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Abstract

Both man-made or natural objects contain repeated geometric elements that can be interpreted as

primitive shapes. Plants, trees, living organisms or even crystals, showcase primitives that repeat

themselves. Primitives are also commonly found in man-made environments because architects

tend to reuse the same patterns over a building and typically employ simple shapes, such as

rectangular windows and doors. During my PhD I studied geometric primitives from three points

of view: their composition, simulation and autonomous discovery.

In the first part I present a method to reverse-engineer the function by which some primitives

are combined. Our system is based on a composition function template that is represented by a

parametric surface. The parametric surface is deformed via a non-rigid alignment of a surface

that, once converged, represents the desired operator. This enables the interactive modeling of

operators via a simple sketch, solving a major usability gap of composition modeling.

In the second part I introduce the use of a novel primitive for real-time physics simulations. This

primitive is suitable to efficiently model volume-preserving deformations of rods but also of more

complex structures such as muscles. One of the core advantages of our approach is that our

primitive can serve as a unified representation to do collision detection, simulation, and surface

skinning.

In the third part I present an unsupervised deep learning framework to learn and detect primitives.

In a signal containing a repetition of elements, the method is able to automatically identify the

structure of these elements (i.e. primitives) with minimal supervision. In order to train the network

that contains a non-differentiable operation, a novel multi-step training process is presented.
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Résumé

Les objets naturels ou artificiels contiennent des éléments géométriques répétés pouvant être

interprétés comme des formes primitives. Les plantes, les arbres, les organismes vivants ou

même les cristaux représentent des primitives qui se répètent. Les primitives se retrouvent aussi

couramment dans les environnements créés par l’homme, car les architectes ont tendance à réutiliser

les mêmes modèles sur un bâtiment et utilisent généralement des formes simples, telles que des

fenêtres et des portes rectangulaires. Au cours de ma thèse, j’ai étudié les primitives géométriques

sous trois angles: leur composition, leur simulation et leur découverte autonome.

Dans la première partie, je présente une méthode pour retrouver la fonction par laquelle certaines

primitives sont combinées. Notre système est basé sur un modèle de fonction de composition

représenté par une surface paramétrique. La surface paramétrique est déformée via un alignement

non rigide d’une surface qui, une fois convergée, représente l’opérateur souhaité. Cela permet de

modéliser de manière interactive les opérateurs via une simple esquisse, ce qui résout un problème

majeur de facilité de modélisation de la composition.

Dans la deuxième partie, je présente l’utilisation d’une nouvelle primitive pour les simulations de

physique en temps réel. Cette primitive convient pour modéliser efficacement les déformations

des cordes préservant le volume, mais également celles de structures plus complexes telles que les

muscles. L’un des principaux avantages de notre approche est que notre primitive peut servir de

représentation unifiée pour la détection de collision, la simulation et la déformation de peau.

Dans la troisième partie, je présente un cadre d’apprentissage en profondeur non supervisé pour

apprendre et détecter les primitives. Dans un signal contenant une répétition d’éléments, le

procédé est capable d’identifier automatiquement la structure de ces éléments (c’est-à-dire des

primitives) avec une supervision minimale. Afin de former le réseau qui contient une opération

non différenciable, un nouveau processus d’apprentissage en plusieurs étapes est présenté.
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I am grateful to Andrea Tagliasacchi for the tremendous amount of time he has invested in advising

me. I have learnt a lot by working with him and his work ethic has inspired me to give the best of

myself during my PhD and forward.
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Chapter 1

Introduction

(a) (b) (c)

Figure 1.1: Examples of recurring primitives in nature. (a) A pine cone is composed on dozens
of instances of the same primitive shape. (b) The skin of a snake exhibits a repetition of small
diamond-shaped scales. (c) Bees build honeycomb structures that are made of a single volumetric
primitive. (Sources: pratheep.com, Care SMC, Dominic Heard)

1.1 Motivation

What is a geometric primitive? Looking up the word “primitive” in a dictionary does not give a

clear idea. A primitive is defined as something “simple”, “basic”, “elemental”, “unrefined”, or “not

derivative”. But the definition that is the most relevant to my research can be found in [Collins,

2004]: “a form from which another is derived”. Primitives are, in fact, defined not by their intrinsic

properties but by their role within a larger structure. In this research, we consider geometric

primitives to be recurring patterns or shapes that compose an object. Just looking through a

window and observing how objects are composed should convince the reader that primitives are

very common in our world. But the concept of geometric primitives is also important in computer

graphics and computer vision, from geometric modeling to pattern recognition and others. We

will then have a closer look at the role of primitives in these three domains: nature, computer

graphics and computer vision.
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(a) (b) (c)

Figure 1.2: Examples of fractals in nature. (a) The Romanesco Broccoli has a fractal-like shape
with 4 levels of subdivisions. (b) The branches of a tree split in smaller versions of themselves. (c)
A stellar dendrite snowflake that is composed of a central hexagon whose corners spawn another
hexagon each. Each secondary hexagon spawns small hexagons at each corner. (Sources: Albrecht
Fietz, Sunil Patel, SnowCrystals.com)

Primitives in nature

Repetitions & tessellations. We find plenty of instances of repetitions of elements in nature.

Animals’ skin often exhibit a recurring pattern. This is due to various reasons, involving chemistry

[Kondo, 2002] and natural selection [Cott, 1940; Endler, 1980]. For example the skin of a snake

is covered by small diamond-shaped scales; see Figure 1.1b. Similarly, many plants’ structures

are composed of the same primitives with very little variation stemming from the randomness

of the natural process. For instance, pine cones are mainly composed of dozens of instances of

a single primitive; see Figure 1.1a. The same thing can be observed for a spiral aloe or many

other plants. The leaves of a tree can be seen as randomly varying instances of the same primitive.

Bees build hexagon-shaped structures called honeycombs in order to store larvae and honey; see

Figure 1.1c. The striking coherence of this structure can be explained by the fact that this shape

is a near-optimal solution to the problem of maximizing the cells volume for a given amount of

wax [Hales, 2001; Weaire and Phelan, 1994]. One can think of primitives as nature’s response to

an optimization problem. Because a shape is optimal for a certain function, it will naturally occur

in many places.

Fractals. Many plants are not only structured repetitions of the same primitive but also self-

similar at different scales. Shapes that are infinitely self-similar and have a fractal dimension are

called fractals [Mandelbrot, 1982]. In nature however, infinite repetition is not attainable but there

are many examples of few levels of recursion. For instance the Romanesco Broccoli can roughly be

seen as a cone-shaped primitive; see Figure 1.2a. But this cone is filled with smaller cone-shaped

elements. And these are themselves filled with similar elements. Trees often exhibit a fractal-like

growth where the trunk splits into a few branches, each branch splits into smaller branches, etc; see

Figure 1.2b. The fern leaves are composed of leaflets that are themselves composed of subleaflets

and look similar to a whole leaf. All snowflakes are different but a lot of them exhibit some form

of fractal-like shape. This is the case of the stellar dendrite in Figure 1.2c that is formed of three

levels of hexagons.

2



Primitives in computer graphics

Efficient rendering. Three-dimensional objects are often represented by a mesh model that

explicitly describes its surface [Botsch et al., 2010]. A mesh is a collection of vertices and polygonal

faces. Faces are usually simple geometric primitives such as triangles or quadrilaterals. One of the

reasons this representation is popular is that rendering triangles can be done very efficiently using

a rasterizer [Akenine-Moller et al., 2018]. Rasterizers are typically implemented to run on GPUs

that are designed to execute Single Instruction Multiple Data (SIMD). The OpenGL graphics API

only offers to render a few primitives: points, lines, triangles, etc [Shreiner et al., 2013].

Figure 1.3: (left) A CSG composition tree. Primitives are combined pairwise using boolean
operations. In the right branch, cylinders are combined by a union operator (∪ symbol). In the
left branch, a cube and a sphere are combined by intersection (∩ symbol). At the root the final
object is produced by computing the difference between two shapes (− symbol). (right) CAD
softwares use CSG operations to model complex objects from simple primitives. (Sources: Zottie,
Frank Hull)

Composition modeling. In vector graphics, images are defined by combining together simple

primitives (circles, polygons, curves, etc). These primitives can combined in many ways such

as union, difference or intersection. This is exactly the same principle that is applied to 3D in

constructive solid geometry (CSG) [Requicha and Voelcker, 1977]; see Figure 1.3. Users can use

simple primitives to model complex objects or scenes. L-systems use simple grammar rules to

generate realistic shapes such as plants [Prusinkiewicz et al., 1996; Prusinkiewicz and Lindenmayer,

2012] or buildings [Parish and Müller, 2001] with simple primitives.

Scene compression. Streaming of 3D data is becoming popular and has applications in scientific

visualization, cultural heritage, digital entertainment, healthcare, robotics, etc. One major

challenge is the size of the data that needs to be transferred. Because bandwidth is limited it can

cause latency issues which may not be acceptable for some applications, especially for ones where

there is a real-time component involved. It is possible to use traditional compression methods but

a more efficient way to compress scene data would be to leverage the repetitions and coherency in

the geometry of our world. It is possible to represent scenes accurately with simple primitives e.g.

man-made environments can often be described by a compact set of recurring elements, such as

the windows of a building, or the arrangement of offices and desk in a university. These primitives

can be detected or even be learnt and have a much smaller footprint than their corresponding

point cloud [Kaiser et al., 2018; Tang et al., 2018a].

3



Figure 1.4: Visualization of features maps of a convolutional neural network. (left) The first layers
detect edges and intensity contrasts. (middle) The mid-level layers build abstraction upon the
previous layers and respond to textures and patterns. (right) The high-level layers identify the
present of objects they are trained for in the mid-level feature maps. (Source: [LeCun and Ranzato,
2013])

Physics simulation. Primitives are often used in physics simulation. In the finite element

method (FEM) [Zienkiewicz et al., 1977], complex structures are decomposed into tetrahedra

or hexahedra to homogenize the computations. In Lagrangian fluid simulation methods fluids

are represented with particles that interact with each other and combine to represent a fluid

[Ihmsen et al., 2014]. We can simulate complex objects by discretizing them with simple primitives.

This is demonstrated by NVIDIA’s FleX [NVIDIA, 2018], a popular physics simulation library

based on position-based dynamics [Müller et al., 2007; Macklin et al., 2014]. In this framework,

everything including soft bodies, cloth and fluids is represented as collections of particles connected

by constraints. Using simple primitives also makes a physics engine simpler because there no need

for specialized functions for each object. On GPU it is also more efficient to execute the same

function on all the objects. Finally primitives are also used for collision detection [Ericson, 2004].

Testing for collisions between two arbitrary shapes is expensive, so objects are often approximated

by simpler primitives [Ritter, 1990; Larsen et al., 2000; Rimon and Boyd, 1992]. For instance

the bounding boxes of two objects can be used [O’Rourke, 1985]. It is also common to use

bounding volume hierarchies (BVH) [Kaplan, 1985; Kay and Kajiya, 1986] where objects are

roughly approximated by one primitive and if the collision test is positive the object’s shape is

refined into several primitives, which can themselves contain more levels of hierarchy.

Primitives in computer vision

Pattern recognition. The human visual system is built upon primitives. The cells connected to

the retina respond to small circles within their respective regions. By measuring the response of
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cells of the visual cortex to visual stimuli, Hubel and Wiesel [1959] discovered that these cells build

upon several dot detections to detect lines. They also identified complex cells that use groups of

simple cells to detect the movement of lines [Hubel and Wiesel, 1962]. Similarly, one could say

that computer vision uses simple “primitives” to detect complex patterns and shapes [LeCun et al.,

2015]. Nowadays convolutional neural networks (CNN) are the state of the art method for object

detection tasks [Liu et al., 2018]. CNNs learn convolutional filters to detect patterns in images.

These filters detect recurring spatial patterns, i.e. primitives in the image domain, in pictures of

objects they are trained to detect. On the first layer, the filters convolving on the input images are

in the image domain. Typically the first layers’ filters respond to low-level patterns such as edges

and contrast. The ones in the hidden layers respond to primitives in the feature domain. The

deeper they are, the higher-level patterns they will be looking for; see Figure 1.4. For instance

for face detection, the next layer would be looking to find elements such as noses or eyes. While

the last layer should be using looking for a arrangement of eyes, noses, mouth and ears to finally

detect a face.

Scene simplification. Primitives can also serve as geometric proxies to simplify a scene and

make it easier to understand. In one of the earliest examples of this, Roberts [1963] attempted to

reconstruct a three-dimensional object from a single photograph. His method was based on edge

detection which were then converted to simple polygonal primitives to reconstruct the 3D object.

This method was only applicable to simple shapes with planar faces but more complex objects

can be simplified as aggregates of simple primitives. Fischler and Elschlager [1973] proposed a

system where objects like planes are abstracted by a template made of generalized cylinders. This

template is not a fixed 3D model and has constrained parameters that vary to match images.

Similarly, in [Brooks et al., 1979] objects are decomposed as parts such as eyes and noses that

are linked by spatial relations. This serves as a template that can be detected in images. It is a

similar idea that is exploited in the recent work on “capsule networks” [Sabour et al., 2017; Hinton

et al., 2018].

Body tracking. Body tracking has a wide variety of applications including computer-human

interactions, performance capture, entertainment and telepresence. Thanks to the introduction

of low-cost depth sensors on the consumer market, several recent methods propose to tackle the

problem from a geometric alignment point of view. These generative techniques require to have

a geometric template that can be aligned to the sensor data. One of the problems with these

methods is that their template is either inaccurate or inefficient. Typically, implicit templates

are used because of their ability to efficiently compute distance queries. But they require a lot

of primitives to represent a hand accurately, which makes them inefficient. To solve this, Tkach

et al. [2016] represent their hand template with a sphere-mesh, a representation that allows good

accuracy with very few primitives.

1.2 Contributions

With the target of modelling a variety of different objects and shapes with simple primitives, we

studied how to combine these primitives. Implicit composition operators are very useful for this

but they are complex to design. For this reason, in our first project we introduced a method
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to design these operators with simple sketches, which is accessible even to non-technical users.

In this first project we often used “tapered capsules”, a primitive that has the ability to model

a lot of shapes by varying its few degrees of freedom. This primitive is also very efficient for

distance queries and, most importantly, it can preserve its volume while being stretched. For these

reasons, in our second project we applied this primitive to real-time simulation of rods, muscles

and soft-bodies. In our final project, we perform generative modeling in an “indirect” way, by

automatically detecting and learning the primitives that occur repeatedly in a given signal. This

is done without any supervision regarding the location or shape of the primitives.

In summary, the contributions of this research are:

1. A method to design composition operators. We introduce a method to design functions

that combine implicit primitives via simple sketches. This method enables users to apply

composition modeling without requiring any technical knowledge. This is achieved by

introducing a template that can represent a wide variety of implicit blending operators. This

template is optimized to produce the composition described by a user sketch.

2. A volume-preserving primitive for real-time simulation. We introduce an efficient

primitive for volume-preserving deformations. This primitive can be applied to the simulation

of rods, muscles and soft-bodies. In order to simulate it in real-time, we extend position-based

dynamics by considering scale as a new degree of freedom.

3. A weakly supervised method to learn and detect primitives. We introduce a deep

learning framework to automatically identify the structure of repeating elements in a signal.

This is made possible by the introduction of a multi-stage process to train through the

non-differentiable top-k operation.

Parts of this research have been published in the following papers:

1. Sketch-based Implicit Blending

B. Angles, M. Tarini, B. Wyvill, L. Barthe, A. Tagliasacchi

Transactions on Graphics, 2017

2. VIPER: Volume Invariant Position-based Elastic Rods

B. Angles, D. Rebain, M. Macklin, B. Wyvill, L. Barthe, J. P. Lewis, J. Von

Der Pahlen, S. Izadi, J. Valentin, S. Bouaziz, A. Tagliasacchi

In Transactions on Graphics (currently under submission to SIGGRAPH 2019)

3. MIST: Multiple Instance Spatial Transformer Network

B. Angles, S. Izadi, A. Tagliasacchi, K. M. Yi

In ArXiv (current under submission to CVPR 2019)

The following chapters detail the contributions of this research. This dissertation is organized so

that each chapter contains its own necessary background.
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Chapter 2

Composition of Primitives

c o m p o s i t i o n  f u n c t i o n s

A

B C

D

E
A C E

B D

Figure 2.1: A user’s 2D sketches (bottom-left) are used to exemplify desired ways in which
implicit functions should be composed together. From these, our algorithm automatically derives
new custom gradient-based composition operators (bottom-right). These can then be applied
to combine any 3D (or 2D) implicit model (top) replicating the user’s intentions, and including
effects such as contacts, bulging deformation, or smooth blends.

