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ABSTRACT 

New empirical estimates of the long-period fortnightly (Mf) tide obtained from TOPEX/Poseidon (T/P) al- 
timeter data confirm significant basin-scale deviations from equilibrium. Elevations in the low-latitude Pacific 
have reduced amplitude and lag those in the Atlantic by 30" or more. These interbasin amplitude and phase 
variations are robust features that are reproduced by numerical solutions of the shallow-water equations, even 
for a constant-depth ocean with schematic interconnected rectangular basins. A simplified analytical model for 
cooscillating connected basins also reproduces the principal features observed in the empirical solutions. This 
simple model is largely kinematic. Zonally averaged elevations within a simple closed basin would be nearly 
in equilibrium with the gravitational potential, except for a constant offset required to conserve mass. With 
connected basins these offsets are mostly eliminated by interbasin mass flux. Because of rotation, this flux occurs 
mostly in a narrow boundary layer across the mouth and at the western edge of each basin, and geostrophic 
balance in this zone supports small residual offsets (and phase shifts) between basins. The simple model predicts 
that this effect should decrease roughly linearly with frequency, a result that is confirmed by numerical modeling 
and empirical T/P estimates of the monthly (Mm) tidal constituent. This model also explains some aspects of 
the anomalous nonisostatic response of the ocean to atmospheric pressure forcing at periods of around 5 days. 

1. Introduction 
The long-period tides (hereinafter LPT) are generated 

by the small, zonal components of the gravitational tidal 
potential. They have periods of 5 days and longer (Table 
1 ). Early investigations of the LPT, comprehensively 
reviewed by Wunsch (1967), were largely theoretical 
and focused on the question of how close these low- 
frequency oscillations should be to static equilibrium, 
with elevations purely zonal and proportional to the tidal 
potential: 

( 1 )  
where 8 is latitude. Analytical results for the case of a 
global ocean of uniform depth showed that zonal cur- 
rents in geostrophic balance with meridional pressure 
gradients could support significant deviation of eleva- 
tions from equilibrium. Allowing for friction, ocean ba- 
sins of complex shape, and variable bottom topography 
complicates analysis significantly, making it difficult to 
reach firm theoretical conclusions about the response of 
the real ocean to the tidal forcing (Wunsch 1967). 

lE;:,(8) = a[1/2 - (3/2) sin'131, 
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Until fairly recently observational data have also 
failed to provide clear constraints on the nature of the 
LPT response. Even the largest LPT constituent (Mf) 
has an amplitude of only a few centimeters, so long time 
series are required to separate the periodic tidal signal 
from other energetic low-frequency oceanographic var- 
iations. Although analysis of Pacific Ocean tide-gauge 
data by Wunsch (1967) and Luther ( I  980), as well as 
altimeter studies by Cartwright and Ray (1990a), Ray 
and Cartwright (1994), and Desai and Wahr (1995) 
clearly show that Mf is not in equilibrium with the tidal 
potential, the exact nature of the global nonequilibrium 
response is still debated (Miller et al. 1993; Wunsch et 
al. 1997). 

Based on an analysis of available island tide gauge 
records, Wunsch ( 1  967) concluded that Mf elevations 
deviated significantly from equilibrium in the Pacific. 
He suggested that these deviations could be explained 
in terms of quasigeostrophic dynamics, with the oceanic 
response dominated by small-scale, nearly resonant, 
barotropic Rossby waves. Later analysis of a more ex- 
tensive set of tide gauge records from the Pacific by 
Luther (1980) showed that the deviation of Mf from 
equilibrium was essentially i n  phase across the basin, a 
spatial pattern not particularly suggestive of Rossby 
waves. Miller et al. (1993) extended this study with a 
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TABLE 1. Major long-period equilibrium tidal constituents. 

Doodson Speed Period Amplitude LY 

No. Name (" h-I) (days) (mm) 

055.565 0.00221 6798.37 12.21 
056.554 Sa 0.04 I07 365.26 2.15 
057.555 Ssa 0.08214 182.62 13.54 
063.655 MSm 0.47152 31.81 2.94 
065.455 Mm 0.54438 27.55 15.38 
073.555 MSf 1.01590 14.77 2.55 
075.555 Mf 1.09803 13.66 29.12 
083.655 MSt 1.56955 9.56 1.06 
085.455 Mt 1.64241 9.13 5.58 
093.555 MSq 2.1 1393 7.10 0.89 
095.355 Mq 2.18678 6.86 0.74 
OX3.455 2.65830 5.64 0.22 

Except for the 18.6-yr line (055.565), nodal and perigean modulation 
lines are not listed. In shallow water, observed Mm and Mf, and 
especially MSf, can be enhanced by nonlinear interactions between 
short-period tides. Observed Sa and Ssa are primarily meteorological, 
not gravitational. Amplitudes include body-tide reduction factor yz  
= 0.603. 

combination of additional island tide gauge analyses and 
numerical modeling, and they concluded that the non- 
equilibrium LPT response was dominantly basin scale, 
with a 10"-40" phase lag of the low-latitude Pacific 
relative to the Atlantic. Modeling studies by Kagan et 
al. (1976), Carton (1983), and Wunsch et al. (1997) 
confirm this basin-scale pattern, although none of these 
authors emphasized or attempted to explain this large- 
scale feature. Miller et al. (1993) argued that the Pacific 
basin phase lag could be explained best in terms of 

confirming that there are significant basin-scale devia- 
tions from equilibrium. We then show that this large- 
scale pattern can be explained with a very simple model 
of interconnected basins. The model is largely kine- 
matic: self-consistent (i.e., mass conserving) equilibri- 
um tides within each basin would result in offsets at 
basin boundaries. These offsets drive mass flux between 
basins, predominantly in a narrow boundary layer that 
extends across the mouth and then along the western 
edge of each basin. Geostrophic balance of the currents 
in this layer support small residual offsets between ba- 
sins, allowing basin-to-basin variations in LPT eleva- 
tions. 

The paper is organized as follows. In section 2 we 
present the new empirical Mf estimates and show that 
the observed large-scale deviation from equilibrium is 
reproduced by numerical models with both realistic and 
highly schematic bathymetry and basin geometries. To 
illuminate the mechanisms responsible for the large- 
scale nonequilibrium response, we focus on the case of 
a schematic (constant 4000-m depth, rectangular basins) 
global ocean. The dynamics in this simplified geometry 
is examined in detail in section 3, where we show that 
a very simple, almost purely kinematic, model repro- 
duces the main features in the empirical T/P estimates 
and numerical solutions. In section 4 some variants and 
extensions are considered, including the frequency de- 
pendence of the nonequilibrium LPT and the effects of 
friction. We also briefly consider the implications of 
these results for nontidal atmospherically forced baro- 
tropic motions. 

2. LPT elevations from TOPEXFoseidon and 
from models 

gravity waves propagating from the Arctic, through the 
Atlantic and Indian Oceans, and finally into the Pacific. 
In this picture quasigeostrophic dynamics are of limited 
importance in determining the large-scale nonequilib- 
rium response. 

Altimeter data have now allowed direct mapping of 
elevations of short-period tidal constituents in the open 
ocean with an accuracy of 1-2 cm (e.g., Shum et al. 
1997). The same techniques can obviously be applied 
to the LPT, but this is a challenge since amplitudes 
(Table 1) are not much greater than the presently achiev- 
able uncertainties. Early efforts with geodetic satellite 
(GEOSAT) data (Cartwright and Ray 1990a; Ray and 
Cart Wright 1994) were limited to zonally averaged es- 
timates of the largest constituent Mf. These results con- 
firmed the deviation of Mf from equilibrium, but did 
not resolve interbasin differences. Desai and Wahr 
(1 995) presented the first purely empirical maps of LPT 
constituents, based on analysis of two years of TOPEX/ 
Poseidon (TIP) data. Although these initial maps were 
noisy, they nonetheless show the basin-scale variations 
of amplitude and phase emphasized by Miller et al. 
(1993). With the availability now of over 8 yr of T/P 
altimeter data, more definitive empirical maps of the 
LPT are possible. 

