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1 Introduction

The physics of fractional statistics and vortices is well studied in quantum field theory. If

the positions of two identical point particles in (3 + 1) (or in higher) spacetime dimensions

are interchanged, the corresponding wave function acquires a multiplicative factor of either

(+1) (Bosons) or (−1) (Fermions). The spin of the point particles in (3 + 1) takes either

integer values (for Bosons) or half-integer values (for Fermions) [1]. However, in [2] it was

shown that in (2 + 1) spacetime dimensions point particles can also carry an arbitrary spin

and can obey fractional statistics. These point particles with fractional spin and statistics

are known as “anyons”. If an anyon is transported around another identical anyon, the

combined wave function acquires a factor of exp
[
± iαπφ

]
where φ is the angle of rotation

and all real values of the parameter α can be realized. Also, ± sets the convention of which

way is it rotated. In (2+1) dimensional quantum field theories such anyons can be realized

in certain cases if a Chern-Simons term is present in the field theory Lagrangian [3, 4]. One

particular well known example is the case of electrically charged Chern-Simons vortices:

according to the theorem of Julia and Zee [5], finite energy (2 + 1) dimensional vortices of

Nielsen-Olesen type [6] cannot be electrically charged. If however a Chern-Simons term is

added to the Nielsen-Olesen Lagrangian, electrically charged vortices do exist as (2 + 1)

dimensional topologically non-trivial static lowest energy configurations in this theory [7, 8]

and these electrically charged vortices can obey fractional statistics [9].
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In higher spacetime dimensions, point-like objects cannot obey fractional statistics

because their corresponding braid group is trivial. However, in n space dimensions, the

(higher dimensional analogue of the) braid group for (n − 2)-dimensional objects is non-

trivial [10], allowing for the interesting possibility of field theories with such objects obeying

fractional statistics. For example, there is the possibility that string-like objects of certain

quantum field theories can obey fractional statistics in (3 + 1) spacetime dimensions, as

discussed e.g. in [11, 12] in a concrete setup. For works on anyonic strings and membranes

in string theory and in particular in AdS, see e.g. [13]. For applications of similar theories

towards AdS/condensed matter see e.g. [14].

In this work, we investigate this topic in the context of a bulk manifold M with a

boundary ∂M. The endpoints of string-vortices in M can be understood as point-like

vortices (or antivortices) located on ∂M.1 As we shall discuss, the statistics of such strings

finds a direct interpretation in terms of the statistics of the boundary vortices. For this

purpose we consider Abelian ‘cosmic’ strings in a curved (3+1) dimensional spacetime M,

which end on the (2 + 1) dimensional boundary ∂M and investigate the question if and

under what conditions these cosmic strings obey fractional statistics. We argue that under

quite general conditions, one can answer this question by considering only the endpoint

vortices of the cosmic string.

The conceptual idea behind our work is rather straightforward. The statistics of vor-

tices in (2+1) dimensions is captured by a low energy effective theory whose main ingredient

is a Chern-Simons term. The presence of the Chern-Simons term attaches magnetic flux

to electric charges. It is this combination of flux and charge that gives rise to non-trivial

Aharonov-Bohm (AB) phases when two such topological object are rotated around each

other. A simple continuation to one additional space dimensions involves the presence of

either θ-like terms or mixed Chern-Simons-like terms. This in turn can induce fractional

statistics of ‘cosmic’ strings through corresponding AB phases. This mechanism, in fact,

may appear somewhat unconventional from the bulk perspective, where the topological

actions of Chern-Simons type usually dictate that we perform such an AB measurement in

a (4 + 1) dimensional bulk [13].

Note that, both in the (2 + 1) dimensional boundary and (3 + 1) dimensional bulk,

there are subtleties related to self-linking and intersections of their corresponding world-

lines or worldsheets [12, 16, 17]. To avoid such complications, we will take the strings to

be far separated such that they are always parallel and are trivially extended from the

boundary charged particle vortex. As we will argue, in this setting, cosmic strings obey

fractional statistics if (i) their endpoint vortices are electrically charged and (ii) charges

are arranged such that the Aharonov-Bohm phase of a vortex pair is not canceled by that

of the antivortex pair corresponding to the opposing endpoints of the strings. This can be

achieved in several ways, as we shall discuss in the bulk of the paper.

In order to illustrate our points in the (3 + 1) dimensional case, we investigate two

particular setups. First, we study the case of Abelian cosmic strings in M which are

1It is not guaranteed that string-vortex solutions exist for any M. We are obviously confining our

attentions to spacetimes where such a solution is available. A typical example will be when M is AdS,

which has a conformal boundary and also supports a string-vortex solution [15].
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obtained as finite energy configurations in the theory with Nielsen-Olesen Lagrangian with

a term ∆L = θεµναβFµνFαβ added. This is of course the familiar ‘θ-term’ like quantity

of QCD, although the field strength Fµν now corresponds to a U(1) gauge field Aµ. We

consider a setup with these Abelian cosmic strings, with both endpoints of the string

ending on the (2 + 1) dimensional boundary of M, which is such that the strings pierce an

embedded axionic domain wall across which the θ parameter changes.2 Second, we study

a limiting case of certain superconducting Abelian cosmic strings in the bulk, again with

both endpoints ending on the boundary, but in this case with no embedded domain wall

present. Throughout, we work in the limit in which backreaction of the strings on the

geometry is absent.3

Extended objects which obey fractional statistics in theories with topological terms in

the Lagrangian have in fact already been studied in the literature in string theory setups

(see e.g. [13]). Although related to our investigations, these studies are different from our

discussions, in particular because we are considering a pure quantum field theory setup

in (3 + 1) spacetime dimensions. In contrast, the discussions in [13] are in the context of

(4 + 1) dimensions in a string theory setup.