Abstract

Implicit models can be combined by using composition operators; functions that determine the

resulting shape. Recently, gradient-based composition operators have been used to express a

variety of behaviours including smooth transitions, sharp edges, contact surfaces, bulging, or

any combinations. The problem for designers is that building new operators is a complex task

that requires specialized technical knowledge. In this work, we introduce an automatic method

for deriving a gradient-based implicit operator from 2D drawings that prototype the intended

visual behaviour. To solve this inverse problem, in which a shape defines a function, we introduce

a general template for implicit operators. A user’s sketch is interpreted as samples in the 3D

operator’s domain. We fit the template to the samples with a non-rigid registration approach. The
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union difference

intersection smooth blend

Figure 2.2: Proper design of an implicit composition operator can achieve classical CSG operations
such as union, difference, intersection, as well as their smooth variants – i.e. blending.

process works at interactive rates and can accommodate successive refinements by the user. The

final result can be applied to 3D surfaces as well as to 2D shapes. Our method is able to replicate

the effect of any blending operator presented in the literature, as well as generating new ones such

as non-commutative operators. We demonstrate the usability of our method with examples in

font-design, collision-response modeling, implicit skinning, and complex shape design.

2.1 Introduction

An implicit representation of a 3D object describes its surface as a set of 3D points on which

a scalar function equals a prescribed iso-value [Bloomenthal and Wyvill, 1997]. When modeled

or animated, complex objects are defined by assembling their different parts with composition

operators, each part being defined by its own scalar function. While the iso-surfaces represent

the individual shape of the parts, composition operators control the way they are combined. For

instance, the max (min) of two scalar functions produces a union (intersection) operator [Sabin,

1968; Ricci, 1973] which is the basis of Constructive Solid Geometry (CSG) [Requicha and Voelcker,

1977]; see Figure 2.2. The blending operator, in some cases a simple sum of the combined scalar

functions [Blinn, 1982], smoothes the sharp transition between parts produced by the union. A

core feature of implicit representations is that primitives are combined by simply applying an

operator to their respective scalar functions, regardless of their relative positions. This means

that no detection or specific treatment for collision is required. This is convenient when the

combined primitives are particles of a point-based fluid simulation [Ihmsen et al., 2014], or limbs

of a character [Vaillant et al., 2013a].

Several composition operators have been proposed, including controlled blending [Hoffmann and

Hopcroft, 1985; Rockwood, 1989; Pasko et al., 1995; Hsu and Lee, 2003], localized blending [Pasko

and Adzhiev, 2004], and contact operators that model the contact surface where the combined

objects are colliding [Cani, 1993]; see Figure 2.1 for a few examples. Even though these extend the
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Figure 2.3: A composition operator defined as a function of solely the values of the two input
objects presents undesirable bulge and tunnel artifacts.

variety of composition possibilities, they are not commonly used in practice. Some reasons are

that meshes are the standard representation for modeling/animation and implicit modeling is not

popular on its own, these operators can be computationally intensive, the shape they produce can

be unsatisfactory in some cases, and they are often difficult to control by a user.

Recently, gradient-based composition operators [Gourmel et al., 2013] addressed various unsat-

isfactory shapes in compositions and computationally expensive operator evaluations. Noting

that an implicit surface can approximate a mesh by computing a signed distance field [Macedo

et al., 2011], implicit skinning [Vaillant et al., 2014] exploits the automatic contact handling of

gradient-based operators on 3D scalar functions for deforming meshes more efficiently when they

are animated. This is an example of how implicit modeling/animation tools can be complementary

to existing techniques for mesh processing; the current work provides an effective solution to the

generalization and intuitive design of free-form gradient-based composition operators.

Composition operators. The scalar functions fa(x), fb(x) : R3 → R of two objects can be

combined with a binary composition operator g : R2 → R, and the function fc defines the resulting

object as fc(p) = g(fa(p), fb(p)). Even though by suitable choices of composition operators g a

wide variety of transitions can be obtained, many desired behaviors cannot be captured by any

choice of the operator [Gourmel et al., 2013]. For example, an operator that produces a smooth

blend at a transition will also cause a potentially undesired bulging deformation where two objects

overlap, as well as premature bulging before the objects make contact; see Figure 2.3.

The gradient-blend operator. Stemming from these considerations, a richer class of operators

has recently been introduced by Gourmel et al. [2013]. The key idea is to select the operator at

each point depending on the value of the angle θ between the local gradient directions of the two

scalar functions. More formally, a gradient-based operator g (from now on, simply an operator) is
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Figure 2.4: Through inclusion of the gradients angle θ, an operator that is capable of resolving
the shortcomings of implicit blending can be designed.

a function (D ⊂ R
3 → R) that combines two primitives a and b into a new shape c defined as

fc(p) = g( fa(p), fb(p), θ ) (2.1)

where θ = ∠(∇fa(p), ∇fb(p) ) (2.2)

∠(v, w) being the angle between vectors v and w. In the rare degenerate cases where this angle

is undefined, because the gradient vanishes, θ is 0. The domain of the operator g, i.e. the

operator-space, is D = [0, 1]× [0, 1]× [0, π]

This can be understood as using different composition operators for different values of θ. That

is, according to whether the two gradients are in opposite, orthogonal, matching directions, or

anything in between. Undesired bulging can be resolved, and pre-contact deformations can be

disabled, while in the other cases (intermediate angles) the transition can be kept smooth. Four

specific problems of implicit modelling (bulging, locality, absorption, topology) were addressed by

defining appropriate instances of g [Gourmel et al., 2013]. The main challenges with gradient-based

operators is that designing and fine tuning an operator to obtain some desired effect is a highly

technical task, and not possible for non-expert end-users such as 3D artists and modelers. Thus,

only predefined and fully parametrized operators can be provided to users and they have to be set

in the system by experts.

Contributions. In this research, we address this usability-gap in composition modeling. We

introduce a novel, interactive editing pipeline where the user sketches the desired behavior directly

in 2D over one example, and an automatic optimization produces the corresponding operator,

transparently to the user. Importantly, the design of an operator and its usage are kept orthogonal:

an operator can be applied in any context (2D or 3D) where the same shape or behavior is desired,

irrespective of the example where it was designed. Our method can be applied to any shape for
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(a) (b) (c)

input user sketch operator optimization output

D D D

s̄ P

Figure 2.5: Given a pair of input primitives (two overlapping circles), the user sketches the desired
resulting shape (a contact surface and a bulging effect). (a) The system generates a set of samples
in the operator space D. (b) An operator template is fitted to the samples. (c) A dense regular
sampling of the operator g is generated. The resulting operator, if applied to the initial pair of
primitives, produces the desired behavior and can be applied wherever this effect is desired.

which we can compute a signed distance function. The following contributions were necessary to

achieve this result: (1) we introduce a new template to represent operators, which avoids the use

of transfer functions such as those proposed in [Gourmel et al., 2013], and is suitable both in the

design and in the application phases; (2) we present a way to map user-sketches into samples of

operator-space D; (3) we observe that the problem of fitting this template to the samples can

be cast as a deformable surface registration problem, and we identify suitable regularizers; (4)

we introduce the concept of non-commutative operators, which we show to be useful in certain

scenarios, and finally (5) we introduce some novel interesting applications for these operators.

2.2 Related Work

Because of the ease of representing arbitrary and changing topologies, CSG, blended and contact

surfaces, implicit modeling has some advantages over traditional surface models [Marschner and

Shirley, 2015]. After presenting the previous works on controllable composition operators and an

overview of sketch-based implicit modeling, we review some potential applications of our operators.

On freeform operators. Over the years, several operators have been designed to try to fill the

gap between their mathematical formulation and their manipulation by end-users. In aesthetic

blends, Pasko and Savchenko [1994] optimize the three parameters of an algebraic blending

operator to approximate a user’s sketch. More complex free-form 2D operators have been defined

by blending implicit lines [Barthe et al., 2003] or by deforming a blending operator [Barthe et al.,

2004]. These operators are subject to all the limitations solved by gradient-based operators and are

not compatible with this operator formulation. Rather than focusing on the operator shape, Pasko

et al. [2005] and Bernhardt et al. [2010] propose to localize the influence of blending operators

on the combined objects by adding an additional 3D scalar function, placed automatically or

user-defined. These approaches focus on the definition of where the blending should occur, and

no explicit control is performed on the shape of the operator itself. As introduced by Gourmel

et al. [2013], the shape of the gradient-based operators are defined by a set of 2D profile curves in

cylindrical coordinates. This definition is unintuitive to manipulate and restricted in the variety of

shapes it can produce. To achieve better skinning with accurate contact deformations, Vaillant

et al. [2014] introduced gradient-based operators discretely computed in a 3D grid, 2D slice by 2D
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slice, by bi-harmonic interpolation of Dirichlet constraints at boundaries and additional constraints

on the iso-value. Their specification relies on a lengthy trial and error process, consisting of editing

a set of spline curves for a given θ, as well as a trigonometric transfer function to non-linearly

interpolate these curves along the θ axis. Furthermore, an interactive exploration is not feasible,

as a re-computation of the computationally intensive fairing optimization is necessary on each

update. Finally, their operator construction is tailored to a small set of effects useful in the

targeted context (symmetric contacts and bulges), whereas our operators are generic. In our work,

we enable the specification of freeform gradient-based operators at interactive rates through the

use of 2D annotations, which directly describe the intended user-defined behavior.

Sketch based implicit systems. Sketches have long been recognized as a powerful tool for

modeling [Igarashi et al., 1999]. Sketch-based implicit systems added the ability to do blending

and CSG with volume models in work such as [Singh and Fiume, 1998; de Araújo and Jorge,

2003; Alexe et al., 2005; Tai et al., 2004], and there have been several examples, including the

popular ShapeShop by Schmidt et al. [2005]. [Singh and Fiume, 1998] shares with us the idea

that the final surface shape is modelled by a 3D curve. Closer to our proposal, Karpenko et al.

[2002] built models using an implicit representation based on Radial Basis Functions. Their system

used the input stroke to edit a mesh, which would in turn change the implicit representation.

This implicitization approach changes the field locally according to the user’s edit. In the above

approaches, sketches define the shape in one particular modeling instance. The input sketch in

our system defines an operator, which is not tied to the context where it is defined, but can be

applied wherever the user desires.

2.2.1 Applications

This work impacts several application domains, offering interesting contributions in each of them.

Character skinning. In the context of character skeleton-driven animations, composition

operators have been used to achieve more realistic procedural skin distortions [Vaillant et al.,

2013a, 2014]. This is also a motivation for our work. With respect to these applications, our

approach offers the ability for the designer to intuitively sketch the exact intended deformation

(e.g. skin bulging) in one instance, and produce an operator which will reproduce that deformation

in real time. This approach is analogous to example-based deformation schemes (see [Jacobson

et al., 2014b] or [Shi et al., 2008]), but in our case, the exemplar sketch can be drawn in 2D, and

the extracted operator can be directly applied to any other joint.

Font design. One potential application of our method is to assist font-design, where glyphs for

each letter are the result of composition operators in 2D from a pre-defined skeleton; similarly

to [Suveeranont and Igarashi, 2010]. The literature on font design is large, and covers many

problems which are not addressed here, including automatic construction of the skeletons, or a

consistent cross-parameterization for all glyphs, or even a generative manifold of all possible fonts;

see [Campbell and Kautz, 2014]. In pipelines where the skeletons of each glyph becomes available,

our method offers the ability to control the shape of one glyph (e.g. serifs and joints), and apply it

consistently to the entire type-face.
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Botanical modeling. In the context of procedural synthesis of botanical models (both realistic

and stylized), implicit models have been recognized early as suitable solution, due to their natural

ability to recreate smoothly blending branching structures [Bloomenthal, 1995; Hart and Baker,

1996; Galbraith et al., 2004]. Using our tool, a user can simply trace the required shape to mimic

the geometry of these features, and incorporate this effect into the operator.

2.3 Method Overview

A visual outline of our framework is illustrated in Figure 2.5. Our design process begins with the

user placing two exemplar implicit primitives in a 2D sketch. The user then annotates the desired

blending behavior by sketching a curve. Given this input, an automatic system derives an operator

g by solving an inverse optimization problem; see Section 2.6. The resulting operator can then be

used both to combine implicit curves in 2D and to combine surfaces in 3D. This observation is

crucial, as it allows the user to simply work in 2D to produce operators for 3D modelling. This is

even more relevant for the design of contact surfaces, which would otherwise be difficult to edit

(or even just to visualize) in 3D, due to self-occlusions.

Feedback loop. In many cases, a single set of user sketches are sufficient to fully determine the

operator g that produces the desired result; see Figure 2.5. For more complex cases, an iterative

feedback loop can be used to refine the operator and at the same time observe its effect; see

Figure 2.6. First, an operator g0 is constructed from an initial sketch and automatically applied

to the exemplar primitives. The resulting 2D drawing provides feedback to the user. The user

can then add new sketches, and a new operator is produced from the union of all sketches. This

is repeated until a satisfactory shape is returned to the user, limited only by the expressiveness

of the gradient-based approach; see Section 2.7. In practice, we found we needed no more than

three iterations. For the feedback loop to be interactive, we need to ensure that our algorithms

are computationally efficient for the optimization of the operator and for its application.

2.4 Background and preliminaries

An implicit model (surface in 3D, or contour, in 2D) is defined by a scalar field-function f , as the

set of the points where f assumes a given iso-value. Following the convention from Bloomenthal

and Wyvill [1997], we define the surface as S = {x ∈ R
n|f(x) = 0.5} which bounds an interior

where f(x) > 0.5. The field-functions of the primitives are, in turn, defined by their skeleton. For

example, a sphere is generated by a point skeleton, and a capsule (a cylinder with hemispherical

caps) by a line-segment skeleton. Any other shape can be used; see Figure 2.13,2.18 for some

examples.

Support and continuity. The field has a value which decreases with the distance from the

skeleton, according to a given falloff function; see [Marschner and Shirley, 2015]. The area where

the field function has values |f(x)−0.5| < 0.5 is denoted the support of the implicit object. Outside

its support, the field function equals zero and the primitive has no influence on the composition

operations. The support is compact, i.e. bounded; see Figure 2.7.
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Figure 2.6: Operator design feedback loop: because our pipeline (Fig. 2.5) has interactive response
times, our system allows progressive refinement of the operator though successive strokes. Undesired
blending artifacts (right) are corrected until a final operator is constructed which is capable of
reproducing the desired behavior.
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Figure 2.7: Top: a sample s is drawn in the intersection of the supports of the two primitives
(bold colored lines) generated by the skeletons (black dots). Lower-left: a zoom-in around s: the
gradients of the two field functions fa and fb form an angle θ. Lower-right, the corresponding
sample s̄ in the operator’s domain D (see Eq. 2.5).

A central concern in implicit operator design is to ensure smooth blends and avoid normal

discontinuities at the boundaries of the support. To this end, where functions such as min or max

are used for g [Barthe et al., 2003], filter fall-off functions are required to be at least C1. In our

approach, where we fully control the composition function g, this requirement can be completely

dropped. Instead, we rely on functions g with built-in smoothness, by defining appropriate value

and derivative constraints at the boundaries of its domain D; see Section 2.6.3. This observation

allows us to use any monotonic C0 fall-off function for our primitives. In our examples we opt for

a simple linear function controlled by two intuitive parameters: R1, the iso-value of the implicit

model, and R2, the thickness of the support; R1 is mapped to 1/2 and R1 +R2 to 0 (see Figure 2.7,

top). In the example of Figure 2.13, the curly branches are obtained by linearly interpolating two

values of R1 along the skeletal curve of the branch.

Intersection and difference. In this research, we concentrate on union composition operators

g, which fuse two primitives into one in some prescribed manner, i.e. g always returns 1 when

either of the first two parameters is 1, and 0 when both are 0. Generalization to intersections and
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differences is straightforward using the same g:

gintersection(a, b, θ) = 1− g(1− a, 1− b, θ) (2.3)

gdifference(a, b, θ) = 1− g(1− a, b, θ) (2.4)

Implicit composition. The creation of complex geometry requires the composition of more

than just two input functions. Following the ideas introduced by Wyvill et al. [1999], we employ

different binary operators at each node of a tree, with primitive shapes at its leaves. For example,

see Figure 2.1 where different operators are used in cascade.

2.5 Capturing user inputs

In our system, a pair of 2D primitives are arranged freely by the user; see Figure 2.6 for an example.

The linear field functions fa and fb of the two primitives are expressed in closed form, and to the

user, the two primitives are visualized as closed poly-lines. In Figure 2.7, we also visualize the

supports Sa and Sb of the two shapes. By construction, the target operator can only determine

the resulting shape in the area Sa ∩ Sb, therefore user input strokes are restricted to be inside this

area with a stencil mask. The user draws the desired shape of the resulting surface over the input

primitives, with one or multiple sketches. For most experiments we employ parametric curves, but

any drawing method such as the strokes in Figure 2.20c, can be used. As described below, this is

possible as only a sampling of the sketches is required to derive an operator.

