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Proteomics for blood biomarker
exploration of severe mental illness: pitfalls
of the past and potential for the future
Ashley L. Comes 1,2, Sergi Papiol1,3, Thorsten Mueller1, Philipp E. Geyer4,5, Matthias Mann4,5 and Thomas G. Schulze1

Abstract
Recent improvements in high-throughput proteomic approaches are likely to constitute an essential advance in
biomarker discovery, holding promise for improved personalized care and drug development. These methodologies
have been applied to study multivariate protein patterns and provide valuable data of peripheral tissues. To highlight
findings of the last decade for three of the most common psychiatric disorders, namely schizophrenia (SZ), bipolar
disorder (BD), and major depressive disorder (MDD), we queried PubMed. Here we delve into the findings from thirty
studies, which used proteomics and multiplex immunoassay approaches for peripheral blood biomarker exploration.
In an explorative approach, we ran enrichment analyses in peripheral blood according to these results and ascertained
the overlap between proteomic findings and genetic loci identified in genome-wide association studies (GWAS). The
studies we appraised demonstrate that proteomics for psychiatric research has been heterogeneous in aims and
methods and limited by insufficient sample sizes, poorly defined case definitions, methodological inhomogeneity, and
confounding results constraining the conclusions that can be extracted from them. Here, we discuss possibilities for
overcoming methodological challenges for the implementation of proteomic signatures in psychiatric diagnosis and
offer an outlook for future investigations. To fulfill the promise of proteomics in mental disease diagnostics, future
research will need large, well-defined cohorts in combination with state-of-the-art technologies.

Introduction
Psychiatric disorders, such as schizophrenia (SZ),

bipolar disorder (BD), and major depressive disorder
(MDD), are severe mental illnesses associated with mor-
bidity and life-long disability for sufferers1–6. Our
understanding of their etiology and pathophysiology
remains incomplete. Being that, each is defined by a
spectrum of heterogeneous signs and symptoms, often
overlapping across disorders, biological investigations
have been hindered. The complex interplay between
social, psychological, etiological, and environmental

factors – combined with the difficulty in generating
accurate animal models, has complicated molecular and
mechanistic studies. As a result, reliable biomarkers
related to the prognosis and diagnosis of these patients
remain an unmet clinical need. One of the most
remarkable consequences in the day-to-day clinical
practice is that treatment selections is based on descrip-
tive psychopathology, contributing to low therapeutic
effectiveness7. The consequence is the significant pro-
portion of disease burden and health costs worldwide
associated with SZ, BD, and MDD8. Global direct and
indirect economic costs of mental disorders were esti-
mated at US$2.5 trillion, based on 2010 data, therefore
accounting for more economic costs than chronic somatic
diseases like cancer or diabetes. These estimates are
expected to double by 20309. Advances in technologies
allowing high-throughput biological analyses have
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introduced new opportunities for a better understanding
of these burdensome disorders. Such investigations hold
the promise for the discovery of biomarkers that could be
applied, especially by minimally invasive approaches, as
predictors concerning diagnosis and outcomes. These
predictors would enable earlier, more effective care for
patients, a better allocation of the resources of the health
system and clues to the underlying biological mechanisms
of disease course.

The promise of proteomics for biomarker
identification
According to the Biomarkers Definitions Working

Group, a biological marker (biomarker) is “a characteristic
that is objectively measured and evaluated as an indicator
of normal biological processes, pathogenic processes, or
pharmacologic response to a therapeutic intervention.”10

Over the last years, there has been an interest in incor-
porating biomarkers into psychiatry. Accordingly, first
attempts have focused on genomic analyses, which until
now have offered little in the way of reliable biomarkers11,
especially to “differentiate between similar phenotypes
and disease states, to monitor therapeutic progress or to
assess the prognosis of individual patients.”12

