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Abstract. We briefly review the progress and problems in the electromagnetic production ofKΛ
on the nucleon. The problem of the data discrepancy in this channel as well as the corresponding
physics consequence are highlighted. We also discuss the effect of the new beam-recoil polarization
dataCx andCz on our analysis. For this purpose we use the isobar model Kaon-Maid and a recent
multipoles model that can describe recent experimental data. We also present a new multipoles
model for theKΣ channels to complete our analysis.
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1. INTRODUCTION

One of the most important goals of nuclear and particle physics is a unified understand-
ing of the baryon-baryon interaction. However, unlike in the case of the nucleon-nucleon
interactions, our knowledge on the hyperon-nucleon interactions is far from complete.
The lack of hyperon beam or target becomes the main reason of this difficulty. Thus, one
needs indirect reactions to study this strange particles. On the other hand, the strange
quark in this particle generates another degree of freedom and, therefore, gives addi-
tional information not available from the nucleon-nucleonscattering processes. As a
consequence, investigations of the strange particles remain an interesting research topic
nowadays. This is also supported by the fact that hypernuclear studies relies heavily on
the available information on the hyperon-nucleon interactions. To this end, the associ-
ated production of strange particles is very helpful, both as a source of information on
the hyperon-nucleon interaction and as the elementary operator that describes the pro-
cess at the elementary level. The electromagnetic production of kaon on the nucleon is
one of the commonly used reactions for this purpose. Both virtual and real photons can
be used. However, since the real photon is theoretically much simpler than the virtual
one, we will limit the following discussion to the photoproduction process.

2. ELECTROMAGNETIC PRODUCTIONS OF KΛ

In what follows, we shall consider two phenomenological models based on the Feynman
and multipoles techniques, i.e., the Kaon-Maid model [1, 2]and the recent multipole
approach given in Ref. [3]. In the former, tree-level Feynman diagrams have been
used to reproduce all availableK+Λ, K+Σ0 and K0Σ+ photoproduction observables.
The background terms contain the standards-, u-, andt-channel along with a contact
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term, which is required to restore gauge invariance after hadronic form factors had
been introduced [4]. Furthermore, four nucleon resonances, the S11(1650),P11(1710),
P13(1720), and the “missing resonance”D13(1895) have been also included in this
model. ForKΣ production further contributions from theS31(1900) andP31(1910) ∆
resonances were added. Note that, Kaon-Maid was fitted to oldand previous version of
SAPHIR data [5]. An interactive version of this model is available through internet [6].

The multipole model utilizes the same background terms, whereas the resonance parts
are assumed to have the Breit-Wigner form [7]

AR
ℓ±(W ) = ĀR

ℓ±cKY
fγR(W )Γtot(W )MR fKR(W )

M2
R −W 2− iMRΓtot(W )

eiφ , (1)

whereW the total c.m. energy,cKY the isospin factor,fKR the conventional Breit-Wigner
factor describing the decay of a resonanceR with a total widthΓtot(W ) and physical
massMR, fγR theγNR vertex factor, andφ the phase angle. The model was fitted to the
combinations of the recent SAPHIR [8], CLAS [9], and LEPS [10, 11] data. In spite
of their unprecedented high qualities, these new data sets,however, reveal a lack of
consistency at the forward and backward kaon angles. This problem hinders the reliable
extraction of the resonance parameters, which could lead todifferent conclusions on the
extracted “missing resonances”.

2.1. Differences between CLAS and SAPHIR Data

2.1.1. Statistical Differences

Reference [12] has studied the statistical properties of both CLAS and SAPHIR data
in a great detail by using four different isobar models. In general it is found that,
compared to the other three models, the Kaon-Maid model provides a better description
of the presently existing data. Nevertheless, the agreement with the SAPHIR data is
more remarkable than with other data, which is indicated by the fact that the SAPHIR
data are scattered closer toRi = 0 compared to the CLAS ones (see Fig. 1), whereRi is
the relative deviation of each data point, defined by

Ri =
σexp

i −σ th(Ei,θi)

∆σstat
i

. (2)

Interestingly, if we analyze this agreement more closely byusing the statistical parame-
ter z1, then a different phenomenon appears. The parameter is defined as

z1 =
√

N −1
〈R〉

√

〈(∆R)2〉
, (3)

whereN is the number of data points and〈(∆R)2〉 = 〈R2〉− 〈R〉2 indicates the square
of the variance of the normal distribution ofRi. Provided that the data are randomly
scattered around the theoretical values with this variance, the hypothesis that the true
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FIGURE 1. Deviations of the predictions of the Kaon-Maid model from the SAPHIR and CLAS
experimental data points as a function of the kaon c.m. angle. Note thatRi is defined in Eq. (2).

value of the mean〈R〉 equals zero (the null hypothesis) can be rejected with a confidence
level of α if |z1|> zα/2, where the critical valuezα/2 = 1.96 and 2.58 for the confidence
level of 5% and 1%, respectively [13].

