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Abstract—In this paper, a four-phase approach for Integrated 

Procurement-Production (IPP) tactical planning in a multi-

echelon, multi-product and multi-period Supply Chain (SC) 

network is proposed. To account for ambiguity and vagueness in 

some real-world data and preferences, in the first phase of the 

approach, the Fuzzy Technique for Order Preference by 

Similarity to Ideal Solution (fuzzy TOPSIS) method is used to 

obtain the overall performance and risk ratings of the suppliers 

with regard to a set of qualitative and quantitative criteria. In the 

second phase, we introduce a novel multi-objective possibilistic 

mixed integer linear programming model (MOPMILP) for solving 

an IPP planning considering conflicting goals simultaneously: 

maximization of the overall performance and minimization of the 

overall risk. Then, after converting this MOPMILP model into an 

equivalent crisp multi-objective mixed integer linear 

programming (MOMILP) model, we use the Goal Programming 

(GP) approach to solve this MOMILP model in order to find an 

efficient compromise solution (i.e. an efficient procurement 

production plan) for the whole SC. The proposed approach and 

solution methodology are validated through a numerical example. 

Keywords—Integrated Procurement-Production; Fuzzy 

TOPSIS; performance; risk; Possibilistic mixed integer linear 

programming; goal programming 

I.!  INTRODUCTION 

Supply Chain Planning (SCP) problem is one of the 
important issues that face Supply Chain (SC) managers. 
Traditionally, these problems involve three levels of decision: 
strategic, tactical and operational. The strategic decisions are 
related to the SC design, ranging from 5 to 10 years. The major 
task of the tactical decisions is to determine an optimal use of 
the various resources on a medium term horizon (from 1 to 2 
years). Operational planning decisions search to address an 
exact scheduling on a short-term horizon (from 1 to 2 weeks). 
The tactical planning problem is the focus of this study. 

Traditionally, production and procurement activities were 

conducted separately, that may lead to a very poor overall 

performance [1]. However, in the design of an Integrated 

Procurement-Production (IPP) system involving resources 

belonging to different actors within the SC, the decision maker 

(DM) will be confronted with three important characteristics: 

(i) Conflicting goals that must be considered simultaneously 

(e.g., increase performance and at the same time minimize risk). 

(ii) Presence of different sources of uncertainty such as market 

demands and available capacities. (iii) Some critical 

information and preferences are captured through human 

judgments, and can hardly be expressed using deterministic or 

probabilistic formulation. 

 This study suggests to design an IPP planning system for a 

multi-echelon SC consisting of multiple suppliers, multiple 

parallel manufacturing plants and multiple subcontractors. To 

do this, we propose a four-phase approach, which starts with 

calculating performance and risk ratings of the various actors 

based on a Multi-Criteria Decision Making (MCDM) approach 

under a fuzzy environment. In the second phase, the problem is 

formulated using a Multi-Objective Possibilistic Mixed Integer 

Linear Programming Model (MOPMILP). Then, in the third 

phase, an appropriate strategy is applied for converting the 

MOPMILP into an equivalent crisp Multi-Objective Mixed 

Integer Linear Programming (MOMILP). Finally, using goal 

programming (GP) approach, we solve the proposed MOMILP 

to obtain an efficient compromise solution (i.e. an efficient 

procurement production plan) for the whole SC. 

 The rest of the paper is organized as follows. In the next 

section, we review related works. The proposed four-phase 

approach is described in section 3. In Section 4, an illustrative 

example is presented to show the applicability of the proposed 



approach. Conclusions and further research directions are 

discussed in the last section. 

II.! LITERATURE REVIEW 

 In the scientific literature, several models for tactical SC 

planning under uncertainty are proposed. Most of them are based 

on stochastic programming models [2], which are generally 

derived from statistical data. However, in many practical 

situations, such historical data are often not available and so 

some imprecise information can, more suitably, be obtained 

using human subjective judgments. In this case, the Fuzzy Set 

Theory [3] and the Possibility Theory [4][5] can be used as an 

efficient way to model uncertainties and subjectivity. 

