
  

 

 

OATAO is an open access repository that collects the work of Toulouse 
researchers and makes it freely available over the web where possible 

Any correspondence concerning this service should be sent  

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr 

This is an author’s version published in: http://oatao.univ-toulouse.fr/25161 
 
 

 

To cite this version:  

You, Xinqiang and Gu, Jinglian and Peng, Changjun and Rodríguez-Donis, 

Ivonne  and Liu, Honglai Optimal design of extractive distillation for acetic 

acid dehydration with N-methyl acetamide. (2017) Chemical Engineering and 

Processing: Process Intensification, 120. 301-316. ISSN 0255-2701  

Official URL: https://doi.org/10.1016/j.cep.2017.07.025 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/242276163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tech-oatao@listes-diff.inp-toulouse.fr
http://oatao.univ-toulouse.fr/25161
http://www.idref.fr/06026814X
https://doi.org/10.1016/j.cep.2017.07.025


Optimal design of extractive distillation for acetic acid dehydration with N-
methyl acetamide

Xinqiang Youa, Jinglian Gub, Changjun Penga, Ivonne Rodriguez-Donisc,⁎, Honglai Liua

a State Key laboratory of Chemical Engineering and Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
b School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
c Laboratoire de Chimie Agro-Industrielle, Université de Toulouse, INRA, ENSIACET-INPT, Toulouse, France

A R T I C L E I N F O

Keywords:
Acetic acid dehydration
Extractive distillation
Sequential quadratic programming
Multi-objective optimization
Genetic algorithm

A B S T R A C T

A distinctive strategy for entrainer recycling is proposed in this work for acetic acid (AA) dehydration by ex-
tractive distillation by using N methyl acetamide (NMA). The use of standard entrainers such as DMF or DMSO
has the main drawback of forming an azeotrope with acetic acid. However, the vapour liquid equilibrium AA –
NMA exhibits a tangential pinch point at NMA end composition. The new strategy rises from the thermodynamic
analysis of the ternary diagram that which involves no azeotrope. As a result, acetic acid with high purity can be
obtained by the recycling of the entrainer with a relaxed constraint in its purity. Optimization studies are dis-
cussed by using two approaches: two-step optimization method with Sequential Quadratic Programming (TSOM
case) and the multi-objective genetic algorithm. The multi-objective genetic algorithm allowed the computation
of the optimal acetic acid dehydration with an impurity of 3% in the recycled entrainer. Significant cost savings
are achieved thanks to the optimization of both columns together. Energy consumption is reduced by 12.8% and
56.9% whereas TAC is saved by 28.4% and 56.3% compared with optimal case TSOM (impurity content 1%) and
a published “Case Ref” (impurity content 0.01%), respectively.

1. Introduction

Acetic acid (AA), as an important solvent or reagent, is widely used
in many fine chemical or petrochemical processes. Aqueous solution of
AA is produced as by products in wood distillate (1 8 wt% AA) [1],
manufacturing of cellulose acetate from acetylation of cellulose (35 wt
%) [2], and synthesis of terephthalic acid process (about 65 wt%) [3].
Therefore, the dehydration of aqueous AA in an economical way is of
great importance for the industries above and others, such as methyl
acetate production, ketene production and various methods for the
concentration of AA [4,5]. However, it is difficult to separate AA from
water by simple distillation because the relative volatility between
water and AA is close to unit (see Fig. 1) mainly in the region of in
creasing water purity. Therefore, advanced processes such as pressure
swing distillation, azeotropic distillation, reactive distillation and ex
tractive distillation are required. First, the pressure swing distillation is
overlooked since the vapor liquid equilibrium of AA and water is not
sensitive enough to the pressure. Second, according to the study of
Furum and Fonyo [4], azeotropic distillation could be only used for
separating AA solution with AA content greater than 35 wt%. Later,
Wasylkiewicz et al. [6] proposed a geometric method for the design of

AA dehydration azeotropic distillation based on the examination of the
whole composition space. Chien et al. [7] studied the separation of
equimolar mixture of AA water via heterogeneous azeotropic distilla
tion, and iso butyl acetate was found the best azeotropic entrainer. For
more dilute feeds, AA enrichment is necessary. One way for AA en
richment is solvent extraction, and the solvent could be ethyl acetate,
isopropyl acetate, diethyl ether and so on [3]. However, the solvent
extraction is limited by phase separation and the distribution of im
purities. Besides, the high amount of solvents would cause much energy
consumption for solvent recovery by vaporization. Another way is to
use a pre concentrator column for the enrichment of AA. Chien and Kuo
[8] studied the necessity of adding pre concentrator column before
azeotropic distillation column for the dehydration of dilute AA, and
they found the surprise that no pre concentrator flowsheet was better
than the pre concentrator flowsheet following the total annual cost
(TAC). Third, the reactive distillation for recovery of dilute AA is de
scribed by Saha et al. [2] by using n butanol/iso amyl alcohol as es
terification solvent and by Lei et al. [9] by employing tributylamine as
separating agent. Although a value added ester is formed, an additional
column is needed for the whole process.

Extractive distillation, as an alternative process, that usually
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requires a relative low energy consumption because of low reflux ratio
and provides simplification in design and control. For the dehydration
of AA by extractive distillation, there are plenty of publications focusing
on the selection of entrainers, such as 1,2 dimorpholinoethane [10], N
methyl acetamide (NMA) [11], N methyl 2 pyrrolidone (NMP) [12],
sulfolane, adiponitrile, dimethylsulfoxide [13] and so on. Hu and Zhou
[14] verified that NMA and NMP are the better entrainers for the de
hydration of AA solution based on the experimental data as the two
candidates have much better performances on increasing the relative
volatility of water as we will discuss in the next section. However, to the
best of our knowledge, very few publications have investigated the
design and optimization of extractive distillation for the dehydration of
AA. The main reason is probably that there is a tangential behavior of
the binary VLE between the AA and entrainer and it will be difficult to
save energy and capital cost compared with the conventional distilla
tion process. Hence, some strategic modifications have to be done for
the optimal design of AA dehydration process in order to enhance the

benefits of the extractive distillation process.
In this work, the optimal design of the extractive distillation process

for AA dehydration by using NMA as entrainer is completely in
vestigated. A new counter intuitive strategy is developed: high contents
of impurities in the recycled entrainer for the extractive distillation is
firstly proposed based on the knowledge of thermodynamic features of
the residue curve map (RCM) of the ternary mixture water AA NMA.
The topological structure of RCM corresponds to Serafimov’s class
0.0 1 [15] with no existence of univolatility lines between any pairs of
components. The steady state process is optimized through keeping a
high purity of AA in the distillate of the regeneration column while the
recycled entrainer in the bottom liquid is specified with high contents
of impurities. This strategy is completely differing from the ideology of
the Serafimov’s class 1.0 1a, in which the low content of impurities in
the recycled entrainer is compulsory, otherwise, the high purity of the
distillate of the extractive distillation column would not be obtained no
matter how large is the reflux ratio. Here the low contents of impurities

Fig. 1. Volatility and T-xy experiment and predicted map of water-AA-NMA system at 1 atm.



DMSO and NMP were taken from the database available in Aspen plus
V7.3 whereas those involving AA were taken from Chang et al. [18] and
Peng et al. [21].

