
Comparison of State Marginalization Techniques
in Visual Inertial Navigation Filters

A Thesis submitted to the School of Graduate Studies in partial fulfillment of the
requirements for the degree of Master of Engineering

by

Ravindu G. Thalagala, B.Sc(hons)

Supervisory Committee:

Dr. Oscar De Silva
Dr. George. K. I. Mann
Dr. Raymond G. Gosine

Faculty of Engineering and Applied Science

Memorial University of Newfoundland
October, 2019

Abstract

The main focus of this thesis is finding and validating an efficient visual inertial
navigation system (VINS) algorithm for applications in micro aerial vehicles (MAV).
A typical VINS for a MAV consists of a low-cost micro electro mechanical system
(MEMS) inertial measurement unit (IMU) and a monocular camera, which provides a
minimum payload sensor setup. This setup is highly desirable for navigation of MAVs
because highly resource constrains in the platform. However, bias and noise of low-
cost IMUs demand sufficiently accurate VINS algorithms. Accurate VINS algorithms
has been developed over the past decade but they demand higher computational
resources. Therefore, resource limited MAVs demand computationally efficient VINS
algorithms.
This thesis considers the following computational cost elements in the VINS al-
gorithm: feature tracking front-end, state marginalization technique and the com-
plexity of the algorithm formulation. In this thesis three state-of-the-art feature
tracking front ends were compared in terms of accuracy. (VINS-Mono front-end,
MSCKF-Mono feature tracker and Matlab based feature tracker). Four state-of-
the-art state marginalization techniques (MSCKF-Generic marginalization, MSCKF-
Mono marginalization, MSCKF-Two way marginalization and Two keyframe based
epipolar constraint marginalization) were compared in terms of accuracy and effi-
ciency. The complexity of the VINS algorithm formulation has also been compared
using the filter execution time.
The research study then presents the comparative analysis of the algorithms using a
publicly available MAV benchmark datasets. Based on the results, an efficient VINS
algorithm is proposed which is suitable for MAVs.

ii

Acknowledgements

It is an exclusive privilege of being advised and working in Intelligent Systems Lab (Is-
Lab), under the supervision of Dr.Oscar De Silva, Dr.George K.I. Mann and Dr.Raymond
G. Gosine at my Master of Engineering degree. Their invaluable lessons, academic
guidance as well as encouragement greatly improved my research skills. I would like
to express my sincere appreciation to them and the help they gave me in order to
finish my thesis.
To IsLab members, Dr.Thumeera R. Wanasinghe, Mr.Mihiran Galagedarage Don,
Mr.Eranga Fernando, Mr.Mahmoud Abd El Hakim, Mr.Kusal Tennakoon, Mr.Nushen
Senevirathne and Ms.Sachithra Attapattu, I would like to thank them for their great
assistances, patience and inspirations.

iii

Table of Contents

Abstract ii

Acknowledgments iii

Table of Contents vi

List of Tables vii

List of Figures ix

1 Introduction 1
1.1 Motivation . 1
1.2 Block Diagram of VINS . 4
1.3 Problem Statement . 6

1.3.1 Problem I: Complexity of the Feature Tracking Front-End. . . 6
1.3.2 Problem II: Complexity of the State Marginalization Techniques. 7
1.3.3 Problem III: Complexity of State Estimation Algorithm versus

VINS Performance. 7
1.4 Objective and Expected Contributions of the Research 8
1.5 Organization of the Thesis . 9

2 Related Work 10
2.1 Visual Inertial Navigation Systems 10

2.1.1 Optimization-based VINS . 11
2.1.2 Filter-based VINS . 11

2.2 Variations of Filter-based VINS . 12
2.3 Visual Measurement Sensor Arrangements 12
2.4 Image Processing Front End . 13
2.5 State Marginalization Techniques in VINS 14
2.6 Image Bearing Measurements for Pose Update 15
2.7 Subset of Camera Pose Selection . 15
2.8 Key-frame Selection Strategies . 16

iv

3 Calibration and Validation of VINS Sensor Setup 18
3.1 Motivation . 18
3.2 Available VINS Sensor-Units . 19
3.3 Hand-held VINS Sensor Unit . 21
3.4 Sensor Calibration . 22

3.4.1 IMU-Camera Temporal Relationship 23
3.4.2 IMU-Camera Spacial Relationship 24

3.5 Kalibr - Open source Camera-IMU Calibration Toolbox 24
3.6 Calibration Results . 26
3.7 Validation of Calibration . 30
3.8 Conclusion . 33

4 MSCKF based VINS 34
4.1 MSCKF Filter Description . 34

4.1.1 MSCKF State Vector . 34
4.1.2 MSCKF Process Model . 35
4.1.3 MSCKF State Propagation . 36
4.1.4 MSCKF Covariance . 36
4.1.5 MSCKF State Augmentation 37
4.1.6 Measurement Model . 37

4.1.6.1 MSCKF Measurement Model 38
4.1.6.2 Epiploar Constraint Measurement Model 39

4.2 Statistical Measurement Validation 40
4.3 Observability Constraint . 41
4.4 Epipolar MSCKF Filtering Algorithm 42
4.5 State Marginalization Techniques . 44

4.5.1 Two Way Marginalization . 45
4.5.2 MSKCF-MONO Marginalization 45
4.5.3 Two Keyframe Marginalization 46

5 Results of Comparison Study 47
5.1 Evaluation Setup . 47

5.1.1 Hardware Platform . 47
5.1.2 Dataset . 47
5.1.3 Software Environment . 48
5.1.4 Visualization and Debugging Figures 48

5.1.4.1 Track Re-projection Visualizer 48
5.1.4.2 Trajectory Visualizer 49

5.1.5 Accuracy and Performance Indicators 50
5.2 Comparison of Feature Tracking Front-Ends 51
5.3 Comparison of State Marginalization Strategies 53
5.4 Complexity of State Estimation Algorithm 58
5.5 Conclusion . 59

v

6 Conclusion and Future Directives 61
6.1 Research summary based on Objective I 61
6.2 Research summary based on Objective II 62
6.3 Research summary based on Objective III 62
6.4 Contribution . 63
6.5 Future Directives . 63

6.5.1 Preliminary work completed 63

Bibliography xi

vi

List of Tables

3.1 List of components used in the sensor unit 22
3.2 Summary of Calibration Results . 28
3.3 VINS-Mono estimation and the total drift for the MUN Engineering

building ground floor corridor dataset. 31

5.1 Feature tracker accuracy comparison for the three trackers using RMSE-
position measured in cm and RMSE-orientation measured in degrees . 52

5.2 Time averaged absolute translation and orientation RMSE in centime-
ters and degrees . 56

5.3 Execution time in seconds for front-end and back-end of the filter . . 57

vii

List of Figures

1.1 Overview of VINS . 1
1.2 VINS filtering algorithm . 4

3.1 Intel ZR300 sensor . 20
3.2 Hand-held sensor unit developed . 21
3.3 Intel ZR300 sensor configuration(front cover removed) [1] 22
3.4 Example of time offset arising due to latency in the sensor data [2] . . 23
3.5 Extrinsic Calibration for ZR300 - Estimation of TIC 24
3.6 Kalibr Toolbox Overview . 25
3.7 Checker board target used for initial calibration 25
3.8 IMU actuation pattern for each x, y and z axis are shown in order,

starting from top graph . 26
3.9 April grid calibration target used for the calibration 27
3.10 Modified excitation pattern - one axis at a time excitation (x-axis top

graph, y-axis middle and z-axis bottom) 28
3.11 Estimation errors in blue and 3σ error bounds in red - All six graphs

the x, y, and z axis are shown from top subgraph to bottom subgraph
respectively . 29

3.12 Re-projection Error in pixels . 30
3.13 Drift on each direction after the filter run 31
3.14 Actual dataset path for calibration dataset taken at Engineering build-

ing Corridor - Level 1 . 32
3.15 VINS-Mono estimated path of Eng Building ground floor corridor . . 33

4.1 Measurement model for MSCKF filter 38
4.2 Measurement model for Epipolar Constraint 39

5.1 Re-projection visualization . 49
5.2 Estimated, ground-truth and stored camera pose path visualizations . 50
5.3 MSCKF-Mono Tracker image . 51
5.4 VINS-Mono Tracker image . 51
5.5 RMSE of position for feature trackers using V1_02_medium dataset 52
5.6 MSCKF-Mono algorithm: Black-ground truth, Blue-estimate, Red-

ROS package estimate . 54

viii

5.7 MSCKF-Mono algorithm: Time averaged RMSE 54
5.8 Performance of MSCKF-Mono algorithm - 3σ error bounds for states 55
5.9 RMSE of position estimates . 57
5.10 RMSE of orientation estimates . 58
5.11 Execution time for filter algorithm for each dataset 59

6.1 Dataset ground truth plot . 64
6.2 VINS sensor setup . 64
6.3 The above dataset was only the visualization of the ground truth . . 64
6.4 IsLab Dataset images - Raw fisheye images 65

ix

Abbreviations
BA Bundle Adjustment

BRIEF Binary Robust Independent Elementary Features

BRISK Binary Robust Invariant Scalable Keypoints

CKF Cubature Kalman filter

CMOS Complementary Metal–Oxide–Semiconductor

ESKF Error State Kalman Filter

FAST Features from Accelerated Segment Test

FPGA Field Programmable Gate Arrays

IMU Inertial measurement unit

INS Inertial Navigation Systems

ISL Intelligent Systems Lab

KLT Kanade-Lucas-Tomasi

MAV Micro-aerial vehicle

MEMS Micro Electro Mechanical Systems

MSCKF Multi-State Constraint Kalman Filter

MUN Memorial University of Newfoundland

OC-MSCKF Observability-Constrained Multi-State Constraint Kalman Filter

ORB Oriented FAST and Rotated BRIEF

RK4 Foruth Order Runge-Kutta Integration

SLAM Simultaneous localization and mapping

SR-ISWF Square-root Inverse Sliding Window Filter

SWaP Size Weight and Power

UKF Unscented Kalman filter

UWB Ultra Wide Band

VIN Visual Inertial Navigation

x

VINS Visual-inertial Navigation Systems

VIO Visual Inertial Odometry

xi

Chapter 1

Introduction

In this chapter, the overall objective and motivation of this thesis are presented.
An overview of visual-inertial navigation systems (VINS) along with their key sub-
modules affecting VINS performance are discussed. The problem statement of the
thesis is then formulated. Finally, objectives and expected contributions will be high-
lighted along with the organization of the thesis.

1.1 Motivation

Visual inertial navigation (VIN) is the process of combining measurements from an
inertial measurement unit (IMU) and visual measurements from a camera for the
purpose of estimating the 6 degrees of freedom (DOF) pose of a mobile platform.

Images (20Hz)

IMU (200Hz)
Fuse

measurements
6 DOF pose estimates

(position & orientation)

Figure 1.1: Overview of VINS

VINS has been widely popular over the past decade, particularly in GPS-denied appli-
cations such as indoor [3–5], underwater [6, 7] and planetary exploration [8, 9]. VINS
has two fundamental measuring units. One is a 6-axis IMU rigidly attached on the
platform which measures the local linear acceleration and angular velocity. Second
is a camera that is also rigidly attached to the platform which tracks features with

1

the distinct appearance in the environment. Recent developments in low cost, light-
weight MEMS IMUs [10,11] and small form factor cameras [12] have made it possible
to deploy VINS in a wider variety of new platforms including MAVs [4,13–16], hand-
held mobile devices [17, 18], virtual reality devices [19, 20] and autonomous driving
modules [21–23].
Implementing VINS algorithms on MAVs faces two main challenges. First, there
is a observability constraint of VINS where the system can only provide a drifting
estimate of the position and orientation of the platform [24]. Therefore, in real-world
implementations on MAVs, VINS is only meant to serve as an odometer while having
periodic corrections in place, such as intermittent GPS corrections [25], loop-closure
updates [26], ultra wide band (UWB) ranging corrections [27], or place-recognition
based updates [13] to limit the drift of the localization system. Second, MAVs have
size, weight, and power (SWaP) constraints which limit the applicability of high-
power, large-aperture payloads, and additional computational resources required for
demanding VINS algorithms. Many state-of-the-art algorithms [26, 28] use heavy
computational resources to gain marginal improvement in localization performance
[29,30]. However, this thesis argues that VINS algorithms on MAVs should be designed
with the objective of being highly computationally efficient and stable rather than
being highly accurate. Reasonable accuracy to serve the function of an odometer
is sufficient considering the nature of the application of these systems on MAVs in
practice [4, 31].
In VINS algorithms, there are three main elements which dictate its computational
complexity. These include the Feature Tracking Front-End, State Marginalization,
and State Estimation Algorithm.

(1) Feature Tracking Front End
Keeps track of the pixel location of unique visual features of the environment
as the platforms navigate through space. For this purpose, VINS algorithms
use different feature types, descriptors, number of features, and selection ap-
proaches, which are then fed into a tracker module to match the unique features
across a set of images. The combination of parameters used in this feature
tracker significantly affect the performance of the VINS.

(2) State Marginalization
For navigation purposes, VINS keeps a history of camera poses in its state
vector. Periodically a subset of these camera poses are selected and used for

2

correction/update of the filter∗. This process is termed state marginalization.
Many state-of-the-art marginalization techniques have been reported in litera-
ture [3,4,31]. These techniques have their own merits and demerits in terms of
estimation accuracy, estimator stability, computational resource and time com-
plexity. Therefore, open avenues still exist for optimal computationally efficient
state marginalization in VINS for MAV applications.

(3) State Estimation Algorithm
Type of the VINS algorithm used also dictates the computational burden on
resource-constrained systems [29, 30]. There are two main types of VINS al-
gorithms, namely optimization based [26, 28] and filter based [4, 5, 32]. The
optimization-based VINS methods utilize an order of a magnitude higher com-
putational resources than the filter-based methods [29]. Among the filter-based
methods, the algorithms proposed in [33] and [34] consume significantly less
computational resources due to simpler measurement models used in the for-
mulations. However, the accuracy and computational burden of these different
formulations need to be quantitatively compared in establishing a custom effi-
cient design suitable for MAVs.

The intelligent system’s lab (ISL) of Memorial University of Newfoundland (MUN) is
developing a building-wide navigation system for multi-robot applications. The sys-
tem comprises of MAVs equipped with embedded low complexity stable VINS which
serve as the odometers, and external navigation aids (UWB and place recognition) to
assist with periodic corrections of the platforms. The VINS for this purpose should
primarily feature low computational complexity, stable performance, and capability
to embed on small form factor MAVs such as the Crazie fly MAV [35]. The main
objective of this thesis is to compare the state-of-the-art subsystems used in VINS
designs and identify a computationally efficient VINS design suitable for low power
robotic systems [35]. The development of this thesis is specifically targeted for the
building-wide multi-robot system discussed above.

∗filter-based VINS algorithms are referred to as filters throughout this thesis. It is important to
note that there‘s a separate class of VINS algorithms based on optimization techniques which are not
considered in the development of this thesis. This is because the optimization-based VINS methods
utilize an order of a magnitude higher computational resources.

3

1.2 Block Diagram of VINS

Images (20Hz)IMU (200Hz)

Marginal
-ize

Poses?

