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Abstract 
Managed pressure drilling (MPD) is a technique utilized in drilling to manage annular pressure, 

hold reservoir influx, and divert mud returns away safely from the rig floor through a closed loop 

system. Thus, MPD plays key roles in well control operations and in drilling deepwater wells. 

However, despite the operational, safety, and economic benefits, limited information is available 

on understanding the complexity of MPD system. Furthermore, the oil and gas industry currently 

relies on a flow monitoring system for earlier kick detection but faces severe flaws and limited 

progress has been made on approach that monitors kick from downhole due to the complexity of 

offshore drilling operations. Thus, the main objective of this research is to assess the safety and 

reliability of MPD. In this research, following novel contributions have been made: several 

dynamic downhole drilling parameters have been identified to enhance earlier kick detection 

technique during drilling, including about 33 – 89% damping of bit-rock vibrations due to gas 

kick; a reliability assessment model has been developed to estimate the failure probability of an 

MPD system as 5.74%, the assess the increase in reliability of kick control operation increases 

from 94% to 97% due to structural modification of the MPD components, identify that MPD 

operational failure modes are non-sequential, and identify that an MPD control system is the most 

safety-critical components in an MPD system; an automated MPD control model, which 

implements a nonlinear model predictive controller (NMPC) and a two-phase hydraulic flow 

model, has been developed to perform numerical simulations of an MPD operation; and lastly, an 

integrated dynamic blowout risk model (DBRM) to assess the safety during an MPD  operation 

has been developed and its operation involves three key steps: a dynamic Bayesian network (DBN) 

model, a numerical simulation of an MPD control operation, and dynamic risk analysis to assess 

the safety of the well control operation as drilling conditions change over time. The DBRM also 

implemented novel kick control variables to assess the success / failure of an MPD operation, i.e. 

its safety, and are instrumental in providing useful information to predict the performance of / 

diagnose the failure of an MPD operation and has been successfully applied to replicate the 

dynamic risk of blowout risk scenarios presented in an MPD operation at the Amberjack field case 

study from the Gulf of Mexico. 

Keywords: Kick indicators, Dynamic Bayesian Network, MPD, Reliability, NMPC, 

automation, Pressure control, Flow control, Blowout, drilling 
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Chapter 1 Introduction 
 

1.1 Background 

Well control practices have been an integral part of drilling operation planning and strategies in 

oil and gas exploration and production projects. Thus, there has been an evolution of techniques 

implemented in parallel with technological advancement assimilated by the industry.  For instance, 

by early 80’s, kick (an undesired formation influx into wellbore) detection techniques relied on pit 

gain and delta flow tracking flow sensors, and by late ’80s, significant improvement to sensing 

devices with reduced false alarms and capability of performing acoustic analysis for faster 

detection and smaller influx size (0.5 bbl) were made (Lage et al., 1994). Nowadays, the complex 

nature of oil and gas prospects, which have drifted further into the deepwater, makes this technique 

inadequate. Meanwhile, a flow check procedure is favoured over the traditional pit gain system for 

kick detection due to their poor reliability, especially in high permeability formations in deepwater 

wells where the fracture gradients are typical and the additional volume of gas produced during 

flow check can be significant (Lage et al., 1994). Shut-in procedures are normally implemented, 

with activation of blowout preventers, to prevent the escalation of kick event and to circulate the 

influx out of well. 

 

Typically, well control operation is implemented in two stages. The primary stage is based on 

preventing kick, and it is conventionally achieved by maintaining the bottomhole pressure more 

than the formation pore pressure (overbalanced drilling) using a mud weight. The secondary stage 

is activated to prevent the escalation of kick event into a blowout incident using a blowout 

preventer (BOP) system. Well blowout results in catastrophic consequences, including personnel 

injuries and/or fatalities, environmental pollution, loss of assets, and fines (Rice et al, 1987).  
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Drilling operation is becoming more complex, especially in the offshore operation, and faces many 

operational challenges, including well control. This is even more significant considering that most 

remaining prospects for hydrocarbon resources are either driving exploration into deepwater 

(Graham et al., 2011) or that the existing ones are presented with narrow drilling windows between 

the pore pressure and the fracture gradient be due to reservoirs depletion or depth. The narrow 

margins are most prominent in deepwater applications where much of the overburden is seawater 

(Malloy and McDonald, 2008). Deyab et al., (2018) documented a series of offshore accidents that 

have stemmed from the loss of well control due to the failure of equipment that is particularly 

subjected to offshore harsh environmental conditions. These extreme drilling environments 

heighten geological uncertainty as their complexity are becoming the norm in todays drilling 

operations. Issues such as, well control incidents, are periodically encountered and can increase 

operational costs (e.g. lengthy non-productive time - NPT) and risks of operations, especially when 

relying on conventional primary well control to prevent kick occurrence.  

 

The conventional drilling method merely relies on mud pump flow rates and mud weight to 

manage the wellbore annular pressure. These methods have been shown to be inadequate in 

controlling or monitoring wellbore pressure since any pressure events could lead to frequent well 

shut-in – this condition is termed as “kick-stuck-kick-stuck” scenario. For instance, a small influx 

to the wellbore (or outflux to the formation) can become significantly uncontrollable quickly and 

could be consequential to a blowout occurrence. This brings loss not only to the operational assets 

but human lives. Even the benefits of Underbalanced Drilling (UBD) technology, which includes 

reservoir damage prevention and increase in the rate of penetration, still present challenges from 

operational and safety perspectives for offshore applications due to well continuously being flown 
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to the surface while drilling (Gala and Toralde, 2011). As a result, the oil and gas industry are 

increasingly adopting “managed pressure drilling” (MPD) practices, which provides safe, 

efficient, and economical drilling operation while avoiding continuous flow to surface (Gala and 

Toralde, 2011; Rohani, 2012; Malloy and McDonald, 2008; Kok and Tercan, 2012).  

 

The purpose of an MPD is to control annular frictional pressure losses especially in the fields 

where pore pressure and fracture pressure gradient have a close margin (narrow drilling window). 

Because MPD operation is a closed system, influxes and losses are detected instantaneously. This 

is due to more precise control of the annular wellbore pressure profiles and thus, enhances the 

safety of rig personnel and equipment in everyday drilling operations. Additionally, MPD 

operations improve drilling economics by reducing excessive drilling mud costs and reducing 

drilling-related non-productive time (NPT) as well as enabling the drilling of many declared non-

drillable/uneconomical wells.  

 

Many case studies are available on MPD system and techniques that detail its operational 

advantages, such as precise BHP control, influx management, and economic benefits (Vieira et 

al.,2008; Grayson, 2009; Nas, 2010; Driedger et al., 2013; Oyovwevotu et al., 2014). Whereas 

only a few studies explore the safety benefits of an MPD in terms of assessing the risks levels in 

conventional drilling practice compared to MPD techniques (Grayson and Gans, 2012; Handal A. 

and Øie, 2013; Gabaldon et al., 2014; Zan and Bicke, 2014; Abimbola et al., 2015). The 

significance of safety benefits that MPD technologies bring to conventional drilling can be 

measured or assessed through the boost in safety barrier of conventional primary well control, 

especially in deepwater drilling. However, limited studies on safety analysis of MPD operations 
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may be influenced by its limited understanding causing many oil and gas operators to have 

reluctance in adopting the technology. For instance, there are no clear standards of quantifying the 

acceptable influx that an MPD system can take to consider the operation safe. Additionally, the 

operational and economic benefits are well touted by the technology providers, but limited 

information is available on the complexity of the MPD system and the operational interactions 

among its components. Thus, more research should be devoted to understanding the complexity 

of the MPD system and operations as a primary well control safety barrier element to facilitate the 

development of safety and reliability models that will be inclusive.  

 

1.2 Research scope and objectives 

This research aims to assess the dynamics of an MPD system operation and control, and model 

their failure scenarios, in addition to the safety, reliability, and control system involved in its 

execution. The reliability assessment of an MPD operation will focus not only on identifying the 

most safety critical equipment of the MPD system but also in achieving a better understanding of 

the components’ interactions during operation and their modes of failure. Additionally, the 

research also aims at developing an MPD simulator that implements an advanced control scheme 

and hydraulic model to numerically perform failure simulations of an MPD operation, develops 

an approach to interpret failure data using logical description, and develops dynamic risk 

assessment tool to assess safety of blowout scenarios in an MPD operation.  

 

Furthermore, because an MPD system is primarily employed as part of a well control operation 

during drilling, the current research also explores other measures, such as earlier kick detection 

parameters to enhance the kick detection techniques. In summary, the main objective of this 
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research is to develop an advanced risk assessment methodology to assess the safety and reliability 

of managed pressure drilling operation and this can be sub-divided as follows: 

• To explore and identify downhole drilling parameters for earlier kick indicators as measures 

of enhancing kick detection techniques during drilling 

• To develop an understanding of the components’ interactions in an MPD system and their 

modes of failure  

• To identify the safety critical components/equipment of an MPD system 

• To develop a numerical model for simulating an MPD control operation and assessing the 

design limitations and robustness of an MPD system. 

• To develop an integrated dynamic risk assessment tool for assessing the safety during an MPD 

operation   

• develop a comprehensive well control tool for field applications 

 

1.3 Novel contributions 

This research has novel contributions in the safety and reliability assessment of well control 

operations during drilling; specifically, by enhancing kick detection techniques and assessing the 

reliability and safety of a managed pressure drilling in kick control operations. Figure 1.1 

illustrates the summary of contributions. Thus, these novel contributions will have significant 

benefits to the oil and gas exploration and production companies/contractors, particularly in the 

deepwater drilling where well control operation is a key component of drilling safety, that includes 

a safety and reliability management tool for managed pressure drilling systems in conjunction with 

a robust early kick detection technology. 
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Figure 1.1: Safety and reliability assessment model for a managed pressure drilling in well control  

operation 
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1.4 Structure of  this Thesis 

The thesis has the following structure:  

• Chapter 2 focuses on the literature review of managed pressure drilling (MPD) system and 

operation as an unconventional primary well control safety barrier element citing both industry 

and academic literature. It also highlights various MPD techniques and control applications, 

common equipment involved, safety and economic benefits, and common risk assessment 

methods in relation to an MPD operation. 