Following remarks can be done from the analysis of thermodynamic
properties of the ternary diagrams in Fig. 2:

a) All ternary diagrams belong to Serafimov’s class 0.0 1 and the
univolatility curve between water AA doesn’t exist for all en
trainers. Water is the most volatile component in the entire com
position space providing the distillate product of the extractive
distillation column. Hence, the binary mixture of AA and the en
trainer will be the bottom product and its separation takes place in a
second distillation column (entrainer recovery column) where the
acetic acid is the distillate product. Classic entrainers for extractive
distillation processes as DMF and DMSO have the key drawback of
forming a binary maximum azeotropic mixture (BE) with acetic
acid. RCM belongs to ternary diagram of Serafimov’s class 1.0 1a.
RCM doesn’t exhibit any distillation boundaries and water remains
as the most volatile component. However, the bottom product from
the entrainer recovery column will be the binary maximum azeo
trope AA − E having a negative impact over the recovery yield of
AA.

b) DMF exhibits the highest values of isovolatility when the entrainer
composition is increased in the resulting ternary mixture. However,
DMSO with a greater boiling temperature allows decreasing the AA
composition in the maximum boiling binary azeotrope and hence,
theoretically increasing the recovery yield of AA. Using entrainers as
NMA and NMP provided both advantages, not formation of any
binary azeotrope in the resulting ternary mixture and high values of
relative volatility water AA with the increasing of entrainer
composition. Therefore, separation of water from acetic acid can be
performed under more favorable operating conditions such as lower
entrainer flowrate and reflux ratio.

The variation of the RCM and the map of the extractive liquid
profiles for the ternary diagram class 0.0 1 is displayed in Fig. 3 when
the separation of the components A and B is carried out by a batch
extractive distillation column under a feeding of the entrainer in an
upper tray of those of the main binary feeding A B and at finite reflux
ratio as it was highlighted out by Rodriguez Donis et al. [22].

Component A is the sole residue curve unstable node (see Fig. 3a)
and will be the column top product under infinite reflux operation and
no entrainer feeding. This is why a conventional distillation without
using an external entrainer buy implicating a very high reflux ratio is a
feasible process for the separation of water AA mixture. As explained
through bifurcation theory [23], the extractive liquid profile map sin
gular points are identical to residue curve map (RCM) points but with
opposite stability. Therefore, the vertex A in Fig. 3b is the unstable node
UNrcm in the RCM but the stable extractive node SNext,A. Vertex B is the
saddle node Srcm in the RCM and the extractive singular point SB,ext.
Vertex E is stable node SNrcm in the RCM but the unstable extractive
node UNext. Note that the edges E A, B E, and A B are unstable, un
stable, and stable extractive separatrices at infinite reflux, respectively.

At infinite reflux, as soon as the entrainer feed ratio is turned on (FE/
V > 0), an extractive column section arises, between the entrainer
feed tray and the azeotropic main feed tray, which links the liquid
profiles of the rectifying section with those of the stripping section.
Both, the extractive stable node SNext,A and saddle SB,ext then move
toward vertex E over the binary side E A and B E respectivelly (see
Fig. 3c). Linking SNext,A and SB,ext, the stable extractive separatrix
moves from the A B edge inside the ternary diagram. Enough trays
should be used in the extractive section to make all the extractive
profiles reach SNext,A in order to intersect a residue curve ending at
vertex A following the decreasing direction of temperature. Conse
quently, component A is settled at the top of the column. There is no
minimum value for FE/V because the univolatility line αAB does not

in the recycled entrainer (xL,I,E) means that its value is lower than 
1 × 10−4 and this is a normal specification for ternary diagram class 
1.0 1a while the high contents of impurities in the recycled entrainer 
(xH,I,E) represents that its value is higher than 20 × 10−4. The essential 
differences are that the distillate product of the extractive column for 
ternary diagram class 0.0 1 is an extractive stable node while it is an 
extractive saddle for class 1.0 1a. The proposed strategy enables to save 
energy cost by alleviating the tangential behavior of VLE between AA 
and NMA at high composition of the entrainer. In order to illustrate the 
benefits of the new strategy, two optimization methods are used: (1) 
two step optimization approach (TSOM) by using SQP method and (2) 
multi objective genetic algorithm (MOGA).

The reminder of this work is organized as following. Section 2 
presents the thermodynamic insights of the RCM of the ternary diagram 
belonging to Serafimov’s class 0.0 1 as well as the description of both 
optimization methods. The results and discussions are shown in Section 
3. It  firstly supplies the thermodynamic analysis of AA dehydration 
process and the choice of the distillate flow rates obeying their inter 
relationships. The results of TSOM are also discussed to illustrate the 
benefits of the new strategy under specified xH,I,E at a fixed total tray 
number of both columns. Thirdly, MOGA is employed to optimize the 
xH,I,E and the tray numbers of columns and the optimization results are 
explained by analyzing the liquid profile into the extractive column into 
the map of the isovolatility curves of the ternary mixture. Conclusions 
points out the major impact and significance of our findings.

2. Background, methods and objective functions

2.1. Thermodynamic insights of the extractive distillation process

The simulation of AA dehydration with the entrainer NMA was 
carried out by using simulator Aspen plus V7.3. The NRTL HOC prop 
erty method that uses the Hayden O’Connell equation of state as the 
vapor phase model and NRTL [16] for the liquid phase was used for the 
prediction of the vapor liquid equilibrium (VLE) in these simulations. 
AA molecules strongly associate with each other due to the hydrogen 
bond between two molecules. Hence, the association effect on vapour 
liquid equilibrium cannot be neglected even at low pressure. The 
Hayden O’Connell equation reliably predicts the solvation of polar 
compounds and dimerization in the vapor phase that occurs with 
mixtures containing carboxylic acids [17]. The association parameters 
shown in Table A1 in Appendix B were adopted to calculate the fugacity 
coefficients. Computation of ternary vapour liquid equilibrium was 
performed by using NRTL HOC property method available in Aspen 
plus V7.3 software along with the binary coefficients for AA water and 
NMA water. Binary parameters for AA NMA were taken from Chang 
et al. [18] based on the experimental data. All binary parameters are 
shown in Table B1 in Appendix B. The saturated vapor pressure of the 
pure components was calculated by the extended Antoine equation. The 
accuracy of the models and parameters was verified for each binary 
mixture by comparing the computed with experimental values from 
Dechema [19] as it is shown in Fig. 1.

Fig. 1 shows the good agreement between the estimated values with 
the experimental data. It demonstrates that the selected thermodynamic 
model and the binary parameters are able to well describe the ternary 
system of water AA NMA. We also notice that there is a tangent point 
between AA and NMA at NMA rich composition part. It leads to an 
unusual design of extractive distillation process by using NMA as en 
trainer for separating water AA after NMA is reported as a suitable 
entrainer with high relative volatility and selectivity [12].

Fig. 2 displays the RCM and the map of isovolatility curves for the 
main entrainers applied, DMF and DMSO [13] and NMA and NMP [12], 
for separating the binary mixture water AA by extractive distillation 
process. Isovolatilities curves were computed using Simulis Thermo 
dynamics® property server package and services available in Excel [20]. 
Binary coefficients for binary mixtures of water and the entrainers DMF,



exist.
Distillate withdrawal requires the operation under a finite rreflux

keeping the entrainer feeding (Fig. 3d). Hence, the location of singular
points and separatrices change. The saddle point SB,ext leaves the binary
side B E and moves inside the ternary diagram. It drags along the un
stable extractive separatrix UNext Sext UNext’, above which lies the un
feasible region as the corresponding extractive profiles cross the B E
edge toward an outside stable extractive node SNext,B’ and no inter
section with the residue curve going to A occurs. From a composition in
the feasible region, the still composition path moves according to the
vector cone shown in Fig. 3d and may cross the unstable extractive
separatrix, preventing the total recovery of component A from the
column. The FE/V in batch mode could be transferred into FE/F in
continuous mode by the equation in literature [24].

