, defined as an interaction between proteins on nearest-neighbor sites along the polymer, and (ii) a 3Dbridging
interactionwith strength JB between two proteins bound to sites on non-nearest neighbor-sites on theDNA, but
which are positioned at nearest neighbor-sites in 3D space (see figures 1(a) and (b)). Thus, these bridging
interactions couple to the 3D configuration of theDNA,while the 1D spreading interactions do not. Single-
molecule experiments provide evidence for bridging bonds [32], with the bridging valency of a ParB protein
limited to one [35, 36]. Even in this case where each protein can form two spreading bonds and a single bridging
bond, the systemhas been shown to exhibit a condensation transitionwhere themajority of the proteins form a
single large cluster that can be localized by a single parS site on theDNA [31].

While it is possible to performMonteCarlo simulations of the spreading and bridgingmodel for a lattice
polymer, such simulations are computationally demanding. In this paper, we aim to provide a simple analytical
description for the average binding profile of proteins along theDNA (see right panels infigure 1).With this aim
inmind, we can simplify our description by realizing that the configurations of ParB proteins along theDNA are
more sensitive to JS than to JB, for sufficiently large JB.While both spreading and bridging bonds are necessary for
the condensation of all proteins into a single cluster, loop extrusion from the cluster is controlled by JS, and such
loop extrusion strongly impacts the binding profile of proteins on theDNA. Indeed, a loop can be extruded from
the protein-DNA cluster by breaking a spreading bond, butwithout effecting the internal configuration of the
bridging bonds. Therefore, wewill assume that JB is sufficiently large tomaintain a coherent 3Dprotein-DNA
cluster, leaving JS as themain adjustable parameter in themodel.

A contiguous 3D cluster of proteins onDNAwith loops can effectively be represented graphically by a
disconnected 1D cluster along theDNA,where connections in 3Dbetween the 1D subclusters are implied, and
domains of protein-freeDNAwithin the disconnected 1D cluster represent loops that emanate from the 3D
cluster (see figures 1(b) and (c)).We can describe this systemby a reducedmodel for the effective 1D cluster in
whichwe account for the entropy of the loops that originate from the protein-DNA cluster. In thismodel, the
spreading bond energy set by the parameter JS combinedwith the cost in loop closure entropy, competes with
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the positional entropy for placing loops on the cluster andwill therefore play a crucial role in determining the
binding profile of ParB onDNAaround a parS site.

To capture these effects, we propose the reduced LCmodel, which offers a simplified description of 3D
protein-DNA clusters with spreading and bridging bonds. In thismodel a loop is formedwhenever there is a gap
between 1D clusters.We canmake the connection between the gaps in the 1D cluster and the number of loops
extending from the 3D cluster explicit bywriting down the partition function for thismodel. The effective 1D
cluster corresponding to a 3D cluster withm proteins and n loops has amultiplicity:

W =
-

- -
( )!

( )! !
( )m

m n n

1

1
, 1cluster

which counts the number of ways inwhich one can partitionm proteins into n+1 subclusters in 1D. This
multiplicity leads to a positional entropy ofmixing, Scluster=lnΩcluster, for placing n loops atm−1 possible
positions (in units of kB). Note, we do not explicitly include the number of ways inwhich the bridging bonds can
be formed, since loop formation is not expected to substantially affect the possible configurations of bridging
bonds.However, creating n loopswill require breaking n spreading bonds, and the probability at equilibrium for
this to occurwill include a Boltzmann factor~ -( )nJexp S , where the interaction energy is expressed in units of
kBT.Within our simple description, we do not consider how the formation of a loop affects the full internal
entropy of the protein-DNA cluster, but this can be expected to be afixed number per loop that can be absorbed
into JS. Furthermore, the loops that are formed are assumed to be independent, and thus contribute to the loop
closure entropy (in units of kB) as [34]:

ån= -
=

ℓ( ) ( )S d ln , 2
i

n

iloop
1

where d is the spatial dimension, ν is the Flory exponent, and the loop length ismeasured in units of the lattice
spacing of the polymer a, whichwe take to be equal to the footprint of a ParB protein, e.g. 16 bp for the
exogenous ParABS systemofE. coli [27].