Nevertheless, few studies address the IPP planning problem in a 

fuzzy environment. For example, the authors of [6] propose a 

multi-echelon, multi-products and multi-periods SC model to 

deal with the fuzziness of the market demand, the unit costs of 

raw materials and the unit transportation costs when the 

objective is to minimize the total cost. A method is also 

proposed, based on the α-cut representation and Zadeh’s 

extension principle [4][7] [8], to transform the proposed fuzzy 

SC model into a family of crisp models. Torabi and Hassini [9] 

proposed a MOPMILP model for solving an integrated 

production, procurement and distribution planning problem 

considering the imprecise nature of some input data as well as 

two conflicting objective functions: the total value of purchasing 

and the total cost of logistics. Even if through the first objective, 

it is proposed to consider the impact of subjective factors in 

purchasing decisions (such as technical capacities of the 

suppliers, after sale services and business structure), these 

criteria are quantitatively evaluated. On the basis of Lai and 

Hwang’s approach [10][11] and the weighted average method 

[10][12][13], the original fuzzy model is converted into an 

equivalent crisp MOMILP model. Finally, a new interactive 

fuzzy approach is introduced to find a compromise solution. 

This study was extended in [14] by developing an interactive 

fuzzy GP approach which incorporates four objective functions: 

maximizing the total value of purchasing, minimizing the total 

cost of logistics, minimizing the defective items and minimizing 

the late deliveries. As in [9], the qualitative factors are 

quantitatively evaluated. In [15], the authors proposed a fuzzy 

linear programming based approach to deal with the integrated 

production, procurement and distribution planning problem. 

This approach considers the various sources of uncertainty in a 

SC (process, demand and supply uncertainties) in an integrated 

manner. The aim of the proposed approach is the best utilization 

of the available resources so that customer demands are satisfied 

at minimum cost. Then, the authors introduce a solution 

procedure for converting the fuzzy model into an equivalent 

crisp one. This procedure allows the participation of the decision 

makers, who can express their opinions in linguistic terms. 

Recently, [16] presented a fuzzy multi-objective mixed-integer 

nonlinear programming model dealing with a multi-echelon SC. 

The main objectives of the proposed model are: minimizing the 

total cost, minimizing the rate of changes of the workforce, 

improving the customer satisfaction as well as maximizing the 

total value of purchasing. The fuzzy original model is 

transformed into an auxiliary MOMILP model through a three-

phase approach. The authors extended then their work in [17] 

by developing a multi-objective mixed-integer non-linear 

programming model integrating tactical and operational 

planning, solved by fuzzy optimization. 

 We can see that in most of the aforementioned studies, the 

authors limit their objective to minimize total cost/maximize 

total profit while satisfying customer demand. In our opinion, 

these research works fail to address the factors related to risk, 

which become critical given the rapid market variations. To the 

best of our knowledge, the only work including a risk 

management process in an IPP planning model is [18], but this 

latter does not take into account the lack of knowledge in some 

critical parameters such as customer demand and partners’ 

capacities. 

Moreover, the survey shows that the majority of existing 

approaches does not include subjective criteria, or transform 

them into quantitative ones, as in [9] or [14]. 

 To overcome these limitations, we introduce in this paper 

an integrated fuzzy!multiple criteria decision making (MCDM) 

technique and a multi-objective programming approach to deal 

with an IPP planning system. The MCDM technique is chosen 

because it is a powerful tool for simultaneously accommodate 

qualitative and quantitative criteria, whereas using an analytical 

model is the only way to take into account the various restrictive 

assumptions of the planning problem. 

 According to our knowledge, it is the first paper that 

integrates fuzzy TOPSIS, MOPMILP and GP to solve a multi-

echelon, multi-product, multi-period IPP problem including a 

risk management process. In the next section is summarized the 

proposed approach. 

III.! PROPOSED APPROACH 

 In this section, we present our four-phase approach dealing 

with IPP planning, consisting of multiple manufacturing plants, 

multiple suppliers and multiple subcontractors, considering 

various sources of uncertainty. We assume that a set of 

predefined qualified suppliers is provided. The supplier 

selection problem is indeed not our objective in this work: we 

focus here on determining the orders to be allocated to each 

actor (supplier, manufacturing plan and subcontractor). 

Moreover, since the DM cannot provide exact data for some 

critical parameters in a mid-term horizon, fuzzy sets and 

possibility theory is used to handle this vagueness. 