2.2. Design flowsheet and process optimization techniques

2.2.1. Modification of the process flowsheet
The design flowsheet of extractive distillation for separating low

relative volatility mixture is shown in Fig. 4 as it is set in Aspen Plus.
The main feed (water − AA) is entered into the extractive column at
one stage whereas the entrainer NMA is fed at another upper stage, so
there is an extractive section between both feeding allowing the in
creasing of the relative volatility of water, thus enabling the separation
of the key components. Water is separated as distillate product D1 while
the bottom product is the mixture AA and NMA (F2) that is fed to the
second column. High purity AA is separated as distillate D2 in the
second column. Most importantly, by following the proposed strategy,
the impurity composition of stream W2 will be xH,I,E instead of xL,I,E.
Subsequently, how to deal with the variable of xH,I,E in W2? First, in the
TSOM method, it is specified in advance in the open loop flow sheet in

Fig. 2. Map of Isovolatility curves of the ternary mixtures water (A) – AA(B) – entrainers(E).



Fig. 3. Influence of the reflux ratio and entrainer feed flow rate on extractive singular points of class 0.0–1 diagram in batch mode operation.
(Adapted from Rodriguez-Donis et al. [22])

Fig. 4. Design flow sheet of extractive distillation process, (a) open loop, (b) close loop.



process simulation. In this way, genetic algorithm works for optimiza
tion meanwhile Aspen plus was employed for process simulation and
handling xH,I,E with Wegstein tear method. This was proved as a sui
table way to directly optimize the closed loop configuration with all
discrete and continuous variables under the multi objective criterion,
provided that the initial population of process design had enough in
dividuals without convergence problems. It can handle multi objective
constrained optimization problems involving mixed variables (boolean,
integer, real). Constraints as well as Pareto domination principles can
be handled by these algorithms. Notice that we add pauses for every ten
generations with programming. During each pause all the variables of
the previous generation could be stored and outputted to Excel, then
the genetic algorithm could restart from the paused generation.

We selected the Non Sorted Genetic Algorithm II (NSGAII) for
process optimization. NSGAII is based on a ranking procedure, where
the rank of each solution is defined as the rank of the Pareto front which
it belongs to. The diversity of non dominated solutions is guaranteed by
using a crowding distance measurement, which is an estimation of the
size of the largest cuboids enclosing a given solution without including
any other.

2.3. Objective functions

In this study, four objective functions are used in MOGA method for
the optimization of the extractive distillation. The first objective func
tion is energy cost per unit product OF with some modifications [24]. It
is also the sole objective function used in the TSOM method under given
tray numbers of the columns (N1 and N2) and specified xH,I,E.
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Since D1 product is water and it will be recycled to the origin pro
duction process, no need treating it at denominator. Constraint 1 con
cerns the product (water) purity. It is necessary for reducing the en
trainer NMA losses and AA purity following the interrelationship
among distillates [29]. Constraint 2 in bottom W1 (F2) aims at keeping
high the product (water) recovery. Constraint 2 is also imperative be
cause water will be the main impurity in D2, too much water entering
regeneration column will prevent the achievement of high purity AA at
D2. Constraint 3 serves the product (AA) purity in D2. Constraint 4 fo
cuses on the recycling entrainer purity, which could be specified in
TSOM method and optimized through sensitivity analysis, and could be
regarded as variable in MOGA method. The meanings of the notations
Qr1, Qc1, Qr2, Qc2, D1 and D2, are shown in Fig. 3. The energy price
difference factor m equals to 0.036 for condenser (cooling water) vs
reboiler (low pressure steam). M may equal to 1, 1.065 or 1.280 when
low, middle or high pressure steams are used, respectively. The process
utilities are shown in Table C1 in Appendix B. Therefore, the meaning
of OF is the energy consumption used per product unit flow rate (kJ/
kmol). It accounts for both columns and also reflects the weight coef
ficient of the reboiler − condenser heat duty.

TAC has been commonly used directly as an optimization criterion
[28]. Here as the second objective function, it is calculated to compare
the different designs. TAC includes capital cost per year and operating
costs as shown the following formula:

= +TAC
capital cost

payback period
operating tscos

(2)

For computing the capital cost, Douglas’ cost formulas [28] are
employed after transferred into CEPCI inflation index. The column
shell, tray and heat exchanger cost constitute the capital cost and their
formulas are shown in Appendix A. The CEPCI in 2013 (567.3) [29] and

Fig. 4a, and after optimization the results are systematically checked 
within the close loop flow sheet that corresponds to the industrial plant, 
where the entrainer is practically recycled (Fig. 4b). Further in the 
MOGA method, the impurity composition in the recycled entrainer 
xH,I,E is treated as another optimization variable directly in the close 
loop flowsheet in Fig. 4b. The process flowsheet needs a make up en 
trainer (NMA) to compensate its losses in the two distillates. As the 
NMA losses is not known beforehand, we obtain it through introducing 
sharp splits (sep1 and sep2) on the two distillate products. Finally, the 
pressure drop per stage is regarded as 0.0068 atm in each column that 
operates at constant top pressure.

It is worth mentioned that the closed loop flowsheet can deal with 
the both situations, the low contents of impurities in the recycled en 
trainer (strategy xL,I,E) and the high contents of impurities in the re 
cycled entrainer (strategy xH,I,E).

2.2.2. Two step optimization methodology (TSOM)
For an extractive distillation process retrofit (given column trays 

number N1 and N2), the two step optimization methodology has shown 
many advantages for optimization studies of others extractive distilla 
tion processes [24 26]. First, considering open loop flow sheet with no 
entrainer recycled, fresh pure entrainer is fed into the extractive column 
to ease the convergence of the process, and the sequential quadratic 
programming (SQP) method is used for process optimisation under 
product purity and recovery constraints. The manipulating variables are 
column reflux ratios R1, R2 and the entrainer flow rate FE. Secondly, a 
sensitivity analysis is performed to find the optimal values of two dis 
tillate flow rates and the three feed tray locations NFE, NFAB, NFReg, while 
SQP is run for each set of discrete variable values. An available design 
in literature [25] here called “Case Ref” is employed as initial values of 
the optimization study using TSOM approach. The final optimisation is 
found through minimizing OF value and it is validated by rerunning the 
simulation in close loop flow sheet where the entrainer is recycled from 
the regeneration column to the extractive column and also adding an 
entrainer make up feed. Notice that the close loop simulation requires 
adjusting the reflux ratio if necessary in order to overcome the effect of 
impurities in recycled entrainer on both distillate purity. Finally, the 
TAC is calculated to compare the different designs.

2.2.3. Multi objective genetic algorithm
Using stochastic methods such as genetic algorithms together with 

simultaneous process simulators in commercial software has become 
attractive for a total new extractive distillation process design in solving 
optimization problems due to the following characteristics. First, the 
convergence of the process simulator relies upon reasonability of the 
initial input value. The simulator may fail to converge when unsuitable 
initial input values are set. This issue is less important in the stochastic 
optimization technique because the search for optimal solution in ge 
netic algorithm is not limited to one point but rather based on several 
points simultaneously which build the population [26]. Second, it is 
unnecessary to display the precise information of the mathematical 
model or its derivatives because the algorithms are based on a direct 
search method.

