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Abstract

Previous work has shown that end-to-end neural-based speech
recognition systems can be improved by adding auxiliary tasks
at intermediate layers. In this paper, we report multitask learn-
ing (MTL) experiments in the context of connectionist tempo-
ral classification (CTC) based speech recognition at character
level. We compare several MTL architectures that jointly learn
to predict characters (sometimes called graphemes) and conso-
nant/vowel (CV) binary labels. The best approach, which we
call Char+CV-CTC, adds up the character and CV logits to ob-
tain the final character predictions. The idea is to put more
weight on the vowel (consonant) characters when the vowel
(consonant) symbol ‘V’ (‘C’) is predicted in the auxiliary-task
branch of the network. Experiments were carried out on the
Wall Street Journal (WSJ) corpus. Char+CV-CTC achieved the
best ASR results with a 2.2% Character Error Rate and a 6.1%
Word Error Rate (WER) on the Eval92 evaluation subset. This
model outperformed its monotask model counterpart by 0.7%
absolute in WER and also achieved almost the same perfor-
mance of 6.0% as a strong baseline phone-based Time Delay
Neural Network ("TDNN-Phone+TR2”) model.

Index Terms: automatic speech recognition, connectionist tem-
poral classification, multi-task learning

1. Introduction

Recent advances in automatic speech recognition (ASR) sys-
tems have enabled training neural “end-to-end” architectures
that attempt to map audio signals directly into text. A first
step towards end-to-end ASR was made with the so-called Con-
nectionist Temporal Classification (CTC) objective function in-
troduced by Graves et al. [1, 2]. By contrast, sequence-to-
sequence recurrent neural networks (RNNs), such as encoder-
decoders [3, 4], process sequences of audio features through
stacked layers. Higher-level representations are encoded and
fed to decision layers that output labels in an end-to-end fashion
for tasks that previously required significant human expertise.

There is strong evidence that end-to-end ASR systems im-
plicitly learn linguistically meaningful representations at in-
termediate layers, between the acoustic input and the final
symbolic output [5, 6]. The evidence is particularly strong
for phonetic-related properties in ASR end-to-end intermediate
representations [7, 8].

Multitask learning (MTL) approaches for end-to-end ASR
systems have gained momentum in the last few years [9, 10].
Recent work introduced the use of hierarchical MTL in speech
recognition with hierarchical CTC-based models [7, 11]. Per-
formance gains have been obtained by combining phone-label
predictions as an auxiliary task in training a spoken digit se-
quence recognizer, as in [12]. In [7], the authors proposed a
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hierarchical CTC model for a subword-based ASR model with
an auxiliary phone-level CTC loss applied at an intermediate
layer of a neural network.

The present work develops an MTL approach inspired by
the ontology-based network architecture proposed for sound
event detection (SED) in [13]. The primary SED task aims at
classifying “low-level” sound events in categories such as “vi-
olin, piano”, “eating, breathing”, and “cat, dog”. Jimenez et
al. proposed a network that produces hierarchical outputs and
multilevel predictions. It is based on a simple ontology-based
layer defined with high-level classes such as “Music”,”"Human”,
“Nature”, etc. The layer consists of a fixed binary matrix M
which allows the conversion of low-level sound predictions into
predictions of the high-level classes by simply summing up the
probabilities of the low-level categories that share a common
high-level category. This work showed that the higher-level
recognition task improves the primary task performance by a
large margin.

In this paper, we investigate the benefit of adding a con-
sonant/vowel recognition auxiliary task as our high-level sec-
ondary task to train character-based CTC models. We propose
and compare three MTL architectures involving the output of
the secondary task in three ways: i) as an independent output
head in the network (standard MTL), ii) on the top of the char-
acter recognition output head (similar to [13]), iii) as logits
summed to the character-level logits to promote the prediction
of a character being either a consonant or a vowel.

Since the CV and character logits are summed up, we call
this last architecture “Char+CV-CTC”. As we report in the
paper, the experiments carried out on the WSJ 80-hour train-
ing set [14] and the Eval92 test set for evaluation show that
Char+CV-CTC lead to the best results.