 In the first phase, the various partners are evaluated using 

the fuzzy TOPSIS method based on two classes of criteria: 

performance-based and risk-based decision criteria. In the 

second phase, the overall performance is computed and the 

overall risk scores calculated in the first phase serve as input 

data in the MOPMILP model suggested to determine an optimal 

procurement-production plan. This possibilistic model is then 

converted into an equivalent crisp MOMILP using an 

appropriate strategy. Finally, a multi-echelon, multi-period and 

multi-product GP method is adopted to solve this MOMILP 

model and finding a preferred procurement-production plan. 



 The main steps of the proposed approach are summarized in 

Fig. 1; more details are given in the following sub-sections. 

A.! Phase I: Evaluating partners 

1)! Selecting decision criteria 

 Two classes of decision criteria are defined. For each class, 

we enumerate the most important criteria. The decision maker 

can select the most appropriate ones according to his strategy. 

a)! Class I: Performance-based decision criteria 

•! Cost: The unit cost related to each partner. 

•! Capacity: Partners’ production capacity. 

•! Quality: The capacity of the partners to deliver the 

orders with the required quality of packaging. 

•! Reliability: The ability of the partners to deliver the 

orders on time. 

b)! Class II: Risk-based decision criteria 

•! Flexibility: The ability of the partners to take into 

consideration the changes in product characteristics 

proposed by the customer while the order is in process.  

•! Responsiveness: The ability of the partners to take into 

account the changes imposed by the customer in the 

due dates of orders. 

 

Fig 1. Framework of the proposed approach. 

•! Robustness: The insensitivity of the partners to 

disturbances.  

•! Resilience: The ability of the partners to return to a 

satisfactory state after disruption. 

 For modelling uncertainty , we assume that the cost and 

the capacity criteria are given by a triangular fuzzy number, 

whereas the other criteria are qualitatively assessed by the 

decision maker using linguistic labels. 

2)! Evaluating the performance of each partner 

 The fuzzy TOPSIS method is used according to the selected 

Class I criteria for providing an overall rating of each partner. 

Note that this overall rating, also called the closeness 

coefficient, is computed according to the distance to both a 

"negative" (worst) and "positive" (best) ideal solution. 

Therefore, the ranking of the partners can be determined 

according to the descending order of the closeness coefficient. 

 The overall performance rating of a partner j is denoted PIj 

3)!  Evaluating the risk of each partner 

 The fuzzy TOPSIS method is also invoked in this step 

according to the Class II selected criteria. The closeness 

coefficient related to the partner j is note CCIIj. The overall risk 

rating of the partner j, equal to 1- CCII j is denoted RIj.  

B.! Phase II: Proposed Multi-objective possibilistic mixed 

integer linear programming model  

1)! Formulation of the model 

a)! Notation 

•! Set of indices: 

−! T: Set of time periods (t = 1,…,T) 

−! S: Set of suppliers (s = 1,…, S ) 

−! M: Set of manufacturing plants (m = 1,…, M ) 

−! B: Set of subcontractors (b = 1,…, B) 

−! R: Set of raw materials (r = 1,…, R) 

−! P: Set of finished goods (p= 1,…, P) 

•! Certain parameters: 

−! S
r
: Set of qualified suppliers offering raw material r (i.e. S

r 
 

⊆ {1,…,S}). 

−! M 
p
: Set of plants producing finished good p (i.e. M

p 
⊆ 

{1,…, M}). 

−! B
p
: Set of subcontractors producing finished good p (i.e. B

p 

⊆ {1,…, B}).  

−! αp,r: Quantity of item r to produce a unit of finished good 

p. 

−! PIj: Performance index for partner j (j∈ {S}U{M_r}U 

{M_ov} U {B}) computed using Fuzzy TOPSIS during the 

first stage, where {M_r} (respectively {M_ov}) represents 

the set of manufacturing plants producing in regular time 

(respectively in overtime). 

−! RIj: Risk index for the partner j (j∈ {S} U {M_r} U {B}) 

computed using Fuzzy TOPSIS during the first stage. 

•! Fuzzy parameters: 

−! !"#$%: Demand of final product p in period t. 

−! &'()*+$#$% : Production capacity of manufacturing plant m 

for product p during period t. 

−! &'(),-+$#$% : Overtime capacity of manufacturing plant m 

for product p during period t. 

−! &'()./$#$% : Maximum capacity of subcontractor b for 

product p during period t. 

−! &'()0"1$2$%: Maximum procurement capacity of supplier s 

for raw material r during period t. 