Hypothesis-driven efforts identified genetic trait and
state biomarkers for MDD with little success in identify-
ing reliable molecular risk factors13,14. For bipolar dis-
order, robust and replicable associations have been
reported in GWAS-studies, many of which have shown
evidence for an overlap of susceptibility between BD and
SZ15. While an overlap in risk alleles is clear, this does not
imply homogeneity16 and it should be recognized that an
absence of genetic association signals does not mean that
a gene’s protein product does not play an important role
in disease pathogenesis15. With the identification of
numerous varied loci, GWAS studies highlighted the
importance of exploring pathways and circuits rather than
single gene products and pushed for biological informa-
tion like protein expression and biological pathways to be
integrated with genetic data15. Further investigations
focusing on the protein expression level will shed light on
the functional role of these risk loci to determine how
these associations map on to particular endophenotypes
that could be useful for classifying the disorders16.
Towards this cause, researchers have started looking at
molecular levels closely tied to the phenotype of an
individual. Proteins perform the vast majority of functions
in every organism, making them potentially more useful
to translational approaches than the genome or
transcriptome.
The proteome is the entire set of proteins produced or

modified by an organism and varies with time, biological
requirements, stress, and other environmental factors17. An
intriguing example is the butterfly who shares the same

genome with the caterpillar but whose phenotypical dif-
ferences are clearly due to differences in proteome patterns.
Proteomics refers to a large-scale and global analysis of the
proteins in a system, at a specific point in time under a
determined condition12. It aims to “obtain a more global
and integrated view of biology by studying all the proteins of
a cell rather than each one individually”12,17. Thus, protein
profiling may better reflect dynamic pathophysiological
processes. Notable is the fact that proteomics is uniquely
capable of representing both expression levels of proteins
and the isoform (or ‘proteoforms’), as well as their post-
translational modifications18.
In the last years, the development of high-throughput

technologies of proteomic analysis has introduced a new
era of biomarker discovery. For complex, multifactorial
disorders, ‘molecular fingerprinting’ via the identification
and characterization of biomarker profiles has enabled
greater diagnostic resolution between closely related dis-
ease phenotypes19. For psychiatric disorders, like SZ, BD,
and MDD, such profiling allows for the generation of
predictive models regardless of the disease causes, which
generally remain largely unknown. Furthermore, it holds
promise not only for predicting the onset of a disorder but
also its course and outcome20.

An overview of proteomic methodologies for
biomarker discovery
Since the term proteomics was coined in the late 90 s,

several methods have been employed to study proteins21.
In general, antibody-based methods (immunoassays) or
mass-spectrometry (MS) are used for protein detection.
Enzyme-linked immunosorbent assays (ELISA) and
Western blots have been applied for decades as validation
tools to detect and quantify candidate proteins. In the last
years, higher-throughput multiplex immunoassay panels
have been developed to simultaneously identify and
quantify hundreds of proteins. While immunoassay
methods have matured over the last decades, these
methods face inherent limitations with regard to multi-
plexing, specificity for protein isoforms and incompat-
ibility with hypothesis-free investigations22,23. In this
regard MS-based methods have become advantageous.
With technological developments over the past years
dramatically improving MS-based proteomics, these
methods can now characterize human plasma proteomes
with unprecedented accuracy24.
In mass spectrometry (MS)-based proteomics, there are

multiple methods of protein separation, visualization, and
analysis. In contrast to immunoassays, proteins are
detected using mass spectrometry instruments. In the first
decade of proteomics, gel-based two-dimensional elec-
trophoresis (2DE), including fluorescent two-dimensional
differential gel electrophoresis (2D-DIGE), were the main
methods used for relative quantification of protein
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abundances between samples25. However, as such gel-
based approaches are labor-intensive, limited by poor
separation of certain protein groups (especially membrane
proteins) and generally only identified a small number of
proteins, these methods never fulfilled their aim of large-
scale proteome characterization. Today, the most wide-
spread workflow for discovery proteomics is termed
shotgun proteomics26. It starts with a sample preparation
step, in which a complex protein mixture is enzymatically
digested into peptides. This step is followed by a combi-
nation of a liquid chromatography (LC) system that allows
the separation of the peptides over time and the ionization
by the electrospray ionization technology, for which the
Nobel Prize was awarded in 2001 to John Fenn27. It allows
the formation of charged molecules, followed by their
analysis in the mass spectrometer (LC-MS). Peptides are
fragmented in and the results of these MS/MS spectra run
through sequence databases by ‘search engines’ to identify
peptides using statistically defined criteria28. In contrast,
in ‘targeted proteomics’ data on a relatively small number
of peptides of interest (typically far less than 100) are
acquired with high specificity and sensitivity29. The most
common targeted MS method is termed ´multiple reac-
tion monitoring´ (MRM). For a selected set of targeted
peptides, a higher sensitivity and throughput may be
achievable compared to shotgun proteomics. For both
shotgun and targeted proteomics, including heavy isotope
labeled peptides as reference standards for endogenous
peptides of interest enables absolute protein
quantification.