This entropy is obtained by considering both the loops formedwithin the protein cluster and the protein-
free segment ofDNAoutside the cluster. Indeed, the number of configurations associatedwith loop i for a
Gaussian polymer is given by n-ℓℓz i

di [34, 37], where z is the lattice coordination number. Therefore, there is also
an extensive contribution to the entropy given by kBℓi ln(z). However, when a loop of lengthℓi forms, the same
length of polymer is removed from theDNAoutside of the cluster, which also results in a reduction of the
entropy by kBℓi ln(z). Thus, there is a precise cancelation between the extensive contribution to the entropy
associatedwith the loop inside the cluster and the extensive contribution due to effectively shortening theDNA
outside the cluster5.

It is now straightforward towrite down the partition function of the LCmodel:

ò òå=
-

- -
-

+ - ¢

n n
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-
- -
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-
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0
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1 1

1

0

max

0
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max

where n¢ = + - >n-ℓ[ ( )]J J d Jln 1S S
d

S0
1 is a renormalized loop activation energy that includes the cost in loop

closure entropy. All lengths aremeasured in units of the protein’s footprint a,ℓ0 is the lower cutoff of loop sizes
and approximately represents the persistence length ofDNA, and the bond interactions are in units of kBT. In
the partition function, we conveniently set the upper boundary of integration,ℓmax, to infinity. Strictly speaking,
the upper boundary forℓj should be L−(m+Lj), where = å =

- ℓLj i
j

i1
1 represents the total accumulated loop

length before loop j. In practice, however, for chromosomes, but arguably also for plasmids, L?m and the
probability to have a large loop is very small. For instance, if we consider the F-plasmid ofE. coliwith a length of
60 kbp, we have L=3750 in units of the ParB footprint of 16 bp [27, 38]. For this system,Monte Carlo (MC)
simulations (see appendix A) of the LCmodel, withm=100 reveal that the average cumulated loop size
is≈500 for small couplings (JS=1) down to≈25 for large couplings (JS=4), which in both cases ismuch less
than theDNA length. Thus, for biologically relevant cases it is reasonable to assume that the length of theDNA
polymer ismuch larger than the footprint of thewhole protein complex on theDNA.

The LCmodel constitutes a simple statisticalmechanics approach to describe howproteins assemble into a
protein-DNA cluster withmultiple loops. Next, wewill include a parS site on theDNA, towhich ParB proteins
bindwith a higher affinity than the other non-specific binding sites on theDNA.Our central aim is to compute
the binding profile of ParB around this parS site.

5
Although this reasoning is not strictly true for self-avoiding polymers, it does hold if we adopt the usual approximation used in the Poland–

Scheragamodel forDNAmelting that self-avoidance acts onlywithin individual loops.

4

New J. Phys. 20 (2018) 035002 J-CWalter et al



3. Profile of Par B forfixed number and sizes of loops

With our approach, we aim to quantitatively describe average ParB binding profiles, which are directly
measurable byChIP-Seq experiments. By fitting ourmodel to suchChIP-Seq data, it would be possible to
extractmicroscopic parameters such as the number of proteins in the ParB clusters and the protein–protein
interaction parameters such as JS. In this section, wewill describe how to compute the ParB binding profile
around this parS site given afixed number of loopswith specified loop lengths. Thenwewill use the statistical
mechanics framework provided above, to perform aweighted average over all possible loop numbers and sizes
to arrive at a simple predictive theory for the ParB binding profile.

3.1. 1-loop binding profile
It is instructive to start our analysis of ParB binding profiles by first calculating the probability of ParB occupancy
as a function of distance from the parS site for the case of a protein-DNA cluster with only oneDNA loop (n= 1)
withfixed loop lengthℓ.Wewill assume afixed numberm of ParB proteins in this 1-loop protein-DNA cluster,
and that one of these proteins is bound to theparS site at any time, as illustrated infigure 2. Thus, to calculate the
1-loop ParB binding probability, P1(s,ℓ), at a distance s from parS, we need to consider all possible
configurations of proteins in the protein-DNA cluster subject to these constraints.