• Chapter 3 focuses on the experimental investigation of dynamic drilling parameters to 

enhance the earlier kick detection indicators during drilling. The findings provide new 

improvement into kick detection techniques. This chapter has been published in the published 

in the Journal of Petroleum Exploration and Production Technology (2018); 

https://doi.org/10.1007/s13202-018-0510-z 

•  Chapter 4 performs a comprehensive failure analysis of a managed pressure drilling system 

during kick control operation to identify its modes of failure, most safety-critical component, 

and reliability on kick control operation. This chapter is published in the Journal of loss 

prevention in processing industries (2018); Vol. 52 pp. 7–20. 

https://doi.org/10.1016/j.jlp.2018.01.007   

•  Chapter 5 presents an advanced and robust control model for an MPD control system, which 

implements a nonlinear model predictive controller and a two-phase flow hydraulic model. 

This provides flexibility to perform numerical simulation of an MPD kick control operation 

and have been validated using a field case study and laboratory experiments. This chapter 5 

has been published in the Journal of Petroleum Science and Engineering, Vol. 174 pp 1223-

1235  https://doi.org/10.1016/j.petrol.2018.11.046  

https://doi.org/10.1007/s13202-018-0510-z
https://doi.org/10.1016/j.jlp.2018.01.007
https://doi.org/10.1016/j.petrol.2018.11.046
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• Chapter 6 presents an advanced dynamic blowout risk model (DBRM) to assess the safety 

during the managed pressure drilling operation. The DBRM involves three key steps: a 

dynamic Bayesian network (DBN) model, a numerical simulation of an MPD kick control 

operation, and dynamic risk analysis; and implements a novel approach for simulating an MPD 

failure and assessing the dynamic risk of a blowout. This chapter is under review in the Journal 

of Petroleum Science and Engineering for publication. 

• Chapter 7 highlights the conclusions and contributions made by this research and suggests 

recommendations for future research on this topic. 
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Chapter 2 : Literature Review 
 

2.1 Managed pressure drilling improves well control operation  

Generally, well control is one of the key important operations that contribute to successful drilling; 

however, this operation is more complex and challenging in deepwater drilling. Well control is 

categorized in to primary and secondary well controls. Primary well control is accomplished by 

hydrostatic pressure from the drilling mud weight that counterbalances the wellbore pressure. The 

required hydrostatic pressure by the drilling fluid overbalances the formation pressure to prevent 

kick or loss of circulation. However, when the primary well control fails due to uncontained 

formation pressure (kick) or loss of circulation, secondary well control is initiated. Secondary well 

control is mainly performed by the blowout preventers (BOP), a system that functions to prevent 

uncontrollable fluid influx into wellbore or blowout of formation fluid to the surface. This 

conventional drilling practice uses the hydrostatic pressure exerted by mud weight as the main 

well control barrier to keep the wellbore balanced when not circulating. Mathematically, this is 

expressed as:  

𝑃𝑀𝑊  ≥ 𝑃𝑏    (𝑠𝑡𝑎𝑡𝑐 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)      (2.1) 

Where PMW is hydrostatic pressure exerted by mud weight and Pb is the bottomhole pressure.  

When the pump is activated to resume circulation, the hydraulic system becomes dynamic and 

annular friction pressure (AFP), created by the motion of the drilling fluid along the entire wellbore 

depth against the outside diameters of the entire length of the drill string, is introduced. The mud 

weight and mud pump flow rates are used to primarily control annular pressure. Mathematically, 

this is expressed as: 

 𝑃𝑏 = 𝑃𝑀𝑊 + 𝐴𝐹𝑃     (𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)    (2.2) 
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Problems arise with this drilling method when the well has a narrow drilling window, such as in 

re-entry of partially depleted reservoirs or deepwater, which is common in oil and gas fields today. 

In this case, annular pressures are challenging to control due to kick-loss-kick-loss scenarios. Thus, 

any delays in detecting the influx and reacting could lead to a blowout incident. The well control 

management process can be highly time-consuming and leads to very costly non-productive time.  

 

Underbalanced drilling operation on the other hand, uses a closed hydraulic system with 

appropriate equipment and controls to intentionally lower bottomhole pressure below the reservoir 

(pore) pressure (Ppore) to induce influx into the wellbore with the aim to protect, and preserve 

reservoir from damage in addition to increasing rate of penetration (ROP). Mathematically, this is 

expressed as follows: 

𝑃𝑏 <  𝑃𝑝𝑜𝑟𝑒            (2.3) 

Because this method allows influxes traveling up to the surface, many operators are skeptical in 

adopting underbalanced techniques, especially in offshore fields due to regulatory restrictions 

against gas flaring, wellbore instability potential, safety concerns exposing toxic gas release to the 

surface in high pressure environments, and cost (Birkeland et al., 2009).  

 

However, managed pressure drilling, which is defined, by the International Association of Drilling 

Contractors (IADC), as an adaptive drilling process used to precisely control the annular pressure 

profile throughout the wellbore with intention to avoid continuous influx of formation fluids to the 

surface as well as employing appropriate process to safely contain any influx incidental to the 

operation events (Malloy and McDonald, 2008). Alternatively, an overbalanced drilling where a 

constant or correct bottomhole pressure is being maintained in a closed system by using a 
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combination of backpressure, mud weight, and equivalent circulating density (ECD) can be termed 

as MPD (Gala and Toralde, 2011). MPD operation uses the closed hydraulic system with the ability 

to monitor and control backpressure, fluid density, fluid rheology, circulating friction, and/or 

annular fluid volume; hence may allow faster corrective action to address any pressure events 

(Malloy and McDonald, 2008). When running an MPD operation backpressure can be applied on 

the wellbore annulus via a rotating control device (RCD) to control the bottomhole pressure during 

drilling or in a static condition. The backpressure can be manually or automatically controlled by 

choke settings; hence, provides a timely control of kicks and mud loss. These can be expressed 

mathematically as follows: 

𝑃𝑏 =  𝑃𝑀𝑊 +  𝐸𝐶𝐷 + Back pressure           (during drilling)     (2.4) 

𝑃𝑏 =  𝑃𝑀𝑊  + Back pressure           (during static condition)               (2.5) 

During static condition, the choke is used to add backpressure when drilling stops to maintain the 

bottomhole pressure instead of pumping heavier mud downhole.  

 

2.2 Managed pressure drilling equipment 

An oil rig that is either proactively and reactively configured to run MPD system is equipped with 

several key components, including rotating control device (RCD), non-return valves, drilling 

choke manifold, MPD control system, and backpressure pump as shown in Figure 2.1. These are 

described below: 

• Rotating control device - (also called rotating control head) primarily functions to divert flow 

away from the rig floor and is mostly located atop of the annular preventer and complements 

the rig standard blowout preventer (BOP) stack. During operation, it forms a frictional seal 

around the drill pipe ball to create the closed-loop drilling system and allow backpressure to 
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be applied on the annulus to maintain well control. The design ratings and size are drilling 

application specific and are available in static pressure of 1000, 2500, and 5000 psi 

(Halliburton, 2016).     

• MPD choke manifold - is a pressure regulator of MPD system that serves to control the 

wellhead pressure to the desired set point. Its openings are constantly adjusting to a changing 

flow rate through the chokes to maintain the desired downhole pressure. The choke manifold 

is available in many trim sizes as well as in automatic or manual controls. A manual choke 

allows the designated rig crew to control the backpressure manually with hydraulic control 

panel or by means of a software application. While the automatic choke is controlled by 

electronic monitoring equipment that has the quickness and precision required to adjust the 

back pressure to maintain desired downhole pressure. Many manifolds available today can also 

feature as early kick detection (EKD) with the use of a flow meter (Gala and Toralde, 2011).  

• Non-return valves (NRV) –  serves to prevent backward flow from the well up the drill string 

when applying back pressure on the annulus. They are normally installed in the bottomhole 

assembly (BHA) and it is recommended to install two or more NRVs to increase the 

redundancy with one located at the end of BHA and least another one located in the top of 

drilling string to aid bleeding of pressure; hence, increases the operational safety (Stødle et al., 

2013). 

• Back pressure pump (BPP) – is installed or available for MPD operation to maintain 

wellhead pressure throughout the drilling operation. Typical MPD system uses BPP to provide 

fluid supply and adequate flow to maintain the choke in a situation where the mud flow 

decreases in volume that the choke is not able to create the needed back pressure. In this case, 

the choke may not provide adequate backpressure, hence, the extra boost can be automatically 
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supplied by the BPP, which in part serves as a redundancy to mud pump failure or human error 

(Stødle et al., 2013).  

• Optional Equipment – are more other specialized equipment important for specific MPD 

applications. According to IADC (2014), other key enabling equipment, either individually or 

in performance with other equipment to practice MPD operations includes downhole 

deployment valves (DDV), mud/gas separators of adequate capacity, nitrogen production units 

etc. 
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Figure 2.1: Generic MPD process flow system (Source: Schlumberger) 
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2.3 Managed Pressure Drilling Techniques 

There are four basic MPD techniques that are well specific and are: constant bottomhole pressure 

drilling (CBHD), pressurized mud cap drilling (PMCD), dual-gradient drilling (DGD) method, 

and return flow control (RFC)-HSE method. According to IADC (2014), CBHP and PMCD have 

been safely and effectively practiced globally on prospects believed un-drillable with conventional 

method due to safety, economic or technical reasons. However, RFC-HSE method is just starting 

to be recognized as maybe a better way to drill some prospects that could be drilled conventionally 

and while DGD is still in its infancy, there have been hundreds of riser-less DGD applications, 

DGD with a marine riser, and subsea BOP.    

