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Abstract – This paper presents procedures for implementing the PX-EM algorithm of
Liu, Rubin and Wu to compute REML estimates of variance covariance components
in Henderson’s linear mixed models. The class of models considered encompasses
several correlated random factors having the same vector length e.g., as in random
regression models for longitudinal data analysis and in sire-maternal grandsire models
for genetic evaluation. Numerical examples are presented to illustrate the procedures.
Much better results in terms of convergence characteristics (number of iterations and
time required for convergence) are obtained for PX-EM relative to the basic EM
algorithm in the random regression.

EM algorithm / REML / mixed models / random regression / variance compo-
nents

Résumé – L’algorithme PX-EM dans le contexte de la méthodologie du modèle

mixte d’Henderson. Cet article présente des procédés permettant de mettre en
œuvre l’algorithme PX-EM de Liu, Rubin et Wu à des modèles linéaires mixtes
d’Henderson. La classe de modèles considérée concerne plusieurs facteurs aléatoires
corrélés ayant la même dimension vectorielle comme c’est le cas avec les modèles de
régression aléatoire dans l’analyse des données longitudinales ou avec les modèles père-
grand-père maternel en évaluation génétique. Des exemples numériques sont présentés
pour illustrer ces techniques. L’algorithme PX-EM présente de nettement meilleurs
résultats en terme de caractéristiques de convergence (nombre d’itérations et temps
de calcul) que l’EM de base sur les exemples ayant trait à des modèles de régression
aléatoire.

algorithme EM / REML / modèles mixtes / régression aléatoire / composantes
de variance
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1. INTRODUCTION

Since the landmark paper of Dempster et al. [4], the EM algorithm has
been among the most popular statistical techniques for calculating parameter
estimates via maximum likelihood, especially in models accounting for missing
data, or in models that can be formulated as such. As explained by Meng
and van Dyk [23], the popularity of EM stems mainly from its computational
simplicity, its numerical stability, and its broad range of applications.

Biometricians, especially those working in animal breeding, have been among
the largest users of EM. Modern genetic evaluation typically relies on best lin-
ear unbiased prediction (BLUP) of breeding values [13,14] and on restricted
(or residual) maximum likelihood (REML) of variance components of Gaus-
sian linear mixed models [12, 27]. BLUP estimates are obtained by solving
Henderson’s mixed model equations, the elements of which are natural compo-
nents of the E-step of the EM algorithm for REML estimation which explains
the popularity of the triple of BLUP-EM-REML.

Unfortunately, the EM algorithm can be very slow to converge in this setting
and various alternative procedures have been proposed: see e.g., Misztal’s
[26] review of the properties of various algorithms for variance component
estimation and Johnson and Thompson [15] and Meyer [25] for a discussion
of a second order algorithm based on the average of the observed and expected
information.

Despite its slow convergence, EM has remained popular, primarily because
of its simplicity and stability relative to alternatives [32]. Thus, much work
has focused on speeding up EM while maintaining these advantages. Rescaling
the random effects which are treated as missing data by EM has been a very
successful strategy employed by several authors; e.g., Anderson and Aitkin [2]
for binary response analysis, Foulley and Quaas [7] for heteroskedastic mixed
models, and Meng and van Dyk [24] for mixed effects models using a Cholesky
decomposition (see also procedures developed by Lindstrom and Bates [17]
for repeated measure analysis and Wolfinger and Tobias [35] for a mixed
model approach to the analysis of robust-designed experiments). To further
improve computational efficiency, the principle underlying the random effects
was generalized by Liu et al. [21] who introduced the parameter expanded EM
or PX-EM algorithm, which in the case of mixed effects models fits the rescaling
factor in the iteration.

The purpose of this paper is twofold: (i) to give an overview of this new
algorithm to the biometric community, and (ii) to illustrate the procedure
with several small numerical examples demonstrating the computational gain of
PX-EM.

The paper is organized as follows into six sections. In Section 2, the
general structure of the models is described and in Section 3 a typical EM
implementation for these models (called EM0 for clarity) is reviewed. The
fourth Section briefly introduces the general PX-EM algorithm and gives
appropriate formulae for mixed linear models. Two examples (sire-maternal
grandsire models and random coefficient models) appear in Section 5 and
Section 6 contains a brief discussion.



PX-EM and mixed model methodology 145

2. MODEL STRUCTURE

We consider the class of linear mixed models including K dependent (uk;
k = 1, 2, . . . , K) random factors, uk for k = 1, 2, . . . , K using Henderson’s
notation,

y = Xβ +
K∑

k=1

Zkuk + e (1)

or, in a more compact form

y = Xβ + Zu + e,

where y is the (N × 1) data vector, β is a (p × 1) vector of fixed effects
with matrix X of explanatory discrete or continuous variables, u is a (q+ × 1)

vector of random effects (q+ =
K∑

k=1

qk) formed by concatenating the K(qk × 1)

vectors uk, u = (u′
1,u

′
2, . . . ,u

′
k, . . . ,u′

K)′ with corresponding incidence matrix
Z(N×q+) = (Z1,Z2, . . . ,Zk, . . . ,ZK), and e is a (N × 1) vector of residuals.