Sampling user input. From the user’s sketch, we extract a set of n samples {s1, . . . sN}. Each

sample sn ∈ R
2 represents a position that the user expects the result/output surface to cross. As

illustrated in Figure 2.7, for each sample sn we define a corresponding sample s̄n in the operator

domain D:

s̄n =








an

bn

θn








=








fa(sn)

fb(sn)

∠(∇fa(sn) , ∇fb(sn) )








(2.5)

Computations of s̄n from sn are conveniently fast because functions fa and fb are available

in closed form. Their gradient is either available in closed form or approximated by finite

differences. The regressed operator g evaluated at s̄n should return the value (0.5), or in other

words g(s̄n) = 0.5. Hence, after optimization, the designed blending operator kernel g should

interpolate each sample s̄n.

Sketches over 3D rendering. As a variation, sketches can be drawn over a 3D rendering of the

implicit surfaces, seen from arbitrary viewing angle; e.g. see Fig. 2.17. In our prototype, the sketch

is in this case assumed to lie on an plane parallel to the image at a predefined depth. In situations

where the gradients of the primitives are not co-planar, there is no ideal plane to sketch on and

results could be unintuitive. In this case, it is often better for the user to sketch on a simpler

configuration of primitives and to then apply the operator to the original scene. Our framework

requires no further adaptation to deal with this case. A more advanced interface could identify

depth automatically, for instance by projecting the first point of the sketch on the shape, similarly
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Figure 2.8: Our template is a surface P is made of two bi-quadratic patches, depicted with orange
and violet control points – red ones are shared, creating a seam at the junction. This template is
able to represent a variety of useful composition operators; see Section 2.6.2.

to the sketch-based modeling interface proposed by Bernhardt et al. [2008].

2.6 Fitting the composition operator

The blending operator requires a 3D function g to be defined over its entire space D, however

samples collected from user’s strokes only define the behavior of g in a small subset of D. On

the other hand, many characteristics of the function g are known a-priori, such as its general

shape (Sec. 2.6.1), its continuity requirements (Sec. 2.6.2) and the values on the boundaries of D

(Sec. 2.6.3). We approach this reconstruction problem in two steps: first, we identify the set of 0.5

values of g, as a parametric surface P embedded in D, which is fitted to the samples (Sec. 2.6.4); we

then compute a 3D lattice covering the domain of g by propagating the iso-values in P (Sec. 2.6.5).

The final operator is then evaluated by tri-linear interpolation of the lattice values.
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2.6.1 The operator template

In previous work [Gourmel et al., 2013; Vaillant et al., 2013a, 2014], g(a, b, θ) is formulated as a

collection of two dimensional functions for a few particular values of θ, each independently defined

as a curve defining the portions of the domain where g evaluates to (0.5). These cases can be

interpreted as axis aligned slices of the domain D. In our work, we conveniently represent the

operator g as one surface P embedded in D representing its (0.5) iso-value; see Figure 2.5b. This

approach allows us to define a template for the surface P , designed to represent a wide class of useful

operators: sharp unions (see Figure 2.8a), smooth blends (see Figure 2.8b), articulated contact (see

Figure 2.8c) and asymmetric contact (see Figure 2.8d) amongst many others; see Figure 2.21.

Parametric representation. Our template for P is a surface made by a pair of third-order

B-Spline patches, each with I × J control points, joined at their boundary and arranged as in

Figure 2.8a. The surface P is fully determined by the positions of the control points pa
i,j and pb

i,j in

D. We found I=J=5, for a total 45 distinct control points, to provide the necessary expressiveness

while avoiding excessive redundancy. The continuity of P at the junction is enforced by imposing

∀i ∈ [1..I] : pa
i,J = pb

i,J , while other boundary and regularization constraints will be discussed later.

2.6.2 Template expressiveness

A fundamental characteristic of our operator template lies in its expressiveness. In particular, in

Figure 2.21 we illustrate how, to the best of our knowledge, all results obtained by any composition

operators which have been proposed in the literature can be expressed by our template. We now

detail how several operators can be realized by properly deforming our template.

Sharp creases: if a sharp crease is desired in the transition between the two operand surfaces

(e.g. with union) then g needs to break C1continuity, and consequently P must have a normal

discontinuity. In our template, this discontinuity is easily accommodated by construction at

the junctions between the two splines.

Smooth blends: if g is required to generate surfaces without any sharp creases in the transition

between the two operand surfaces, it needs to be C1continuous, and consequently, surface P

must be smooth, including at the junction between splines. This can be easily obtained by

aligning the points {p
a
i,J−1, p

a
i,J = p

b
i,J , p

b
i,J−1}.

Contact surfaces: another important feature of operators is the ability to produce contact

surfaces at the transitions between the two primitives [Cani, 1993; Vaillant et al., 2014]; see

Figure 2.21efg. Our template can easily reproduce this situation by making the two patches

partially coincide, thus realizing a non-manifold operator.

Symmetry: many existing composition operators g are commutative in their first two parameters,

which in our setup makes surfaces P symmetric with respect to the a = b plane in D. Given

φ : D → D is the planar mirroring transformation φ(x, y, z) = (y, x, z), this can be easily

obtained by enforcing pa
i,j = φ(pb

i,j). Clearly, non-commutative operators, such as those in

Figure 2.8d can also be represented.
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In summary, our template can recreate each of the features above. If required, our system allows

users to explicitly enforce these conditions; however, it is not strictly necessary to do so, as surface

P will naturally conform to these conditions whenever they are suggested by the user data as a

result of the fitting process. This observation can aid the design of user interfaces based on our

method.

2.6.3 Boundary conditions

When fa(p) = 0, the point p is outside the (compact) support of fa, and hence beyond its range

of influence, so fc should exactly reproduce the values of fb(p) to ensure C0 continuity. Analogous

considerations apply to the fb(p) = 0, fa(p) = 1 and fb(p) = 1 boundary planes of D, leading to

the constraints:

∀θ, ∀a : g(a, 0, θ) = a and g(a, 1, θ) = 1

∀θ, ∀b : g(0, b, θ) = b and g(1, b, θ) = 1
(2.6)

Further, to achieve (normal) shading smoothness at the boundaries of the supports, we must

enforce C1continuity of the blending operation by vanishing the derivatives:

∀θ, ∀a : ∂g
∂b

(a, 0, θ) = 0, ∀θ, ∀b : ∂g
∂a

(0, b, θ) = 0 (2.7)

As θ represents the unsigned angle between the two gradient vectors, the function g is implicitly

mirrored at both ends [0, π] of its third parameter. Therefore, to achieve C1continuity we also

impose:

∀a,∀b : ∂g
∂a

(a, b, 0) = 0 ∀a,∀b : ∂g
∂b

(a, b, π) = 0 (2.8)

The constraints above translate into Dirichlet and Neumann boundary conditions for surface P ,

which can be conveniently expressed in terms of linear hard constraints on its control points.

To enforce Equation 2.6, the control points on opposite ends of P are constrained to lie on the

two line segments at the boundary of D: (0.5, 0, θ) and (0, 0.5, θ). To enforce Equation 2.7 and

Equation 2.8, the control points neighboring the boundaries of P must be constrained to be

vertically/horizontally aligned to the boundary control points.

2.6.4 Surface registration

In this phase, we fit the template parametric surface P to the collected samples s̄i. P maps

each point uv = (u, v) of its 2D parametric space into a position P (uv) ∈ D, as determined by

the control points {pk
i,j}. We start with an initial guess, which corresponds to a union operator:

a surface P where the two B-spline patches are simply planar and reciprocally orthogonal; see

Figure 2.8a. We then non-rigidly register the template onto the samples following the approach

in [Bouaziz et al., 2016]; see Figure 2.9. This optimization consists of the alternation of two

19



t = 1 t = 3 t = 4 t = 6 t = 9

Figure 2.9: We illustrate the sketches in operator space, and a few iterations of the operator
registration optimization in Equation 2.10. The manifold surface folds onto itself to be able to
reproduce a non-manifold configuration. At the same time, the way we enforce the symmetry
constraint helps the optimization to avoid undesirable self-intersections. In this example, the
optimization converged after 9 (two-steps) iterations; none of our experiemnts required more than
20.

optimization steps:

local: arg min
(uvn)

‖P (uvn)− s̄n‖2, ∀s̄n (2.9)

global: arg min
{pk

i,j
}

Ematch({pk
i,j}, {uvn}) + Epriors({pk

i,j}) (2.10)

That is, our local-global ICP optimization first computes closest-point projections, and then it

globally modifies the surface control points, resulting in a non-rigid deformation of our surface. For

sample points corresponding to a contact surface, both sides of the template must be separately

fitted to these. These sample points could be labeled automatically but we let the user provide

this information. To efficiently implement the local step, we first triangulate P (we employ a

resolution of 40× 40), and use a regular volumetric grid to accelerate closest-point queries from

s̄n to the triangles. We also constrain each of the I rows of control points to lie at a constant

equally spaced θ values. The global step is implemented as one Least Squares minimization, as

both energy terms are quadratic in the variables; Ematch represents the data-to-model error, while

Eprior accounts for shape-priors as well as optimization regularization. Further implementation

details are available in our publicly released source code.

Matching term. The data-to-model error is computed as the averaged squared distances of

samples from the tangent planes of their projections onto P :

Ematch =
1

N

∑

n

[nn · (s̄n − P (uvn))]2 (2.11)

where nn is the normal at P (uvn). This point-to-plane metric leads to better convergence compared

to point-to-point errors. The term is a quadratic function of the variables, because P (uvn) and

nn are both constants in the global step.

Priors. The prior energy includes several terms weighted by parameters. These terms enforce:

operator fairness, potential contact constraints, and regularization of the optimization:

Eprior = wfair Efair + wcontact Econtact + wtikh Etikh (2.12)
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Fairness prior. We penalize oscillations in the surface with a bi-harmonic energy defined on the

control points pk
i,j :

Efair =
∑

i,j

‖∆uvpk
i,j‖

2 (2.13)

where ∆uv represents the 2D Laplacian operator defined in the uv domain, adapted to have

control vertices stored in matrix form pk
i,j . This regularizer has multiple advantages: (1) in

under-sampled areas it ensures a smooth interpolation, (2) it prevents over-fitting and, (3) as

the sketches only provide a sparse sampling in D, it regularizes our optimization ensuring the

problem remains well-conditioned. Additionally, these fairness energies are known to penalize

surface fold-overs [Botsch and Kobbelt, 2004]. Following [Li et al., 2008], we start by a strong

enforcement of fairness to avoid local minima, and progressively relax this constraint to allow

the surface to eventually closely fit to the data. Specifically, we employ the weight scheduling

wfair = 103 · 2−t + 10−4, where t is the iteration number.

Full-contact prior. When we detect that the user sketch corresponds to a full-contact (e.g. see

Figure 2.21e, where two objects are fully separated by a contact interface), we also enable a prior

that ensures the seam control points connecting the two patches of our template project on the

boundary of the domain D:

Econtact =
∑

(i,j)∈S

∏

{nm}

‖ni · (pi,j − [1, 1, 1])‖2

n1 = [1, 0, 0] n2 = [0, 1, 0]

(2.14)

Because of the multiplication
∏

, this energy is non-linear, hence when computing its gradient we

only enable the term that has the smallest point-to-plane residual.

Tikhonov regularization. As the fitting energy is linearized within each local step, we avoid over-

shooting with a mild Tickhonov regularizer, by setting wtikh = 10−3 which penalizes displacements

from the previous solution:

Etikh =
∑

i,j,k

‖pk
i,j(t)− pk

i,j(t− 1)‖2 (2.15)

2.6.5 3D-Lattice filling

Once the surface P describing the (0.5) iso-values of g is defined, the next step is to regularly

sample its domain D and assign scalar values on each cell of the lattice. This is executed in three

sub-steps:

Step 1 – Initialization: we assign the voxels immediately surrounding P with the signed distance

from either of its two patches, by rasterizing them over the 3D lattice. Grid receiving two

values are set to the greatest (i.e. most internal) one; this ensures robust evaluation when

the two patches are coplanar, as in the case of contact operators, as the contact surface is in

the interior of the object.

Step 2 – Boundary assignment: for each θ slice of D, we assign the values to the four sides

21



(a
)

sy
m

m
et

ri
c

(b
)

as
y
m

m
et

ri
c

(c
)

as
y
m

m
et

ri
c

Figure 2.10: (a) Symmetric contact operators a-la [Cani, 1993] can be constructed through the
enforcement of symmetry in D. We introduce asymmetric contact operators which can model
phenomena as: (b) a rubber ball hitting a concrete wall, or (c) a steel ball hitting a sheet of softer
metal.
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Figure 2.11: Our sketched implicit operators are easily controllable by the artist. In this figure,
we demonstrate several variants of two types of operators: (top) the smooth-union from [Gourmel
et al., 2013], as well as the (bottom) implicit-contact from [Vaillant et al., 2013a].
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Figure 2.12: We define two symmetric contact operators through the sketches in the first column,
generating ga and gb resulting in the composition visualized in the second column. By leveraging
the consistency in the operator’s parameterization, other operators can be generated as gk =
(1− k)ga + kgb; for k ∈ (0, 1) we obtain operators whose behavior is intuitively interpolated (top),
while extrapolation can be obtained for values of k outside of this range (bottom).
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{(0, ∗, θ), (1, ∗, θ), (∗, 0, θ), (∗, 1, θ)} according to the boundary constraints in Equation 2.6.

Step 3 – Value propagation: the values assigned in the previous two sub-steps are diffused

over the remaining portions of D by solving a bi-harmonic fairing optimization (where the

values set in previous steps act as hard constraints).

Step 3* – Efficient value propagation: Step 3 is time-consuming, as its complexity is cubic

in the linear resolution of the lattice. Fortunately, this is only necessary when the operator

must be used in successive compositions. When only two objects need to be combined, as

during the operator design process, only the lattice values surrounding the (0.5) surface are

relevant, and the other ones can be safely disregarded. This observation drastically reduces

the latency of the feedback loop, effectively enabling the interactive design discussed in

Section 2.3.

2.7 Evaluation

We evaluate our work by verifying the expressiveness of our sketched operators, the controllability

of results, as well as the possibility of interpolating between different operators.

Expressiveness. We empirically validate our approach by demonstrating a variety of effects. We

collect all the fundamental types of implicit blending operator that have been proposed in the

literature (to the best of our knowledge), and verify that our template can be optimized to express

the same behavior. To this extent, Figure 2.21 reports a number of representative images from

the literature, and the 2D sketch necessary to generate the desired operator. We visualize the

optimized (deformed template) operator, and the result of its application on the 2D input geometry.

We also show how all our custom operators extend to 3D in a completely straightforward fashion.

Our sketches can be used to: (a) represent traditional CSG operations [Sabin, 1968]. (b) smoothly

blend two primitives [Blinn, 1982] and [Ricci, 1973], (c) perform bulge-free blend [Gourmel et al.,

2013]. (d) avoid premature-blending [Gourmel et al., 2013], (e) model bulge-on-contact between two

objects [Cani, 1993], as well as (f,g) represent the partial-contact from implicit-skinning [Vaillant

et al., 2013a]. In fact, the expressiveness of our operators go beyond the capabilities of those

proposed in the literature, and allows us to extend the contact operators pioneered by [Cani, 1993],

towards the representation of asymmetric-contact, without having to edit the input scalar fields;

see Figure 2.10.

Controllability and interpolation. As our algorithm receives user sketches as input, the

behavior of the operator is easily controllable. In Figure 2.11, we demonstrate how several variants

of blending and contact operators can be faithfully reproduced by specifying the desired behavior

with a simple 2D sketch. Another form of composition control can be obtained by blending two

distinct composition operators. As illustrated in Figure 2.8, the topology of the template is

consistent across all of our examples. This allows us to blend operators through simple linear

interpolation/extrapolation of its control points; see Figure 2.12.
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(1)
1

R
(2)
1

Figure 2.13: Modeling quasi-biological structures such as a procedural curly-tree (top) and an oak
leaf (bottom). We show the input primitives and the artist sketches (a), as well as the composition
result (b). The leaf design starts with the placement of a few skeletal branches, from which the
leaf boundary (d) or a single sketch (f) can be used to design a corresponding blending (e,g).
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Figure 2.14: A rubber ball that elongates according to its velocity, and squishes when it comes
into contact with the floor in an artist-defined fashion.

no effect mercury water cross-section

Figure 2.15: Applying implicit contact operators to the output of a fluid simulation produces a
noticeable improvement in visual quality. This effect is efficient to apply, as many fluid solvers
represent liquids with implicit functions. While our operator can apply to any geometry, we choose
a simple and familiar scene that can be more easily appreciated.

2.8 Applications

We present several example applications that benefit from the sketch-based generation of blending

operators. The input sketches can either be drawn freely, or rotoscoped over annotated images.

Botanical modeling. Our curly tree shown in Figure 2.13-top is inspired by the images returned

by the search query “curly tree”. The placement and shape of primitives can be produced by

any procedural grammar-based algorithm [Lienhard et al., 2017]. Our technique allows for the

automatic generation of controllable smooth-blends connecting branches to each other. Two

user strokes are sufficient to define the desired operator behavior, and the result is applied to

a large quantity of compositions. In this case a single operator was used, but variability can

be easily achieved by interpolating multiple variants (see Figure 2.12) with random weights; a

3D example of this process is visualized in Figure 2.17. In Figure 2.13-bottom, we apply our
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simple union hydrophobic operator hydrophilic operator

Figure 2.16: The same sphere lying in proximity of a plane can produce contact deformations
simulating both hydrophobic and hydrophilic deformations according to the type of asymmetric
blending designed by the artist.