This work is organized as follows. In section 2 we study electrically charged (2 + 1)

dimensional Abelian vortices in flat spacetime from two different perspectives. In particu-

lar, in subsection 2.1 we briefly review the result of [9] that (2 + 1) dimensional electrically

charged Chern-Simons vortices obey fractional statistics as a consequence of being elec-

trically charged. Although well known, we rewrite the steps in the dual field’s language,

which also sets up our tactics for higher dimensions. In subsection 2.2 we argue that (2+1)

dimensional vortices with no pure Chern-Simons term can also obey fractional statistics in

the presence of an additional internal current. Although straightforward, to our knowledge,

this way of looking at charged vortices did not appear in the literature. In section 3 we then

study some particular (3 + 1) dimensional Abelian cosmic strings in the bulk which end on

its boundary (modulo the assumptions discussed in previous paragraphs). We will again

consider two ways of charging such string-vortices. In subsection 3.1, in complete analogy

to the (2 + 1) dimensional case of subsection 2.1, we consider (3 + 1) dimensional cosmic

strings from the dual point of view and show that cosmic strings obey fractional statistics

if they are electrically charged. Later on, in subsection 3.2 we study the above system

using the alternate description of an additional gauge field along the strings. This turns

out to be closely related to superconducting strings considered earlier by Witten [20]. We

comment on that in subsection 3.3. In section 4, we combine our discussions of the above

two sections and point out that in the context of a four dimensional bulk, the boundary

endpoints of the above-mentioned cosmic strings are nothing but the vortices which we

considered in section 2. This is clear from both the perspectives that we mentioned so

far, and we discuss them in subsections 4.1 and 4.2 respectively. We conclude in section 5,

where we conjecture a general condition which has to be satisfied for (2 + 1) dimensional

2Similar setups are also realized by junctions of matter in condensed matter systems (see e.g. [18]) and

in non-Abelian cases (see e.g. [19]).
3We should note that throughout the paper, we will have in mind a ‘radial’ foliation of the bulk manifold

M. This is commonplace in the examples of AdS/CFT duality, which will be a natural example in our mind.
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vortex endpoints of any (3 + 1) dimensional cosmic string, in order for the string to obey

fractional statistics.

2 Fractional statistics of Abelian vortices in (2 + 1) dimensions

Equipping vortices with an electric charge generally leads to a contribution to the effective

action S of the Hopf form [21]

S ⊇ SHopf = β

∫
j(vortex)µ

εµνλ∂ν
∂2

J(el)λ , (2.1)

obtained after integrating out any mediating gauge fields after appropriate gauge fix-

ing. Here, β is a theory dependent coefficient. The Hopf term describes the interac-

tion of a (topological) vortex current j(vortex)µ whose charge corresponds to the winding

number, with an electric current J(el)λ, also localized on a vortex. In its presence, in-

terchanging two vortices with electric charges q
(i)
e and winding numbers n(i) implies an

Aharonov-Bohm phase

∆S =
β

2

(
n(1)q(2)

e + n(2)q(1)
e

)
. (2.2)

For suitably chosen β, this equation entails the existence of anyonic vortices.

In the following, we discuss two explicit realizations of this setup, which are in part

well known results (see e.g. [9]). In the first scenario, vortices are equipped with electric

charge by means of a Chern-Simons term in their action. In that case, the electric current

above is identical to the vortex current. In another setup, the vortex is explicitly charged

under an additional gauge field.

2.1 Electrically charged Chern-Simons vortices

Electrically charged static Abelian vortices in (2+1) dimensional Minkowski spacetime can

be obtained numerically as static lowest energy topologically non-trivial configurations in

the theory with a Chern-Simons term added to the Nielsen-Olesen Lagrangian [7]:

L = −1

4
FµνF

µν +
1

2
(Dµφ)† (Dµφ)− λ

4

(
φ†φ− v2

)2
+ µεµναAµ∂νAα . (2.3)

Here Fµν ≡ ∂[µAν], Dµφ ≡ ∂µφ − ieAµφ and φ is a complex scalar field which can be

parametrized as

φ(x) = ρ(x)eiθ(v)(x) , (2.4)

with the two real valued functions ρ(x) and θ(v)(x). This Lagrangian is invariant under the

U(1) transformation φ→ eiw(x)φ, Aµ → Aµ + 1
e∂µw(x) with w(x) the gauge parameter.

Electrically charged vortices with the electric current Jµ given by

Jµ =
ie

2

(
φ (Dµφ)† − φ†Dµφ

)
, (2.5)

have been found in [7] numerically by minimizing the energy functional which corresponds

to this Lagrangian after using appropriate ansatz-functions and boundary conditions for
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the scalar and gauge field. The electric charge is

Qe ≡
∫
J0 d

2x = 2µΦB , (2.6)

where ΦB ≡
∫
d2xεij∂iAj is the magnetic flux. The vortices carry finite energy since the

solutions for Aµ, ρ and θ(v) are such that at spatial infinity ρ(x)→ v and
(
∂µθ(v) − eAµ

)
→

0 [7].

For simplicity, we can approximate the vortex to be point-like, assuming that ρ(x) ≡ v
everywhere except at x = 0. More general treatments can be found for example in [22] and

in references therein. In this approximation the Lagrangian (2.3) can then be written as

L =
v2

2

(
∂µθ(v) − eAµ

)2 − 1

4
FµνF

µν + µεµναAµ∂νAα . (2.7)

The electric current (2.5) becomes

Jµ = ev2
(
∂µθ(v) − eAµ

)
. (2.8)

At low energies, one can dualize the Lagrangian (2.7) and in the dual theory the

vortices appear as point charges of a gauge field Bµ. In fact, going to the dual picture

is very useful to also visualize that (if the constant µ in (2.7) is appropriately chosen)

electrically charged vortices obey fractional statistics [23], a result which is well known [9]

and which could also be inferred directly from (2.7).

The typical way to dualize (2.7) is to introduce an auxiliary field J
(aux)
µ and

rewrite (2.7) as

L = − 1

2v2
J (aux)
µ J (aux)µ + J (aux)

µ

(
∂µθ(v) − eAµ

)
+ µεµναAµ∂νAα . (2.9)

If we introduce a dual U(1) gauge field Bµ like4

J (aux)
µ =

1

2π
εµνα∂

νBα , (2.11)

and retain only the topological contributions relevant at low energies, the Lagrangian

becomes

L = − 1

2π
dB ∧

(
dθ(v) − eA

)
+ µA ∧ dA , (2.12)

where we have now adopted the usual index free notation for differential forms to simplify

expressions. Integrating out A, we obtain

L = − 1

2π
dB ∧ dθ(v) + µ̃B ∧ dB

= B ∧ ?j(vortex) + µ̃B ∧ dB , (2.13)

4The equations of motion for the auxiliary field give J
(aux)
µ = 1

e
Jµ. Therefore, using Stokes theorem, the

electric charge can be written as

Qe = 2µΦB =

∫
J0d

2x =
e

2π

∫
∂iBjε

ijd2x =
e

2π

∮
Bµdx

µ . (2.10)
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with µ̃ ≡ − e2

16π2µ
. In the second line, we have integrated by parts and introduced the

vortex current

j(vortex) ≡
1

2π
?ddθ(v) , (2.14)

which is conserved and non-zero for a vortex since θ(v) is not single valued.5 Its associated

charge
∫
d2x j0

(vortex) is the winding number of the vortex configuration.

