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Generalized Likelihood Ratio Test for Modified Replacement Model in
Hyperspectral Imaging Detection

François Vincenta,∗, Olivier Bessona
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Abstract

The replacement model, which assumes that the abundances sum up to one, is often advocated for subpixel

target detection in hyperspectral imaging, and various detection schemes based on this model have been

developed in the literature. However, in practical situations, this unitary constraint may be too strong due

to possible attenuation of the target bidirectional reflectance distribution function, signature mismatches or

impediments in the radiometric corrections. In this paper, we relax this unitary constraint and consider a

modified replacement model. One step and two steps generalized likelihood ratio tests are developed for the

proposed model and compared to standard solutions through numerical simulations. A real data experiment

attests to the validity of the proposed approach.

Keywords: Hyperspectral, Detection, Subpixel, Replacement Model, GLRT, Kelly.

1. Introduction

An hyperspectral image is an extension of a standard three colors map to a spectrally more dense image,

usually composed of hundreds of bands. This richer information allows to characterize or recognize the

different materials present in a picture and hence hyperspectral imaging has encountered a large field of

applications, ranging from remote sensing to medicine [1, 2, 3, 4, 5, 6, 7, 8].

When dealing with detection, two kinds of algorithms can be considered, namely anomaly detection

where the target signature is unknown, and target detection where the target signature is known, usually

from laboratory experiments. In this latter case, many algorithms have been developed in the literature,

such as the Adaptive Matched Filter (AMF) [9], Kelly’s GLRT [10], the Orthogonal Subspace Projection

(OSP) [11], or the Adaptive Coherent/Cosine Estimator (ACE) [12], to cite a few. All these widely used

algorithms are based on the so-called additive model which simply describes the observation data as the

sum of a background nuisance plus a possible fraction of the known target signature. More recently, some

of these algorithms have been extended to the more realistic replacement model [13, 14], where the target
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is supposed to replace an equivalent part of the background, see equation (1) below. The additive model

can be viewed as a low target to background ratio approximation of the replacement model. In this more

realistic model, a unitary constraint is enforced on the sum of the so-called abundances, corresponding to the

proportion of each component, also called endmembers. However, this theoretical unitary constraint seems

to be too restrictive in many practical applications where sources of uncertainty may question its validity.

The main reason of a possible mismatch is linked to the unknown aspect angle when considering large

targets, such as vehicles for instance. This non-Lambertian target behaviour is well-known and can be

modelled by a Bidirectional Reflectance Distribution Function (BRDF) when the aspect angles are known

[15]. The consequence is a loss in the observed target abundance, compared to the laboratory measurements,

that invalidates the unitary constraint. This effect has been observed on real data detection experiments

where the target abundance is often under-estimated [16]. In this paper, we propose a Modified Replacement

Model (MRM) which takes into account this possible BRDF attenuation due to the unknown attitude of the

target with respect to the sensor. This model amounts to relax the unitary constraint on the abundances

while still considering a background abundance attenuation when a target is present, unlike for the simple

additive model. Hence, this MRM can be considered as a compromise between the replacement model, that

seems too restrictive for real life applications and the standard additive model, that is oversimplified.

Moreover, while relaxing the unitary constraint, we also expect that the proposed detectors, adapted

to the MRM, are also more robust to target signature mismatches than algorithms based on the strict

replacement model. Indeed, in practice, there usually exists a spectral difference between the actual tar-

get signature and the presumed one. The principal reasons of these mismatches are a possible difference

between the laboratory sensors and the experimental ones, non-complete atmospheric and sun illumination

corrections, or simply an actual difference between the presumed target and the real one. In this case, as the

background in the Pixel Under Test (PUT) is characterized using the nearby pixels, any target mismatch

will also invalidate the assumed unitary constraint.