In this paper we present a new empirical map of Mf, 

* 

* 

Figures l a  and lb  show empirical estimates of the 
amplitudes and phase lags of the Mf tide deduced from 
T/P altimeter data. The data spanned the interval Sep- 
tember 1992-June 2000. An empirical, binning-type 
method was used, a slight variation on the method em- 
ployed by Cartwright and Ray (1990b) and by Desai 
and Wahr (1995). The usual altimeter corrections (for 
media delay, etc.) were applied to the height measure- 
ments, including a correction for solid body tides and 
for short-period ocean tides (Ray 1999). All data falling 
within bins of a certain size were then subjected to tidal 
analysis for the constituents Sa, Ssa, Mm, MSf, Mf, and 
Mt. The primarily meteorological tides, Sa and Ssa, have 
been deduced from T P  data by others (e.g., Nerem et 
al. 1994) and are not of interest here, while the smaller 
lines, MSf and Mt, are not expected to be sensible with 
present noise levels, but were included for variance re- 
duction and correlation checks. Because the long-period 
tides are so small relative to both measurement noise 
and background oceanographic noise and because their 
large-scale structure is predominantly zonal, we have 
adopted a rather large bin size, elongated in the zonal 
direction: 8" (longitude) X 2" (latitude). The bins were 
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aligned on a 2" overlapping grid, covering the T/P region 
between latitudes ?66". Data in each bin were analyzed 
independently from other bins. Within each bin the stan- 
dard errors for Mf are of order 5 mm, increasing to 
several times that in regions of intense mesoscale var- 
iability. The altimetric estimates were corrected for sol- 
id-earth loading by applying the iterative procedure de- 
scribed in appendix A of Cartwright and Ray (1991); 
the results therefore correspond to a bottom-relative 
tide, as would be measured by a common tide gauge. 

The T/P estimates in Fig. 1 exhibit clear basin-scale 
variations in amplitude and phase. Amplitudes in the 
Tropics are largest in the Atlantic, smallest in the Pacific, 
and intermediate in the Indian ocean. The elevations in 
the Pacific lag those in the Atlantic by 30" or more, in 
good agreement with the tide-gauge and modeling re- 
sults reported by Miller et al. (1993). As with the am- 
plitudes, phase lags in the Indian Ocean are intermediate 
between those of the other two basins. Within each ba- 
sin, elevations are dominantly zonal, although some 
cross-basin amplitude gradients are evident, especially 
in the Pacific. 

Figures I C  and Id show amplitudes and phases of Mf 
elevations from a numerical hydrodynamic model. 
These results were computed by time stepping the non- 
linear shallow water equations, formulated in terms of 
elevation C and volume transport U, on a Yc nearly 
global (8O0S-80"N) grid, with bathymetry H from a 
combination of the Smith and Sandwell (1997) and 
ETOPO5 (National Geophysical Data Center 1992) da- 
tabases. The model was forced with the gravitational 
potential (adjusted for effects of body tides, and ocean 
loading and self-attraction) for six tidal constituents 
(MI, S,, K , ,  O, ,  Mf, and Mm) for 120 days, and outputs 
from the final 60 days were harmonically analyzed. Dis- 
sipation in the model included a quadratic bottom fric- 
tion term !F = c,Uu/H (where u is the total water speed, 
U are volume transports, and c,  = 0.003), and hori- 
zontal viscosity with a constant eddy coefficient A ,  = 
I O 3  m 2  S K I .  The relatively large value for A,t [which is 
comparable to that used by Wunsch et al. (1997)] is 
required for numerical stability. (In fact, A,, can be set 
to zero if advection terms are dropped from the shallow 
water equations; the resulting Mf solutions are very sim- 
ilar to those shown here.) The hydrodynamic solution 
is generally much smoother than the empirical T/P map, 
but large-scale patterns are similar. In particular, ele- 
vations in the low-latitude Pacific exhibit significant 
phase lags and are of reduced amplitude. Amplitudes 
and phases in the Indian Ocean again fall between those 
for the Atlantic and Pacific. 

Both the numerical and empirical solutions contain 
finer-scale details. For the numerical solution most of 
these short-wavelength features are clearly the subtle 
expressions of Rossby waves, in many cases trapped by 
topography (e.g., note the very distinctive amphidromic 
phase anomaly in the southeastern Pacific Ocean). Finer- 
scale details in the empirical solution are too contam- 
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inated with noise to allow unambiguous interpretation, 
but some of these are also suggestive of quasigeostroph- 
ic dynamics and topographic effects. Data assimilation 
solutions for Mf, obtained as in Egbert et al. (1994) and 
Egbert and Erofeeva (2002) (not shown), match more 
of the details in the empirical map, and, depending on 
assumptions about friction and the degree of fit to the 
T/P data, can contain many propagating and topograph- 
ically trapped Rossby waves. We defer discussion of 
these assimilation solutions, barotropic currents, and 
Rossby waves to a future paper. There are also some 
local amplifications of LPT elevations in the numerical 
solution, which are not evident in the T/P estimates (e.g., 
north of Australia). These small-scale features are sen- 
sitive to details in the model configuration, and probably 
should not be taken too seriously. Here we focus on 
providing a simple dynamical explanation for the much 
more robust basin-scale deviations of LPT elevations 
from equilibrium. 

We first demonstrate that the basic pattern of inter- 
basin variations is reproduced in a numerical solution 
for a highly simplified schematic model of the ocean. 
For the results of Figs. l e  and 1 f the oceans are modeled 
as three rectangular basins (nominally the Indian, Pacific 
and Atlantic), all connected at the southern boundary 
(50"s) to a zonally connected schematic Southern 
Ocean. The Atlantic basin is also connected at the top 
(70"N) to a simplified Arctic Ocean. Water depth is a 
constant 4000 m. The shallow-water equations were 
solved for this simplified geometry by time stepping on 
a %" grid, in this case forced only by the Mf potential, 
and with a linear drag law F = rU/H with r = 0.03 m 
s K 1 .  With the drag coefficient set to this relatively high 
value the Mf solutions are very simple, with little ev- 
idence in the elevations for the barotropic Rossby waves 
seen in Figs. I C  and Id. In fact, Rossby waves can and 
do appear in the schematic ocean model when r is re- 
duced to smaller values, most clearly in the velocity at 
the western edges of the basins. However, even in this 
case the basin-scale pattern of elevation variations re- 
mains essentially the same. 

At the largest scale the elevations for the schematic 
model are strikingly similar to both the empirical T/P 
and realistic bathymetry solutions. In all cases eleva- 
tions are dominantly zonal within each basin, with clear 
and consistent variations of amplitude and phase be- 
tween basins. To compare these large-scale differences 
among the various solutions we consider zonal averages 
of elevation, computed separately for each basin. These 
are shown in Fig. 2 for the three solutions of Fig. 1 as 
real and imaginary parts. The general similarity of the 
basinwide zonal averages for the three solutions is again 
apparent, although some more subtle differences are 
now clearer. Most notably, differences between basins 
have somewhat larger amplitude for the empirical es- 
timates, and the response in the Indian Ocean is some- 
what different for the schematic model (Le., the imag- 
inary part lies slightly below the corresponding curve 
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Latitude 
FIG. 2. Basin-by-basin zonal averages of elevations for the three 

Mf solutions shown in  Fig. 1: (a) empirical T/P estimates, (b) nu- 
merical solution with realistic ocean basins and bottom topography, 
and (c) numerical solution for schematic ocean. Real (A  cosG) parts 
are solid, imaginary ( - A  si&) parts are dashed, where A and G are 
the amplitudes and phase lags as in Fig. 1. Curves for each basin are 
distinguished by line thickness; these are also readily identified by 
noting the different latitude extent for each basin. 

for the Pacific). This last difference most probably re- 
flects the fact that the simplified geometry of the sche- 
matic ocean ignores connections between the Indian and 
Pacific Oceans via the Indonesian Throughflow. How- 
ever, the similarities between the three cases considered 

50 100 150 200 250 300 350 

FIG. 3. Division of the schematic ocean into five distinct basins, 
separated by imaginary barriers. 

here are much more striking than the differences, sug- 
gesting that the basic pattern of deviation from equilib- 
rium must have a simple explanation in term of the gross 
geometry of the ocean basins. 