A systematic approach for identifying the
potential and pitfalls of proteomics studies in
psychiatry
For clinical use, proteomics approaches using blood,

plasma or serum would be a highly desired method for
biomarker profiling of psychiatric disorders. Not only are
these biological samples well established for use in diag-
nostic analyses in clinical practice, but they are readily
available in biobanks across thousands of clinical stu-
dies30,31. For such reasons, here we have taken a sys-
tematic approach to obtain a comprehensive view of such
minimally invasive proteomics studies in SZ, BD, and
MDD, by reviewing studies from the last decade.
Accordingly, we used these studies to acknowledge what
proteomics investigations have been able to uncover so far
and to guide a perspective on overcoming limitations of
proteomics in psychiatric research. In the last few years, a
number of exhaustive reviews have been pub-
lished11,12,22,25,32,33. Here we narrow the focus to evaluate
and connect those studies using peripheral blood of
patients with three of the most common psychiatric
disorders.

We queried PubMed with the search syntax “(proteomic
OR proteome profiling) AND (schizophrenia OR schi-
zoaffective disorder OR schizophreniform disorder OR
bipolar disorder OR major depression).” Publications
containing original data on proteomic biomarkers in the
diagnosis, risk stratification or differentiation of indivi-
duals with a DSM-IV or ICD-10 diagnosis of SZ, schi-
zoaffective disorder (SZA), BD-I/II, and/or MDD were
considered of interest. This yielded initially 388 studies.
All animal studies were excluded. The number of studies
was further reduced by screening the literature to include
only those studies that were (1) non-interventional, (2)
used minimally invasive samples, here defined as blood,
plasma and/or serum samples, and (3) which used stan-
dard MS-based proteomic methods or multi-target
immunoassays i.e., excluding validation studies using
single analyte ELISA or Western blot methods only (see
Fig. 1). This left thirty papers for original data abstraction
and review of findings (see Table 1).
Of the articles found, 13 were studies on SZ34–42,44–46,60,

6 on MDD18,47–51, and 5 on BD-I/-II52–56 patients,
whereas the remaining studies<57–59,61–62,43 included a
combination of patients of the relevant diagnoses. All
studies presented information on up- and down-regulated
proteins (see S1). For all studies, information was sum-
marized with regards to first author and year of study,
study country, aim, number and sources of participants,
sources of information on exposure, medication use,
information on comorbidities of included participants,
biological sample used, method for protein profiling,
confounding factors controlled for, statistical analysis
methods, blinding, major findings and outlook. For

Fig. 1 Flow diagram depicting the flow of information through the
different phases of review
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differentially expressed proteins, outcome measures of
interest included: statistical significance, fold change and
direction of differential abundance, and associated path-
ways and processes.
For each differentially expressed protein, we used the

UniProt Knowledgebase to obtain entry codes and
recommended names and ascertained the overlap across
the three diagnoses63. Throughout this review we refer to
proteins by their recommended abbreviations. For full
protein names and explanations, please refer to supple-
mentary table 2 (see S2). As examples of the utility of
findings from these studies, we have evaluated the
abstracted data in three different ways by (1) summarizing
the overlap (specificity) of differentially expressed proteins,
(2) cross-referencing proteomic findings with genetic loci
identified in genome-wide association studies (GWAS),
and (3) identifying the top enriched canonical pathways for
each diagnosis via Ingenuity Pathway Analysis (IPA;
QIAGEN, Inc., https://www.qiagenbioinformatics.com/
products/ingenuitypathway-analysis)64. Bioinformatic
enrichment analyses were also carried out with Gene
Ontology annotations (P < 0.05 after Bonferroni correction
for multiple testing) to confirm IPA results using PAN-
THER GO-Slim Biological Process, PANTHER Protein
Class and PANTHER Pathways analysis65. The Homo
sapiens reference list containing all genes as provided by
default in PANTHER was used as the comparison back-
ground group for enrichment analyses.