2.3.1 Constant Bottomhole Pressure Drilling (CBHD)   

It is uniquely suited for environments with narrow pressure window (Hannegan, 2006) such as the 

deepwater wells, and regarded as the most commonly practiced managed pressure drilling 

technique IADC (2014). The bottomhole pressure is regulated and maintained nearly constant and 

within a predefined pressure window imposed by the pore pressure and fracture pressure. 

Essentially, the backpressure can be applied or relieved in the annulus via choke manifold to 

achieve the pressure control in the wellbore (Gala and Toralde, 2011). CBHP technique has the 

potential to reduce the number of casing strings, hence reducing drilling costs. This MPD 

technique uses hydraulics models to establish wellhead pressure and maintains a suitable 

equivalent circulating density (ECD), annulus pressure gradient, and annulus ECD at a selected 

location in the wellbore. All CBHP systems, which include the dynamic annular pressure control 

(DAPC) @balance system by Schlumberger (see Figure 3.1), Weatherford MPD technology, and 

GeoBalance® Managed Pressure Drilling (MPD) by Halliburton, perform these three objectives. 

Unlike the DAPC control system, Weatherford MPD technology utilizes the Microflux® control 
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system while Halliburton MPD uses the combination of an Automated Choke Control System, a 

GeoBalance® Sentry™ Data Acquisition and the Halliburton INSITE Anywhere® GeoBalance® 

system. 

2.3.2 Pressurized mud cap drilling (PMCD)   

It is an MPD technique that is suited for fractured formations where severe loss of circulation can 

occur. Its operation involves drilling with no returns to surface and an annulus fluid column, 

assisted by the surface backpressure, is maintained above a formation pressure capable of 

accepting fluid and cuttings (Gala and Toralde, 2011). PMCD deals with loss circulation by first 

pumping sacrificial (lighter) mud to drill the depleted zone and then heavier mud to force the fluid 

into the loss zone and prevent influx gas from coming to the surface (Hannegan, 2006; Terwogt et 

al., 2005). Drilling operation keeps any influx and sacrificial fluid into the depleted zone. Also, in 

addition to RCD and other MPD equipment, PMCD requires a flow spool to be installed below 

the RCD to allow fluid to be pumped into the annulus (Rohani, 2012). Weatherford MPD 

technology, which utilizes the Microflux® control system, can be configured to run in a PMCD 

mode.  

2.3.3 Dual Gradient Drilling (DGD)  

It is an MPD technique that involves drilling with two different fluid-density gradients; such that 

the lighter fluid (e.g. seawater) is above the seafloor (or upper portion of the wellbore) and the 

heavier fluid is below the mud line (Abimbola et al., 2015; Rohani, 2012) to deliver the same 

bottomhole pressure that normally achieved by a single fluid gradient (Smith et al., 2001). This 

setup can be achieved by installing an RCD above the mudline to divert the return mud away from 

the riser through a return line to the surface and fill the riser with lightweight fluid. This technique 

has only been practiced in the deepwater operation where the total mud column in the marine riser 
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can create substantial overbalance in the well (Stødle et al., 2013) and its implementation 

eliminates the impact of water depth on the mudline. The need for DGD technology emerged out 

of the concept to reduce the riser weight and mud volumes, especially in an ultra-deepwater 

operation where there is reduced fracture gradient of formations below the mudline (Smith et al., 

2001). 

2.3.4 Return Flow Control (RFC) / HSE technique  

RFC/HSE technique is considered as a passive variation of MPD system in that the technique does 

not involve any control of the annular pressure but diverts annulus returns away from the rig floor, 

while drilling using conventional method, to prevent any gas exposure to the rig floor. RFC 

technique requires the installation of two hydraulic valves, a conventional flow line to the shakers, 

and a flow line to the rig choke manifold in addition to the RCD to achieve these objectives 

(Rohani, 2012). 

 

2.4 MPD control algorithms  

In an automated MPD system, a combination of hydraulic model and control system is used to 

automatically control downhole pressure during drilling operations (Godhavn 2010; Godhavn et 

al., 2011). The key objective of an MPD is to accurately control the downhole pressure by 

regulating the backpressure to compensate for annular pressure fluctuations. Thus, in an automated 

MPD system, the automatic operation of the choke manifold is performed by a control system, 

which typically consists of two main parts: a hydraulic model (to estimate the downhole pressure 

in real-time) and a controller scheme (to automates the choke manifold to maintain the desired 

choke pressure). The hydraulic models can be simple or advanced, although the latter is more 
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challenging and complex (Kaasa et al., 2011) and the controller ranges from proportional integral 

derivative (PID) controller scheme to a non-linear model predictive controller (NMPC).  

 

PID controller utilizes feedback and feed-forward control actions to control the choke pressure, 

whereby the feed-forward loop compensates for disturbances gain and the closed loop feedback 

compensates for error and maintain system equilibrium. To improve the performance and the 

capabilities of kick estimation and automatic well control system, Zhou et al. (2010) presents 

adaptive observers for estimating the flow rates through the well and the reservoir pore pressure 

for improved kick management using a PI controller. Zhou et al. (2011) presents an MPD 

automatic control procedure, which uses a switched control scheme and a PI controller that, on 

one hand, regulates the annular pressure in the well during drilling and on the other hand, attenuates 

kick in the event of a reservoir influx. Godhavn et al. (2011) presents a nonlinear model-based 

control scheme and observers to improve pressure control during MPD operations using a feedback 

linearization method. Hague et al. (2013) utilizes a switched control concept in controlling 

bottomhole pressure; whereby an MPD system controller manipulates the choke and backpressure 

pump by switching between a combination of pressure and flow control when there is no influx, 

and pure flow control when a kick is detected.  

However, most processing systems are nonlinear; thus, making the PID controller insufficient, in 

some cases, to capture the nonlinearity of the system. Furthermore, another important aspect of an 

MPD control model is the accuracy of estimating the choke pressure, bottomhole pressure and kick 

size. Unfortunately, this topic has not been adequately addressed in most MPD control model 

simulations and only a few studies have sparsely discussed the effects of gas-phase influx in their 

MPD control simulator (Zhou et al., 2011; Kaasa et al., 2011; Aarsnes et al., 2016).  
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2.5 MPD Contributions to drilling  

Two of the primary contributions of MPD are the reduction in drilling costs due reduction in NPT 

and increase in safety due to additional primary well control barrier it provides. In deepwater 

operations, many projects would not be economically viable without MPD techniques 

(Haghshenas et al., 2013).  Many studies are available on MPD system and techniques that detail 

its operational advantages, including a precise BHP control, influx management, and economic 

benefits, including Driedger et al., (2013) on how MPD system enabled Talisman Energy to drill 

to the target depth through overcoming multiple abnormal pressure zones due to its features in 

early influxes and losses detection, dynamic equivalent mud weight management, maintenance of 

bottomhole pressure during static conditions.  

However, only a few studies explore the safety assessment of an MPD in well control operation. 

The significance of safety benefits that MPD technologies bring to conventional drilling can be 

measured or assessed through the boost in safety barrier of conventional primary well control, 

especially in deepwater drilling. For instance:  

 

Grayson and Gans (2012) examined the key elements of a closed-loop circulating system 

(including RCD and MPD influx control) and concluded that it increases  the well control barrier 

layers and efficiency of drilling operations. They used the PRA model to compare the risk levels 

in using pen loop system (conventional well control) and closed loop system (MPD). They 

developed a blowout scenario using a fault tree model for each system in which they factored in 

human errors probability (HEP). The fault tree model for the MPD system depicts the ability of 

the MPD system to diagnose and mitigate influx based on the combination of HEP, MPD control 
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system, and the hardware system. Their analyses show that the additions of MPD and RCD into 

well control barrier layer reduced the possible risk of a blowout by almost 500%. 

Handal A. and Øie (2013) performed safety barrier analysis and structured hazard identification of 

MPD system to identify its safety critical equipment due to the complexity that MPD pressure 

control equipment and MPD control system bring to well control.  As a result, the authors focused 

their analysis on primary well barrier system with MPD pressure control equipment (mud + MPD 

system), which defers from the conventional primary well barrier configuration. They used FTA 

to illustrate the how failure in MPD pressure control equipment may be critical to BHP exceeding 

pressure limits of exposed formations and failure of MPD control system may lead to loss of well 

control. 

Gabaldon et al. (2014) used well control barrier envelopes to describe how MPD improves influx 

management and prevent unnecessary shut-in or, in the worst case, blowout. They defined the 

primary safety barrier elements in conventional drilling to include drilling mud, casing, and cement 

while in MPD system, it includes: MPD equipment (e.g. RCD, choke manifold, back pressure 

pump, MPD control system etc.) in addition to conventional primary barrier elements. The 

secondary barrier envelope (SBE) include elements in the primary envelopes as well as BOP, 

choke line, kill lines and manifold for both MPD and Conventional drilling.  

  

Zan and Bicke (2014) developed a probabilistic risk analysis (PRA) model to quantify the 

probability of a well control incident (WCI) in conventional drilling and how the WCI can be 

mitigated by MPD system. Their model translated the qualitative assessments in 2008 DOI MMS 

report into the quantitative assessment. Based on assumed probabilities for each deviation 

categories developed in their model, they obtained WCI probability of [0.0085]. This value was 
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reduced by 20% when MPD was implemented (i.e. the probability of WCI reduced to 

[1.7 × 10−3]). Handal A. and Øie (2013) performed barrier analysis and structured hazard 

identification of MPD system to identify its safety critical equipment due to the complexity that 

MPD pressure control equipment and MPD control system bring to well control.   

 

According to Handal and Øie (2013), MPD systems, from a risk-based perspective, introduce both 

advantages (such as improved control of the BHP and enhanced well control) and challenges. The 

challenges stem from the fact that varieties of pressure control equipment are used to precisely 

adjust wellbore pressures, which in turns are controlled by an MPD control system. The 

applications of MPD have been seen to be common in areas (or prospects) where well control have 

been most challenging, un-drillable and conventionally drilling wells have failed or grossly 

exceeded budgets (Kok and Tercan, 2012; Handal and Øie, 2013).  

