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Abstract: Community detection is a research area from network science dealing with
the investigation of complex networks such as social or biological networks, aiming
to identify subgroups (communities) of entities (nodes) that are more closely related
to each other inside the community than with the remaining entities in the network.
Various community detection algorithms have been developed and used in the literature
however evaluating community structures that have been automatically detected is
a challenging task due to varying results in different scenarios. Current evaluation
measures that compare extracted community structures with the reference structure or
ground truth suffer from various drawbacks; some of them having been point out in the
literature. Information theoretic measures form a fundamental class in this domain and
have recently received increasing interest. However even the well employed measures
(NVI and NID) also share some limitations, particularly they are biased toward the
number of communities in the network. The main contribution of this paper is to
introduce a new measure that overcomes this limitation while holding the important
properties of measures. We review the mathematical properties of our measure based on
χ2 divergence inspired from f -divergence measures in information theory. Theoretical
properties as well as experimental results in various scenarios show the superiority of the
proposed measure to evaluate community detection over the ones from the literature.

Key Words: Community detection, f -divergences, evaluation measure.
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1 Introduction

The goal of community detection is to partition any network into communities to

extract the subgroups of densely connected nodes [Fortunato, 2010]. Extraction
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of communities has many applications in different disciplines such as biology,

medicine, social network analysis, information retrieval, machine learning, etc.

When a community detection algorithm is applied and the studied network

is partitioned into communities, the output is an N dimensional random vector

X = (x1, x2, ..., xN ), where N is the number of nodes in the network and each

xn ∈ {1, ...,K}, n ∈ {1, ..., N} element represents the community assignment of

node n, where K is the number of communities in the network.

In order to quantitatively assess the goodness of the applied partitioning algo-

rithm or its derived community structure, it can either be compared with other

partitions of the network or with pre-known ground truth partition [Mothe

et al., 2017, Malek et al., 2018]. In the literature of the domain it is mostly

accomplished by employing evaluation measures based on counting pairs (ad-

justed rand index, Fowlkes-Mallows index, Jaccard index, etc.), set overlaps

(F-Measure, Van Dongen-Measure, etc.) and mutual information (normalized

mutual information, normalized variation of information, normalized informa-

tion distance) [Mothe et al., 2017, Malek et al., 2018, Yang et al., 2016].

Existing measures based on pair counting and set overlaps share drawbacks

that lead to prospect alternative means to compare community structure and

clustering results. Information theoretic measures are worth investigating be-

cause of their strong mathematical foundation and ability to detect non-linear

similarities [Vinh et al., 2010, Wagner and Wagner, 2007].

In community structure or clustering comparison problems it is desired that

the applied measure satisfies the main properties of metric (that conforms to

feeling of distance), normalization (requires that the measure lies within a

fixed range) and constant baseline property (measure should be constant for

communities sampled independently at random).

Calculating the similarity of two network partitions can be viewed as com-

paring two random variables which is typical to encoding/decoding problem

from information theory. More specifically, let X = (x1, x2, ..., xN ) and Y =

(y1, y2, ..., yN ) be two different partitions of the network, we assume that com-

munity assignments xn and yn are values of random variables X and Y respec-

tively with joint probability distribution PXY = P (X = x, Y = y) and marginal

distributions PX = P (X = x) and PY = P (Y = y).

Mutual information (MI) is one of the measures that comes from information

theory. It is a popular measure in information theory that measures the mutual

dependence of two random variablesX and Y . It measures how much information

about one random variable is obtained through the other random variable [Cover

and Thomas, 2006].

Considering random network partitions as random variables, mutual infor-

mation can be viewed as a similarity measure when comparing community struc-

tures. Although the application of MI is pretty straightforward in the literature,
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in community structure or clustering comparison the use of a measure satisfying

both the metric and normalization properties is of a high priority.

While MI is not a normalized measure, several normalized variants of MI

called normalized mutual information (NMI) were introduced by Yao [Yao,

2003], Kvalseth [Kvalseth, 1987] and Strehl et al. [Strehl and Ghosh, 2002].