In this paper, we developed two Generalized Likelihood Ratio Tests (GLRT) for the MRM, namely the

direct one-step GLRT and the two-steps GLRT, assuming that the background characteristics are known

from secondary data. This last two-step GLRT is then the counterpart of the so-called Finite Target Matched

Filter (FTMF) [13] for the MRM. Similarly, the one-step GLRT of the present paper, which we refer to

as Sub-Pixel Adaptive DEtection (SPADE), is the counterpart of ACUTE [14]. The validity of these new

detectors is assessed both on simulated and real data. The performance of these schemes on real data

confirm the relevance of the proposed MRM.

The paper is organized as follows. We first describe the MRM and introduce the detection problem in

section 2. The two kinds of GLRT are then derived in section 3 and section 4. These new detectors are

compared to standard detectors both through numerical simulations in section 5, and real data in section

6. Finally concluding remarks end this paper in section 7.
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2. Signal Model

The standard model in hyperspectral detection procedures, is the replacement model [17]

y = γt + (1− γ)b (1)

where y represents the spectral vector of the Pixel Under Test (PUT), composed of N spectral samples,

t represents the endmember we are looking for, 0 ≤ γ ≤ 1 is the unknown abundance of the variety

characterized by t also known as the fill factor, and b is the background spectral signature, assumed to be

Gaussian, b ∼ N(µ,R).

As stated in the introduction, the reflectance of a geometric target, such as a vehicle for instance, is

subject to its unknown aspect angle with respect to the sensor. Thus, the observed target reflectance will

possibly be affected by an unknown scaling factor δ, while the background abundance will remain linked to

the real target masking surface in the pixel (1− γ). Taking into account this target directional response, we

consider the following Modified Replacement Model (MRM):

y = δγt + (1− γ)b (2)

or, as both δ and γ are unknown, simply:

y = αt + βb (3)

where both α and β are unknowns. It has to be noticed that as δ represents a sort of scaling factor for

the presumed laboratory target spectrum due to a more grazing aspect angle, it will be usually lower than

unity. Hence, the standard constraint on the sum of the total abundances is no more valid while using this

MRM. Nevertheless, this model is not tantamount to considering a simplified additive model, because the

noise abundance is supposed to change between the null hypothesis H0 and the alternative hypothesis H1,

defined as

H0 : y = b (4)

H1 : y = αt + βb

As mentioned in the introduction, this model is also supposed to be able to manage possible mismatches in

the target or background endmembers, because it relaxes the unitary constraint on the abundances.

3. Two-Steps GLRT

In this section, we will derive the GLRT associated with model (4), assuming that we have access to

target-free data, namely secondary data, enabling the estimation of both the mean and the covariance

3



matrix of the background. Under the stated assumptions, the log-likelihood under H1 is, up to additive and

multiplicative constants,

L1 = N log(β2) +
(y − αt− βµ)TR−1(y − αt− βµ)

β2

or equivalently

L1 = N log(β2) +
(yb − αtb − βµb)T (yb − αtb − βµb)

β2

where yb = R−
1
2 y, tb = R−

1
2 t and µb = R−

1
2µ are respectively the whitened data, target endmember and

background mean. The Maximum Likelihood (ML) estimate of α is shown to be

α̂ =
tTb (yb − βµb)

tTb tb
(5)

so that the compressed log-likelihood under H1 becomes

max
α
L1 = N log(β2) +

(yb − βµb)TP⊥(yb − βµb)
β2

with P⊥ = I−P where P = tb(t
T
b tb)

−1tTb . Differentiating with respect to β conducts to

Nβ2 = yTb P⊥(yb − βµb)

so that the ML estimate of β is the solution to the following second order equation:

Nβ2 + yTb P⊥µbβ − yTb P⊥yb = 0 (6)

In order to obtain a positive value for β, the only valid solution is

β̂ =
−yTb P⊥µb +

√
(yTb P⊥µb)

2 + 4NyTb P⊥yb

2N

Hence the GLRT writes

T2 = −N log(β̂2) + (yb − µb)
T (yb − µb)−

(yb − β̂µb)TP⊥(yb − β̂µb)
β̂2

We can notice that, when no background power variation is detected (β̂ = 1), the proposed detector is equal

to the AMF TAMF = (yb − µb)
TP(yb − µb) [9]. Using (6), we can also rewrite T2 as follows