 

Limited studies are available in assessing the operational failure of constant bottomhole pressure 

techniques of MPD. Abimbola et al. (2015) identified MPD control system, Rig pump, and RCD 

as the safety-critical equipment. However, a further investigation by Sule et al. (2018b) identified, 

in addition to MPD control system being the most safety-critical component, that the failure of 

MPD operation can occur via several scenarios in a non-sequential manner. These studies bring 

MPD control system, which can be classified as a form of automated drilling technology, under 

the microscope of safety and reliability investigation. To capture the nonlinearity in an MPD 

control system, Nygaard and Nævdal (2006); Breyholtz and Aamo (2008); Nandan and Imtiaz 

(2016); Park (2018) have implemented nonlinear model predictive controller (NMPC) in their 

control model. However, their hydraulic models are based on single-phase liquid flow, and did not 
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capture the multiphase-flow nature of the reservoir fluid. For instance, gas kick incident is 

particularly severe and challenging to manage, especially in a deepwater drilling. Unfortunately, 

this topic has not been adequately addressed in most MPD control model simulations and only few 

studies have indicated the effects of gas-phase influx in their MPD control simulator. Zhou et al. 

(2011) noted that because their model does not account for gas-phase, the estimation of reservoir 

fluid that contains gas-phase will cause considerable modelling error in influx size. As discussed 

in Kaasa et al. (2011), an influx of liquid and gas mixture into the annulus will cause the bulk 

modulus in the annulus to drop; thus, affect the model estimation of influx size and/or the casing 

pressure if the gas-phase of the reservoir influx is not considered.   

 

2.6 Safety and reliability assessment techniques 

Many risk assessment techniques have been proposed for oil and gas and chemical process 

operations. Khan (2001) presented most notable risk analysis techniques, including quantitative 

risk analysis and probabilistic safety analysis. Process safety, in the oil and gas operations, is 

typically assessed using various risk and reliability analysis tools to identify the critical failure 

components of the system and capture the level of risk (consequence) associated with the failure. 

Many reliability and risk analysis tools for offshore operations and chemical processes have been 

covered in the literature (Haver et al., 2001; Khan, 2001; Khan et al., 2002; Espen et al., 2011; 

Khakzad et al., 2012; Dikis et al., 2016). Khan (2001) presented the most notable risk analysis 

tools, including quantitative risk analysis and probabilistic safety analysis.  

The quantitative risk analysis (QRA) technique, which comprises of four stages (from initial to 

final): hazard identification, frequency estimation, consequence analysis and measure of risk, can 

be performed using several diagnostic tools, including the fault tree analysis (FTA), event tree 
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analysis (ETA), and Bow-tie (BT). Fault Tree Analysis (FTA) is a deductive failure-based 

approach, and the most common probabilistic techniques used in system risk and reliability 

assessment (NASA, 2002). FTA starts with an undesired event, such as failure of the main 

equipment, and then determines its causes using a systematic, backward-stepping process (NASA, 

2002). The quantification of an FT allows the determination of reliability parameters of interest 

for design improvement (NASA, 2002). FT can be evaluated either qualitatively to provide useful 

information on the causes of an undesired (top) event through gates or quantitatively to provide 

information on the failure probability of the top event occurrence and all the intermediate events 

given the knowledge of all basic events (NASA, 2002; Abimbola et al., 2015).  

ETA  is an inductive procedure that shows, in sequence, all possible outcomes resulting from an 

initiating event and additional (pivotal) events, considering whether the installed safety barriers 

are functioning or not (Rausand and Høyland, 2004). It can identify all potential accident scenarios 

and their sequences in a complex system and determine the probabilities of various outcomes 

resulting from the initiating event. The Bow-tie (BT) is one of the common and effective graphical 

method used in a risk evaluation to analyze and assess the consequences of causal relationships in 

high-risk scenarios, such as a blowout. The BT is constructed by connecting a fault tree top event 

to one or more elements of the event tree. However, these conventional risk assessment techniques, 

including Fault Tree (FT), Event Tree (ET), and Bow-Tie (BT) are incapable of capturing the 

dynamic effects of operational risks, such as change in well conditions due kick or sudden failure 

of equipment during drilling operations, and inability to assess the sequential dependencies among 

process variables in risk estimations (Barua et al., 2016; Khakzad, et al., 2012; Ferdous, et al., 

2010).  
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Bayesian network (BN), however, is a more flexible modelling approach that is capable of 

performing both forward and backward analyses uniquely suitable for dynamic risk and safety 

analyses using conditional probabilities and probability reasoning to describe the causal influence 

relationships among dependent and independent variables (Bobbio et al., 2001; Khakzad et al., 

2011, 2013; Cai et al., 2013; Barua et al., 2016; Sule et al., 2018b). The BN model, which is 

originated from the field of artificial intelligence (Langset and Portinale, 2007), have been 

developed to overcome the modeling deficiencies exhibited in FT, ET, and BT risk analysis 

techniques (Cai et al., 2012, 2013) and have been explicitly covered in the literature (Khakzad et 

al., 2011, 2013; Abimbola et al., 2015; Bhandari et al., 2015; Pui et al., 2017; Sule et al., 2018b). 

BN models can analyze the influence of dynamic risk variables such as drilling conditions (Wu et 

al., 2016). However, BN model is only restricted to one step posterior analysis and are not capable 

of explicitly modeling the changes in events likelihoods or relationship over time.  

Thus, a dynamic Bayesian Network (DBN), which is a temporal extension of BN capable of 

modeling influences over time, has been developed to address the dynamic restrictions in the BN 

models (Murphy, 2002; Cai et al., 2013; Wu et al., 2016). The DBN models have been used in 

many probabilistic analyses of dynamic systems and operations across many industries, including 

oil and gas, process, manufacturing, computing etc. For instance, Cai et al., (2013) in quantitative 

risk assessment of human factors on offshore blowouts; Wu et al., (2016) in prediction and 

diagnosis of offshore drilling incidents; Dong C. and Yue H. (2016) in identification of functional 

connections in Biological neural networks; Amin et al., (2018) in dynamic availability assessment 

of safety-critical systems; Zhu et al., (2019) in Fatigue damage assessment of orthotropic steel 

deck; Luque and Straub (2019) in optimal inspection strategies for structural systems. 
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Chapter 3 : Experimental investigation of gas kick effects on 

dynamic drilling parameters 

Preface 

This chapter presents the experimental investigation of dynamic drilling parameters to enhance 

the earlier kick detection indicators during drilling. The findings provide new improvement into 

kick detection techniques, including the damping effects of drilling vibrations due to gas kick. A 

paper version of this chapter has been published in the Journal of Petroleum Exploration and 

Prod Technol (2018), https://doi.org/10.1007/s13202-018-0510-z. Along with the co-authors, Dr. 

Faisal Khan and Dr. Stephen Butt, I have co-authored this chapter. I conducted the experiment to 

generate the data and made first attempt to analyze the data. The co-author Faisal Khan helped 

in analyzing and testing the concepts, reviewed and corrected the data and results, and contributed 

in preparing, reviewing and revising the manuscript. The co-author Dr. Stephen Butt contributed 

through assisting in developing and running the experimental setup, generating and analyzing the 

data, testing and verifying the results and revising the manuscript. Co-authors Drs. Butt and Khan 

reviewed the revisions and provided feedback which I have implemented. I prepared the first draft 

of the manuscript and subsequently revised the manuscript based on the co-authors’ feedback and 

the peer review process. 

Abstract 

Blowout incidents not only lead to fatalities but also cause loss of assets, expensive clean-up, costly 

incident investigations and reports, and negative impact on the environment. The 2010 Macondo 

blowout accident in the Gulf of Mexico was an eye-opener for many oil and gas operators and 

oilfield service companies; thus, making early kick detection technology research one of the top 

industry agenda. However, only limited progress has been made in detection technologies that 

https://doi.org/10.1007/s13202-018-0510-z
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focus on downhole parameters due to the complexity of offshore drilling operations that is 

increasingly shifting towards the deepwater. Therefore, the current chapter experimentally 

explores downhole drilling parameters for kick indication during drilling. The study utilizes a fully 

instrumented laboratory scale drilling rig coupled with air injection and surface monitoring 

systems. This study observed a sudden jump in bottomhole pressure, increased volume of the 

return fluid, decreased density of the return fluid, reduced rate of penetration (ROP), and increased 

rotary speed as indicators of kick. The most significant new finding, which is also validated with 

field reports, is the damping effects of the drilling vibrations due to kick. Frequency analysis of 

the axial bit-rock displacements/vibrations confirms changes of frequencies due to kick induction 

during drilling. Coupling this important finding with dynamic drilling models, the response of the 

drilling system at the surface (e.g. standpipe, choke pressures etc.) indicating this change can be 

predicted.  

Keywords: Kick Indicators, Drilling, Axial Bit Vibrations, Early Kick Detection 

 

3.1 Introduction 

Early kick detection (EKD) is a vital component of a well control system. The prevention or 

management of kicks and/or fluid loss occurrence during drilling operations is crucial, particularly 

in deepwater drilling activities due to the complexity of equipment and operations. Well control 

failure occurrences could typically cost the oil and gas industry billions of dollars in a year due to 

non-productive time (NPT) and/or blowout incident and affect the safety of drilling personnel. In 

addition to the complex operation involved with deepwater drilling, many deepwater wells have 

greater depths and narrow pressure margins between pore pressure and fracture gradient, which 
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heighten the risk of unexpected events such as a kick or fluid loss. Given the extent of these 

challenging drilling operations coupled with today’s low oil and gas prices, oil and gas operators 

are continually striving to improve not only the drilling efficiency but also to understand the 

behaviour of downhole fluid to survive and grow. 