First, we note that P1(s,ℓ)=0 for s>m+ℓ, because the 1D cluster canmaximally extend to a distance
m+ℓ, which occurs when the 1D cluster adopts a configuration that lies entirely on one side of the parS site.
For a binding site at a distance s<m+ℓ, the ParB binding probability is reduced, either by configurations
where this site is located on theDNA loopwithin the 1D cluster, or by states where the 1D cluster adopts a
configuration around the parS site that does not extend to the binding site at s, placing this site outside the 1D
cluster. To capture these effects, it is helpful to express P1(s,ℓ) in terms of conditional probabilities:

= +

=

ℓ ℓ ℓ

ℓ

( ) ( ∣ ( )) ( ) ( ∣ ( )) ( )

( ∣ ( )) ( ) ( )

P s P s p s P s s p s

P s s p s

, , loop s , loop

, loop , 4

1 1 loop 1 loop

1 loop

where ‘loop(s)’ represents a conditionwith probability ploop(s) corresponding to site s being part of a loop
extruding from the cluster, i.e. an unoccupied site on theDNAwithin the protein cluster, as depicted infigure 2.
The overbar here represents the complementary condition, and the expression above simplifies because

=ℓ( ∣ ( ))P s s, loop 01 by construction.
We can proceed to calculate the conditional probability, ℓ( ∣ ( ))P s s, loop1 , by decomposing this

contributions as a sumof probabilities ofmutually exclusive configurations, which are conditioned by the
location ¢s of the right edge of the 1DParB cluster denoted as ‘ ¢( )send ’ (see figure 2). Then, wewill take a
continuous limit for the binding profile assumingm?1, and express the binding profile ℓ( ∣ ( ))P s s, loop1 in
terms of probabilities, ¢( )p send , for the condition describing the position of the right edge of the cluster. Thus, we
first write the conditional probability ℓ( ∣ ( ))P s s, loop1 for s�0 (the case s<0 is obtained by symmetry) as

ò

å= ¢ ¢

» ¢Q ¢ - ¢

¢=

+

+

ℓ ℓ( ∣ ( )) ( ∣ ( ) ( )) ( )

( ) ( ) ( )

ℓ

ℓ

P s s P s s p s

s s s p s

, loop , loop , end s ,

d . 5

s

m

m

1
0

1 end

0
end

Clearly,P1( ℓ∣ ( )s s, loop , end(s′))=1when s<s′ and zero otherwise, and thuswe have replaced this termby the
Heaviside step functionQ ¢ -( )s s and approximated the sumby an integral in the second line above.

To calculate ¢( )p send , it is convenient to introduce two subclusters, 1 and 2, withm1 andm –m1 proteins
respectively (0<m1<m), such that cluster 1withm1 proteins is overlappingwith parS, as shown infigure 2.
Given two such subclusters, two equally likely situations can occur: (i) the leftmost cluster overlapswith parS, i.e.

- + ¢ < +ℓ ℓm m s m1 or (ii) the rightmost cluster overlaps with parS, i.e.  ¢ <s m0 1. This directly

Figure 2. Schematic of the systemwithm proteins and a single loop of sizeℓ. Thewhole cluster is split in two parts:m1 is the number of
proteins in the cluster that overlaps with parS andm−m1 is the number of proteins in the other cluster. The origin of the genomic
coordinates is parS, the right edge of the system (RE) is located at the coordinate ¢s .We can divide the configurations into two equally
likely cases: (i) the leftmost cluster overlaps with parS or (ii) the rightmost cluster overlaps with parS.
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allows us to construct the conditional probability tofind the right edge of thewhole system, such that one of the
m1 proteins in the cluster overlaps with parS

¢ = Q ¢ - - + Q + - ¢

+ Q - ¢

ℓ ℓ( ∣ ) [ ( ( )) ( )

( )] ( )

p s m s m m m s

m s , 6
mend 1
1

2 1

1

1

where the prefactor 1/2 comes from the equal probabilities tofind the system in one of the two cases (i) and (ii).
The conditions (i) and (ii) are encodedwith a product of two unit step functions for (i) and a single step function
for (ii). Each single realization can be obtained by shifting the position of the site in cluster 1 overlappingwith
parS and is equally likely, giving rise to an overall prefactor 1/m1. From this, we can obtain the full probability

¢( )p send by integrating overm1:

ò¢ » ¢

=
Q + - ¢

-
Q - + - ¢ -

+ Q + - ¢ - Q ¢ - - ¢ - -
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2
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m

end
1

1

1 end 1 1

wherewe used p(m1)=2m1/(m(m−2)), since the number of configurations to place cluster 1 is∝m1 and
m1ä [1,m−1]. Using this expression for the normalized probability distribution for the right edge of the 1D
cluster to be positioned at ¢s , we can compute the conditional probability in equation (5):
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To obtain the full 1-loop protein distribution (equation (4)), wefirst need to compute the probability for a
site to not be part of loop,