The paper is organized as follows. In Section 2, we begin
by briefly introducing the CTC approach that is used to train
our models at character and CV levels. We describe the various
MTL model variants in Section 3. The decoding methods used
in this work are described in Section 4. Finally, we evaluate
our models on the Wall Street Journal dataset and compare the
different multitask approaches in Section 5. As a side note, we
use “characters” and “graphemes” interchangeably throughout
the paper.

2. Connectionist Temporal Classification

Introduced in [1], CTC allows a system to automatically learn
alignments between speech frames X .. 7 and their label se-
quences K1, n (where N < T, and T and N are the lengths
of the speech frame sequence and of the label sequence, respec-
tively). A CTC path is defined as a T-long sequence of output
labels with probability P* = p(1,...,T). In order to obtain
CTC alignments and cope with the difference in lengths be-
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Figure 1: Architecture of the three MTL variants tested in this
work. “Char dense” and “CV dense”: fully-connected dense
layers with output dimensions equal to the number of target
characters and CV, respectively. MTL (1): standard MTL with
two heads, MTL (2): hierarchical chararcter to CV MTL, MTL
(3): Char+CV-CTC MTL.

tween the input and output sequences, Graves and colleagues
proposed a dynamic constrained procedure that adds a blank la-
bel € between each label in sequence K. This procedure can
result in several possible paths (alignments) that yield to the ex-
pected label sequence K. For example, a sequence of three
characters such as “ABC”, along with a sequence of speech
frames of length 7" = 5, can lead to paths such as “A ¢ B B
C”or “AABCe”, etc.

During training, the CTC conditional probability function
marginalizes over the set of valid alignments computing the
probability for a single alignment step-by-step:

T
P(EX, r)=> []P M

€0 t=1

where O is the set of all possible paths that lead to the K label
sequence.

The CTC technique is generic and can be applied to phones,
characters and all types of (sub-)word units. In the present
work, we use it at character and consonant/vowel levels.

3. Proposed MTL approaches

In this work, we compare a standard character-based CTC
model with variants that involve the auxiliary task of recog-
nizing two higher-level categories: vowels and consonants, de-
noted as ‘V’ and ‘C’. For the auxiliary task, we used five units:
‘C’ for consonants, ‘V’ for vowels, the quote tag, the € (blank)
symbol and the space label. The last three units are needed to
perform CTC properly. The ‘V’ symbol was chosen to represent
the letters ‘a’, ‘e’, ‘i’, ‘0’, ‘u’” and ‘y’ while ‘C’ represents all the
other letters. In this setting, the semi-vowel ‘w’ is considered
as a consonant. The character classification layer is comprised
of 29 units to predict the 26 characters of the English alphabet,
the quote tag, the e symbol and the space label.

We compared three multitask variants, which are depicted
in Fig. 1 and described in the sections here-after. In Fig. 1, “char
CTC” and “CV CTC” indicate the placement of the two outputs
layers used respectively for the character and CV tasks. These
are the output layers on which the CTC loss objectives are opti-
mized. Log-softmax was used as the activation function of these
layers. “Char dense” and “CV dense” indicate fully-connected
layers with a number of neuron units equal to the number of
classes of characters (26+3) and CV (2+3), respectively.

In all the variants, we use the multitask loss defined in Eq.

(2). It is the convex combination of two CTC-loss functions:
L1, the CTC loss evaluated on the character predictions cor-
responding to pP(Yehar|z), and Lo, the CTC loss evaluated on
the CV predictions corresponding to p(Jcv|z), where Jchar and
Jev denote the character and the CV sequence predictions for a
given utterance, respectively. Here, \ is a hyper parameter to
be tuned to a real value within [0, 1] that determines the weight
of each task loss. When A = 1 (0), the task is reduced to the
monotask of character (CV) recognition.