State and
State

Covariance
Update

Track
Pruning

State and
State

Covariance
Update

Pose
Pruning

Yes

Yes

No

No
State

Covariance
Pruning

IMU
Propagation

(1)

Feature
Recognition

and Tracking

(2)

State
Augmentation

(3) Marginal
-ize

Tracks?
(4)

(5)

(6)

(6) (7)

(8) (9)

xt xt+1

Figure 1.2: VINS filtering algorithm

The block diagram shown below provides an overview of key sub modules of a VINS.
It follows a Prediction step and an Update step (Marginalization step) architecture
seen in Kalman filters [36], with several additional intermediate steps to achieve ro-
bust performance. The state vector considered in VINS comprises of position (p),
orientation (q), velocity (v), bias of accelerometer (ba), bias of gyroscope (bg) and
30 previous camera-position (pc) and camera-orientation(qc) (30 camera poses) sets.
An overview of each sub-module illustrated in Figure 1.2 are provided below:

(1) IMU Propagation:
During this step, the measurements reading from the IMU is used to find the
next state xt+1 of the filter. This is accomplished by integrating the IMU
measurements with the current state estimate xt of the filter, using the kinematic
model of the platform.

(2) Feature Recognition and Tracking:
During this step, visual feature points are extracted from the image correspond-
ing to visually unique 3D landmarks seen in the environment. If the same 3D
landmark is seen in the following images, it is tracked using a Kanade-Lucas-
Tomasi (KLT) [37] feature tracker. This sequence of tracked pixel positions is

4

called a track. All tracks correspond to different feature points are stored as a
track-list in the filter.

(3) State Augmentation:
For VINS filters, the state vector should be expanded to keep track of the
different camera poses while the robot platform moves in the environment. The
different camera poses should be periodically added to the state vector. This
process is called State Augmentation. The process is also termed as stochastic
cloning in VINS literature [38].

(4) Track Marginalization (Track Update):
The feature tracks recorded above are used to update the filter,(i.e., track
marginalization). In most implementations, this is done by selecting the tracks
of features that are no longer in the view of the camera, (i.e., completed tracks).

(5) Pose Marginalization (Pose Update):
The state augmentation steps keep expanding the state vector as the platform
moves in the environment. This is undesirable as large state vector will even-
tually lead to a computationally intractable update step. Therefore, a subset
of camera poses are periodically selected from stored camera poses in the state
vector to update and remove from the state. This is called the Pose Marginal-
ization.

(6) State and Covariance Update:
This is the process of updating the state vector and covariance matrix as per
the Kalman filter algorithm [36].

(7) Track Pruning:
When a track is used to update the filter, it is removed from the track-list. It
is called Track Pruning.

(8) Pose Pruning:
The used camera poses to update the filter are removed from the state vector,
which is termed Pose Pruning. Tracks which do not have any poses in the state
vector, and poses which do not have any tracks associated with them as a result
of the pruning steps are identified as redundant tracks and redundant poses.
These are also removed from the track-list and the state vector.

5

(8) State Covariance Pruning:
When the camera poses in the state vector get removed in the pose pruning step,
the covariance matrix entries correspond to those camera poses should also be
removed. This process is called Covariance Pruning.

The complexity of a VINS algorithm mainly depends on the marginalization steps
outlined above, and the feature tracking front end of the algorithm. This thesis
compares the state-of-the-art algorithms and identifies the following key problems
related to VINS algorithms that should be addressed in order to develop an efficient
VINS algorithm for MAVs.

1.3 Problem Statement

The following section describes research gaps and/or problems that will be addressed
throughout this thesis. A computationally efficient VINS algorithm is then presented
with a performance comparison using a VINS benchmark dataset.

1.3.1 Problem I: Complexity of the Feature Tracking Front-
End.

The robustness of VINS algorithms depends on keeping track of unique visual features
(feature tracking) seen on the images. Low accuracy, unreliable visual feature tracking
can downgrade the robustness of the VINS algorithm or even failure. Therefore,
many recent work [14,26,28] focus on developing accurate and robust feature tracking
algorithms.
However, these solutions become increasingly complex and computationally demand-
ing, yet offer marginal increase in localization accuracy as outlined in [29], which
makes them unsuitable for deploying in resource-constrained systems like MAVs.
Therefore, a careful selection of a feature tracking front-end is needed for an optimal
trade-off between complexity and accuracy. A performance comparison highlighting
the complexity and accuracy of the available feature tracking front ends is presented
in this thesis.

6

1.3.2 Problem II: Complexity of the State Marginalization
Techniques.

The state marginalization (i.e. filter update) has significant effects on the computa-
tional cost and the estimation/localization accuracy of the VINS algorithm. There are
two types of marginalization methods used in VINS algorithms. One is termed Pose
Update and the other is Track Update. The details of these methods will be discussed
in the upcoming chapters of this thesis. The Pose Update has been identified as the
most resource utilizing operation which uses a subset of camera poses in the state
vector for marginalization.
The first MSCKF algorithm is proposed by Mourikis and Roumeliotis [3]. It uses ten
(out of 30 camera poses) camera poses for the marginalization, which incurs a con-
siderable amount of computational cost. In a subsequent variation of this algorithm,
known as MSCKF-MONO [31] proposes a key-frame based update strategy which
uses only two camera poses for the update. It significantly reduces the computational
cost. The algorithm proposed in [4] uses a key-framing strategy termed as Two-way
Marginalization to select two camera poses for the update. The method presented
in [33] uses a constraint between two images know as Epipolar Constraint as the state
marginalizing technique which simplifies the pose update with a marginal decrease
in accuracy. However, this method has not been verified and compared throughly
against generic VINS available for MAV applications.
Therefore, the trade-off between accuracy and computational cost should be opti-
mally balanced when designing VINS algorithms. This thesis will provide another
comparative analysis that can be used to identify an efficient solution.

1.3.3 Problem III: Complexity of State Estimation Algorithm
versus VINS Performance.

VINS algorithms have two different state estimation problem formulations. One is
optimization-based, and the other is filtering based. Optimization-based methods are
more accurate but computationally demanding [29]. Therefore, resource-constrained
systems like MAVs tend to use filter-based methods [4, 5, 32,33].
In order to improve the performance of the filters, many variations of Kalman filters
are proposed while Error-State Kalman Filter being the widely used method [4, 5,
32, 33]. Unscented Kalman Filter (UKF) [39] and Cubature Kalman Filter (CKF)

7

[34,40] were also introduced to effectively address the nonlinearity of VINS algorithms.
However, these techniques have complex algorithm formulations and demand more
computational power for a marginal increase in estimation accuracy [29, 30].
The MSCKF framework based VINS algorithms are computationally efficient com-
pared to the UKF and CKF filters [40]. However, the key-framing strategies in
MSCKF framework based VINS algorithms require a computationally expensive tech-
nique termed the Null Space Trick when calculating the measurements for state
marginalization [3]. In contrast, the VINS algorithms that use epipolar-constraint
or tri-focal constraints as the measurement model do not require null space mapping
calculations, making them more computationally efficient.
Another important technique used to improve the consistency of the filter is the Ob-
servability Constraint. It makes the algorithm formulation complex. However, many
recent formulations [4,32,33] use this technique, which increases filter accuracy with a
marginal increase in computational cost and demonstrated the algorithm complexity
is marginal. The effect of these algorithmic choices needs to be comparatively analyzed
to establish complexity and accuracy implications on VINS filters quantitatively.

1.4 Objective and Expected Contributions of the
Research

This study presents a comparative analysis of the state marginalization strategies
used in MSCKF framework based VINS filters. Moreover, a comparison of image
processing front-ends is also provided. The main objectives of the proposed study
are:

Objective 1 Perform an accuracy and complexity comparison of four main state
marginalization strategies used in VINS filters. The following state marginal-
ization strategies will be evaluated using the EUROC VINS dataset [41].

• Two-way Marginalization [4]

• Generic MSCKF marginalization [3]

• MSCKF-MONO marginalization [31].

• Two key-frame marginalization [33].

8

Objective 2 Comparison of image processing front-ends used for VINS algorithms.
The following feature trackers will be assessed using the EUROC VINS dataset
[41].

• Using the feature tracker front-end used in VINS-MONO [26], MSCKF-
MONO [31] and Matlab feature tracker for MSCKF [42].

Objective 3 Experimental validation of a computationally efficient VINS algorithm
for mobile robot applications.

• In this thesis the EuRoC VINS benchmark dataset is used to validate the
performance of the identified efficient design.

• Development of a VINS sensor module using an Intel ZR300 sensor and
Intel NUC mini computer in order to experimentally validate the selected
VINS designs identified in this thesis. The experimental validation using
this hardware setup is not presented in this thesis as it is being completed
as part of authors doctoral research work.

1.5 Organization of the Thesis

Chapter 1 presents an overview of the research area, highlights the research state-
ment, and outlines the objectives and associated contributions of this study.

Chapter 2 presents the literature review in the area of MSCKF framework based
VIN algorithms and identifies research gaps in the existing literature.

Chapter 3 presents the work carried out to calibrate a sensor setup for VIN algo-
rithm evaluation. Hardware development procedure and calibration methodol-
ogy is also outlined.

Chapter 4 presents the work carried out to develop the MSCKF framework for MAV
state estimation problem using Error-State Kalman Filtering method.

Chapter 5 presents the results of the comparison study.

Chapter 6 presents the conclusion and future directives of this study.

9

Chapter 2

Related Work

2.1 Visual Inertial Navigation Systems

Deployment of inertial navigation systems (INS) [36,43] to estimate the 6 DOF poses
of various sensing platforms (e.g. autonomous vehicles) has been widely used over the
past decade. Recent developments in low cost, light-weight MEMS IMUs [10,11] have
made it possible for this usage.
The low-cost IMUs used in INS have inherent noise and bias, which make those
sensors unreliable for long term navigation of MAVs when simply integrated to find
pose estimates. There are tactical grade IMUs available that can provide better
estimates with low bias and noise, but those sensors are highly customized and not
widely available for general use [13]. As a solution to overcome the unreliability of
the low-cost IMUs, environment information retrieved through a small, lightweight,
energy-efficient camera is fused with the IMU measurements, thus enabling VINS [13].
Low-quality IMUs, make VINS suffer from motion drift accumulation over time. It
is a challenging problem to solve. The main reason for the problem is lack of global
reference information in the estimators [13]. Many algorithms have been developed
to address this problem which can be categorized into two groups, namely visual-
inertial simultaneous localization and mapping (SLAM) [44] and visual-inertial odom-
etry (VIO) [4,5,14,33,45,46]. Visual inertial SLAM have additional steps to implement
loop closure and map generation whereas VIO focuses on implementing an odometer
(without loop closure or mapping) for navigation purposes. Many state-of-the-art
VINS solutions use Filter-based VIO (Filter-based VINS) due to computational effi-
ciency. Google ARCore [47] is one of the practical applications where motion tracking

10

is performed using a Filter-based VINS. Optimization-based VINS methods have also
emerged as an alternative to solve the estimation accuracy problem, but requires
higher computational power.

2.1.1 Optimization-based VINS

Optimization-based techniques solve a bundle-adjustment (BA) problem [48] using
an iterative mechanism to achieve the state estimate, making it more accurate than
Filter-based VINS [26, 28]. Although BA problem demand higher computational
power, recent literature recognized its sparse structure and introduced real-time algo-
rithms, such as graph optimization and factor graph models [49].
Inconsistency problem in BA has also been mitigated through fix-lag fusion algo-
rithms [14]. Although these techniques enable the implementation of optimization-
based VINS real-time, it needs more relaxing of tight constraints in computations
when deploying on resource-constrained systems. Sometimes this leads to downgraded
performance [29].
Real-time implementation of optimization-based VINS on MAVs has been accom-
plished in recent literature. It has been accomplished by relaxing the optimization
constraints [29]. In the comparison work presented in [29] outlines the relaxed con-
straints. However, even with relaxed constraints it utilizes higher computational re-
sources, where filter based techniques use less computational resources with marginal
decrease in estimation accuracy [29].

2.1.2 Filter-based VINS

The first filter-based VINS algorithm was developed by Mourikis and Roumelio-
tis [3]. It is known as the Multi-State Constraint Kalman Filter (MSCKF). In this
thesis the MSCKF will be used as the baseline and, it will be termed as Generic
MSCKF (Generic-MSCKF). It uses an efficient, tightly coupled state propagation in
an Error-State Kalman Filter (ESKF) update using quaternion based inertial dynam-
ics. MSCKF keeps motion constraints that are only related to the stochastically cloned
camera poses in the state vector. The filter formulation achieves this by projecting
the image bearing measurements to the null space of the feature Jacobian Matrix (i.e.,
linear marginalization) [13]. MSCKF is highly computationally efficient since it omits
the need to co-estimate thousands of point features. Due to these reasons filtering

11

based VINS are less computationally complex than optimization or SLAM methods
and can be implemented in MAVs [29].

2.2 Variations of Filter-based VINS

Several other forms of MSCKF based VINS algorithms have been developed to achieve
better performance. Observability-constrained MSCKF (OC-MSCKF) formulation
has been proposed to improve the consistency of the filter [32, 50, 51], while (right)
Invariant Kalman Filters has also been proposed to improve the filter consistency.
Square-root inverse sliding window filter (SR-ISWF) [30] has been proposed to im-
prove the accuracy and consistency in limited-resource mobile device level imple-
mentation. Recent developments of stereo-vision based MSCKF, also referenced as
S-MSCKF, demonstrated the ability of the algorithm to deploy in MAV systems [4].
Another recent key-frame based MSCKF implementation can be found in Prof. Ko-
tas Daniilidis’s research group Github repository [31]. The algorithm is named as
MSCKF-MONO [31]. Several other variations of the MSCKF based VINS have been
implemented to address limitations of the filters which are summarized in [13].
Among the approached presented in [13] OC-MSCKF has been the widely accepted
for MAV applications due to its consistency and computational efficiency [3,4,31,32].
MAVs require consistent estimation and computational efficiency rather than higher
accuracy since it acts as an odometer. Therefore, OC-MSCKF enables consistency of
the algorithm with marginal increase in computational cost [29].

2.3 Visual Measurement Sensor Arrangements

Other than the monocular formulation, the MSCKF based VINS algorithms have
been modified to use stereo vision cameras to include the depth image features [4].
This increases the accuracy of the estimation, but at the expense of specialized hard-
ware and increased the payload, which can be challenging for MAVs. Rolling-shutter
cameras have been incorporated to mitigate the inaccuracies of time synchronization
of images and IMU measurements [13]. Some modifications include multiple cameras
and multiple IMUs [52]. All these formulations increase the accuracy of the system
with some specialized hardware or multiple sensors. Those applications have limited
practical deployment on MAVs as their limited payload capacity restricts, the hosting

12

of these additional sensors.

2.4 Image Processing Front End

To keep the computational cost and the estimation accuracy at acceptable levels for
the MSCKF algorithms, many state-of-the-art algorithms use indirect image mea-
surements over direct measurements [53,54]. Direct image measurements need robust
initialization and high frame rate since they use photometric consistency assump-
tion [13]. Although these methods require less computation, it requires accurate filter
initialization and high frame rate cameras. Therefore, MSCKF based VINS algorithms
prefer indirect methods [3, 4, 13, 28] to derive the measurement model. Additionally,
indirect methods extract and track point features in the image, which yields sufficient
measurements for the VINS algorithms to use in its measurement model [13].
VINS filters utilize a feature tracking front end to maintain a list of pixel positions
which correspond to visually distinct features of an environment. Shi-Tomasi cor-
ner detector is one of the widely used feature extraction methods due to its effi-
ciency [5,14,26,28]. The work presented in [26,28] introduced a binary robust invari-
ant scalable keypoints (BRISK) descriptor based matching for increased accuracy and
efficiency [55]. In [14], the authors have used an oriented FAST∗ and rotated BRIEF
(ORB) descriptor-based matching approach [57], to make the descriptor matching effi-
cient. Additionally, it uses a heuristic method to calculate the quality score for outlier
rejection. However, the reduction in processing time is not significant as compared
to [28] and [26].
Since VINS algorithm formulation is highly sensitive to feature outliers, many state-
of-the-art algorithms use random sample consensus (RANSAC) for outliers rejection
during feature matching [4, 5, 14, 26, 28]. A gyro assisted two-point RANSAC is im-
plemented in [5] to make outlier rejection more efficient. Implementing binary robust
independent elementary features (BRIEF) descriptors [58] in [26] with uniform feature
distribution demonstrated higher accuracy.
Kanade-Lucas-Tomasi (KLT) algorithm is widely used to extract and track features
between images in many image processing front-ends [4,5,14,26,28]. Work presented
in [5] uses Gaussian thresholding and box blurring for each image before applying the
KLT tracker to ensure robust tracking even when the illumination levels are changing.