We observe that the Chern-Simons term manifests itself also in the dual theory at

low energies, a well known result sometimes referred to as “Chern-Simons self-duality”.

Moreover, the vortex current appears as an “electric” current for the gauge potential B.

Note that both the interaction term and the Chern-Simons term contribute to the statistical

phase induced in an exchange process of two identical currents [21–23].

The equations of motion for the dual gauge field Bµ are

j(vortex) = 2µ̃ ?dB . (2.15)

Integrating out B using a suitably gauge fixed version of the above directly yields (2.1)

with β = − 1
4µ̃ and Jel = j(vortex). Consequently, q

(i)
e = n(i) in (2.2) and interchanging two

identical vortices with winding number n(i) = 1 yields an Aharonov-Bohm phase

∆S = − 1

4µ̃
. (2.16)

Note that we can relate this phase to the electric charge Qe as defined in (2.6) via

Qe =
1

2π

∫
d2xεij∂iBj = − 1

4πµ̃

∫
d2xj(vortex)0 = − e

4πµ̃
, (2.17)

to give

∆S =
π

e
Qe . (2.18)

Alternatively, the statistical Aharonov-Bohm phase induced in the vortex exchange

process can also be extracted via the introduction of a “total current” jtot as [21]

jtot ≡ j(vortex) + µ̃ ?dB . (2.19)

This total current is the coefficient of dΛ(x) in the variation of (2.13) under B → B + dΛ.

The total charge Q ≡
∫
d2xjtot

0 , is then given by (using (2.15))

Q =
1

2

∫
d2xj(vortex)0 =

n

2
, (2.20)

with the winding number n. If one vortex (1) with charge Q = 1
2 is taken once around

another identical vortex (denoted by superscript (2)) at rest which produces the potential

B(2), an Aharonov-Bohm phase

ei
1
2

∮
B(2)

= ei
π
e

∫
d2xJ

(2)
0 = eiπ

2µ
e

ΦB (2.21)

is induced. Here the line integral is taken along the contour (worldline) of vortex (1).

5Consequently, θ(v) is not a zero-form and thus not annihilated by dd. In other words, since θ(v) is

discontinuous, partial derivatives do not commute everywhere. This leads to a non-trivial current localized

on the vortex.
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Including an additional factor of 2 to account for the potential generated by vortex (1),

we obtain for the phase of the exchange process

∆S = π
2µ

e
ΦB =

π

e
Qe , (2.22)

in agreement with (2.18). Thus, in that case, the vortices obey fractional statistics (note

that if the Chern-Simons term in (2.3) is absent, i.e. if µ = 0 in (2.3), then ∆S = 0).

Let us emphasize that the use of the total current (2.19) makes sure that both the

phase shifts generated by the interaction j(vortex)µB
µ and by the Chern-Simons term are

taken into account [24]. In our setup, the use of the total current instead of the vortex

current produces only an additional factor of 1
2 (2.20). In other similar setups, not using

the total current can however lead to qualitatively wrong conclusions, as discussed in [24].

We end this section by pointing out that the result could equivalently have been ob-

tained by integrating out B from (2.12) using the equation of motion for A. The resulting

action for A then (of course) takes on the exact same form (2.13). This will prove useful

in later sections.

2.2 Charging Abelian vortices using additional current

Vortices in (2+1) spacetime dimensions which obey fractional statistics can also be obtained

in a different way, without the presence of a pure Chern-Simons term. One obvious example

is the case of a mixed Chern-Simons term in the dual theory with an additional gauge field

Eµ and an internal current J̃µ which is localized on the vortex and coupled to Eµ. The

corresponding dual low energy Lagrangian (without kinetic terms) is given by6

L = B ∧ ?j(vortex) + E ∧ ?J̃ + κE ∧ dB . (2.23)

Integrating out both gauge fields directly gives rise to (2.1) with β = −1/κ. Conse-

quently, interchanging two identical vortices with electric charge qe =
∫
J̃0d

2x and winding

number n gives rise to the statistical phase

∆S = −1

κ
nqe . (2.24)

Alternatively, as before, the statistical phase due to the interchange of two vortices

can be expressed as

∆S =

∮
B(2) , (2.25)

where the line integral is once again taken along the worldline element of the vortex (1)

and B(2) is the potential sourced by vortex (2). Here, a factor of 1
2 due to considering an

exchange process was canceled by a factor of 2 due to the contribution to the potential

sourced by string (1). Using the equations of motion for E
(2)
µ ,

J̃ = −κ ?dB , (2.26)

6This setup can also be generalized by adding pure Chern-Simons terms for Bµ and/or for Eµ to (2.23).

The statistical phase which we will determine then changes accordingly.
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and applying Stokes theorem, the line integral yields

∆S = −1

κ
qe , (2.27)

in agreement with (2.24). Therefore, if the charge
∫
d2xJ̃

(2)
0 of the vortex at rest is non-

vanishing and if κ is chosen appropriately such that a non-trivial Aharonov-Bohm phase

shift is induced by ∆S, these vortices obey fractional statistics.

There are microscopic models that give rise to an effective Lagrangian of the

form (2.23). In particular, it appears naturally in a boundary viewpoint of certain su-

perconducting cosmic strings [20], as we will point out in section 4.

3 Fractional statistics of string-like vortices in the bulk

In (3 + 1) dimensional flat spacetime cosmic strings exist as static topologically non-trivial

lowest energy configurations in the theory given by the Nielsen-Olesen Lagrangian [6].

Such Nielsen-Olesen cosmic strings have also been studied as solutions in other spacetimes,

e.g. in global AdS, both with and without the backreaction of the cosmic string on the

spacetime taken into account [15].

A dualization argument analogous to the one presented in section 2 goes through for

cosmic strings in (3 + 1) spacetime dimensions [25]: let us consider a cosmic string in flat

spacetime with electric charge∫
J0d

3x = ev2

∫ (
∂0θ(v) − eA0

)
d3x . (3.1)

Once again, we can introduce an auxiliary field J
(aux)
µ which can be written as

J (aux)
µ =

1

2π
εµναβ∂

νBαβ (3.2)

for some two-form Bµν . In complete analogy to the case of vortices in (2 + 1) spacetime

dimensions which we have considered in section 2, J
(aux)
µ can be identified with the electric

current Jµ of the cosmic string and its electric charge can thus, in analogy to (2.10), be

written in terms of Bµν as∫
J0d

3x = e

∫
∂iBjkε

ijkd3x = e

∮
Bijdx

i ∧ dxj . (3.3)

As for (2+1) dimensional pure Nielsen-Olesen vortices, the electric charge for pure Nielsen-

Olesen cosmic strings is zero [5].