T2 = N(1− log(β̂2)) + (yb − µb)
T (yb − µb) +

µTb P⊥yb

β̂
− µTb P⊥µb

The two-steps GLRT is finally obtained by replacing µ and R by their ML estimates obtained from secondary

data.
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4. One-Step GLRT (SPADE)

Following Kelly’s approach [10], we now derive the direct (one-step) GLRT, i.e. considering that the

background characteristics (mean and covariance matrix) are not a-priori known. Hence, we assume that

we can access K secondary data zk, k = 0..., (K − 1), free from the target endmember t i.e. zk ∼ N(µ,R).

From the stated model, the likelihood function under H0 is now

p0 =
1√

(2π)N |R|
e−

1
2 (y−µ)TR−1(y−µ) ×

K−1∏
k=0

1√
(2π)N |R|

e−
1
2 (zk−µ)TR−1(zk−µ)

=
1

[(2π)N |R|]K+1
2

e−
1
2 Tr{R−1Σ0}

where Σ0 =
∑K−1
k=0 (zk −µ)(zk −µ)T + (y−µ)(y−µ)T . The mean and covariance matrix which maximize

this likelihood are shown to be respectively

µ̂0 =
Kz̄ + y

K + 1

R̂0 =
1

K + 1
[ZZT + yyT − (K + 1)µ̂0µ̂

T
0 ]

=
1

K + 1
[ZZT −Kz̄z̄T +

K

K + 1
(y − z̄)(y − z̄)T ]

where Z =
[
z0 . . . zK−1

]
, z̄ = 1

KZ1 and 1 is a column vector composed of ones. The compressed

likelihood under H0 becomes

max
µ,R

p0 =
[
(2πe−1)N |R̂0|

]−(K+1)
2

Additionally, the likelihood under H1 is

p1 =
1√

(2π)N |β2R|
× e−

1
2β2

(y−αt−βµ)TR−1(y−αt−βµ) ×
K−1∏
k=0

1√
(2π)N |R|

e−
1
2 (zk−µ)TR−1(zk−µ)

=
1

βN [(2π)N |R|]K+1
2

e−
1
2 Tr{R−1Σ1}

where Σ1 =
∑K−1
k=0 (zk − µ)(zk − µ)T + (ỹ − µ)(ỹ − µ)T and ỹ = y−αt

β . Hence, the mean and covariance

matrix estimates become

µ̂1 =
Kz̄ + ỹ

K + 1

R̂1 = ZZT −Kz̄z̄T +
K

K + 1
(ỹ − z̄)(ỹ − z̄)T

and

max
µ,R

p1 = β−N
[
(2πe−1)N |R̂1|

]−(K+1)
2
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Notice that |R̂1| = 1
(K+1)N

|S| × [1 + K
K+1 (ỹ − z̄)TS−1(ỹ − z̄)] where S = ZZT −Kz̄z̄T . Differentiating the

compressed log-likelihood with respect to α yields

∂ỹ

∂α
S−1(ỹ − z̄) = 0

so that the ML estimate of α writes

α̂ =
tTS−1(y − βz̄)

tTS−1t
=

tTw(yw − βz̄w)

tTwtw
(7)

where yw = S−
1
2 y, tw = S−

1
2 t and z̄w = S−

1
2 z̄ are respectively the data, target endmember and secondary

data mean, whitened by the estimated covariance matrix, namely S (up to the (K + 1) scaling factor). As

(ỹ(α̂)− z̄)TS−1(ỹ(α̂)− z̄) =
1

β2
(yw − βz̄w)TP⊥(yw − βz̄w)

with P⊥ = I− tw(tTwtw)−1tTw, we obtain

max
µ,R,α

L1 = const.−N log(β)− K + 1

2
log

[
1 +

K

K + 1

(yw − βz̄w)TP⊥(yw − βz̄w)