Inspired by the study of Vazquez Ojeda et al. [27] the multi ob 
jective genetic algorithm in Matlab was directly linked with simulator 
in Aspen plus. Aspen plus tools named variable explorer was used for 
finding the node of variables like reflux ratio, distillate and tray number 
in column. The MESH model Radfrac in Aspen Plus was adopted for the 
process simulation. In this way, genetic algorithm works for optimiza 
tion meanwhile Aspen plus was employed for process simulation and 
handling xH,I,E with Wegstein tear method.

Inspired by the study of Vazquez Ojeda et al. [27] the multi ob 
jective genetic algorithm in Matlab was directly linked with simulator 
in Aspen plus. Variable explorer tool available in Aspen plus was used for 
finding the node of variables like reflux ratio, distillate and tray number 
in column. The MESH model Radfrac in Aspen Plus was adopted for the



= −E x xext P H P L, , (3)

Where xP,H is the product mole fraction at the entrainer feed tray, which
is also the location of the stable node of the extractive section. And xP,L
is the product mole fraction at fresh feed tray.

The definition of eext is as follow

=e E
Next

ext

ext (4)

Where Next is the tray number in the extractive section. And eext is a
beneficial complement to Eext for handling the different designs with
different entrainer to feed flow rate ratio, different reflux ratio and
different tray number in the extractive section.

3. Results and discussions

3.1. Thermodynamic analysis of AA dehydration with NMA

For water AA with NMA system, the ternary RCM belongs to class
0.0 1 and not exhibiting any univolatility line. If the general xL,I,E
strategy is implemented, high purity NMA should be defined at the
bottom liquid of the regeneration column. Unfortunately, there is a
tangent VLE point between AA and NMA at NMA rich region (see
Fig. 1), which will cause the dramatically increase of reflux ratio and
the reboiler duty for achieving a NMA high purity. This will counteract
the energy saving potential of the extractive distillation compared with
conventional distillation process, which goes against to our intention.

Following the thermodynamic analysis in Section 2, when a high
purity recycling entrainer NMA (strategy xL,I,E) reenters into the ex
tractive column, the point SNext,A arises and it is located very close to
the on the binary edge water NMA of the ternary map (see Fig. 2d)
and intersect a residue curve for reaching the vertex A (water). While
recycling entrainer stream with a lower purity (strategy xH,I,E) which
reenters into the extractive column, this option provides the intersec
tion point between the rectifying ad extractive liquid profile in a point
which is a little bit higher than the SNext,A, and then intersects another
residue curve for reaching the vertex A (water). Of course, the penalty
of increasing the trays in rectifying section and the reflux ratio in the
extractive column is unavoidable since the entrainer with high content
of impurities is recycled back. But the process is still suitable to achieve
high purity product A (water). This phenomenon for class 0.0 1 is to
tally different from that of class 1.0 1a, in which low purity recycled
entrainer will prevent the high purity of distillate product A. Following
the general feasibility rule published by Rodriguez Donis et al. [22] the
reason is that the distillate product is an extractive stable node in class
0.0 1 instead of an extractive saddle node in class 1.0 1a, in which the
rectifying section profile will apart from and turn off at the saddle node
following the residue curve towards the minimum boiling binary
azeotrope. This phenomenon prevents achieving of high purity dis
tillate product. In summary, the proposed strategy xH,I,E is feasible for
separating mixtures of class 0.0 1 from theoretical analysis and the
withdrawal of distillate product with the high required purity is feasible
with a reasonable energy consumption and TAC.

3.2. Optimization results of TSOM

In this section, we aim at showing the optimization of TSOMmethod
in retrofitting the extractive distillation process and supplying a com
parison for the MOGA results. We use the design in “Case Ref” as initial
design [30] where the strategy of high purity recycled entrainer was
employed (xL,I,E = 1 × 10−4) and kept the same total tray numbers of
the extractive column (N1 = 30) and of the entrainer regeneration
column (N2 = 20). The equimolar feed with a flow rate of 500 kmol/h
and the entrainer feed are both preheated to 320 K. We set up the same
product purity specifications (0.999 molar fraction) for both water and
AA and used the same thermodynamic model as “Case Ref”. We specify
xH,I,E as 0.01 in this part by following the proposed strategy with the
sake of alleviating the tangential behavior of VLE between NMA and AA
as explained in Section 3.1. The optimal value of xH,I,E is achieved in
Section 3.4 by using MOGA method in close loop flowsheet. In this
section preliminary design parameters are obtained from simulation
and optimization within the open loop flowsheet and further rechecked
in the close loop flowsheet.

3.2.1. Choice of D1 and D2 with TSOM optimization of FE, R1, R2

Since the effects of D1 and D2 on the product purities are strongly
non linear and revealed by their interrelationships [26], D1 and D2 were
varied with a discrete step of 0.1 kmol/h from 250 kmol/h to 250.2
kmol/h. The SQP optimization was run for FE, R1 and R2 with the initial
optimal design: N1 = 30,N2 = 20, NFE = 3, NFAB = 8, NFReg = 7. No
tice that the tray number is counted from top to bottom of the column,
and condenser and reboiler are considered as the first and last tray. The
results are shown in Fig. 4.

From Fig. 5, we observe that (1) effect of D1 on OF exists even if
there is not D1 in the denominator part of OF [Eq. (1)]. Previous works
have proved that OF could be used satisfactorily for optimizing the two
columns together [25,26]. Furthermore, the better OF value is found at
D1 = 250.1 kmol/h, instead of the lower value of 250 kmol/h or the
higher value 250.2 kmol/h at given D2. (2) It seems that OF will de
crease by following the increasing direction of D2 since D2 is the sole
denominator in OF expression. However, OF decreases with decreasing
D2 (see Fig. 5) at constant D1. It suggest that there is an optimal value
for D1 as well as the difficulty of separating the binary mixture AA and
NMA because of the tangential behavior of VLE at high NMA compo
sition. As we will optimize other variables such as NFE, NFAB and NFReg in
the subsequent steps, we select the pair of D1 = 250.1 kmol/h and
D2 = 250 kmol/h, corresponding to a product recovery high enough
but not too high so as to make the flow sheet convergence difficult. The
related OF value is 246521.2 kJ/kmol, with FE = 182.4 kmol/h,
R1 = 2.107 and R2 = 1.3.

Fig. 5. Effects of D1 and D2 on OF with D1, D2, FE, R1 and R2 as variables.

a three year payback period are used for calculating the capital cost. 
The operating cost contains the energy cost in reboiler and condenser. 
The heat exchanger for cooling the recycling entrainer is taken into 
account in order to emphasize its effect on the process. Other costs such 
as the liquid delivery pumps, pipes, valves are neglected at the con 
ceptual design stage that we consider.