(a) (b) (c)

simple union metaball blend sketched blend

(a) (b)

sketch (c)

Figure 2.17: (a) A procedural tree generated by [Lienhard et al., 2017] as a collection of sphere-
meshes [Tkach et al., 2016]. (b) a traditional blending operator results in unwanted bulges (e.g.
Blender’s metaballs), (c) our blending operator designed via a simple 2D sketch is propagated to
all branches in the hierarchy.

sketch-driven operators to the procedural generation of botanical leaves. The skeletal structure

of the leaf is generated via an appropriate grammar, as in the tree example. In this setup we

experiment with two different sketches. In Figure 2.13d, the sketch is the entire boundary of the

leaf from Figure 2.13c, while in Figure 2.13f the user has sketched the operator himself. The

optimized operators result in blended geometry closely mimicking the geometry of natural leaves

(we superimpose the original texture to make this more apparent).

Approximating contact behavior. In Figure 2.14, we approximate the behavior of a rubber

ball in motion through the design of two operators. The first distorts the shape of the ball,

modeled via a “ghost” primitive whose position is determined according to the velocity vector.

The second operator captures the contact behavior between the projectile and the deformable

wall. In our stop-motion illustration the distortion was interpolated, while the contact behavior

was extrapolated. Asymmetric contact operators can also be used to approximate the fine-scale

behavior of liquids when they come in contact with surfaces coated with different materials; see

Figure 2.16. Obtaining such effects through fluid dynamic simulation is difficult as it requires

a volume-preserving solver and careful implementation of boundary conditions; [Wang et al.,

2005]. Such effects, due primarily to surface tension, can also be approximated by evaluating a

curvature flow on surfaces [Thürey et al., 2010]. Our approach approximates these effects without

the need for complex physical simulation, and allows their application in a lightweight fashion as a

post-processing step; see Figure 2.15.
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Figure 2.18: (top) Multiple sketches on different primitives are used to synthesize a blending
operator that can be used to produce font variations as well as an entire “infinite resolution” font
family. (bottom) Sketching negative blends to apply a “serification” effect.

Implicit vector font design. Another application is the creation of font libraries, in particular

as our method allows a user to explore the design space interactively; see Figure 2.18. In this

example, we use multiple sketches on the letter T and A to derive one operator, reproducing

the desired behavior for orthogonal and non-orthogonal configurations. Again, the composition

operators is derived from a few exemplars and then applied to all other cases. The user can explore

different variants for a character, and export the blending operator to create a self-consistent font

library. An example showcasing the extensibility of font design to three dimensions is illustrated in

Figure 2.1. In typography, another common task is the application of serifs to characters. In this

example, we apply our composition operators to this task. To achieve this, the yellow primitive

removes ink from the pink primitive, with a difference operation (see Equation 2.4). This setup

provides the user with a fast and easy method to prototype different serif styles, as illustrated.

Because our operator kernel P is an algebraic surface, the operator g can be generated at any

scale; hence, as long as the input primitives can also be expressed in algebraic form (as in the

examples shown), our fonts can be synthesized at any desired resolution.
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Figure 2.19: The leaf geometry from Figure 2.13e is lifted to 3D, and combined with a set of
randomly placed spheres through the hydrophobic contact operator from Figure 2.16.

2.9 Conclusions

Implicit models have recently re-emerged as a powerful modeling technique with the introduction of

gradient-based operators [Gourmel et al., 2013], solving several problems that were often regarded

as intrinsic to implicit modelling. While more expressive the new operators are difficult to control.

In this work we have introduced a solution based on an inverse approach which allows sketch-based

design of new operators. The designer directly describes the desired effect of the operator on the

resulting surface, without having to understand the mathematics of the operator space. We have

shown a number of practical applications demonstrating that our approach enables a designer to

quickly take advantage of the powerful nature of implicit modelling. In addition, our approach also

serves as a conceptual tool to investigate the space of possible gradient-based operators. Using it,

we were able to create a new class of non-commutative operators; see Figure 2.10.

Limitations and future work. The expressiveness of the gradient-based implicit operators,

defined as in Equation 2.1, while being superior to the traditional 2D operators, is still insufficient

for some cases. For example, regardless of how it is designed, no such operator can reproduce the

shape sketched in Figure 2.20a. This situation arises when different sketches define constraints

that are conflicting in the operator domain. For instance, in Figure 2.20a, the top left and top

right fields are mirrored by vertical symmetry. In that case, pairs of symmetric points in the

Euclidean space define the same point in the operator space. If two different sketches are defined

in each side, as the sharp angle in the top left and the blend in the top right, the result of our

fitting process provides an “average” shape that can be unsatisfactory when the input sketches are

too different. In the future we intend to further generalize blending operators, to augment the

range of achievable effects; e.g. anisotropic operators. We have shown that operators based on

a 3D domain can be designed with 2D sketches; the same approach could be applied to higher

dimensional operators, which have additional parameters.
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C1

C0

(a) (b) (c)

Figure 2.20: (a) The sketches result in conflicting samples in the operator domain D, revealing
a limitation in expressiveness of gradient-based operators; the user can nonetheless opt for an
operator exhibiting either C0 or C1 continuity to approximate its input. (b) The smooth nature of
the operators is unsuitable to capture dense high-frequency information, which is simply ignored
as noise by the optimization. (c) On the other hand, this could be thought of as an advantage, as
an artist can draw multiple noisy strokes, and obtain an operator fitting them well.

The applicability of our custom operators is not limitless either. While they can be applied to

any implicit model, the fall-off functions are assumed to be roughly similar, otherwise the shape

produced by the operator can diverge arbitrarily from the user’s sketch; e.g. if one of the two

support radii R2 is vastly different.

Another inherited limitation of gradient-based operators is that they can generate artifacts where

scalar fields exhibit gradient discontinuities. This rarely occurs in practice.

A different issue is that our operators, in general, lack associativity. Associative binary operators

are desirable because they constitute a natural definition of operators working on any number of

operands. An interesting open question is whether the input primitives could be inferred along with

the operators. Finally, it would be interesting to handle a sketch on more than two overlapping

primitives.
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target image primitives+sketches optimized operator applied in 2D applied in 3D

Figure 2.21: Our sketch-based construction method can be used to effortlessly produce every
gradient blend operator proposed in past literature (pioneering citation is indicated). Starting
from images depicting the final results of each operator (leftmost column), we simply sketched
over 2D contour (second column). From these sketches, our system reverse-engineers the operator
(central column). This can be applied (in 2D or 3D alike, rightmost columns) to reproduce the
same results. Our target images are courtesy of [Gourmel et al., 2013] and [Vaillant et al., 2014].

31



32



Chapter 3

Simulation with Primitives

Figure 3.1: (left) We compactly model muscles as a collection of generalized rods, where volume
conservation is expressed by a radius function defined on curve’s vertices – vis sphere’s radii.
(middle) In the limit, this discretization represents the smooth rods illustrated here, for which
physical constraints due to volume invariance can be expressed analytically. (right) The rods create
a subspace on which physics is solved, and its effects later propagated to the muscle mesh via linear
blend skinning; please see the animation in our supplemental video. The “Max” anatomical
model is courtesy of ZIVA Dynamics.

Abstract

We extend the formulation of position-based rods to include elastic volumetric deformations. We

achieve this by introducing an additional degree of freedom per vertex – isotropic scale (and its

velocity). Including scale enriches the space of possible deformations, allowing the simulation

of volumetric effects, such as a reduction in cross-sectional area when a rod is stretched. We

rigorously derive the continuous formulation of its elastic energy potentials, and hence its associated

position-based dynamics (PBD) updates to realize this model, enabling the simulation of up to

26000 DOFs at 140 Hz in our GPU implementation. We further show how rods can provide a

compact alternative to tetrahedral meshes for the representation of complex muscle deformations,

as well as providing a convenient representation for collision detection. This is achieved by modeling

a muscle as a bundle of rods, for which we also introduce a technique to automatically convert

a muscle surface mesh into a rods-bundle. Finally, we show how rods and/or bundles can be

skinned to a surface mesh to drive its deformation, resulting in an alternative to cages for real-time
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volumetric deformation. The source code of our physics engine will be openly available upon

publication.

3.1 Introduction

In recent years, the computer graphics community has invested exceptional efforts in adapting the

(non real-time) physical simulation algorithms at the core of cinematic special effects (e.g.: [Ziva

Dynamics]) to the realm of (real-time) interactive applications (e.g.: games, AR/VR). Many of

these advancements have been possible thanks to a new class of physics solver, pioneered by Müller

et al. [2007], realized on top of Verlet-class integrators [Bender et al., 2015]. These position-based

solvers are capable of elegantly modeling constrained Newtonian dynamics, including rigid-body,

cloth, ropes, rods and fluids in a unified framework. A primary example is the NVIDIA FLEX

system [Macklin et al., 2014], capable of modeling complex and varied physical phenomena in

real-time by leveraging modern GPU hardware.

Rods with volume. Within this technological landscape, of particular relevance to our work is

the modeling of elastic “rods” [Spillmann and Teschner, 2007; Umetani et al., 2014; Kugelstadt

and Schömer, 2016]. These models extend “ropes” by augmenting each segment composing

the rod with an orthogonal coordinate frame, hence allowing the modeling of torsion on top

of stretching/bending. Our VIPER rods extend these formulations by accounting for volume

preservation, a phenomena not modeled by existing position-based rod models. Many interesting

phenomena require this constraint (e.g. soft-bodies, fluids). For example, water is the largest

constituent of most animal tissues (≈ 80% in muscles) hence modeling quasi-incompressible

phenomena is of critical importance to achieve believable motion. We address this problem

by adding a per-vertex scaling degree of freedom – a measure of the local rod cross-section –

and optimizing for this quantity within the physics solve. Our rod segments are hybrid surface

representations, they are explicitly parameterized by the position and scale/radius of their vertices,

but their surface is defined implicitly. This hybrid structure makes them particularly well suited

for efficient collision detection/resolution [Green, 2010].

Anatomical modeling. Such a physical model not only satisfies our fixation in efficiently

simulating rubber bands, but has immediate applications towards the modeling of muscles. As

illustrated in Figure 3.2, striated skeletal muscles1 in human bodies can be represented as a

collection of fibers surrounded by connective tissue (i.e. fasciae). Simulating these muscle types

efficiently is a fundamental problem, as they represent from 36% to 42% of the average human

body mass. In this paper, we propose to efficiently model muscles as a structured collection of

volume-preserving rods. This new model can also be interpreted as a generalization of the static

volumetric primitives in Implicit Skinning [Vaillant et al., 2013b], where skin can then be efficiently

modeled as a triangular mesh sliding on an implicit iso-surface defined by our fibers. The VIPER

primitive is designed to be integrated with other existing components to produce a complete

character representation. These include representations of the skeleton, fat, skin, etc.

1From now on, we will refer to “striated skeletal muscle” simply as “muscles”.
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Figure 3.2: (top) Skeletal striated muscle as a collections of nested fascicles, fibres, and myofibrils;
base image courtesy of [Lee et al., 2010]. (bottom) We abstract the fascicles as a collection of
rods. These can be overlapping, and their rest-pose structure is controlled by shape-matching
constraints.

Figure 3.3: Bio-mechanically accurate simulation of volumetric anatomical structure is the most
effective way to simulate secondary motions (e.g. skin sliding on muscles) and deliver true realistic
appearance to dynamic virtual characters; image courtesy of [Ziva Dynamics].
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Volumetric simulation. In the industry, volume-preserving simulation is typically performed by

discretizing the interior of the object with tetrahedra or using an approximating cage. However, to

the best of our knowledge, even modestly sized models require a lengthy preprocessing (e.g. a large

scale eigen-decomposition for computing the deformation modes; see [Barbič and James, 2005])

before real-time simulation becomes possible. For example, while visually striking, computing

the simulation in Figure 3.3 requires a two-pass optimization ( 1© muscle, 2© skin). 1© Muscles are

discretized with 51k tets sharing 21k vertices, and each of their 4 steps of simulation requires

3.2 seconds. 2© Skin (78k vertices) is simulated as cloth layered on top of fat (having 68k tets

sharing 18k vertices), where each of the necessary 4 substeps of simulation requires ≈ 35 seconds

of compute. Overall, this cumulates to ≈ 2.5 minutes of compute/frame. Offline simulation can be

exploited to learn sub-spaces, which then enables dynamic deformations in real-time; see [Xu and

Barbič, 2016]. However, once learnt, the dynamic behavior of the model is “baked”. Clearly, this

is an obstacle towards the ultimate goal of truly interactive physics simulation, and, consequently,

interactive modeling. The VIPER primitive not only allows the real-time volumetric simulation

of complex anatomical structures, but also provides a viable alternative to cages as a compact

control structure for soft-body deformations.

Automatic fiber-bundle modeling. Rod-based representations of muscle fascia are not com-

monly available – typical asset databases contain tetrahedral mesh models instead. While artists

sometimes model main characters to the level of interior muscles, this effort is expensive and not

justified for background characters. Thus we also introduce a technique to convert existing assets

with minimal user intervention. Our solution builds fiber bundles by first creating a set of slices

through the muscle then performing an iterative optimization to interpolate these slices with a

given number of rods such that they approximate the input surface well.

Contributions. Our fundamental contribution is the design of a novel real-time physics engine

for soft-body dynamics. Our system presents several sub-contributions:

• We enrich position-based solvers by introducing a new volume-preserving cosserat rods model

and associated constraints.

• We demonstrate how these primitives, when assembled into fiber-bundles, are effective in

efficiently modeling muscles.

• We introduce a technique for conveniently creating fiber-bundles models from existing

simulation assets.

• We introduce the use of VIPER rods as efficient deformation proxies for soft-body deformation.

3.2 Related Work

We overview the literature from different angles. We recap example-based modeling frameworks

that are commonly used in digital production, as well as recent efforts towards the use of simulated

anthropomorphic models. We also review methods that attempt to “emulate” them via geometric

processes, and finally processes to calibrate a given model to a target.
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deformed

parameterization

rest pose

Figure 3.4: (top) The parameterization of a VIPER rod, and its discretization. (left) Its rest
configuration, and (right) a deformed configuration.

Example-based deformation. Digital characters are often modeled via their skin (i.e. skinning),

with no consideration of underlying volumetric structures, often resulting in non-physically realistic

effects such as the candy wrapper problem of (LBS) Linear Blend Skinning [Jacobson et al., 2014a].

While these artifacts can be resolved [Kavan et al., 2007; Le and Hodgins, 2016], skinning solutions

lack details such as tendons, muscle bulges, wrinkles, and volume preservation. Example-based

approaches such as (PSD) Pose-Space Deformation [Lewis et al., 2000; Kurihara and Miyata,

2004] and BlendShapes [Lewis et al., 2014] interpolate artist-sculpted shapes to emulate all these

effects. However, “producing effects such as skin sliding over underlying structures, or the collision

effects visible parts of the body press together, can require considerable skill and weeks to months of

sculpting depending on the required quality” [Yuen, 2018]. Such data-driven models can be learnt

from measurements for both static [Loper et al., 2015], as well as dynamic [Pons-Moll et al., 2015]

humans, but they hardly generalize outside of their corresponding training domains.

Physically-based anthropomorphic models. Physically-based simulation of characters has

a long history [Terzopoulos and Waters, 1990; Scheepers et al., 1997; Sifakis et al., 2005] but,

due to its high computational cost, it has only recently began to see practical use. For skeletal

muscle deformation, Lee et al. [2010] provides an excellent overview of the field, in regards to

which Saito et al. [2015], with its ability to reach near-interactive runtime, can be considered the

state-of-the-art. Similarly to blendshape generation, training data can be exploited to generate

efficient low-dimensional simulations [Xu and Barbič, 2016; Schumacher et al., 2012; Bouaziz et al.,

2014], enabling physically-based digital characters in production settings [Clutterbuck and Jacobs,

2010; Ziva Dynamics]. A shortcoming of these methods is the requirement that the training

set encompasses samples of all configurations of the object/character that that will be needed.

Physically based approaches also permit a decomposition into layers – skin, muscle, fat, and

bones – enabling appropriate algorithms to be used for each. Highly relevant to our work is

the simulation of skin layered over volumetric primitives pioneered by Li et al. [2013], and its

realization in commercial software [Vital Mechanics], as well as other existing research [Saito and

Yuen, 2017], industry [Ziva Dynamics], and proprietary solutions [Clutterbuck and Jacobs, 2010]

to this complementary problem. Recently, Romeo et al. [2018] proposed the use of PBD for muscle

simulation, but its ≈40s/frame of processing time makes it unsuitable to interactive applications.