3. An approximate theory for the nonequilibrium 
LPT 

The large-scale pattern of deviations from equilibrium 
is captured well by the schematic model (Figs. le-f), 
and so we focus on understanding the dynamics in this 
simplified geometry where division into individual ba- 
sins is simple and unambiguous. We consider the fre- 
quency-domain shallow-water equations with linear 
friction: 

(F + iwl )U = - C * V ( ~  - lEQ) 

v . u  = -iwl. (3) 
Here, U = (U ,  V )  is volume transport, l is elevation, 
K = r/H is a linear friction coefficient ( r  = 0.03 m s-' 
unless otherwise noted), H (=4000 m) is water depth, 
lEQ is the equilibrium LPT potential of (l), and w 
(=5.3234 X rad S K I  for Mf) is angular frequency. 
Following Garrett (1973, we imagine barriers dividing 
the domain into a series of separate basins (Fig. 3), and 
write the solution in each as the sum of a closed basin 
solution (5')) forced by the LPT potential (with zero 
normal flow at all boundaries) and an unforced solution 
( lv) satisfying appropriate inhomogeneous normal flow 
boundary conditions [with lEa 3 0 in (2)]. The boundary 
conditions for 5" are determined by the requirement that 
elevations (and volume fluxes) match for adjoining ba- 
sins, and can be found explicitly by solving a system 
of coupled integral equations (Garrett 1975). For the 
zonally averaged basin-scale response to forcing by the 
zonal LPT potential, these integral equations can be 
reduced approximately to a very small system of or- 
dinary linear equations, which can be expressed in terms 
of fundamental solutions computed for each basin sep- 
arately. We thus first consider (2)-(3) in closed rect- 
angular basins, forced either by the LPT potential lEQ 

. 
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FIG. 4. (a) Self-consistent equilibrium solutions to(@ for each of the rectangular basins in the schematic 
model, computed from (4). (b) Zonally averaged numerical solutions z"(O), computed for each of the closed 
basins forced by the LPT gravitational potential, demonstrating consistency with the self-consistent equilib- 
rium solution of (a). Plotting conventions are as in Fig. 2. 

or by flow through the basin mouth, and we then show 
how solutions for these two special cases can be com- 
bined to synthesize the global response. 

a. Self-consistent equilibrium solutions in a closed 
basin 

Because we are interested in the mean basin-scale 
tidal responses, we begin by considering a closed basin 
having the simplest possible response: a "self-consis- 
tent" equilibrium tide [our use of this term here does 
not agree exactly with Agnew and Farrell (1978), be- 
cause we require only that mass be conserved, and do 
not allow for loading and self-attraction]. All of the 
schematic basins of Fig. 3 are spherical rectangles 
bounded by meridians 4, , +2r  and latitudes 8, , e2. With 
a the radius of the earth, L = a(8, - e , )  is the north- 
south dimension of the basin, and A = u 2 ( 4 ,  - 
(sine, - sine,) is the basin surface area. For this ge- 
ometry the self-consistent equilibrium approximation to 
the closed basin solution can be given explicitly as 

where lEQ is given in (1). The &e) is plotted in Fig. 
4a for each of the five basins in t@e schematic model. 
Agreement with zonal averages (e )  of numerical so- 
lutions to (2)-(3) for the five closed basins is excellent 
(Fig. 4b). Moreover, these numerical results are rela- 
tively insensitive to adopted friction (assuming friction 
is sufficient for numerical convergence). Numerical ex- 
periments show that, while resonant Rossby waves can 
be generated as friction is reduced, the waves have little 
effect on the zonally averaged elevation. The simple 
expression (4) thus provides an adequate first approx- 
imation to the forced closed-basin response for our sche- 
matic ocean. 

b. Response of a closed basin to uniform injow 

At the boundaries with the high-latitude Southern 
and Arctic Oceans there are significant offsets in the 
self-consistent equilibrium elevations (see Fig. 4), and 
these will drive mass flux between basins. The ad- 
justment of elevations across these boundaries will de- 
pend on the elevation response to forcing by mass flux 
through the basin mouth. Consistent with our focus on 
the large-scale zonally averaged elevations, we con- 
sider the response of a rectangular basin to spatially 
uniform low-frequency flow through a zonal boundary 
of length 1 = a($, - 41) cos0, at the southern (or 
northern) edge of the domain, with no forcing by the 
LPT potential. A superscript V is used to denote so- 
lutions for these forcing and boundary conditions. 

As an example, a numerical solution to (2)-(3) for 
the schematic Pacific basin, (0, = -50", e2 = 48", 
4, = 147", 4, = 272") with SEQ 0, and unit mag- 
nitude periodic normal flow through the south bound- 
ary (V = V ,  = 1 m 2  s - ' )  is shown in Fig. 5. The in- 
phase part of the elevation lv is nearly zero except 
in boundary layers on the southern and western edges 
of the basin, where sea levels reach 10-15 mm. The 
quadrature component of f "  is generally larger and 
nearly uniform (=-12  mm) over the basin. The ve- 
locity components are dominantly in-phase with the 
forcing, and are largest in the boundary layers on the 
southern and western edges. More detailed exami- 
nation of numerical solutions at the Mf frequency for 
this simple basin geometry reveal a number of finer- 
scale features, particularly if the linear friction co- 
efficient is reduced. For example, Rossby waves be- 
come prominent with reduced friction. However, as 
we shall now show, the essential features of the zon- 
ally averaged elevation response can be understood 
in  terms of kinematics and geostrophy. More complex 
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160 180 200 220 240 260 160 180 200 220 240 260 
FIG. 5. Solution of (2)-(3) in an idealized, constant-depth (4000 m) Pacific basin, forced by uniform flow through the 

south boundary. Real and imaginary parts of elevations are given in (a) and (b). Contour interval is 1 mm. Volume transport 
vectors are plotted in (c) and (d), again as real and imaginary parts. Phase convention is such that (b), (d) occur a quarter 
period before (a), (c). 

dynamics, and in particular wave propagation, are not 
important to the large-scale elevation response within 
the basin. 

This is most clearly demonstrated by considering the 
low frequency limit of the basin response. In the ap- 
pendix we show that to first order in w, the elevation 
resulting from forcing by volume flux of constant mag- 
nitude V,  through a boundary segment of length 1 takes 
the form 

l"(6,  4; 0) 771(0, 4) - ilV,/(wA), (5) 
where ql  (19, 4) is real and independent of w, while the 
imaginary part of 5" is a constant inversely proportional 
to frequency. Equation (5) is readily understood. The 
time rate of change of the basin average elevation iw( 5") 
must equal the total volume flux lV, across the bound- 
ary, divided by the surface area A of the basin. The 
average elevation thus must be in quadrature to the net 
inflow, with an amplitude inversely proportional to fre- 
quency. At low frequencies volume transports settle 
down to a frequency-independent form required to dis- 
tribute the quasi-steady inflow uniformly throughout the 
basin, while maintaining approximate geostrophic bal- 

ance with spatial variations in l". As frequency is de- 
creased these currents must become increasingly in- 
phase with the forcing at the boundary. Thus, deviations 
of elevations from the constant (5") must become real 
(i.e., in-phase with the normal flow BC) and independent 
of frequency as w -+ 0. 

Equation (5) was verified further by solving (2)-(3) 
in the schematic Pacific basin for a series of decreasing 
frequencies. For w = rad s-I (corresponding to a 
period of approximately 2 yr) the imaginary part of lv 
is indeed almost constant, with the maximum deviation 
over the domain from the predicted average about one 
part in lo4, and currents are almost exactly in phase. 
The real part of 5" for w = rad s - I  is very close 
to the results of Fig. 5a, computed at the Mf frequency. 
Since the imaginary part of Jv at the Mf frequency is 
already nearly constant [with an average that must equal 
lVB/(wA) to satisfy mass conservation], we conclude that 
the low-frequency approximation ( 5 )  is quite adequate 
to account for the elevation response at the Mf fre- 
quency. Note that this conclusion holds only if the fric- 
tion timescale K - I  is short compared to w - l .  If this 
condition does not hold, resonant Rossby waves are 

' 
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Latitude 

FIG. 6. Zonally averaged elevation response of midlatitude basins to forcing by uniform flow through the mouth: (a) z”(0) computed by 
averaging of numerical solutions to the linear shallow-water equations at the Mf frequency; (b) low-frequency approximation computed by 
zonally averaging (5). with q1 obtained from a numerical solution to (2)-(3) with w = IO-’s-’ and LEO = 0; and (c) analytical approximation 
L”(0) computed using (9). 

excited, and these will depend on frequency. The spatial 
dependence of q, can be obtained from calculations at 
any sufficiently low frequency, or by solving a slightly 
modified steady-state problem (see the appendix). 