L= A»Cchar + (1 - )\)ch (2)

3.1. Standard MTL approach

The first variant, denoted MTL (1) in Fig. 1, is the standard
MTL approach with two output heads: one for the character
task (char) and one for the auxiliary task (CV).

3.2. Hierarchical MTL approach

The second variant, MTL (2), handles the two tasks in a hier-
archical manner where we first output char logits at the level of
the “char dense” layer depicted in Fig. 1. Then the logits corre-
sponding to vowels and to consonants are accumulated together
to get probabilities for ‘C” and ‘V’, respectively. The relation-
ship between the characters and the CV level logits is a simple
matrix-vector product:

icv =M - 2char (3)

where Zchar and Zc, are the character and CV logits outputted
by the respective fully-connected layers, and M is the mapping
matrix.

The binary matrix M of dimension N¢y X Nehar maps char-
acters to the ‘C’ and “V’ classes. M is fixed and is not modified
during training.

Char and CV probabilities are then obtained by applying
the softmax function on the respective logits. To be more pre-
cise, the CTC loss implementation used in this work uses log-
probabilities by applying the log-softmax activation function.

This variant was inspired by the so-called ontology-based
networks for sound event detection proposed in [13]. Indeed,
the CV categories can be viewed as a super class of the char-
acters. We do not call this variant ontology-based MTL since
there is no semantics involved in the char and CV categories.

3.3. Char+CV-CTC approach

The third variant MTL (3) is the main novel contribution of this
work. We combine the char and CV outputs by simply summing
up the outputs of the two fully-connected layers responsible for
each task. We sum up the logits rather than the probabilities in
order to keep the full range of real values possible and thereby
avoid squashing the values. Log-softmax is applied afterwards.
To do so, we replicate the CV probabilities with the transposed
version of the M matrix of variant (2):

N A T 4
Zchar = Zchar + M* - Zey 4

Variant (3) was designed based on the idea that if the model
predicts that a certain character is a member of ‘V’, then we
should put more weight on the characters that actually are vow-
els, and likewise for consonants ("C’ class).



4. Decoding approaches

We used two decoding approaches: greedy decoding and
Weighted Finite-State Transducer (WFST)-based decoding. We
also tried the Prefix Beam Search algorithm [1] but as expected,
we obtained performance values better than greedy search but
worse than graph decoding so we chose to not report them.

Decoding algorithms are used to compute the final labels
for an input sequence X of length 7. CTC outputs a set of
probabilities p(c|x:),t = 1,...,T over the set of all possible
characters in the alphabet called 3. 3 is comprised of all the
target characters plus a space, quote tag, and e.

4.1. Greedy Decoding

We use the simple greedy approach as a baseline decoding
method. It does not use any language model or lexicon con-
straints. Instead, the best path is simply determined by selecting
the character of highest probability at each frame to recover a
character string. Then, the decoding procedure on the CTC se-
quence consists in collapsing repeated characters and removing
the blanks to get the final label sequence.

4.2. WFST-based decoding

In this work, we used a WEST-based decoding, which is one of
the most robust decoding techniques in ASR [15, 16]. More
specifically, we used a generalized decoding implementation
adapted to CTC outputs with a blank label proposed by Miao et
al. [17]. The output transcription corresponds to the most likely
path through the WEST, determined by the Viterbi algorithm.
The WEST takes as input a sequence of symbols, namely the
labels from a CTC model output, and emits a sequence of words
(a transcript). CTC-WFSTs require three graphs: i) the set of
CTC Labels called Tokens, ii) a word lexicon and iii) a language
model, all encoded as separate WFSTs. The three WESTs are
merged, compiled and compressed into a single search graph.

5. Experimental setup
5.1. Speech material

The experiments were performed on the Wall Street Journal
corpus (WSJ, LDC93S6A). We used the Kaldi data prepara-
tion WSJ recipe. The 81 hours of transcribed speech were split
into train (95%) and development (5%) subsets and correpond
to the subsets used in the Eesen article [17]. Evaluation was
performed on the Eval92 set. The Dev93 set was used to fix the
optimal value of the A\ mixing weight for MTL models.