 

Blowouts can be disastrous, expensive, and cause fatalities; a good example was the dramatic BP 

Deepwater Horizon blowout in 2010. Several investigative reports indicate a need for more 

sophisticated EKD technologies among other root causes (Graham et al., 2011). Unfortunately, 

limited progress has been made due to more reliance on surface detection technologies which are 

challenged by response time. There is a widely accepted consensus in the industry to explore a 

bottom-up approach whereby kicks are detected early and can be tracked at multiple points along 

the wellbore. However, only limited progress has been made on this approach due to the 

complexity of offshore drilling operations. Velmurugan et al. (2015) presented an automated 

system for EKD and a control system that monitors and reports the physical conditions inside 

wellbore annulus instantaneously through time measurements of p-waves’ propagation in the 

annulus. Its performance is questionable for field applications. Nayeem et al. (2016) 

experimentally investigated kick occurrence based on the changes in mass flow rate, pressure, 

density and conductivity of fluid downhole and concluded that the parameters have the potential 

to improve the kick detection system with higher precision than the surface detection system.  

 

Vajargah and van Oort (2015) developed an algorithm that automatically selects the best well 

control response to influx in a drilling operation running a constant Bottomhole pressure (CBHP) 

managed pressure drilling (MPD); however, the paper did not clarify how this method will be 
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implemented while running CBHP MPD operation in the field. Trivedi (2014) proposed an 

innovative kick detection system that uses a small mud rerouting section consisting of two plates 

and located just above the BHA. When there is an entrained formation fluid bubbles/droplet in the 

flow, the medium between the two plates will undergo alteration and form a magnetic impulse 

registering as an abnormality in fluid flow, hence detecting kick. However, this technology has 

many limitations, including cuttings intrusion and capacitance limitations due to plate spacing. 

Ahmed et al. (2016) proposed a new advanced early kick detection method that uses seven 

parameters data (classified as instantaneous drilling parameters e.g. pit gain, flow rate, ROP etc. 

and lagging parameters e.g. total gas connection gas etc.) from mud logging while drilling; 

however, this method was field specific (Offshore Nile Delta field). Schubert and Wright (1998) 

proposed the use of an acoustic device installed on the casing valve to continuously monitor the 

liquid level in the annulus of wells experiencing a complete loss of returns; thus, a rise in the liquid 

level is interpreted as early kick indication.; however, this method has a limitation of lagging time 

that was not addressed by the authors.   

 

DiFoggio and Duncan (2012) presented, in a patent, a tool and method that measure the acoustic 

velocity and temperature of borehole fluid from an acoustic sensor and temperature sensor placed 

in a borehole to detect a gas influx in real-time due to lower bulk modulus and density of the fluid 

and temperature drop. This is the closest and tested downhole detection methods, but it is only 

limited to and/or relied on borehole density and temperature parameters. Involving more downhole 

parameters in early kick detection indicators not only improve the reliability of kick detection but 

also provides the capability to validate kick occurrence when there are deviations in these 

parameters.  
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Thus, this chapter experimentally monitors dynamic drilling parameters, including WOB, rotary 

speed, drilling vibrations etc. during drilling that give an indication of a gas kick. Many studies on 

kick detection rely on a flow-loop setup including flow valves, choke valve, and pressure sensors 

to simulate kick experiments. Therefore, the uniqueness of the current study lies in the utilization 

of a fully instrumented laboratory scale drilling rig to simulate drilling as the kick is being induced, 

controlled and monitored. 

3.2 Materials and Methods 

This section describes the experimental setup, the sample preparation and the procedures 

implemented to conduct the experiment. 

3.2.1 Experimental Setup 

The setup consists of two integrated platforms: a fully instrumented laboratory scale drilling rig 

platform and a surface monitoring equipment and gas injection system platform. The drilling rig 

is equipped with a rotary head, a fluid circulation system, and a data acquisition system. 

3.2.1.1 Laboratory-scale drilling rig 

The schematic diagram of the laboratory-scale (scaled-down) drilling simulator is shown in Figure 

3.1(a). The rig is powered by an electric drill motor with two rotational speed configurations (300 

and 600 rpm) to provide adequate rotary speed and torque to the bit via the drillstring. The loading 

system consists of a rack-pinion arrangement through which a suspended weight, in addition to a 

constant weight, can be applied to the bit. The rotary head accounts for the constant weight on bit 

(WOB) and consists of the drill motor and the drillstring. The drillstring components include a 

cradle, a swivel, a compliant tool, and a drill pipe. The swivel allows the injection of fluid into the 

drill pipe down to the drill bit nozzles and the complaint tool, which is configured rigidly for the 

current experiment, provides relative motion between the top system and the drill pipe using a set 
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of coned-disc springs and rubber damping elements. The drill pipe connects the drill bit with the 

top system (i.e. swivel, motor etc.)  

A 35 mm OD polycrystalline diamond cutter (PDC) bit with a two-cutter configuration is used as 

the drill bit in the current experiment. The mud circulation system is equipped with a 1000 L 

capacity water tank installed over a triplex pump powered by a 20-kW motor with a flow rate and 

pressure capacities of 150 L/min and 6900 kPa respectively. The pump system also includes a 

variable frequency drive (VFD) to control the flow rate by adjusting the rotary speed of the motor. 

The circulation system includes a flow sensor, pressure transducer, and a water tank level meter to 

monitor and record the circulation conditions Khorshidan (2012). The water-based mud (WBM) 

is injected into the rig swivel assembly via a hose and then into an enclosed drilling/pressure cell.  

The pressure cell, shown in Figure 3.2, is located at the bottom of the rig system to serve as a 

wellbore and allow application of required bottomhole pressure during drilling. The pressure cell 

includes a clamping assembly to hold the rock specimen in place during drilling. In other words, 

the pressure cell serves as a closed wellbore through which confining pressure is applied to the 

rock specimen during drilling. The drillstring with attached PDC bit is inserted into the pressure 

cell through a top cap of the cell and rotary seals are placed within the cap to prevent leaks and 

keep the drillstring centered. The designed pressure of the cell is 2500 kPa with a safety factor of 

1.5 (Khorshidan 2012). 

3.2.1.2 Integrated surface monitoring equipment and kick injection system 

i) Surface monitoring equipment 

The surface equipment for monitoring surface parameters consists of a Coriolis flow meter, 

pressure transducer, P2, a flow in the choke manifold, and a conductivity sensor. A pressure 

transducer (P2) located downstream of the pressure cell and upstream of the Coriolis flow meter, 
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as shown in Figure 4.1(b), is used to measure the pressure in the return mud entering the surface 

monitoring equipment.  

 

 

Figure 3.1 Equipment setup for a gas-kick simulation experiment  

 

Figure 3.2: Sectional view of a schematic drawing of a Pressure Cell (Source: Khorshidan 2012) 
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The Coriolis flow meter is equipped with Elite flow sensor to provide good measurement 

sensitivity and stability when measuring multi-phase flow and it has tolerance for drill cuttings. 

The Coriolis flow meter is installed such that the tube is in the up orientation or flag up position to 

allow effective drainage of cuttings and mud from the sensor. The choke manifold consists of three 

valves: a pressure relief valve installed on the pressure relief loop (line), a needle (or backpressure) 

valve to adjust backpressure in the downhole pressure in the pressure cell and a manual pressure 

control valve. In the event of a surge in the pressure cell, a pressure relief valve (PRV), installed 

upstream of the Coriolis flow meter, diverts flow to the pressure relief (bypass) line. The pressure 

control and needle valves are mainly used to control the downhole pressure. The conductivity 

sensor measures the electrolytic conductivity changes in the drilling mud return; however, was not 

monitored t due to the sensor’s incompatibility with drill cuttings. 

ii) Kick injection system 

The kick injection system is made up of an air compressor supply, a gas flow meter, a pressure 

sensor, a solenoid valve, and a check valve. The air compressor compresses air into an air pressure 

vessel and automatically shuts off at a pre-programmed pressure. The pressure vessel is equipped 

with a valve and a pressure gauge to discharge the pressured air and monitor the pressure in the 

vessel respectively during the experiment. The air pressure in the vessel is maintained between 

120 and 150 psi.  

A gas flow meter is used to measure, with accuracies of ±5% in volume flow rate, the air pressure 

discharged into the pressure cell. The pressure sensor (P3) on the air line measures the dynamic 

pressure injected into the downhole pressure cell. A solenoid valve, which is installed just 

downstream of the compressed air supply, is used to inject compressed air into the downhole 

pressure cell to simulate gas kick and the check valve installed close to the injection point to 

throttle any fluid attempting to flow in the reverse direction (Nayeem et al., 2016).   
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3.2.1.3 Data acquisition system 

Two data acquisition (DAQ) systems are used to measure and acquire data for the experiments: a 

fixed DAQ system termed as DAQ #1 and a portable DAQ system termed as DAQ #2. The DAQ 

#1 is interfaced with the drilling system to measure and acquire drilling-related parameters, 

including WOB, axial displacement, motor current etc. All data measured are recorded with a 

sampling rate of 1000 Hz, which is the required minimum sampling rate to capture the axial 

displacement signals from the high precision laser sensor. The DAQ #2 (Mobile DAQ system) 

consists of a power system and a DAQ system. The DAQ system component has NI9188 Chassis 

built-in and NI9237 and NI9205 for acquiring the data from sensors. The DAQ #2 system measures 

and captures data from the integrated surface monitoring equipment and kick injection system, 

including downhole pressure in the pressure cell, gas pressure, mass and density flow etc. Because 

the DAQ #2 has a 10 Hz sampling rate capacity, the data from the two DAQ systems are compared 

using a clock synchronization technique. 

