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Abstract—Epilepsy is a disease caused by an excessive
discharge of a group of neurons in the cerebral cortex.
Extracting this information using EEG signals is an ongoing
challenge in biomedical signal processing. In this paper, a new
method is proposed for onset seizure detection in epileptic
EEG signals based on parameters from the t-location-scale
distribution coupled with the variance and the Pearson
correlation coefficient. The 1-nearest neighbor classifier
achieved a 91% sensitivity (True positive rate) and 95%
specificity (True Negative Rate) with a delay of 4.5 seconds
(on average) in the 45 signals analyzed, which suggests that
the proposed methodology is potentially useful for seizure
onset detection in epileptic EEG signals.

Resumen— La epilepsia es una enfermedad causada
por una descarga excesiva de un grupo de neuronas en la
corteza cerebral. Obtener esta información a partir de un
EEG es un desafı́o continuo en el procesamiento de señales
biomédicas. En este artı́culo se propone un nuevo método
para la detección del comienzo de una crisis epiléptica en
señales de EEG basado en la distribución t-location-scale
junto con la varianza y el coeficiente de correlación de
Pearson. La clasificación 1-vecino más cercano utilizado
alcanzó una sensitividad (Verdaderos positivos) del 91% y una
especificidad (Verdaderos negativos) del 95% con un retraso
en promedio de 4.5 segundos en las 45 señales analizadas, lo
que sugiere que es una metodologı́a potencialmente útil para
la detección del comienzo de una crisis epiléptica en señales
de EEG.

I. INTRODUCTION

Neurons generate electrochemical impulses that act on
other neurons, glands and muscles to produce human
thought, feelings and action. In epilepsy the normal pattern
of neuronal activity is disturbed causing strange sensations,
emotions and behaviors and can sometimes lead to convul-
sions, muscle spasms and loss of consciousness [1].

Epilepsy is a chronic brain disorder that results from the
hyper-excitability of neurons. It is the tendency to have
recurrent, unprovoked seizures [2]. Electroencephalography
(EEG) is a non-invasive and widely available biomedical
modality that is used to make a diagnosis of the latter.

According to the International League Against Epilepsy
(ILAE) [3] an epileptic seizure is a transient occurrence of
signs and/or symptoms due to abnormal excessive or syn-
chronous neuronal activity in the brain. Elements defining an
epileptic seizure include: mode of onset and offset, clinical
manifestations and abnormal enhanced synchrony [4].

The t-location-scale distribution is a statistical model for
univariate and multivariate signals that describe its features
through three parameters estimated by maximum likelihood:
location (µ), shape (ν) and a non-negative scale (σ). This
distribution was recently applied in spike-and-wave pattern
recognition in epileptic signals [5]. Based on the results of
this study and [9], [11], [12], the following question arose:
what if this distribution could be used to detect a seizure
onset in epileptic EEG signals?

A k-nearest neighbor classifier (kNN) has been success-
ful in a large number of classification problems such as
handwritten digits, satellite, image signal processing and
biosignal patterns. kNN fits a specific point in the EEG data
with the k-nearest neighbor EEG data points in the training
set. For 1NN this point depends only of 1 single other EEG
point. Therefore the similarity between two EEG points is
established based on the fitting of the features extracted
from the EEG signals. See [5]–[8] for some recent works
in epileptic EEG signals and [10] for a fast approximate
automatic algorithm configuration.

In this paper, a new method is proposed based on parame-
ters of the t-location-scale distribution, the variance (σ2) and
the Pearson correlation coefficient (ζ) as features for onset
seizure detection in epileptic EEG signals. In addition the
1NN classifier was incorporated based on its classification
performance; it is simple, accurate, fast, and has low bias
[14].

The remaining paper is organized as follows; Section II
describes the methodology, in Section III the methodology
is applied to real EEG data and Sections III and IV include
the results, discussion, conclusions and future works.



II. METHODOLOGY

Let X ∈ RN×M denote the matrix gathering M EEG
signals xm ∈ RN×1 measured simultaneously on different
channels and at N discrete time instants. In this research the
EEG signals of nine patients were analyzed, twenty three
bipolar channels per patient. The proposed methodology is
composed of three stages. To begin with, 5 channels per
patient, where the epileptic seizure was most visible, were
selected by an expert neurologist. Since a matrix X exists
per patient, M=5 and N is determined by each individual
patient according to the length of the seizure. Secondly, two
rectangular sliding empirical windows ω(n)i = 1, each with
a length of 3 seconds (n ∈ [i : i + 3]) and an overlap
of 50% were created and applied to each signal, such that
xi = ωixm and x(i+1.5) = ω(i+1.5)xm, with 1 ≤ m ≤M .
The resulting time segmentation of the original channel was
analyzed utilizing 5 feature parameters: µ, σ, ν from t-
location-scale distribution, σ2 (variance) and ζ (Pearson cor-
relation coefficient). Therefore, there are 5 parameters that
correspond to each window applied. The third stage includes
the implementation of the 1-nearest-neighbor classifier using
the feature predictor vector θ = [µ, σ, ν, σ2, ζ] associated
with each window time segment and the response vector for
each signal, both composed of seizure (1) or non-seizure (0).
It is important to note that the response vector was generated
with the information provided by an experienced neurologist
that located the seizure onset and offset. Therefore, the
classification resulted in a vector composed of 1’s and 0’s
for each channel. The explanations of parameters used can
the found below.