∗Features from Accelerated Segment Test (FAST) [56]

13

BRISK descriptor matching reported in [26], reports tracking of features robustly even
in changing illuminations conditions.

2.5 State Marginalization Techniques in VINS

There are two types of marginalization techniques utilized in the VINS formulation
presented in [3], typically named as Track Update and Pose Update.

Track Update: Update the filter using tracked features of all poses.

• When a tracked feature point go out of view in the sliding window camera
frames, all tracks associated with it marginalized out

• When the tracked feature reaches a maximum track length. The maximum
track length would be 30 for a feature since the filter state vector has only
30 camera poses.

Pose Update: Update the filter using a subset of camera poses stored in the state
vector.

• At each state augmentation step state vector fills up with camera poses.
After 30 camera poses get filled up subset of camera poses should be re-
moved in order to keep the computation bounded.

The accuracy of the filter depends on the track update. Therefore, all the out of
view features and maximum track length reached features are marginalized out. The
track updates vary in length, but a minimum threshold is set. To ensure that the
marginalizing features are seen by at least two camera frames to enable triangulation.
The maximum track length act as a tuning parameter and is greater than or equal to
the number of camera states in the state vector.
The pose marginalization step gives rise to the freedom of choosing a set of marginal-
ization camera states. The states have to be marginalized out in such a way that it
optimally balance out the trade-off between computational cost and accuracy. Many
developments have been proposed since the first formulation suggested by Mourikis
and Roumeliotis in [3]. Section 4.5 will discuss the methods of choosing the states to
marginalize in the pose update step.

14

2.6 Image Bearing Measurements for Pose Update

One accurate way of defining image-bearing measurements is the geometric constraints
between the images and the observing static feature. Widely used geometric con-
straints are listed below.

3D feature point estimation using multiple camera poses:

• Algorithm proposed in [3] 3D feature point back-projection error is con-
sidered as the measurement. This method is more accurate since it uses
multiple poses to estimate the 3D point using a least-square minimization
method.

3D feature point estimation using two camera poses:

• The methods proposed in [4] and [31] use the same image measurement
but utilizes only two camera poses which are optimally selected using the
key-framing strategies discuss in the next section. Theoretically estimation
accuracy degrades in this approach because it only uses two camera poses
but computationally it is the most efficient.

Epipolar constraint using two camera poses:

• Epipolar constraint between two, 2D image features can also be utilized as
a geometric constraint [33]. This method is highly computationally efficient
among the three methods but should have less accuracy due to the reduced
number of camera poses used for the updates.

2.7 Subset of Camera Pose Selection

Selecting a subset of camera poses is key for the accuracy and efficiency of MSCKF
based VINS algorithms. Using more camera states improve the accuracy of the up-
date, but it increases the computational cost. Several methods have been evaluated
in the literature to select the subset of camera poses. These methods are summarized
below.

15

Sparse pose selection:

• The MSCKF formulation presented in [3] proposes to select the one-third
of the camera states evenly spaced in time. The oldest camera pose is kept
in the state vector since the geometric features involved further back in
time has a larger baseline with the new measurements. These techniques
exhibit higher accuracy but the computational cost of the filter increases,
making it less desirable to deploy in resource-constrained systems.

Key-frame based pose selection:

• The key-framing strategy was first proposed in the work of [28] for optimization-
based VINS. Rather than using the entire marginalization window in the
non-linear optimization, they propose to use a set of past camera poses
marked as key-frames. This method significantly reduces the computa-
tional cost in the optimization algorithm [4,31].

The key-frame based pose selection strategies identify camera-poses as key-frames,
but the pose update cannot be done with all the identified key-frames because it
increases the computational complexity. Therefore, an efficient camera pose selection
method is needed. Two-Way Marginalization approach has been used in [4].
In MSCKF-Mono [31] formulation also has a similar pose selection algorithm. It also
checks for key-frames when the filter reaches its maximum camera poses in the state
vector.

2.8 Key-frame Selection Strategies

Since key-frames gave valuable insights to the optimum pose selection for marginal-
ization, it has been incorporated in pose update of MSCKF-based VINS algorithms.
Since the MSCKF algorithm stochastically clone the camera poses into the state vec-
tor, many algorithms attempt to identify the key-frames in real-time. Summary of
the successfully implemented key-framing strategies are outlined below.

Average feature disparity

• In [28] introduced a simple feature disparity threshold to identify key-
frames. If the matched feature disparity is greater than a predefined

16

threshold, those camera poses are marked as key-frames and used in the
pose update of the filter. This technique, however, does not offer sufficient
robustness since it only uses image measurements, ignoring the relative
motion between the camera poses.

Average parallax and tracking quality

• If the average parallax of the latest frame and the last key-frame is beyond
a fixed threshold, and the number of tracked features between the latest
frame and the last key-frame is beyond a predefined threshold, latest frame
is considered as a key-frame. Rotation between the frames is removed by
integrating the gyroscope reading for a short period of time. This method
relys on image-feature as well as the relative camera poses [26]. Although it
takes into account the relative camera poses, the computation complexity
of the algorithm is high.

Relative position and orientation

• Relative position and orientation are calculated between the previous key-
frame and the latest camera frame. If it goes above a certain threshold
latest frame will be considered as a key-frame. This method is successfully
implemented in [4] and [31].

It is evident from the above information that many algorithms have been developed
in order to reduce the computational cost of the pose update in MSCKF based VINS
filters. The selection of 10 poses as suggested in original MSCKF algorithm at the
pose update step, incur high computational cost. A key-frame based pose update only
selects two poses for update. Due to this reason VINS algorithm efficiency increases.
The recent comparison work of Delmarico at el. [29] has shown that, the MSCKF algo-
rithm have similar accuracy when compared to other state-of-the-art VINS algorithms
(changes in the accuracy is in the order of few centimeters). However, the available
comparisons are algorithm vice comparisons. Not much attention is given to compare
the different state-marginalization techniques in VINS algorithms. This thesis evalu-
ates these different marginalization techniques and associated bearing measurement
models to qualitatively evaluate and identify a suitable VIN filtering solution for MAV
navigation. For this purpose, an online VINS benchmark dataset is used [41] and an
experimental setup is designed for experimental validation of the VINS algorithms.

17

Chapter 3

Calibration and Validation of VINS
Sensor Setup

3.1 Motivation

When combining the IMU and camera measurements, the spacial and temporal cal-
ibration parameters of the sensor needs to be estimated with the highest possible
accuracy for the state estimation algorithm to to generate pose estimates accurately.
Spatial calibration is the process of estimating the rigid-body transformation between
the camera and the IMU. Due to clock-synchronization errors, delays in transmission,
irregular hardware triggering, IMU and camera data streams develop a time offset.
Temporal calibration is performed to align the timestamped data streams from the
IMU and camera. In this chapter, a calibration method and a validation technique is
presented for a VINS sensor setup to be used in VINS experiments. For this purpose
the following main steps are completed:

• Select a VINS sensor for calibration.

• Evaluation of a calibration method.

• Hardware development and calibration procedure of the selected VINS sensor.

• Experimental validation of the calibration method.

18

3.2 Available VINS Sensor-Units

VINS sensor-unit should be compact and light-weight, for it to be used in MAVs.
Since compact VINS senors are not commonly available off the shelf, many reported
work develops in-house custom experimental setups. Kelly at el. [59] have developed
a hand-held sensor unit. The camera used is a black and white Flea FireWire model
from Point Grey Research (640× 480 pixel resolution), mated to a 4mm Navitar lens
(58◦ horizontal FOV, 45◦ vertical FOV). The IMU used was a MEMS-based 3DM −
GX3 unit, manufactured by MicroStrain [60], which provides three-axis angular rate
and linear acceleration measurements at 100 Hz. The platform was built with the
purpose of evaluating a calibration algorithm, therefore it lacks compactness for MAV
applications.
Using the DJI A3 flight controller, Intel i7 NUC and an NVIDIA TX1, Lin at el.
in [16] have developed a visual-inertial sensor-unit. The integration of a minicomputer
has given them sufficient processing power for the algorithms. The system has been
assembled together to be used as a compact module. However, the sensor-unit consists
of two on-board computers (Intel i7 NUC and NVIDIA TX1), which adds more weight
to the system. Additionally, it consumes more power. The system uses the IMU
inside the A3 flight controller for VINS system. Many other components of A3 flight
controller will be redundant if it is going to be used as a stand-alone VINS sensor-
setup. Therefore, A3 flight controller will be an over-design for the requirement.
Work presented in [61], develops a sensor platform using an off-the-shelf PixHawk
MAV. It has a Hardkernel Odroid-U3 mini computer. The system has been calibrated
by the manufacturer. Extrinsic and intrinsic parameters have been calculated and pre-
programmed in the sensor-unit. The MAV and the sensor-unit operates as a single
device making it compact, light-weight and less power-consuming system. However,
the sensor-unit itself is not designed to be compatible with other MAVs or computer
platforms. Therefore, deploying it for general use is a complex and a time consuming
task.
The work presented in [62] shows a sensor-unit development for SLAM applications. It
combines an IMU with a stereo camera. The system implementation is accomplished
on a System on Chip (SoC) device that synchronizes the complementary metal-oxide
semiconductors (CMOS) images and IMU data time-stamped at hardware level to
enable precious synchronization. It has an field programmable gate arrays (FPGA)
pre-processed image processing front-end, which enables visual feature detection on

19

the sensor-unit itself, reducing the computational burden on VINS algorithms. The
sensor-unit is also compact and light-weight. Therefore it will be an ideal sensor to be
used in MAVs. Unfortunately, production of the sensor-unit is discontinued 3 years
ago.
The Parrot SLAM DUNK is introduced to the market as an integrated VINS module
by Parrot Inc. It claimed to have the capability of providing the sensor data for
autonomous navigation of Parrot Drones. It was released with an open source license
[63]. The sensor has wide FOV stereo cameras with integrated IMU and NVIDIA GPU
for fast graphics processing. Due to hardware faults of the design, manufacturing of
the sensor has been discontinued.
One of the successful implementations of a VINS sensor-setup has been developed
by Sa et al. in [64]. The setup consists of a sensor and a computational unit. An
Intel ZR300 sensor module is used as the sensor. The computational unit that has
been selected was an Intel NUC i7 quad core 2.5 Ghz, 16GB RAM mini computer.
The ZR300 sensor module has the IMU and the cameras rigidly integrated to a single
circuit board. As a result, the rigid body transformation between the camera and the
IMU is highly reliable. Sa et al. indicates that high reliability of the rigid body trans-
formation between the camera and the IMU was the main reason for their successful
sensor calibration.
In this work we use the ZR300 sensor (shown in Figure 3.1) for experimental testing
of VINS algorithms. The ZR300 features a factory calibrated sensor with low power,
light-weight and relatively low cost. It is important to note that there has been several
newer versions of VINS capable sensor units from Intel which are in the market [65,66]
. We selected the ZR300 for VINS experiments in this work as ZR300 was the most
reliable and reasonably priced option available at the time of this study.

Figure 3.1: Intel ZR300 sensor

20

3.3 Hand-held VINS Sensor Unit

A hand-held platform, as shown in Figure 3.2, is developed using ZR300 sensor to
carry-out calibration and validation. The ground truth pose data of this hand held
VINS unit was captured using an Opti-track motion capture system by placing mark-
ers on top of the ZR300 sensor.

22 August 2019 Master's Thesis Presentation 4

Intel NUC i7 HQ
2.5GHz Minicomputer

Intel ZR300 Sensor

OptiTrack Marker

Figure 3.2: Hand-held sensor unit developed

21

Sensor Unit Specifications

Table 3.1: List of components used in the sensor unit

Part Component used Specifications

1 Sensor Intel RealSense ZR300 IMU, Fisheye Camera
2 Processing Unit Intel NUC core i7 16GB Ram, 500GB SSD
3 Battery 6-cell Lipo battery 22.2V 4500 mAh
4 Voltage Regulator 10V-50V buck converter Output 12V/10A

Intel ZR300 has one fisheye camera with a FoV of 133◦ and 100◦ horizontal and vertical
respectively. It streams a 640×480 image at 60 frames per second. The components of
the sensor module are shown in Figure 3.3. The on-board IMU provides accelerometer
and gyroscope measurements at a rate of 250 Hz. The two IR cameras and the depth
sensor of ZR300 was turned off for VINS experiments to save power.

Figure 3.3: Intel ZR300 sensor configuration(front cover removed) [1]

3.4 Sensor Calibration

Finding the spatial and temporal relationships between the camera and the IMU is
carried out using a VINS sensor calibration procedure. Functionality of the VINS
algorithm depends on the calibration accuracy of the sensor. Therefore, both of the
relationships are to be found accurately. The calibration process of the ZR300 sensor
is discussed below.

22

3.4.1 IMU-Camera Temporal Relationship

The timestamp alignment of IMU data and camera data is found during temporal
calibration. The IMU and camera data should be timestamped in order to align
them. Intel Inc. has provided an open-source driver for ZR300 sensor to achieve this
task. The driver timestamps data from the sensor itself and stream it out to the
operating system (Ubuntu 16.04).
In the driver specification it claims that the IMU data are streaming at 250 Hz and
camera data are streaming at 50 Hz. However, the timestamp between the camera-
IMU were not aligning. Work presented in [2] states that due to the clock-skew, an
unknown time offset td exists between the IMU and the camera timestamps. The time
offset parameters are illustrated in Fig. 3.4 below.

Figure 3.4: Example of time offset arising due to latency in the sensor data [2]

In this case the IMU data arrives with a latency ta, while the camera data have
a latency tb, both of which are unknown. Since ta and tb are different, the sensor
outputs measurements that were recorded simultaneously (e.g. the first IMU and
camera measurement) with timestamps that are offset by td = ta − tb [2]. Estimation
of td should be done as part of temporal calibration.
Furthermore, the streaming frequencies of the IMU and camera data are not consistent
when visualized in ROS rqt plot [67]. During testing, it was clearly evident that the
original driver provided was not accurately capturing the timestamps of the data. In
order to find td data should be streamed at a constant frequency. Work presented
in [68], has written a custom driver for ZR300, fixing the issue of sensor data frequency
inconsistency. It has changed the Fisheye image publishing frequency to 30 Hz.

23

3.4.2 IMU-Camera Spacial Relationship

Spatial relationship between the IMU and camera needs to be determined. The pro-
cess of finding spacial relationship is also equivalent to the extrinsic camera calibration.
Figure 3.5 below shows the camera extrinsic parameters∗ in red. It is the homogeneous
transformation of camera frame {C} to IMU frame {I}.
Static transformations were given in the Realsense datasheet provided by Intel Inc.
[69], but it does only captures the nominal value which should be refined using a
separate calibration. Therefore, an extrinsic calibration procedure was carried-out for
the sensor unit.