= -( ) ( ) ( )p s p s1 . 9loop loop

If the loop density, ρ, were uniform,wewould simply have r= =
+

ℓ ℓ( ) ( ) ℓ
ℓ

p s m,
mloop

uni uni , since the 1D cluster

has a total length ofm+ℓwith a single loop of lengthℓ. This uniform conditionwould only apply if we
randomly chooseℓsites to be part of the loop and ignore the requirement that all these loop sites need to be
neighboring. In a real cluster, however, we expect the loop density ρloop(s) to be higher in the bulk of the 1D
cluster than close to the parS site or the edges, because fewer loops can be formed near the parS site or near the
boundaries of the 1D cluster, at which a proteinmust be bound by construction. In particular, we expect the
loop density, r µ + -ℓ ℓ ℓ( ) ( )s m s m s, , min , , , whichmeasures the number of ways a site at s can be part of
a loop. This results in the normalized probability

r=

=
+ -

Q - + - + Q - +( )

ℓ ℓ
ℓ ℓ ℓ

ℓ ℓ ℓ ℓ ℓ
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. 10

m
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2
2

2

In the normalization of this expressionwe distinguish the cases where the loop is either smaller or larger than
the number of proteins in the cluster.With equations (8) and (10), we have all the elements to calculate the
1-loop protein binding profileP1(s,ℓ) from equation (4).

We investigated the binding profiles P1(s,ℓ) predicted by thismodel for a selected set of parameters, as
shown infigure 3.We only show s>0 because of the symmetry of the binding profile. It is instructive to
contrast these profiles with the triangular profile (black curve) for a cluster with no loops. As expected, the
addition of loopswidens the profile, allowing the tail of the distribution to extend out to a distancem+ℓ. The
widening of the binding profile is accompanied by a faster decay of the profile in the vicinity of parS, which
crosses over to a flatter profile at distances s>ℓdue to additional contributions from configurations where the
loop lies between the parS site and site s.

Interestingly, for large loop size the profile can even become non-monotonic with a slight increase near the
far edges of the domain. These features of the profile reflect the reduced loop density near parS and near the far
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edges of the cluster. Note that the integral under this curve remains constant for varyingℓto conserve the
number of particles in the cluster. To verify the validity of the analytical approximations leading toP1(s,ℓ), we
used exact enumeration as a benchmark. Overall, the numerics (dashed lines) and the analytics (solid lines) are
in good agreement for the 1-loop case, as shown infigure 3. In the next section, we employ the approximate
analytical expressions obtained above, to efficiently calculate the full binding profile averaged over all
configurations.

4. Protein binding profiles and statistics of the LCmodel

Abovewe defined the LCmodel and calculated the binding profile of proteins around a parS site for a cluster
with 1 loopwith fixed length. Real protein-DNA clusters, however, are expected tofluctuatewith new loops
forming and disappearing continuously. To capture suchfluctuations, wewill use the expressions for the
binding profile of a static cluster with fixed loop length togetherwith a statisticalmechanics description of the LC
model to obtain average binding profiles for dynamic clusters, including an ensemble average over both the
number of loops and the loop lengths.

To obtain a full binding profile averaged over all realizations, it is useful to investigate the statistics of loops
that extend from the protein-DNA cluster and how these statistics are determined by the underlying
microscopic parameters of themodel.We start by considering the number of loops that extend from the cluster.
Using the partition function in equation (3), it is possible to calculate the basic features of the LCmodel. For
instance, themoments of the distribution of the number of loops are given by

å n
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From this, wefind the the average loop number is given by
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~
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1 e
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J m J
J
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where ¢JS is the renormalized loop activation energy introduced in equation (3). The average loop number á ñn is
depicted infigure 4(a), demonstrating the exponential dependence on the spreading energy JS. Infigure 4(b), we
plot á ñn as a function of the total number of proteinsm in the protein-DNA cluster. Indeed, we observe the
expected linear dependence of the average loop number á ñn onm over a broad range of parameters. These results
illustrate how the average number of loops is determined by the competition between the effective renormalized
loop activation energy, ¢JS (including the cost in loop closure entropy), and the gain in the positional entropy of
mixing (see appendix B).