Let us now consider two particular models for cosmic strings (different from the

Nielsen-Olesen type) in M which are electrically charged, and by dualizing their corre-

sponding Lagrangians show that in these cases the strings obey fractional statistics. As

we will discuss in section 4, these electrically charged cosmic strings, in contrast to the

pure Nielsen-Olesen cases, have boundary vortices/antivortices as endpoints which carry

different electric charges.
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3.1 U(1) charged string-vortices with θ terms

In this subsection we will first consider a theory with Nielsen-Olesen Lagrangian with an

added topological term ∆L = θεµναβFµνFαβ = θF ∧F inM4 (with g the metric and εµναβ

the Levi-Civita symbol),7

L =
√
−g
(

1

4
F ∧ ?F +

1

2
(Dµφ)† (Dµφ)− λ

4

(
φ†φ− v2

)2
)

+ θF ∧ F . (3.4)

Constant θ. If θ in (3.4) is a constant parameter, the term θF ∧ F is a pure boundary

term,

θF ∧ F = d (θA ∧ F ) . (3.5)

It thus has no effect on the bulk equations of motion [26] and the standard Nielsen-Olesen

cosmic strings are topologically non-trivial lowest energy configurations. Such pure Nielsen-

Olesen cosmic strings do not obey fractional statistics as a consequence of not being elec-

trically charged [5]. We shall show in section 4 that the absence of fractional statistics in

this case is consistent with the statistics of the induced boundary theory. In other words,

the Nielsen-Olesen cosmic string solution of (3.4) with constant θ amounts to boundary

endpoint vortices which do not obey fractional statistics.

Non-constant θ. However, in the case of a non-constant θ, it is not a pure boundary

term, but contains an extra contribution:

θF ∧ F = d (θA ∧ F )− dθ ∧A ∧ F . (3.6)

Let us consider a cosmic string which is oriented in the z-direction and ends on both

sides on some (2 + 1) dimensional boundary ∂M4. For simplicity, we take the parameter

θ to be constant everywhere except at one axionic domain wall embedded in the bulk

along which θ changes from a value θu to another value θd.
8 In this case, the Nielsen-

Olesen cosmic string gets electrically charged in a manner similar to the Witten effect (but

applied to U(1)) which says that a θ term in the Lagrangian can induce electric charges for

magnetic monopoles [27] and also for certain other topological solitons [18]. The electric

charge density ρ induced by the term ∆L can be directly read off from the corresponding

Maxwell equation:

ρ = dθ ∧ dA = Bmag ∂zθ , (3.7)

where Bmag is the amplitude of the divergence-free magnetic field of the cosmic string. The

electric charge QE is defined through the integral of ρ on an arbitrary Cauchy surface Σ.

Given that ρ is a total derivative, this can be written as

QE ≡
∫

Σ
ρ =

∫
∂Σ
θBmag = ΦB (θu − θd) , (3.8)

7Throughout this section we shall use εµναβ for the Levi-Civita symbol and not for the Levi-Civita

tensor. Also note that, as mentioned before, throughout this paper we will neglect the backreaction on the

metric and not consider any Einstein-Hilbert term or associated boundary counterterms.
8Note that in such a setup the first term on the right hand side of (3.6) induces a Chern-Simons term on

the spacetime boundary [26] whereas the second term on the right hand side of (3.6) induces a Chern-Simons

term on the domain wall [19].
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with ΦB the magnetic flux through the string and θu and θd the values of θ at the upper

and lower endpoints of the cosmic string. We observe that the electric charge of the string

is a boundary term. This feature will allow us to argue that the statistical properties of the

string are completely determined by boundary physics. In order to see this more explicitly,

we begin by demonstrating using the dual picture that electrically charged cosmic strings

obey fractional statistics.

Dualizing the Lagrangian (3.4) at low energies (i.e. considering only the topological

terms) in the approximation analogous to the one used in section 2.1 and using the auxiliary

field J
(aux)
µ ≡ 1

2π
√
−g εµναβ∂

νBαβ , we get

L = − 1

2π
dB ∧

(
dθ(v) − eA

)
+ θ dA ∧ dA . (3.9)

We can now integrate out B using the equation of motion for A, as hinted already at the

end of section 2.1. We obtain

dB =
4π

e
dθ ∧ dA , (3.10)

and consequently

L = −2

e
dθ ∧ dA ∧

(
dθ(v) − eA

)
+ θdA ∧ dA . (3.11)

Integrating by parts and considering only the topological contributions let us rewrite this as

L = Lbulk + Lbdy , (3.12)

with

Lbulk ≡
4π

e
θ dA ∧ ?j(vortex) + dθ ∧A ∧ dA , (3.13)

and

Lbdy ≡ d
(
−2

e
θ dA ∧ dθ(v) + θA ∧ dA

)
. (3.14)

Here j(vortex) ≡ 1
2π ? ddθ(v) can be interpreted as a vortex loop current. The normalizing

factor was chosen as to guarantee that the associated charge is integer valued. We can see

that θ not being constant allows a coupling of the two-form loop current j(vortex) to the

one-form A, for which for the same reason a Chern-Simons-like term can be constructed.

In other setups, non-trivial statistics for strings would require a coupling to a two-form B,

for which a Chern-Simons term can be written only in higher dimensions.

What we called “Lbulk” is equivalent to the whole Lagrangian L of the theory in the case

of a manifold without boundary. What we called “Lbdy” are the additional contributions

which have to be taken into account due to the presence of the boundary such that the

whole Lagrangian L in this case of a manifold with boundary is given by L = Lbulk +Lbdy.

We shall use analogous definitions for Lbulk and Lbdy in later sections. For the rest of this

section, we focus on Lbulk and we will come back to the contributions of Lbdy in section 4.

Note that we can also integrate out A in Lbulk to obtain the effective Lagrangian

Lbulk = −4π

e2
dθ ∧ ?j(vortex) ∧ dθ(v) . (3.15)
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Given the definition of the vortex current, this resembles the Hopf term in lower dimensions

if written in coordinates,

Lbulk ∼ ∂µθεναβγj(vortex)µν ∂
α

�
j(vortex)βγ . (3.16)

In a process in which one cosmic string (1) is adiabatically taken around another

identical one (2) at rest9 in such a way that the positions of the strings are exchanged, (3.15)

induces a change in the action of

∆S =
4π

e2

∮
dθ ∧ dθ(2)

(v) =
4π

e

∫
dθ ∧ dA(2) =

4π

e
QE , (3.17)

where the surface integral is localized on the trajectory of string (1) and the volume integral,

obtained by Stokes’ theorem, to its interior. Moreover, θ
(2)
(v) and A(2) are the θ(v) parameter

and gauge potential of string (2). Again, the contribution from A(1) of string (1) has

canceled a factor of 1/2. The last two equalities follow from the equation of motion for B

which can be obtained from equations (3.9) and (3.8).