Zonally averaged elevations ?”( 0) from numerical so- 
lutions at the Mf frequency in the Pacific, Indian, and 
Atlantic basins are shown in Fig. 6a, with separate 
curves corresponding to forcing by flow through the 
southern and northern boundaries of the Atlantic. Low- 
frequency approximations to these elevation profiles 
[T j ,  (0) - i l /(wA)],  are shown in Fig. 6b. Agreement with 
the actual Mf numerical solutions is very good, although 
there are some small differences, most noticeably in the 
imaginary part of the elevations near the inflow bound- 
aries. The approximation (5) involves dynamics only 
weakly, and in an essentially degenerate sense. Fre- 
quency appears only in the imaginary part, which can 
be derived purely from consideration of mass conser- 
vation. The real part q,(O, 4) gives the frequency-in- 
dependent deformation of the free surface required to 
geostrophically balance the quasi-steady currents, which 
match the inflow boundary conditions and distribute flu- 
id uniformly throughout the basin. 

In the appendix we develop an approximate theory 
for the low-frequency basin response, valid in the low- 
friction limit w << K << f o ,  where f o  is the Coriolis 
parameter at the basin mouth. This analysis shows that 
there will be boundary layers along the southern, west- 
ern, and northern edges of the domain. In the boundary 
layer along the southern edge (the only one that is di- 
rectly relevant here) q, satisfies a one-dimensional dif- 
fusion equation, with -y  (distance west of the basin 
edge) playing the role of time. The dynamics are iden- 
tical to those of the arrested topographic wave discussed 
by Csanady (1978; see also Winant 1979) in a coastal 
context. In our much larger-scale problem meridional 
variations of f ,  rather than cross-shore depth variations, 
dominate in the conservation of potential vorticity. By 
analogy with Csanady’s terminology, the solution in the 
boundary layer along the southern edge in Fig. 5 might 

thus be called an “arrested Rossby wave.” An appro- 
priate meridional scale for the boundary layer is 

6 = ( L K / p ) ” * ,  (6) 

where p = a -If is the usual meridional derivative of 
the Coriolis parameter (see the appendix). 

Following Csanady (1978) and Winant (1979) ap- 
proximate analytical expressions for T j ,  (0) could be de- 
rived, but the calculation is rather messy and the details 
of the meridional profile across the the boundary layer 
are not essential for our purposes. Instead we use the 
very rough approximate form 

(7) 

We can directly estimate zI, the zonally averaged ele- 
vation change across the inflow boundary, by assuming 
that the zonal volume flux through this boundary layer 
is equal to the total volume flux into the basin-that is, 
that the total water mass required to raise and lower the 
interior of the basin flows zonally through the boundary 
layer and then out the west end (for the geometry of 
the Pacific basin of Fig. 5). We show in the appendix 
that currents in the boundary layer are in geostrophic 
balance, so the change in elevation across the layer at 
a point + along the lower edge, A[(+), is related to the 
total transport in the layer past this point as UT(+)  = 
-gHA[(+)/f. For uniform inflow A[(+) and UT(+)  will 
vary linearly for < 4 < c$z (see the appendix), so 
that the average offset in elevation is z ,  = Al[(+, + 
+,)/2], and the total volume flux through the west end 
of the boundary layer is thus UT(&) = -2gHz,/f. This 
must provide the mass for the rise and fall of the basin. 
We thus have (for V ,  = 1 m2  s-I) 

TI(@ = zI exp[-a(O - 0,)/6]. 

Solving for zI and using (5) we obtain a simple ap- 
proximate analytic expression for ?“(e): 
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Equation (9) depends essentially on only the gross ge- 
ometry of the basin and the LPT frequency. The as- 
sumed friction coefficient apparently enters as well in 
defining the boundary layer thickness. However, this 
aspect of the basin response is of secondary importance, 
since the large scale variations of elevation between 
basins will depend only on the elevation offset zI . 

Applying (9) to the main basins of our schematic 
ocean model yields the results shown in Fig. 6c. Al- 
though there are some consistent differences from the 
curves computed by averaging numerical solutions- 
for example, the actual boundary layers for the numer- 
ical solutions (Figs. 6a,b) are all somewhat narrower, 
and the true TI always has a small peak at the equator- 
the simple analytical expression (9) reproduces the es- 
sential features of the zonally averaged basin responses 
quite well. 

c. Interconnected basins 

The zonally averaged elevation profiles of Fig. 6 im- 
ply that interbasin mass flux driven by the LPT potential 
will only partially equalize sea levels. If there is flow 
into a basin, geostrophically balanced currents in a zonal 
boundary layer at the mouth will allow at least some 
offset to persist. In the global ocean the amplitude and 
phase of these offsets will be determined by the mutual 
interaction among all of the interconnected basins. To 
model this we adapt the theory of Garrett (1975) for 
tides in a gulf connected to the open ocean to treat the 
case of multiple interconnected basins of similar size. 
We only sketch this theory here. 

Let G,(B, 4; 4') be the elevation component of the 
tidal solution in basin i forced by a delta function in 
the normal flow at point 4' along the boundary B,J be- 
tween basins i and j [i.e., G ,  is a Green's function for 
(2)-(3)]. Let V,<$), 4 E B,J be the volume flux on this 
boundary segment, and let J ,  be the set of all indices j 
for which basin i shares a boundary with basin j .  Then, 
following Garrett (1975) we readily derive conditions 
for flow on the basin boundaries, which determine the 
global solution 

" 

" 

- C JB,A G ~ k ( e , ~ ,  4; 4')yk(4'> d4r 
k t  J, 

= 5pce,,, 4) - 5P(6,, 4). (10) 
Here the right-hand side is the offset in tidal elevation 
on B,J when a wall exists along this boundary and the 
tides in each basin are forced by the LPT gravitational 
potential. The left-hand side is the difference in ele- 

vation produced on the same boundary by the normal 
flux through all open boundaries of basins i and j .  For 
example, with basins as numbered in Fig. 3, for the 
Indian Ocean ( i  = 1) elevation at the boundary with 
the Southern Ocean (j = 4, so the boundary segment 
is denoted SI,) is determined by flow VI4(4)  at this 
boundary alone. However the elevation on the south 
side of SI, is determined by flow on all boundaries of 
basin 4 (B4,, B,,, S43)r so there are three terms in the 
second summation of ( IO)  for this boundary. In general, 
taking all of the N,, distinct boundary segments Bo we 
obtain a set of N,, coupled (one dimensional) integral 
equations which can be solved jointly for the transports 
V,(+) on all boundaries. 

Equation (10) involves no approximations but is too 
complicated for our purposes. Consistent with our focus 
on basinwide scales, and with the analysis of individual 
basins discussed above, we make two approximations. 
First, we zonally average elevations and transports in 
each basin, reducing (10) to 

. 

. 

P 

Second, we assume that the LPT fields (at least in the 
schematic constant depth model) are of sufficiently large 
scale that we can approximate the integral over bound- 
ary segment B,J as 

- I,,! ' Z J < &  4')vrJ(4r) '4' -'I ' ! J  ' t J ( ' ;  4') '4' 

(12) 

I, - 
- 

= v,,i;(e). 
Here, z,: is just the zonal average of the unforced so- 
lution to (2)-(3) with unit magnitude normal flow 
boundary condition on Bt,. The approximation (12) can 
be justified a priori by our analysis of the closed basin 
solution, which showed that the zonally averaged offset 
at the basin mouth is determined kinematically, by the 
total flow into the basin. The approximation is justified 
further below, where we show that solutions derived 
under this approximation are in very good agreement 
with a full numerical solution. 