 

3.2.2 Rock specimens’ preparation 

3.2.2.1 Specimen properties 

The current experiment is performed on synthetic rock materials modeled by pouring a specified 

recipe of concrete slurry in 4×4-inch empty cylinders and left to set and harden. The concrete 

slurry mixture includes sand aggregates, water, cement, and superplasticizer. More information on 

concrete preparation can be found in Zhang (2017). The physical properties of the rock specimen 

used in the current study are shown in Table 3.1. The rock specimens are then stored in a 

controlled-moist environment to maintain their physical properties. 
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Table 3.1: Physical properties of the synthetic rock specimen (source: Zhang (2017)) 

Rock Property Value Units 

Unconfined Compressive Strength (Ucs) 51 MPa 

Mohr Friction Angle 40  

Tensile Strength 5.4 MPa 

Young Modulus 29 GPa 

Poisson Ratio 0.15  

 

3.2.2.2 Test specimen preparation 

The rock specimens are prepared so that gas injected from the base of the rock can interact with 

the rotating bit as it cuts through the rock. To accomplish this objective, a hole is drilled through 

the center of the rock. As shown in Figure 3.3 a-d, the test specimen preparation is completed 

through the following steps:  

a. Step 1– showing the test specimen in its original state, Figure 3.3a 

b. Step 2 – the center of the rock is laid out and located as shown in Figure 3.3b.  

c. Step 3 – a ¼ inch Masonry bit is used in a drill press to drill a hole through the rock center of 

the rock as shown in Figure 3.3c. 

d. Step 4 – the top and bottom surfaces of the rocks are sanded to smoothly fit into the pressure 

cell base that will house the specimens during drilling shown in Figure 3.3d. 

 

4.2.3 Bit operation analysis 

The bit operation analysis is conducted to ensure that the input parameters set for the experiment 

are within the operational requirements of the drilling rig simulator. For this experiment, a PDC 

bit with an outer diameter of 35 mm and two nozzle configurations with a diameter of 5.7/32-in 

(or 0.178125- in) each is used. 
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Figure 3.3: Test specimen preparation: steps 1 – 4 

The dynamic weight on bit (WOB) is measured directly from the load cell. The WOB measured 

by DAQ #1 during the experiment is not an effective WOB due to pump-off pressure and force 

underneath the bit. Hence, the effective WOB can be determined by equation 3.1: 

𝑊𝑂𝐵𝑒𝑓𝑓 = (𝑊𝑂𝐵𝑚𝑒𝑎𝑠𝑢𝑟𝑒) − (𝑝𝑢𝑚𝑝 − 𝑜𝑓𝑓 𝑓𝑜𝑟𝑐𝑒)     (3.1) 

Hydraulic pump-off force (HPO) can either be measured during a drill off test or estimated by 

equation 3.2.  

𝐻𝑃𝑂 = 4.1902 ∆𝑃𝑏𝑖𝑡(𝑑𝑏𝑖𝑡 − 1)   [N]   (3.2) 

where: Pbit [Pa] is the pressure drop across the bit and dbit [m] is the nozzle diameter in the bit 

The pressure drop across the bit can be calculated using equation 3.3.  

∆𝑃𝑏𝑖𝑡 =
9.523×10−5𝜌𝑞2

𝐶𝑑
2 𝐴𝑡

2           [Pa]   (3.3) 

Where  is the density (kg/m3); q is the pump flow rate (m3/s); Cd
 is the jet nozzle discharge 

coefficient = 0.95; and 𝑨𝒕 is the total nozzle area (m2). The hydraulic pump-off force obtained 

using the above equations is -166.8N. The negative sign shows that HPO is a negative weight on 

bit. Therefore, the effective weight on bit, WOBeff, can be calculated using equation (3.1). 

(a) (b)

(c) (d)

Hole through the test specimen rock 
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Additionally, nozzle jet force 𝑭𝒋, which is the impact force developed by the bit, can be calculated 

using equation (3.4): 

𝐹𝑗 = 1.0588 × 10−3 𝐶𝑑𝑞(√𝜌∆𝑃𝑏𝑖𝑡)  [N]   (3.4) 

Thus, the nozzle jet force calculated, 𝑭𝒋 = 19.35 N. Another important parameter to be considered 

is the hydraulic square inch (HSI) which is a function of pump hydraulic horsepower (𝑷𝒉𝒑) and 

bit area and can be determined using equation (3.5) and (3.6) respectively. 

𝑃ℎ𝑝 =
∆𝑃𝑏𝑖𝑡𝑞

1714
 (ℎ𝑝)      (3.5) 

𝐻𝑆𝐼 =  
𝑃ℎ𝑝

𝐴𝑏𝑖𝑡
  (hp/ in2)     (3.6) 

𝑷𝒉𝒑= 0.353 hp and HSI = 0.238 hp/ in2 (or 2.75 kW/m2) are obtained. Therefore, the bit size and 

the hydraulic horsepower requirement for this experiment are well within the specifications for the 

drilling simulator and Table 3.2 provides the summary of the input parameters used in the 

experiment. 

Table 3.2: Summary of input simulation parameters  

Parameters Description Values Units 

WOB Applied weight on bit 54.3 kg 

Q Mud pump input flow rate 47.3 L/min 

PI Initial downhole pressure 30-35 psi 

PG Compressed gas input pressure 170 - 180 psi 

Q Compressed air input flow rate 8 – 9 SCFM 

N Drilling motor speed 292 - 300 Rpm 

 𝝆𝑴𝑼𝑫 Water-based mud density 1000 kg/m3 
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3.2.4 Experimental Procedure 

The drilling of the test specimens is planned and conducted such that the depth of specimen drilled 

experiences three consecutive stages of drilling simulation: no kick region 1 (NKR-1), kick region 

(KR), and no kick region 2 (NKR-2) respectively. Approximately 80% of the test specimen with 

4-in total depth is drilled for each run to ensure the test specimen fully interacts with the two PDC 

cutters and remains intact after drilling simulation. The air is injected into the test specimen via 

the filtration exhaust of the downhole pressure cell, as shown in Figure 3.4. The test procedure is 

conducted as follows: 

a) The drilling procedure begins by installing the test specimen in the downhole pressure cell, 

which becomes a closed wellbore.  

b) The experiment commences after the test specimen secured in the pressure cell and simulation 

equipment has been fully set up as shown in Figure 3.4.   

c) After drilling about one-third of the test specimen depth (NKR-1), compressed air is injected 

into the pressure cell at a fixed rate of 8 – 9 SCFM and the pressured air travels from the bottom 

of the test specimen to the top via the hole through the center of the specimen. This enables 

the bit-rock-air interactions and simulates the kick region (KR).  

d) After drilling approximately another one-third or more of the test specimen during the kick, 

the air injection is stopped as the drilling continues with no kick (NKR-2). During this 

operation, downhole parametric data, including rotary angular speed, rate of penetration 

(ROP), average depth of cut, axial displacement of the bits, motor current and WOB are logged 

by DAQ #1, while the downhole pressure, inlet pressure into the return line, return mud mass 

flow and density flow rates are logged by DAQ #2.  
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Figure 3.4: Kick Experiment process flow diagram 

 

3.3 Results and discussions 

Six downhole dynamic drilling parameters that are measured and calculated during experimental 

simulations are a weight on bit (WOB), the torque on bit (TOB), downhole pressure, the rate of 

penetration (ROP), rotary speed and bit-axial displacement (vibrations). In addition to these 

parameters, four surface parameters are monitored, and these include choke pressure, return fluid 

mass flow rates, volume flow rates, and density. Two experimental runs are conducted to ensure 

repeatable and consistent results. The results from these experiments have been compared and 

found consistent with Aldred et al. (1998) field reports on drilling parameters’ response to kick.  

Aldred et al. (1998) reports focused on the performance of Annular Pressure While Drilling tools, 

along with other BHA tools, for monitoring drilling performance and making proactive decisions 
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during drilling operations. These tools were utilized in the Eugene Island field in the Gulf of 

Mexico where the formation consisted of sequences of shales and target sands that were likely 

depleted by the previous production. The drilling contractor, Anadrill, utilized a series of downhole 

tools, including the Compensated Dual Resistivity, Multi-axis Vibrational Cartridge, Integrated 

Weight on Bit, and Annular Pressure While Drilling for this well.  

Thus, drilling parameters including downhole torque and weight on bit, axial and torsional 

vibrations, ROP, annulus pressure, equivalent circulating density (ECD) etc., were being 

measured. When kick was taken in a 12¼-in. hole section, their measurements started to drop in 

response to kick. These deviations can be observed in Figure 3.5, i.e. ROP, WOB, annulus 

pressure, torques, vibrations, and ECD dropped due to kick. These responses in drilling parameters 

indicating kick occurrence are found to have consistent responses with the experimental results 

that are being presented in this section.  

  

Figure 3.5: Reproduced well log with respect to time showing the kick alert in the GOM well (Source: 

Aldred et al., 1998) 
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3.3.1 Kick effects on downhole WOB and pressures 

The effects of kick on drilling parameters, such as WOB and bottomhole pressures for both 

experimental runs are shown in Figures 3.6 – 3.7. Figures 3.6a and 3.6b  show the effects of kicks 

on WOB for both Run_1 and Run_2 respectively. It is observed from both curves that the WOB 

decreases in magnitude after the kick is initiated. The moment when the kick is injected into the 

drilling system is consistent with the moment when the downhole and output pressures surge by 

an average of 25 – 45 psi above the initial downhole pressure, as shown in Figure 3.7a  and 3.7b 

of Run_1 and Run_2 respectively.   

           

 

Figure 3.6: Effects of gas kick on WOB 

               

 

Figure 3.7: Effects of gas kick on bottomhole pressure    
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Figure 3.7a: Effects of gas kick on bottomhole pressure for 

experimental Run_1 

Figure 3.7b: Effects of gas kick on bottomhole pressure for 

experimental Run_2 

Figure 3.6a: Effects of gas kick on WOB for experimental Run_1 Figure 3.6b: Effects of gas kick on WOB for experimental Run_2 
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3.3.2 Kick effects on ROP 

The kick effects on the rate of penetration (ROP) can be observed in Figures 3.8a and 3.8b of 

Run_1 and Run_2 respectively. As shown from point A to point B of the no-kick region 1, the 

ROP value is 0.055 in/s (1.4 mm/s). As soon as kick occurs (i.e. gas injection into the wellbore) 

the ROP drops to about 0.04 in/s (1.02 mm/s) from point B to B', which represents about a 27% 

drop. From point B' to point C, the ROP remains constant in this kick region. When the air injection 

ceases at point C, the ROP increases to about 0.058 in/s (1.5 mm/s) for Run_1 and 0.055 in/s (1.4 

mm/s) for Run_2 from point C to C'. This may be explained by the upthrust force, which creates 

an air jet between the bit and the core rock specimen, thus lifting the bit and causing minimal bit-

rock interactions. 