6

OptiTrack Marker

Fisheye Camera IMU

𝐶 𝐼

𝑇𝐼𝐶

Intel ZR300 Sensor

𝑥
𝑥

𝑦

𝑧

Figure 3.5: Extrinsic Calibration for ZR300 - Estimation of TIC

3.5 Kalibr - Open source Camera-IMU Calibration
Toolbox

In order to calibrate the camera-IMU sensor setup, an open-source calibration toolbox
has been used. It is a calibration toolbox created by Furgale et al. [78]. Kalibr has
been installed on the Intel NUC mini computer in the sensor-unit itself. Kalibr works
as a ROS package in ROS Kinetic, running on Ubuntu 16.04 operating system. A
summary of the Kalibr system with inputs and outputs is shown in the Figure 3.6
below.

∗The rigid body transformation between the camera and the IMU is known as the camera ex-
trinsic parameters

24

Kalibr
Toolbox

• Report in PDF format.
1. Reprojection error
2. Camera-IMU transformation
3. Time-offset between camera

and IMU
4. Gravity vector direction

• Result summary as a text file.
• Results in YAML format.

1. ROS bag
• Image data
• IMU data

2. Camera parameters
(initial)
• Intrinsic
• Extrinsic

3. IMU statistics
• Noise density
• Bias

5. Calibration Target
• April Tag

Or
• Checker-Board

INPUTS

OUTPUTS

Figure 3.6: Kalibr Toolbox Overview

There are many parameters to be considered when performing IMU-Camera calibra-
tion. In the work carried out in [70], has stated that the calibration target and the
excitation trajectory are critical for calibration accuracy. Most commonly used cal-
ibration target is a checker board with unequal sides. A checker board has good
performance for intrinsic camera calibration but is susceptible to motion blur during
fast movements [71].

Figure 3.7: Checker board target used for initial calibration

25

In terms of actuation patterns, work presented in [59] states that the IMU-Camera
sensor-unit should be rotated while traveling along corkscrew-like trajectory to acti-
vate all the 3 DOFs of the accelerometer. The Figure 3.8 shows the excitation pattern
that has been used in the calibration process of the sensor-unit. All the three axis
of IMU is excited in this motion pattern. However, when the same method was used
during our testing, the calibration parameters were not accurate.

Figure 3.8: IMU actuation pattern for each x, y and z axis are shown in order, starting
from top graph

3.6 Calibration Results

We initially used a checkerboard calibration target to perform calibration as this is
the most common type of target used. Following is the extrinsic calibration matrix
for this calibration attempt,

TIC =

0.9977 0.02792 −0.0610 0.0365
−0.0267 0.9994 0.0204 −0.0225
0.0616 −0.0187 0.9979 0.1023

0 0 0 1

 =

[
R
]

3×3

[
t
]

3×1

[
0
]

1×3
1

The t block of the homogeneous transformation matrix gives the translation between
the camera and the IMU. It comes as 3.6 cm in x-direction, −2.3 cm in y-direction
and 10.2 cm in z-direction [70]. The R block corresponds to the rotation of camera

26

with respect to the IMU. However, the approximate physical location of camera and
IMU do not lie close to these values.
This means that the calibration method using the checker board and generic screw
trajectory motion profile has not performed a reasonable estimation of the calibration
parameters. This can be seen in second column of Table 3.2 where the re-projection
errors are at levels unacceptable for VINS systems.
To improve this result the following modifications were made.

1. Checker board was replaced by April grid calibration target

2. Sensor unit excitation pattern was modified

3. Length of the calibration ROS bag recording time was increased

An april grid calibration target [71] which is more robust to occlusion, warping, and
lens distortion, was used for the calibration.

Figure 3.9: April grid calibration target used for the calibration

The excitation pattern of the sensor-unit also changed (see Figure 3.10). The corkscrew-
like trajectory of the movement was not generating accurate results in Kalibr for a
number of trials. Excitation of the IMU in one single axis at a time improved the
estimation accuracy. The trajectory was identified by trial and error. Single DOF
actuation at a time requires jerk free smooth transitions between DOFs, in order to
have accurate calibration results.

27

Figure 3.10: Modified excitation pattern - one axis at a time excitation (x-axis top
graph, y-axis middle and z-axis bottom)

Length of calibration also has to be long enough for the IMU to be stabilized and
should not be too long to the point where drift will be significant. Therefore, the
optimal duration of excitation was found to between 1-2 minutes using trial and
error.
After the proposed modifications the transformation matrix significantly improved,

TIC =

0.9997 0.0235 −0.0078 −0.0021
−0.0235 0.9997 −0.0113 −0.0078
0.0075 0.0114 0.9999 0.0084

0 0 0 1

 =

[
R
]

3×3

[
t
]

3×1

[
0
]

1×3
1

Table 3.2: Summary of Calibration Results

Measurement Attempt I Attempt II

1 Reprojection error [px] 2.37409 0.3800
2 Gyroscope error [rad/s] 0.09078 0.0247
3 Accelerometer error [m/s2] 0.20481 0.1423

The last column after the refined calibration reflects that −2.1 mm in x-direction,
−7.8 mm in y-direction and 8.4 mm in z-direction [70]. Therefore, the modified cal-

28

ibration process yielded a better estimation with re-projection errors acceptable for
VINS applications.

0 10 20 30 40 50 60 70
time (s)

8
6
4
2
0
2
4
6
8

sp
e
ci

fi
c

fo
rc

e
 (
m
/s

2
)

est. bodyspline
imu0

0 10 20 30 40 50 60 70
time (s)

14
13
12
11
10

9
8
7
6

sp
e
ci

fi
c

fo
rc

e
 (
m
/
s

2
)

est. bodyspline
imu0

0 10 20 30 40 50 60 70
time (s)

5
4
3
2
1
0
1
2
3
4

sp
e
ci

fi
c

fo
rc

e
 (
m
/s

2
)

est. bodyspline
imu0

Comparison of predicted and measured specific force (imu0 frame)

0 2000 4000 6000 8000 10000 12000 14000 16000
error index

0.6

0.4

0.2

0.0

0.2

0.4

e
rr

o
r

(m
/
s

2
)

0 2000 4000 6000 8000 10000 12000 14000 16000
error index

1.5
1.0
0.5
0.0
0.5
1.0
1.5

e
rr

o
r

(m
/s

2
)

0 2000 4000 6000 8000 10000 12000 14000 16000
error index

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

e
rr

o
r

(m
/s

2
)

imu0: acceleration error

0 10 20 30 40 50 60 70
time (s)

0.054
0.056
0.058
0.060
0.062
0.064
0.066

b
ia

s
(m
/s

2
)

0 10 20 30 40 50 60 70
time (s)

0.140
0.142
0.144
0.146
0.148
0.150
0.152

b
ia

s
(m
/s

2
)

0 10 20 30 40 50 60 70
time (s)

0.002
0.000
0.002
0.004
0.006
0.008
0.010

b
ia

s
(m
/s

2
)

imu0: estimated accelerometer bias (imu frame)

0 10 20 30 40 50 60 70
time (s)

1.0
0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8

a
n
g
.
v
e
lo

ci
ty

 (
ra
d
/
s)
est. bodyspline
imu0

0 10 20 30 40 50 60 70
time (s)

0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8

a
n
g
.
v
e
lo

ci
ty

 (
ra
d
/s

)

est. bodyspline
imu0

0 10 20 30 40 50 60 70
time (s)

1.5
1.0
0.5
0.0
0.5
1.0
1.5

a
n
g
.
v
e
lo

ci
ty

 (
ra
d
/s

)

est. bodyspline
imu0

Comparison of predicted and measured angular velocities (body frame)

0 2000 4000 6000 8000 10000 12000 14000 16000
error index

0.3
0.2
0.1
0.0
0.1
0.2
0.3
0.4

e
rr

o
r

(r
a
d
/s

)

0 2000 4000 6000 8000 10000 12000 14000 16000
error index

0.15
0.10
0.05
0.00
0.05
0.10
0.15

e
rr

o
r

(r
a
d
/s

)

0 2000 4000 6000 8000 10000 12000 14000 16000
error index

0.10

0.05

0.00

0.05

e
rr

o
r

(r
a
d
/s

)

imu0: angular velocities error

0 10 20 30 40 50 60 70
time (s)

0.00395

0.00390

0.00385

0.00380

0.00375

0.00370

b
ia

s
(r
a
d
/s

)

0 10 20 30 40 50 60 70
time (s)

0.00095

0.00090

0.00085

0.00080

0.00075

b
ia

s
(r
a
d
/s

)

0 10 20 30 40 50 60 70
time (s)

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

b
ia

s
(r
a
d
/s

)

imu0: estimated gyro bias (imu frame)

Figure 3.11: Estimation errors in blue and 3σ error bounds in red - All six graphs the
x, y, and z axis are shown from top subgraph to bottom subgraph respectively

29

4 3 2 1 0 1 2 3
error x (pix)

3

2

1

0

1

2

3

4

5

e
rr

o
r

y
 (
p
ix

)

0

80

160

240

320

400

480

560

640

720

im
a
g
e
 i
n
d
e
x

cam0: reprojection errors

Figure 3.12: Re-projection Error in pixels

As showed in Figure 3.12 the projection error was mainly inside a three pixel er-
ror bound, which yields an acceptable error for VINS algorithms. The Figure 3.11
shows that all the state errors are inside 3σ error bounds, therefore the calibration
parameters were reliable estimates.

3.7 Validation of Calibration

The validity of the calibration process was further verified by running a VINS algo-
rithm using the found calibration parameters. Many state of the art VINS algorithms
were available for public use. VINS-Mono [26] was selected for the purpose as the
sensor-unit can be directly connected with the package. The VINS-Mono already had
a configuration that was readily available for the ZR300 sensor to be connected. The
calibration parameters of this configuration was modified to the ones found for the
exact sensor we used during experiment.
A dataset was recorded by navigating the developed sensor-setup around the ground
floor of the MUN Engineering building as shown in Figure 3.14. The IMU topic and
the fisheye image topic were recorded in a ROS bag. The dataset was 6.51 minutes
long.
It is an optimization based algorithm which has pose graph optimization and loop

30

closure techniques. The pose graph optimization and loop closure was turned off in
order to make it run as an odometer for this dataset.
The estimates were accurately generated and the deviation from the actual path used
in the experiment was minimal as summarized in Table 3.3 and as shown in Figure
3.13 and 3.15. This confirms the validity of the calibration parameters found using
the calibration process of this chapter.

Table 3.3: VINS-Mono estimation and the total drift for the MUN Engineering build-
ing ground floor corridor dataset.

Direction Drift in meters

1 X-direction 5.1800
2 Y-direction 0.7150
3 Z-direction 0.0502

Final position

Starting position

Figure 3.13: Drift on each direction after the filter run

The total length of the dataset was 252 m to the nearest whole number. Accumulated
total drift was 5.95 m. The drift was only 2.36%. This results clearly validate the
accuracy of the calibration.

31

Figure 3.14: Actual dataset path for calibration dataset taken at Engineering building
Corridor - Level 1

32

Figure 3.15: VINS-Mono estimated path of Eng Building ground floor corridor

3.8 Conclusion

This chapter performed the calibration of VINS sensor-setup developed using an Intel
ZR300 sensor module and an Intel i7 NUC mini computer. The following methods
were used to calibrate the sensor-unit. (1) Open-source Kalibr calibration toolbox
is used with an April Tag calibration target, (2) the IMU excitation pattern used
was single axis excitation at a time. The results were validated using VINS-Mono
open-source ROS package. The developed sensor will be used for follow up studies
and validation of the performance comparison detailed in this thesis.

33

Chapter 4

MSCKF based VINS

This chapter will describe the formulation of VINS algorithm in detail. The state
marginalization methods, measurement models and mathematics behind the algo-
rithms will also be presented in this chapter.

4.1 MSCKF Filter Description

The VINS algorithm introduced in Chapter 1, is MSCKF algorithm. The names
derives from the fact that it keeps multiple states in the state vector and define
constraints for them during the execution of the algorithm. Dynamics of the MSCKF
is derived using the ESKF framework.
As outlined in Figure 1.1, the filter predict the next state of the platform by integrating
the IMU measurement inputs, using the kinematic model of the platform. The image
features are taken as the measurements to update the filter.
Many modifications has been introduced to the originally proposed algorithm in [3].
The modifications enables the algorithm to handle highly dynamic motions of robotic
platforms like MAVs. More detailed version of the algorithm will be introduced later
in the this chapter. In the next sections the filter formulation will be introduced.

4.1.1 MSCKF State Vector

The state propagation of MSCKF is performed using ESKF framework using the IMU
measurements as inputs. The state vector proposed in the first formulation of MSCKF

34

in [3] contains the IMU states (XIMU) and N camera poses.

XIMU =
[
I
GqT bT

g
GvT

I bT
a

GpT
I

]T
(4.1)

where the quaternion I
Gq represent the rotation from body frame to the inertial frame.

In our formulation we define the body frame as same as the IMU frame. The vectors
GvI and GpI represent the velocity and the position of body frame with respect to the
inertial frame. Bias of the estimated acceleration and the gyroscope are represented
by the vectors ba and bg respectively. N represent the number of camera states in
the state vector. In filter N camera states are considered in the state vector and the
complete state vector can be given as,

X =
[
XIMU XT

C1 . . . XT
CN

]T
(4.2)

4.1.2 MSCKF Process Model

Using the dynamics of IMU, continuous time state dynamics can be given as,

Ẋ = f(x, u, w) =

I
Gq̇
ḃg
Gv̇I
ḃa
GṗI

=

1
2ΩΩΩ(ωωωm − bbbw + nnnw)IGq

nwg
C(IGq)T(aaam − bbba + nnna) + Gg

nwa
Gv̇I

(4.3)

where ωωωm and aaam are the measurement readings from the gyroscope and the ac-
celerometer receptively. nnnw and nnna are the noise of gyroscope and accelerometer,
while bbbw and bbba defines the bias of gyroscope and accelerometer respectively and nwg
and nwa defines rate of change of bias of accelerometer and gyroscope respectively. In
addition to that, ΩΩΩ is defined as,

ΩΩΩ(ωωω) =
−[ωωω]× ωωω

−ωωωT 0

 (4.4)

where [ωωω]× is the skew symmetric matrix of ωωω. In (4.3) C(·) represent the conversion
from quaternion to the corresponding rotation matrix.
Noiseless version of the continuous-time state-estimate propagation equations reads
as;

35

˙̂X = f(x,u) =

I
G

˙̂q
˙̂bg
G ˙̂vI
˙̂ba
G ˙̂pI

=

1
2ΩΩΩ(ωωωm − b̂̂b̂bw)IGq̂

03×1

C(IGq̂)T(aaam − b̂̂b̂ba) + Gg
03×1
Gv̂I

(4.5)

where b̂g and b̂a are the estimated bias of the system.

4.1.3 MSCKF State Propagation

In the discrete time implementation, the IMU state stated in (4.5) is propagated
using 4th order Runge-Kutta (RK4) numerical integration. The RK4 integration step
is given by

Xn+1 = Xn + ∆t
6
(
k1 + 2k2 + 2k3 + k4

)
(4.6)

where the increment is calculated by assuming a slope which is the weighted average
of the slopes k1, 2k2, 2k3, k4. More details can be found in [72].