As shown in Ref. [12], the use of SAPHIR data in Kaon-Maid model yields |z1| =
11.7, whereas the use of CLAS data in the same model results in|z1| = 1.41. Focusing
only on the forward-direction data does not change this result. This leads to the conclu-
sion that if we reject the null hypothesis, then there is a large probability that we are
wrong. In other words, the Kaon-Maid model is more consistent with the CLAS data.

Recent analyses have also indicated that there could be a global scaling factor between
the CLAS and SAPHIR data. To determine this factor, Ref. [12]defined the quantitys
through

χ2
0 =

N

∑
i=1

(

sσexp
i −σ th(Ei,θi)

∆σstat
i

)2

, (4)

and minimized theχ2
0 by using the SAPHIR data, whereσ th is obtained from the specific

isobar model that had been previously fitted to the CLAS data.For the full data set it is
found thats = 1.13 and for the forward data set the best fit yieldss = 1.15 [12]. These
findings indicate that an increase of the SAPHIR data by a factor of 13% – 15% would
improve the agreement between the two data sets. These values are, however, smaller
than the previously suggested scaling factor of∼ 4/3 [9].

2.1.2. The Physics Consequences

The problem of the lack of mutual consistency between the SAPHIR and CLAS
data has certainly some physics consequences. The use of SAPHIR and CLAS data,
individually or simultaneously, leads to quite different resonance parameters which,
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FIGURE 2. (Left) Comparison between the calculated total cross sections with experimental data,
which clearly shows the discrepancy problem between the CLAS and SAPHIR data [3].(Right) The
importance of individual resonances in the multipole models that fit to SAPHIR (Fit 1) and CLAS (Fit 2)
data [3]. Note that∆χ2 =

∣

∣χ2
All − χ2

All−N∗
∣

∣/χ2
All ×100%, whereas Fit 3 is obtained by using all data sets.

therefore, could lead to different conclusions on the “missing resonances”. This is shown
in Fig. 2. Fitting to the SAPHIR data (denoted by Fit 1 in the figure) indicates that the
S11(1650), P13(1720), D13(1700), D13(2080), F15(1680), andF15(2000) resonances are
required, while fitting to the of CLAS (Fit 2) data leads alternatively to theP13(1900),
D13(2080), D15(1675), F15(1680), and F17(1990) resonances. Fitting both data sets
simultaneously (Fit 3) yields a compromise result and changes this conclusion which
indicates that the corresponding result is neither consistent with Fit 1 nor with Fit 2.

Although yielding different results in most cases (see Fig.3) both SAPHIR and CLAS
data indicate that the second peak in the total cross sections atW ∼ 1900 MeV, shown
in the left panel of Fig. 2, originates from theD13(2080) resonance. By refitting the
Kaon-Maid model to the CLAS and SAPHIR data individually, itis shown that the
extracted masses of the missing resonanceD13(1895) differ only by 11 MeV [12]. The
same situation is also found in the multipole model [3]. Thisis clearly demonstrated in
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FIGURE 3. Comparison between the calculated differential cross sections obtained from a multipole
model [3] with some selected experimental data. Notation for the curves is as in Fig. 2.



TABLE 1. The values of mass (M) and width (Γ) of the missingD13 resonance extracted from
Kaon-Maid using the three different experimental data [12]and from a multipole model using
SAPHIR and CLAS data [3].

Kaon-Maid Multipole

Original [5] SAPHIR [8] CLAS [9] SAPHIR [8] CLAS [9]

M (GeV) 1.895±0.004 1.938±0.004 1.927±0.003 1.936±0.010 1.915±0.004
Γ (GeV) 0.372±0.029 0.233±0.008 0.570±0.019 0.301±0.022 0.165±0.008

Table 1. The extracted widths, however, vary from 165 to 570 MeV.
The Gerasimov-Drell-Hearn (GDH) sum rule also provides another tool to investigate

the physics difference between the CLAS and SAPHIR data. Thesum rule relates the
anomalous magnetic moment of the nucleonκN to the difference of its polarized to-
tal photoabsorption cross sections [14]. Since there has been no available measurement,
these cross sections must be predicted from a reliable modelwhich fits all existing unpo-
larized experimental data. The two models (Fit 1 and Fit 2) described above can be used
for this purpose. It is found that the two data sets yield quite different contributions [15].
The predicted contribution of Fit 1 is much closer to that of the Kaon-Maid, indicating
the consistency of the new SAPHIR data [8] to the old ones [5].The model that fits
the CLAS differential cross section data (Fit 2) tends to eliminate the contribution of
kaon-hyperon final states to the GDH sum rule.