The usual Gaussian assumption is made for the distribution of (y′,u′, e′)′
i.e., y ∼ N(Xβ,ZGZ′ + R) where

G = var (u) = {Gk,l} with Gk,l = Cov(uk,u′
l) = Aklgkl (2a)

and

R = var(e) = Hσ2
e (2b)

In (2a), Akl is a (qk × ql) matrix of known coefficients and gkl is a real
parameter known as the (k, l) covariance component such that G0 = {gkl}, the
u-covariance matrix, is positive definite; a similar definition applies to H and
σ2

e for the residual variance component.
We assume that all u-components have the same dimension i.e., the same

number of experimental units, qk = q for all k, and similarly Akl = A for all
k, l, so that G can be written as:

G = G0 ⊗ A, (3)

where ⊗ symbolizes the direct or Kronecker product as defined e.g., in Searle
[31].

Two important models in genetics and biometrics belong to this class of
models.

First, the “sire-maternal grandsire” model (or SMGS model) as described
by Bertrand and Benyshek [3],

y = Xβ + Zsus + Ztut + e, (4)

where us and ut refer to (q × 1) vectors of sire and maternal grandsire
contributions of q males respectively and A is the matrix of additive genetic
relationships (or twice Malecot’s kinship coefficients) between those males.
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Here R = Iσ2
e , G =

[
Aσ2

s Aσst

Aσst Aσ2
t

]
= G0 ⊗ A, G0 =

[
σ2

s σst

σst σ2
t

]
,

and g0 = vech (G0) = (σ2
s , σst, σ

2
t )′ is a function of the variance covariance

components of additive direct and maternal effects of genes.
The second model, a random coefficient model [22], can be applied for

instance to longitudinal data analysis (Diggle et al. [5]; Laird and Ware [16];
Schaeffer and Dekkers [30]), and is usually written as

yi = Xiβ +
K∑

k=1

Zikuik + ei for i = 1, 2, . . . , q

where yi = (yi1, yi2, . . . , yij , . . . , yini
)′ is the (ni × 1) vector of measurements

made on the ith individual (i = 1, 2, . . . , q),Xiβ is the contribution of fixed
effects, and is the kth random regression coefficient (e.g., intercept, linear
slope) on covariate information Zik (e.g., time or age) pertaining to the ith
individual.

Under the general form (1), individuals are nested within random effects
whereas in random coefficient models, the opposite holds, coefficients (factors)
are nested within individuals. That is,

yi = Xiβ + Ziui + ei for i = 1, 2, . . . , q (5)

with ui = (ui1,ui2, . . . ,uik, . . . ,uiK)′, and Zi(N×K) = (Zi1,Zi2, . . . ,Zik, . . . ,
ZiK) so that under (5), var(ui) = aiiG0 and cov (ui,ui′) = aii′G0, i.e.,

var (u′
1,u

′
2, . . . ,u

′
i, . . . ,u

′
q)

′ = A ⊗ G0.

Generally, these models assume independence among residuals var(ei) =
Ini

σ2
e and independence among individuals, A = Iq, but this is neither

mandatory nor always appropriate as e.g., with data recorded on relatives.
Readers may be more familiar with one of the two forms (1) or (5), but both

are obviously equivalent and we may use whichever is more convenient.

3. THE EM0 ALGORITHM

3.1. Typical procedure

To define an EM algorithm to compute REML estimates of the model
parameter γ = (g′

0, σ
2
e)′, we hypothesize a complete data set, x, which augments

the observed data, y, i.e. x = (y′,β′,u′)′. As in [4] and [7], we treat β as a
vector of random effects with variance tending to infinity.

Each iteration of the EM algorithm consists of two steps, the expectation
or E step and the maximization or M step. In the Gaussian mixed model,
this separates the computation into two simple pieces. The E-step consists of
taking the expectation of the complete data log likelihood L(γ;x) = ln p(x|γ)
with respect to the conditional distribution of the “missing data”: z = (β′,u′)′

vector given the observed data y with γ set at its current value γ[t] i.e.,

Q(γ|γ[t]) =
∫

L(γ;y, z)p(z|y,γ = γ[t])dz, (6)
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while the M-step updates γ by maximizing (6) with respect to γ i.e.,

γ[t+1] = arg maxγQ(γ|γ[t]). (7)

We begin by deriving an explicit expression for (6) and then derive the two
steps of the EM algorithm. By definition p(x|γ) = p(y|β,u,γ)p(β,u|γ), where

p(y|β,u,γ) = p(y|β,u, σ2
e) = p(e|σ2

e)

and

p(β,u|γ) ∝ p(u|g0),

so that

L(γ;x) = L(σ2
e ; e) + L(g0;u) + const. (8)

Formula (8) allows the formal dissociation of the computations pertaining
to the residual σ2

e from the u-components of variance g0. Combining (6) with
(8) leads to

Q(γ|γ[t]) = Qe(σ2
e |γ[t]) + Qu(g0|γ[t]) + const. (9)

The expressions on the right-hand side can be written explicity

Qe(σ2
e |γ[t]) = −1/2[N ln 2π + ln |H| + N lnσ2

e + E(e′H−1e|y,γ[t])/σ2
e ] (10)

and,

Qu(g0|γ[t] = −1/2[q+ln 2π + ln |G| + E(u′G−1u|y,γ[t])].