β2

]
Differentiating this last expression with respect to β yields

N

β
=
K

β3

yTwP⊥(yw − βz̄w)[
1 + K

K+1
(yw−βz̄w)TP⊥(yw−βz̄w)

β2

] (8)

Hence we need to solve the following 2nd-order equation

N(1 +
K

K + 1
z̄TwP⊥z̄w)β2 +K(1− 2N

K + 1
)yTwP⊥z̄wβ −K(1− N

K + 1
)yTwP⊥yw = 0

where the product of the two roots is shown to be negative since K + 1 − N > 0. Hence, the only valid

solution corresponds to the positive root.

Furthermore, considering that |R̂0| = 1
(K+1)N

|S|[1 + K
K+1 (yw − z̄w)T (yw − z̄w)], the GLRT is shown to

be

TSPADE =
|R̂0|

K+1
2

β̂N |R̂1|
K+1

2

=

[
1 + K

K+1 (yw − z̄w)T (yw − z̄w)
]K+1

2

β̂N
[
1 + K

K+1
(yw−β̂z̄w)TP⊥(yw−β̂z̄w)

β̂2

]K+1
2

5. Numerical simulations

In order to asses the validity of these new detectors, we consider an hyperspectral image composed of

N = 32 spectral bands. The background comprises 5 random endemembers plus a −10 dB white Gaussian

noise floor. A possible target, associated with a fill factor α = 0.2 is also generated with a random spectral

signature. For all simulations, we assume that K = 10N in order to avoid a bad conditioning of the

sample covariance matrix. We compare the two proposed GLRT, namely SPADE (section 4) and the
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modified FTMF (section 3) with the standard AMF drawn from the additive model, and the two GLRT

developed in the unitary constraint case, namely FTMF and ACUTE [14]. Figures 1, 2 and 3 present

the Receiver Operating Characteristics (ROC), obtained from 105 Monte-Carlo simulations, respectively for

targets BRDF attenuations equal to δ = 1, δ = 0.7 and δ = 0.5.

We can observe that when the unitary constraint holds (δ = 1), it is preferable to use the two detectors

that perfectly fit the replacement model, namely FTMF and ACUTE detectors. The two detectors proposed

in this paper exhibit a loss in this case, but still perform better than the standard AMF, which does

not consider any background power variation between H0 and H1. When the unitary constraint on the

abundances is no more satisfied, the two proposed GLRT keep the same performance whereas the other

detectors degrade. Thereby, when the actual target amplitude decreases of more than 30% from the presumed

one (δ < 0.7), the proposed detectors are the best alternatives. A noticeable performance improvement can

then be obtained. For instance, when δ = 0.5, the gain is more than one decade in terms of Pfa for a given

Pd. Moreover, we can see that the performance of FTMF and ACUTE are the same. Indeed, they are based

on the same model, namely the exact replacement model and only differ in the way they solve the detection

problem. FTMF is a two-steps procedure whereas ACUTE is a one-step algorithm. This last procedure

is recognized to be more robust to a small number of training samples, but since K = 10 × N here this

advantage is not visible. However, this benefit is slightly noticeable between the one-step and two-steps

versions of the MRM GLRT, namely SPADE and the modified FTMF proposed in this paper.

6. Real Data Assessment

The two detectors proposed in this paper aim at improving the robustness on real data, assuming that

the unitary constraint of the replacement model does possibly not hold. The goal of this last section is to test

our proposed schemes against a real detection benchmark. We choose the “airborne Viareggio 2013 trial”

open data to assess the different algorithms [18]. This benchmarking hyperspectral detection campaign took

place in Viareggio (Italy), in May 2013, where an aircraft flying at 1200 meters heigh, acquired 3 [450×375]

pixels maps of the same area. Two of them corresponding to a cloudy day, whereas the last one was acquired

during a clear weather. Each hyperspectral pixel corresponds a N = 511 uniform sampling of the Visible

Near InfraRed (VINR) band (400− 1000nm). The corresponding spatial resolution is about 0.6 meters.