Using ( I  2) and defining 

we can approximate the coupled system of integral equa- 
tions (10) by a system of N,, ordinary linear equations 
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in N,, unknowns Vlk, representing the zonally averaged 
volume fluxes across each basin boundary: 

- 
z::v,k - zjkvjk = ? : ( e , j )  - ? : ( O , j ) .  (14) 

k s  I, keJ, 

With these simplifications, the zonally averaged solution 
in basin i is approximated as 

(15) 

Here 2;; is the average tv in basin i on boundary seg- 
ment ik due to unit normal flow forcing everywhere on 
boundary segment ij. In the simplest case with only a 
single connecting boundary (e.g., the Indian or Pacific 
basins in our schematic model) only Zg is defined. This 
single complex number can be interpreted as an im- 
pedance, which gives the amplitude and phase of the 

- 

J,(@ = ?:(e) + c v,,?:(e). 
J E  J ,  

elevation at the basin mouth (comparable to voltage) 
resulting from a unit magnitude oscillating current input 
(Garrett 1975). Impedances for the Pacific, Indian, and 
Atlantic can be read off Fig. 6; that is, they are the 
zonally averaged complex elevations evaluated at the 
inflow boundaries. Note that for the Atlantic there are 
two inflow boundaries, and there are a total of four 
impedance elements, corresponding to elevations at the 
north and south boundaries due to flow through each. 
For the Southern Ocean the situation is even more com- 
plicated, as one must account for the average elevation 
at each basin mouth from constant forcing at each of 
the three boundaries (i.e,, in this case there are nine 
impedance elements). 

For the schematic model with basins numbered as in 
Fig. 3, there are N ,  = 4 basin boundaries, and the linear 
system (14) is given explicitly by 

0 

0 

ZE 

To apply (1 4)-( 15) we need the zonally averaged re- 
sponses to LPT forcing (?:) and to normal flow at all 
basin boundaries [t,:'( e)], and the impedance elements 
Z:. All of these can be computed directly by numerically 
solving the shallow-water equations for each basin with 
appropriate forcing and boundary conditions, and then 
zonally averaging. Results from this numerical approach 
have already been given in Fig. 4b (j:), and Fig. 6a 
[?,:'( 011. As noted above, the complex impedances z f ,  i 
= 1, 2, 3; j = 4, 5; and Z:4, and Z:: (i.e., for the Indian, 
Pacific, and Atlantic at boundaries with the Southern 
and Arctic Oceans) can be read off of Fig. 6a. The 
remaining impedances 2: required for (16) can be ob- 
tained by averaging the two-dimensional solutions for 
the Arctic and Southern Oceans over each of the ap- 
propriate basin boundaries as in (1 3). Note that for the 
Southern Ocean separate solutions must be computed 
for forcing by flow at each of the three boundary seg- 
ments. 

Using these impedances in (14) and solving for the 
average interbasin fluxes v,= we use (15) to obtain the 
zonally averaged elevations [,(e) shown in Fig. 7a. The 
results are nearly identical to the actual zonal averages 
computed from the global two-dimensional numerical 
model (cf. to Fig. 2c), verifying a posteriori that zonal 
averaging of forcings and responses to reduce the system 
of integral equations of (10) to the small system of 
discrete linear equations (14) is valid. 

Except for the Southern and Arctic Oceans, (9) pro- 

vides a simple analytical approximation for ?,:'(@ and 
for most of the impedances 2:. To estimate the re- 
maining impedances used in (1 6), we need expressions 
for the responses of the zonally periodic Southern and 
Arctic Ocean basins to forcing by flow through only a 
portion of the zonal boundary. For these we assume that 
the elevation in the vicinity of the inflow is also of the 
form (9), but with 1 now giving the length of this bound- 
ary segment. Elsewhere in the basin (in particular on 
boundary segments where "off-diagonal'' impedances 
must be evaluated) we assume that the elevation is ad- 
equately approximated by the spatially constant imag- 
inary part of (9). The same approximation is used to 
estimate ?,:'(e) for these high-latitude basins. In fact, 
two-dimensional numerical calculations show that the 
low-frequency geostrophically balanced elevation per- 
turbation q1 (0, +) resulting from flow through a portion 
of the zonal boundary extends well beyond the open 
segment. This last approximation is thus probably the 
biggest source of error in our purely analytic approxi- 
mate model. 

Using the approximate impedances to construct the 
coefficient matrix Z and the self-consistent equilibrium 
approximations of (4) to form the right-hand side of 
(16), we can solve for transports across each basin 
boundary V,J .  These can then be used in (15), with the 
analytical approximations c( 6) and e( 0) of (9) and (4), 
to estimate the zonally averaged elevations in each ba- 
sin. The result, given in Fig. 7b, is close to the results 
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obtained from the full two-dimensional schematic model 
(Fig. 2c; see also Fig. 7a), and is a reasonable approx- 
imation to the zonally averaged empirical TIP Mf ele- 
vations (Fig. 223). 

4. Discussion 
We have shown that the large-scale nonequilibrium 

part of Mf can be reproduced by a very simple, almost 
kinematic model. Individual closed basins would by 
themselves have mean elevations that differ from static 
equilibrium only by a constant, determined by the con- 
dition that mass be conserved. The resulting offsets be- 
tween connected basins force interbasin flows, which 
can be computed by requiring elevations to match across 
boundaries. Interbasin flows can thus be computed once 
individual basin “impedances” (the ratio of elevation 
at the basin mouth to volume flux) are known. These 
fluxes, together with the associated meridional profile 
of elevations, allow computation of interbasin differ- 
ences in LPT elevations. Drawing on two-dimensional 
numerical modeling results and a scaling analysis of the 
shallow-water equations, we have developed a simple 
approximate model for the low-frequency response of 
a basin to flow across the north or south boundary. In 
the low-frequency limit eleva$ions are nearly equal to 
a purely imaginary constant (= -illwA), describing a 
uniform basinwide rise and fall of sea level in quadrature 
to the inflow. As w -+ 0, flow in the basin approaches 
a fixed limit, in phase with the flow across the boundary 
and concentrated in a narrow zone of geostrophically 
balanced currents along the mouth and western edge. 
The large-scale global equilibrium response depends 
only on the basinwide average elevation Z and the av- 
erage vertical offset across the boundary layer z , ,  and 
both of these constants can be estimated from simple 
considerations of mass conservation (and geostrophy). 

If the ratio 

z , l  = -iwfA1/2gH 

is significant, offsets (over a layer of width 6) between 
the basin interiors are allowed, and the tide will not 
generally be in global equilibrium. As this ratio goes to 
zero (e.g., as w 4 0), the global self-consistent equi- 
librium form will be approached. 

The linear dependence of z , lZ  on frequency is a sim- 
ple, but powerful, description of the large-scale response 
of the ocean and merits confirmation (cf. Proudman 
1960). An obvious way to proceed is to examine ex- 
plicitly the ocean’s response at other frequencies, and 
an obvious frequency to consider is that of the lunar 
monthly tide Mm. The zonally averaged ocean response 
at the Mm frequency (and for the Mm amplitude) com- 
puted with the simple analytical model is shown in Fig. 
8a. It is indeed noticeably closer to equilibrium than the 
comparable Mf results (Fig. 7b). Numerical solution of 
the shallow water equations for the schematic flat-bot- 
tom ocean model yields very similar results (Fig. 8b). 

Basinwide zonal averages of Mm estimated from TIP 
altimeter data (Fig. 8c) are also closer to equilibrium 
than the empirical Mf estimates of Fig. 2a. While the 
empirical estimates for both Mf and Mm do deviate 
significantly more from equilibrium than the corre- 
sponding results for the schematic ocean basins, the 
main basin-scale pattern, and its dependence on fre- 
quency, is captured well by even our simplest model. 