Under assumption (3), |G| = |G0|q|A|K and G−1 = G−1
0 ⊗A1, so Qu(g0|γ[t])

reduces to

Qu(g0|γ[t]) = −1/2[q+ln 2π + K ln |A| + qln|G0| + tr (G−1
0 Ω[t])], (11)

where Ω[t] = E{u′
kA

−1ul|y,γ[t]} for k, l = 1, 2, . . . , K.
For the M-step, we maximize (10) as a function of σ2

e , and (11) as a function
of g0. For H known, this results in

σ2[t+1]
e = [E(e′H−1e|y,γ[t])]/N (12)

and

G[t+1]
0 = Ω[t]/q, (13)

see Lemma 3.2.2 of Anderson [1], page 62.
The expectations in (12) and (13), i.e. the E-step, can be computed using

elements of Henderson’s [14] mixed model equations (ignoring subscripts), i.e.,

[
X′H−1X X′H−1Z
Z′H−1X Z′H−1Z + σ2

eG
−1

] [
β̂

û

]
=

[
X′H−1y
Z′H−1y

]
, (14)
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where β̂ is the GLS estimate of β, and û is the BLUP of u. In particular, we
compute

E(e′H−1e|y,γ) = ê′H−1ê + σ2
e [p + q+ − σ2

etr (CuuG−1)], (15)
and

E(u′
kA

−1ul|y,γ) = û′
kA

−1ûl + σ2
e tr (A−1Cukul

), (16)
where p = rank(X), q+ = Kq = dim(u) and Cuu is the block of the in-
verse of the coefficient matrix of (14) corresponding to u. Further numerical
simplifications can be carried out to avoid inverting the coefficient matrix at
each iteration using diagonalization or tridiagonalization procedures (see e.g.,
Quaas [29]).

3.2. An ECME version

In order to improve computational performance, we can sometimes update
some parameters without defining a complete data set. In particular, the ECME
algorithm [20] suggests separating the parameter into several sub parameters
(i.e. , model reduction), and updating each sub parameter in turn conditional
on the others. For each of these sub parameters, we can maximize either the
observed data log likelihood directly, i.e., L(γ;y) or the expected augmented
data log likelihood, Q(γ|γ[t]).

To implement an ECME algorithm in the mixed effects model, we rewrite
the parameter as ζ = (d′

0, σ
2
e) where var(y) = Wσ2

e with W = ZDZ′ + H,
D = D0 ⊗ A, and d0 = vech(D0) and first update σ2

e by directly maximizing
L(ζ;y) (without recourse to missing data) under the constraint that d0 is fixed
at d[t]

0

σ2[t+1]
e =

[y − Xβ̂(d[t]
0 )]′[W(d[t]

0 )]−1[y − Xβ̂(d[t]
0 )]

N − p
. (17)

An ML analogue of this formula (dividing by N instead of N − p) was first
obtained by Hartley and Rao [12] in their general ML estimation approach
to the parameters of mixed linear models; see also Diggle et al [5], page 67.
Second, we update d0 by maximizing Q(d0, σ

2[t+1]|ζ[t]) using the missing data
approach,

D[t+1]
0 = G[t+1]

0 /σ2[t+1]
e , (18)

where G[t+1]
0 is defined in (13).

Henderson [13] showed that the expression for σ2
e in (17) can be obtained

from his mixed model equations solutions as

σ2[t+1]
e =

[y′H−1y − β̂
[t]′

X′H−1y − û[t]′Z′H−1y]
N − p

, (19)

where β̂
[t]

and û[t] are defined by (14) evaluated with σ2
eG

−1 = D−1 computed
using d[t]

0 . Incidentally, this shows that the algorithm developed by Henderson
[14] to compute REML estimates, as early as 1973, introduces model reduction
in a manner similar to recent EM-type algorithms.
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4. THE PX-EM ALGORITHM

4.1. Generalities

In the PX-EM algorithm proposed by Liu et al. [21], the parameter space of
the complete data model is expanded to a larger set of parameters, Γ = (γ∗,α),
with α a working parameter, such that (γ∗,α) satisfies the following two
conditions:

– it can be reduced to the original parameter γ, maintaining the observed
data model via a many-to-one reduction form γ = R(Γ);

– when α is set to its reference (or “null” ) value, (γ∗,α0) induces the same
complete data model as with γ = γ∗ i.e., p[x|Γ = (γ∗,α0)] = p[x|γ = γ∗].

We introduce the working parameter because the original EM (EM0) imputes
missing data under a wrong model, i.e., the EM iterate γ

[t]
EM is different from

the MLE. The PX algorithm takes advantage of the difference between the
imputed value α[t+1] of α and its reference value α0 to make what Liu et al.
[21] called a covariance adjustment in γ, i.e.,

γ
[t+1]
X − γ

[t+1]
EM ≈ bγ|α(α[t+1] − α0) (20)

where γ
[t]
X is the PX-EM value at iteration [t], γ

[t]
EM is the EM iterate, and

bγ|α is a correction factor. Liu et al. [21] show that this adjustment necessarily
improves the rate of convergence of EM generally in terms of the number of
iterations required for convergence.