Non physically-based anthropomorphic models. Recent efforts have been made to create

alternative representations for sub-skin volumetric models (i.e. representations of muscle, fat, and

bones). For example, Maya Muscle [Comet, 2011] represents muscles via NURBS that drive the

skin via LBS, whose volume is artist-driven in a PSD fashion. However, due to the explicit nature

of NURBS, collisions are expensive, hence the performance of the system does not scale well in
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the complexity of the model. Rather than driving skin via LBS, Implicit Skinning [Vaillant et al.,

2013b] lets it slide on top of implicit surfaces via optimization. These surfaces are defined by

blending components that abstract entire body parts (i.e. union of bone, muscle, and fat). In

contrast to our work, note that this model is purely kinematic (i.e. no physics). Another relevant

class of methods simplifies anthropomorphic components even further. For example representing

an entire arm as two tapered capsules is advantageous for arm vs. cloth collision detection [Muller,

2008]. Sphere-Meshes generalize these representations, and have recently been used to approximate

geometry [Thiery et al., 2013], and track its movement in real-time [Tkach et al., 2016].

Calibrating anthropomorphic (volumetric) models. Ali et al. [2013] pioneered the transfer

of anatomical structures from a template to a target human via approximate deformation models

of soft tissues, and Zhu et al. [2015] calibrated these models from a set of RGBD images capturing

a human in motion. Analogously to these method, physically inspired models [Saito et al., 2015]

can be calibrated to a set of 3D surface scans [Kadleček et al., 2016]. Of particular relevance to

our method is the fiber estimation technique pioneered by Choi and Blemker [2013] employed

in [Saito et al., 2015]. While Saito et al. [2015] is interested in deriving the anisotropic deformation

frame, we require an explicit decomposition of the muscle in fiber bundles.

3.3 Generalized Rod Parameterization

Our physical model of Cosserat rods consists of a smooth parametric curve in 3D space c(z) :

[z0, z1] → R
3. An orthogonal frame D(z) ∈ R

3×3 is attached to every point c(z) ∈ R
3 on the

curve. The orthogonal frame D(z) = s(z)R(z) is a combination of a uniform scale s(u), and an

orthonormal matrix R(z) = [u(z), v(z), w(z)]; see Figure 3.4. Note that our model generalizes

classical elastic rods [Spillmann and Teschner, 2007; Kugelstadt and Schömer, 2016], as in those

models the scale is kept constant along the curve. As shown in Figure 3.4, any point in the

parametrized volume of the rod can be transformed to the rest configuration by a function

p̄(x, y, z) :R3 → R
3:

p̄(x, y, z) ≡ p̄(q, z) = c̄(z) + s̄(z)R̄(z)q (3.1)

where q = [x, y, 0]T is a point on a disc D(z) of radius r(z), aligned with the xy plane, and

centered at its center of mass. Similarly, a second function maps the rod from parameterization to

its deformed configuration:

p(x, y, z) ≡ p(q, z) = c(z) + s(z)R(z)q (3.2)

3.4 Variational Implicit Euler Solver

Our solver is based on the variational form of implicit Euler integration [Martin et al., 2011]. The

physical model evolves through a discrete set of time samples, with simulation step size h. At

time t the deformed volume is defined as pt(x, y, z) and the velocity as ṗt(x, y, z). The rest pose

is defined as p̄(x, y, z) = p0(x, y, z). The mass m is assumed to be uniform over the rod. The sum

of the external forces is denoted as fext(x, y, z). We will now drop the indexing (x, y, z) whenever
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possible to improve readability. We consider position dependent internal forces such that the sum

of the internal forces is

fint(x, y, z) = − 1
2

∑

i∇p‖Wi(p, p̄)‖2
Ki

, (3.3)

where Wi(p, p̄) is a potential energy function, and Ki is a stiffness matrix which we assume to be

uniform over the rod, and the notation ‖x‖2
A means xT Ax. We can then write implicit Euler as

an optimization describing the compromise between an inertia potential and the elastic potentials:

min
{ct,st,Rt}

∫ z1

z0

∫∫

D(z)

m
2h2 ‖pt − p̂t‖

2
2

︸ ︷︷ ︸

inertia

+ 1
2

∑

i‖Wi(pt, p̄)‖2
Ki

︸ ︷︷ ︸

elastic

dx dy dz (3.4)

With p̂t we indicate the inertial prediction for pt, i.e., its next position in absence of internal

forces:

p̂t = pt−1 + hṗt−1 + h2

m
fext, (3.5)

where ṗ(q, z) = ċ(z) +
(
ṡ(z)R(z) + s(z)Ṙ(z)

)
q.

Discretization. We discretize the curve in the parametrized domain using a set of m + 1 points

{z[0], . . . , z[m]} connected using m piecewise linear elements of length {l[1], . . . , l[m]}; see Figure 3.4.

We can approximate the curve integral by integrating over these piecewise linear elements using

the midpoint rule. For the integration we also define a set of m midpoints {z[.5], . . . , z[m−.5]}. A

point on a midpoint cross section is then parametrized as:

p(q, z[j−.5]) = c(z[j−.5]) + s(z[j−.5])R(z[j−.5])q (3.6)

c(z[j−.5]) ≡
1
2

[
c(z[j−1]) + c(z[j])

]
(3.7)

s(z[j−.5]) ≡
1
2

[
s(z[j−1]) + s(z[j])

]
(3.8)

This is similar to the staggered grid discretization of previous work [Spillmann and Teschner,

2007; Grégoire and Schömer, 2006], where the frames R are stored at the midpoints. Contrary

to previous approaches, our model also has a scale that we store at the endpoints of the linear

elements. We can now rewrite Equation 3.4 as:

min
{ct,st,Rt}

m∑

j=1

l[j]

∫∫

D(z[j−.5])

m
2h2 ‖pt − p̂t‖

2
2 + 1

2

∑

i‖Wi(pt, p̄)‖2
Ki

dx dy (3.9)

3.5 Elastic Potentials

In this section we detail the elastic potentials used to simulate our volume preserving rods.

Strain potential. We define the strain at a midpoint as

Estrain(z[j−.5]) =

∫∫

D(z[j−.5])

‖RT∇p− R̄T∇p̄‖2
Ks

dx dy, (3.10)
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Figure 3.5: Static behavior – We compare the deformation of a standard cosserat rod to our
volumetric invariant version. Our additional degrees of freedom allow us to model the buckling
(resp. bulging) caused by the stretching (resp. compression) of the rod.

Figure 3.6: Dynamic behavior – Our generalized rods do not only capture static volumetric
deformations, but the scale’s velocity allows us to model volume dynamics. In this example,
note the rod length is unchanged, but our formulation models a volumetric shockwave travelling
through the rod.
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where Ks = [ kx
s ex ky

s ey kz
s ez ] is a diagonal stiffness matrix and [exeyez] is the standard basis.

∇p and ∇p̄ denote the deformation gradients, i.e., the Jacobian matrices of the deformation

functions [Sifakis and Barbic, 2012]. As p and p̄ map R
3 to R

3, the Jacobian matrices are 3× 3.

The Jacobians are not rotational invariant so we rotate them back to the parametrization domain

to be able to compare them on a common ground. As explained in Appendix A.1 integrating the

strain energy (3.10) leads to

Estrain(z[j−.5]) = πr2kz
s‖∇zc−ww̄T∇z c̄‖2

2 (3.11)

+ πr2(kx
s + ky

s )(s− s̄)2 (3.12)

+ 1
4 πr4(kx

s + ky
s )(∇zs−∇z s̄)2 (3.13)

+ ‖sΩ− s̄Ω̄‖2
Hs

, (3.14)

where Hs = [ πr4kz
s ex πr4kz

s ey πr4(kx
s +ky

s )ez ] is the second moment of area of a disc scaled by the

stiffness, and the Darboux vector [Kugelstadt and Schömer, 2016] is denoted by Ω = [Ωu, Ωv, Ωw]T .

Note that we retrieved similar energies in previous works augmented by our additional scale degree

of freedom. The energies (3.11) and (3.12) respectively measure the stretch along the curve and

the cross section, while (3.13) measures the variation of scale across sections, and (3.14) measures

bending/twisting. Interestingly, Equation 3.13 can also be interpreted as a measure of surface

stretch.

We use an additional energy measuring the second order variation of scale complementing (3.13)

with a measure of surface bending

Ebending(z[j−.5]) = 1
4 πr4 (kx

b + ky
b )
(
∇2

zs−∇2
z s̄
)2

(3.15)

where ∇2 =∇ · ∇=∆ is the Laplacian operator. Note that this energy can also been seen as an

approximation of: ∫∫

D(z[j−.5])

‖RT∇2p− R̄T∇2p̄‖2
Kb

dxdy, (3.16)

where Kb =[ kx
b ex k

y

b
ey kz

b ez ]. This energy compares the Laplacians of the deformation functions

giving a second order measure of the deformation.

Volume potential. By denoting the determinant with | · |, and stiffness by kv, we define the

volume preservation at midpoints as:

Evol(z[j−.5]) =

∫∫

D(z[j−.5])

kv (|∇p| − |∇p̄|)
2

dx dy (3.17)

Note that the determinant is rotational invariant, hence it is not necessary to rotate the Jacobians.

As explained in Appendix A.1 integrating the volume energy (3.17) leads to:

Evol(z[j−.5]) = πr2kv‖s
2∇zc− s̄2ww̄T∇z c̄‖2

2 (3.18)

+ 1
2 πr4kv

(
s3Ωu − s̄3Ω̄u

)2
(3.19)

+ 1
2 πr4kv

(
s3Ωv − s̄3Ω̄v

)2
. (3.20)
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Figure 3.7: Being built on VIPER primitives, our physics engine can simulate soft-body deformation
and dynamic interactions between hundreds of models in real-time. A peculiarity of our engine
is that both collision and simulation are executed on the same geometry; see our video in the
additional material.

3.6 Optimization

To approach the non-linear optimization problem in (3.9), we linearize the inertia and non-linear

elastic terms, and then solve the optimization iteratively in a Gauss-Newton fashion. To warm

start the optimization, we first compute a prediction step by ignoring the elastic potentials and

by solely minimizing the inertia term – this simply provides an initial guess. We then compute a

(set of) correction steps that also include the elastic potentials.

Prediction step. By denoting by θ the angles parametrizing the rotation matrix and I is the

second moment of area of a disc in world-space, the predictions for the different degrees of freedom

of our model are computed as:

ĉ = c + hċ + h2

πr2m
ξext, (center prediction) (3.21)

θ̂ = θ + hθ̇ + I−1h2

s2m
τ ext, (frame prediction) (3.22)

ŝ = s + hṡ + 2h2

πr4m
γext, (scale prediction) (3.23)

where ξext is the sum of the external forces which act on the disc, τ ext is the sum of the external

torques, and γext is a quantity which can be seen as the counterpart of the total external torque

measuring the sum of the external forces projected on the position vectors; see Appendix A.2 for

more details. Note that the center and frame predictions are similar to the rigid-body equations

of motion for a stretched disc. On top of these equations, we get a scale prediction describing how

the scale of the disc is affected by the velocity and the external forces.

Correction steps. We then compute a set of correction steps including both inertial/elastic

terms. We define

X = [cT
[0], s[0],θ

T
[.5], cT

[1], s[1],θ
T
[1.5], · · · ]

T (3.24)
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as the vector containing all the degrees of freedom, and λ as the vector of Lagrange multipliers.

K is a block diagonal matrix containing the stiffness parameters multiplied by the length of the

piecewise elements, A is a block diagonal matrix stacking the inertia weights multiplied by the

length of the piecewise elements, and

W(X) = [W1(X), W2(X), · · · ]T (3.25)

stacks the potential energy functions. Denoting the iteration number with k, the the state is then

updated as Xk = Xk−1 + ∆X and λk = λk−1 + ∆λ, where, as derived in Appendix A.3:

∆X = −h2A−1∇W(Xk−1)T ∆λ, (3.26)

∆λ=
(
h2‖∇W(Xk−1)T ‖2

A−1 +K−1
)−1

W(Xk−1)−K−1λk−1. (3.27)

For realtime performance we opt for using an iterative linear system solver such as block Jacobi or

Gauss-Seidel. The update for the i-th constraint is:

∆λi = β
(
h2‖Wi(X)T ‖2

A−1 + K−1
i

)−1 (
Wi(X)−K−1

i λi

)
(3.28)

where we dropped the superscripts to improve readability, and β is a relaxation parameter. Note

that A being a block diagonal matrix with block of size at most 3 × 3, A−1 can be efficiently

computed. Note that Equation 3.28 is a generalization of the XPBD update [Macklin et al., 2016]

derived for our volume preserving rod model.

3.7 Real-time physics engine

We implemented our real-time solver on a GPU by leveraging the Thrust framework provided

by the CUDA library, which we execute on a single NVIDIA GTX 1080 graphics card. In our

engine, any volumetric object is modeled as a collection of tapered capsule primitives, or “pills”

(for brevity), while the floor is represented as a simple halfplane constraint. During simulation, at

each time step, we start by first animating kinematic objects (e.g. bones). We then compute the

inertial predictions, and perform collision detection (Sec. 3.7.1) to generate collision resolution

constraints (Sec. 3.7.2). We then solve for all constraints using a Jacobi solver: constraints are

computed in parallel, and the resulting positional displacements are averaged out by a reduction.

The transformations of VIPERs can then be skinned to any surface mesh model (Sec. 3.7.4).

Our model provides a viable alternative to cages as a compact control structure for soft-body

deformations. We demonstrate this in Figure 3.7, where we rigged a simple octopus character

using rods, and solve for collisions and soft-body deformations in real time. As shown in the

accompanying video, our non-optimized prototype achieves real-time performance (≈ 7ms sim,

≈ 6ms render) for scenes containing up to 100 octopuses, each rigged with 37 pills, whose

deformation is skinned to a triangular surface mesh of ≈ 13k faces. Note how for robust collision

detection we need far fewer pills than the volumetric particles used in Macklin et al. [2014].

43



rest configuration deformed configuration

Figure 3.8: (left) An elastic band mesh and its VIPER discretization. (right) The VIPER
simulation and their deformation “skinned” to the rest-pose mesh.

3.7.1 Collision detection

To detect collisions between physical primitives, we adopt the approach presented by Green [2010]

popularized in the context of GPU particle fluid simulation. Towards this goal, we approximate

each pill by its bounding sphere, and (conservatively) detect collisions to be later handled in the

resolution loop detailed in Section 3.7.2. Collisions are detected with the assistance of a uniform

grid with cell width chosen as the diameter of the largest bounding sphere, such that collisions

between spheres centered in non-neighboring cells are impossible. Extending [Green, 2010], we also

count the spheres in the neighboring cells of each particle, and use this information to construct

in parallel a list of all potential collisions. This is in contrast to the original algorithm which for

each sphere processes neighbors in series, and therefore degrades to a partially serial algorithm

in cases where many particles fall into a single grid cell. Further details regarding this process

are provided together with an executable 1D example in the form of a Jupyter notebook in our

additional material.

3.7.2 Collision handling

In a generic physics engine one would implement collision detection/response between any pair of

available proxies. For the sake of efficiency, in our framework we only tackle two collision proxies:

(kinematic) half-planes and (dynamic) pills. Within the combinatorial set of collision pairs, the

main challenge is pill-to-pill collisions. In what follows, we first compute the meta-parameters of

the collisions, that are then resolved in the optimization via PBD constraints [Müller et al., 2007].

Collision metadata. Given two pills Pa and Pb, each modeled as a pair of spheres, for example,

Pa = {(ca
1 , ra

1), (ca
2 , ra

2)}, the fundamental queries we need to answer are: 1© is there a collision?

2© what is the collision point/normal? 3© what is the inter-penetration amount? As typical

in efficient collision resolution, we introduce a single PBD constraint modeling collision forces

corresponding to the largest pill-to-pill inter-penetration. In our solution, we leverage the geometric

structure of the problem: 1© a pill can be interpreted as the union of infinitely many spheres whose

position and radii are linearly interpolated between its endpoints; 2© the largest inter-penetration

corresponds to the inter-penetration between any pair of spheres, one in pill Pa and one in pill

Pb. By first defining the LERP operator as L(x1, x2, γ) ≡ (1 − γ) x1 + γ x2, the interpolated

sphere (c(γ), r(γ)) is derived by LERP’ing the endpoint quantities as c(γ) = L(c1, c2, γ) and

r(γ) = L(r1, r2, γ). The largest inter-penetration is then given by the solution of the bivariate
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optimization problem:

arg min
α,β

‖ca(α)− cb(β)‖2 − (ra(α) + rb(β)) (3.29)

Because a closed-form operator Πb(α) providing the barycentric coordinate of the closest-point

projection of a point ca(α) onto the pill Pb is available (see Appendix A.4) we can further simplify

this problem into a scalar optimization problem:

arg min
α

‖ca(α)− cb(Πb(α))‖2 − (ra(α) + rb(Πb(α))) (3.30)

which we solve by Dichotomous Search [Antoniou and Lu, 2007] with a fixed number of iterations

(set to 10 in our engine).