Phase I: 

Phase II: 

Phase III: 

Phase IV: 

Fuzzy TOPSIS 

Formulation of the IPP 

planning problem MOPMILP 

Converting the original 

MOPMILP model into 

an equivalent auxiliary 

crisp MOMILP model 

Weighted 

average method

Determining an 
efficient procurement 

production plan 

Evaluating partners 

Goal 

Programming 



•! Decision variables: 

−! x_r m,p,t : Production amount in regular time for product p 

at manufacturing plant m in period t. 

−! x_ov m,p,t : Production amount in overtime for product p at 

manufacturing plant m in period t. 

−! x_b b,p,t : Subcontracting amount at subcontractor b for 

product p in period t. 

−! x_s s,r,t : Purchase amount from supplier s for raw material 

r in period t. 

−! OV_PI t : Overall performance measurement in period t. 

−! OV_RI t : Overall risk measurement in period t. 

b)!Objective functions 

•! Objective 1: Maximizing the overall performance 

measurement 

Max FP= "3
456 OV_PI t" " """""""""""

"""""""""""""
""     (1)"

Such that: 

OV_PI t =" "7
856 "9":";< "=":"><?":"@A ( x_s s,r,t * PIs ) +  

         ( x_r m,p,t * PIm_r ) + ( x_ov m,p,t * PIm_ov ) + 

         ( x_b b,p,t * PIb )          Bt         (2) 

•! Objective 2: Minimizing the overall risk 

measurement 

Min FR= "3
456 OV_RI t" " """""""""""

"""""""""""""
""    (3)"

Such that: 

OV_RI t =" "7
856 "9":";< "=":"><?":"@A ( x_s s,r,t * RIs ) +  

       (( x_r m,p,t + x_ov m,p,t )* RIm) + ( x_b b,p,t * RIb)""Bt   (4) 

c)!Model constraints 

C?":"@A x_r m,p,t + x_ov m,p,t ) + "9":";A  x_b b,p,t D E8$4 Bp,t (5) 

"F)G"H":"IJ s,r,t = ( F?":"@A _r m,p,t+ x_ov m,p,t )* αp,r Bt,Br∈R
P
  (6)  

x_r m,p,t K LMN)O?$8$4      B m,p,t        (7) 

x_ov m,p,t K LMN)PQ?$8$4      B m,p,t        (8) 

x_s s,r,t K LMN)GH$=$4         B s,r,t        (9) 

x_b b,p,t K LMN)R9$8$4         B b,p,t        (10) 

x_r m,p,t , x_ov m,p,t , x_s s,r,t , x_b b,p,t ≥ 0   Bp, r, t, m, b, s  (11) 

 Constraint (5) ensures the satisfaction of the customers' 

demand at each period. The amount of raw material to be 

supplied in each period is determined using constraint (6). 

Constraints (7) and (8) are respectively the regular and overtime 

production capacity limitations. Constraints (9) and (10) 

indicate the limited capacities for each supplier and 

subcontractor, respectively. Finally, constraint (11) is a non-

negativity constraint of the various decision variables. 

2)!Model the uncertain input data with triangular 

possibility distribution 

 In this study, we adopt the pattern of triangular possibility 

distribution to represent the uncertain/imprecise data. Fig. 2 

shows the triangular possibility distribution of fuzzy number  

' = (a
pp

, a
mm

, a
oo

) where a
pp

, a
oo

 and a
mm

 are the pessimistic, 

optimistic and most possible value of '. 

 The imprecise input data for the proposed model can thus 

be represented using triangular possibility distributions as 

follows: 

E8$4 = (E8$4
88

 , E8$4
??, E8$4

SS)        B p, t      (11) 

LMN)O?$8$4T"CLMN)O?$8$4
88

,LMN)O?$8$4
?? , LMN)O?$8$4

SS ) B"m,p,t     (12) 

LMN)PQ?$8$4TCLMN)PQ?$8$4
88

,LMN)PQ?$8$4
?? ,LMN)PQ?$8$4

SS )"Bm,p,t (13)  

LMN)R9$8$4T"CLMN)R9$8$4
88

,LMN)R9$8$4
?? , LMN)R9$8$4

SS ) "B"b,p,t     (14) 

LMN)GH$=$4T"CLMN)GH$=$4
88

,LMN)GH$=$4
??, LMN)GH$=$4

SS ) """B"s,r,t      (15) 

C.! Phase III: Strategy for processing the fuzzy constraints 

 Let us consider constraints (5) and (7)-(10) in which the 

fuzzy left-hand sides are compared to the crisp right-hand sides. 