To explore further the frequency dependence of the 
nonequilibrium response we solved the linear shallow- 
water equations for the schematic flat-bottom ocean of 
Figs. le-lf for a range of nontidal frequencies, in all 
cases forced with the Mf gravitational potential. Solu- 
tions were obtained with two linear friction coefficients: 
the high friction case we have considered so far (I = 
0.03), and a low-friction case with r = 0.001. To sum- 
marize results for all of these calculations we plot the 
difference between zonal averages at the equator in the 
Pacific and Atlantic basins in Fig. 9. At the lower fre- 
quencies relevant to the LPT, our simplified analytical 
model reproduces the frequency dependence of both am- 
plitude and phase of the Atlantic-Pacific equatorial dif- 
ference quite well. Both the analytical and numerical 
models show that the interbasin elevation differences 
go to zero at low frequencies, with a reduction in the 
amplitude of the nonequilibrium response by roughly a 
factor of 2 for Mm relative to Mf. 

For frequencies below about 0.1 cpd there is essen- 
tially no difference in Fig. 9 between the high and low 
friction cases. This is consistent with our analytical re- 
sults, which show that friction should enter only in de- 
termining the width of the boundary layer over which 
elevation differences are accommodated. Insensitivity 
to dissipation is further confirmed in Fig. loa, which 
shows zonal averages of a numerical solution for the 
schematic model, computed with the smaller friction 
coefficient ( r  = 0.001). The large-scale pattern in mid- 
latitude basin interiors is changed little from the stan- 
dard high friction case (Fig. 2c). Yet aside from these 
basin-scale patterns, there are in fact significant differ- 
ences between the high- and low-friction solutions. In 
particular, with Y = 0.03 there is no evidence for Rossby 
waves in the elevations (Figs. le-f), nor in the corre- 
sponding currents (not shown), while the low-friction 
solution has large-amplitude Rossby waves in all basins. 
Thus, at LPT frequencies friction can significantly damp 
resonant Rossby waves, but it evidently has minimal 
effect on the large-scale pattern of interbasin elevation 
variations. These large-scale interbasin LPT elevation 
variations will thus not be particularly informative about 
the dissipation of low-frequency barotropic ocean mo- 
tions. 

More significant changes in elevations occur in the 
Arctic and Southern Oceans when friction is reduced, 
suggesting that LPT elevations in these basins are likely 
to be more directly informative about low-frequency 
barotropic dissipation than are the basin-scale elevation 
deviations we have focused on. In fact, model results 

. 

’ 
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FIG. 7. Estimates of global (zonally averaged) Mf response from (2)-(3) (a) with zy, z:, and the impedances 

Z$ computed by zonally averaging numecica! solutions to the shallow-water equations, and (b) with the 
corresponding analytical approximations (c, [y ,  and the corresponding impedances). 

for the high-friction case (Fig. 2c) more closely match 
the empirical T/P estimates (Fig. 2a), suggesting a rel- 
atively high value for effective dissipation, but this issue 
needs further study. 

For higher frequencies (>0.1 cpd) friction does 
have a significant effect on the zonally averaged el- 
evations, as the rapid variation with frequency of 
equatorial elevation differences in Fig. 9 shows. 
These rapid variations result from resonant normal 
modes, a topic which has been raised in a number of 
previous discussions of the LPT (Wunsch 1967; Lu- 
ther 1980; Miller et al. 1993; Wunsch et al. 1997). 
Over the full frequency band of Fig. 9 there surely 
exist many oceanic normal modes. For a water cov- 
ered earth with constant ( ~ 4 0 0 0  m) depth, gravita- 
tional and vorticity modes are divided into two cleanly 
separated branches, with an accumulation point at 
zero frequency for vorticity modes and a gravest grav- 
itational mode with a period of around 1 day (e.g., 
Longuet-Higgins 1968; Marchuk and Kagan 1989). 
For realistic ocean basin geometries, Platzman et al. 

(1981) found no modes of gravitational character with 
periods of more than about 40 h, and Gotlib et al. 
(1  987; see also Marchuk and Kagan 1989) report that 
the gravest gravitational mode has a period of about 
100 h (0.25 cpd). Below 0.1 cpd modes are almost 
certainly dominated by vorticity, have relatively short 
spatial length scales, and as a consequence probably 
have little effect on large-scale interbasin elevation 
variations. 

Whether individual modes are evident in the ocean 
depends in part on whether they are sufficiently sharp 
(sufficiently high Q) in the vicinity of forcing frequen- 
cies, which depends, of course, on dissipation. For a 
4000-m ocean the two friction coefficients used in Fig. 
9 correspond to timescales of T, = 50 days ( r  = 0.001) 
and T, = 1.5 days (Y = 0.03), implying a resolution in 
frequency of about 0.003 cpd and 0.1 cpd respectively. 
In the low-friction case there is clear evidence for nor- 
mal modes in the frequency band 0.1-0.3 cpd. These 
modes are revealed by the significant variations of in- 
terbasin equatorial elevation difference for frequencies 

L : L  
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F k i .  8. Zonally averaged Mm solutions, computed from (a) the simple analytical model, (b) numerical solution of the shallow-water 

equations in a schematic ocean, and (c) averaging the T/P empirical estimates. 
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separated by more than the inverse dissipation timescale 
of 0.003 cpd. In the dissipative ( r  = 0.03) case (which 
is perhaps more relevant to the real ocean) the effect of 
individual resonant modes in this band is completely 
smoothed out. 

In contrast, at frequencies below 0.1 cpd-the regime 
dominated by vorticity modes-no resonant modes are 
evident in Fig. 9 for either high or low friction. The 
elevation response below 0.1 cpd for the low-friction 
case is smooth over a band that is wide in comparison 
with the resolution implied by the frictional damping 
timescale. This implies that resonance of vorticity 
modes, which must be prevalent within this band, does 
not contribute significantly to the large-scale elevation 
response we focus on here. This conclusion is also sup- 
ported by the weak dependence on friction of the zonal 
Mf responses obtained from the two-dimensional nu- 
merical solutions (Figs. 2c and 9a). Individual vorticity 
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modes near the Mf frequency are probably excited only 
very weakly in the LPT response because their spatial 
structure is poorly matched to the curl-free zonal forc- 
ing. Any attempt to explain the large-scale nonequilib- 
rium tidal elevation response in terms of nearly resonant 
Rossby waves, which Wunsch (1967) reasonably pro- 
posed for some shorter-scale features in the Pacific 
Ocean, must clearly be inadequate at these scales. This 
conclusion is consistent with that of Miller et al. (1993). 

Our analysis of the low-frequency response of an in- 
dividual basin to forcing by flow through a zonal bound- 
ary suggests that in the absence of rotation (f = 0) the 
entire basin will rise and fall essentially as one, with 
no offset at the mouth [see (17)]. Running the two- 
dimensional numerical model with f = 0 confirms that 
at the Mf frequency individual basin responses are flat 
and the global solution is very nearly in equilibrium 
(Fig. lob). At somewhat higher frequencies gravita- 

I =-*O/ ' 

0 50 
-30 

-50 
Latitude 

FIG. IO. Zonal averages of Mf elevations for each basin computed from (a) the numerical solution for the schematic ocean, with friction 
reduced by a factor of 30; (b) the numerical solution for the schematic ocean with no rotation; and (c) the simple analytical model, with 
the Arctic Ocean omitted. I 
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tional normal modes are more easily excited, and sig- 
nificant deviations from equilibrium can occur; see, for 
example, Fig. 11 of Ponte (1997), which shows a non- 
equilibrium global response to large-scale forcing for f 
= 0 at periods around 5 days, close to the period of the 
gravest normal mode found by Gotlib et al. Thus, while 
low-frequency gravitational modes are almost certainly 
more compatible with the spatial structure of the LPT 
forcing, these apparently have resonant frequencies well 
above that of Mf. We conclude that the LPT response 
cannot reasonably be explained in terms of resonance 
of a small number of normal modes, of either gravita- 
tional or vorticity character. Thus, as noted by Wunsch 
et al. (1997), a normal mode framework is not partic- 
ularly enlightening in this case. 

Miller et al. argued that Mf waves generated in the 
Arctic where the LPT potential is maximum propagate 
as gravity waves to the Pacific by way of the Atlantic 
and Indian Oceans. We can easily examine the role of 
the Arctic with our simplified model. To close the Arc- 
tic, we need only eliminate one unknown (v,,) and one 
(the last) equation from (1 6). The resulting estimate of 
zonally averaged elevations (Fig. 1 Oc) indeed shows that 
inter-basin Mf differences are significantly reduced 
when the Arctic is closed off. Two-dimensional nu- 
merical calculations for a schematic global ocean with- 
out an Arctic Ocean produce similar results. 