The linear dependence onm in equation (12) reflects that loops are assumed to be able to form anywhere in
the cluster in the LCmodel. However, onewould naively expect that loops can only form at the surface of a 3D
cluster, resulting in a dependence á ñ ~n m2 3 for a compact, spherical cluster. However,MonteCarlo
simulations of the full S&Bmodel have revealed that the protein-DNA clusters are not compact [31], but rather

Figure 3.Protein occupation probability, P1(s,ℓ), for a site a genomic distance s (in units of ParB footprint, 16bp) from the parS site
for different loop lengthsℓand afixed cluster size ofm=200 proteins. All distances aremeasured in units of the ParB footprint on
DNA. Solid curves represent analytic calculations from equations (4), (8), and (10), and dashed curves represent data obtained from
exact numerical enumeration for comparisonwith our analytical approximations.Wenote that forℓ=0, we recover the triangular
profile of the S&Bmodel in the strong coupling limit  ¥JS [31].
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have a surface that scales almost linearly inm, close to the behavior of the simplified LCmodel presented here.
The non-compact nature of the protein-DNA cluster is perhaps not surprising because each protein can form
only one bridging bond.

A closely related statistic is the average accumulated loop length á ñℓ . From the LCpartition function, we
notice that the loop length is completely decoupled from the coupling constant JS and depends only on the upper

Figure 4. (a)Average number of loops, á ñn , as a function of the spreading coupling strength JS obtained from equation (12). The
different curves correspond to protein numberm=50 (black),m=100 (red),m=200 (green), andm=400 (blue), with loop-size
cutoffℓ0=10.Weobserve an exponential decrease á ñ µ -n e JS in accordancewith equation (12). Inset: same data replottedwith the
expected dependence of the average loop number onm scaled out. (b)Average number of loops á ñn as a function ofm for JS=1, 2, 3,
and 4. The behavior is linear as expected from equation (12). The prefactor that determines the vertical shift between the different
curves scales with -e JS, as demonstrated in the inset of panel (b). (c)Average loop probability as a function of the genomic coordinate
withm=200 and L=4000 for protein-DNA clusters with fluctuating loop number and loop lengths. Different curves correspond to
different spreading couplings JS=1, 2, 3, and 4. The analytic approximation (symbols) using equation (15) for the loop density,
averaged over different loop configurationswith the appropriate Boltzmann factor as in equation (14), is compared toMC simulations
(dashed curves) of the LCmodel (see appendix A).
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cutoffℓmax. Therefore, the cumulated average loop length becomes
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where the factor in front of á ñn represents the average length per loop. This prefactor induces a small algebraic
dependence onℓmax, in contrast to á ñn which depends only on the lower cutoffℓ0.

The loop statistics of protein-DNA clusters are not easily accessible in experiments. Instead, themost
relevant results for which thismodel can provide insight come fromChIP-Seq experiments. These experiments
yield data for the enrichment of bound ParB as a function of genomic position on theDNA, providing ameasure
of the average protein binding profile of ParB onDNA [26, 27]. In the LCmodel, the ParB density profile along
DNA can be calculated from
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whereZLC is given in equation (3). Here, ℓ( { })P s,n i represents themultiloop ParB binding profile with n loops
of length {ℓi}={ℓ1,K,ℓn}. For simplicity, we approximate thismultiloop profile by the analytical 1-loop
conditional probability, P1( ℓ∣ ( )s s, loop ), with the loop length equal to the accumulated loop length, i.e.
 åℓ ℓi i, weighted by the loop probability r» å =ℓ ℓ ℓ ℓ( { }) ( )p s s m, , , ,i i

n
i iloop 1 . In the expression for the

loop probability, ρ(s,m,ℓi,ℓ) is defined as the contribution to the loop density of a loop of lengthℓi in a cluster
ofm proteins with a total accumulated loop lengthℓ, andwe neglected correlations between contributions from
different loops. Furthermore, we approximate ρ(s,m,ℓi,ℓ) by using a generalization of the 1-loop expression in
equation (10),
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In the analysis above, we aimed to capture the effects ofmultiple loops in a simpleway by assuming statistical
independence of the loops, and by using the analytical 1-loop expressions to approximate the impact of loop
formation on the loop density and the ParB binding profile of the protein-DNA complex. To test the validity of
these approximations, we performedMC simulations of the complete LCmodel.Wefind that the numerically
obtained average loop probability is in reasonable agreement with our approximate expression for themultiloop
density, as shown infigure 4(c). Thus, despite the simplicity of our approach, the analyticalmodel provided here
captures the essential features of looping in protein-DNA clusters.