The third and four objective functions are the efficiency indicators 
of extractive section Eext and the efficiency indicator per tray in ex 
tractive section eext as both have been defined in previous works [25]. 
They have the ability to discriminate the desired product between the 
top and the bottom of the extractive section, which is the key part of the 
extractive distillation. Eext is defined as follow



3.2.2. Optimization of the three feed locations
The sensitivity analysis over the three feed locations with ranges [2;

25] for NFE, [>NFE; 29] for NFAB and [3; 15] for NFReg were made by
using experimental planning procedure [25] so as to avoid the local
minimum. For each set of values of NFE, NFAB and NFReg, the variables FE,
R1, R2 are optimized while D1 and D2 are fixed. Table 1 shows the re
sults where the design No.1 represents the optimal design for “Case
Ref”.

From Table 1, we can conclude that (1) the suitable feed locations
allow decreasing the energy cost per unit product OF, as seen by
comparing design No. 1 with all other designs. The three feed locations
and three continuous variables affect each other and it demonstrates
the necessary for optimizing the three feed locations together. (2) The
feed location of entrainer moves one tray down the column from design
No.1 to No.7 with the lowest OF value. It agrees with the proverbial fact
that increasing the tray number in the rectifying section allows de
creasing the reflux ratio R1. (3) The minimum value of OF is found in
design No. 7 with four extra trays in the extractive section than design
No. 1. The four more trays have a positive effect on the process and
increase the efficiency of the extractive section pushing the location of
the extractive stable node SNext,A near to the edge water NMA as
demonstrated in Section 3.2.3. (4) A lower FE and a higher R1 in designs
No. 3 6 than that in design No. 7 provide a higher OF. Meanwhile a
higher FE and a lower R1 in designs No. 9 and 10 than that in design
No.7 lead also a higher OF. This proves quantitatively that there is a
balance between the entrainer usage and the energy cost. (5) Com
paring designs No. 7 and 8, we find that only one tray more for NFReg

changes the optimal values of the three continuous variables and affects
the energy cost OF. It indicates that OF can account the two columns’
variables together. (6) The lowest energy cost for per unit product OF is
182292.3 kJ/kmol. It represents a 25% decrease compared to design
No.1 of “Case Ref”.

3.2.3. Effect of high content of impurities in the recycled entrainer on the
process

In order to avoid the convergence problems, all the optimization
procedure done above was run in the open loop flow sheet (Fig. 4b)
with xH,I,E as 0.01 based on the topological thermodynamic analysis of
class 0.0 1 in Section 3.1. Therefore, a simulation was re ran in the
closed loop flowsheet (Fig. 3a) for the optimized results
NFE = 4, NFAB = 13, NFReg = 6, FE = 166.4 kmol/h, R1 = 0.90 and
R2 = 1.05 for which OF = 182292.3 kJ/kmol. The Wegstein tear
method was employed to ensure convergence. Design No. 7 satisfied the
product purity specification under xH,I,E as 0.01 in the close loop
flowsheet. The simulation results are shown in Table 2 as case TSOM.
The sizing parameters for the columns and cost data of the design “Case
Ref” and case TSOM are shown in Table D1 in Appendix B.

Remarkably, Table 2 shows that the proposed new strategy of high
content of impurities in recycled entrainer could successfully improve
the extractive distillation process for water AA NMA system while
keeping the same tray number in the extractive and regeneration

columns. The proposed strategy xH,I,E enables to save energy cost by
both alleviating the tangential pinch point of the VLE between AA and
NMA and reducing the entrainer flow rate when comparing “Case Ref”
and case TSOM.

From Table 2, we also know that (1) The entrainer flow rate de
creased drastically from 427.3 kmol/h in “Case Ref” to 166.3 kmol/h in
case TSOM as there is no minimum entrainer to feed flow rate ratio
explained in Section 2.1. It demonstrates that too much entrainer pro
vides a worse design instead of a better one since the reboiler duty of
the regeneration column in “Case Ref” is 1.9 times than that in case
TSOM. Besides, the reboiler temperature in “Case Ref” is high due to the
low content of impurities in the recycled entrainer, so that high pres
sure steam is needed. On the contrary, the reboiler temperature in case
TSOM is relatively low due to the high content of impurities in the
recycled entrainer, and middle pressure steam is enough for heating. (2)
Energy consumption showing through OF value in case TSOM is re
duced by 20.2% and 50.6% compared with “Case Ref”, respectively. (3)
From economical view, TAC in case TSOM is reduced by 52.1% com
pared with “Case Ref”. It is mainly due to the decreasing of entrainer
flow rate, the reflux ratio, the column diameters and the heat exchanger
areas in the two columns.

(4) A counter intuitive phenomenon is observed that the efficiency
indicators Eext and eext describing the ability of the extractive section to
discriminate the distillate product between the top and the bottom of
that section are increased from 0.0712 and 0.0119 in “Case Ref” to
0.195 and 0.0195 in case TSOM, although both high reflux ratio R1 and
entrainer flow rate FE are used in “Case Ref”. Following the definition of
efficiency indicator [25] the increasing of the reflux ratio is useful for
Eext whereas the increasing of the entrainer flow rate has adverse effect
on the Eext when the FE gets far enough from than its minimum value.
Thus, the reason for the counter intuitive phenomenon is that too much
entrainer is used in “Case Ref” having a negative effect over the energy
consumption and TAC. On the other hand, both efficiency indicators
demonstrate that the extractive section for the case TSOM is more ef
fective than that in “Case Ref” (6) Four more trays are used in the ex
tractive section in case TSOM. This point proves the statement that
there should be enough trays in the extractive section in order to
achieve the stable node of the extractive section SNext’ closer to the edge

No. NFE NFAB NFReg FE R1 R2 OF kJ/kmol

1 3 8 7 187.5 2.02 1.38 244603.1
2 3 9 6 160.0 1.89 1.31 233614.1
3 3 12 6 112.6 1.41 0.88 193127.6
4 3 13 6 115.9 1.20 0.91 184532.1
5 4 11 7 106.9 1.52 1.00 200081.1
6 4 12 5 108.7 1.37 0.93 192637.7
7 4 13 6 166.4 0.90 1.05 182292.3
8 4 13 7 165.3 0.91 1.15 185520.7
9 4 14 6 192.5 0.82 1.21 187180.6
10 5 12 5 183.7 0.78 1.13 182512.4

Table 2
Optimal design parameters and cost data from closed loop simulation for the extractive
distillation of water – AA with NMA.

column Case Ref Case TSOM

C1 C2 C1 C2

N1 30 30
FAB/kmol/h 500.0 500.0
W2/kmol/h 427.3 166.3
Emake up/kmol/h 7.44 0.11
FE/kmol/h 427.3 166.4
xH,I,E/10 4 1 100
D1/kmol/h 250 250.1
NFE 3 4
NFAB 8 13
R1 3.00 0.90
QC/MW 11.35 5.39
QR/MW 15.12 7.19
N2 20 20
D2/kmol/h 250.0 250.0
NFReg 7 6
R2 2.00 1.05
QC/MW 6.79 3.46
QR/MW 6.92 3.66
AA purity 0.990 0.999
Eext/10 3 71.2 195
eext/10 3 11.9 19.5
TAC/106$/y 6.753 3.235
OF/kJ/kmol 368820.1 182292.3

Table 1
Open loop optimal results of FE, R1, R2, NFE, NFAB, NFReg under fixed D1 and D2 for the 
extractive distillation of water – AA with NMA.



AA NMA system as explained above from the topological features of
class 0.0 1.