4.1.4 MSCKF Covariance

Covariance of the MSCKF filter is calculated by using,

P = FPFT + GQGT (4.7)

F is calculated as the partial derivative of the system model with respect to the error
state evaluated at current system state.
The F is,

F = ∂f(x,u)
∂δx̃

∣∣∣∣∣
x=x̂

=

−[ω̂ωω×] −I3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

−C(IGq̂)T[â×] 03×3 03×3 −C(IGq̂)T 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 I3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

(4.8)

36

in a similar way G is calculated as,

G = ∂f(x,u)
∂nI

∣∣∣∣∣
nI=0

=

−I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 −C(IGq̂)T

03×3 03×3 03×3 03×3

03×3 03×3 I3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3

(4.9)

where, nI = [ng nwg na nwa]. Details of the derivation and covariance propaga-
tion can be found in the work presented in [4].

4.1.5 MSCKF State Augmentation

Upon receiving an image the state should be augmented with the new camera state.
The new camera pose can be computed from the last IMU state using,

C
Gq̂ = C

I q̂ ⊗ I
Gq̂ Gp̂C = Gp̂C + C(IGq̂)TIp̂C (4.10)

and the augmented covariance matrix is derived as [3],

P =
I6N+15

J

P

I6N+15

J

T

(4.11)

where the Jacobian J is derived as,

J =
 C(CI q̂) 03×9 03×3 03×6N

−C(CI q̂)[Ip̂C]× 03×9 I3 03×6N

 (4.12)

4.1.6 Measurement Model

In this work, two measurement models are implemented to compare the accuracy and
the performance. One being the Generic-MSCKF measurement model and the other
is the Epipolar constraint based measurement model. In this section the measurement
model descriptions will be introduced.

37

4.1.6.1 MSCKF Measurement Model

𝑓𝑖

Camera

𝐶𝑖

𝐼

IMU

Global
Frame

𝐺

𝐺
𝐶𝑖𝑞

𝐺𝑝𝐶𝑖 ,

𝐶𝑖𝑝𝑗

𝐺
𝐼𝑞𝐺𝑝𝐼 ,

𝐺𝑝𝑗
=

𝐶𝑖𝑋𝑗
𝐶𝑖𝑌𝑗
𝐶𝑖𝑍𝑗

𝑧𝑖
𝑗
=

𝑢𝑖
𝑗

𝑣𝑖
𝑗

Image

𝐼
𝐶𝑖𝑞

𝐼𝑝𝐶𝑖 ,

Figure 4.1: Measurement model for MSCKF filter

A single feature fi can be observed by the camera
(
Ci
G q̂, Gp̂Ci

)
. The camera measure-

ment, zji (image pixel measurement) is represented as,

zji =
uji
vji

 =
(1
CiZj

)CiXj

CiYj

 (4.13)

The relationship between position of the feature to the camera pose (Cipj) can be
given by,

Cipj =

CiXj

CiYj
CiZj

 = C
(
Ci
G q̂

)[
Gpj − GpCi

]
(4.14)

Using the currently estimated camera pose, the feature position in the world frame
Gpj is calculated using the least-square minimization as suggested in [3] and [4]. The
measurement residual can be approximated by linearizing at the current estimate as,

rji = zji − ẑji = Hj
Ci

x̃Ci
+ Hj

fi

Gp̃j + nji (4.15)

38

where the nji is the noise of the measurement. The covariance matrix of nj can be
given as Rj = σ2

imI2Mj
(2Mj represent the number of camera poses) since feature

observations of different images are independent. The Jacobian with respect to the
pose and feature position is given by Hj

Ci
and Hj

fi
respectively. The details of the

Jacobian matrix and the null-space calculations can be found in [4].

4.1.6.2 Epiploar Constraint Measurement Model

Epipolar constraint is defined between image pairs.

Global
Frame

𝐺

𝑡𝑘−1
𝑡𝑘𝐶 𝑡𝑘−1

𝑡𝑘𝑞 ,
𝑡𝑘−1𝑝𝑡𝑘

𝐶𝑡𝑘−1
𝐶𝑡𝑘

𝑓𝑖

Image at
𝑡𝑘−1

Image at
𝑡𝑘

epipolar
plane

𝐺𝑝𝑡𝑘−1 , 𝐺

𝐶𝑡𝑘−1𝑞

𝐺𝑝𝑡𝑘 , 𝐺

𝐶𝑡𝑘𝑞

𝑡𝑘𝑝𝑓𝑖

𝑡𝑘𝑝𝑖
𝑡𝑘−1𝑝𝑖

𝑡𝑘−1𝑝𝑓𝑖

Figure 4.2: Measurement model for Epipolar Constraint

It can be defined for two images taken at tk and tk−1 two time steps (current and
previous) can be given following the notation of [33],

(tkpi)TK−TEK−1(tk−1pi) = 0

(tkpi)TK−T [p̄]
×
R̄K−1(tk−1pi) = 0

(4.16)

39

where p̄ = C
(
Ctk
G q̂

)(
G
Cp(tk−1) − G

Cp(tk)
)
and R̄ = C

(
G
Ctk

q̂
)
C
(Ctk−1
G q̂

)
where K is

the camera intrinsic matrix. All the image coordinates are defined as homogeneous
coordinates including the image pixel points tkpi and tk−1pi.
The implementation can be done by simplifying essential matrix∗.

pd = GpCtk−1
− GpCtk

E = [p̄]×R = C
(
G
Ctk

q̂
)
[pd]×C

(Ctk−1
G q̂

) (4.17)

The system is linearized at the current best estimate as suggested in ESKF formula-
tions, which yields the following equation for to be used in the update. The Ê is the
essential matrix constructed from the estimated state.

ĥυ =
(
tkpi

)T
K−T ÊK−1(tk−1pi

)
(4.18)

Following the derivation in [33], the image measurement covariance is defined as,

Rim =
[
σ2
i σ2

i 0
]

(4.19)

where σ2
i is the image measurement uncertainty standard deviation.

4.2 Statistical Measurement Validation

Due to the highly dynamics nature of the MAV systems sudden motions can generate
outlying measurements. In addition to that sensor inaccuracies also contribute to out-
liers in the measurements. The MSCKF framework assumes the measurements to be
Gaussian but this assumption is violated by the outliers. In [73] an automatic outliers
rejection method was introduced. It has been developed taking into consideration the
measurement and its covariance definitions.
Since the linearization is done with respect to the pose Hj

Ci
and feature position Hj

fi
,

the measurement covariance is defined as follows, with r being the residual, S being
the residual covariance P being the current covariance of the state estimate and Rj

∗The essential matrix generally defined as

E = [tk−1ptk
]×C

(
Ctk−1
Ctk

q
)

40

is the measurement covariance,

r = z− ẑ

S = Hj
Ci

PHj
Ci

+ Rj
(4.20)

The automatic outlier rejection method in [73] is a hypothesis based validation test,commonly
referred to as gating test. The formulation is based on the assumption that residual
r is a multivariate Gaussian distribution with the covariance matrix S. Therefore the
sum of squares of r should follow a Chi-Squared (χχχ2) distribution, with as many de-
grees of freedoms as the measurements. The test is to determine whether the residual
falls inside the confident bounds of 95%, in the Chi-Square distribution as given in
4.21, where the parameter rTS−1r is known as the Mahalanobis distance squared.

rTS−1r < χχχ2(0.95) (4.21)

When implementing in the MSCKF framework, gating test can be incorporated in two
ways. Since the pixel error is the residual, one can define the test for each pixel in the
Pose Update or Track Update. Using this approach would discard the erroneous pixel
measurements. The null-space of the feature Jacobian matrix will then be evaluated
for the entire set of measurements extracted from the image at that time-step.
The other method is to evaluate the gating test for the entire set of pixel errors (i.e for
the entire track or the set of all marginalizing poses) after calculating the null space
for each measurement independently. This method is used in the filter implemented
in this work.

4.3 Observability Constraint

Consistency of the MSCKF depends on the system observability. System observability
is used to determine whether the available measurements is sufficient to estimate the
state of the system without any ambiguity [13]. If the observability matrix of the
system is invertible, the system is proved to be observable. The directions spanned
by the null space of observability matrix can be used to determine the measurements
directions of the system.
Performing an observability analysis for the linearized VINS system summarized in

41

[13], shows four directions that are not observable. The translation with respect
to a global frame along orthogonal coordinate axes and the global rotation about
the gravity vector axis. Therefore MSCKF system model should be designed in a
such a way that it also should have an unobservable subspace spanned by those four
directions.
The MSCKF VINS has three unobservable states. Current state linearization of sys-
tem and measurement model, makes the MSCKF to have three unobservable dimen-
sions even though it has four dimensions. Therefore, the filter assumes information
that are not available in the measurement. In MSCKF VINS, this is the rotation
about z-axis (i.e. yaw angle).
Many solutions for this problem has been formulated, such as first estimate jaco-
bian EKF (FEJ-EKF) [74], observability constrained EKF (OC-EKF) [24,75,76] and
robocentric visual odometry (R-VIO) [5]. In the implementation of the MSCKF con-
sistency of the filter is maintained by using observability-constrained method. The
FEJ-EKF depends on the initialization of the filter, therefore accurate initialization is
needed for the filter to maintain its consistency. In the R-VIO formulation the camera
poses are expressed in the latest IMU frame. The drawback of this approach is that
the uncertainty of the IMU-frame propagate the uncertainty of the camera-poses.
The original algorithm overview proposed in Algorithm 4.1 has been modified to
improve its robustness and accuracy. The following will be a comprehensive descrip-
tion of the widely implemented MSCKF algorithm that has been used in the back
end of [31].

4.4 Epipolar MSCKF Filtering Algorithm

As discussed in the preceding chapters, the selection of two poses allows the incor-
poration of essential matrix constraints between image pairs as measurements. The
epipolar constraint is one of those methods derived to simplify the update rule in
VINS filtering algorithms.
The formulation of the algorithm was different to the usual MSCKF formulation. It
only keep one camera pose in the state vector. Therefore, the algorithm simplifies
upto a greater extent. Many of the features remains the same as MSCKF algorithm,
but the state and the covariance pruning is not required since it has only one pose
which updates at each iteration. Only one type of update taking place in the filter.

42

Algorithm 4.1 Modified OC-MSCKF Algorithm
1: Initialization: Initialize using gravity direction approximation.
2: for t = 1, · · · ,∞ do
3: Propagation: State vector and covariance matrix using IMU measurements.
4: • State vector propagation using RK5 integration.
5: • Covariance propagation using OC-EKF method.
6: if Image Registered then
7: Feature Tracking and Warping: Recognition, Matching and Tracking
8: State Augmentation: State vector and state covariance matrix

with the current IMU position and orientation.
9: Measurement Update:
10: if Out of View or Max Track length then
11: if 3D point estimation cost < max cost then Pass the tracks for

the EKF track update
12: if Measurement Cov < Mahalanobis distance threshold then
13: • ESKF Track Update
14: end if
15: end if
16: end if
17: if Pose Max then
18: if 3D point estimation cost < max cost then
19: • Pass the set of keyframe poses for the ESKF pose update.
20: if Measurement Cov < Mahalanobis distance threshold then
21: • ESKF Pose Update
22: end if
23: end if
24: end if
25: Track Pruning: Remove feature tracks from the tracking history that

has been used for Track Update.
26: State Pruning: Remove the camera poses and the associated

feature tracks that has been used for Pose Update.
27: Covariance Pruning: Remove the respective camera covariance

entries of the removing camera states.
28: end if
29: end for

43

The revised algorithm is sanitized in Algorithm 4.2.

Algorithm 4.2 Epipolar OC-MSCKF Algorithm
1: Initialization: Initialize using gravity direction approximation.
2: for t = 1, · · · ,∞ do
3: Propagation: State vector and covariance matrix using IMU measurements.
4: • State vector propagation using RK5 integration.
5: • Covariance propagation using OC-EKF method.
6: if Image Registered then
7: Measurement Update:
8: if First Image then
9: • Update previous features from current features.
10: • Update the previously stored IMU pose in state vector

to the current IMU pose.
11: • State Augmentation
12: • Covariance Conditioning
13: else
14: Image Features: Recognition and Matching
15: if Disparity > Disparity Thresh then
16: Keyframe = ture
17: else
18: Keyframe = false
19: end if
20: if Keyframe then
21: • ESKF Epipolar Constraint Update
22: • Update the previously stored IMU pose in state vector

to the current IMU pose.
23: • State Augmentation
24: • Covariance Conditioning
25: end if
26: end if
27: end if
28: end for

4.5 State Marginalization Techniques

The keyframe selection strategies used in Two Way Marginalization, MSCKF-MONO
Marginalization and Two Keyframe Marginalization are introduced in this section.

44

4.5.1 Two Way Marginalization

In the original formulation presented in [77] dictates two ways of adding the next
camera pose to the sliding window of poses in the MSCKF algorithm. If one of the
below criteria are satisfied:, the next pose will be added to the state vector.

1. Time between two images is larger than a certain predefined threshold.

2. After eliminating the relative rotation, the average parallax of all common fea-
tures between the most recent two images is larger than a predefined threshold.

The first condition ensures that the error in the integrated IMU measurement between
two camera states is bounded, while second condition ensures that the new camera
state is added when translation motion of the vehicle with respect to the scene is
significant.
The most recent implementation of this algorithm in [4] uses this technique to remove
the poses. The camera states were added to the sliding window without checking the
above criteria. After the sliding window of poses are filled up, two camera poses which
do not satisfy this criteria will be selected and removed. This ensure that the sliding
window satisfies the above mentioned criteria.
In the practical implementation the authors in [4] have used relative position and
orientation as the criteria for pose removal, oppose to the originally posed criteria
mentioned above. Practically there can be three scenarios for the pose selection.
They are outlined below.

4.5.2 MSKCF-MONO Marginalization

The technique described here, check for keyframes in the camera poses at each itera-
tion after the 30 poses filled up in the state vector. The non-keyframe poses are then
recorded. If the non-keyframes reach two, the filter will be updated using these two
poses. If all the poses in the state vector becomes keyframes, then the oldest two
poses will be used to update the filter. After each update the two camera poses used
for the update will be removed from the state vector.
The keyframe selection criteria is similar was the previous Two Way Marginalization.
The relative translation and rotation between two consecutive camera poses should
be lower than a certain pre-defined threshold for the poses to be removed.

45

4.5.3 Two Keyframe Marginalization

The two keyframes are selected based on the feature disparity between the two im-
ages. If the feature disparity is higher than a certain threshold, the current frame
is considered as a key-frame and used to update the filter as discussed in Algorithm
4.2. Higher feature disparity simply means that the two camera frames are in higher
relative translational distance.
This completes the background details related to the MSCKF formulation and its
modifications considered in this thesis. The next chapter implements the generic and
modified versions of the algorithm and establish performance implications of each to
identify an efficient implementation for MAV applications.

46

Chapter 5

Results of Comparison Study

The main objective of this chapter is to provide the experimental evaluation results
of the three modules (feature tracking-front end, state marginalization technique and
complexity of the VINS algorithm) that dictates the complexity of the VINS algo-
rithm. Thereby, the optimum combination of the modules to achieve an efficient
VINS algorithm is proposed, which can be implemented in MAVs. Two different
state-of-the-art feature-tracking front ends and four different state-of-the-art state
marginalization techniques were compared.

5.1 Evaluation Setup

5.1.1 Hardware Platform

The evaluation was carried out using a Dell D7 laptop with a i5-7300HQ Quad Core
processor with multi-threading, operating at 2.5 GHz with 16GB of RAM, which is a
commonly available workstation range laptop computer. It is important to note that
after development, the algorithms should be implemented on embedded computing
platforms for MAV deployment.