Heterogeneous study designs
Our appraisal of proteomics studies reflects the het-

erogeneity in approaches used for biomarker identifica-
tion of psychiatric disorders. Sample sizes ranged from 741

to 68718 patients. All but two studies included healthy
controls (HC) for comparison. One study48 compared
patients with a diagnosis of remitted later life depression
(LLD) with mild cognitive impairment to patients with
normal cognitive function. A second study60 contrasted
short-term SZ relapse patients with long-term SZ relapse
patients at two different time points. Methods for protein
depletion and quantification varied. For example, some
studies used depletion of high abundant proteins by
antibody-based methods prior to the proteomic analysis.
The way these depletion methods are currently used,
often results in irreproducibility of protein quantification,
especially for low abundant proteins66. Most groups used
label-free quantification, but some applied chemical
labeling techniques like iTRAQ or TMT, which allow
multiplexing and therefore a higher sample throughput,
albeit at the cost of ratio distortion.
Sample storage differences and time-wise storage lim-

itations are critical when considering the results presented
by proteomic studies. Measuring protein analytes is a
delicate task as samples are alive and can change due to

molecular responses to changing conditions. Therefore, it
is critical that consistency in sample storage and treat-
ment, as well as sample documentation is kept. Even with
optimal preparations, “proteomic change can occur
resulting in individual outlier samples or overall drift,”
therefore quality markers in combination with careful
sample documentation is crucial67. Unfortunately, these
critical details are not often reported but must be kept in
mind when comparing results across studies.
Differences in sample sizes, tissue type sample pre-

paration, analytical pipeline, mass spectrometry instru-
ments, data analysis, and statistical approaches used, as
well as heterogeneity in case definitions, made evaluation
between studies difficult. These inconsistencies in work-
flows is an issue inherent to formal comparisons of pro-
teomics data, especially for performing meta analyses68.
While some studies used matched case-control approa-
ches and performed more basic t-tests for group com-
parisons, others used regression modeling which enabled
inclusion of confounding covariates. Although several
studies accounted for multiple testing, others failed to do
so which would undoubtedly led to a number of false
positive proteins having been identified as differentially
abundant. While some studies used stricter significance
thresholds (p < 0.01) others used (p < 0.05) without cor-
recting for multiple testing. Furthermore, some studies
have chosen to only report those proteins that surpassed a
specific fold-change threshold and therefore data on those
proteins with smaller effect sizes may not be well repre-
sented and those with lower fold change thresholds may
be contributing to false positive results. Differences in
patient populations and selection criteria also confounded
inter-study comparisons. Moreover, multiple stu-
dies39,41,42,45–47 failed to disclose whether critical con-
founders, such as diet and smoking, were considered. As
blood is a highly dynamic tissue, in contact with nearly
every tissue of the body, it reflects a number of external
factors that need to be controlled for13. Recent work has
shown that robust workflows can be developed, which
accurately take these factors into account30.

Summary of study results
In total, 323 protein (respectively peptide) signals were

differentially abundant; 202 linked to SZ, 141 to MDD,
and 99 to BD (see Fig. 2). For SZ, increased circulating
levels of insulin-related peptides were frequently reported.
Several interleukins, namely IL10, IL12B, IL17A, and IL5,
and growth factors such as BDNF, were differentially
expressed in SZ patients as reported by at least two
independent studies. Several studies reported dysregula-
tion (often a reduction) of apolipoproteins, with at least
2 studies having reported dysregulation of APOA1,
APOA2, APOA4, and APOC1. Two studies investigated
the potential of assay panels for the differentiation of SZ
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patients from controls. Schwarz et al. identified a set of
analytes, reproducibly altered in SZ patients compared to
healthy controls. The refined 51-plex immunoassay had
an overall sensitivity of 83% and specificity of 83% with a
receiver operative characteristic area under the curve
(ROC-AUC) of 89 %61. Another study by Schwarz, Guest
and Rahmoune et al. identified a signature of 34 analytes
and performed a partial least squares discriminant ana-
lysis which gave a separation of 60–75% of SZ patients
from controls across five independent cohorts. The same
analysis gave a separation of ~50% of MDD patients and
10–20% of BD subjects from controls43.
For BD, one study reported intriguing findings of a