The protein binding profile PLC(s) around a parS site is calculated by averaging the static binding profile for
different total loop numbers and loop lengths using the Boltzmann factor (see equation (3)) from the LCmodel
as the appropriate weighting factor. The resulting expression in equation (14) for the protein binding profile of a
protein-DNA cluster is the central result of this paper.We use this expression to compute binding profiles for
the full LCmodel, which are shown infigure 5 as a function of the distance s to parS form=100, 200, and 400.
By construction, the site s=0 corresponding to parS is always occupied, and thusP(s=0)=1 for all values of
the spreading energy JS. This feature of the LCmodel captures the assumed strong affinity of ParB for a parS
binding site. For JS=4, the binding profile converges to a triangular profile, implying a very tight cluster of
proteins on theDNAwith almost no loops. The triangular profile in this case results from all the distinct
configurations inwhich this tight cluster can bind toDNA such that one of the proteins in the cluster is bound to
parS, and therefore the probability drops linearly to 0 at s≈m. The same triangular binding profile was
observed for the S&Bmodel in the strong coupling limit  ¥JS [31]. Interestingly, as JS becomesweaker, we
observe a faster decrease of the binding profile near parS together with a broadening of the tail of the distribution
for distances far from parS. This behavior results from the increase in the number of loops that extrude from the
ParB-DNAcluster with decreasing spreading bond strength JS. The insertion of loops in the cluster allows
binding of ParB to occur at larger distances from parS. Thus, the genomic range of the ParB binding profiles is set
by » + á ñℓs mmax , where the average cumulated loop length á ñℓ is controlled by JS (see equation (13)) andm.
These results illustrate how the full average binding profile is controlled by the spreading bond strength JS: the
weaker JS, the looser the protein-DNA cluster becomes, which results in amuchwider binding profile of
proteins around parS. In the limit J 0S , the LCmodel quantitatively reduces to the statistics of non-
interacting loops, as shown in the inset offigure 5. In this case, the binding profiles exhibit asymptotic behavior

µ n-( )P s s d
LC for large s, as in the stochastic bindingmodel [27]. Interestingly, we observe aweaker scaling

PLC(s)with s at intermediate genomic distances, whichwe attribute to the reduced loop density near parS (see
figure 4(c)).
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To investigate how the functional shape of the binding profile is determined by the total number of proteins
in the cluster, we plot the binding probability versus the scaled variable s/m form=100, 200, and 400, as shown
infigure 6. Forfixed JS, the data approximately collapse onto a single curve as a function of the scaled distance s/
m. This implies that the functional shape of the ParB binding profile is largely determined by the spreading bond
strength JS, while the number of proteins in the cluster determines thewidth of the profile.

5.Discussion

The LCmodel introduced here allows us to access the average binding profile of proteinsmaking up a large 3D
protein-DNA complex. In ourmodel, the formation of a coherent cluster of ParB proteins is ensured by a

Figure 5.Binding profiles of ParB from equation (14) plotted versus the genomic distance s to parS for (a)m=100, (b) 200, and (c)
400. In equation (14), the loop size integrals were calculatedwith a lower cutoffℓ0=10 and an upper cutoff of 10ℓ0; summations
were truncated at n=15. The dark gray circles in panel (c) show experimental ChIP-Seq ParB enrichment data from the F-plasmid of
E. coli extracted from [27]. The inset in panel (a) shows the binding profile of ParB versus genomic distance s from parS for JS=1,
ν=0.588 (self-avoiding polymer). The results in this inset were obtained byMonte Carlo simulations of the LCmodel (see A.1 for
details). The data plotted on a log-log scale show the power law decayPLC∼s−d ν expected in the limit of low JS, where the LCmodel
becomes conceptually similar to the stochastic bindingmodel.
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combination of spreading and bridging bonds betweenDNAbound proteins, which together can drive a
condensation transition inwhich all ParB proteins form a large protein-DNA complex localized around a parS
site [31].We do not assume, however, that this protein-DNA cluster is compact. Indeed, loops of protein-free
DNAmay extend from the cluster, which strongly influences the average spatial configuration of proteins along
theDNA. In the LCmodel, the formation of loops in the protein-DNA cluster is controlled by the strength of
spreading bonds, i.e. the bond between proteins bound to nearest neighbor sites on theDNA. Specifically, for
every protein-free loop ofDNA that extends from the cluster, a single spreading bond between two proteins
within the clustermust be broken. Thus, if the spreading interaction energy, JS, is sufficiently small, thermal
fluctuationswill enable the transient formation and breaking of spreading bonds, thereby allowingmultiple
loops ofDNA to emanate from the protein cluster (seefigure 1).