5.1.2 Dataset

The EuroC MAV dataset [41] is used for this study since it includes full spectrum of
6 DOF flying trajectories A manually piloted MAV is used to record eleven visual-
inertial sequences, in three different indoor environments. Each environment sequence

47

has increasing qualitative complexity. "Vicon room 1-difficult" dataset is more chal-
lenging than "Vicon room 1-easy" dataset, with aggressive motions and varying illu-
mination conditions. More aggressive motions of the flying robot makes it difficult to
generate accurate image measurements.
The sensor data captured comprises of stereo WVGA monochrome images at 20 Hz,
and temporally synchronized IMU data at 200 Hz. In the work presented here only
uses the left camera since this is a monocular algorithm evaluation (the dataset has
stereo images recorded from left and right cameras both). For all the datasets the
ground-truth positioning data is available in two formats. In Vicon room data se-
quences, it is provided using a vicon motion capture system while in Machine Hall
sequences it is given by a Leica MS50 laser tracker.

5.1.3 Software Environment

The laptop is setup with Matlab 2018a in windows 10. The feature-tracker data were
imported to matlab environment from open-source ROS packages available online.
The sequences were presented to the filters the same way MAV receive data real-time,
when its flying. The track data were also populated and presented to the filter the
same way, the features are recognized and tracked in real-time.
The receiving of an image was simulated at image receiving frequency in the dataset,
and feature tracking was also simulated as happening in real-time from the imported
track data from ROS. Upon receiving an image, the update takes place and the pose
estimate was recorded after each update step.

5.1.4 Visualization and Debugging Figures

During the implementation, debugging of the filtering algorithm was challenging.
Therefore, many visualizations and debugging figures have been generated.

5.1.4.1 Track Re-projection Visualizer

The feature track re-projection error was used as the measurement residual in the
filtering algorithm. Therefore, a visualization figure for track projection and re-
projection has been implemented. The marginalized tracks were highlighted before
the update, after that they were re-projected back to check whether the estimation

48

algorithm work as expected. The re-projected track should closely resemble the orig-
inal track used for the update. The Figure 5.1 below shows an accurate re-projected
track.

10

Marginalizing Track
– Blue

Re-projected Track –
Green

Figure 5.1: Re-projection visualization

5.1.4.2 Trajectory Visualizer

The trajectory of the MAV is visualized in Matlab (refer to Figure 5.2). A visualization
robot frame was created and animated to represent the MAV. The robot frame is
capable of following a trajectory upon receiving position and orientation states. The
ground-truth path of the MAV is plotted and a visualization robot is introduced in
red color. A blue robot frame is used to visualize the estimated path by the algorithm.
A green robot is used to visualize the camera poses stored in the state vector. All the
robot frames were updated at each iteration to their respective next state. The blue
robot frames help to visualize and debug whether the estimates were accurate. The
camera pose frames were used to visualize and debug the pose update steps. If 30
poses are kept in the state vector, 30 frames were plotted in the visualization figure.
This was instrumental in state marginalization technique comparison. If 10 poses are
marginalized out, from the figure one can easily visualize that 1/3 of the bots are
getting deleted.

49

11

Red bot –
Ground truth path

Blue bot –
Estimated path

Green bot –
Stored camera poses

ROS Package
Estimated Path

Ground Truth
Path

Algorithm
Estimated Path

Figure 5.2: Estimated, ground-truth and stored camera pose path visualizations

From the ground-truth trajectory plotted in the figure, one can easily visualize whether
the estimates lie close to the ground-truth or drifting away. The Figure 5.2 shows the
trajectories visualized. The benchmark for the comparison was the open-source ROS
package. Therefore, estimated path from the ROS package was also plotted in the
same figure in red color. After the estimation has been completed for the entire
dataset, the estimated path was also plotted in the same figure.
The MSCKF algorithm estimation is an odometer therefore drifting is unavoidable.
The tuning parameters (P and Q matrices) and the accuracy of the feature track-
ing front end reduce this drift. The blue color trajectory shows lesser drift due to
the highly accurate feature tracker than the red color trajectory generated by ROS
package.

5.1.5 Accuracy and Performance Indicators

The accuracy of the estimation was compared using Root Mean Squared Error (RMSE)
for position and orientation. Using the recorded pose estimates after each update step
and the ground-truth provided for each sequence, RMSE values were calculated. The
time averaged RMSE for each dataset sequence is then calculated and arranged in a
tabular format for ease of comparison in Table 5.2.
The time to populate the features and the time to run the filter was recorded using
Matlab timing functions. The data was arranged in a tabular format for the ease of

50

comparison in Table 5.3.

5.2 Comparison of Feature Tracking Front-Ends

The three methods compared here are VINS-MONO [26], MSCKF-MONO [31] and
Matlab feature tracker for MSCKF [42]. For VINS-MONO and MSCKF-MONO,
open-source software packages available in ROS environment. Therefore, the feature
tracker data were imported from ROS to matlab for ease of comparison with [42],
which was implemented in Matlab.
All the tracker data were imported to Matlab and visualized. The image below cap-
tures feature tracking at the same image time-stamp in V1_02_medium dataset.
This shows that the VINS-Mono has dense features (i.e. more features per image)
compared to the MSCKF-Mono feature tracker.

8

Figure 5.3: MSCKF-Mono Tracker image

9

Figure 5.4: VINS-Mono Tracker image

The yellow dots indicated the recognized corner feature and the lines indicate the
track of a feature. A video captured in the comparison of the entire tracker running
for the V1_02_medium dataset can be found in this video link. The RMSE values
for V1_02_medium dataset is plotted in the Figure 5.5 below. It can be seen that
the dense feature tracker gives higher performance.
The comparison of the feature-trackers has been done for one dataset to validate
the performance improvement of the dense feature tracker. The other datasets also
showed a similar performance when comparing the results generated by the dense
filter with the ones generated by the MSCKF mono ROS package.

51

https://1drv.ms/u/s!AmCjSyLqFQy-iq8go4ZwCjicPMdXsw?e=8DUsFl

RMSE-Position

MSCKF-Generic MSCKF-Mono MSCKF-TwoWay Epipolar-Contraint

Algorithms

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R
M

S
E

(m
)

MSCKF-Mono Tracker
VINS-Mono Tracker

Figure 5.5: RMSE of position for feature trackers using V1_02_medium dataset

As outlined in the table below highest performance was achieved using the VINS-
MONO [26] feature tracker. A complete comparison is shown for one dataset capturing
the tracker accuracy for each VINS algorithms implemented.

Table 5.1: Feature tracker accuracy comparison for the three trackers using RMSE-
position measured in cm and RMSE-orientation measured in degrees

Tracker Name
EuroC dataset Vicon room 1 "medium"

MSCKF-Generic MSCKF-Mono MSCKF-Two Way Epipolar Constraint
Pos. Orien. Pos. Orien. Pos. Orien. Pos. Orien.

VINS-Mono 25.143 0.101 26.414 0.160 25.781 0.103 27.012 0.089
MSCKF-Mono 35.122 0.198 38.540 0.234 37.235 0.253 41.021 0.125
Matlab Tracker × × × × × × × ×

The feature tracker used in MSCKF-Mono [31] uses Harris corner detector and match-
ing, which was an efficient state-of-the-art feature recognition algorithm, but the
matching features are concentrated in some areas of the images and the number of
features recognized were less. High number of features and distributed features across
the image increased the accuracy of the VINS algorithms as shown in Table 5.1.

52

However, the more robust brisk descriptor based matching used in VINS-Mono [26]
has a higher number of matched features distributed over the image. This achieved
higher performance. The distribution of features also handled the varying illumina-
tion conditions of the sequences. Due to this reason the algorithms achieved higher
performance in the challenging datasets. It can be further observed in the results
outlined in the following sections of this chapter.
The matlab feature tracker which uses a FAST feature detection and matching al-
gorithm failed to capture the highly dynamic motion of the MAV and the varying
lighting conditions. Therefore, non of the parameter combinations worked with the
algorithm for the implemented datasets.

5.3 Comparison of State Marginalization Strate-
gies

Once the estimation is completed, the ground truth path, open source ROS pack-
age path (data imported from ROS environment to Matlab and plotted as a refer-
ence) and estimated path using the algorithm was plotted in the same figure. The
Figure 5.6 shows the result generated for MSCKF-Mono algorithm estimation of
V1_02_medium dataset. All the results were also generated from Matlab. A video
of the implementation can be found in this video link.
The accuracy of the estimation is compared using position-RMSE and orientation-
RMSE (refer Figure 5.7). The estimated path points and ground truth points were
used to calculate the RMSE. It can be seen from the Figure 5.6 that dense-feature
tracker estimate is better than the open-source ROS package estimate that uses low-
dense tracker as shown previously.
The performance of the algorithm was evaluated by calculating the 3σ error bounds
for each state in the state vector. Figure 5.8 shows the results of the calculation.

53

https://1drv.ms/u/s!AmCjSyLqFQy-iq8hl4T8bnZ5ABCLCw?e=R5XbS3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

y

Figure 5.6: MSCKF-Mono algorithm: Black-ground truth, Blue-estimate, Red-ROS
package estimate

0 200 400 600 800 1000 1200 1400 1600

number of iterations

0

0.2

0.4

0.6

R
M

S
E

 (
m

)

RMSE Position

0 200 400 600 800 1000 1200 1400 1600

number of iterations

0

0.1

0.2

0.3

R
M

S
E

 (
de

g)

RMSE Orientation

Figure 5.7: MSCKF-Mono algorithm: Time averaged RMSE

54

0 200 400 600 800 1000 1200 1400 1600
number of iterations

-50

0

50

ro
ll

an
gl

e(
de

g)

Orientation error

0 200 400 600 800 1000 1200 1400 1600
number of iterations

-20

0

20

pi
tc

h
an

gl
e(

de
g)

0 200 400 600 800 1000 1200 1400 1600
number of iterations

-20

0

20

ya
w

 a
ng

le
(d

eg
)

0 200 400 600 800 1000 1200 1400 1600
number of iterations

-0.2

0

0.2

x-
ax

is
(d

eg
/s

2)

Gyroscope Bias error

0 200 400 600 800 1000 1200 1400 1600
number of iterations

-0.2

0

0.2

y-
ax

is
(d

eg
/s

2)

0 200 400 600 800 1000 1200 1400 1600
number of iterations

-0.2

0

0.2

z-
ax

is
(d

eg
/s

2)

0 200 400 600 800 1000 1200 1400 1600
number of iterations

-2

0

2

x-
ax

is
(m

/s
)

Velocity error

0 200 400 600 800 1000 1200 1400 1600
number of iterations

-2

0

2

y-
ax

is
(m

/s
)

0 200 400 600 800 1000 1200 1400 1600
number of iterations

-0.5

0

0.5

z-
ax

is
(m

/s
)

0 200 400 600 800 1000 1200 1400 1600
number of iterations

-0.2

0

0.2

x-
ax

is
(m

/s
2)

Accelerometer Bias error

0 200 400 600 800 1000 1200 1400 1600
number of iterations

-0.5

0

0.5
y-

ax
is

(m
/s

2)

0 200 400 600 800 1000 1200 1400 1600
number of iterations

-0.5

0

0.5

z-
ax

is
(m

/s
2)

0 200 400 600 800 1000 1200 1400 1600
number of iterations

-5

0

5

x-
ax

is
(m

)

Position error

0 200 400 600 800 1000 1200 1400 1600
number of iterations

-5

0

5

y-
ax

is
(m

)

0 200 400 600 800 1000 1200 1400 1600
number of iterations

-2

0

2

z-
ax

is
(m

)

Figure 5.8: Performance of MSCKF-Mono algorithm - 3σ error bounds for states

Image pixel noise, measurement noise and the process noise parameters were tuned for
each algorithm, for each dataset. Mainly, the image noise increased when the difficulty
level of the dataset increases. In a Kalman filter algorithm when the measurement

55

noise increased, it becomes biased towards the process model. In difficult datasets the
tracking was not highly accurate due to aggressive motions and illumination changes.
Therefore, the estimation should be biased towards the process model rather than
the measurement model. Once an algorithm successfully completed, the estimation
for a particular dataset, parameters were re-tuned to increase accuracy if possible.
The highlighted values in bold indicate higher accuracy than the open-source ROS
package.

Table 5.2: Time averaged absolute translation and orientation RMSE in centimeters
and degrees

Dataset Sequence
Dell D7 i5-7300HQ Quad Core 2.5 GHz workstation

Mono-ROS Generic Mono Two Way Epipolar
Pos. Orien. Pos. Orien. Pos. Orien. Pos. Orien. Pos. Orien.

V1_01_easy 39.366 0.094 44.692 0.125 45.856 0.109 46.511 0.108 40.484 0.075
V1_02_medium 40.936 0.247 25.143 0.101 26.414 0.160 25.781 0.103 27.012 0.089
V1_03_difficult 147.986 0.335 93.936 0.423 28.507 0.068 52.207 0.209 62.856 0.176
MH_01_easy 64.717 0.136 34.047 0.100 96.971 0.125 98.387 0.136 40.325 0.235
MH_03_medium 70.515 0.233 53.352 0.108 57.356 0.122 58.981 0.200 60.115 0.105
MH_04_difficult 186.725 0.165 152.545 0.142 154.877 0.324 × × × ×

The datasets were tested in Maltab 2018a environment in Windows 10 on Dell D7
workstation with a i5-7300HQ Quad Core 2.5 GHz processor, 16GB RAM and Nvidia
GTX 1050 4GB graphics driver. The ROS package was installed and used in the
same laptop in Ubuntu 16.04 to generate results for the Table 5.2. The parameters in
the ROS package were not tuned explicitly for each sequence, but the initialization
position was changed to the time-stamp where first ground-truth measurement is
available, for the ease of comparison.
The feature tracker for the algorithms were imported from open-source VINS-Mono
ROS package. The number of features per frame was kept unchanged at 150. In
the MSCKF-Mono the Minimum Track length is set to five. The number of camera
poses in the state vector was kept at 30. The gating test for each track evaluated for
MSCKF-Mono and MSCKF-TwoWay. Only one camera-pose is stored in the state
vector for the epipolar-constraint method.

56

Table 5.3: Execution time in seconds for front-end and back-end of the filter

Dataset Sequence
Dell D7 i5-7300HQ Quad Core 2.5 GHz workstation

Generic Mono Two Way Epipolar
front-end back-end front-end back-end front-end back-end front-end back-end

V1_01_easy 37.32 708.64 40.29 754.97 40.79 784.47 0.421 37.159
V1_02_medium 17.75 395.11 19.93 478.99 19.58 617.38 0.321 17.590
V1_03_difficult 23.41 391.95 19.99 402.25 17.55 444.31 0.355 17.970
MH_01_easy 39.37 724.20 35.43 735.89 30.65 750.74 0.411 38.429
MH_03_medium 32.35 678.49 35.87 714.80 34.15 827.52 0.435 34.746
MH_04_difficult 34.44 660.80 38.44 706.79 × × × ×

The execution time was recorded using Matlab timing functions. The execution time
for feature tracker propagation was recorded separately and deducted from the over
all algorithm execution time. The optimization of the code effects the execution time
of the filter. However, all filters were programmed by the author in Matlab which
followed similar coding practices followed by the author. Therefore, it is reasonable
to assume that the results are not biased towards code optimizations.

RMSE-Position

V1_01 V1_02 V1_03 MH_01 MH_03 MH_04

EuroC Datasets

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
M

S
E

(m
)

MSCKF-Mono(ROS Package)
MSCKF-Generic
MSCKF-Mono
MSCKF-TwoWay
Epipolar-Contraint

Figure 5.9: RMSE of position estimates

57

RMSE-Orientation

V1_01 V1_02 V1_03 MH_01 MH_03 MH_04

EuroC Datasets

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R
M

S
E

(d
eg

)

MSCKF-Mono(ROS Package)
MSCKF-Generic
MSCKF-Mono
MSCKF-TwoWay
Epipolar-Contraint

Figure 5.10: RMSE of orientation estimates

Graphical representation of the numbers in the Table 5.2 is shown in the Figure 5.9
and Figure 5.10.