Later Meila [Meila, 2007] introduced variation of information (VI) which un-

like NMI is a metric measure. Finally normalized variation of information (NVI)

and normalized information distance (NID) were proposed by Kraskov et al.

[Kraskov et al., 2005].

Despite the fact that information-theoretic measures such as NVI and NID

are proper metrics, some experiments challenge their effectiveness and limit their

use in certain applications [Vinh et al., 2010, Wagner and Wagner, 2007].

In [Vinh et al., 2010], Vinh et al. performed an organized study of informa-

tion theoretic measures for clustering comparison. The authors mathematically

proved that NVI and NID satisfy both the normalization and metric properties.

Authors also highlighted the importance of correcting the measures for chance

agreement, when the number of data points is relatively small compared with

the number of clusters. They advocate NID as a ”general purpose” measure for

clustering comparison, possessing several useful properties such as using [0, 1]

range better than the other measures.

According to Amelio and Pizzuti [Amelio and Pizzuti, 2015], normalized

mutual information has unfair behavior when the number of communities in the

network is large. Authors experimentally showed that NMI reaches abnormal

values when comparing a clustering of 5, 000 nodes into 5, 000 singleton com-

munities with a reference clustering of 5, 000 nodes into 100 communities. The

authors suggested to adjust the NMI by introducing a scaling factor which also

compares the number of communities detected by an algorithm and the actual

number of communities in the ground truth.

Another modification was suggested by Zhang [Zhang, 2015] who claims that

NMI is affected by systematic errors as a result of finite network size which may

result in wrong conclusions when evaluating community detection algorithms.

Relative normalized mutual information (rNMI) introduced by Zhang takes into

account the statistical significance of NMI by comparing it with the expected

NMI of random partitions.

Considering the drawbacks that pair counting, set matching and information-

theoretic measures share, we decided to search other alternatives among f -

divergences which form an important class of information theoretic measures.

These are measures of discrimination between two probability distributions.

Their properties, connection inequalities and applications in information the-

ory, machine learning, statistics and other applied branches were studied in
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many publications, see for example [Sason and Verdú, 2016, Csiszár and

Shields, 2004, Sason, 2015, Topsoe, 2000].

Analyzing the properties of various f -divergences we propose a new measure

based on χ2-divergence from information theory. We demonstrate theoretically

as well as experimentally that it could serve as an alternative in community

detection evaluation or clustering comparison. Furthermore we show that unlike

other regularly used measures (NID and NVI), our modification of χ2-divergence

satisfies the constant baseline property thus outperforming them; specifically

in the cases when network size is relatively small compared to the number of

communities.

This paper corresponds to a substantial extension of the workshop paper

[Haroutunian et al., 2018]. The paper is organized as follows. We review the

information-theoretic community structure comparison measures and their prop-

erties in Section 2. In Section 3 we survey alternative f -divergence measures and

discuss their useful properties to consider them in community detection evalua-

tion. In Section 4, we define a modified version of χ2−divergence measure and

provide the theoretical cues regarding its properties for community detection

evaluation. Section 5 reports an experimental analysis that shows the advan-

tages of χ2−divergence measure over the other measures from the literature.

Section 6 concludes this paper.

2 Information Theoretic Measures and Measure Properties

Information theoretic measures are applied in various fields such as coding the-

ory, statistics, machine learning, genomics, neuroscience etc. [Cover and Thomas,

2006]. The same measures can be of paramount importance in community detec-

tion evaluation and clustering comparison for their strong mathematical foun-

dation and the fundamental concepts they are based on.

One of the basic measures in information theory is the mutual information

between two random variables, which tells how much knowing one of the random

variables reduces the uncertainty about the other. Mutual information (MI)

of two discrete random variables is defined as [Cover and Thomas, 2006]:

I(X;Y ) =
∑

y∈Y

∑

x∈X

p(x, y) log
p(x, y)

p(x)p(y)
= H(X)−H(X|Y ),

where H(X) is the entropy of X and H(X|Y ) the conditional entropy of X

given Y .