Log-Mel filterbank coefficients with 40 frequency bins
were extracted together with first and second derivatives. The
features were then normalized via mean subtraction and vari-
ance normalization (CMVN) per-speaker. No speaker adapta-
tion techniques were used.

5.2. Time Reduction (TR)

As in [7], pairs of consecutive input frames were concatenated
for a reduction in time resolution at the input. This technique
helped to speed up training. Using an Nvidia GTX-1080 TI,
training took 34 hours instead of 58 hours without TR. We also
observed that TR improved performance.

5.3. Model description

Compared to standard feed-forward networks, RNNs have the
advantage of modeling temporal dynamics of sequences [2]. We

chose to use recurrent layers, namely bidirectional Gated Recur-
rent Unit layers (BiGRU) [18].

After trial and error tests, we opted for a model with four
BiGRU hidden layers with 2 x 320 cells in each layer, giving a
total of 8.3M parameters.

Dropout (10% rate) [19] was applied on the output of each
BiGRU layer. The output layer uses the log-softmax activation
function. The network was trained on 100 epochs with a 32
batch size and the CTC objective function described in Section
2, the ADAM optimizer [20] with a 4e-5 learning rate and a 0.9
momentum value. For inference, we used greedy decoding with
no language model, and WFST-based decoding as implemented
in EESEN [17] with lexical expansion as proposed in the Kaldi
WSlJ recipe [16]. The language model, available within the WSJ
release, is a trigram LM with a 20k word vocabulary. All the
models were implemented with the PyTorch library [21].

6. Evaluation
6.1. Results

Table 1 gives the character and word error rates (CER, WER)
obtained with our character-based CTC-GRU models using the
greedy and WFST-based decoding algorithms. In the top part of
the table, we report results from the literature on the same data
using models that have a similar architecture as ours, with four
layers and about 8 to 9 million learnable parameters.

Our baseline (character-based CTC-GRU) achieved a 7.4%
WER, which is very close to that of the character-based
CTC-LSTM models reported in [22, 17]. We also report
the performance of 7.1% WER obtained by a phoneme-based
HMM/DNN Kaldi system from [17]. This model is larger, be-
ing comprised of six hidden layers and 1024 units per layer
(9.2M parameters).

Table 1: Results on Eval92 in terms of character and word er-
ror rates (CER, WER). MTL (1), (2) and (3) correspond respec-
tively to the standard MTL, hierarchical MTL and Char+CV-
CTC models with the same architecture as the baseline mono-
task model CTC-GRU+TR2. TR2 (”Time-Reduction”) refers to
using acoustic feature frames concatenated every two frames.

Model Greedy Search WEST-based

CVER CER WER CER WER
TDNN-Phone [17] - - - - 7.1
CTC-LSTM [17] - - - - 73
CTC-LSTM [22] - 9.2 30.1 - 8.7
TDNN-Phone+TR2 - - - 6.0
CTC-GRU - 8.4 29.6 2.8 7.4
CTC-GRU+TR2 - 8.0 28.8 24 6.8
MTL (1) 5.2 7.8 27.3 2.3 6.6
MTL (2) 52 8.3 28.2 2.8 7.5
MTL (3) 4.5 7.7 27.5 2.2 6.1

As a baseline, our CTC-GRU achieved better results com-
pared to CTC-LSTM [22], with CER / WER of 8.4% / 29.6%
respectively, by naively choosing the most likely label at each
time step (greedy search). As expected, WFST-based decod-
ing gave much better results than greedy search. Our baseline
gave a 7.4% WER to be compared with the 29.6% WER with
greedy search. In the remainder of the paper, we only consider
the results obtained with WFST-based decoding.