A. t-location-scale distribution

The t-location-scale distribution is a statistical model that
belongs to the location-scale family formed by translation
and rescaling of the Student’s t-distribution.

The probability density function (PDF) of a location-scale
distribution, is given by

g(x|µ, σ) =
1

σ
ψ

(
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σ

)
(1)

The probability density function (PDF) of the Student’s
t-distribution, is given by
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Therefore applying (2) to (1), the probability density func-
tion (PDF) of the t-location-scale is obtained:
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where −∞ < µ < ∞ is the location parameter, σ > 0 is
the scale parameter, ν > 0 is the shape parameter, and Γ(.)
is the Gamma function. See [5] for more details.

B. Pearson correlation coefficient

The Pearson correlation coefficient (ζ) is a variation of
the basic correlation equation, it is normalized so the out-
come lies between ±1. The modification to the covariance

equation for two sliding windows (ζxix(i+1.5)
) is as follows:

1

(W − 1)σ2
xiσ

2
x(i+1.5)

W∑
n=1

(xin − xi)(x(i+1.5)n − x(i+1.5))

(4)

Where xi and xi+1.5 are the two sliding windows, W is
the length of the window (both windows share the same
length), σ2

xi and σ2
x(i+1.5)

are the variances and xi and
x(i+1.5) are the means. If the correlation value is equal to
+1 then the two signals are identical, −1 implies that the
signals are the exact opposites and if it is equal to 0 there
is no correlation [13].

C. Variance

The variance is a measure of signal variability irrespective
of its average given by

σ2 =
1

N − 1

N∑
i=1

(x(i+1.5) − x)2 (5)

where N represent the length of the total signal, xi+1.5 is the
sliding window and x is the mean of that given time laps.
Note that (5) is applied to one window as it was moved
along the whole EEG signal.

D. 1-nearest neighbor classifier (1NN)

k-Nearest-neighbor fit uses the observations in the binary
training sets θ1 = [µ1, σ1, ν1, σ

2
1 , ζ1] for seizure events and

θ0 = [µ0, σ0, ν0, σ
2
0 , ζ0] for non-seizure events, closest in

input space to x to form Y .

Y (x) =
1

k

∑
xi∈Nk(x)

yi (6)

Where Nk(x) is the neighborhood of x defined by the k
closest points xi in the training sample. The idea is to find
the k observations with xi closest to x in input space, and
average their responses. The Euclidean distance metric in a
feature space is given by:

di = ||xi − x0|| (7)

In other words, in kNN given a query point x0, the k training
points xi with i = 1, ..., k closest in distance to x0 are
found, and then classified using the majority vote among
the k neighbors. If k = 1 a 1NN classifier is used and Y
is assigned the value yi of the closest point xi to x in the
training data (based on an Euclidean distance) [14].
The following [14], [15] contain a comprehensive treatment
of the mathematical properties of nearest neighbors classi-
fiers.

III. EXPERIMENTS

A. Dataset

In this section the proposed methodology is evaluated
using the Children Hospital Boston database. This dataset
consists of 36 bipolar 256Hz EEG recordings from pediatric
patients suffering from intractable seizures [16]. In this work
45 recordings chosen from 9 different patients were used.
Each recording contains a seizure event, whose onset time
has been labeled by an expert neurologist. These annotations



were used to extract a short epoch from each recording that
contains the seizure and short time intervals before and after
the crisis. To be exact, if the seizure lasts a given time
interval ∆ than the total length of the signal is 3∆ such
that the same given time interval is taken before and after
the seizure. In the case that the information after or before
the seizure is shorter that ∆ than the information available
was taken. It is important to note that the patients suffered
one seizure in the recording used.

The electrodes where placed according to the International
10-20 system which can be seen in Table I and Figure 1.

TABLE I
DURATION OF THE 45 SEIZURES USED IN THIS STUDY.

Patient Duration
(sec)

5 bipolar channels used per patient

1 90 Fp1-F3, Fp2-F8, F8-T8, T8-P8, FT9-FT10
2 101 Fp1-F3, F8-T8, T8-P8, P8-O2, FT9-FT10
3 64 C4-P4, T8-P8, Fz-Cz, Cz-Pz, FT9-FT10
4 53 F7-T7, P7-O1, T8-P8, P7-T7, FT9-FT10
5 120 F4-C4, C4-P4, Fz-Cz, Cz-Pz, FT10-T8
6 117 P3-O1, F4-C4, T8-P8, P8-O2, FT10-T8
7 86 F7-T7, P7-O1, P3-O1, F4-C4, Fz-Cz
8 143 F7-T7, F4-C4, C4-P4, P7-T7, FT9-FT10
9 64 Fp1-F3, Fp2-F8, F8-T8, T8-P8, FT9-FT10

Fig. 1. Location and nomenclature of electrodes, as standardized by the
American Electroencephalographic Society, from [17].