3.3.3. Analysis of some designs belonging to Pareto front
The map of Eext vs TAC for the designs belonging to the Pareto front

is shown in Fig. 7. There are 287 designs better than “Case Ref” and 40
designs better than case TSOM according to the TAC value. We extract
some designs namely P1 P6 for further analysis (see Fig. 8). P1 and P2
are the design with the lowest TAC and the lowest Eext, respectively. P3,
P4 and P5 are the designs having similar Eext but different TAC, noticing
that P4’s TAC is close to that of case TSOM. P6 has a TAC close to that of
“Case Ref” but exhibiting much higher Eext. Table 3 shows the design
variables of P1 P6 and Table E1 in Appendix B provides the sizing
parameters and cost data. Figs. 9 and 10 show the temperature and
composition profiles of the extractive column and the regeneration
column for the case P1.

Firstly, from Fig. 8 and Table 3 we observe that the P1 design is the
optimal design from the MOGA optimization since it exhibits the lowest
TAC and OF while the optimal Eext,opt is 0.223 considering equimolar
feed composition. Although the tray numbers of columns (N1 = 41 and
N2 = 28) are increased, the TAC and energy cost OF for P1 design are

Fig. 6. Pareto front of extractive distillation design for water-AA-NMA system, TAC
versus Eext and R1, diamond means the lowest TAC.

Fig. 7. Pareto front of extractive distillation design for water-AA-NMA system, TAC
versus FE and R1, diamond means the lowest TAC.

water NMA as it is shown in Section 2.1.
In conclusion, Table 2 demonstrates the importance of optimizing 

the two columns together since the entrainer flow rate in the extractive 
column is the dominant factor for the regeneration column, and the 
purity of recycled entrainer has a strong effect on the product purity 
and energy cost in the extractive column.

3.3. Optimization results of MOGA

3.3.1. Process statement
In order to find the optimal value of xH,I,E in the high content of 

impurities in the recycled entrainer stream and the optimal total 
number of trays in the two columns (N1, N2), the multi objective genetic 
algorithm tool available in MATLAB with coupled with Aspen plus 
process simulator is adopted as optimization variables. The indicator 
Eext and eext are also used as objective functions along with the energy 
cost per unit product OF and TAC. Notice that OF and TAC are mini 
mized while Eext and eext are maximized.

The tuning process was done for selecting the parameters of genetic 
algorithm. Several tests were conducted with different values of initial 
population, crossover and mutation fractions. After tuning, a large 
number of 300 individuals per generation is chosen. Other parameters 
were 0.9 for crossover fraction, and 0.1 for mutation fraction. The stop 
criterion of the genetic algorithm is that the TAC can’t be reduced for 30 
successive generations. The number of generations achieved 340 in this 
study.

The eleven optimization variables of the extractive distillation 
processes are N1, N2, NFE, NFAB, NFReg, D1, D2, R1, R2, FE and xH,I,E. The 
value ranges are [15,80] for N1 and N2, [15,80] for NFE, NFAB and NFReg 

(some invalid situations such as NFE > = NFAB, NFAB > = N1, 
NFReg > = N1 are excluded by Matlab programming), [248.0, 255.0] 
for D1 and D2, [0.1, 8] for R1 and R2, [0,0.5] for xH,I,E. Notice that the 
operating pressures of extractive column and entrainer generation 
column are set at 1 atm. The pressure drop per tray and the tray effi 
ciency are the same as that in TSOM method.

3.3.2. Pareto front of the optimal design solution
The Pareto front of the four objectives are obtained as the result of 

the MOGA. We choose the design with the minimum TAC as the optimal 
one from economical practice while the other objective functions are 
used for analyzing the main insights of the extractive distillation. 
Generally, the energy cost OF decreases with the increasing of the total 
tray number in columns, but it is useful for finding the minimum energy 
cost of each design. Regarding eext, it is used to avoid the situation that 
only maximizing Eext will result in too many trays used in extractive 
section and providing the separation with high TAC. Fig. 6 shows the 
Pareto front of TAC versus Eext and R1, and Fig. 7 shows the Pareto front 
of TAC versus R1 and FE. The lowest TAC design called P1 is shown in 
red color in Figs. 6 and 7. Notice that the product purity and recovery 
specification are satisfied for all the 300 designs in the Pareto front.

From Fig. 6, we know that (1) following the decreasing of R1, both 
TAC and Eext decrease quickly. The optimal TAC as 2.948 × 106$/y 
requires R1 as 0.965 and gives Eext value of 0.223 and. (2) For achieving 
a given Eext, lowering R1 is a better choice following minimization of 
TAC by adjusting other variables. In other words, there is a minimum R1 

for a given Eext. (3) For a given R1, there is a maximum Eext. Further, the 
maximum Eext decreases as the R1 decrease, and the entire maximum 
Eext composite an elliptical border.

From Fig. 7, we obtain that (1) few designs belonging to the Pareto 
front in the region of reflux ratio R1 lower than 2 and entrainer flow 
rate FE higher than 150 kmol/h. The reason is that the separating cost in 
regeneration column increases quickly at a relatively high FE, resulting 
in a higher TAC which prevents the designs in this region to be ranked 
in the Pareto front. (2) The economical suitable range for the entrainer 
flow rate FE is between 100 and 150 kmol/h, corresponding to a ratioc 
(FE/F) of 0.2 0.3, although there is no minimum value of FE for water



reduced further by 8.9% and 12.7% compared with the design case
TSOM at given N1 = 30 and N2 = 20. It’s mainly because of a 26.7%
decreasing of entrainer flow rate FE, and the significant reduction of the
reflux ratio R2 in the regeneration column. It proves that a suitable
increasing of the total tray numbers of the columns could reduce the
total cost of the process. Remarkably, the is 0.3% for P1 design, which
is obtained after optimization unlike that is specified as 1% in the
TSOM method. P2 design has the lowest Eext among all the designs
belonging to Pareto front where Eext is maximized. However, its Eext
(0.210) is still higher than that of case TSOM (0.195) and “Case Ref”
(0.0712).

Secondly, the TAC of P4 design is similar to that of case TSOM, but
with a much higher efficiency indicator Eext (0.360 of P4 design vs
0.195 of case TSOM). It is mainly because of the lower FE and the higher
R1 comparing to case TSOM design. Reducing FE provides a higher
water content xP,H at the stable node SNext,A of the extractive profile and
SNext,A is located on the binary edge water − NMA closer to the water
apex (see Fig. 3). Furthermore, the increasing of R1 drags the unstable
separatrix much closer to AA NMA side and then resulting in a lower
water content xP,L at the other end of the extractive profile (the tray
above of the fresh feed tray). Therefore, Eext increases following its
definition by the equation [3]. A higher water content in xP,H means an

easier water separation in the rectifying section whereas a lower water
content xP,L improves the separation of the binary mixture AA NMA in
the stripping sectionnof the extractive distillation column. In other
words, the benefit of a higher Eext in P4 design than that in TSOM design
is just counteracted by its penalty (high reflux ratio, high column dia
meter and high heat exchanger area in the extractive column). The
results demonstrate that the variables related to Eext such as R1, FE, NFE,
NFAB in both designs P4 and TSOM could be further optimized by a
more suitable compromise among the two designs, just as it is shown in
Fig. 8 and Table 3 for P1 design providing a better compromise between
a lower TAC and a suitable Eext. Therefore, we can infer that a design
with an efficiency indicator getting far from a suitable limit for Eext,opt is
not well designed such as “Case Ref”, case TSOM and P4 design. It
should be noted from Table 3 that P design provides the second better
value of Eext, with the lowest TAC and OF hence it can be defied as the
reference value of Eext,opt.