Our results confirm the importance of the Arctic, but 
do not support the conceptual model of Miller et al. The 
theory for interconnected basins embodied in (16) is 
essentially just the statement that elevations and mass 
fluxes must match at basin boundaries. We have further 
shown that at LPT frequencies a closed basin will be 
nearly in equilibrium with the gravitational forcing, 
while the response to forcing by flow through the north 
or south boundary of the basin is explained well by an 
essentially kinematic theory, with quasi-static currents 
in geostrophic balance with deformations of the free 
surface near the mouth of the basin. No element in this 
model invokes (or even allows) wave propagation in 
any manner. Miller et al. (1993) noted that in numerical 
solutions to the shallow-water equations Mf phase lags 
in the Pacific increased when g was reduced, but de- 
creased when f was reduced. The first trend is consistent 
with their interpretation of the LPT response in terms 
of gravity waves, and the second trend shows that the 
non-equilibrium response cannot reasonably be ex- 
plained in terms of propagation of Rossby waves, which 
would have reduced phase speeds for slower rotation. 
However, both trends are also predicted by our (17), 
which is derived from an essentially static kinematic 
theory. Thus, while the observed progression of Mf 
phase lags between basins may be suggestive of prop- 
agation, it is misleading, in our view, to think of waves 
being generated in a single basin and then propagating 
basin to basin around the globe. 

We conclude that description of the Mf tide in terms 
of Rossby or gravity waves does not offer much insight 

into the cause of the large-scale deviation of elevations 
from equilibrium. Of course this does not imply that 
Rossby or gravity waves are inapplicable to the theory 
of long-period tides. There are many other senses in 
which the LPT diverge from the simple equilibrium 
form, and at shorter spatial scales both planetary and 
topographic Rossby waves are likely to be important. 
Moreover, LPT currents are of necessity nonequilibri- 
um, and for these quasigeostrophic dynamics and to- 
pographic effects must certainly be important. 

Our simple model for the nonequilibrium elevation 
response of the ocean to forcing by the LPT potential 
may also help to explain some aspects of the oceanic 
response to atmospheric pressure variations. At periods 
longer than a few days much of the pressure-driven sea 
level variability is reasonably isostatic, with the rela- 
tionship between atmospheric pressure and elevation 
fairly well approximated by a local inverted barometer 
response (e.g., Wunsch and Stammer 1997). However, 
at periods of around 4-6 days deviations from the in- 
verted barometer response are anomalously large (Lu- 
ther 1982; Woodworth et al. 1995; Ponte 1997; Hirose 
et al. 2001). Luther (1982) suggested that much of the 
atmospheric forcing in this band was probably associ- 
ated with the approximately 5-day Rossby-Haurwitz 
mode in the atmosphere (Madden and Julian 1972). Lu- 
ther further suggested that the anomalous deviation from 
equilibrium in the ocean response might be associated 
with excitation of one or more barotropic normal modes 
of the Pacific basin. 

Global-scale atmospheric pressure variations, in par- 
ticular the zonal wavenumber m = - 1  Rossby-Haur- 
witz mode, would also be expected to drive flow be- 
tween basins. The mechanism we propose to explain the 
nonequilibrium LPT response could thus also help to 
explain coherent basin-scale deviations from the in- 
verted barometer response for periods around 5 days. 
We thus suggest that the observed narrow-band anomaly 
in oceanic response is a reflection of the unusually large 
spatial scale of the atmospheric forcing near this period, 
rather than any oceanic resonance. This suggestion is 
consistent with the conclusions of Ponte ( 1997) and Hi- 
rose et al. (2001), that any oceanic resonance effects 
must be weak, and that large-scale adjustment of the 
mass field must play an important role. Using a baro- 
tropic ocean model forced by atmospheric pressure var- 
iations, Hirose et al. (2001) found a nonequilibrium 
ocean response that was dominated by step-like offsets 
between basins, essentially the same pattern we have 
identified in the nonequilibrium LPT. Because the spatial 
structure of the Rossby-Haurwitz mode is quite differ- 
ent from the LPT gravitational potential, and because 
the frequency of this atmospheric forcing is higher 
where gravitational modes may have a more significant 
impact on the oceanic response, our simplified analytical 
model may not be directly applicable in all details. How- 
ever, it seems clear that the general mechanism devel- 
oped here will be relevant to any large-scale forcing 
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that can drive a significant interbasin mass flux, in- 
cluding in particular the 5-day atmospherically forced 
response. 

We have focused on deviations of LPT elevations 
from equilibrium at basinwide scales, where kinematics 
and geostrophy dominate and friction plays a secondary 
role. At these scales estimates of LPT from altimetry 
are unlikely to provide useful constraints on the dissi- 
pation of low-frequency barotropic ocean motions. 
However, as altimeter data continue to accumulate, ac- 
curacies of empirically estimated LPT elevations will 
increase, and finer-scale features will be resolved. This 
will open the possibility for a number of interesting 
additional studies. Most obviously, what is the nature 
of the LPT currents? To what extent are these dominated 
by propagating and trapped Rossby waves? In contrast 
to the large-scale elevations the amplitudes of these will 
be sensitive to the effective dissipation, which must de- 
pend heavily on stratification and nontidal ocean mo- 
tions. To the extent that this is true, even barotropic LPT 
currents may conceivably be quite variable in time. Our 
analysis here suggests two other possible effects of fric- 
tion, which might be more readily and directly observ- 
able in the altimetry data. First, while dissipation has 
little effect on low-latitude interbasin elevation differ- 
ences, it appears to have a more significant effect on 
deviations of the LPT from equilibrium in the zonally 
connected Southern Ocean. Second, we have shown that 
the width of the boundarv lavers over which basin off- 

conclusions would hold for the same equations in a 
planar region, as assumed below). Boundary conditions 
(BC) are specified normal volume flux on the boundary 
fi . U = V,, where B is the outward-directed normal to 
the boundary, and V,  is a specified real function of 
position on the boundary % (i.e., we assume that all flow 
across the boundary is in phase). The surface area of 
the basin is denoted by A, and the net volume flux is 
VT = Jg V,  dl. 

We first show that as w + 0 the elevation 5 ap- 
proaches a limit of the general form 

where v1 is real and independent of frequency. Aver- 
aging 5 over the model domain, using (3) and Gauss's 
law we obtain ( 5 )  = iVT/wA. As becomes unbounded 
in the low-frequency limit of interest, it is convenient 
to replace 5 with v = w i .  Then the basinwide average 
(7) = o(J) = iVJA is a fixed purely imaginary constant 
(independent of frequency) and U, 77 satisfy a slightly 
modified version of (2)-(3): 

(OF + iw21)U = - c 2 V v  V . U  = -iv, (A2) 

with the same BC on U. 

domain as an asymptotic series in w 
Expanding the solution to (A2) at each point in the 

043) v(o, 4; 0) = vow, 6) + w v , ( o ,  4 )  + . . . 
. I <  

U(O, 4; w )  = U,,(O, 4) -t wUl(8, 4 )  + * . . , (A4) 
substituting into (A2), and collecting terms of like pow- 
ers in w, we obtain 

sets are accommodated will depend on friction. Careful 
analysis of the LPT in the Southern Ocean, and of the 
boundary layer widths at basin offsets, might well pro- 
vide some constraint on the dissipation of barotropic 
ocean currents at periods of weeks to months. vvo = 0 ('45) 
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, APPENDIX 

Response of a Closed Basin to Flow through a 
I Zonal Boundary 

v . U,) = -iv, (A6) 

FU, = - c 2 V v , .  (A71 
Equation (A5) implies 77, is constant, so we must have 
q 0 ( O ,  4) = i'VJA, and (A6) becomes 

(A8) 
Equation (A8), together with (A7) and the BC on normal 
transports (which do not depend on w, and hence must 
apply to the limiting zero order velocity U,) determine 
the pair U,, v l .  Because (A7)-(A8) and the BC are all 
real, the solution v ,  must also be real. Thus to first order 
in w 

V . U, = VT/A. 