Figure 2 displays how the t-location-scale distribution fits
the data utilized. On the left hand side, the epileptic signal
time domain is found; before, during and after the seizure,
with the corresponding histogram on the right hand side.
Note how the values of the parameters µ, σ and ν vary in
each signal time window.

B. Results and discussion

To check the quality of our seizure onset detection
classifier, the set was trained off-line with 40 signals with
the 5 features for each vector θ1 = [µ1, σ1, ν1, σ

2
1 , ζ1]

for seizure events and θ0 = [µ0, σ0, ν0, σ
2
0 , ζ0] for non-

seizure events. The classifier, using Leave-one-out cross-
validation, was applied to the training signals, where leave-
one-out refers to a patient which has 5 channels. After
each training, the remaining 5 bipolar signals (data from
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Fig. 2. Signal time domain example show the evolution of the signal
through time in seconds (before, during and after the seizure) fitted by
the t-location scale distribution and the value of the three parameters for
each time window. Note the high amplitude in the time domain during the
seizure and the different values for the parameters µ, σ and ν.

one patient), which where not included in the training but
the seizure onset and offset were known, where predicted.
This prediction was done 9 times in order to predict the 5
channels corresponding to each patient, resulting in a total of
45 predictions. The percentage of correct classifications was
analyzed, in terms of sensitivity, specificity and accuracy.
The values obtained are; 91% sensitivity (True positive
rate), 95% specificity (True negative rate) and 95% accuracy
for seizure on set detection in epilepsy signals. For each
iteration, the prediction speed was 230000 obs/sec and
training time was 4.4014 sec for 12480 observations.

The Figures 3 to 5 show all the scatter plots from the
parameters estimated in pairs in the leave-one-out cross
validation. The objective is to find parameters that distin-
guish seizure events (red) and non-seizure events (blue) and
furthermore permit onset detection in epileptic EEG signals.

In Figure 3, for t-location-scale parameters, both seizure
events and non-seizure events have a range of values that
allow them to be differentiated in the combinations of σ, ν
and µ. For µ vs. σ, a cluster of points can be found for non
seizure events where σ takes relatively low values and µ
tends to zero. For the seizure, the points are spread out and
separated from the blue cluster, σ takes much higher values
and µ belongs to a wider range of negative and positive
values. In the case of ν and σ, σ allows to differentiate
seizure and non seizure, as σ has low values for blue and
high values for red, while ν has a relatively similar nature
for both cases.

Figure 4 show the relationship between t-location-scale
parameters and σ2. For µ vs. σ2 it can be observed that
σ2 is set at high numerical values for seizure events with
respect to µ and that non-seizure events are concentrated
in a small range near zero. With respect to ν vs. σ2, σ2 is
able to differentiate non-seizure events from seizure events
as it takes high values for the latter and low values for the
former. For σ and σ2 non-seizure events are set at low values
of both parameters (cluster), while seizure events are set at
high values of σ2 with respect to σ.

In Figure 5 t-location-scale parameter vs ζ can be ana-
lyzed. It is visible that ζ, in all the cases, acquires numerical
values around zero for seizure events. The subfigure that
demonstrates the greatest segmentation between red and blue
is ζ vs σ, for seizures σ values are high and ζ tends to zero.



As for non seizures, σ values are low and ζ can be found
around a wider numerical range.

The research reflected in this paper using a feature
vector θ = [µ, σ, ν, σ2, ζ] in 45 epileptic signals for the
classes seizure and non-seizure, suggests that the proposed
methodology based on the t-location-scale distribution cou-
pled with the variance and the Pearson correlation coefficient
and the 1NN-based classifier, is potentially useful for seizure
onset detection in epileptic EEG signals. The signals studied
have a delay on average of 4.5 seconds caused by the length
of the empirical windows and their overlap. The latter is an
acceptable time, from a clinical point of view, in automatic
detection systems in EEG extracranial signals [18].

IV. CONCLUSION

This work presents a new method based on parameters of
the t-location-scale distribution coupled with the variance
and the Pearson correlation coefficient as features for onset
seizure detection in epileptic EEG signals with a delay of
4.5 seconds in average. The performance of the proposed
method was evaluated on a real dataset containing 45
epileptic signals achieving an accuracy of 95% through
the 1NN-based classifier, which suggests that the proposed
methodology is potentially useful for seizure onset detection
in epileptic EEG signals. Even though the values of speci-
ficity, sensitivity and accuracy are not optimum, the user
interface of the algorithm provides clear visual detection of
the onset, given that it is handled by an expert on the matter.

Perspective for future work include; determining the
optimal window length, improving the specificity, sensitivity
and accuracy, predict the seizure onset detection in new
signals without ground truth, estimate the weights of the
5 features parameters used in order to localize a possible
spread of the seizure and relate them to the principal
components analysis (PCA) of the EEG raw.
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