5.4 Complexity of State Estimation Algorithm

Computational efficiency was dependent on complexity of the state estimation algo-
rithm used. There is significantly less execution time recorded for epipolar-constraint
formulation as shown in Figure 5.11. It clearly shows that simpler formulations are
highly computationally efficient (i.e. takes less time for execution).
The MSCKF formulation uses more than two camera poses for state marginalization,
while incorporating null-space trick for measurement updates, hence taking more time
for execution. On the other hand, Epipolar-constraint only uses two camera poses
and no additional calculations are performed like null-space trick for measurement
updates.
As shown in the Figure 5.9 the accuracy of the filter is only reduced by around 10%
when Epipolar-constraint is used. The computational time was reduced by more than
90%. Therefore, the gain in efficiency is clearly significant.

58

Filter Execution Time

V1_01 V1_02 V1_03 MH_01 MH_03 MH_04

EuroC Datasets

0

100

200

300

400

500

600

700

800

900

T
im

e(
se

c)

MSCKF-Generic
MSCKF-Mono
MSCKF-TwoWay
Epipolar-Contraint

Figure 5.11: Execution time for filter algorithm for each dataset

5.5 Conclusion

This chapter performed a comparative evaluation of several VINS filters which used
different state marginalization techniques and associated measurement model simpli-
fications. The performance improvement over a state of the art algorithm MSCKF-
MONO was evaluated in detail.
All the algorithms show improved accuracy in position RMSE and orientation RMSE
when compared to the open-source ROS package trails. The main reason for this can
be identified as the feature-dense feature tracker. The filter estimates become more
accurate when more tracks are available for the updates of the filter.
The keyframing strategy used in MSCKF mono and Two-way marginalization meth-
ods did not show much difference in terms of accuracy and efficiency. Since both
algorithms only remove two poses depending on the relative motion of the camera
poses made it similar to each other. However, two way marginalization technique
change the selection of frames to remove depending on the motion of the platform
while MSCKF-Mono marginalization strategy was trying to remove the non-keyframes
from the camera poses. The non-keyframe removal makes the tracks to have a higher

59

baseline between camera poses, thus making the track update more accurate. There-
fore, MSCKF-Mono marginalization recorded higher accuracy in more challenging
datasets like V1_03_difficult.
Two key frame marginalization using epipolar-constraints only compare two camera
poses, which eliminates the need to keep a track of features over a number of images,
saving computational cost. The inaccurate updates can also be handled by the key-
framing strategy that uses a feature disparity threshold. As shown in the results in
Figure 5.11 and Figure 5.2, the marginal decrease around 10% in algorithm estimation
accuracy, gives more than 90% gain in efficiency which is highly desirable for the
MAVs.
From the available eleven datasets only six datasets are selected for the evaluation
since the Vicon Room 2 dataset had similar feature environment compared to Vicon
Room 1 dataset. MH_05_difficult was failed in the two key-frame epipolar-constraint
and MSCKF-TwoWay. It may be because of the faster motions and illumination
changes in the tracker. In the future these two algorithms should be studied further
to find a solution for this failure.

60

Chapter 6

Conclusion and Future Directives

The focus of this research study was to find an optimal VINS algorithm suitable for
implementation on MAVs. MAVs are resource constrained (limited on-board memory,
computational power and sensor payload) systems therefore highly computationally
demanding algorithms are not suitable. Since VINS is only meant to serve as an
odometer during navigation, stability and computational efficiency is critical than
accuracy. Therefore, highly computationally demanding elements (state marginaliza-
tion technique, feature tracking front-end and complexity of the VINS algorithm) in
the VINS algorithm were comparatively analyzed to design an efficient algorithm for
MAVs. The study formed the following research objectives:

1. Accuracy and performance comparison of four main state marginalization strate-
gies used in VINS filters.

2. Accuracy comparison of image processing front-ends used for VINS algorithms.

3. Complexity comparison of the VINS algorithms in-terms of execution time.

6.1 Research summary based on Objective I

The first objective of this study was to compare the state marginalization techniques
in VINS algorithms. The state marginalization techniques were implemented and
evaluated on EuRoC MAV VINS benchmark dataset. The VINS algorithm accuracy
findings indicated that all the algorithms performs in par with each other. The differ-
ence in accuracy levels with respect to position-RMSE were in the order of few cen-
timeters (e.g. MSCKF-Generic - 25.14 cm , MSCKF-Mono - 26.41 cm and Epipolar

61

constraint - 27.01 cm for V1_02_medium dataset). On the other hand, the accuracy
levels of orientation-RMSE was only changing in sub-degree level.

6.2 Research summary based on Objective II

The second objective of this study was to compare the feature tracking front ends for
VINS algorithms. Two state of the art feature trackers were evaluated. MSCKF-Mono
feature tracker and VINS-Mono feature tracker are compared.
The VINS-Mono tracker had a dense (i.e. more features per image) feature tracker
than MSCKF-Mono tracker. Due to this reason, VINS-Mono feature tracker based
VINS algorithms gave higher performance compared to the MSCKF-Mono tracker
based VINS algorithms. The increase in accuracy is around 30%. Therefore, having
a feature tracker front end with higher feature density makes the algorithms more
accurate.

6.3 Research summary based on Objective III

The third objective of this study is to compare the complexity of the VINS algorithm
formulation, using the filter execution time. The comparison of algorithm execution
time had shown significant changes. Three algorithms (namely, MSCKF-Generic,
MSCKF-Mono and MSCKF-Two Way) had similar execution times. The execution
time difference between those algorithms were less than 30% of the total execution
time (e.g. MSCKF-Generic 395.11 s and MSCKF-Mono 478.99 s for V1_02_medium
dataset). However, the Epipolar constraint algorithm formulation reported more than
90% reduction in execution time (e.g. MSCKF-Generic 395.11 s and Epipolar con-
straint 17.95 s for V1_02_medium dataset). with respect to the other three methods
compared.
Therefore, Epipolar constraint based VINS had significant efficiency compared to the
other methods. The reduction in accuracy was only around 10% when the gain in
efficiency was more than 90%. Due to this reason, Epipolar constraint based VINS
algorithm is deemed most suitable for MAVs.

62

6.4 Contribution

The following contributions resulted from this thesis:

• Comparative evaluation of feature tracking front-ends, different state marginal-
ization techniques, and different measurement models of VINS algorithms.

• Identification of an efficient VINS algorithm using epipolar constraint state
marginalization technique which achieves more that 90% improvement in com-
putational complexity for minimal (10%) decrement in algorithm accuracy.

• Design and calibration of a sensor system suitable for experimental evaluation
of VINS algorithms.

The following articles are a result of this thesis:

• R. Thalagala, O. De Silva, G. K. I. Mann, and R. G. Gosine, "Calibration
and Validation of a Hand-Held Visual Inertial Sensor Set-up for Visual Iner-
tial Odometry Filters," in Proceedings, Newfoundland Electrical and Computer
Engineering Conference, 2018.

• R. Thalagala, O. De Silva, G. K. I. Mann, and R. G. Gosine, "Two key frame
state marginalization for highly efficient Visual odometry on Micro Aerial vehi-
cles," in preparation, American Control Conference, 2020. (The results of this
thesis are being prepared for submission in this conference)

6.5 Future Directives

As future work and the author is experimentally validating the state marginalization
algorithms on the VINS sensor-setup developed. This work is being conducted as part
of the article preparation for the American Control Conference 2020.

6.5.1 Preliminary work completed

The sensor-setup outlined in Chapter 3 has been integrated to ROS for VINS ex-
perimentation. It was held by hand and walked inside the IsLab, while recording a
ROS bag. IMU topic, fisheye image topic and ground-truth topic from the OptiTrack

63

motion capture system were recorded into the ROS bag. The OptiTrack system pub-
lishes the 6 DOF pose of the sensor-unit with respect to the marker placed on top of
the ZR300 sensor. The dataset was captured for a duration of 6.5 minutes.
The data were streaming at three different frequencies. The IMU data were published
at 250Hz. Fisheye images were published at 30Hz while ground truth data were
published at 120Hz.
The fisheye image stream was time stamped and saved as separate image files using
the Kalibr bag extractor ROS node [78]. Similarly, the IMU topic and the ground-
truth data were also time stamped and saved as csv files. After that all the data were
imported to Matlab. The circular path traversed during this experiment is shown in
Figure 6.1. The experimental setup used to collect the dataset is shown in Figure 6.2
The next step is to generate the feature tracks for the images and experimentally
validate the VINS algorithms using this sensor setup.

Start End

Ground truth
visualization

robot

Figure 6.1: Dataset ground truth plot Figure 6.2: VINS sensor setup

Figure 6.3: The above dataset was only the visualization of the ground truth

64

(a) image1 (b) image2 (c) image3

(d) image4 (e) image5 (f) image6

(g) image7 (h) image8 (i) image9

Figure 6.4: IsLab Dataset images - Raw fisheye images

65

Bibliography

[1] ZR300 Datasheet, “Datasheet for the Intel R© RealSenseTM Camera ZR300.” [On-
line]. Available: https://www.intel.me/content/www/xr/ar/support/articles/
000023563/emerging-technologies/intel-realsense-technology.html

[2] M. Li and A. I. Mourikis, “Online temporal calibration for camera–IMU systems:
Theory and algorithms,” The International Journal of Robotics Research, vol. 33,
no. 7, pp. 947–964, jun 2014.

[3] A. I. Mourikis and S. I. Roumeliotis, “A Multi-State Constraint Kalman Filter
for Vision-aided Inertial Navigation,” in Proceedings 2007 IEEE International
Conference on Robotics and Automation. IEEE, apr 2007, pp. 3565–3572.

[4] K. Sun, K. Mohta, B. Pfrommer, M. Watterson, S. Liu, Y. Mulgaonkar, C. J.
Taylor, and V. Kumar, “Robust Stereo Visual Inertial Odometry for Fast Au-
tonomous Flight,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp.
965–972, apr 2018.

[5] Z. Huai and G. Huang, “Robocentric Visual-Inertial Odometry,” in IEEE Inter-
national Conference on Intelligent Robots and Systems. IEEE, oct 2018, pp.
6319–6326.

[6] B. Joshi, S. Rahman, M. Kalaitzakis, B. Cain, J. Johnson, M. Xanthidis, N. Kara-
petyan, A. Hernandez, A. Q. Li, N. Vitzilaios, and I. Rekleitis, “Experimental
Comparison of Open Source Visual-Inertial-Based State Estimation Algorithms
in the Underwater Domain,” apr 2019.

[7] S. Rahman, A. Q. Li, and I. Rekleitis, “An Underwater SLAM System using
Sonar, Visual, Inertial, and Depth Sensor,” oct 2018.

[8] D. S. Bayard, D. T. Conway, R. Brockers, J. H. Delaune, L. H. Matthies, H. F.
Grip, G. B. Merewether, T. L. Brown, and A. M. San Martin, “Vision-Based Nav-
igation for the NASA Mars Helicopter,” in AIAA Scitech 2019 Forum. Reston,
Virginia: American Institute of Aeronautics and Astronautics, jan 2019.

[9] C. Bamann and P. Henkel, “Visual-Inertial Odometry with Sparse Map Con-
straints for Planetary Swarm Exploration,” in 2019 IEEE International Con-

xi

https://www.intel.me/content/www/xr/ar/support/articles/000023563/emerging-technologies/intel-realsense-technology.html
https://www.intel.me/content/www/xr/ar/support/articles/000023563/emerging-technologies/intel-realsense-technology.html

ference on Industrial Cyber Physical Systems (ICPS). IEEE, may 2019, pp.
290–295.

[10] J. Collin, P. Davidson, M. Kirkko-Jaakkola, and H. Leppäkoski, “Inertial Sensors
and Their Applications,” in Handbook of Signal Processing Systems. Cham:
Springer International Publishing, 2019, pp. 51–85.

[11] R. Osiander, M. A. G. Darrin, J. L. Champion, M. A. G. Darrin, and J. L.
Champion, MEMS and Microstructures in Aerospace Applications, R. Osiander,
M. A. G. Darrin, and J. L. Champion, Eds. CRC Press, oct 2018.

[12] D. Honegger, L. Meier, P. Tanskanen, and M. Pollefeys, “An open source and
open hardware embedded metric optical flow CMOS camera for indoor and out-
door applications,” in 2013 IEEE International Conference on Robotics and Au-
tomation. IEEE, may 2013, pp. 1736–1741.

[13] G. Huang, “Visual-Inertial Navigation: A Concise Review,” in 2019 International
Conference on Robotics and Automation (ICRA). IEEE, jun 2019, pp. 9572–
9582.

[14] X. Qiu, H. Zhang, W. Fu, C. Zhao, Y. Jin, X. Qiu, H. Zhang, W. Fu, C. Zhao, and
Y. Jin, “Monocular Visual-Inertial Odometry with an Unbiased Linear System
Model and Robust Feature Tracking Front-End,” Sensors, vol. 19, no. 8, p. 1941,
apr 2019.

[15] K. Wu, T. Zhang, D. Su, S. Huang, and G. Dissanayake, “An invariant-EKF
VINS algorithm for improving consistency,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, sep 2017, pp.
1578–1585.

[16] Y. Lin, F. Gao, T. Qin, W. Gao, T. Liu, W. Wu, Z. Yang, and S. Shen, “Au-
tonomous aerial navigation using monocular visual-inertial fusion,” Journal of
Field Robotics, vol. 35, no. 1, pp. 23–51, jan 2018.

[17] R. Institute of Control and Institute of Electrical and Electronics Engineers,
ICCAS 2018 : 2018 18th International Conference on Control, Automation and
Systems : proceedings : October 17 (Wed)-20 (Sat), 2018, YongPyong Resort,
PyeongChang, Korea.

[18] H. Hellmers, Z. Kasmi, A. Norrdine, A. Eichhorn, H. Hellmers, Z. Kasmi, A. Nor-
rdine, and A. Eichhorn, “Accurate 3D Positioning for a Mobile Platform in Non-
Line-of-Sight Scenarios Based on IMU/Magnetometer Sensor Fusion,” Sensors,
vol. 18, no. 2, p. 126, jan 2018.

xii

[19] G. Tsaramirsis, S. Buhari, M. Basheri, M. Stojmenovic, G. Tsaramirsis, S. M.
Buhari, M. Basheri, and M. Stojmenovic, “Navigating Virtual Environments Us-
ing Leg Poses and Smartphone Sensors,” Sensors, vol. 19, no. 2, p. 299, jan
2019.

[20] T. K. Chan, Y. K. Yu, H. C. Kam, and K. H. Wong, “Robust Hand Gesture Input
Using Computer Vision, Inertial Measurement Unit (IMU) and Flex Sensors,” in
2018 IEEE International Conference on Mechatronics, Robotics and Automation
(ICMRA). IEEE, may 2018, pp. 95–99.

[21] J. Gim, C. Ahn, J. Gim, and C. Ahn, “IMU-Based Virtual Road Profile Sensor
for Vehicle Localization,” Sensors, vol. 18, no. 10, p. 3344, oct 2018.