Operationally, the PX-EM algorithm, like EM, consists of two steps. In
particular, the PX-E step computes the conditional expectation of the log
likelihood of x given the observed data y with Γ[t] set to (γ[t]

∗ ,α = α0) i.e.,

Q(Γ|Γ[t]) = E[L(Γ;x)|y,Γ[t] = (γ[t]
∗ ,α = α0)]. (21)

The PX-M step then maximizes (21) with respect to the expanded parame-
ters

Γ[t+1] = arg maxΓQ(Γ|Γ[t]), (22)

and γ is updated via γ[t+1] = R(Γ[t+1]).
In the next section, we illustrate PX-EM in the Gaussian linear model. In

particular, we will describe a simple method of introducing a working parameter
into the complete data model.

4.2. Implementation of PX-EM in the mixed model

We begin by defining the working parameter as a (K × K) invertible real
matrix α = {αkl} which we incorporate into the model by rescaling the random
effects Ũ = α−1U where U(K×q) = (u1,u2, . . .uk, . . . ,uK)′ i.e.,⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y = Xβ +
K∑

k=1

Zkuk + e

uk =
K∑

l=1

αklũl

(23a)
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or alternatively, under (5)

yi = Xiβ + Ziαũi + ei. (23b)

By the definition of ũi, we have ũi ∼ N(0,G0∗), where G0∗ = α−1G0(α−1)′.
Rescaling the random effects by α introduces the working parameters into two
parts of the model, into (23) and into the distribution of ũi which can be viewed
as an extended parametric form of the distribution of ui (see (2a)) i.e., when
α = α0 = IK , ui and ũi have the same distribution.

To understand why the PX-EM works in this case, recall that the REML
estimate is the value of which maximizes

L(γ;y) =
∫

p(y|β,u,γ)p(u|γ)dβdu. (24a)

What is important here is that for any value of α, L(γ;y) = L(γ∗,α;y) with

L(γ∗,α;y) =
∫

p(y|β, ũ,γ∗,α)p(ũ|γ∗)dβdũ. (24b)

Thus, we can fix α in (24b) to be any value at each iteration. Liu et al.
[21] showed that fitting α in the iteration can improve the computational
performance of the algorithm.

Computationally, the PX-EM algorithm replaces the integrand of (24a) with
that of (24b). In particular, in the E-step, we compute Q(Γ|Γ[t]) = (γ[t]

∗ ,α =
α0). Here we choose α = α0, since any value of α will work and using
α0 reduces computations to those of the EM0 algorithm. In the M-step, we
update Γ by maximizing Q(Γ|Γ[t]), i.e. we compute g[t+1]

0∗ = vec(G[t+1]
0∗ ), α[t+1]

and σ
2[t+1]
e∗ . Finally, we reduce these parameter values to those of interest,

G[t+1]
0 = α[t+1]G[t+1]

0∗ (α[t+1])′ and σ
2[t+1]
e = σ

2[t+1]
e∗ (in the remainder of the

paper we fix σ2
e∗ at σ2

e). We now move to the details of these computations.
In order to derive Q(Γ|Γ[t], we note that

p(y,β, ũ|g0∗ ,α, σ2
e) ∝ p(y|β, ũ,α, σ2

e)p(ũ|g0∗),

and

L(Γ|x) = L(α, σ2
e |e) + L(g0∗ |ũ) + const. (25)

thus

Q(Γ|Γ[t]) = Qe(α, σ2
e |Γ[t]) + Qu(g0∗ |Γ[t]) + const. (26)

where Γ = (g′
0∗ , (vec α)′, σ2

e)′, and Γ[t] = (g[t]′

0∗ , (vec α0)′, σ
2[t]
e )′.

Maximizing Qu(g0∗ |Γ[t]) with respect to g0∗ is identical to the corresponding
calculations for g0 in EM0 i.e., we set G[t+1]

0∗ = Ω[t]/q, where Ω[t] is evaluated
as in EM0 with (16).
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Next, we wish to maximize Qe(α, σ2
e∗ |Γ[t]), which can be written formally as

in (10) but with e defined in (23a) or (23b). Partial derivatives of this function
with respect to α are given by:

∂Q

∂αkl
=

1
σ2

e

I∑
i=1

E

[
u′

i

∂α

∂αkl
Z′

iH
−1
i (yi − Xiβ − Ziαũi)|y,Γ[t]

]
.

Solving these K2 equations does not involve σ2
e , and is equivalent to solving

the linear system F(vec α′) = h,

K∑
m=1

K∑
n=1

f
[t]
kl,mnα[t+1]

mn = h
[t]
kl ; for k, l = 1, 2, . . . , K (27)

where

f
[t]
kl,mn, = tr [Z′

kH
−1ZmE(unu′

l|y,Γ[t])]] (28)

and

h
[t]
kl = tr

{
Z′

kH
−1E[(y − Xβ)u′

l|y,Γ[t]]
}

. (29)

Explicit expressions for the coefficients when K = 2 are given in Appendix A.
We can compute α[t+1] using Henderson’s [14] mixed model equations (14),

suppressing the superscript [t], as follows

fkl,mn = tr [Z′
kH

−1Zm(ûnû′
l + σ2

eCunul
)], (30)

hkl = û′
lZ

′
kH

−1y − tr
[
Z′

kH
−1X(β̂û′

l + σ2
eCβul

)
]
, (31)

where Z′
kH

−1Zm is the block of the coefficient matrix corresponding to uk and
um; Z′

kH
−1X is the block corresponding to uk and β; Cukum and Cukβ = C′

βuk

are the corresponding blocks in the inverse coefficient matrix; Z′
kH

−1y is the
sub vector in the right hand side of (14) corresponding to uk; and β̂ and ûk

are the solutions for β and uk in (14). Once we obtain α[t+1], we update G0

as indicated previously.
Finally to update σ2

e , we maximize Qe(α, σ2
e |Γ[t]) via

σ2[t+1]
e = E(e′H−1e|y,Γ[t])/N, (32)

where the residual vector, e, is adjusted for the solution α[t+1] in (27), i.e.,
using yi −Xiβ−Ziα