combination of 20 significantly altered proteins/metabo-
lites, including cortisol, CTGF, APCS, and TFF3 prior to
clinical manifestations62. From this study, Schwarz et al.
concluded that their findings could be potential bio-
markers for incorporation into diagnostic tests to help
identify vulnerable patients early in the disease process62.
Another study by Alsaif et al. highlighted the differences
in proteome coverage/reliability of measurement in a
cohort of BD patients and HC. They showed that distinct
molecules were measured with marked differences in
variation in serum and plasma and acknowledged that
variations in measurements could potentially obscure
actual differences in data sets52. A study by Frye et al.
assessed the feasibility of MAP in distinguishing bipolar
patients from HC and differentiating subgroups of mood
disorders. They found that GDF15, RBP4, and TTR were
good predictors of BD-I with an ROC AUC of 0.81.

Protein levels of GDF15, HPX, NPN, MMP7, RBP-4, and
TTR were higher in BD-I versus unipolar and BD-II
patients, as well as controls53. One study of BD reported
differential abundance of molecules involved in cell death/
survival pathways55 while another concluded BD patho-
physiology may be associated with perturbations in lipid
metabolism56. Notably, APOA1 and APOL1 were differ-
entially expressed independent of mood state56.
Multiple studies of MDD identified differential abun-

dance of pro-inflammatory and oxidative stress response
proteins. Stelzhammer et al. reported a change/correla-
tion of ACE, acute phase proteins, BDNF, C4B, cortisol,
cytokines, growth hormone and SOD1 with symptom
severity50. Chen et al. reported three differentially
expressed complement proteins validated with ELISA; C3,
MDD > BD-II > HC; CFI and C4BPA, HC >MDD > BD-II
subjects57. Diniz et al. investigated proteins associated
with cognitive impairment in later life depression and
reported higher levels of CCL13, CXCL11, CCL18, and
lower levels of IL12B; reduced levels of KITLG; reduced
levels of IGFBP3 and IGFBP548. Xu et al. also found
altered proteins involved in immunoregulation and lipid
metabolism51. Bot et al. found analytes related to cell
communication and signal transduction (PPY, MIF,
S100A12, IL1RN, and TNC), immune response (CXCL1)
and coagulation (VWF)18. These alterations were asso-
ciated with acute depression symptomatology. One study
found insulin to be the marker with the highest statisti-
cally significant finding, increased in MDD cases com-
pared to controls58. Lee et al. identified a serum
biomarker panel of six proteins (APOD, APOB, GC, CP,
HRNR, and PFN1) which could distinguish MDD patients
from HC with a 68 % diagnostic accuracy49. Another
study attempted to identify any protein peaks that allowed
for the distinction of patients from controls and by taking
the three signals with greatest potential as candidate
biomarkers were able to identify patients with limited
false positive identifications (AUC= 0.92)47.
There was a slight overlap of differentially expressed

proteins across studies (See S2). Twenty-one altered
proteins and small molecules overlapped across all three
diagnoses in at least one of the studies: A2M, APOA1,
APOA2, APOB, APOC1, APOH, C4BPA, C3, CSF2, IgM,
KNG1, KITLG, LH, MIF, progesterone, TF, APCS, TTR,
CD40, GC, and PROS1. Table 2 reports those proteins
that were differentially abundant in the same direction as
reported by at least two studies for each disorder. Three of
these proteins involved in immune response, Compliment
C3 (up), Macrophage Migration Inhibitory Factor (up),
and Immunoglobulin M (down) were differentially
abundant in the same direction across all three disorders.
Many more proteins showed overlap between two dis-
orders or were changed in abundance similarly specifically
for one disorder. These findings are in agreement with the

Fig. 2 Venn diagram depicting the number of differentially expressed
proteins and small molecules found in schizophrenia (SZ), major
depressive disorder (MDD), and bipolar disorder (BD) patients for all
studies
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Table 2 Proteins differentially abundant in the same direction across disorders