Collision constraints. Having detected a collision between two pills Pa and Pb, and having

computed α∗ (and hence β∗ = Πb(α∗)) by solving (3.30), we can express a constraint that correlates

radii and positions on the two pills in order to resolve the collision in a least squares sense:

Ecollision = (‖ca(α∗)− cb(β∗)‖2 − ra(α∗)− rb(β∗))
2

. (3.31)

3.7.3 Scale-invariant shape matching – “Bundling”

To represent more complex geometry than individual rods, such as that in Figure 3.2, we can

gather a collection of rods in a cross-section, and introduce a constraint to explain their joint

deformation. We employ the assumption that muscle fibers in a muscle cross-section contract

isotropically. Indexing the rods in a cross-section by i, our rod deformation model can be expressed

as a similarity transform

Ti =




siRi ci

0 1



 . (3.32)

As illustrated in Figure 3.9, for each muscle cross-section we define a scale invariant shape-

matching energy measuring the deviation of the current rod deformations Ti from a global

similarity transform T∗ of the rest deformations T̄i as

Eshape =
∑

i

‖T∗T̄i −Ti‖
2
2. (3.33)

We treat this energy as a hard constraint by finding the optimal T∗ and setting Ti = T∗T̄i as a

post-processing step after few iterations. The optimal T∗ can be computed following the derivation

in [Umeyama, 1991]. The optimal rotation R∗ can be found by solving

R∗ = arg min
R∈SO(3)

‖R − Σi[siRi ci − µ][s̄iR̄i c̄i − µ̄]T ‖2
2, (3.34)
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Figure 3.9: Scale-invariant shape matching – Shape matching can recover a rigidly transformed
configuration, while our model allows for a null-space that includes uniform scale. We employ
this model as we work under the assumption that muscle fibers in a muscle cross-section contract
isotropically.
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Figure 3.10: Muscle contraction – (top) Muscle at rest and its excitation (force shortening
edge lengths in an area) with traditional shape-matching constraints (middle) vs our novel scaled
shape-matching constraints (bottom).
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where µ = 1
n

Σici. We compute the optimal rotation R∗ using the robust approach presented

in [Müller et al., 2016]. The optimal scale can be computed as

s∗ =

∑

i sum(R∗[s̄iR̄i c̄i − µ̄] ◦ [siRi ci − µ])
∑

i sum([s̄iR̄i c̄i − µ̄] ◦ [s̄iR̄i c̄i − µ̄])
, (3.35)

where sum(·) adds all entries of the matrix and ◦ is the Hadamard product. Finally, the optimal

translation can be derived as

c∗ = µ− s∗R∗µ̄. (3.36)

3.7.4 Skinning VIPERs to surface deformation

Our VIPER rods can also be employed as a volumetric proxy driving the deformation of a surface

mesh; see Figure 3.1 and Figure 3.8. In particular, we blend the relative transformations between

deformed and rest pose configurations via linear blend skinning. To achieve this, we utilize a

modified version of the LBS weight computation by Thiery et al. [2013]. In that paper, weights

were computed by fairing an initial assignment where each vertex was fully attached to the nearest

element. Instead, we modify this assignment to begin with weights for each vertex that are

proportional to the inverse square-distance from the vertex to the surface of each pill. This resolves

cases where multiple surfaces are at equal distance, and the nearest neighbor is multiply-defined.

3.7.5 Energy implementation

The energies derived in Section 3.5 have been derived using continuous operators. To implement

these energies we approximate ∇zc(z[j+.5]), ∇zs(z[j+.5]), and ∇2
zs(z[j+.5]) using finite difference

such that

∇zc(z[j+.5]) = l−1
[j]

(
c(z[j+1])− c(z[j])

)
, (3.37)

∇zs(z[j+.5]) = l−1
[j]

(
s(z[j+1])− s(z[j])

)
, (3.38)

∇2
zs(z[j]) = l−1

[j]

(
s(z[j+1])− s(z[j])

)
(3.39)

− l−1
[j−1]

(
s(z[j])− s(z[j−1])

)
.

For simplicity of the derivations we used angles θ to parametrize the rotation R . However, our

implementation uses quaternions. For small angles the corresponding quaternion is Q = [θ2
T

, 1]T .

We also use quaternions to represent rotations and approximate the Darboux vector using

Ω(z[j]) = 4(l[j−1] + l[j])
−1 Im(Q̄[j−.5]Q[j+.5]), (3.40)

where Im(·) gives the imaginary part of a quaternion.

47



3.8 Anatomical modeling and simulation

We now describe how our rods can be used to model complex anatomical structures such as bones

and muscles; see Figure 3.1. For the former, we use a simplified version of Thiery et al. [2013]

where only pill primitives are used – this primarily allows us to reduce the complexity of the

collision detection/resolution codebase. We then detail the conversion of digital models of muscles

into VIPERs in Section 3.8.1, and describe a few nuances about the simulation of their motion in

Section 3.8.2.

3.8.1 Muscles to rods conversion – “Viperization”

We developed a (weakly-assisted) technique to convert a traditional muscle model into a collection

of K rods. As outlined in Figure 3.11, our process involves several phases. We begin by computing

a volumetric discretization of the muscle’s surface. We then ask the artist to paint annotations on

the surface marking the start (sources) and the end (sinks) of the muscle. A harmonic solve alike

the one describe in Choi and Blemker [2013] is the executed to compute a field that smoothly

varies in the [0, 1] range along the muscle’s length. We then sample M iso-levels of this field to

be surfaces containing the M vertices of each of the K generated VIPERs. Within each iso-level

we require: 1© VIPERs to have the same radii, and 2© to be distributed uniformly on the slice

(iso-surface). To obtain this, we perform a restricted centroidal Voronoi diagram of K points

on each slice [Botsch et al., 2010], while simultaneously penalizing the length of each rod. We

alternate this variational optimization with a discrete one that re-assigns spheres to different rods

in order to minimize the sum of rod lengths. This process, which we refer to as “combing”, starts

from one end of the muscle, and executes in order M−1 instances of minimum-cost bipartite

matching (which we solve in polynomial time via the Hungarian algorithm), where the pairwise

costs are the K2 euclidean distances across rod nodes in two adjacent slices. A few examples of

the results of this process are illustrated in Figure 3.1 and Figure 3.12.

3.8.2 Muscle simulation

Once a muscle is viperized as described in Section 3.8.1, rod centers within the same cross-section

are connected via the bundling constraints in Equation 3.32. Every rod also obeys the constraints

described in Section 3.5. The endpoints of rods are kinematically attached to bones, and intra-

muscle collisions are disabled, while inter-muscle collisions are detected and resolved as described

respectively in Section 3.7.1 and Section 3.7.2. Muscles can also be activated (fiber contractions

generating a stronger force, producing a change of shape at constant muscle length and volume)

by inserting internal forces, or even simply shortening the length of fibers resulting in the bulging

effects illustrated in Figure 3.10. We also speed-up the solver convergence during fast motion by

exploiting the availability of bone transformations. In more detail, each muscle particle has two

skinning weights corresponding to the two bones the muscle is attached to. At the beginning of

each frame we use the transform of each bone relative to their last frame’s transforms to initialize

the displacement of the particle using LBS, and later refine this via simulation.
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Figure 3.11: The mesh-to-VIPER conversion process. Given source/sink constraints, we compute
a harmonic function in the volume, and extract a few discrete iso-levels. Within each of these,
we execute a restricted CVD to place 5 elements of the same radii on these surfaces. We then
execute a combinatorial optimization that connects samples across layers to produce minimal
length curves.
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Figure 3.12: We illustrate several examples of the VIPERs extracted by our automated process. For
the pectoral, our VIPER model employs 8 rods, each discretized by 8 elements. In comparison, the
surface meshes by ZIVA contain (|∂V | = 1584, |∂F | = 3164) on the boundary and its (volumetric)
simulation mesh contains (|V | = 350, |T | = 1089) tetrahedral elements. Where ∂ ≡ “boundary”,
F ≡ “faces”, V ≡ “vertices” and T ≡ “tetrahedra”.
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3.9 Conclusions & future work

In this paper, we introduced a novel formulation of cosserat rods that considers local volume, and

optimizes for its local conservation. The resulting position-based simulation is highly efficient, and

is straightforward to implement on graphics hardware. We demonstrated how rod-bundling is a

powerful representation for the modeling of volumetric deformation – and in particular for skeletal

muscles. Rather than requiring artists to model from scratch, we also introduced an algorithm

to procedurally generate VIPERs with minimal user interaction. Finally, by coupling the rod

simulation to a surface mesh via skinning, our model can be thought of as a direct alternative

to tetrahedral meshes and cages for real-time non-rigid deformation. Most importantly, our

generalized rods formulation opens up a number of venues for future work, which we classify in

three broad areas, as elaborated below.

Model generalization. While in our rods we discretized the skeletal curve with piecewise linear

elements, it would be interesting to investigate whether the use of continuous curve models such

as splines would be tractable – from both mathematical, as well as implementation standpoints.

Similarly to [Müller and Chentanez, 2011; Müller and Chentanez, 2011], our model could also be

extended to model anisotropic volume deformations, that is, both the rest pose and deformed

rod could have a non-circular cross section. Further, while in this paper we treated the modeling

of non-circular cross-sections via bundling, the theory of medial axis [Tagliasacchi et al., 2016]

tells us how any geometric object can be approximated via primitives formed as the convex-hulls

of three-spheres – what Tkach et al. [2016] called “wedges”. Extending our volume-invariant

rods models to volume-invariant wedges would provide an elegant generalization of our modeling

paradigm.

Anatomical modeling. As highlighted by our supplementary video, rod primitives can be

exploited for the efficient approximate modeling and simulation of complex structures. Nonetheless,

the dynamics of the human body are the result of the complex interplay between muscle, fat, and

the consequent deformation of skin. Enriching our model to also account for these factors would

be an interesting extension. For example, rather than driving the muscle surface via skinning

as in Section 3.7.4, one could represent a muscle as a controllable implicit blend [Angles et al.,

2017], approximate fat as an elastic offset between muscles and skin, and simulate skin as an

elastic surface whose vertices lie on a (potentially) user-controlled iso-level of the implicit function.

Further, while artistical editing of physically driven anatomical systems can be a difficult due to

the complexity of simulation, our framework could immediately enable interactive modeling, in

a similar fashion to what ZBrush/ZSphere currently provides for authoring static geometry. By

extending the works in [Tkach et al., 2016, 2017], an efficient anatomical model for a particular

user could also be constructed by fitting to RGBD data.

Optimization. Our solver has not yet directly leveraged the straightforward multi-resolution

structure of rod geometry. More specifically, the curve parameterization of rods offers a do-

main over which designing prolongation/restriction operators needed for a geometric multi-grid

implementation becomes straightforward. An orthogonal dimension for optimization would be

to consider the existence of multi-resolution structures within the cross-sectional domain; see

Figure 3.2. This could both be exploited in offering multi-scale interaction for artists in editing our
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rod models, as well as to produce level-of-details models for efficient simulation at scale. Finally,

while we employed out-of-the-box geometry processing tools to convert a triangular surface mesh

into a rod model, we believe fitting a fiber-bundle model to a given solid could be achieved without

the (often finicky) conversion to volume/tetrahedral mesh, but rather as a direct optimization

over fiber placements.
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Chapter 4

Learnable Primitives

Abstract

We introduce a deep network that can be trained to tackle image reconstruction and classification

problems that involve detection of multiple object instances, without any supervision regarding

their whereabouts. The network learns to extract the most significant top-K patches, and feeds

these patches to a task-specific network – e.g., auto-encoder or classifier – to solve a domain

specific problem. The challenge in training such a network is the non-differentiable top-K selection

process. To address this issue, we lift the training optimization problem by treating the result

of top-K selection as a slack variable, resulting in a simple, yet effective, multi-stage training.

Our method is able to learn to detect recurrent structures in the training dataset by learning to

reconstruct images. It can also learn to localize structures when only knowledge on the occurrence

of the object is provided, and in doing so it outperforms the state-of-the-art.

4.1 Introduction

The ability to find multiple instances of characteristic entities in a scene is core to many computer

vision applications. For example, finding people [Sewart and Andriluka, 2016; Zhang et al., 2018a],

detecting arbitrary number of classes and objects [Ren et al., 2015; He et al., 2017; Redmon and

Farhadi, 2017], and detecting local features [Lowe, 2004; Bay et al., 2008] all rely on this ability. In

traditional vision pipelines, selecting the top-K responses in a heat-map and using their locations

is the typical way to approach the problem [Lowe, 2004; Bay et al., 2008; Felzenszwalb et al.,

2010]. However, due to the non-differentiable nature of this operation, it has not found immediate

application in deep learning based solutions.

Circumventing top-K in end-to-end learning. To overcome this challenge, researchers

proposed to use grids [Redmon et al., 2016; He et al., 2017; Detone et al., 2018], to simplify the

formulation by isolating each instance [Yi et al., 2016], or to provide alternative supervision by

optimizing over multiple branches [Ono et al., 2018]. While effective, they do not generalize well

outside the application domain for which they were designed. Other formulations, such as the use
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Figure 4.1: An example of MIST architecture – A network Hη estimates locations and scales
of patches encoded in a heatmap h. The locations of its top-k responses are extracted by EK .
Patches are then extracted via a sampler S, and then fed to a task-specific network Tτ . The results
are then fed to a task-specific loss L. In this example, the specific task is to re-synthesize the
image as a super-position of (unknown, local) basis functions.

of sequential detection [Eslami et al., 2015] or channel-wise approaches [Zhang et al., 2018c] are

problematic to apply when the number of instances of the same object is large.

Introducing MIST architectures. Therefore, we introduce a new deep framework which we

name Multiple Instance Spatial Transformer or MIST for brevity. From a high level, the MIST

framework first decomposes the image into a finite collection of patches, and then processes these

patches to perform a given task. As illustrated in Figure 4.1 for the image synthesis task, given

an image we first compute a heatmap via a deep network whose local maxima correspond to

locations of interest. From this heatmap, we gather the parameters of the top-K local maxima,

and then extract the corresponding collection of image patches via a re-sampling process. With

the collection of patches, we execute the same task-specific network whose output is aggregated to

finally evaluate a task-specific loss. We then optimize this task loss to train the entire framework.

Training MISTs by lifting. Training a pipeline that includes a non-differentiable selec-

tion/gather operation is non-trivial. To solve this problem we to lift the problem to a higher

dimensional one by treating the parameters defining the interest points as slack variables, and

introduce a hard constraint that they must correspond to the output that the heatmap network

gives. This constraint is realized by introducing an auxiliary function that creates a heatmap given

set of interest point parameters. We then solve for the relaxed version of this problem, where

the hard constraint is turned into a soft one, and the slack variables are also optimized within

the training process. Critically, our training strategy allows us to have an optimizable version

of 1© non-maximum suppression, and 2© top-K selection, thus creating a network architecture

resembling compute strategies that were dominant in pre deep-learning computer vision.

Applications. To demonstrate the capabilities of MISTs, we evaluate our network on a variety of

weakly-supervised multi-instance problems. Note how in some of these applications, the value of

K is the only supervision signal we provide. We consider 1© the problem of recovering the basis

functions that created a given texture, 2© the classification of numbers in cluttered scenes where

the only supervision is the occurrence of these numbers.

In summary, in this paper:

• we introduce the MIST framework for weakly-supervised multi-instance visual learning;

• we introduce a training method that allows the use of top-K approaches for end-to-end
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trainable architectures;

• we show that our framework can reconstruct images as parts, as well as detect/classify

instances without any location supervision.

4.2 Related works

Attention models and the use of localized information have been actively investigated in the

literature. Some examples include discriminative tasks such as fine-grained classification [Sun

et al., 2018], and pedestrian detection [Zhang et al., 2018a], and generative ones such as image

synthesis from natural language [Johnson et al., 2018]. We now discuss a selection of representative

works, and classify them according to how they deal with multiple instances.

Grid-based methods. Since the introduction of Region Proposal Networks (RPN) [Ren et al.,

2015], grid-based strategies have been used for dense image captioning [Johnson et al., 2016],

instance segmentation [He et al., 2017], keypoint detection [Georgakis et al., 2018], multi-instance

object detection [Redmon and Farhadi, 2017]. Recent improvements to RPNs attempt to learn the

concept of a generic object covering multiple classes [Singh et al., 2018], and to model multi-scale

information [Chao et al., 2018]. The multiple transformation corresponding to separate instances

can also be densely regressed via Instance Spatial Transformers [Wang et al., 2018], which removes

the need to identify discrete instance early in the network. Unfortunately, all these method are

fully supervised, as they require both class labels and object locations for training.

Heatmap-based methods. Heatmap-based methods have recently gained interest to detect

features [Yi et al., 2016; Ono et al., 2018; Detone et al., 2018], find landmarks [Zhang et al., 2018c;

Merget et al., 2018], and regress human body keypoint [Tekin et al., 2017; Newell et al., 2016].