[t+1]ũi . A short-cut procedure implements a conditional
maximization with α fixed at α[t] = IK and results in formula (15) as in the
EM0 procedure. One can also derive a parameter expanded ECME algorithm
by applying Henderson’s formula (19) with d0 fixed at d[t]

0 ; see van Dyk [32].
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5. NUMERICAL EXAMPLES

5.1. Description

In this section, we illustrate the procedures and their computational ad-
vantage relative to more standard methods using two sire-maternal grandsire
(model 4) and two random coefficient (model 5) examples.

5.1.1. Sire-maternal grandsire models

The two examples in this section are based on calving score of cattle [6].
From a biological viewpoint, parturition difficulty is a typical example of a
trait involving direct effects of genes transmitted by parents on offspring, and
maternal effects influencing the environmental conditions of the foetus during
gestation and at parturition. Thus, statistically we must consider the sire and
the maternal grandsire contributions of a male, not as simple multiples of each
other (i.e., the first twice that of the second), but as two different but correlated
variables. This model can be written as

yijklm = μ + αi + βj + sk + tl + eijklm, (33)

where μ is an overall mean; αi, βj are fixed effects of the factors A = sex (i = 1, 2
for bull and heifer calves respectively) and B = parity of dam (j = 1, 2 and 3
for heifer, second and third calves respectively); sk is the random contribution
of male k as a sire and tl that of male l as maternal grandsire, and eijklm are
residual errors, assumed iid- N(0, σ2

e).
Letting s = {sk} and t = {tl}, it is assumed that var(s) = Aσ2

s , var(t) =
Aσ2

t and cov(s, t′) = Aσst, where A is the matrix of genetic relationships
among the several males occurring as sires and maternal grandsires and
g0 = (σ2

s , σst, σ
2
t )′ is the vector of variance-covariance components.

We analyse two data sets; the first is the original data set presented in [6],
which we refer to as “Calving Data 1 or CD1”, and the second is a data set
with the same design structure but with smaller subclass size and simulated
data which we refer to as “Calving Data 2 or CD2” (see Append. B1)

5.1.2. Random coefficient models

Growth data: We first analyse a data set due to Pothoff and Roy [28] which
contains facial growth measurements recorded at four ages (8, 10, 12 and 14
years) in 11 girls and 16 boys. There are nine missing values, which are defined
in Little and Rubin [19]. The data appear in Verbeke and Molenberghs [33]
(see Table 4.11, page 173 and Appendix B2) with a comprehensive statistical
analysis.

We consider model 6 of Verbeke and Molenberghs which is a typical random
coefficient model for longitudinal data analysis with an intercept and a linear
slope, and can be written as

yijk = μ + αi + βitj + aik + biktj + eijk, (34)
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where the systematic component of the outcome yijk involves an intercept μ+αi

varying according to sex i (i = 1, 2 for female and male children respectively)
and a linear increase with time (tj = 8, 10, 12 and 14 years); the rate βi

also varies with sex. The aik and bik are the random homologues of αi and
βi but are defined at the individual level (indexed k within sex i). Letting
uik = (aik, bik)′, it is assumed that the uik ’s are iid- N(0,G0). Similarly,
letting eik = (ei1k, ei2k, ei3k, ei4k)′ the eik are assumed iid- N(0, σ2

eI4) and
distributed independently from the uik ’s.

Ultrafiltration data: In our second random coefficient model, we consider
the ultrafiltration response of 20 membrane dialysers measured at 7 different
transmembrane pressures with an evaluation made at 2 different blood flow
rates. These data due to Vonesh and Carter [34] are described and analysed
in detail in the SAS manual for mixed models (Littell et al. [18]; data set 8.2
DIAL Appendix 4, pages 575-577 ; Appendix B3).

Using notations similar to the model for the growth data, we write

yijk = μ + αi +
4∑

r=1

βrx
r
ijk + aik +

2∑
r=1

br,ikxr
ijk + eijk, (35)

where yijk is the ultrafiltration rate in ml · h−1, μ + αi the intercept for

blood rate i (i = 1, 2 for 200, 300 dl·min−1),
4∑

r=1

βrx
r
ijk is the regression of

the response on the transmembrane pressure xijk (dm Hg) as a homogeneous
quartic polynomial; aik and br,ik represent the random coefficients up to the
second degree of the regression defined at the dialyser level (k = 1, 2, . . . , 20).

Again, letting uik = (aik, b1,ik, b2,ik)′ and eik = {eijk}, it is assumed that
the uik’s are iid- N(0,G0) and the eik’s are iid- N(0, σ2

eI7) and distributed
independently of each other.