Conceptually, the spreading bond interaction determines how ‘loose’ the protein-DNA cluster is, which
directly impacts the ParB binding profiles.When JS is large, loop formation is unlikely, resulting in a compact
protein-DNA cluster with a corresponding triangular protein binding profile centered around parS [31]. At
intermediate JS, the protein-DNA cluster becomes looser with the formation of loops, resulting in a binding
profiles that aremore strongly peaked around parS butwith far-reaching tails. Importantly, the LCmodel
enables us to establish a link between the spreading and bridgingmodel and the stochastic bindingmodel [27].
Thefirst used amicroscopic approach based on the types of interactions between proteins on theDNApolymer,
while the second employed amoremacroscopic approach based on the polymer configurations around a dense
sphere of proteins. In the limit JS→0, the LCmodel is consistent with the stochastic bindingmodel with a
profile of the form [27] given by µ n-( )P s s d (inset figure 5(a)). Thus, the LCmodel offers a description for a
broad parameter regime, connecting two limits investigated in preceding studies [27, 31]. Therefore, ourwork
also resolves the apparent contradiction between these previousmodels.

The LCmodel, whichwe introduce to calculate the binding profile of ParB-like proteins on theDNA, is a
simple theoretical framework similar to the Poland–Scheragamodel forDNAmelting [39, 40]. An important
difference in the LCmodel with respect to the homogeneous Poland–Scheragamodel, is that translational
symmetry is broken due to the presence of a parS site at which a protein is boundwith a high affinity. Thus, the
protein-DNA cluster can adopt awide range of configurations as long as one of the proteins is bound to the parS
site. As a result, loops are effectively excluded in the vicinity of parS. The central new result of this work is a
simpleway of computing the protein binding profiles around such a parS site in terms ofmolecular interactions
parameters.We show that the binding profiles predicted by thismodel are sensitive to both the expression level
of proteins and the spreading interaction strength, which directly controls the formation of loops in the protein-
DNA cluster. The LCmodel predicts a profile in good quantitative agreementwith binding profilesmeasured
withChIP-Seq on the F-plasmid ofE. coli, as shown infigure 5(c). Importantly, from this analysis we extract the
spreading interaction strength JS≈1kBT and the number of proteins in the clusterm≈400. The value ofm is
consistent with estimates based on quantitativeWestern blots [27]. The quantity JS is amore challenging
quantify to estimate, but gel-shift or similar assays could be used on short DNAoligomers to estimate this
spreading bond strength.

Our results also have implications for experiments that employ fluorescent labeling ofDNA loci by
exogenous ParBs [28, 29]. Indeed, ourmodel can be used to investigate how the protein interaction strengths

Figure 6. Scaling function of the ParB binding profile for different total protein numbersm (same data as infigure 5). The data for the
different total protein numberm are plotted versus the dimensionless genomic distance s/m from parS (main graph: JS=3, inset:
JS=2).
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determine the 3D structure andmobility of the ParB-DNA cluster, as well as the tendency ofmultiple ParB foci
to adhere to each other. Thismodel thus provides an insightful quantitative tool that could be employed to
analyze and interpret ChIP-Seq andfluorescence data of ParB-like proteins on chromosomes and plasmids.
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AppendixA.MonteCarlo simulations andnumerical integration procedures

A.1.MonteCarlo procedure
Using the partition function, we can formulate an effective 1DHamiltonian for the LCmodel, which explicitly
accounts for the spreading bonds and loop entropy:

 å åf f n= - + +
=
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This effectiveHamiltonian is useful to performMonteCarlo simulations of themodel as a benchmark for
the approximations performed in the analytical approach (see figure 7). The proteins aremodeled as particles
that bind/unbind onto sites of a one-dimensional lattice with free boundary conditions. The lattice size
L=4000 is chosen to prevent finite size effect for the range of proteins considered. Note that, in theseMC
simulations, the total size of the loops is limited to L−m.