2.2. Influence of the NewCx and Cz Data

Recently, a set of the beam-recoil polarization observables data,Cx andCz, has been
released by the CLAS collaboration [17]. These data indicate that theΛ polarization
is predominantly in the direction of the spin of the incomingphoton, independent of
the c.m. energy or the kaon scattering angle (see Fig. 4). Recent analyses found that
these data seems to be difficult to explain. Clearly, it is interesting to include these data
in our analysis, as well as to investigate the effects of the data inclusion [15]. After
including these data it is found that the total cross sectionsσTT′ show less structures. This
indicates that the CLASCx andCz data select certain resonances as the important ones.
To investigate this phenomenon, in Fig. 5 we plot contributions of several important
resonances to the total cross sectionσTT′ before and after the inclusion of theCx and
Cz data [15]. It is obvious from this figure that the inclusion emphasizes the roles of
theS11(1650), P11(1710), P13(1720), andP13(1900) resonances, which corroborates the
finding of the authors of Ref. [16]

3. ELECTROMAGNETIC PRODUCTIONS OF KΣ

Photoproductions ofKΣ are of interest because existing models that can nicely repro-
duce theK+Σ0 data could overestimate the chargedΣ data by almost two orders of
magnitude [18]. In these channels the amplitudesFi, can be expressed in terms of three
independent isospin amplitudes, i.e.A(0) for the isoscalar photon,A(1/2) andA(3/2) for
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FIGURE 4. Sample of the beam-recoil polarization observablesCx andCz for the reaction~γ p → K+~Λ
plotted as a function of the kaon scattering angle. Experimental data are taken from Ref. [17]. The
corresponding total c.m. energyW is shown in each panel. Dashed curves show the prediction of Kaon-
Maid, solid curves demonstrate the result of the multipole model after including theCx andCz data.

the isovector photon with total isospin of theKY systemI = 1/2 andI = 3/2, respec-
tively. For comparison with the results of previous calculations, as well as with the PDG
values [20], it is also useful to define the protonpA(1/2) and neutronnA(1/2) helicity
photon couplings with total isospin 1/2,

pA(1/2) = A(0)+ 1
3 A(1/2) , nA(1/2) = A(0)− 1

3 A(1/2) . (5)
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Using this notation, the CGLN amplitudes for the four physical channels of kaon photo-
production can be written as

A(γ p → K+Σ0) = pA(1/2)+ 2
3 A(3/2) , (6)

A(γn → K0Σ0) = −nA(1/2)+ 2
3 A(3/2) , (7)

A(γ p → K0Σ+) =
√

2
[

pA(1/2)− 1
3 A(3/2)

]

, (8)

A(γn → K+Σ−) =
√

2
[

nA(1/2)+ 1
3 A(3/2)

]

. (9)

All observables are calculated from these amplitudes.
In total we use 2816 data points in our fitting data base. From their types the exper-

imental data used are dominated by the differential cross section data followed by the
hyperon recoil polarization ones. From the isospin channelpoint of view, except for the
K0Σ0 channel, all channels have experimental data. Most of the data were collected for



theK+Σ0. Data for theK0Σ+ channel were measured by the SAPHIR collaboration [19]
and are given in terms of differential cross section and recoil polarization. For theK+Σ−

channel experimental data were extracted by the LEPS [11] collaboration and are repre-
sented by differential cross section and photon asymmetry.

For the background amplitudes we use the similar tree-levelFeynman diagrams as in
the case ofKΛ. Different from theKΛ case, in theKΣ case all resonance properties, i.e.,
the mass, width, branching ratios, as well as the proton and neutron helicity photon
couplings are constrained by using the PDG values [20]. In the fitting process we
found that theK0Σ+ data require a weighting factor. This is understandable, because
the number of data for theK0Σ+ channel is substantially smaller than that for theK+Σ0

channel, and the corresponding error bars are significantlylarger. For the fit result shown
in Fig. 6 theK0Σ+ channel has been weighted by a factor of 4. Nevertheless, as shown
in this figure, compared to the Kaon-Maid prediction the present calculation yields a
more satisfactorily result. Predictions for theK0Σ0 channel is also shown in Fig. 6. It is
obvious that this channel is very difficult to measure. Our calculation predicts that the
corresponding cross section is comparably small as theK0Σ+ cross section. Details of
the findings in theKΣ channels will be reported elsewhere [21].
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