5.2. Calculations and results

REML estimates of variance-covariance parameters were computed for each
of these four data sets using the EM0 and PX-EM procedures including the
complete (PX-C) and the triangular (PX-T) working parameter matrices, (see
van Dyk [32] for discussion of the use of a lower triangular matrix as the
working parameter). For each of the three EM-type algorithms, the standard
procedure described in this paper was applied as well as those based on
Henderson’s formula for the residual variance. The iteration stopped when the

norm

√√√√(∑
i

Δθ2
i

)
/

(∑
i

θ2
i

)
of both g0 and of σ2

e , was smaller than 10−8.

Results are summarized in Tables I and II for sire-maternal grandsire
(SMGS) and random coefficient (RC) models, respectively. In all cases, the
number of iterations required for convergence was smaller for the PX-C
procedure than for the EM0 procedure. The decrease in this number of
iterations was 15 to 20% for SMGS models and as high as 70% for RC models.
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Table I. Performance of EM algorithms for estimating variance components in sire
and maternal grandsire models.

Examples1

Algorithms2 Calving data I Calving data II

−2L3 Iterations4 Time5 −2L3 Iterations4 Time5

EM0 a 1760.284442 122 5′′ 746.6163445 627 25′′
b 1760.284442 123 4′′ 746.6163444 628 22′′

PX-C a 1760.284442 98 12′′ 746.6163444 533 1’05′′
b 1760.284442 98 9′′ 746.6163444 534 1’03′′

PX-T a 1760.284442 104 13′′ 746.6163445 586 1’13′′
b 1760.284442 104 12′′ 746.6163444 586 1’09′′

1 Examples: Calving data I: Foulley [6]; Calving difficulty score shown in appendix
B1. Calving data II: same design structure, 4 scores, small progeny group size and
simulated data.
2 Algorithms: EM0: Model 0 and PX-C: PX EM with extended and complete
parameters as defined in Liu et al. [21]. PX-T: PX EM with triangular matrix of
parameters as defined by van Dyk [32].
a) standard procedure; b) using Henderson’s formula for residual variance.
3 −2L = minimum of minus twice the restricted log likelihood. Estimates of param-
eters are:

Large pgs: residual = 0.50790017; sire var = 0.03201508; sire mgs covar = 0.01146468;
mgs va = 0.06304075.
Small pgs: residual = 0.852018; sire var = 0.704462; sire mgs covar = 0.533585; mgs
va = 0.923661.
4 Iterations up to convergence for a norm of both the residual variance and the matrix
of u components of variance lower than or equal to 10−8.
5 Time to convergence based on an APL2 programme (Dyalog73) run on a PC
Pentium I (90 MHz).

The absolute numbers of iterations were 64 vs. 224 for PX-C vs. EM0 for growth
data and 76 vs. 259 for the ultrafiltration data.

Since computing time per iteration is larger for PX-C than for EM0, the total
computing time remains smaller with EM0 for the CD1 and CD2 examples.
However, in the RC models, computing time is about halved in both examples.
This impressive advantage of PX-C vs. EM0 was also observed at different norm
values (10−6, 10−9 ) and with a different stopping rule (decrease in -2L equal
to or smaller than 10−8); see also the plot of EM sequences for the intercept
variance in the “growth data” example (Fig. 1) and for all the u-components
of variance in the ultrafiltration data example (Fig. 2).
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Table II. Performance of EM algorithms for estimating variance components in
random coefficient models.

Examples1

Algorithms2 Growth data (1st degree) Ultrafiltration data (2nd degree)

−2L3 Iterations4 Time5 −2L3 Iterations4 Time5

EM0 a 842.3559004 224 1’07′′ 645.8495069 259 2’30′′
b 842.3559008 241 1’04′′ 645.8495097 264 2’01′′

PX-C a 842.3559007 64 32′′ 645.8495076 76 1’18′′
b 842.3559007 67 31′′ 645.8495062 75 1’19′′

PX-T a 842.3559007 92 44′′ 645.8495083 352 5’57′′
b 842.3559007 96 43′′ 645.8495096 372 5’57”

1 Examples: Growth data from Pothoff and Roy [28] with the 9 missing values defined
by Little and Rubin [19]: see also Verbeke and Molenberghs [33] for a detailed analysis.
Here 1st degree polynomial for the random part (intercept + slope). Ultrafiltration
rates of 20 membrane dialyzers measured at 7 pressures and using two blood flood
rates [18, 34]. Here, second degree polynomial for the random part.
2 Algorithms: EM0 : Model 0 and PX-C: PX EM with extended and complete
parameters as defined in Liu et al. [21]. PX-T: PX EM with triangular matrix of
parameters as defined by van Dyk [32].
a) standard procedure; b) using Henderson’s formula for residual variance.
3 −2L = minimum of minus twice the restricted loglikelihood Estimates of parame-
ters are:
Growth data (original values × 100): residual = 176.6555; (00) = 835.5160; (01) =
−46.5266, (11) = 4.4150.
Ultrafiltration data: residual = 3.317524; (00) = 2.246091; (01) = −3.731253; (02) =
0.687083; (11) = 24.080699; (12) = −6.829680; (22) = 2.172312
0, 1, 2 stand for intercept, first and second degree random coefficient effects respec-
tively.
4 Iterations up to convergence for a norm of both the residual variance and the matrix
of u components of variance lower or equal to 10−8.
5 Time to convergence based on an APL2 programme (Dyalog73) run on a PC
Pentium I (90 Mhz).