The simulations are performedwith the standardMetropolis rules:

1. Propose a move of a particle randomly chosen to a random empty site of the lattice (conserved order
parameter). AMC iteration step consists ofm attempts ofmove.

2. Calculate the difference of energy   D = -f i between final and initial configurations.

3. If D < 0, themove is acceptedwith probability 1, otherwise it is acceptedwith probability b- D( )exp .

The system is set initially with all particles in a single cluster ( = ¥JS ), and then thermalized to the actual JS
of the simulations ranging from1 to 4 (see figure 7). The sampling starts after thermalization of the system
(40 000MC iterations). A sampling of the systems configuration is performed every 100MC iterations. AllMC
averages have been performed over 107 configurations, ν=0.588, L=4000 andℓ0=10. The numerical

Figure 7.The binding profile obtainedwith the analytic approach (14) (symbols) are compared toMC simulations (solid lines) for
m=100,ℓ0=10 and JS=1, 2, 3 and 4.
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results of thisMonte Carlo simulation are in good agreementwith our approximate analytic results, as shown in
figure 7.

A.2. Numerical integration
To evaluate the binding profilePLC(s), we proceeded as follows.We carried out the evaluation of the simplified
expression in equation (14) using numerical summation and integration.We truncated the summation at
n=15, instead of going up tom−1, based on the corresponding average number of loops of figure 5. Finally,
we introduced an upper cutoff for the loop-length,ℓmax=100, instead of going up to infinity.We confirmed
that shape of the binding profiles does not change significantly for higher values ofℓmax=100.

The numerical evaluation of themultidimensional integrals in equation (14)have been performedwith an
accuracy and precision of respectively 2 and 3 effective digits in thefinal results.We have carried out
convergence tests of the curve shapes in order to assess our parameter choice and rule out numerical instabilities.
All computations have been performed by routines written in theWolframLanguage and executed by the
Mathematica software suite (version 10 and 11).

Appendix B. Formal connection between the LCmodel and a LatticeGaswith
renormalized coupling

Form, n? 1 (thermodynamic limit), we can formulate a saddle point approximation to evaluate the partition
function and á ñn , by approximating the entropic (factorial) term inZ (equation (11)) using the standard entropy
ofmixing for placing n loops onm−1 possible sites. This approach gives physical insight into how the loop
entropy contributes to a renormalized protein–protein interaction and how the competition between this
renormalized interaction and the entropy ofmixing controls á ñn . Taking the thermodynamic limit leads to a
partition function:

ò r r¢ = - -
¥

[ ( ) ( )] ( )ℓ ℓZ m Fd exp 1 , B1
0

eff

where ρℓ=n/(m−1) is the concentration of loops (0�ρℓ�1) and
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an effective free energywhere a¢ = +J J lnS S 0 is a loop activation energy renormalized by the cost in loop
entropywith a n= -n-ℓ ( )d 1d

0 0
1 . In the limit  ¥m , the approximate partition function ¢Z becomes exact

and can be evaluated exactly in the saddle point approximation byminimizing Feff. The solution, ρSP, to the
saddle point equation, dFeff(ρℓ)/dρℓ=0, is
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The entropic contribution to Feff (second term) vanishes at ρℓ=0 and 1, and reaches aminimumat ρℓ=1/2,
which is the exact result for ρSP at vanishing renormalized loop activation energy ¢JS because the entropy of
mixing is thenmaximized. For r¢ >J 0,S SP decreases from1/2 to vanish in the limit ¢  ¥JS as r  - ¢e J

SP
S. In

this limit only the no and one loop states contribute and the asymptotic behavior can be simply obtained by a
series expansion of the partition sumand the corresponding expression for á ñn . The saddle point result leads to
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which turns out to be the exact result, thanks to compensating errors, for á ñn forfinitem (which can be obtained
by differentiating the exactZwith respect to JS, see equation (12)). For example, forℓ0=10, d=3, and
ν=0.588,α0=4.437 and ln(α0)=1.49, which is not negligible if = ( )J 1S .
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