Protein Schizophrenia Bipolar disorder Major depressive disorder Up/Down

Adiponectin X Down

Alpha-1-antitrypsin X X Up

Alpha-2-HS-glycoprotein X Down

Alpha-2-macroglobulin X X Down

Angiogenin X Up

Apolipoprotein A-I X X Down

Apolipoprotein A-II X Down

Apolipoprotein C-I X Down

Apolipoprotein D X Up

C4b-binding protein alpha chain X Down

Carcinoembryonic antigen-related cell adhesion molecule 5 X Up

C-C motif chemokine 5 X Up

Chromogranin-A X Up

Complement C3 X X X Up

Complement factor B X Up

Connective tissue growth factor X Up

Cortisol X Up

Epidermal growth factor receptor X Up

Glutathione-S-transferase A3 X X Up

Glycoprotein hormones alpha chain (CGA) X Down

Granulocyte-macrophage colony-stimulating factor X Down

Hemopexin X Up

Immunoglobulin M X X X Down

Insulin-like growth factor-binding protein 5 X Down

Interleukin-1 receptor antagonist protein X Up

Interleukin-12 subunit beta (IL12B) X Down

Kit ligand X Down

Macrophage migration inhibitory factor X X X Up

Matrilysin (MMP7) X Up

Matrix metalloproteinase 9 X X Up

Plasminogen activator inhibitor 1 X Up

Protein S100-A12 X Up

Resistin X Down

Serum amyloid P-component X Up

Sex hormone binding globulin X Down

Somatotropin (GH1) X Down

Sortilin X Down

Thyroxine-binding globulin X Up

Vitamin D-binding protein X Up
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widely accepted assumption that no single biomarker for
diagnoses of severe mental illnesses exists but rather a
panel of biomarkers will be necessary for clinical
application.

Similarities with GWAS findings
In common with GWAS findings, the genes coding for

complement factors C3 and C4-related molecules, as well
as Inter-Alpha-Trypsin Inhibitors Heavy Chain (ITIH) 1,
3 and 4 (whose levels in peripheral blood are altered in SZ,
see Table S2), were associated with an increased risk for
this disorder69,70. The observation of changes in the
expression levels of C3 and C4-related molecules in per-
ipheral blood in proteomic studies is especially interesting
in the case of SZ. The most compelling genetic association
reported by genome-wide association studies in this dis-
order has been identified in the C4 locus in the major
histocompatibility complex (MHC; chromosome 6)69,70.
Genetic variation at this locus influences the mRNA levels
of C4A in the brain, highlighting the interest of C4 and
C3, which are functionally related, as potential peripheral

biomarkers. However, as key molecules in innate immu-
nity, C3 and C4 levels are altered in many infectious and
low level inflammatory conditions as well. Furthermore
Inter-Alpha-Trypsin Inhibitors Heavy Chain 1, 3 and 4,
whose levels change in SZ (Supplementary Table 2) are
encoded by genes (ITIH1, ITIH3, ITIH4) mapping to a
gene cluster locus in chromosome 3, which also shows
genome-wide association with regards to SZ risk70. With
regards to genome-wide associated loci in BD or MDD,
we found no further overlaps with the differentially
expressed proteins. Ongoing GWAS studies in these
disorders based on ever-increasing samples may uncover
further overlaps between genetic risk loci and the per-
ipheral proteome in these patients.

Associated processes and pathways
The top five enriched canonical pathways for each

diagnosis, based on the aforementioned proteome data, as
determined by IPA are listed in Table 3. The top hits were
FXR/RXR Activation (p= 2.89E-30), Acute Phase
Response Signaling (p= 2.90E-31), and LXR/RXR Acti-
vation (p= 1.62E-23) for BD, SZ, and MDD, respectively.
Diagnostic–specific enrichment analyses using GO
determined significant overlap in enriched biological
processes across diagnoses supporting IPA results of
enrichment of pathways involved in immune and
inflammatory responses (See S3-S11). The top biological
processes across all three disorders included response to
interferon-gamma, the cytokine-mediated signaling
pathway, locomotion, blood coagulation and complement
activation. Significant PANTHER pathways for all three
diagnoses were the blood coagulation, plasminogen acti-
vating cascade, and interleukin signaling pathways.
Enrichment of protein classes included the complement
component, chemokine, and growth factors classes for all
three diagnoses.
The enriched pathways observed have previously been