While it is possible to output one heatmaps per type of point [Zhang et al., 2018c; Tekin et al.,

2017], this still restricts the number of instances to one. Yi et al. [Yi et al., 2016] re-formulates

the problem based on each instance, but in doing so it introduces a non-ideal difference between

training and testing regimes. Grids can also be used in combination to heatmaps [Detone et al.,

2018], but this results in an unrealistic underlying assumption of uniformly distributed detections

in the image. Overall, heatmap-based methods excel when the “final” task of the network is

generate a heatmap [Merget et al., 2018], but are problematic to use as an intermediate layer in

the presence of multiple instances.

Sequential inference methods. Another way to approach multi-instance problems is to attend

to one instance at a time in a sequential way. Gregor et al. [Gregor et al., 2015] proposes a recurrent

network that processes only a small area at a time for both discriminative and generative tasks.

These sequential models have then been extended to localize and recognize MNIST digits in a

cluttered image [Ba et al., 2015; Eslami et al., 2015]. Overall, RNNs often struggle to generalize to

sequences longer than the ones encountered during training, and while recent results on inductive

reasoning are promising [Gupta et al., 2018], their performance does not scale well when the

number of instances is large.
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Knowledge transfer. To overcome the acquisition cost of labelled training data, one can transfer

knowledge from labeled to unlabeled dataset. For example, Inoue et al. [Inoue et al., 2018] train

on a single instance dataset, and then attempt to generalize to multi-instance domains, while

Uijlings et al. [Uijlings et al., 2018] attempts to also transfer a multi-class proposal generator

to the new domain. While knowledge transfer can be effective, it is highly desirable to devise

unsupervised methods such as ours that do not depend on an additional dataset.

Weakly supervised methods. To further reduce the labeling effort, weakly supervised methods

have also been proposed. Wan et al. [Wan et al., 2018] learns how to detect multiple instances

of a single object via region proposals and ROI pooling, while Tang et al. [Tang et al., 2018b]

proposes to use a hierarchical setup to refine their estimates. Gao et al. [Gao et al., 2018] provides

an additional supervision by specifying the number of instances in each class, while Zhang et al.

[Zhang et al., 2018b] localizes objects by looking at the network activation maps [Zhou et al., 2016;

Selvaraju et al., 2017]. However, all these method still rely on region proposals from an existing

method, or define them via a hand-tuned process.

4.3 MIST Framework

A prototypical MIST architecture is composed of two trainable components: 1© the first module

receives an image as input and extracts a collection of patches, at image locations and scales

that are computed by a trainable heatmap network Hη with weights η; see Section 4.4. 2© the

second module processes each extracted patch with a task-specific network Tτ whose weights τ

are shared across patches, and further manipulates these signals to express a task-specific loss

Ltask; see Section 4.5. The two modules are connected through non-maximum suppression on the

scale-space heatmap output of Hη, followed by a top-K selection process to extract the parameters

defining the patches, which we denote as EK . We then sample patches at these locations through

bilinear sampling S and feed them the second module.

The defining characteristic of MIST architectures is that they are quasi-unsupervised: the only

strictly required supervision is the number K of patches to extract. The training of MIST

architectures is summarized by the optimization:

arg min
τ,η

Ltask(Tτ (S(EK(Hη(I))))) (4.1)

where τ, η are the network trainable parameters. Note how in the expression above EK is non-

differentiable, thus making (4.1) unapproachable by back-propagation for training.

Example task. In Figure 4.1, we illustrate an example of a MIST architecture for image

reconstruction. In more details, the task is to understand how to re-synthesize the image as

a super-position of K spatially localized basis functions. Note that, while this task is quasi-

unsupervised, it presents several joint challenges as it needs to estimate: 1© an unknown shared

low-dimensional set of latent bases; 2© where to place instances from this latent space; 3© the latent

coefficients representing each instance. Further details and additional example tasks are described

in Section 4.5.
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Training MISTs. While our MISTs enable us to approach several vision tasks, such as the ones

above, with minimal supervision the true challenge lies in the definition of an effective training

strategy. Back-propagation through a selection process is possible, alike to what is performed for

max-pooling. In Section 4.6, we argue why this is highly detrimental, and propose an effective

multi-stage training solution.

Evaluation and implementation. We qualitative and quantitatively evaluate MISTs on a

number of tasks in Section 4.7, and provide further implementation details in Section 4.8.

4.4 Patch extraction

We extracts a set of K (square) patches that correspond to “important” locations in the image

– where importance is a direct consequence of Ltask. The localization of such patches can be

computed by regressing a 2D heatmap whose top-K peaks correspond to the patch centers.

However, as we do not assume these patches to be equal in size, we regress to a collection of

heatmaps at different scales. To limit the number of necessary scales, we use a discrete and sparse

scale-space, while resolving for intermediate scales by weighted interpolation.

Multiscale heatmap network – Hη. Our multiscale heatmap network is inspired by LF-

Net [Ono et al., 2018]. We employ a fully convolutional network with (shared) weights η at

multiple scales, indexed by s = 1 . . . S, on the input image I. The weights η across scales are

shared so that the network cannot implicitly favor a particular scale. To do so, we first downsample

the image to each scale Is, execute the network Hη on it, and finally upsample to the original

resolution. This process generates a multiscale heatmap tensor h = {hs} of size H ×W ×S where

hs = Hη(Is), and H is the height of the image and W is the width. For the convolutional network

we use 4 ResNet blocks [He et al., 2015], where each block is composed of two 3× 3 convolutions

with 32 channels and relu activations without any downsampling. We then perform a local spatial

softmax operator [Ono et al., 2018] with spatial extent of 15× 15 to sharpen the responses.

Extracting patch location and scale. We first normalize the heatmap tensor so that it has a

unit sum along the scale dimension:

hs =
Hη(Is)

∑

sHη (Is) + ǫ
, (4.2)

where ǫ = 10−6 is added to prevent divisions by zero. We then compute the top-K spatial locations

across all scales, to obtain the image-space coordinates of patch centers:

{(xk, yk)} = TOPK(max
s

hs). (4.3)

Note that a direct extraction of K maxima is possible because the aforementioned local spatial

softmax performs a localized non-maximal suppression. The corresponding scale is computed by

weighted first order moments [Suwajanakorn et al., 2018], where the weights are the responses in

the corresponding heatmaps:

sk =
∑

s

hs(xk, yk)
︸ ︷︷ ︸

weights

s. (4.4)
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Note we do not need to normalize here, as (4.2) has unit sum along the s dimension. These two

operations are abstracted by our top-K extractor {xk} = EK(h) in (4.1).

Note also that our extraction process uses a single heatmap for all instances that we extract.

By contrast, existing heatmap-based methods [Eslami et al., 2015; Zhang et al., 2018c] typically

rely on heatmaps dedicated to each instance, which is problematic when an image contains two

instances of the same class. Conversely, we restrict the role of the heatmap network Hη to find

the “important” areas in a given image, without having to distinguishing between classes, hence

simplifying learning.

Patch sampling. As a patch is uniquely parameterized its location and scale xk = (xk, yk, sk),

we can then proceed to sample its corresponding tensor via bilinear interpolation [Jaderberg et al.,

2015]:

{Pk} = S (I, {xk}) . (4.5)

Comparison to LF-Net. Note that differently from LF-Net [Ono et al., 2018], we do not perform

a softmax along the scale dimension. The scale-wise softmax in LF-Net is problematic as the

computation for a softmax function relies on the input to the softmax being unbounded. For

example, in order for the softmax function to behave as a max function, due to exponentiation,

it is necessary that one of the input value reaches infinity (i.e. the value that will correspond to

the max), or that all other values to reach negative infinity. However, at the network stage where

softmax is applied in [Ono et al., 2018], the score range from zero to one, effectively making the

softmax behave similarly to averaging. Our formulation does not suffer from this drawback.

4.5 Task-specific networks

We now introduce two instances of the MIST architectures corresponding to different applications.

We keep the heatmap network and the extractor architectures the same, and only change the task-

specific network, as well as the loss used for supervision. In particular, we consider a reconstruction

problem in Section 4.5.1, and a classification problem in Section 4.5.2. Further implementation

details can be found in Section 4.8.

4.5.1 Image reconstruction

As illustrated in Fig. 4.1, for image reconstruction we append our patch extraction network with a

shared auto-encoder for each extracted patch. We can then train this network to reconstruct the

original image by inverting the patch extraction process, and forming the task specific loss to be

the ℓ2 norm between the input image and the reconstructed image. Specifically, we introduce the

inverse sampling operation S−1(Pi, xi), which starts with an image of all zeros, and places the

patch Pi at xi. We then add all the images together to obtain the reconstructed image, overall

expressing the following task loss:

Ltask = ‖I−
∑

i

S−1 (Pi, xi)‖
2
2. (4.6)
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Algorithm 1 Multi-stage optimization for MISTs

Require: K : number of patches to extract, Ltask : task specific loss, I : input image, η :
parameters of the heatmap network, τ : parameters of the task network.

1: function TrainMIST(I, Ltask)
2: for each training batch do
3: τ ← Optimize Tτ with Ltask

4: for n = 1 to N do
5: {x∗

k} ← Optimize {xk} with Ltask

6: end for
7: h̄← E−1

K ({x∗
k})

8: η ← Optimize Hη with Llift

9: end for
10: end function

Overall, the network is designed to jointly model and localize repeating structures in the input

signal. Regressing shared basis functions can be related to non-local mean processes [Buades et al.,

2005], as a model for the input signal is created by agglomerating the information in scattered

spatial instances. Our task architecture is also related to transforming auto-encoders [Hinton

et al., 2011], where the difference is that in this previous work a single instance is present in the

image, and that they provide the ground truth transformations as a supervision.

4.5.2 Multiple instances classification

By appending the patch extraction module with a classification network we can realize an

architecture for multiple instance learning. For each extracted patch Pk we apply a shared

classifier network to output ŷk ∈ R
C , where C is the number of classes. In turn, these are

then converted into probability estimates by the transformation p̂k = softmax(ŷk). By denoting

the one-hot ground-truth labels of instance l in the image as yl, we define the multi-instance

classification loss as

Ltask = H

(

1

L

L∑

l=1

yl,
1

K

K∑

k=1

p̂k

)

, (4.7)

where H (·) denotes cross entropy and L is the number of instances in the image. Note here that

we do not provide supervision about where each class instances are, yet the detector network will

automatically learn how to localize the content with minimal supervision.

4.6 Training MISTs

While it is technically possible to back-propagate through MIST architectures, the gradients would

only flow through the spatial regions corresponding to the K selected keypoints – this results in a

training process that ignores locations away from the selection. This is a fundamental issue, as, in

order for the network to learn to only respond to the desired locations, we need negative examples

just as much as we need positive examples. To circumvent this problem, we propose a multi-stage

training optimization.
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Differentiable top-K via lifting. The introduction of auxiliary variables (i.e. lifting) to simplify

the structure of an optimization problem has proven effective in a range of domains ranging

from registration via ICP [Taylor et al., 2016], to efficient deformation models [Sorkine and

Alexa, 2007], and robust optimization [Zach and Bournaoud, 2018]. To simplify our training

optimization, we start by decoupling the heatmap tensor from the optimization (4.1) by introducing

the corresponding auxiliary variables h̄, as well as the patch parameterization variables {xk} that

are extracted by the top-K extractor:

arg min
η,τ,h̄,{xk}

Ltask(Tτ (S({xk}))) (4.8)

s.t. {xk} = EK(h̄) (4.9)

h̄ = Hη(I) (4.10)

We then relax (4.10) to a least-squares penalty:

arg min
η,τ,h̄,{xk}

Ltask(Tτ (S({xk}))) + ‖h̄−Hη(I)‖2
2 (4.11)

s.t. {xk} = EK(h̄) (4.12)

and finally approach it by alternating optimization:

arg min
τ,{xk}

Ltask(Tτ (S({xk}))) (4.13)

arg min
η

‖h̄−Hη(I)‖2
2 (4.14)

where h̄ has been dropped as it is not a free parameter: it can be computed as h̄ = E−1
K ({xk}) after

the {xk} have been optimized by (4.13), and as h̄ = Hη(I) after η have been optimized by (4.14).

To accelerate training, we further split (4.13) into two stages, and alternate between optimizing τ

and {xk}. In particular, multiple optimization iterations of {xk} are executed to allow keypoints

to displace faster during training. The summary for the three stage optimization procedure is

outlined in Alg. 1: 1© we optimize the parameters τ with the loss Ltask; 2© we then fix τ , and refine

the positions of the patches {xk} for T iterations with Ltask. 3© with the optimized patch positions

{x∗
k}, we invert the top-K operation by creating a target heatmap h̄, and optimize the parameters

η of our heatmap network H using ℓ2 distance between the two heatmaps, Llift = ‖h̄−Hη(I)‖2
2.

Notice that we are not introducing any additional supervision signal that is tangent to the given

task.

Generating the target heatmap – E−1
K ({xk}). For creating the target heatmap h̄, we create a

tensor that has zeros everywhere except for the positions corresponding to the optimized positions.

However, as the optimized patch parameters are no longer integer values, we need to quantize

them with care. For the spatial locations we simply round to the nearest pixel, which at most

creates a quantization error of half a pixel, which does not cause problems in practice. For scale

however, simple nearest-neighbor assignment causes too much quantization error as our scale-space

is sparsely sampled. We therefore assign values to the two nearest neighboring scales in a way

that the center of mass would be the optimized scale value. That is, we create a heatmap tensor
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Figure 4.2: MNIST character synthesis examples for (top) the “easy” single instance setup and
(bottom) the hard multi-instance setup. We compare the output of MISTs to grid, channel-wise,
Eslami et al. [Eslami et al., 2015] and Zhang et al. [Zhang et al., 2018c].

that would result in the optimized patch locations when used in forward inference.

4.7 Results and evaluation

To demonstrate the effectiveness of our framework we evaluate two different tasks. We first perform

a quasi-unsupervised image reconstruction task, where only the total number of instances in the

scene is provided. We then show that our method can also be applied to weakly supervised

multi-instance classification, where only image-level supervision is provided. Note that, unlike

region proposal based methods, our localization network only relies on cues from the classifier,

and both networks are trained from scratch.

4.7.1 Image reconstruction

From the MNIST dataset, we derive two different scenarios. In the “MNIST easy” dataset, we

consider a simple setup where the sorted digits are confined to a perturbed grid layout; see

Figure 4.2 (top). Specifically, we perturb the digits with a Gaussian noise centered at each grid

center, with a standard deviation that is equal to one-eighths of the grid width/height. In the

“MNIST hard” dataset, the positions are randomized through a Poisson distribution [Bridson, 2007],

as is the identity, and cardinality of each digit. Note how we allow multiple instances of the same

digit to appear in this variant. As expected, both these datasets contain a training and testing

subsets, and the testing portion is never seen at training time.

Comparison baselines. We compare out method against four baselines: 1© grid we setup a

grid of keypoints, and apply the same auto-encoder architecture as MIST to reconstruct the

input image; 2© in the channel-wise variant we use the same heatmap network, except for the last

convolutional layer giving K channels as output, where each channel is dedicated to an interest

point. Their locations are obtained through a channel-wise soft argmax as in [Zhang et al., 2018c].

We also use the same architecture for the auto-encoder as MIST; 3© the method of Eslami et al.

[Eslami et al., 2015] is a sequential generative model. To generate nine digits, it is required for the
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Figure 4.3: Two auto-encoding examples learnt from MNIST-hard. In the top row, for each
example we visualize input, patch detections, and synthesis. In the bottom row we visualize each
of the extracted patch, and how it is modified by the learnt auto-encoder. Notice the full process
is self-supervised, with the exception that we know every image contains 9 numbers.

Table 4.1: Reconstruction error in terms of Root Mean Square Error (RMSE) across the various
baselines. Best results in bold, and second best underlined. Our method performs best on MNIST
easy, and second best on MNIST hard. Note however, that the grid method is not able to learn
any notion of individual digits.

MIST Grid Ch.-wise [Eslami et al., 2015] [Zhang et al., 2018c]

MNIST easy .038 .039 .042 .100 .169

MNIST hard .089 .047 .128 .154 .191

Gabor .095 N/A N/A N/A N/A

method to be trained with also examples where various number of total digits exist (images with

only 1 digit, 2 digits, etc.). We make a special exception for this method, and populate the training

set with all of these cases; 4© we finally compare to the state-of-the-art method by Zhang et

al. [Zhang et al., 2018c] that provides a heatmap-based method with channel-wise strategy for

unsupervised learning of landmarks.

Results for “MNIST easy”. As shown in Figure 4.2 (top) all methods successfully re-synthesize

the image, with the exception of [Eslami et al., 2015]. As this method is sequential, with nine

digits the sequential implementation simply becomes too difficult to optimize through. Note how

this method only learns to describe the scene with a few large regions. Quantitative results are

summarized in Table 4.1.

Results for “MNIST hard”. As shown in Figure 4.2 (bottom), all methods except ours fail to

properly represent the image, where not only it was able to reconstruct the image, but also learnt

how to localize the digits. Note that while it might look like the grid method succeeded, its trained

auto-encoder simply failed in capturing the concept of individual digits. Conversely, as shown

in Figure 4.3, our method is able to learn this, demonstrated by the auto-encoder successfully

separating the existing overlaps. For quantitative results, please see Table 4.1.