We compare our baseline to a model trained using a Time
Reduction of two frames: CTC-GRU+TR2. Improvements of
0.4% and 0.6% absolute in CER / WER respectively were ob-
tained showing the positive impact of TR. This result was con-
firmed in our experiments with a hybrid HMM/TDNN phone-
based system. Using TR of two frames, we obtained a 6.0%
WER which is better than the 7.1% WER reported in [17].
These significant performance gains may be due to TR increas-
ing the receptive field size at the input of the networks. Interest-
ingly, Krishna er al. [17] only mentioned computation speed-
ups but did not justify the use of TR for its performance gains.
We used a TR of two frames in all our MTL models.

The main contribution of this work lies in the multitask
learning (MTL) models. We compare CTC-GRU+TR2 to the
three MTL models described in Section 3. The interpolation
constant A\ was optimized on the dev set, the best value was
A = 0.8. The influence of A is discussed in Section 6.2.

MTL (1), which is the standard multitask model, performs
slightly better than the monotask CTC-GRU+TR2 model. By
contrast, the hierarchical variant MTL (2) performs slightly
worse. It seems that putting the auxiliary task directly on top
of the main task fully-connected layer reduces the main task
performance, contrary to the results of the ontology-based net-
works for sound event detection reported in [13].

The best results were obtained with MTL (3): 2.2% CER
and 6.1% WER. This corresponds to a 0.7% absolute (10% rel-
ative) gain in WER compared to CTC-GRU+TR2. Combin-
ing the two tasks by summing up their logits proved successful.
This may be explained by the fact that this addition puts more
weight on the vowel (consonant) characters when the vowel
(consonant) symbol V (C) is predicted.

6.2. Effect of the Interpolation A Weight

We explored the effect of the mixing weight A\ constant as de-
fined in Section 3. The closer the value is to 1, the closer the
learning is to the monotask situation. Fig. 2 shows the evolu-
tion of the CER and WER on the development set Dev93 with
respect to A for MTL (3). The reference values of 4.9% CER
and 10.0% WER obtained with the monotask model counterpart
CTC-GRU+TR?2 are also plotted.

Values of A larger than 0.5 outperform the baseline and the
best performance is obtained for A = 0.8, the value that was
used to report the results on the test subset in Table 1. This value
is close to 1, showing that the additional supervision brought by
the auxiliary task needs to be small to bring performance gains.

7. Conclusions

In this work, we presented a new multitask learning approach
for character-based CTC ASR recognition. This approach,
called Char+CV-CTC, consists in summing the logits of the pri-
mary and auxiliary tasks before outputting the primary task fi-
nal character predictions. We proposed the auxiliary task of
recognizing consonants (C) and vowels (V) based on a CTC
objective function. Several architectures were tested: a stan-
dard two-head model, a hierarchical character-to-CV model and
Char+CV-CTC.

Evaluation experiments were conducted on WSJ. All our
models use BiGRU stacked layers fed with concatenated fea-
ture frames (referred to as time reduction, TR). TR brings per-
formance gains and substantial computation time reductions.
Char+CV-CTC achieved the best ASR results with a 2.2% CER
and a 6.1% WER. This model outperformed its monotask model
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Figure 2: Effect of varying the interpolation constant A on the
WSJ dev93 set CER (%) and WER (%). For information, CTC-
LSTM [17] achieved a 10.8% WER on this subset.

counterpart by 0.7% absolute in WER. Another interesting re-
sult is that Char+CV-CTC achieves almost the same perfor-
mance as a phone-based hybrid HMM-TDNN model.

We plan to confirm these results on larger-scale speech
datasets such as Librispeech. Indeed, more experiments should
be run to explore our char+CV-CTC approach. It would be in-
teresting to try other ways of splitting the set of characters, in-
cluding randomly, in order to explain the improvement obtained
in the present work. It might come from the reduced number of
classes in the auxiliary task and not from the semantic proper-
ties of the arbitrary split of the characters into consonant/vowel
symbols.

Another future line of research will be to test Char+CV-
CTC variants in which the auxiliary task is performed by an
intermediate recurrent layer instead of the output layer. Indeed,
in [7], improvements were obtained by doing so in a hierarchi-
cal MTL approach combining phone and sub-word CTC tasks,
as the auxiliary and primary tasks, respectively.
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