H(X) = −
∑

x

p(x) log p(x), H(X|Y ) = −
∑

x,y

p(x, y) log p(x|y).
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Considering random network partitions as random variables, MI can be

viewed as a similarity measure when comparing community structures. For

evaluation of network partitions, it is highly desired that the used measure

satisfies the following properties:

– Metric property

A measure d is a metric if it satisfies the following properties:

• Non-negativity: d(X,Y ) ≥ 0,

• Identity: d(X,Y ) = 0 ⇔ X = Y ,

• Symmetry: d(X,Y ) = d(Y,X),

• Triangle inequality: d(X,Z) + d(Z, Y ) ≥ d(X,Y ).

– Normalization property

A measure is normalized if the values it takes fall into a fixed interval.

Normalized measures are easy to interpret and especially in community

detection problems it is necessary to quantitatively assess the similarity of

a given partition with other partitions or with ground truth. In community

detection evaluation most of the measures fall into intervals [0, 1] or [−1, 1].

– Constant Baseline Property

When comparing two random network partitions, the expected value of

the measure must be constant, preferably zero [Vinh et al., 2010, Romano

et al., 2016].

The metric property conforms to the intuition of distance [Meila, 2007] and

it is important in the case of complex space of clustering as many theoretical

results already exist for metric spaces.

Based on the properties of MI, that is non-negativity and upper boundedness:

0 ≤ I(X;Y ) ≤ min{H(X), H(Y )} ≤
√

H(X)H(Y ) ≤ 1

2
(H(X) +H(Y )) ≤

≤ max{H(X), H(Y )} ≤ H(X,Y )

several normalized variants of MI can be considered as similarity measures

[Vinh et al., 2010, Yao, 2003, Kvalseth, 1987, Strehl and Ghosh, 2002]:

NMIjoint =
I(X;Y )

H(X,Y )
, NMImax =

I(X;Y )

max(H(X), H(Y ))
,
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NMIsum =
2I(X;Y )

H(X) +H(Y )
, NMIsqrt =

I(X;Y )
√

H(X)H(Y )
,

NMImin =
I(X;Y )

min{H(X), H(Y )} .

Based on the five upper bounds for I(X;Y ) also five distance measures are

defined as follows [Vinh et al., 2010].

Djoint = H(X,Y )− I(X;Y ),

Dmax = max{H(X), H(Y )} − I(X;Y ),

Dsum =
H(X) +H(Y )

2
− I(X;Y ),

Dsqrt =
√

H(X)H(Y )− I(X;Y ),

Dmin = min{H(X)H(Y )} − I(X;Y ).

Djoint = 2Dsum is known as variation of information (VI) introduced by

Meila [Meila, 2007], satisfying the properties of metrics but not the one of

normalization. In [Vinh et al., 2010] it was proved that Dmax is a metric, while

Dmin and Dsqrt are not. Later Kraskov et al. [Kraskov et al., 2005] introduced

normalized variant of variation of information called normalized variation of

information (NVI) and normalized information distance (NID) which

are both normalized and metric measures.

NVI =
H(X,Y )− I(X;Y )

H(X,Y )
= 1− I(X;Y )

H(X,Y )
,

NID =
max(H(X), H(Y ))− I(X;Y )

max(H(X), H(Y ))
= 1− I(X;Y )

max{H(X), H(Y )} .

An overview of popular information theoretic measures is given in Table 1.

Table 1: Overview of popular information theoretic measures.

Measures Range Normalization Metrics

MI [0,min{H(X), H(Y )}] × ×
NMI [0, 1] X ×
VI [0, log(N)] × X

NVI [0, 1] X X

NID [0, 1] X X

Although the above mentioned measures are very popular in community de-

tection and clustering literature, many experiments challenge their effectiveness

stating that they are biased to the number of communities i.e. violating the

892 Haroutunian M., Mkhitaryan K., Mothe J.: A New Information-Theoretical ...



constant baseline property [Vinh et al., 2010] and being affected by systematic

errors due to finite network size [Zhang, 2015]. For this reason we decided to

search for alternatives among f -divergences.

3 Looking for Alternative Measures Among f-divergences

f -Divergences also known as Csiszár f -divergences are functions measuring the

difference between two probability distributions introduced by Csiszár [Csiszár

and Shields, 2004], Morimoto [Morimoto, 1963] and Ali & Silvey [Ali and Silvey,

1966].