A usual method for dealing with such situation is the 

defuzzification process, which consists in approximating the 

fuzzy parameters by crisp numbers.  

 In this work, we use the well-known weighted average 

method originally proposed in [10] and successfully applied to 

several problems [9], [12], [13], [14] to convert the fuzzy 

constraints (5) and (7)-(10). 

 The popularity of this method is due to its simplicity and its 

reliability of defuzzification. To do this, we first need to 

establish the minimum acceptable possibility level of 

occurrence for the corresponding fuzzy data,"β. Then the 

equivalent crisp constraints can be stated as follows: 

C?":"@A x_r m,p,t + x_ov m,p,t ) + "9":";A  x_b b,p,t = w1 *"E8$4$U
88

"V 

 w2 *"E8$4$U
?? "V w3 *"E8$4$U

SS """ " Bp, t          (16) 

x_r m,p,t ≤ w1 *"LMN)O?$8$4$U
88

 + w2 *"LMN)O?$8$4$U
??  + w3 *"LMN)O?$8$4$U

SS  

Bm,p, t                 (17) 

x_ovm,p,t ≤ w1 *"LMN)PQ?$8$4$U
88

 + w2 *"LMN)PQ?$8$4$U
??  +             w3 

*"LMN)PQ"?$8$4$U
SS  """"Bm,p, t            (18) 

x_s s,r,t ≤ w1 *"LMN)GH$=$4$U
88

 + w2 *"LMN)GH$=$4$U
??  + w3 *"LMN)GH$=$4$U

SS  

Bs,r, t                   (19) 

x_b b,p,t ≤w1*"LMN)R9$8$4$U
88

 + w2 *"LMN)R9$8$4$U
??  + w3 *"LMN)R9$8$4$U

SS  

Bb,p, t                 (20) 

Where, w1 + w2 + w3 = 1 and w1, w2 and w3 represent 

respectively the weights of the most pessimistic, the weights of  

 

 

  

 

 

 

 

Fig 2. The triangular possibility distribution of"WX. 

a
pp

 a
mm a

oo 



the most possible and the weights of the most optimistic value 

of the fuzzy data. In practice, these weights as well as the 

minimum acceptable possibility level are determined 

subjectively based on the DM’s experience. 

 In this study, we adopt the concept of the most likely values 

[10], assuming that w1 = w2 = 1/6, w2=4/6 and β = 0.5. The 

reason for considering the above weighted values is that the 

most possible value is frequently the most important one and is 

associated as a consequence to the higher weight [10]. 

 

D.!  Phase IV: Goal programming-based solution approach 

 In previous sections, the problem was originally formulated 

as a MOPMILP model, then converted into an equivalent 

auxiliary crisp MOMILP model. 

 Goal Programming (GP) [19] is the most widely used 

approach to deal with such multi-criteria and multi-objective 

decision-making problems [20]. GP allows the DM to specify 

an "aspiration level" for the various goals and to reduce the 

original problem into a single-objective formulation that seeks 

to minimize the deviations between the realized results and the 

aspiration goals. The main advantages of the GP approach are 

its robustness, its mathematical flexibility and its accuracy, i.e. 

the possibility to introduce several system constraints [21]. 

 We have used the Weighted Goal Programming (WGP) 

model to convert the proposed MOMILP model into an 

equivalent ordinary linear programming model. Consequently, 

our problem can be reformulated as follow: 

Min FGP = wp * YZ
[ + wR * Y\

]          (21) 

Subject to: 

(6), (16)-(20) 

FP"V"^7
[T"FP

*               
 (22) 

FR"_"^>
[T"FR

*
                 (23) 

Where: 

−! FP
* 

is the performance goal calculated using the 

mathematical model with objective function (1) subject to 

constraints (6), (16)-(20). 

−! FR
*
 is the risk goal calculated using the mathematical 

model with objective function (3) subject to constraints (6), 

(16)-(20). 
−
! ^7

[`G"abc"Negative deviation from the target value of 

performance goal F1
*
.
 

−
! ^>

] is the Positive deviation from the target value of Risk 

goal F2
*
.
 