implicated in disease pathology: immune/inflammatory
response, metabolic and hormonal pathways in SZ;11,25,71

the immunologic hypothesis in MDD;13,14 and energy
metabolism, as well as oxidative stress and inflammatory
response in BD72. Clearly these enriched pathways are
quite similar across diagnoses and are also involved in
other conditions. This raises questions about the specifi-
city and validity of the results of the studies surveyed here.
These findings demonstrate that current data are unable
to truly distinguish between different diseases. While
numerous potential biomarkers have been identified, their
pathophysiological significance remains unknown and
their practical clinical application limited19. We believe
that this is due to the intrinsic challenge of discovering
changes in peripheral protein abundance that accurately
reflect molecular alterations in the brain, as well as the
very high technological requirements of in depth and

Table 3 Diagnosis specific top canonical pathways
according to ingenuity pathway analysis (IPA)

p-value Overlap

Diagnosis: bipolar disorder

FXR/RXR activation 2.89E-30 17.5% 22/126

LXR/RXR activation 7.69E-29 17.4% 21/121

Acute phase response signaling 3.12E-27 12.9% 22/170

Clathrin-mediated endocytosis signaling 8.20E-14 7.0% 14/199

Atherosclerosis signaling 1.60E-13 9.4% 12/127

Diagnosis: schizophrenia

Acute phase response signaling 2.90E-31 17.1% 29/170

LXR/RXR activation 7.01E-31 25.1% 26/121

FXR/RXR activation 1.22E-25 18.3% 23/126

Hepatic fibrosis/hepatic stellate cell

activation

1.63E-24 13.7% 25/183

Atherosclerosis signaling 1.56E-22 16.5% 21/127

Diagnosis: major depressive disorder

LXR/RXR activation 1.62E-23 16.5% 20/121

Acute phase response signaling 6.89E-22 12.4% 21/170

FXR/RXR activation 1.38E-21 15.1% 19/126

Agranulocyte adhesion diapedesis 9.50E-17 9.4% 18/191

Granulocyte adhesion diapedesis 6.27E-16 9.5% 17/179

Note: Proteins identified as differentially expressed across diagnoses were
uploaded to IPA in order to identify enriched pathways according to present
knowledge. Given p-values correspond to the likelihood that the association
between a set of proteins and a given pathway is due to random chance. The p-
value was calculated using the right-tailed Fisher Exact Test
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accurate analysis of the plasma proteome. Additional
biomarker research using the latest state-of-the-art pro-
teomics technology is promising for the future.

Perspectives
It is well recognized that the current nosological fra-

mework represented by the DSM-IV and ICD-10 has
serious shortcomings with respect to validity and that
there is a need for a classification system incorporating
measures at various levels of analysis ranging from genes
and cellular/molecular mechanisms to behavioral and
clinical measures73. To move away from “signs and
symptoms” -based diagnoses, biological or physiological
markers need to be identified that can be used to re-
organize the current systems of classification for
improved diagnosis and stratification of patients. This
has the potential to inform the type, time, and course of
interventions and would allow disorders to be subtyped
based on physiological criteria, thus leading to a more
biologically grounded and precise approach to psychia-
tric treatments20. Biomarkers that can reliably be
detected in the bloodstream would enable minimally
invasive and economical monitoring of patients at pro-
gressive disease stages and treatment courses71.

Therefore, high-throughput proteomics approaches in
principle offer a powerful tool for research in severe
mental illness.
Proteomic studies of other neuropsychiatric disorders

have exposed the promise of proteomic technologies for
biomarker identification and disease tracking. For exam-
ple, Lee et al. were able to identify 18 proteins expressed
in blood that were approximately 90 % accurate in dif-
ferentiating Alzheimer’s patients from HC. They were
able to predict disease course in terms of cognitive
impairment with this information74,75. Protein biomarkers
have also been identified for the pathological status of
patients with Huntington’s disease where clusterin (apo-
lipoprotein J) was reported as a promising candidate76.
Currently, the costs of proteomics studies are quite

high, comparable to those of gene expression or genomic
analyses several years ago. Similarly, to those technologies,
proteomic workflows will need to be made more cost
effective, a development which is already underway.
Likewise, the limited reproducibility of many proteomic
workflows can be overcome by modern proteomic pipe-
lines26. In the past, the lack of reproducibility of many of
the biomarker findings in independent studies has resul-
ted in ambiguous and conflicting results due to the above