3.2 Charging U(1) string-vortices using additional current

In complete analogy to the (2 + 1) dimensional vortices of subsection 2.2, cosmic strings

in (3 + 1) spacetime dimensions can also be endowed with fractional statistics by coupling

it two a two-form B and adding a one-form gauge field E, as well as an internal one-form

current J̃ localized on the string to which E couples. A mixed Chern-Simons term between

E and B can be constructed and gives rise to fractional statistics. This setup has been

studied in the past for flat spacetime [11].

The corresponding dual low energy bulk Lagrangian is given by10

L = B ∧ ?j(vortex) + E ∧ ?J̃ + θdE ∧B . (3.18)

This Lagrangian is the higher dimensional analogue of (2.23). As shown in [11], it describes

cosmic strings that obey fractional statistics if the constant θ and the current J̃µ in (3.18)

are such that the charge
∫
J̃0 is not an integer-multiple of 2πθ. To see this, we note that

the equations of motion for Eµ are given by

J̃ = −θ ?dB . (3.19)

Therefore, in a process in which one cosmic string is adiabatically taken around another

identical one at rest such that the initial positions of the strings get exchanged, the inter-

action term B ∧ ?j(vortex) induces a change in the action of the form

∆S =

∮
B = −1

θ

∫
d3xJ̃0 , (3.20)

9As we have mentioned in the introduction, in our context such processes are meaningful because, by

design, one of the string is static and the other one is extended radially inward from the boundary without

any intersections between their worldsheets.
10Just as in subsection 2.2, the present setup can also be generalized. For example, one can add a term

εµναβBµνBαβ and/or a term εµναβ∂µEν∂αEβ to (3.18). The statistical phase then changes accordingly.
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where Stokes theorem was used. B is the field corresponding to the string at rest. The

surface integral is taken along the worldsheet of the moving string.

In the presence of a boundary, the Lagrangian (3.18) cannot be complete, as it is

not gauge invariant. Instead, it changes by a boundary term. On similar grounds, the

charge corresponding to J̃ is not conserved since it can be exchanged with the boundary.

Correspondingly, we need to supply the theory with boundary contributions of the form

Lbdy = B ∧ ?j(vortex) + E ∧ ?J̃bdy + θdE ∧B , (3.21)

where now B is a boundary one-form that shifts under the gauge transformation of the

bulk two-form as B → B − Λ, j(vortex) is the boundary vortex current and E is obtained

by taking the bulk one-form E to the boundary. The current J̃bdy is defined through the

requirement that the total charge Qtot ≡
∫

Σ J̃ +
∫
∂Σ J̃bdy is constant. Obviously, J̃bdy is

not unique and can be shifted by an arbitrary divergence free vector.

We observe that the boundary Lagrangian bears close resemblance with (2.23). More-

over, by an appropriate shift of J̃bdy, it is always possible to choose the latter such that

Qtot = 0. It is in this case that the phase shift of the boundary precisely matches that

of the bulk theory upon appropriate identification of the above θ with the Chern-Simons

coefficient κ (2.23). We will elaborate on this relation between the bulk and boundary

phase shifts in section 4.

In the next subsection, we shall demonstrate that the strings in this setup can be

related to the superconducting cosmic strings which were introduced in [20] in spacetimes

in which both the strings considered in 3.2 and the superconducting cosmic strings exist

as solutions.

3.3 Abelian superfluid cosmic string

In this subsection, we present a microscopic realization of the electrically charged cosmic

strings discussed in section 3.2. The model is a slight modification of the superconducting

cosmic strings with Bose charge carriers of [20] (see also [28]). The presentation is divided

into two parts. First, we consider a simplified version of [20], which equips cosmic string

with an additional global charge. We then discuss how this global charge can be coupled to

the magnetic flux of the string in order to give rise to fractional statistics. We restrict the

discussion in this subsection to spacetimes in which such superconducting cosmic strings

exist and for notational simplicity we shall denote the metric compatible derivative by ∂µ.

In order to localize an additional current on the string solutions of the Nielsen-Olesen

Lagrangian in (3+1) spacetime dimensions, one introduces a second complex scalar field ψ

with appropriate potentials, chosen as to guarantee condensation of this additional scalar

on the string. The corresponding Lagrangian reads

L =
√
−g
(
−1

4
FµνF

µν +
1

2
| (∂µ − ieAµ)φ|2 +

1

2
|∂µψ|2 − V (φ, ψ)

)
. (3.22)

The potential is parametrized as [20]

V (φ, ψ) = λφ
(
|φ|2 − v2

φ

)2
+ λψ

(
|ψ|2 − v2

ψ

)2
+ κ|ψ|2|φ|2 , (3.23)
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and the constants κ, λψ, λφ, vφ and vψ are chosen such that

λφv
4
φ > λψv

4
ψ,

2κ

λψ
>
v2
ψ

v2
φ

. (3.24)

The Lagrangian (3.22) is invariant under the gauge transformation

Aµ −→ Aµ +
1

e
∂µΛ(x), φ −→ eiΛ(x)φ (3.25)

as well as the global U(1) rotation

ψ −→ eiϕψ . (3.26)

The potential (3.23) and its parameters were chosen such that the U(1) symmetry Aµ
is Higgsed (since λφv

4
φ > λψv

4
ψ), but that the global U(1) of ψ remains unbroken (since

2κ
λψ

>
v2ψ
v2φ

). In other words, in the given parameter domain, the potential (3.23) has a

minimum at φ = vφ, ψ = 0.

It has been demonstrated in [20] that this setup admits stable minimal energy config-

urations such that φ and Aµ describes a cosmic string and |ψ| outside of the string core is

(close to) zero, but non-zero close to the string core. For a string lying in the z-direction

for such configurations, ψ can be parametrized as

ψ = |ψ0(x, y)|eiα(z,t) , (3.27)

where |ψ0(x, y)| is such that it is exponentially decaying outside of the cosmic string.

|ψ0(x, y)| is a configuration which minimizes the energy of the configuration and α(z, t)

parametrizes low-energy excitations which are responsible for making the string supercon-

ducting.

If we use, as in the previous sections, the approximation that the modulus of the scalar

field φ is constant, φ = vφ, outside of the string core, one can parametrize it there as

φ = vφe
iθ(v) , (3.28)

with the real valued function θ(v). There are then two conserved currents due to Noether:

Jµ =
√
−gv2

φ

(
∂µθ(v) − eAµ

)
and (3.29)

J̃µ =
√
−g i

2

(
ψ†∂µψ − ψ∂µψ†

)
. (3.30)

Thus, since |ψ| is unsuppressed only close to the string core, the current J̃µ is effec-

tively localized on the string. Correspondingly, strings in this setup carry an additional

global charge.