−! d7"and"d> represent respectively the importance weights 

of the performance goal and the risk goal. These 

parameters are generally determined by the decision 

makers such that d7"+ d>= 1. 

IV.!NUMERICAL EXAMPLE 

 To demonstrate the feasibility of the proposed approach, we 

consider a SC involving three manufacturing plants m1, m2 and 

m3 and three subcontractors b1, b2 and b3 who provide the 

finished good p using three common purchased items (one unit 

of r1 and two units of r2) which can be supplied from two 

suppliers (S1 and S2). 

 The planning horizon is one year decomposed into six 

monthly periods. These periods correspond to six different 

forecasted demands with triangular distributions, summarized 

in Table I. We consider that the DM selects the following 

criteria: 

−! Class I: cost (CI.1), quality (CI.2), reliability (CI.3) and 

capacity (CI.4). 

−! Class II: flexibility (CII.1), reliability (CII.2), resilience 

(CII.3) and robustness (CII.4). 

 The classical linguistic variables presented in Table II [22] 

are used to assess the importance weights and ratings of actors. 

The importance of each decision criteria, as well as the actor’s 

ratings, are given in Table III – Table VII.  

 We assume that the DM does not have sufficient 

information to determine the weights"eZ and e\ of each goal 

in the objective function FGP. We thus offer the DM the 

possibility of exploring a wider range of potential solutions. 

To do this, we vary each value of the weights"eZ and e\ 

between 0 and 1 by increasing one and decreasing the other 

simultaneously, such that the sum is equal to 1. 

TABLE I. FUZZY DEMAND QUANTITIES FOR EACH PERIOD 

Periods Demand 

1 (110;120;130) 

2 (120;135;140) 

3 (125;135;145) 

4 (145;150;160) 

5 (150;160;175) 

TABLE II. LINGUISTIC VARIABLES AND FUZZY VALUES [22] 

Linguistic  Value  

Very Low (VL) ( 0 ; 0 ; 1 ) 

Low (L) ( 0 ; 1 ; 3 )  

Medium Low (ML) ( 1 ; 3 ; 5 ) 

Medium (M) ( 3 ; 5 ; 7 ) 

Medium High (MH) ( 5 ; 7 ; 9 ) 

High (H) ( 7 ; 9 ; 10 ) 

Very High (VH) ( 9 ; 10 ; 10 ) 

TABLE III. IMPORTANCE WEIGHTS OF CLASS I CRITERIA 

Cost Quality Reliability Capacity 

VH M ML MH 

TABLE IV. IMPORTANCE WEIGHTS OF CLASS II CRITERIA 

Flexibility Reliability Resilience Robustness 

VH MH ML VL 

TABLE V. RATINGS OF THE ACTORS USING SELECTED CRITERIA OF CLASS II 

Criteria 
Actors 

S1 S2 M1 M2 M3 B1 B2 B3 

CII.1 VL M VL MH H VH VH VH 

CII.2 VL VL L M M MH MH VH 

CII.3 VL MH VL M MH H VH VH 

CII.4 VL MH VL VH VH MH VH VH 



 

TABLE VI. RATINGS OF THE ACTORS USING SELECTED CRITERIA OF CLASS I 

Critera 
Actors 

S1 S2 M1 M2 M3 B1 B2 B3 

C.I1 (1;2;3) (3;3;4) 
R: (8;9;9) R: (10;12;14) R: (25;27;28) 

(29;30;31) (68;69;70) (72;73;75) 
Ov:(25;26;26) Ov:(30;31;33) Ov:(35;36;36) 

CI.2 VH MH VH MH M L L VL 

CI.3 VH M MH M M L VL VL 

CI.4 (95;100;110) (60;70;90) 
R (61;65;80) R (8;15;20) R (8;10;15) 

(55;65;70) (36;40;50) (15;20;22) 
Ov: (10;15;20) Ov: (10;15;20) Ov: (10;15;20) 

                            NB:R: Regular Time; Ov: Overtime 

 
TABLE VII. PERFORMANCE AND RISK MEASURES OF ACTORS 

Global 

indicators 

Actors 

S1 S2 M1_r M1_ov M2_r M2_ov M3_r M3_ov B1 B2 B3 

PI 0.6172 0.4475 0.4090 0.2806 0.2459 0.2300 0.1927 0.1986 0.1992 0.1324 0.0551 

RI 0.9437 0.6639 0.9024 0.4901 0.4185 0.3275 0.3212 0.2652 

  The GP model is solved using the LINGO optimization 

package. The order quantities assigned to each actor in each 

period are shown in Table VIII.  