Different kinds of vehicles as well as coloured panel served as known targets. For each of these targets, a

spectral signature, obtained from ground spectroradiometer measurements, is available as well as the ground

truth position. Moreover, a black and a white cover serving as calibration targets were also deployed. Indeed,

these two calibrated targets, can be used to convert the raw Digital Numbers (DN) measurements into a

reflectance map, using, for instance the ELM procedure.

In this paper, we consider the clear sky image, represented in Fig. (4). The scene is composed of
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parking lots, roads, buildings, sports fields and pine woods. The black and white calibration panel are

clearly visible, in positions [70, 330] and [250, 150] respectively. Among the 4 target vehicles, two are easily

detectable, namely V1 and V4, as there signatures are far from the background subspace. These targets

correspond to the blue car that can be seen in position [250, 200], and a white vehicle covered with a red

sheet in position [130, 280]. The two other vehicles, namely V5 and V6 are more difficult to detect because

of signatures closer to the background subspace. We will focus on these more challenging targets (cf. Fig.

4).

The first step of the processing aims at converting the raw measurements into a reflectance map, for

which the unitary constraint on the abundances is supposed to be verified. To this end, we use the ELM

technique, considering the black and white calibration panels.

Once again, we compare the performances of the two proposed detectors with the AMF and with the two

GLRT matching the replacement model exactly, namely FTMF and ACUTE. The performance is evaluated

in counting the number of pixels where the detector output is larger than the output for the actual target

position. This score corresponds to a false alarm number with an optimal threshold. For this real data

experiment, we have chosen a guard window size of 9 × 9 pixels, considering the maximum extend of the

vehicles used as targets, and a covariance estimation window of size 15×15, leading to K = 4.5N secondary

pixels. This comparison is performed for the V5 and V6 vehicles and is available on table 1.

On these two real targets, we can see that the performance of the two-steps MRM algorithm is roughly

the same as its replacement-model counterpart, namely the FTMF, as it is better on V6 but worse on

V5. On the other hand, the one-step MRM algorithm (SPADE) exhibits better or the same results as its

replacement-model counterpart, namely ACUTE, for the two targets.

These real data results tend to confirm the relevance of the proposed MRM, relaxing the unitary con-

straint on the abundances, and leading to possibly better results in practice. It has to be noticed the good

behaviour of the simple AMF compared to the FTMF, especially for the V6 target, suggesting again, that

the unitary constraint may not hold. Indeed, using a simple additive model produces better results than

considering the replacement one. The proposed MRM is somehow midway between the simple additive

model and the too constrained replacement one.

7. Conclusions

In this paper we considered the detection problem of a target whose spectral signature is known up to a

scaling factor, in an hyperspectral image. This situation occurs, for instance when the unknown aspect angle

of a man-made target produce a BRDF attenuation as compared to laboratory experiments. More generally,

the model simply relaxes the unitary constraint, sometimes improperly assumed on the abundances by the

replacement model. We developed two GLRTs for the model at hand, namely the one-step and two-steps
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GLRT. Numerical simulations showed that these solutions are attractive as soon as the target signature

attenuation reaches 30%, compared to solutions exploiting the unitary constraint. Moreover a real data

experiment showed that considering the modified replacement model and the proposed solutions is worthy

of interest for real applications.
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Figure 1: ROC from 105 Monte-Carlo simulations for an INR of −10dB, N = 32, K = 10N , α = 0.2 and δ = 1
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Figure 2: ROC from 105 Monte-Carlo simulations for an INR of −10dB, N = 32, K = 10N , α = 0.2 and δ = 0.7

Table 1: False Alarms Numbers

Target AMF FTMF Modified ACUTE SPADE

FTMF

V5 7 1 7 0 0

V6 147 284 167 133 89
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Figure 3: ROC from 105 Monte-Carlo simulations for an INR of −10dB, N = 32, K = 10N , α = 0.2 and δ = 0.5

Figure 4: Complete RGB view of the scene
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