Let f : (0,∞) → R be a convex function with f(1) = 0 and let P and Q be

two probability distributions. The f-divergence from P to Q is defined by

Df (P ‖ Q) ,
∑

x

q(x)f(
p(x)

q(x)
).

Among others, f -divergences include well known notions from information

theory listed below.

Kullback-Leibler divergence which is also known as relative entropy

D(P ‖ Q) =
∑

x

p(x) log(
p(x)

q(x)
),

is a f -divergence with f(t) = t log(t). Also D(Q ‖ P ) can be obtained from

f(t) = −t log(t).

Total variational distance

V (P,Q) =
∑

x

|p(x)− q(x)| =
∑

x

q(x)|p(x)
q(x)

− 1|,

is coming from the same f -divergence formula when f(t) = |t− 1|.

Hellinger distance defined by

H(P,Q) =
∑

x

(
√

p(x)−
√

q(x))2,

is a f -divergence with f(t) = (
√
t− 1)2. The Hellinger distance is closely related

to the total variational distance, but it has several advantages such as being

well suited for the study of product measures.

Jeffrey divergence is the symmetrized Kullback-Leibler divergence

J(P ‖ Q) = D(P ‖ Q) +D(Q ‖ P ) =
∑

x

(p(x)− q(x)) log(
p(x)

q(x)
),
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that is obtained from Df (P ‖ Q) with f(t) = 1
2 (t− 1) log(t).

Capacitory discrimination (similar to Jensen-Shannon divergence) is

given by

C(P,Q) = D(P ‖ P +Q

2
) +D(Q ‖ P +Q

2
) = 2H(

P +Q

2
)−H(P )−H(Q)

which comes from Df (P,Q) with f(t) = t log(t)− (t+ 1) log(t+ 1) + 2 log(2).

χ2 divergence is a f -divergence measure,

χ2(P,Q) =
∑

x

(p(x)− q(x))2

q(x)
=

∑

x

q(x)(
p(x)

q(x)
− 1)2,

where f(t) = (t− 1)2.

Bhattacharyya distance given by

B(P,Q) =

√

1−
∑

x

√

p(x)q(x),

can be obtained from Df (P,Q), when f(t) = 1 −
√
t. An overview of discussed

f -divergences is given in Table 2.

Table 2: Overview of properties of f -divergence measures.

f -divergence measures Normalization Metrics

Kullback-Leibler divergence × ×
Total variational distance X X

Hellinger distance X X

Jeffrey divergence × ×
Capacitory discrimination X X

χ2 divergence × ×
Bhattacharyya distance X X

We considered the properties of these measures to decide how they fit for

comparing network partitions. To compare two community structures or net-

work partitions X and Y we must consider the discrimination from PXY to

PXPY , where PXY is the joint probability distribution and PXPY the product

of marginal distributions of X and Y partitions respectively. First note that

there is a well known property

D(PXY ‖ PXPY ) = I(X;Y )
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and hence Kullback-Leibler divergence being very useful in information theory

is not interesting for our task.

Although for all measures the output is zero when partitions are independent,

PXY = PXPY =⇒ Df (PXY ‖ PXPY ) = 0

the identity property of metric is violated for all discussed measures, when con-

sidering identical partitions, i.e. when X = Y , Df (PXY ‖ PXPY ) is not zero. In

the next section we suggest a new modified version of χ2-divergence overcoming

this issue.

4 Modified χ2-divergence for Evaluating Network Partitions

Let Kmax denote the maximum number of communities in X and Y respectively,

i.e. Kmax = max{KX ,KY }, where KX and KY are the number of communities

in partitions X and Y respectively.

Consider the following measure which we suggest for comparison of two com-

munity structures or network partitions X and Y that we call modified χ2-

divergence and denote by MDχ2(X,Y ):

MDχ2(X,Y ) = 1− χ2(PXY , PXPY )

Kmax

= 1−
∑

x,y
(p(x,y)−p(x)p(y))2

p(x)p(y)

Kmax − 1
= (1)

= 1−
∑

x,y
p2(x,y)
p(x)p(y) − 1

Kmax − 1
.