Overcoming challenges of proteomics approaches
Rectangular strategy

Individualized proteome profiling

Integra�on and implementa�on of data in clinical se�ngs

Discovery cohort (100-1000s), 
high proteome coverage

Valida�on cohort (100-1000s), 
confirm biomarker candidates Validated biomarker/panel

Building a knowledgebase for disease, risk, 
treatment, and environment related altera�ons

Individual measures over �me for 
individualized proteome profile

Individualized 
proteome profile

Integra�on with clinical 
data, history, other 
biological measures

Algorithm for data 
interpreta�on

Precise 
decisions 
by clinicians

Improved 
treatment 
approaches

Fig. 3 Schematic for overcoming challenges of proteomics for biomarker discovery in psychiatry
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mentioned methodological issues or patient hetero-
geneity12. Modern proteomics workflows enable high-
throughput studies with large cohorts of well-defined
samples (see Fig. 3)23.
Accurate selection of the clinical population, sampling

time, and standardization of procedures for sample pro-
cessing are critical for any successful biomarker studies,
including proteomics. Sample size also needs to be con-
sidered to enable sufficient statistical power to be main-
tained after stratification for potential confounding factors
(i.e., diet, smoking, alcohol use, exercise)13. Future studies,
and in the best case longitudinal in design, would be ideal
as they would allow for repeated measures for validated
results and conclusions and because they automatically
account for inter-individual differences in protein
expression levels. In addition, results from discovery
proteomics should be validated in larger cohorts. As is the
case in GWAS, proteomic studies with sizable discovery,
as well as validation cohorts would have great advantages
in actually finding and confirming biomarkers (‘rectan-
gular biomarker strategy’)23.
To support progress in the field of psychiatric pro-

teomics, further advances in proteomic profiling techni-
ques are needed. Evidence of the lack of very
reproducible, robust, and high-throughput proteomic
workflows to identify and verify potential biomarkers in
large cohorts have been hampering the field over the last
years. However, recent results show that it is possible to
introduce more rapid and robust proteome profiling
pipelines30,77. Additionally, advances in targeted pro-
teomic pipelines for absolute protein quantification are
needed to study well defined marker proteins in a highly
reliable and reproducible fashion using heavy isotope
labeled standards78.
With rapid growth in the omics fields, vast quantities of

data are being produced. Therefore, it is important to
consider efficient data-mining technologies, as well as the
establishment of international public accessible databases
like PRIDE (http://www.ebi.ac.uk/pride/archive/)12.
Applied to clinical proteomic studies, this would allow for
multicenter collaborations to combine large-scale data
from multiple levels of analysis, using standardized
nomenclature and integration with other databases12. In
our review, even protein reporting often lacked approved
nomenclature for gene symbols, making between-study
comparisons difficult, which would be avoided by using
UniProt Knowledgebase79 entry codes and recommended
names80. Efforts to integrate peripheral blood profiling
data with other laboratory and clinical endpoints have the
potential for the identification of novel ‘multidimensional’
markers and to reveal novel insight in the classification of
complex diseases13. It is evident that such a joint effort
requires interdisciplinary collaborations including bio-
chemists, biologists, molecular genetics, as well as

statisticians and bioinformaticians alongside clinicians to
draw valid, reliable conclusions.

Conclusion
Here we have uncovered some of the pitfalls and

potential of proteomics studies for understanding com-
plex psychiatric disorders. With support from genomics,
interesting pathways have already been implicated, espe-
cially for SZ, thanks to big sample sizes. Further efforts
towards establishing prospective cohorts within a big data
framework will contribute greatly towards the success of
future proteomic studies of psychiatric disorders. While
various drawbacks have hindered investigations in the last
decades, recent improvements for more rapid and robust
methods have introduced a huge potential that is yet to be
exploited. Blood, plasma and serum are still untapped
source of possible biomarkers which have potential to
impact not only clinical care but also the conduct of drug
trials in the future13. They will greatly complement other
unbiased–omic approaches in the quest for progress of
psychiatric research of severe mental disorders.
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