S(O,  4; 0) = w-l[vo + w v , ( e ,  4)i 
= i V , / A o  + ~ ~ ( 0 ,  $), ('49) , In this appendix we derive the low-frequency ap- 

through the boundary, and we use a scaling analysis of 
the shallow-water equations to justify more formally the 
approximate basin response (9). 

We consider the linear shallow-water equations (2)- 
(3 ) ,  initially in a general domain (on the sphere, but our 

, proximation (5) for elevations in a basin forced by flow proving (AI ). Note that (A7)-(A8) define a steady-state 
problem (independent of w),  with the spatially uniform 
source term for the continuity equation compensating 
for the steady inflow through the southern boundary. 

For the rectangular basin with a boundary at the 
southern edge (as in section 3b), VT = -V,l, establish- 
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ing (5) .  To qualitatively understand the steady-state so- 
lution ~ ~ ( 0 ,  +) we consider a scaling analysis of (A7)- 
(A8). To be explicit we assume a rectangular basin in 
the x, y plane with y E [-L, L ] ,  x E [0, L], and uniform 
flow V ,  = 1 through the southern edge of the domain 
(so A = 2L2, and VT = LV,) .  We drop subscripts on 
v1 and U,, and to slightly simplify algebra we make a 
beta-plane approximation f = Py. A second-order equa- 
tion for 77 is readily derived by eliminating volume trans- 
ports. In dimensional form this is 

To nondimensionalize we take L as the length scale, and 
the average elevation change across the mouth of the 
basin (see section 4): 

where 

f o  = PLI 
as a scale for 77. Nondimensionalizing as (x, y) = L(x', 
yf) ,  '17 = z,q f ,  writing 

E = K / f o ,  (A 12) 
substituting into (AlO), simplifying and dropping the 
primes, we obtain (after noting that in nondimensional 
units f / . f ,  = y E [ - 1 ,  11): 

= € 2  + y2. (-413) 
In nondimensional form the velocities (scaled by V,)  
are determined from 

-2(y2 + E2)U = (€77, + Y77J (A14) 

(AlS) -2(y2 + E')V = (-yqx + E T , ) ,  

and so the boundary conditions are 

-77, - €77, = 2 + 2 ~ '  y = -1 (A16) 

77, - €77, = 0 y = l  ('417) 

€77, + Y77" = 0 x = 0, 1. (A18) 

We consider the low-friction case E << 1. Then away 
from the equator, where E << y, (A13) reduces to 

2E 

Y 
4% + 77,,) + 77, - -77, = Y2. (A19) 

Omitting terms involving E, we obtain an equation for 
the interior solution 

77, = Y 2 .  (A201 

Note that this remains valid at the equator 0, = 0), but 
breaks down where y = E. Boundary layers are expected 
at y = 2 1  and x = 0, but not at x = 1 (see below) 
where the BC can thus be approximated (again dropping 
terms of order E )  as 

Y77, = 0. (A21) 

('422) 

satisfies (A20) and (A21), and thus provides an ap- 
proximate solution (with error of order E )  for the interior 
of the domain. The constant k = 1/6 (in the limit E + 
0) is determined by the requirement that the average 
over the domain of ~ ( x ,  y )  must be zero. 

The interior solution satisfies the original BC at x = 
1, to within order E. To satisfy BC on the remaining three 
sides boundary layers with shorter length scales are re- 
quired. Let 6 be the boundary layer length scale at the 
southern (or northern) edge of the domain. For 77,) to be 
of order one (and hence allow both the BC and interior 
solution to be matched) the nondimensional scale in the 
y direction must satisfy s - 2 ~  = O(1) or 6 = In 
dimensional units 6 = LS = ~ ~ 1 ' 2  = L(K/fo)l/2 = ( L K /  
P)' /* .  Dropping terms in E, and noting that the term in- 
volving 77, is of order the nondimensional equation 
in these boundary layers is 

(A231 

where 8v = y. For the southern boundary layer, where 
uniform inflow is specified, one BC for the layer can 
be obtained from the appropriate approximation to 
(A16), vr = -2. This implies that along the southern 
edge 7 = 2(1 - x )  + k,  where again k = 1/6. This 
shows that 77 at the southern edge increases linearly to 
the west, as assumed in deriving the elevation scale zI 
in section 3b. 

Considering the balance in the southern boundary lay- 
er further justifies our derivation of zI. From (A14) and 
(A1_5) in the southern boundary layer U = O ( E - ' / ~ )  = 
O(8-l) while V = O(1). Thus, flow in the boundary 
layer is dominantly zonal, and the total mass flux is 
approximately independent of the boundary layer thick- 
ness (and hence the friction coefficient). This is con- 
sistent with our conclusion that essentially all of the 
inflowing fluid is transported zonally through this layer. 
Substituting these estimates for velocity scales into the 
nondimensional zonal momentum balance equation (yU 
+ EV = - 2 q )  shows that EV is negligible, and that 
the balance in the boundary layer is geostrophic. 

Equation (A23) is identical to the one-dimensional 
heat conduction equation derived by Csanady (1 978) 
for the wind forced mean circulation in a coastal zone 
of variable depth. Ignoring the forcing (which can be 
eliminated by subtracting the interior solution) in di- 
mensional form (A23) is 

(A241 

It is readily verified that 

~ ( x ,  Y) = k + (x - l)y2 

77"" + 77, = 1, 

rl,, + (Pfm77, = 0, 
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while Csanady’s equation in the boundary layer at a 
coast with constant cross-shore slope s = d,H would 
be (for the x axis along shore) 

Csanady coined the term “arrested topographic wave” 
for the solution to (A2.5); by analogy solutions to (A24) 
could be called “arrested Rossby waves.” 

There is also a boundary layer on the west side of 
the domain, though this is not important to the large- 
scale LPT elevation response. Here the nondimensional 
layer width is E, or in dimensional units KIP. The non- 
dimensional equation for this boundary layer is 

r l x x  + r l x  = 0, 
where EX = x. Equation (A26) implies that vX  e - x ,  
showing that this boundary layer could only occur on 
the west side of the basin, as we noted in deriving the 
interior solution. Note that this is essentially the stan- 
dard Stommel frictional boundary layer (e.g., Pedlosky 
1987). Necessary BC for all boundary layers are readily 
determined from (A16)-(AI 8) and the interior solution 
(A22), and the boundary layer equations [(A23), (A2611 
can be solved by standard means. These details are not 
important for our purposes here and will be omitted. 

The interior solution is dominated by nearly geo- 
strophically balanced flow from the western edge into 
the interior, with uniform divergence V . U = 1 (with 
some outflow into the south and north boundary layers). 
Becuase there is no inflow on the western boundary, all 
of the mass required to account for the interior diver- 
gence must indeed be transported from its source along 
the southern edge, through the boundary layers to the 
western edge. 

Our analysis in this appendix is strictly relevant to 
the low-frequency, low-friction case w/ f << E << 1. In 
the case of Fig. 5 ,  E = .16, implying a nondimensional 
boundary layer thickness of E ” ~  = 0.4. Thus, the north 
and south boundary layers, together with the zone where 
E = y so that (A20) does not hold, are a substantial 
fraction of the model domain. The interior solution 
(A22) is thus not so clear in Fig. 5.  When the equations 
are solved at low frequencies (e.g., w = 10-7s-’)  with 
a smaller friction coefficient so that E = .01, boundary 
layers are much smaller and the interior solution is very 
close to that predicted by (A22). However, if we solve 
the shallow-water equations with a reduced friction co- 
efficient at the Mf frequency, the analysis of this section 
also fails, since in this case E = K/ f ,) << dfo. For small 
K, solutions at the Mf frequency are dominated by res- 
onant Rossby waves, obscuring the low-frequency es- 
sentially steady geostrophic flow discussed here. We 
emphasize however that friction determines only the 
widths of the boundary layers. not the scale of the el- 
evation change across the layer. It is this latter scale, 
which can be derived from considerations of geostrophy 
and kinematics, that determines the large-scale response 
to LPT forcing. 
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