Theorem 1. MDχ2 satisfies all metric properties except triangle inequality and

is a normalized measure.

Proof:

The following properties of modified χ2-divergence are obtained:

– Non negativity

∑

x,y

p2(x, y)

p(x)p(y)
≤ min{

∑

x,y

p(x, y)

p(x)
,
∑

x,y

p(x, y)

p(y)
} = min{

∑

x

p(x)

p(x)
,
∑

y

p(y)

p(y)
} =

(2)

= min{KX ,KY } ≤ max{KX ,KY } = Kmax =⇒ MDχ2(X,Y ) ≥ 0.

– Symmetry

It is obvious that MDχ2(X,Y ) = MDχ2(Y,X).
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– Identity

When X and Y partitions are identical, hence

MDχ2(X,X) = 1−
∑

x
p2(x,x)
p(x)p(x) − 1

Kx − 1
= 1− Kx − 1

Kx − 1
= 0.

The inverse is also correct.

MDχ2(X,Y ) = 0 =⇒
∑

x,y

p2(x, y)

p(x)p(y)
= Kmax =⇒

∑

x,y

p(x|y)p(y|x) = Kmax =⇒ X = Y

– Normalization

From the non-negativity property of modified χ2-divergence,

MDχ2(X,Y ) ≥ 0.

To obtain the upper bound, we use the direct consequence of Cauchy-

Bunyakovsky-Schwarz inequality, the Sedrakyans inequality [Sedrakyan,

1997]

∑

i

a2i
bi

≥ (
∑

i ai)
2

∑

i bi
. (3)

Using the inequality (3) we obtain

∑

x,y

p2(x, y)

p(x)p(y)
≥

(
∑

x,y p(x, y))
2

∑

x,y p(x)p(y)
= 1. (4)

Substituting (4) into (1) the following is obtained

MDχ2(X,Y ) ≤ 1.

Hence MDχ2(X,Y ) ∈ [0, 1] is a normalized measure.

– Triangle inequality

It would be perfect if we could proof also the triangle inequality. Un-

fortunately, modified χ2-divergence does not obey triangle inequal-

ity. It is sufficient to point out a singular counter example where trian-

gle inequality is violated. For example, let X = (2, 1, 2, 2, 1, 2, 2, 2, 2, 2),
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Y = (1, 2, 2, 1, 2, 1, 1, 1, 1, 1) and Z = (2, 1, 1, 2, 2, 2, 2, 2, 2, 2) partitions of

N = 10 nodes into two communities. It can be easily checked that

MDχ2(X,Y ) +MDχ2(Y, Z) < MDχ2(X,Z).

Nevertheless a huge number of experiments show that in the majority cases

the triangle inequality comes true. In any case, this is not the most important

property, as usually the detected structures are compared with the ground

truth or with each other.

The theorem is proved.

As we saw the modified χ2-divergence satisfies all properties of metrics (non-

negativity, symmetry, identity) except triangle inequality, it is also a normalized

measure and can be considered as an alternative evaluation of network partitions.

The next objective is to verify the third desirable property, that is, constant

baseline property mentioned in the introduction. For this purpose we conduct

experimental analysis in the next section that also justifies the use of the mod-

ified χ2-divergence along with NID and NVI with respect to that property. We

show that modified χ2-divergence has huge advantage over NVI and NID being

unbiased to the number of communities or clusters in the network.

5 Experimental Analysis

In order to see how modified χ2-divergence performs and how it fits evaluation

tasks in community detection, we implemented an experimental study and com-

pared the outputs obtained by MDχ2 , NVI and NID using artificially generated

community structures. Criteria selected for comparison were the performance of

measures on random community structures with different number of nodes and

communities in the network, satisfaction of measures to the constant baseline

property and the results obtained by applying community detection algorithms

on a network having ground-truth community structure. For the experiments,

the following notations are used:

– N , is the number of nodes in the network.

– Kgt, is the number of communities in the ground truth.

– Kpart, is the number of communities in the partition detected by an algo-

rithm.

– Vgt, is the community membership vector of ground truth.

– Vpart, is the community membership vector of a partition detected by an

algorithm.
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– Vgt, is the community membership vector of ground truth.