While this setup has allowed for an additional global current to be localized on the

string, it does not yet imply fractional statistics. In order for a nontrivial Aharonov-Bohm

phase to emerge, this global current needs to be coupled to the magnetic flux of the string,

and thus to the gauge field Aµ. As a proof of concept, let us assume that neither the
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existence of the string solution and the localization of the additional current is spoiled

by a weak minimal coupling of ψ to Aµ. Under this deformation, the Lagrangian (3.22)

changes to

L =
√
−g
(
−1

4
FµνF

µν +
1

2
| (∂µ − ieAµ)φ|2 +

1

2
| (∂µ − iẽAµ)ψ|2 − V (φ, ψ)

)
, (3.31)

while the current J̃µ becomes on a string solution

J̃µ =
√
−gψ2

0 (ẽAµ − ∂µα) . (3.32)

As before, statistical phases become most apparent in a dual picture. We dualize

the Lagrangian (3.22) by introducing a two-form field Bµν and an auxiliary field J
(aux)
µ

such that

J (aux)
µ =

1√
−g

εµναβ∂
νBαβ . (3.33)

Following analogous steps as in the previous sections, one obtains the effective low energy

Lagrangian

L =
(
−eA+ dθ(v)

)
∧ dB + ẽA ∧ ?J̃ − dα ∧ ?J̃ , (3.34)

where we neglected the kinetic term for A and used the explicit form (3.28).

We now separate the corresponding action into a bulk and a boundary contribution.

To this end, we also split the conserved source J̃ into bulk and boundary pieces, J̃ =

J̃bulk+J̃bdy. This split is not unique and the individual contributions need not be conserved;

in order to guarantee the bulk-boundary correspondence of the statistics, additional input

is required. It can be made more explicit by parametrizing J̃ in terms of the string world

sheet. To this end, we note that since |ψ0|2 ≈ 0 outside of the string core, the only

significant components of J̃µ are J̃z and J̃0:

J̃a ≡
√
−hΩ (ẽAa − ∂aα) , J̃x = J̃y = 0 , (3.35)

with a ∈ {t, z}, Ω ≡
∫
|ψ0|2dxdy and h the induced metric on the string. This leads to the

parametrization [20, 28]

J̃µbulk ≡
√
−h
∫
d2σδ(4)(x− x(σ))εab∂ax

µ(σ)∂bγ , (3.36)

with σa the worldsheet coordinates of the string, ∂a ≡ d
dσa , xµ the string embedding

coordinates and γ defined via

∂aγ ≡ Ωεab

(
ẽAb − ∂bα

)
. (3.37)

The corresponding boundary current reads [28],

J̃µbdy ≡
∫
dσ0δ(4)(x− x(σ0))∂0x

µ(σ0)γ(σ0, σ1 = σ1|bdy) . (3.38)

We note that J̃µbulk + J̃µbdy is conserved, as it should be. In addition, the boundary cur-

rent (3.38) is precisely such that the total charge Q ≡
∫

Σ J̃bulk +
∫
∂Σ J̃bdy vanishes. This

will prove important when we relate bulk and boundary phase shifts in section 4.

– 14 –



J
H
E
P
1
2
(
2
0
1
8
)
0
9
3

Returning to the action, we obtain after integration by parts and absorbing a factor

of ẽ into A

S = Sbulk + Sbdy , (3.39)

with

Sbulk ≡
∫
M

(
B ∧ ?j(vortex) +A ∧ ?J̃bulk −

e

ẽ
dA ∧B

)
(3.40)

and

Sbdy ≡
∫
∂M

(e
ẽ
A ∧B − dθ(v) ∧B +A ∧ ?J̃bdy

)
, (3.41)

where in the former we have made use of the conservation of J̃ , i.e. d?J̃ = 0, while in the

latter we have neglected a term of the form α?J̃ that vanishes due to conservation of the

total charge.

Postponing the study of Sbdy to section 4, we observe that Sbulk is equivalent to (3.18)

upon identification of A with E and θ with e/ẽ. In line with the discussion in section 3.2,

the change in the action upon interchange of two strings is given by

∆S =
ẽ

e

∫
d3xJ̃0 . (3.42)

Note that using the form (3.40), we can write (3.42) as ∆S ∝ (γ|endpoint 1 − γ|endpoint 2).

We will make use of this in section 4.2.

Let us end this section on the remark that on the equations of motion for B,

e

ẽ
dA = ?j(vortex)µν , (3.43)

and for a suitable choice of gauge for Aµ, the action takes on the expected Hopf form

Lbulk =
ẽ

e
εαβµνj

(vortex)
αβ

∂µ
�
J̃ν . (3.44)

4 Electrically charged vortices as endpoints of cosmic strings

In the previous sections we have studied the statistics of certain (2+1) dimensional vortices

in flat spacetime and of certain (3 + 1) dimensional cosmic strings in the corresponding

bulk. At the end of sections 3.1, 3.2 and 3.3, we have already demonstrated how to

obtain the boundary statistics of a vortex starting from the bulk statistics in one higher

dimension. In this section we will argue that the statistics of the cosmic strings which we

found in section 3, is exactly the same as the combined statistics of the upper and lower

endpoint boundary vortices of the corresponding strings (which we discussed in section 2).

Thus, the statistics of the cosmic strings in (3 + 1) dimensional bulk spacetime can be fully

understood by considering only the statistics of the boundary vortices of the string on the

(2 + 1) dimensional boundary.

First, we shall consider the case of the cosmic string which can be obtained as clas-

sical solution of the Nielsen-Olesen Lagrangian with ∆L = θεµναβFµνFαβ added to the

Lagrangian (discussed in subsection 3.1) and the corresponding Chern-Simons vortices

(discussed in subsection 2.1). Second, we consider the correspondences between the cosmic

strings of subsection 3.2 and the boundary vortices of subsection 2.2.
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4.1 Bulk string-vortices with θ-term and boundary Chern-Simons vortices

Let us consider the cosmic strings which are obtained as finite energy configurations of

the Nielsen-Olesen Lagrangian with an additional term ∆L. We will first consider the

cosmic strings in the case of a constant parameter θ. As mentioned in subsection 3.1,

only for the case of non-constant θ do we obtain non-trivial fractional statistics. Since the

boundary term induced by ∆L is an Abelian Chern-Simons term (3.5), the endpoints of the

cosmic string are nothing but the Abelian Chern-Simons vortices (or antivortices) which

we have discussed in subsection 2.1. There we noted that generically, separate Abelian

Chern-Simons vortices/antivortices can obey fractional statistics. However, as discussed in

section 3, the bulk cosmic string does not obey fractional statistics for a constant θ. We

can reconcile the two by noting that the Aharonov-Bohm phases of the upper and lower

endpoint boundary vortices/antivortices always cancel in a process in which one cosmic

string is taken around another identical one.