          

 

Figure 3.8: Effects of gas kick on ROP 

          

3.3.3 Kick effects on mud return volume flow rate  

The effects of kick on the mass flow rate of the mud return for Run_1 and Run_2 are shown in 

Figures 3.9a and 3.9b respectively. The mass flow rate responds instantaneously to gas influx 

entering the flow meter as shown by a surge in the mass flow rate of the return mud. The continuous 

injection of compressed air (influx) into the wellbore then causes erratic readings of the mass flow 
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Figure 3.8a: Effects of gas kick on ROP for experimental Run_1 Figure 3.8b: Effects of gas kick on ROP for experimental Run_2 
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rate that, by observation, is on average higher in magnitude than the pre- and post- gas kick 

readings. The observed increase in the mass flow rate may be due to the increased mass velocity 

of the fluid caused by the gas influx.  

Additionally, the effects of kick on fluid density are shown in Figure 3.10. The fluid density is 

observed to drop in magnitude due to the gas influx. This can be explained by the low-density fluid 

(air) injected into the wellbore mud decreasing the bulk density of the return mud. Since the 

volume flow rate is determined by dividing the mass rate by the combined fluid density, the volume 

flow rate increases due to gas kick; this effect is shown in Figure 3.11.  

           

 

Figure 3.3.9 Effects of gas kick on the mass flow rate of the return fluid 

 

 

           Figure 3.3.10: Effects of gas kick on mud density of the return fluid for experimental Run_2 
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Figure 3.9a: Effects of gas kick on mass flow rate of the return 

fluid for experimental Run_1 

 

Figure 3.9b: Effects of gas kick on mass flow rate of the return 

fluid for experimental Run_2 
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Figure 3.11: Effects of gas kick on the volume flow rate of the return fluid for experimental Run_2 

   

3.3.4 Kick effects on rotary speed 

The minimal bit-rock interactions created by the upthrust jet during air injection into the wellbore 

for Run_1 and Run_2 may also explain the reason for the increase in rotary speed. The rotary speed 

is calculated from the relative displacement data acquired from the laser sensor projection on a 

rotating disc by means of counting the number of spikes created by the three grooves located on 

the plate 120 apart, as shown in Figure 3.12. These grooves are recorded as spikes in the bit-rock 

axial displacement data as the tool rotates during drilling. These spikes can be noted in Figures 

3.13a – 3.15a for Run_1 and Figures 3.13b – 3.15b for Run_2 of the axial bit displacements versus 

time graphs.  The rotary speed for each test condition, is thus calculated by following procedures 

a) to c) and the results are summarized in Table 3.3: 

a) The rotary speed (RPM) calculation can be determined by counting the number of spikes 

between the two-second period and then calculate the average of spikes per 1-minute 

revolution.  

b) Equation (3.7) is developed to calculate the rotary speed of the drillstring at it experiences 

drilling phase/region.   

c) The rotary speed for each test condition is thus calculated and the results are summarized 

in Table 3.3. 
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𝜃 (𝑅𝑃𝑀) =
(# 𝑜𝑓 𝑠𝑝𝑖𝑘𝑒𝑠)×3

60 
× (∆T)   (3.7) 

where:  𝜃 is the rotary speed and T is the time between the first spike and the last spike. 

Table 3.3: Summary of calculated rotary speeds during kicks and no-kick drilling 

simulations   

Test Specimen Phase   (Rpm) For Run_1   (Rpm) For Run_2 

No Kick Zone 1 270.8 275.8 

Kick Zone 281.6 281.3 

No Kick Zone 2 275.9 277.9 

Figure 3.13 to 3.15 represent two-second data from each testing region of the test specimen core 

rock for Run_1 and Run_2. Figures 3.13a – 3.15a show the bit axial displacement data for NKR-

1, KR, and NKR_2 respectively for Run_1 while Figures 3.13b – 3.15b show the same for Run_2. 

It can also be observed that the intensity of the noise in the bit rock displacement data completely 

dampens out as the test specimen undergoes drilling with no kick and when the gas is injected. 

These damping effects show the indication of kick, which is evident by a dramatic reduction in 

axial bit-rock displacements during the kick.  

 

Figure 3.12: An image of a rotating flat disc with three grooves for measuring relative displacement 

between the motor head and the drill pipe 
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Figure 3.13: Kick effects on rotary speed - No kick region #1 

   

           

 

Figure 3.14: Kick effects on rotary speed - Kick region 

   

          

 

Figure 3.15: Kick effects on rotary speed - No kick region #2 
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Figure 3.13a: Kick effects on rotary speed - No kick region 

#1 for Run_1 

 

Figure 3.13b: Kick effects on rotary speed - No kick region 

#1 for Run_2 

 

Figure 3.14a: Kick effects on rotary speed - Kick region 

for Run_1 

 

Figure 3.14b: Kick effects on rotary speed - Kick region for 

Run_2 

 

Figure 3.15a: Kick effects on rotary speed - No kick region #2 

for Run_1 

 

Figure 3.15b: Kick effects on rotary speed - No kick region 

#2 for Run_2 
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3.3.5 Kick effects on torque on bit (TOB) 

The effects of kick on TOB are also explored, as TOB can be a significant downhole parameter 

candidate for early kick indicator. Although no direct measurement of TOB is currently installed 

on the drilling system, Reyes (2017) performed a series of laboratory tests using the drilling system 

utilized in the current study and a MC6 Load and torque cell equipment to develop a mathematical 

relationship between TOB, drill motor current, and rotary speed. The motor current and rotary 

speed are measured using the DAQ #1. The detail procedures are available in Reyes (2017). This 

formula is given in equation (3.8).  

𝑇𝑂𝐵(Ω, 𝑖𝑟𝑚𝑠) = 59.985 − 0.295Ω + 26.48𝑖𝑟𝑚𝑠  (𝑁. 𝑚)  (3.8) 

Where:  Ω = the angular speed (RPM) and irms = root mean square of the motor current. 

By applying (4.8), the average TOB at each test region (no-kick (1), kick, and no-kick (2)) for 

experimental Run_1 and Run_2 are determined and summarized in Figure 3.16. It can be observed 

that the average TOB drops when the kick is experienced in the wellbore (pressure cell). This may 

be consequential to the lift force exerted by the air jet underneath the bit reducing the interactions 

between the bit and the core specimen. This reduction in interactions will lower the driving force 

(or TOB) required to drill the core specimen compared to the higher driving force required when 

the wellbore is not experiencing kick, which will thus increase the TOB. 
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Figure 3.16: Kick effects on TOB for experimental Run_1 and Run_2 

 

These results are consistent with the behaviour of all other drilling / downhole parameters that are 

explored in this work. For example, the kick region experiences a higher rotary speed, lower TOB 

and lower ROP compared to a lower rotary speed, higher TOB, and higher ROP for a no kick 

region. These results are also consistent with the field data reported in Aldred et al., (1998). It can 

be concluded that a dramatic drop in TOB during drilling can be an indication of kick occurrence 

downhole.  

3.3.6 Bit-rock interaction and analysis  

The most significant new finding of this work is the damping effect of drilling vibrations due to 

kick. These are captured in Figures 3.13a – 3.15a for Run_1 and Figures 3.13b – 3.15b for Run_2. 

By using a time-scale analysis, two-seconds (precisely 2.048 seconds) data are extracting from 

Run_1 plots of the test regions in Figures 3.13a – 3.15a and plotted them to place the data response 

of each test region sequentially for visualization. The result, as illustrated in Figure 3.17, shows 

significant changes of about 40% reduction in the axial displacement and vibration as the core 
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specimen experiences kick compared to the no-kick region (1) and region (2). This behaviour may 

constitute an indication of influx into the wellbore.  

 

 

Figure 3.17: Kick effects on axial bit-rock displacement (time domain) – Run_1 

 

Additionally, a frequency analysis is performed using a Fast Fourier Transform (FFT) as a data 

processing method, which converts the data from time scale domain into the frequency domain. 

The purpose of performing frequency analysis is to isolate the frequencies in the data caused by 

axial bit-rock displacement/vibrations and those caused by the rig vibration. By default, the overall 

bit axial displacement also consists of axial vibration, which is of interest to this analysis. The 

current work adopts Reyes (2017) methodology to perform the data processing for the overall bit 

axial vibration frequency analysis by using equation (3.9). 

     𝑈𝑣𝑖𝑏 = (𝑇 × 𝑅𝑂𝑃𝐴𝑣𝑔) − 𝑈               (3.9) 

where: Uvib = axial vibration; T = time; ROPavg = Average ROP; U = axial displacement 
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By applying this methodology and process, the axial displacement frequencies obtained are signals 

are shown in Figure 3.18. It can be noted that there is a significant drop (between 33 – 89%) in the 

bit axial vibration during kick as compared to no-kick conditions.  

 

 

Figure 3.18: Kick effects on axial bit-rock vibration frequency – Run_1 

 

3.4 Conclusions 

The current study monitored nine parameters, including dynamic WOB, downhole pressure, ROP, 

rotary speed, TOB, axial bit-rock interaction vibration, mud density, return mass flow rate, and 

return volume flow rate. These parameters are measured during lab-scale drilling simulations of 

synthetic core specimens with a hole drilled through the center to aid bit-rock-gas influx 

interactions. Each core specimen undergoes three consecutive test stages during drilling: no-kick 

region (1), kick region (KR), and no-kick region (2). The results from all monitored parameters 

show that influx indications are consistent with case studies and field reports and are summarized 

as follows: 

 

a) WOB: The magnitude of WOB decreases in response to the gas influx.  
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b) Downhole pressure: There is an immediate surge in downhole pressure in response to kick.  

c) Mud return flow rate: Mud density drops in response to kick and the volume flow rate increases 

in response to kick.  

d) ROP: The rate of penetration drops during gas influx and this may be explained by less bit-

rock interaction due to the air jet exerted below the bit. 

e) Rotary speed and TOB: The rotary speed increases when the kick is experienced in the 

wellbore while the TOB decreases. These behaviours may be explained due to less bit-rock 

interactions causing the drillstring to rotate faster and with a less driving force. 

f) Axial bit vibration: The amplitude of axial bit vibration significantly decreases by about 33 – 

89% as the kick is taking in the wellbore.   