We considered a scenario where a particular community detection method

detected five communities and the ground truth also contains five communities.
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Figure 1: Similarity between 100 random partitions and a ground truth ordered

by increasing order of NVI, where Kgt = 5, Kpart = 5 for N = 10 (a), N = 100

(b) and N = 1000 (c).

Different 100 random community membership vectors (Vpart) were generated

and compared with ground truth considering for N = 10 (Figure 1a), N = 100

(Figure 1b) and N = 1000 (Figure 1c) nodes. From the figures we see that

for the three measures the results are similar to each other. Figures 1b and 1c

clearly show that when number of nodes in the network increases, the output

has a less chance to be closer to the ground truth indicating almost independent

partitions, whatever the measure is.

In the next scenario we considered that the number of communities in the

ground truth and clustering may vary. For this reason we set the number of

communities a random number in the range [1, 50] and generated again 100
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random partitions for N = 100 (Figure 2a) and N = 1000 (Figure 2b). We see

that the behaviour is again similar for all three measures.
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Figure 2: Similarity between 100 partitions with random number of communities

from the range [1, 50] and the ground truth ordered by increasing order of NVI,

where Kgt = 5 for N = 100 (a) and N = 1000 (b).

Despite the similarity of results, both NVI and NID are sensitive to the

number of communities in the network which might affect the results [Vinh

et al., 2010]. Therefore we analyzed the performance of measures in order to

see whether they are biased or not. We fixed the ground truth to be a random

partition with 5 communities. Then we generated 1000 random partitions (Vpart)

and averaged the similarity with ground truth for each number of communities

from the interval [1, 100]. The experiment was done for networks with N = 100

(Figure 3a) and N = 1000 (Figure 3b) nodes. From Figure 3a we can see that

when number of communities increases, both NVI and NID scores decreases and

show more similarity with the ground truth, although partitions are completely

random. The same pattern was obtained when considering more communities

in the ground truth. Interpretation to this is that NVI and NID are biased to

the number of communities in the network and may give wrong results when

network size is relatively small compared with the number of communities. The

same experiment with partitions containing 1000 nodes (Figure 3b) shows less

bias as NVI and NID become less biased when number of nodes in the network

is relatively large compared with the number of communities in the network.

Finally the performance of measures were experimented on synthetic net-

works, generated using the concept of stochastic block model (SBM) [Abbe,

2017].
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Figure 3: Similarity between Vpart and Vgt, where Kgt = 5, Kpart ∈ [1, 2, ..., 100]

for N = 100 (a) and N = 1000 (b). For each Kpart result is averaged on 1000

random clusterings.

SBM takes the following parameters:

– (C1, C2, ..., Ck), k ∈ {1, ...,K}, vector of community sizes, where K is the

number of communities in the network.

– A symmetric K × K matrix M of edge probabilities, where Mij element

represents the probability of edge between nodes from communities i and j.

By taking number of nodes in network, N = 1000, 10 communities with ran-

dom sizes, (C1, C2, ..., Ck) that sum up to 1000, probability of edges inside com-

munities, Mi,i ∈ [0.5, 1] and between communities Mi,j ∈ [0, 0.5],where i 6= j,

large number of networks was built where ground truth is predefined. Later six

community detection algorithms [Fortunato, 2010] that are fast greedy modular-

ity optimization (FG), infomap (IM), leading eigenvector (LE), label propagation
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Our investigations on normalized mutual information, normalized variation of

information and normalized information distance showed that they are biased in

favour of large number of communities or clusters in the network i.e. give unfair

results when the number of nodes is relatively small compared with the number of

communities. Admitting the drawbacks that existing information-theoretic mea-

sures share, we suggest a new measure, namely modified χ2-divergence for com-

paring community structures based on χ2-divergence from information theory.

We mathematically proved that our modified χ2-divergence satisfies all metric

properties (except triangle inequality) and is a normalized measure. We also show

experimentally that compared with NMI, NVI and NID, modified χ2-divergence

admits constant baseline, not being affected by the number of communities in the

network which guarantees fair comparison in scenarios where number of nodes

is relatively small compared with the number of communities.
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