To see this clearly and for concreteness, let us consider the two dimensional spatial

boundary sphere of conformally compactified AdS4 (S2) and two cosmic strings in AdS4

which end on this sphere. Let the upper endpoints of the strings end on the northern hemi-

sphere of this 2-sphere and the lower endpoints of the strings end on the southern hemi-

sphere. From the point of view of an observer who is located on this S2, the upper endpoints

are vortices whereas the lower endpoints are antivortices. Since θµ(vortex) = −θµ(antivortex),

we obtain

jµ(vortex) = −jµ(antivortex) . (4.1)

Here the jµ is once again the vortex current, jµ(vortex) ≡ εµνα∂ν∂αθ(vortex), which was

introduced in (2.13). Using Stokes theorem and the equations of motion εµνα∂νBα ∝
jµ(vortex) (2.15), the change in the action induced by one upper vortex moving around the

other identical one goes as (2.21)∮
Bµdx

µ
upper =

∫
d2xj0

(vortex) , (4.2)

whereas the change in the action induced by one lower antivortex moving around the other

identical one goes as (2.21) ∮
Bµdx

µ
lower =

∫
d2xj0

(antivortex) . (4.3)

Here dxµupper is the worldline of a vortex current whereas dxµlower is the worldline of an

antivortex current, implying dxµlower = −dxµupper.11 Since j0
(vortex) = −j0

(antivortex), in total∮
Bµdx

µ
upper +

∮
Bµdx

µ
lower =

∫
d2x

(
j0
(vortex) + j0

(antivortex)

)
= 0 . (4.4)

Thus, the combined Aharonov-Bohm phase shift of the upper and lower endpoint

boundary vortices/antivortices cancel and in this sense the upper and lower boundary

11In (4.3) two minus signs cancel: one coming from the change in directions in the curve integration

(when compared to the upper case) and other one due to the difference between an antivortex and a vortex:

dxµupper = −dxµlower.
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endpoint vortices/antivortices of the cosmic string taken together do not obey fractional

statistics. Since also the Nielsen-Olesen bulk cosmic strings of the form discussed in sub-

section 3.1 do not obey fractional statistics for constant θ, the statistics of the boundary

endpoint vortices/antivortices matches with the statistics of the bulk cosmic strings in

this case.

Let us now consider the case of a string which ends on both sides on the conformal

boundary of AdS4 and is piercing an axionic domain wall embedded in AdS4 along which

θ changes. In this case, in contrast to the case of a constant θ parameter, the induced

Aharonov-Bohm phases of the upper and lower boundary endpoint vortices/antivortices

of a cosmic string do not cancel in a process in which one cosmic string is moved around

another identical one. This is because in this case the Chern-Simons term on the upper

hemisphere of the AdS boundary is induced with a different prefactor than the Chern-

Simons term on the lower hemisphere and thus |j0
(vortex)| 6= |j

0
(antivortex)|. The induced

boundary Lagrangian can be written at the boundary i (i = 1, 2) as (3.14)

Li =
2

e
θi dA ∧ dθ(v) + θiA ∧ dA (4.5)

where θi are the values of the θ parameter at the ith boundary. In our convention, boundary

number 1 is the upper hemisphere of the conformal boundary of global AdS4 and boundary

number 2 is the lower hemisphere. Both hemispheres are separated by the domain wall.

This wall will show up in the boundary theory as a kink. However, as long as the string

pierces the domain wall and its endpoint vortices are well separated from the kink, we can

integrate the above by parts and redefine A in each hemisphere to yield

Li = −A ∧ ?j(vortex) +
e2

16π2θi
A ∧ dA (4.6)

When we identify θi in (4.6) with µ in (2.13),12 this Lagrangian (4.6) is nothing but

minus the dual Lagrangian (2.13) which describes the Chern-Simons vortices.13 In the case

of the constant θ parameter discussed above, θ1 = θ2 which induces boundary Lagrangians

of the type (2.13) with both having the same constant in front of the Chern-Simons term.

This leads to the above mentioned cancelation of the induced Aharonov-Bohm phases of

the upper and lower boundary vortices/antivortices of the cosmic string since in this case

j0
(vortex) = −j0

(antivortex). In the case of a non-constant θ parameter (e.g. which is shifted

along the domain wall with θ1 6= θ2), the induced Chern-Simons terms on the boundaries

arise with different prefactors. Therefore, the charges of the upper endpoint vortices are

12Note that in (4.6) the Lagrangian is expressed in terms of A whereas in (2.13) the dual language and

the corresponding field B is used. As mentioned already in the last paragraph of subsection 2.1, instead

of (2.13) we could have obtained the same Lagrangian as (2.13) with B replaced by A if we integrated out

B instead of A in the discussion in subsection 2.1. When we compare (4.6) with (2.13) we are obviously

comparing it with (2.13) where B is replaced by A.
13Even though the boundary part of the bulk Lagrangian (3.14) reproduces (2.13), we must of course

remember that the fields of (3.14) are inherently of (3+1) dimensions. The correspondence works because

here we have a ‘radial’ decomposition. In that setting, we are interpreting the bulk fields here as a trivial

extension of their boundary counterpart (along the radial direction).
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different than the charges of the lower endpoint antivortices (for the same strings) and

the Aharonov-Bohm phases do not cancel. In such a case, the upper and lower boundary

endpoint (Chern-Simons) vortices/antivortices of the cosmic string taken together obey

fractional statistics (as discussed in subsection 3.1) and the statistics in the bulk and

on the boundary matches. In other words, we can say that the statistics of the bulk

cosmic string can be obtained by considering only the statistics of the boundary endpoint

vortices/antivortices of the string.

4.2 Superfluid cosmic string and boundary vortices with additional current

Let us now argue that the boundary vortices/antivortices of the (superconducting) cosmic

string which we discussed in subsections 3.2 and 3.3 are vortices/antivortices of the kind

we have discussed in subsection 2.2. We will again study the Aharonov-Bohm phase of the

upper and lower boundary vortices/antivortices from both bulk and boundary perspectives

in a process where one (superconducting) string is adiabatically taken around another

identical one in such a way that the initial positions of the strings get exchanged.