Thirdly, for the designs of P3, P4 and P5 with nearly the same ef
ficiency indicator Eext, TAC in P3 design is lower 97.4% and 83.8% than
those in P4 and P5 design. It’s mainly because the smaller entrainer
flow rate FE and reflux ratio R1 for P3 that induce the decreasing of
reboiler and condenser duties, and the logical reducing of OF and TAC.
This point proves the importance of reasonable increasing of the tray’s
number in the extractive section as 15 trays for the design of P3, 11
trays for the design of P4 and 7 trays for the design of P5 providing the
same separation involving a lower reflux ratio. This point is in agree
ment with Lelkes’s study [31], the extractive section should have en
ough trays so that the composition at the entrainer feed tray lies near
the stable node of the extractive section SNext’A that should be close to
the product vertex A. Besides, a high extractive efficiency indicator per
tray eext doesn’t mean low OF and TAC if the enhance of eext indicator is
caused by decreasing of the tray’s number in the extractive section and
the consequent increasing of FE and R1 in order to get the same Eext. This
point is verified by comparing the optimal designs of P3, P4 and P5 in
Table 3.

Lastly, P6 design has similar TAC with the design of “Case Ref”, but
much higher efficiency indicator Eext. Both designs remind again that a
higher or lower Eext from the Eext,opt implies an unreasonable design. P6
design includes an extractive column having the smaller tray’s number
and then needing the highest entrainer flow rate and reflux ratio. Worst
results were obtained for the recovery solvent column with the highest

Fig. 8. Map of Eext vs TAC of the designs belonging to the Pareto front.

Table 3
Design parameters for P1-P6 belonging to the Pareto front of water-AA with NMA.

P1 P2 P3 P4 P5 P6

Extractive column
N1 41 39 44 39 36 27
FAB, kmol/h 500.0 500.0 500.0 500.0 500.0 500.0
W2, kmol/h 121.9 128.0 75.9 107.2 127.4 249.1
Emakeup,kmol/h 0.1 0.1 0.2 0.2 0.2 0.2
FE/kmol/h 122.0 128.1 76.1 107.4 127.6 249.3
xH,I,E/10 4 30 60 10 70 60 40
NFE 5 7 4 5 9 8
NFAB 15 15 18 15 15 15
D1/kmol/h 250.1 250.1 250.2 250.2 250.2 250.2
R1 0.965 0.968 1.364 1.433 2.077 4.996
QC/MW 5.575 5.583 6.709 6.905 8.733 17.017
QR/MW 7.117 7.160 7.973 8.347 10.297 19.404

Regeneration column
N2 28 32 28 22 29 35
D2/kmol/h 250.0 250.0 250.0 250.0 250.0 250.0
NFReg 5 6 4 4 5 5
R2 0.383 0.403 0.334 0.385 0.402 1.495
QC/MW 2.337 2.372 2.283 2.372 2.401 4.542
QR/MW 2.487 2.539 2.373 2.506 2.573 4.274
OF/kJ/kmol 159045.4 160685.9 170623.0 178969.0 211046.1 392232.0
TAC/106$/y 2.948 2.980 3.169 3.252 3.780 6.626
Eext/10 3 223 210 359 360 362 610
eext/10 3 20.3 23.3 23.9 32.7 51.7 76.3



tray’s number and reflux ratio compared to other designs.
Regarding the temperature and composition profile of the extractive

column and regeneration column of case P1 in Figs. 9 and 10, the fresh
mixture feed temperature is relatively low, indicating that it is feasible
to preheat the fresh feed temperature for reducing the reboiler duty of
extractive column QR1. In other words, the heat integration between the
recycling entrainer stream (hot side) and the fresh feed stream (cold
side) is feasible. There is an increasing jump of AA content in the fresh
feed tray due to an equimolar feed composition. It suggests that the P1
design can deal with more dilute AA aqueous solution. Importantly, the
targeting product water content from NFE tray to NFAB tray increases
quickly and it demonstrates that the low FE and low R1 in P1 design
could be able to achieve enough separation effect in the extractive
section, which is quantitatively verified by the efficiency indicators Eext
and eext. Besides, most of the trays (26 trays from total 41) are used in
the stripping section for preventing water to exit in the bottom product
of the extractive column as the water content decrease slowly and
smoothly in the stripping section. Only five trays are used in rectifying

section of regeneration column for achieving a high purity product AA
whereas 23 trays are used in the stripping section for approaching a
relatively low purity of recycled entrainer. This phenomenon reveals
the low relative volatility between AA and NMA at NMA rich side (see
Fig. 1).

3.4. Comparisons from ternary map and relative volatility

Fig. 11 shows the ternary liquid composition profiles for designs
“Case Ref”, TSOM and P1 of the extractive column of water AA with
NMA.

Following remarks can be stated from Fig. 11: (1) the stable node of
extractive section SNext connecting the extractive liquid profile with the
rectifying profile for “Case Ref” is very close to the water NMA side,
demonstrating that low content of impurities in the recycled entrainer
is achieved (xH,I,E = 1 × 10−4). On the contrary, the impurity content
in the recycled entrainer and hence, the SNext location for the cases
TSOM (xH,I,E = 10 × 10−4) and P1 (xH,I,E = 30 × 10−4) are much

Fig. 9. Temperature and composition profiles of case P1 extractive column for the extractive distillation of water – AA with NMA.



higher than those of “Case Ref”, corresponding to the proposed new
strategy from the thermodynamic analysis discussed in Section 3.1. (2)
The separation between water and NMA in the rectifying section is easy
since there are only few trays in this section for achieving high purity
water at a relatively low reflux ratio. (3) The effect of extractive section
(liquid profile limited by FE and SNext position) in “Case Ref” is so weak
even at high FE and high R1 compared with the other two cases. It in
dicates the importance of finding suitable feed locations NFE and NFAB in
addition to the main variables FE and R1. (4) FE is not the dominant
factor for the location of SNext when the appropriated number of trays is
not well established in each section. Indeed, the SNext position are
closer for “Case Ref” and TSOM case even with a relatively large dif
ference of FE. (5) Most of the trays in the extractive column are used in
the stripping section. It demonstrates that the separation of water and
AA at AA rich end is difficult even in the presence of the entrainer. It
should be noted that the composition of AA in the stripping section
reaches 0.9 close to the bottom column. (6) Optimal design is not

straightly related to the location of the extractive liquid profile in the
region exhibiting the higher isovolatility values between water and AA.
This condition could be simply forced by increasing the entrainer flow
rate. The optimal design is determined by the position of the extractive
liquid profile with the highest values of relative volatility between
water and AA by using the lowest amount of the entrainer. That is the
case of design P1 where the extractive liquid profile is located in a
similar region of isovolatility values to case TSOM but by using 73.5%
of the entrainer only. It should be noted that an entrainer providing
high isovolatility lines close to A component apex will enable the se
paration with lower entrainer flow rate.