Finding the basis of a procedural texture. We further demonstrate that our methods can

be used to find the basis function of a procedural texture. For this experiment we synthesize

textures with procedural Gabor noise [Lagae et al., 2009]. Gabor noise is obtained by convolving

oriented Gabor wavelets with a Poisson impulse process. Hence, given exemplars of noise, our
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Figure 4.4: Unsupervised inverse rendering of procedural Gabor noise. In the last column we
highlight localization mistakes.

Figure 4.5: Two qualitative examples for detection and classification on our Multi-MNIST dataset.

framework is tasked to regress the underlying impulse process, and reconstruct the Gabor kernels

so that when the two are combined, we can reconstruct the original image. Figure 4.4 illustrates

the results of our experiment. Note how the learnt auto-encoder learnt very well to reconstruct

Gabor kernels, even though in the training images they are heavily overlapped. Further, note that

the number of instances detected is significantly larger than that possible with other methods.

4.7.2 Multiple instance classification

To test our method in a multiple instance classification setup, we rely on the MNIST hard dataset.

We compare our method to channel-wise, as other baselines are designed for purely generative tasks.

To evaluate the accuracy of the models, we compute the intersection over union (IoU) between the

ground-truth bounding box and the detection results, and assign it as a match if the IoU score is

over 50%. We report the number of correctly classified matches in Table 4.2. Our method clearly

outperforms the channel-wise strategy. A few qualitative results are illustrated in Figure 4.5. Note

that even without direct supervision on the digits locations, our method correctly localizes them.

Conversely, the channel-wise strategy fails to learn. This is because multiple instances of the

Table 4.2: Instance level detection and classification performance on the MNIST hard dataset.

MIST channel-wise

IOU 50% 84.6% 25.4%

Classification 95.6% 75.5%

Both 83.5% 24.8%
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same digits are present in the image. For example, in the example Figure 4.5 (right), we have two

number sizes, zeros, and nines. This prevents any of these digits from being detected/classified

properly by a channel-wise approach.

4.8 Implementation details

Auto-encoder network. The input layer of the autoencoder is 32x32xC where C is the number

of color channels. We use 5 up/down-sampling levels. Each level is made of 3 resnet blocks and

each resnet block uses a number of channels that doubles after each downsampling step. Resnet

blocks uses 3x3 convolutions of stride 1 with relu activation. For downsampling we use 2D max

pooling with 2x2 stride and kernel. For upsampling we use 2D transposed convolutions with 2x2

stride and kernel. The output layer uses a sigmoid function. We use layer normalization before

each convolution layer.

Classification network. We re-use the same architecture as encoder for first the task and

append a dense layer to map the latent space to the score vector of our 10 digit classes.

4.9 Conclusion

In this paper, we introduced the MIST framework for multi-instance image reconstruction and

classification. Both these tasks are based on localized analysis of the image, yet we train the

network without providing any localization supervision. The network learns how to extract patches

on its own, and these patches are then fed to a task-specific network to realize an end goal. While

at first glance the MIST framework might appear non-differentiable, we show how via lifting they

can be effectively trained in an end-to-end fashion. We demonstrated the effectiveness of MNIST

by introducing a variant of the MIST dataset, and demonstrating compelling performance in both

reconstruction and classification. We also show how the network can be trained to reverse engineer

a procedural texture synthesis process.
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Chapter 5

Conclusion

5.1 Summary

In Chapter 2, we have presented a method to reverse-engineer how primitives blend together. We

have introduced a template for blending operators that can mimic any operator from previous

work but also completely new ones. This template can be optimized to fit sample points in the

operator domain. This enables the interactive design of operators that can be applied by users in

composition modeling without necessitating any technical knowledge.

In Chapter 3, we have introduced a new volume-preserving primitive for physical simulations. In

order to efficiently simulate it, we have extended the position-based dynamics simulation framework

by adding an extra degree of freedom. To do so, we have carefully derived the equations of the

updates and constraints. We have demonstrated that this primitive is an effective collision proxy.

Additionally, this primitive can be used as a volumetric proxy for surface deformation. Finally, we

have shown that this simple primitive can be useful to simulate complex objects such as muscles.

In Chapter 4, we have introduced a novel unsupervised Deep Learning framework to learn and

detect recurring primitives. At the core of our contribution is our multi-steps training process that

is required to train our network despite the non-differentiable top-k operation. We have successfully

applied our method on multi-instance reconstruction and classification tasks, outperforming the

state-of-the-art unsupervised methods.

5.2 Future Work

Joint optimization of primitives and composition functions. In Chapter 2, a method to

extract the function by which some primitives are combined was presented. This assumes that the

shape of the primitives and their pose are known. But this information is rarely available. Most

three-dimensional models are just specified in terms of their final shape, not by the primitives

that compose them. Of course, there has been some work on extracting primitives but it would be

interesting to jointly optimize for the primitives and the composition functions.
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Simulation of primitives. In Chapter 3, the use the “tapered capsule” as a useful primitive

for simulation was introduced. One might wonder whether there are more primitives that are

well suited for simulating physical objects. An interesting example to investigate is the “wedge”

primitive that is the two-dimensional counterpart of the tapered capsule. Its skeleton is a triangle

(as opposed to a segment for a capsule).

MIST for unsupervised object detection. Presented in Chapter 4, MISTs are a first step

towards the definition of optimizable image-decomposition networks that could be extended to

a number of exciting unsupervised learning tasks. Amongst these, we intend to explore the

applicability of MISTs to unsupervised detection/localization of objects, facial landmarks, and

local feature learning.

Learning three-dimensional primitives. Another interesting venue for research would be to

apply MISTs to three-dimensional data. This would have applications in scene compression, scene

understanding, object detection, and keypoints detection.

Animation decomposition. So far, in Chapter 4, we have only used fixed images to learn

to primitives. But in an animated sequence such as a video or a three-dimensional animation,

primitives have a temporal coherency. This could be leveraged to learn more efficiency and solve

ambiguous situations. During an animation primitives may also deform, which should also be

taken into account.
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Appendix A

Appendix for Chapter 3

A.1 Elastic Potentials

Strain. As defined in Section 3.5 we can write the strain energy as

Estrain =

∫∫

D

‖RT∇p− R̄T∇p̄‖2
Kdxdy, (A.1)

where we drop the subscript from K for brevity. This equation can be extended as

∫∫

D

‖RT∇(c + sRq)− R̄T∇(c̄ + s̄R̄q)‖2
Kdxdy, (A.2)

where

RT∇(c + sRq) = RT (∇c +∇sRq + s∇Rq + sR∇q), (A.3)

= RT∇c +∇sq + sRT∇Rq + s∇q. (A.4)

We can derive the gradient operator for each part of this summation leading to

RT∇c =
[

0 0 RT∇zc
]

=
[ 0 0 0

0 0 0
0 0 wT ∇zc

]

, (A.5)

∇sq =
[

0 0 ∇zsq
]

=
[

0 0 ∇zsx
0 0 ∇zsy
0 0 0

]

, (A.6)

sRT∇Rq =
[

0 0 sΩ×q
]

=

[
0 0 −sΩwy
0 0 sΩwx
0 0 sΩuy−sΩvx

]

, (A.7)

s∇q =
[

sex sey 0
]

=
[

s 0 0
0 s 0
0 0 0

]

, (A.8)

where Ω = [ΩuΩvΩw]T is the Darboux vector; and analogous expressions can be derived for ∇p̄.
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We can now observe than (A.1) can be broken up into the sum of distinct energies

Estrain =

∫∫

D

kz(wT∇zc− w̄T∇z c̄)2 (A.9)

+‖(∇zs−∇z s̄)q‖2
K (A.10)

+‖(sΩ− s̄Ω̄)× q‖2
K (A.11)

+(kx + ky)(s− s̄)2dxdy, (A.12)

as the cross terms evaluate to 0. After integrating over the disc we can reformulate (A.9) as

Estrain = πr2kz‖∇zc−ww̄T∇z c̄‖2
2 (A.13)

+ πr4(kx+ky)
4 (∇zs−∇z s̄)2 (A.14)

+ ‖sΩ− s̄Ω̄‖2
H (A.15)

+ πr2(kx + ky)(s− s̄)2, (A.16)

where H =
[

πr4kz
e

x

4
πr4kz

e
y

4
πr4(kx+ky)e

z

4

]
is the second moment of the area of a disc scaled by the

stiffness.

Volume. As defined in Section 3.5 we can write the volume energy as

Evol =

∫∫

D

k(|∇p| − |∇p̄|)2dxdy (A.17)

=

∫∫

D

k(|RT∇p| − |R̄T∇p̄|)2dxdy, (A.18)

Based on the strain derivation, the determinant can be computed as

|RT∇(c + sRq)| = |

[
s 0 ∇zsx−sΩwy
0 s ∇zsy+sΩwx

0 0 wT ∇zc+sΩuy−sΩvx

]

| (A.19)

= s2wT∇zc + s3(Ωuy − Ωvx). (A.20)

We can now integrate over the disc leading to

Evol = πr2k‖s2∇zc− s2
p̄ww̄T∇z c̄‖2

2 (A.21)

+ πr4k
2 (s3Ωu − s̄3Ω̄u)2 (A.22)

+ πr4k
2 (s3Ωv − s̄3Ω̄v)2. (A.23)

A.2 Prediction Step

As described in (3.9), the inertial potential over the disc is of the form

Einertia =

∫∫

D

m
2h2 ‖pt − p̂t‖

2
2dxdy. (A.24)
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We aim at finding the unknowns xt = [ cT
t st θ

T
t ]

T
that minimize (A.24) giving us the prediction

update. We denote by θ the angles parametrizing the rotation matrix. Because the deformation

function pt is non linear, i.e., due to the rotational degrees of freedom, we rely on a Gauss-Newton

iterative scheme for the minimization. We linearize (A.24) at xk
t leading to

arg min
∆xk

t

∫∫

D

m
2h2 ‖A∆xk

t − b‖2
2dxdy, (A.25)

where k is the iteration number, and ∆xt = [ ∆cT
t ∆st ∆θ

T
t ]

T
. At each iteration we minimize (A.25),

and then apply the update xk+1
t = xk

t + ∆xk
t , where we initialize x0

t = xt−1. The matrix A can

be written as A = [ I3×3 Rk
t q −sk

t [Rk
t q]× ], where [·]× is a cross product skew-symmetric matrix. The

vector b is defined as b = pt−1 + hṗt−1 + h2

m
fext − pk

t . To compute the prediction updates we

will use a single iteration of Gauss-Newton so b = hṗt−1 + h2

m
fext as p0

t = pt−1. We will now drop

the superscripts and the subscripts to improve readability. As Equation A.25 is quadratic we can

be find its minimum by solving the normal equation





∫∫

D

m
h2 AT Adxdy



∆x =

∫∫

D

m
2h2 AT bdxdy. (A.26)

Interestingly, the left hand side
∫∫

D

m
2h2 AT Adxdy can be simplified to a block diagonal matrix of

the form 







∫∫

D

m
2h2 I3×3dxdy 0 0

0
∫∫

D

m
2h2 (Rq)T (Rq)dxdy 0

0 0
∫∫

D

ms2

2h2 [Rq]T
×

[Rq]×dxdy









, (A.27)

by noticing that [Rq]T×(Rq) = 0. Moreover, as the center of mass of the disc is placed at the origin
∫∫

D

mRqdxdy = 0 and
∫∫

D

m[Rq]× = 0. We can now integrate the diagonal elements leading to








πr2m
h2 I3×3 0 0

0 πr4m
2h2 0

0 0 ms2

h2 I








, (A.28)

where I = R
[

πr4

4 ex πr4

4 ey πr4

2 ez

]

RT is the second moment of area of a disc in world-space. The

right hand side
∫∫

D

m
h2 AT bdxdy can be simplified as








πr2m
h

ċ + ξext

πr4m
2h

ṡ + τ ext

ms2I
h

θ̇ + γext








, (A.29)

where ξext =
∫∫

D

fextdxdy is the sum of the external forces which act on the disc, τ ext = s
∫∫

D

(Rq)×

fextdxdy is the sum of the external torques and γext =
∫∫

D

(Rq) · fextdxdy is a quantity which can
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be seen as the counterpart of the external torque by measuring the external forces applied along

the center direction.

Center update. By solving the linear system (A.26) for ∆c we find the prediction update for

the center

∆c = hċ + h2

πr2m
ξext, (A.30)

As we integrate on a disc located at a midpoint this update is valid for the center of the disc

located at this point. We approximate the update over the end points by using the same update

rule.

Scale update. Similarly, the scale update can be computed solving the linear system for ∆s

leading to

∆s = hṡ + 2h2

πr4m
γext, (A.31)

We also approximate the update over the end points using the same update rule

Frame update. The frame update can be computed by solving the linear system for ∆θ leading

to

∆θ = hθ̇ + I−1h2

s2m
τ ext. (A.32)

A.3 Correction Step

Inertia approximation. From the derivation in Appendix A.2 we can obtain an approximation

of the inertia term as

Einertia ≈
πr2m
2h2 ‖ct − ĉt‖

2
2 + πr4m

4h2 (st − ŝt)
2 + s2m

2h2 ‖θt − θ̂t‖
2
I , (A.33)

where

ĉt = ct−1 + hċt−1 + h2

πr2m
ξext, (A.34)

ŝt = st−1 + hṡt−1 + 2h2

πr4m
γext, (A.35)

θ̂t = θt−1 + hθ̇t−1 + I−1h2

s2m
τ ext, (A.36)

are the inertial predictions for the different degrees of freedom. The variational form of implicit

Euler (3.9) can then be written in the form

min
X

1
2h2 ‖X− X̂‖2

A + 1
2‖W(X)‖2

K, (A.37)

where X = [ cT
[0],s[0],θ

T
[.5],c

T
[1],s[1],θ

T
[1.5],··· ]

T
and X̂ are vectors containing all the degree of freedoms

and their predictions, K is a block diagonal matrix stacking the stiffness parameters scaled by the

length of the piecewise elements, A is a block diagonal matrix stacking the inertia weights scaled

by the length of the piecewise elements, and W(X) = [ W1(X) W2(X) ... ]
T

stacks the potential

energy functions.

Variational Solver. To solve this optimization we can linearize the elastic potentials and write
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an iterative Gauss-Newton optimization

min
∆X

1
2h2 ‖X

k−1 + ∆X− X̂‖2
A + 1

2‖W(Xk−1) +∇W(Xk−1)∆X‖2
K, (A.38)

where k is the iteration number, Xk = Xk−1 +∆X, and we initialize X0 = X̂. Since Equation A.38

is quadratic in the unknown ∆X, we can minimize it with a single linear solve

A
h2 (Xk−1 + ∆X− X̂) +∇W(Xk−1)T K

(
W(Xk−1) +∇W(Xk−1)∆X

)
=0.

However, the conditioning of this linear system is greatly dependent on how stiff are the elastic

potentials. Following the optimization trick presented in [Gould, 1986], for elastic potentials with

large stiffness a better option is to split the equation above as

{
A
h2 (Xk−1 + ∆X− X̂) +∇W(Xk−1)Tλk = 0, (A.39)

K−1λk = W(Xk−1) +∇W(Xk−1)∆X. (A.40)

Note that when the elastic potentials are infinitively stiff K−1 vanishes λ = [λ1, . . . , λn]T becomes

the vector of Lagrange multipliers. We can now reformulate (A.39) as

∆X = −h2A−1∇W(Xk−1)Tλk − (Xk−1 − X̂) (A.41)

≈ −h2A−1∇W(Xk−1)T ∆λ, (A.42)

by assuming ∇W(Xk) ≈ ∇W(Xk−1), and where λk = λk−1 + ∆λ and we initialize λ0 = 0.

This can be proven by induction knowing that X0 = X̂ and λ0 = 0. By substituting ∆X in the

Equation A.40, we can rewrite the system of equations as







∆X = −h2A−1∇W(Xk−1)T ∆λ,

(h2‖∇W(Xk−1)T ‖2
A−1 + K−1)∆λ = W(Xk−1)−K−1λk−1.

Therefore, ∆X and ∆λ can be found with a single linear solve.

A.4 Closed form pill projection

Given a pill P = {(c1, r1), (c2, r2)}, we can compute the closest point distance of a point x onto

P in close form as

d = ‖x− c1 + t̂jl‖2 − ((1− t)r1 + tr2) (A.43)

where l = ‖c1− c2‖2 is the pill length, ĵ = l−1(c1− c2) is the pill versor, ps = c1− ĵ
(

(x− c1) · ĵ
)

the orthogonal projection onto the pill segment, θ = arcsin(l−1(r1− r2)) is the pill slope angle, and

t = min(max(−l−1(ps + ôj− c1) · ĵ, 0), 1) is the barycentric coordinate of the projection, where

o = ‖x− ps‖
2
2 tan(θ).
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