 Two solutions representing two extreme situations can be 

identified. In the first one, only objective FP is considered 

(eZ=1; e\ =0) and in the second one, only objective FR is 

considered. By decreasing by one step the weight of the 

performance objective and increasing on the other hand the 

weight of the risk objective, we increase the load of the least 

risky and least performing actors (i.e. the subcontractors) and 

we reduce the load of the riskiest and the most performing 

actors (i.e. the suppliers and the manufacturing plants). 

 The deviations from the target values for goals FP
*
 and FR* 

are summarized in Table IX. The optimum performance 

measure FP
*
and the worst risk measure FR* are obtained in the 

first extreme situation (eZ=1; e\ =0). In the same way, the 

second extreme situation (eZ=0; e\ =1) provides the optimum 

risk measure FR
*
and the worst performance measure FP*. 

 Moreover, by reducing the weight of the performance 

objective by two steps from its optimal value, we degrade very 

slightly the performance measure FP and we improve very 

slightly the risk measure FR. 

 Solution (eZ= 0.6; e\ = 0.4) marks a turning point in the 

evaluation of performance and risk measures. Indeed, the value 

of the first objective function FP passes abruptly from a 

deviation equal to 0.101% to a deviation equal to 84.460% 

whereas the risk measure is significantly improved (from a 

deviation equal to 99.648 % to a deviation equal to 13.894%).  

 For the weights (eZ= 0.5; e\ = 0.5), the performance 

measure is slightly degraded (from a deviation equal to 84.460 

% to a deviation equal to 99.782 %) and the value of FR 

becomes very close to the optimum value FR*. 

 We also notice that we have obtained very different 

solutions by varying the weights (eZ; e\). It is then possible to 

orientate the calculation on a particular solution expressing the 

compromise required by the DM. However, the compromises 

achieved are not balanced, given that the performance and risk 

objectives are not correlated. 

V.! CONCLUSION 

 Nowadays, global SC networks are affected by various 

sources of uncertainty and imprecision. Consequently, an 

effective risk management process becomes mandatory for the 

success of the organization. However, there is still a gap in the 

scientific literature in providing risk-based factors when 

designing a SC tactical plan. To deal with this drawback, we 

present in this paper a four-phase approach integrating Fuzzy 

MCDM, MOPMILP and GP to deal with a multi-echelon, 

multi-product and multi-period IPP planning problem under a 

fuzzy environment. 

 In the first phase, based on the DM’s judgement and using 

the fuzzy TOPSIS method, we calculate the overall 

performance score and the overall risk score of the various 

partners. 

 

 

 
 

  



TABLE VIII. PERIODIC ORDER ALLOCATIONS OBTAINED WITH THE GP METHOD 

 

TABLE IX. DEVIATIONS FROM THE TARGET VALUES. 

Poids FP FR fg
[(%) fh

](%)   

(1,0) 

(0.9, 0.1) 
1660.556

*
 2721.815*      00.00  100 

(0.8, 0.2) 

(0.7, 0.3) 
1659.267 2714.557 0.101      99.648 

(0.6, 0.4) 580.0491 945.9591 84.460 13.894 

(0.5, 0.5) 384.0375 659.6424 99.782 0.012 
(0.4, 0.6) 

(0.3, 0.7) 

(0.2, 0.8) 

(0.1, 0.9) 

383.7282 659.4185 99.80652 0.0012 

(0 , 1) 381.2529* 659.3935* 100 00.00  

 

 Next, the overall scores of the partners are incorporated into 

the MOPMILP model in which two important objectives are 

taken into account: maximizing performance and minimizing 

risk. In the third phase, the possibilistic programming model is 

transformed into an equivalent crisp MOMILP model by 

applying the Lai and Hwang’s approach [10]. Then, a GP 

approach is applied to determine an efficient compromise 

solution. 

 A numerical example is given to demonstrate the 

importance of the proposed approach. 

  

Future research may focus on the case where several 

distribution centers are taken into account in the considered SC 

network to deal with integrated procurement-production-

distribution systems. 
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