Results obtained with PX-T were consistently poorer than with PX-C and
in the case of ultrafiltration data even poorer than EM0. Computation for this
model is especially demanding because of an adjustment of a second degree
polynomial with a very high absolute correlation between the first and second
degree coefficients of 0.94.

Finally, no practical differences were observed between the standard and the
ECME procedures; Henderson’s formula can be used in practice to compute
the residual variance.
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Figure 1. Two typical sequences of EM iterates for the “growth data” example.
a) starting values: residual = total variance; (00) = 500, (01) = 0, (11) = 5.
b) starting values: residual = 0.5 total variance; (00) = 2000, (01) = 0, (11) = 20.

6. DISCUSSION-CONCLUSION

This paper shows that the PX-EM procedure can be easily implemented
within the framework of Henderson’s mixed model equations. Changes to the
EM0 procedure are simple requiring only the solution of a (K2 × K2) linear
system at each iteration with K generally 2, 3 or 4. In particular, the PX-
EM procedure can handle the situation of random effects correlated among
experimental units (e.g., individuals) as it often occurs in genetics.
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Figure 2. EM iterates for the “ultrafiltration data” example.
a, b, c, d, e and f stand for (00), (11), (22), (01), (02) and (12) u-components

of variance and covariance respectively; starting values: residual = 4; (00) = (11) =
(22) = 4, (01) = 2, (02) = −1.2, (12) = −2.4.

A ML extension of the PX-EM procedure is straightforward with an appro-
priate change in the conditional expectations of uku′

l and βu′
k along the lines

proposed by Foulley et al. [8] and van Dyk [32].
Our examples confirm the potential advantage of the PX-EM procedure for

mixed linear models already advocated by Liu et al. [21] and van Dyk [32]. The
improvement was especially decisive in the case of random coefficient models.
This is important in practice since these models are becoming more and more
popular among biometricians e.g., epidemiologists and geneticists involved in
the analysis of longitudinal data and space-time phenomena.
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In this manuscript, emphasis was on EM procedures and ways to improve
them. This does not preclude using alternative algorithms for computing maxi-
mum likelihood estimations of variance component e.g. the Average Information
(AI)-REML (Gilmour, Thompson and Cullis [10]).

Nonetheless, EM procedures have two important features:
(i) they allow separation of the computations required for the R matrix

(errors but also time or space processes) and the G matrix for which the PX
version turns out to perform especially well; here we suppose the elements of
H in R fixed but the EM procedure can be easily extended to parameters in
an unknown H [9];

(ii) (PX)EM generally selects the correct sub model when estimates are
on or near the boundary of the parameter space, a property that second order
algorithms do not always exhibit (e.g., the analysis of the growth data in Foulley
et al [9] and the simulations in Meng and van Dyk [24] and van Dyk, [32]).

Actually, this is an example of the well-known stable convergence of EM
type algorithms (i.e., monotone convergence) which second order algorithms
do not generally exhibit [32].

ACKNOWLEDGEMENTS

David van Dyk gratefully acknowledges funding for this project partially
provided by the National Science Foundation (USA) grant DMS-97-05157 and
the US Bureau of the Census. Thanks are also expressed to Christèle Robert-
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Appendix A

Explicit expression of the system F(vec α′) = h.
The system to be solved has the general form

K∑
m=1

K∑
n=1

f
[t]
kl,mnα[t+1]

mn = h
[t]
kl for k, l = 1, 2, . . . , K

where

f
[t]
kl,mn = tr [Z′

kH
−1ZmE(unu′

l|y,Γ[t])]

h
[t]
kl = tr

{
Z′

kH
−1E[(y − Xβ)u′

l|y,Γ[t]]
}

Let Tkl = Z′
kH

−1Zl, and vk(q×1) = Z′
kH

−1(y −Xβ′) and Ec(.) designate a
conditional expectation given y,Γ[t], the left hand side wich is symmetric can
be expressed, for K = 2, as:

11 12 21 22

11 Ec(u′
1T11u1) Ec(u′

1T11u2) Ec(u′
1T12u1) Ec(u′

1T12u2)
12 Ec(u′

2T11u2) Ec(u′
2T12u1) Ec(u′

2T12u2)

21 Ec(u′
1T22u1) Ec(u′

1T22u2)
22 Ec(u′

2T22u2)

and the right hand side as:

11 12 21 22

Ec(u′
1v1) Ec(u′

2v1) Ec(u′
1v2) Ec(u′

2v2)



PX-EM and mixed model methodology 161

Appendix B

B1. Data sets for sire and maternal grandsire models.