It can be observed in Fig. 11 that the rectifying section is used for
separating water and NMA instead of water and AA, so it doesn’t matter
how low is the relative volatility between water and AA αwater AA. In
terestingly, the αwater AA in the extractive section decreases quickly
while the content of entrainer remains below 0.5 (see Fig. 9) because
the average value of αwater AA in the extractive section is high in the

Fig. 10. Temperature and composition profiles of case P1 regeneration column for the extractive distillation of water – AA with NMA.



three cases (between 2 and 12). In the stripping section, the αwater AA is
much lower than that in the extractive section (between 2 and 3). This
phenomenon is different from other extractive distillation systems such
as ethanol water [33], acetone methanol [25], isopropyl alcohol water
[32] and so on. The reason is that even there is not azeotrope formation
between water and AA, the average relative volatility of water is close
to unity (see Fig. 1). This special behavior contributes to the most trays
used in the stripping section. Importantly, due to the existence of en
trainer NMA, αwater AA becomes higher enough to provide an econom
ical process.

3.5. General remarks

Based on the optimal design results from two optimization methods,
some conclusive remarks can be highlighted:

(1) A new strategy of high content of impurities in the recycled en
trainer is set up based on the thermodynamic analysis of the ternary
RCM. The new strategy is verified by the optimal design results: the
content of water in the extractive node SNext in P1 design is higher
than that those obtained in the “Case Ref” shown in Fig. 11.
Therefore, SNext in P1 is closer to the product vertex, which hints at
less tray number or lower reflux ratio are needed for reaching the
required separation.

(2) Although the feeding entrainer allows increasing the relative vo
latility of the zeotropic mixture, reducing the entrainer flow rate is
useful for reducing the energy consumption in both columns, re
sulting in that in case P1 the objective function OF is saved by
12.8% and 56.9% compared with the case TSOM and the “Case
Ref”, respectively. The optimal entrainer flow rate corresponds to
the minimal value needed for placing the liquid profile inside the
extractive section in a high relative volatility region. A higher
amount of entrainer manly increases the cost of the extractive
distillation process.

(3) Although N1 and N2 in P1 design are higher, the TAC of P1 design is
reduced by 28.4% and 56.3% compared with case TSOM and “Case
Ref”, respectively.

(4) More trays are used in the extractive section in case P1 design than
that in case TSOM and “Case Ref”. This point proves the statement
that enough number of trays has to be defined in the extractive
section in order to achieve the optimal position of the stable

extractive node SNext on the edge A E as shown in Fig. 3 (Section
2.1). Furthermore, increasing of number of trays in the extractive
section allows separating the key components with lower entrainer
flow rate and reflux ratio.

(5) The most extra total trays of the extractive distillation column in
case P1 (N1 = 41) than that in case TSOM (N1 = 30) are used in the
stripping section in order to prevent water exiting at the bottom
product. It is necessary for achieving high purity of AA product
since the water in the extractive bottom product will be an impurity
of AA distillate of the second column.

(6) The pairs of case P6 and “Case Ref”, case P4 and case TSOM remind
that a higher or lower Eext from the Eext,opt implies an unreasonable
design because additional cost are related to increasing the reflux
ratio or the number of trays.

(7) The effect of extractive section in “Case Ref” is so weak even the
higher entrainer flow rate and reflux ratio that are used comparing
with case P1. This indicates the importance of finding suitable feed
locations NFE and NFAB in addition to the main variables FE and R1.

4. Conclusions

A novel strategy of high content of impurities in the recycled en
trainer was proposed for the AA dehydration extractive distillation with
N methyl acetamide as entrainer through the analysis of thermo
dynamic insights of the ternary RCM. The superiority of using NMA
compared to other standard entrainers like DMF and DMSO was settled
from the analysis of the isovolatilty lines map of each resulting ternary
mixture. The studied case water AA NMA belongs to class 0.0 1 with
no univolatility line existing with the particularity that water is the
unstable extractive node of the RCM and it is always possible to find
suitable operating conditions in the extractive distillation column pro
viding the distillate with the required purity. The proposed strategy
could reduce the amount of entrainer in the extractive distillation
column and save energy cost in the regeneration column by avoiding
the approach of the tangency behavior of the VLE between AA and
NMA in the region with high NMA content.

We have run two methods for the process optimization studies: two
step optimization method (TSOM) using SQP and the multi objective
genetic algorithm (MOGA). From process retrofit view, TSOM is used to
minimize the total energy consumption per product unit OF at a given
tray number of columns and a fixed content of impurities in the

Fig. 11. Ternary liquid composition profiles for
“Case Ref”, TSOM and P1 in the extractive column
along with the isovolatility curves αwater AA.



could imply an unreasonable design, and the definition of an acceptable
value for Eext,opt could be regarded as a relevant criterion to assess the
performance of an optimal extractive distillation process design. We
have also noticed that a suitable shift of the feed tray locations im
proves the efficiency of the separation, mainly when less entrainer is
used. The optimal design is given by the location of the extractive liquid
profile inside the extractive distillation column in a region of high re
lative volatility values between the components to be separated and by
using the lower entrainer flow rate.
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The diameter of a distillation column is calculated using the tray sizing tool in Aspen Plus software.
The height of a distillation column is calculated from the equation:

= ×H 0.6096N
eT

N tray stage except condenser and reboiler, eT tray efficiency is taken as 85% for calculating TAC.
The heat transfer areas of the condenser and reboiler are calculated using following equations:

=
×

A Q
u TΔ u: overall heat transfer coefficient(kW K−1 m−2), u = 0.852 for condenser, 0.568 for reboiler.

The capital costs of a distillation column are estimated by the following equations:
= × × × + =( ) D H F D HShell cost 902.8 (2.18 ) 22688.6CEPCI

C100
1.066 0.802 1.066 0.802 Unit of D and H: m

= × × =( ) D HF D HTray cost 93.1 1426.0CEPCI
C100

1.55 1.55 Unit of D and H: m

= × × × + =( ) A F AHeat Exchanger cost 457.4 (2.29 ) 9367.8CEPCI
C100

0.65 0.65 Unit of A: m2

Appendix B

Table A1
Association parameters of HOC equation for AA-water-NMA.

component water AA NMA

water 1.7 2.5 0
AA 2.5 4.5 0
NMA 0 0 0

Table B1
NRTL binary parameter of water-AA-NMA.

Component water water AA

AA NMA NMA

aij 3.3293 0.2677 0
aji 1.9763 0.4428 0
bij 723.888 1024.883 446.521
bji 609.8886 660.244 49.23936
cij 0.3 0.3 0.3

Table C1
Utility.

Name Pressure/MPa Temperature/K Price/$/GJ

LP steam 0.5 433 7.72
MP steam 1.0 457 8.22
HP steam 1.5 527 9.88
Cooling water 0.1 298 0.278

recycled entrainer. Conversely, MOGA is implemented by relaxing the 
content of impurities in the recycled entrainer and the tray numbers of 
the two columns through minimizing OF and TAC, and maximizing a 
thermodynamic separation factor Eext and eext in the extractive section 
of the extractive distillation column. Here the high content of impurities 
in the recycled entrainer is a variable instead of specification. The 
Pareto front is obtained as the results with a total of eleven variables 
being optimized.

Thanks to the optimization under the new strategy, significant cost 
savings are achieved. Energy consumption OF is reduced by 12.8% and 
56.9% whereas TAC is saved by 28.4% and 56.3% compared with op 
timal case TSOM and the “Case Ref”, respectively. Through the analysis 
of Pareto front, the effects of the main variables on TAC and efficiency 
indicator were discussed. Two important issues have emerged. First the 
proposed strategy is beneficial to the AA dehydration extractive dis 
tillation. Second, a higher or lower efficiency indicator from the Eext,opt

Appendix A
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