The low energy dual Lagrangian with constant parameter θ,

L = − 1

2π
dB ∧ dθ(v) − θE ∧ dB , (4.7)

can be written as

L = Lbulk + Lbdy , (4.8)

with

Lbulk ≡ B ∧ ?j(vortex) + θdE ∧B , (4.9)

Lbdy ≡ d
(
B ∧ ?j(vortex) − θE ∧ dB

)
, (4.10)

where in the latter equation we have used that here B = dB on shell. If we couple the

current (3.36), and its boundary current (3.38), to (4.9) and (4.10) respectively, then the

resulting bulk Lagrangian is the Lagrangian which we have considered in subsection 3.2

and the resulting boundary Lagrangian is equal to minus the Lagrangian which we have

considered in subsection 2.2 (when we identify θ in (4.10) with the parameter −κ used in

subsection 3.2). Thus, in this sense, the vortices which we have considered in subsection 2.2

can be viewed as the boundary vortices of the cosmic string which we have considered in

subsection 3.2.

If γ(σ0, σ1 = σ1|boundary 1) 6= γ(σ0, σ1 = σ1|boundary 2), the electric charges of the

upper and lower boundary endpoint vortices/antivortices are different and induce different

Aharonov-Bohm phase shifts which do not cancel. Also, as follows from the discussion

in subsection 2.2, the phase shift induced on the boundary is the same as the one in the

bulk (3.42). Let us here reemphasize that the boundary current (3.38) is precisely such

that the total charge Q ≡
∫

Σ J̃0,bulk +
∫
∂Σ J̃0,bdy vanishes, as discussed towards the end of

section 3.2. This is the origin of the matching statistical phase.

In summary, the conclusion that the Aharonov-Bohm phase shifts are equal to the

analogous phase shifts of the cosmic strings in the bulk, applies equally for both setups

which we have discussed.
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5 Summary and outlook

In this work, we have separately demonstrated (in two different setups) that electrically

charged vortices in (2 + 1) spacetime dimensions and electrically charged cosmic strings in

(3 + 1) dimensions obey fractional statistics. In both setups, we have explicitly calculated

the induced Aharonov-Bohm phase shifts in processes in which two identical vortices or

strings are rotated around each other. As we have mentioned throughout the text, some of

these results are well known: e.g. as we discussed in subsection 2.1, it is well known that

electrically charged Chern-Simons vortices in (2+1) dimensions obey fractional statistics [9]

and it is also well known that (as we discussed in subsection 3.2), cosmic strings in (3 + 1)

dimensions can obey fractional statistics if a certain additional current is localized on the

string [11]. To our knowledge, the presentations which we gave in subsection 2.2 and in par-

ticular in subsection 3.1, have however not appeared in the literature so far, although there

are related works such as [13]. In section 4 we combined the discussions of the previous two

sections and presented a unified way of understanding the statistics of the cosmic strings in

a (3+1) dimensional spacetime with boundary and the statistics of corresponding boundary

endpoint vortices/antivortices of the string which are located on the boundary of the space-

time. In both setups that we have considered, the cosmic strings obey fractional statistics if

and only if their boundary endpoint vortices and antivortices carry different electric charges.

In particular, in our parametrization, both the bulk and the boundary part of the currents

are defined in such a way that even though they are not separately conserved, the combined

total current is conserved as is expected for any consistent gauge theory. Our final result

might be a very general criterion, not only applicable to the two ways of charging cosmic

strings which we have considered explicitly. In other words: cosmic strings in spacetimes

with boundary obey fractional statistics if and only if their boundary endpoint vortices and

antivortices carry different electric charges. Since the statistical phase shifts are purely due

to the topological terms both at the bulk and on the boundary, it is clear that our result

goes through for any suitable manifold M which can support these topological solutions.

This result might have generalizations to higher dimensional extended objects in higher

spacetime dimensions with boundary. In fact, one can wonder under what conditions

membranes in concrete theories can obey fractional statistics. Given our results, one can

expect that e.g. two-dimensional membranes in five dimensional spacetimes with boundary

obey fractional statistics if and only if their boundary endpoint strings carry different

electric charges.

Throughout our work, we have worked in the probe limit in which the backreaction of

the topological objects on the spacetime is absent. Although, for a given spacetime it is not

easy to determine the backreaction effects completely analytically, as this would require

to solve the full coupled Einstein-Higgs equations, in certain approximations backreaction

effects have been studied (for example in [15] for the case of cosmic strings in AdS). It

might be interesting to study such backreaction effects in the context of fractional statistics

which we have considered.

Our results can have several interesting applications in different contexts. We want to

conclude our work by commenting on some of them. First, as we have already mentioned
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several times in this work, our configurations can be naturally extended to global AdS

spacetime, since AdS cosmic strings exist as solutions of (3.4) [15]. For us, it means

that the fractionally charged cosmic strings are embedded in AdS spacetime with anyonic

boundary endpoint vortices/antivortices located on the conformal boundary of AdS. In

section 4, we have already focused on such setups.

In the literature, e.g. in [15, 29], setups with (Nielsen-Olesen type) vortices located

on the AdS boundary (which are endpoints of cosmic strings in the AdS bulk) have al-

ready been studied in the context of the AdS/CFT correspondence. In [29] it has been

emphasized that in the context of AdS/CFT (which relates a gravitational bulk theory to a

conformal field theory on the AdS boundary), these lower dimensional vortices/antivortices

can be understood as conformal defects (of the low energy field theory on the boundary).

These defects break the full conformal group SO(3, 2) of the boundary field theory down

to SO(2, 1)× SO(2). So in this case, the boundary field theory is only invariant under the

subgroup SO(2, 1)× SO(2). To our knowledge, the possible impact of fractionally charged

anyonic vortices on such conformal defects has not yet been studied in the literature. In this

setting, it will thus be interesting to investigate this question both from the perspectives

of a boundary vortex and also for the bulk string-vortex.

Our results can also have interesting applications at finite temperature and, in the con-

text of AdS/CFT, will closely relate to the studies of holographic superconductors [30, 31]

and to the studies of the fractional quantum hall effect [32, 33]. Because vortices located

at the AdS boundary have already been studied in such contexts in [29, 34, 35], one might

hope to learn the effects of fractional statistics on such condensed matter applications.

Finally, our results may have implications in the physics of Aharonov-Bohm type

black hole hair. In fact, it is well known that black holes can be charged under discrete ZN
symmetry [36–38], and in those cases, cosmic strings do appear as solutions. It is therefore

an interesting question as to whether our studies on the fractional statistics of cosmic

strings might have some implications on the physics of hairy black holes, in particular in

the context of holography [39].
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