[22] X. Guang, Y. Gao, H. Leung, P. Liu, G. Li, X. Guang, Y. Gao, H. Leung, P. Liu,
and G. Li, “An Autonomous Vehicle Navigation System Based on Inertial and
Visual Sensors,” Sensors, vol. 18, no. 9, p. 2952, sep 2018.

[23] X. Xia, L. Xiong, W. Liu, and Z. Yu, “Automated Vehicle Attitude and Lateral
Velocity Estimation Using a 6-D IMU Aided by Vehicle Dynamics,” in 2018 IEEE
Intelligent Vehicles Symposium (IV). IEEE, jun 2018, pp. 1563–1569.

[24] M. Li and A. I. Mourikis, “High-precision, consistent EKF-based visual-inertial
odometry,” The International Journal of Robotics Research, vol. 32, no. 6, pp.
690–711, may 2013.

[25] D. Dusha and L. Mejias, “Error analysis and attitude observability of a monocular
GPS/visual odometry integrated navigation filter,” The International Journal of
Robotics Research, vol. 31, no. 6, pp. 714–737, may 2012.

[26] T. Qin, P. Li, and S. Shen, “VINS-Mono: A Robust and Versatile Monocular
Visual-Inertial State Estimator,” IEEE Transactions on Robotics, vol. 34, no. 4,
pp. 1004–1020, aug 2018.

[27] X. Li, Y. Wang, and K. Khoshelham, “Comparative analysis of robust extended
Kalman filter and incremental smoothing for UWB/PDR fusion positioning in
NLOS environments,” Acta Geodaetica et Geophysica, vol. 54, no. 2, pp. 157–179,
jun 2019.

[28] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, “Keyframe-
based visual–inertial odometry using nonlinear optimization,” The International
Journal of Robotics Research, vol. 34, no. 3, pp. 314–334, mar 2015.

[29] J. A. Delmerico and D. Scaramuzza, “A Benchmark Comparison of Monocular
Visual-Inertial Odometry Algorithms for Flying Robots,” Memory, vol. 10, p. 20,
2018.

xiii

[30] M. K. Paul, K. Wu, J. A. Hesch, E. D. Nerurkar, and S. I. Roumeliotis, “A
comparative analysis of tightly-coupled monocular, binocular, and stereo VINS,”
in 2017 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, may 2017, pp. 165–172.

[31] A. Z. Zhu, N. Atanasov, and K. Daniilidis, “Event-Based Visual Inertial Odom-
etry,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, jul 2017, pp. 5816–5824.

[32] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual inertial odom-
etry using a direct EKF-based approach,” in 2015 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE, sep 2015, pp. 298–304.

[33] D. Abeywardena, Shoudong Huang, B. Barnes, G. Dissanayake, and
S. Kodagoda, “Fast, on-board, model-aided visual-inertial odometry system for
quadrotor micro aerial vehicles,” in 2016 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, may 2016, pp. 1530–1537.

[34] T. Nguyen, G. K. I. Mann, A. Vardy, and R. G. Gosine, “Developing a Cubature
Multi-state Constraint Kalman Filter for Visual-Inertial Navigation System,” in
2017 14th Conference on Computer and Robot Vision (CRV). IEEE, may 2017,
pp. 321–328.

[35] A. Taffanel, “Crazyflie nano quadcopter.” [Online]. Available: https:
//www.bitcraze.io/crazyflie-2-1/

[36] J. A. Farrell, Aided Navigation Systems: GPS and High Rate Sensors, 1st ed.
New York: McGraw-Hill, 2008.

[37] Bruce D. Lucas and Takeo Kanade, “An Iterative Image Registration Technique
with an Application to Stereo Vision (DARPA),” in Proceedings of the 1981
DARPA Image Understanding Workshop, 1981, pp. 121–130.

[38] S. Roumeliotis and J. Burdick, “Stochastic cloning: a generalized framework for
processing relative state measurements,” in Proceedings 2002 IEEE International
Conference on Robotics and Automation (Cat. No.02CH37292), vol. 2. IEEE,
pp. 1788–1795.

[39] M. Brossard, S. Bonnabel, and A. Barrau, “Unscented Kalman Filter on Lie
Groups for Visual Inertial Odometry,” in 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). IEEE, oct 2018, pp. 649–655.

[40] T. Nguyen, G. K. I. Mann, A. Vardy, and R. G. Gosine, “Developing Com-
putationally Efficient Nonlinear Cubature Kalman Filtering for Visual Inertial
Odometry,” Journal of Dynamic Systems, Measurement, and Control, vol. 141,
no. 8, p. 081012, mar 2019.

xiv

https://www.bitcraze.io/crazyflie-2-1/
https://www.bitcraze.io/crazyflie-2-1/

[41] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W. Achtelik,
and R. Siegwart, “The EuRoC micro aerial vehicle datasets,” The International
Journal of Robotics Research, vol. 35, no. 10, pp. 1157–1163, sep 2016.

[42] L. E. Clement, V. Peretroukhin, J. Lambert, and J. Kelly, “The Battle for Filter
Supremacy: A Comparative Study of the Multi-State Constraint Kalman Filter
and the Sliding Window Filter,” in 2015 12th Conference on Computer and Robot
Vision. IEEE, jun 2015, pp. 23–30.

[43] T. D. Barfoot, State Estimation for Robotics. Cambridge: Cambridge University
Press, 2017.

[44] M. Zaffar, S. Ehsan, R. Stolkin, and K. M. Maier, “Sensors, SLAM and Long-term
Autonomy: A Review,” in 2018 NASA/ESA Conference on Adaptive Hardware
and Systems (AHS). IEEE, aug 2018, pp. 285–290.

[45] M. Bloesch, M. Burri, S. Omari, M. Hutter, and R. Siegwart, “Iterated extended
Kalman filter based visual-inertial odometry using direct photometric feedback,”
The International Journal of Robotics Research, vol. 36, no. 10, pp. 1053–1072,
sep 2017.

[46] M. He, C. Zhu, Q. Huang, B. Ren, and J. Liu, “A review of monocular visual
odometry,” The Visual Computer, pp. 1–13, jun 2019.

[47] Google, “Google ARCore.” [Online]. Available: https://developers.google.com/
ar/discover/

[48] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle
Adjustment — A Modern Synthesis.” Springer, Berlin, Heidelberg, 2000, pp.
298–372.

[49] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert,
“iSAM2: Incremental smoothing and mapping using the Bayes tree,” The Inter-
national Journal of Robotics Research, vol. 31, no. 2, pp. 216–235, feb 2012.

[50] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, “Analysis and improvement of
the consistency of extended Kalman filter based SLAM,” in 2008 IEEE Interna-
tional Conference on Robotics and Automation. IEEE, may 2008, pp. 473–479.

[51] G. Huang, M. Kaess, and J. J. Leonard, “Towards consistent visual-inertial nav-
igation,” in 2014 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, may 2014, pp. 4926–4933.

[52] K. Eckenhoff, P. Geneva, and G. Huang, “Sensor-Failure-Resilient Multi-IMU
Visual-Inertial Navigation,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, may 2019, pp. 3542–3548.

xv

https://developers.google.com/ar/discover/
https://developers.google.com/ar/discover/

[53] L. von Stumberg, V. Usenko, and D. Cremers, “Direct Sparse Visual-Inertial
Odometry using Dynamic Marginalization,” apr 2018.

[54] V. Usenko, J. Engel, J. Stuckler, and D. Cremers, “Direct visual-inertial odom-
etry with stereo cameras,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, may 2016, pp. 1885–1892.

[55] S. Leutenegger, M. Chli, and R. Y. Siegwart, “BRISK: Binary Robust invari-
ant scalable keypoints,” in 2011 International Conference on Computer Vision.
IEEE, nov 2011, pp. 2548–2555.

[56] E. Rosten and T. Drummond, “Machine Learning for High-Speed Corner Detec-
tion.” Springer, Berlin, Heidelberg, 2006, pp. 430–443.

[57] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alterna-
tive to SIFT or SURF,” in 2011 International Conference on Computer Vision.
IEEE, nov 2011, pp. 2564–2571.

[58] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary Robust Inde-
pendent Elementary Features.” Springer, Berlin, Heidelberg, 2010, pp. 778–792.

[59] J. Kelly and G. S. Sukhatme, “Visual-Inertial Sensor Fusion: Localization,
Mapping and Sensor-to-Sensor Self-calibration,” The International Journal of
Robotics Research, vol. 30, no. 1, pp. 56–79, jan 2011.

[60] Kellysensor, “3DM-GX3 R© -35 All-In-One Navigation Solution | LORD
Sensing Systems.” [Online]. Available: https://www.microstrain.com/inertial/
3dm-gx3-35

[61] M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli, and D. Scaramuzza,
“Autonomous, Vision-based Flight and Live Dense 3D Mapping with a Quadrotor
Micro Aerial Vehicle,” Journal of Field Robotics, vol. 33, no. 4, pp. 431–450, jun
2016.

[62] J. Nikolic, J. Rehder, M. Burri, P. Gohl, S. Leutenegger, P. T. Furgale, and
R. Siegwart, “A synchronized visual-inertial sensor system with FPGA pre-
processing for accurate real-time SLAM,” in 2014 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, may 2014, pp. 431–437.

[63] Thibaut Rouffineau, “Welcoming the Parrot S.L.A.M.dunk: the new drone
development kit | Ubuntu.” [Online]. Available: https://ubuntu.com/blog/
welcoming-the-parrot-s-l-a-m-dunk-the-new-drone-development-kit

[64] I. Sa, M. Kamel, M. Burri, M. Bloesch, R. Khanna, M. Popovic, J. Nieto, and
R. Siegwart, “Build Your Own Visual-Inertial Drone: A Cost-Effective and Open-
Source Autonomous Drone,” IEEE Robotics & Automation Magazine, vol. 25,
no. 1, pp. 89–103, mar 2018.

xvi

https://www.microstrain.com/inertial/3dm-gx3-35
https://www.microstrain.com/inertial/3dm-gx3-35
https://ubuntu.com/blog/welcoming-the-parrot-s-l-a-m-dunk-the-new-drone-development-kit
https://ubuntu.com/blog/welcoming-the-parrot-s-l-a-m-dunk-the-new-drone-development-kit

[65] IntelD435i, “Depth Camera D435i – Intel R© RealSenseTM Depth and
Tracking Cameras.” [Online]. Available: https://www.intelrealsense.com/
depth-camera-d435i/

[66] IntelT265, “Tracking camera T265 – Intel Re-
alSense Depth and Tracking Cameras.” [Online]. Avail-
able: https://www.intelrealsense.com/tracking-camera-t265/?{_}ga=2.
208021524.706492624.1566521139-364711539.1566521139

[67] R. rqt_plot, “rqt_plot - ROS Wiki.” [Online]. Available: http://wiki.ros.org/
rqt{_}plot

[68] T. Schneider, M. Dymczyk, M. Fehr, K. Egger, S. Lynen, I. Gilitschenski, and
R. Siegwart, “Maplab: An Open Framework for Research in Visual-Inertial Map-
ping and Localization,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp.
1418–1425, jul 2018.

[69] IntelRealSense, “Intel R© RealSenseTM Camera ZR300 | Intel R© Software.”
[Online]. Available: https://software.intel.com/en-us/realsense/zr300

[70] J. Rehder, J. Nikolic, T. Schneider, T. Hinzmann, and R. Siegwart, “Extend-
ing kalibr: Calibrating the extrinsics of multiple IMUs and of individual axes,”
in 2016 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, may 2016, pp. 4304–4311.

[71] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in 2011 IEEE
International Conference on Robotics and Automation. IEEE, may 2011, pp.
3400–3407.

[72] J. Sola, “Quaternion kinematics for the error-state KF,” Institut de Robòtica
i Informàtica Industrial, Barcelona, Tech. Rep., 2016. [Online]. Available:
http://www.iri.upc.edu

[73] K. Hausman, S. Weiss, R. Brockers, L. Matthies, and G. S. Sukhatme, “Self-
calibrating multi-sensor fusion with probabilistic measurement validation for
seamless sensor switching on a UAV,” in 2016 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, may 2016, pp. 4289–4296.

[74] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, “A First-Estimates Jacobian
EKF for Improving SLAM Consistency,” 2009, pp. 373–382.

[75] ——, “Observability-based Rules for Designing Consistent EKF SLAM Estima-
tors,” The International Journal of Robotics Research, vol. 29, no. 5, pp. 502–528,
apr 2010.

xvii

https://www.intelrealsense.com/depth-camera-d435i/
https://www.intelrealsense.com/depth-camera-d435i/
https://www.intelrealsense.com/tracking-camera-t265/?{_}ga=2.208021524.706492624.1566521139-364711539.1566521139
https://www.intelrealsense.com/tracking-camera-t265/?{_}ga=2.208021524.706492624.1566521139-364711539.1566521139
http://wiki.ros.org/rqt{_}plot
http://wiki.ros.org/rqt{_}plot
https://software.intel.com/en-us/realsense/zr300
http://www.iri.upc.edu

[76] J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis, “Consistency
Analysis and Improvement of Vision-aided Inertial Navigation,” IEEE Transac-
tions on Robotics, vol. 30, no. 1, pp. 158–176, feb 2014.

[77] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar, “Initialization-Free Monoc-
ular Visual-Inertial State Estimation with Application to Autonomous MAVs.”
Springer, Cham, 2016, pp. 211–227.

[78] P. Furgale, J. Rehder, and R. Siegwart, “Unified temporal and spatial calibra-
tion for multi-sensor systems,” in 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, nov 2013, pp. 1280–1286.

xviii

	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Block Diagram of VINS
	Problem Statement
	Problem I: Complexity of the Feature Tracking Front-End.
	Problem II: Complexity of the State Marginalization Techniques.
	Problem III: Complexity of State Estimation Algorithm versus VINS Performance.

	Objective and Expected Contributions of the Research
	Organization of the Thesis

	Related Work
	Visual Inertial Navigation Systems
	Optimization-based VINS
	Filter-based VINS

	Variations of Filter-based VINS
	Visual Measurement Sensor Arrangements
	Image Processing Front End
	State Marginalization Techniques in VINS
	Image Bearing Measurements for Pose Update
	Subset of Camera Pose Selection
	Key-frame Selection Strategies

	Calibration and Validation of VINS Sensor Setup
	Motivation
	Available VINS Sensor-Units
	Hand-held VINS Sensor Unit
	Sensor Calibration
	IMU-Camera Temporal Relationship
	IMU-Camera Spacial Relationship

	Kalibr - Open source Camera-IMU Calibration Toolbox
	Calibration Results
	Validation of Calibration
	Conclusion

	MSCKF based VINS
	MSCKF Filter Description
	MSCKF State Vector
	MSCKF Process Model
	MSCKF State Propagation
	MSCKF Covariance
	MSCKF State Augmentation
	Measurement Model
	MSCKF Measurement Model
	Epiploar Constraint Measurement Model

	Statistical Measurement Validation
	Observability Constraint
	Epipolar MSCKF Filtering Algorithm
	State Marginalization Techniques
	Two Way Marginalization
	MSKCF-MONO Marginalization
	Two Keyframe Marginalization

	Results of Comparison Study
	Evaluation Setup
	Hardware Platform
	Dataset
	Software Environment
	Visualization and Debugging Figures
	Track Re-projection Visualizer
	Trajectory Visualizer

	Accuracy and Performance Indicators

	Comparison of Feature Tracking Front-Ends
	Comparison of State Marginalization Strategies
	Complexity of State Estimation Algorithm
	Conclusion

	Conclusion and Future Directives
	Research summary based on Objective I
	Research summary based on Objective II
	Research summary based on Objective III
	Contribution
	Future Directives
	Preliminary work completed

	Bibliography