No Environment Genetic factors Calving data I Calving data II

a b s t [1] [2] [3] [1] [2] [3] [4]

1 1 1 1 4 23 27 13 8 6 7 0
2 1 2 1 4 14 21 22 1 13 4 1
3 1 1 1 7 20 16 6 6 6 1 1
4 1 2 1 7 13 5 3 2 5 0 0
5 1 2 1 8 9 5 4 0 4 2 0
6 1 1 2 6 6 18 12 0 4 0 8
7 1 1 2 7 13 5 3 4 2 1 0
8 1 2 2 8 39 10 5 4 13 1 10
9 2 1 2 8 51 26 4 7 6 5 9
10 2 2 3 5 8 8 5 0 0 3 4
11 2 1 3 5 16 24 17 0 5 2 12
12 2 2 3 5 14 13 3 0 2 2 6
13 2 3 3 2 60 37 14 10 1 1 25
14 2 2 3 2 22 13 4 1 1 4 7
15 2 3 4 7 27 9 3 10 3 0 0
16 2 3 4 8 9 5 4 3 1 0 2
17 2 2 4 9 30 19 8 0 0 6 13
18 2 2 4 5 23 11 2 6 5 1 0

Calving data I: Foulley [6]. Calving performance scored according to an increasing
level of dystocia as factors of a = sex, b = age of dam, s = sire of calf and t =
maternal grandsire of calf.
Calving data II: Same design structure with 4 score values, smaller subclass numbers
and simulated data.
a,b,s,t: stand for factors a, b (fixed) and sire and maternal grandsire (random)
respectively. Non-zero elements (i, j) = (j, i) of the numerator relationship matrix
are: (1, 2) = (8, 9) = 1/4; (1, 5) = (2, 5) = (3, 7) = (4, 6) = (8, 10) = (9, 10) =
1/2; (i, i) = 1, for any i = 1, 2, . . . , 10.
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B2. Growth measurements in 11 girls and 16 boys (from Pothoff and Roy [28];
Little and Rubin [19]).

Age (years) Age (years)

Girl 8 10 12 14 Boy 8 10 12 14

1 210 200 215 230 1 260 250 290 310
2 210 215 240 255 2 215 230 265
3 205 245 260 3 230 225 240 275
4 235 245 250 265 4 255 275 265 270
5 215 230 225 235 5 200 225 260
6 200 210 225 6 245 255 270 285
7 215 225 230 250 7 220 220 245 265
8 230 230 235 240 8 240 215 245 255
9 200 220 215 9 230 205 310 260
10 165 190 195 10 275 280 310 315
11 245 250 280 280 11 230 230 235 250

12 215 240 280
13 170 260 295
14 225 255 255 260
15 230 245 260 300
16 220 235 250

Distance from the centre of the pituary to the pteryomaxillary fissure (unit 10−4m).
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B3: Ultrafiltration data set (from [18, 33]).

# QB TMP UFR # QB TMP UFR # QB TMP UFR # QB TMP UFR

2 240 645 2 260 3660 3 255 3885 3 235 1170
2 505 20115 2 500 16950 3 500 19155 3 485 17685
2 995 38460 2 1020 36090 3 980 37650 3 1025 39705

1 2 1485 44985 6 2 1490 42630 11 3 1490 47895 16 3 1515 52680
2 2020 51765 2 1990 46470 3 2015 54495 3 1990 61800
2 2495 46575 2 2480 46275 3 2510 53175 3 2510 61485
2 2970 40815 2 2995 43980 3 2980 59355 3 3020 61425

2 240 3720 2 305 9825 3 280 5715 3 285 1500
2 540 18885 2 505 21630 3 505 20505 3 520 15405
2 995 34695 2 980 42270 3 1000 39405 3 1005 32520

2 2 1475 40305 7 2 1505 50280 12 3 1490 50100 17 3 1500 42435
2 2000 44475 2 2005 45510 3 2000 55155 3 1985 48570
2 2500 42435 2 2505 44250 3 2505 61185 3 2490 53685
2 3010 44655 2 2990 42300 3 3020 50715 3 2995 53655

2 245 2985 2 305 9480 3 355 10410 3 295 6420
2 480 17700 2 505 21750 3 480 19320 3 515 20250
2 1010 35295 2 995 37230 3 1025 43770 3 1010 43050

3 2 1505 41955 8 2 1500 44430 13 3 1500 51225 18 3 1480 58110
2 2000 47610 2 1990 42165 3 1990 58095 3 2000 61995
2 2515 44730 2 2480 43065 3 2500 54090 3 2480 60915
2 2970 46035 2 3000 36615 3 3005 62010 3 3005 63600

2 255 3930 2 250 1560 3 235 3600 3 290 4050
2 495 19830 2 495 16650 3 480 20490 3 495 16590
2 995 40425 2 1000 34530 3 1010 41880 3 1015 40515

4 2 1480 52260 9 2 1500 43815 14 3 1490 49995 19 3 1520 52845
2 1995 49395 2 1965 48495 3 1990 57675 3 2020 60435
2 2490 45975 2 2485 47520 3 2480 62475 3 2500 64830
2 3030 41910 2 2980 41640 3 3005 62145 3 2975 63825

2 255 3210 2 235 1230 3 260 1890 3 400 10935
2 515 17700 2 505 15375 3 515 18510 3 470 13470
2 1000 32490 2 1020 32835 3 970 37215 3 1010 35355

5 2 1505 42330 10 2 1475 37830 15 3 1505 52350 20 3 1515 45345
2 2020 45735 2 1970 40590 3 1990 60915 3 1980 49440
2 2490 47850 2 2480 32550 3 2500 62985 3 2510 53625
2 3010 48045 2 3000 34305 3 2995 64770 3 3000 56430

#: = Dializer identification; QB×10−2 = Blood flow rate; TMP×103 = Transmem-
brane pressure; UFR×103 = Ultrafiltration rate.
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