 

The most significant new finding of the study is the damping behaviour of drilling vibrations, 

which ranges between 33 – 89% reduction, due to the gas influx. This is evidenced by a dramatic 

reduction in axial bit-rock displacement/vibration during the kick and the behaviour are illustrated 

in both time and frequency scales analyses. The damping effects of drilling vibrations during kick 

can potentially serve as a new influx indicator during drilling with more large-scale/field 

investigations. Thus, for most drilling scenarios where temperature and pressure are higher, the 

kick size, rate, and rising time are expected to be higher; however, these conditions will not change 

how the drilling parameters will respond to the kick occurrence and detection given that 

appropriate downhole and surface sensing devices are used. Therefore, the drilling parameters 

measured and studied in the current chapter are expected to respond consistently to the gas kick in 

all practices as indicated and concluded. 
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Chapter 4 Kick Control Reliability Analysis of Managed Pressure 

Drilling Operation 
Preface 

This chapter presents a reliability assessment of a managed pressure drilling (MPD) system during 

a kick control operation. A dynamic annular pressure control (DAPC) system, which is a constant 

bottomhole pressure MPD technique, is used. A paper version of this chapter has been published 

in the Journal of loss prevention in the processing industry (2018), Vol. 52 pp. 7–20. Along with 

the co-authors, Dr. Ming Yang, Dr. Faisal Khan, and Dr. Stephen Butt,  I have co-authored this 

chapter. I developed the conceptual model, made first attempt to perform the model analysis, and 

interpret the data and results. The co-author Faisal Khan helped in analyzing and testing the 

concepts, reviewed and corrected the data and results, and contributed in preparing, reviewing 

and revising the manuscript. The co-author Dr. Ming Yang contributed through assisting in model 

analysis, data interpretation, verifying the results, and organizing and revising the manuscript. 

The co-author Dr. Stephen Butt contributed through assisting in analyzing the data, testing and 

verifying the results and revising the manuscript. Co-authors Drs. Yang, Butt and Khan reviewed 

the revisions and provided feedback which I have implemented. I prepared the first draft of the 

manuscript and subsequently revised the manuscript based on the co-authors’ feedback and the 

peer review process. 

Abstract 

Offshore drilling involves complex operations and equipment; thus, faces many operational 

challenges, including well control. Managed pressure drilling has been proved to resolve most of 

these challenges; however, this technology, for the most part, is still in its infancy. This chapter 

explores the safety and reliability assessment of a managed pressure drilling operation by 

investigating the kick control operation of constant bottomhole pressure technique of managed 
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pressure drilling. In addition, this study seeks to understand the components interactions in an 

MPD system and their modes of failure. Failure scenarios are first built using a Fault Tree model 

and then analyzed using a Bayesian Network model. The reliability assessments of kick control 

operation are performed in two ways: a basic-components approach and a system-barrier elements 

approach. The analysis identifies communication-related components, including network device 

damage as the most safety-critical component due to their high-level of influence, while flowline 

and pump line blockages/rupture are ranked second-most critical but with limited-level of 

influence. However, the system-barrier element approach ranks the managed pressure drilling 

control system as the most safety-critical equipment. Further analysis confirms that the monitoring 

equipment is the most safety-critical components of the managed pressure drilling control system 

with the Coriolis flow meter and Rig pump exhibiting the most critical monitoring equipment. 

Additionally, the managed pressure drilling system’s components show a high degree of 

dependencies on one another and exhibit non-sequential modes of failure during kick control 

operation.  

Keywords: Fault tree, Bayesian Network, Reliability, MPD, safety barrier 

 

4.1 Introduction 

Offshore drilling involved complex operations and equipment; hence face many operational 

challenges, including well control. This is even more significant considering that most remaining 

prospects for hydrocarbon resources are either bringing exploration into deepwater or existing ones 

are presented with narrow drilling windows between the pore pressure and the fracture gradient. 

The latter can also be due to depleted reservoirs. The narrow margins are most prominent in 

deepwater applications where much of the overburden is seawater (Malloy and McDonald, 2008). 
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These extreme drilling environments heighten geological uncertainty and their complexity are 

becoming the norm in nowadays drilling operations. Issues, such as well control incidents (e.g. 

kick) are periodically encountered and can increase operational costs (e.g. lengthy non-productive 

time - NPT) and risk, especially when drilling using an open hydraulic system (conventional - 

overbalanced drilling method).  

 

Kick mechanisms, which are a function of formation fluid influx in drilling operations, have been 

covered explicitly in the literature. The mechanisms can be illustrated based on the relationships 

between bottomhole pressure (BHP), pore pressure (Pp), and fracture pressure (Fp). During an 

overbalanced drilling, i.e. when the BHP is maintained above the pore pressure (BHP > Pp), influx 

occurs when the BHP drops below the pore pressure. This unwanted formation influx into the 

wellbore is defined as a kick. However, when drilling underbalanced (i.e. BHP < Pp), the influx of 

formation fluid is desired to increase the drilling performance (e.g. rate of penetration). However, 

when the influx size rises above the desired limit, which is usually determined by the topside 

equipment pressure ratings, then the influx becomes a kick. Conversely, if the BHP rises above 

the fracture pressure (i.e. BHP > Fp), this will result in formation fracture and loss of drilling fluid 

into the formation causing a drop in BHP and then likely result in a kick (Khakzad et al., 2013).   

 

Thus, when using conventional overbalanced drilling method and maintaining the BHP above the 

pore pressure in a depleted or an ultra-deepwater formation with narrow pressure window, a small 

rise in BHP can easily result in a condition where BHP rises above fracture pressure. This can lead 

to loss of drilling fluid and result in a kick. To avoid or reduce the likelihood of this pressure event, 
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a constant bottomhole pressure technique of managed pressures drilling (MPD) is implemented to 

maintain the BHP between the narrow drilling window, i.e. Pp < BHP < Fp (Abimbola et al., 2015).  

 

Managed pressure drilling utilizes specialized equipment and hydraulic control system to maintain 

the BHP to a near constant within the drilling window when drilling ahead or in a static condition.  

Managed Pressure Drilling, thus, can be defined per the International Association of Drilling 

Contractors (IADC) as: “an adaptive drilling process used to precisely control the annular pressure 

profile throughout the wellbore while ascertaining the downhole pressure environment limits and 

managing the annular hydraulic pressure profile accordingly. The intention of an MPD is to avoid 

a continuous influx of formation fluids to the surface.”  

 

Contrary to conventional drilling practice that relies primarily on mud weight as the primary safety 

barrier (Khakzad et al., 2013), managed pressure drilling operation utilizes, in addition to mud 

weight, special equipment such rotating control device, choke manifold and backpressure pump to 

adjust annular pressure to meet the BHP requirements. Managed Pressure Drilling (MPD) is 

operated in a closed loop system, hence improves the safety, efficiency, and economics of drilling 

operations while avoiding continuous flow to the surface (Gala and Toralde, 2011; Rohani, 2012; 

Malloy and McDonald, 2008; Kok and Tercan, 2012). 

 

The operational benefits that MPD brings to drilling can be illustrated mathematically. First, 

considering an open hydraulic system (conventional overbalanced drilling) where the bottomhole 

pressure (BHP) is maintained by hydrostatic mud weight head (HP) and annular friction pressure 

(AFP) when circulating or drilling (Birkeland et al., 2009). AFP is maintained by equivalent 
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circulating density (ECD), which is a function of pump rate and mud rheology. In a static 

condition, however, ECD is lost, hence the BHP is only controlled by the mud weight head. These 

conditions can be expressed mathematically below: 

𝐵𝐻𝑃 =  𝐻𝑃 +  𝐸𝐶𝐷(𝑑𝑢𝑟𝑖𝑛𝑔 𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔)     (4.1) 

𝐵𝐻𝑃 =  𝐻𝑃 (𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑖𝑐 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)     (4.2) 

Meanwhile, in MPD operation, backpressure (BP) can be manually or automatically applied and 

controlled by MPD control system, via choke manifold, which activates the backpressure pump to 

precisely maintain the BHP; hence, results in timely mitigation of kicks and mud losses. These can 

be expressed mathematically as follows: 

𝐵𝐻𝑃 =  𝐻𝑃 + 𝐵𝑃 +  𝐸𝐶𝐷(𝑑𝑢𝑟𝑖𝑛𝑔 𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔)    (4.3) 

𝐵𝐻𝑃 =  𝐻𝑃 + 𝐵𝑃 (𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑖𝑐 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)    (4.4) 

During static condition, the choke is used to add backpressure when drilling stops to maintain the 

BHP instead of using the heavier mud.  

 

The significance of safety benefits that MPD technologies bring to conventional drilling may be 

measured or assessed through the improvement in safety barriers of conventional primary well 

control, especially in deepwater drilling. Gabaldon et al. (2014) used well control barrier envelopes 

to describe how MPD improves influx management and prevents unnecessary shut-in or blowout 

due to the additional safety barrier elements in an MPD system compared to the conventional 

safety barrier elements. These include MPD equipment (e.g. RCD and MPD control system) and 

the mud weight in the conventional primary barrier element. Zan and Bicke (2014) developed a 

probabilistic risk analysis model that translated the qualitative assessments in the 2008 Department 

of Interior Minerals Management Service (DOI MMS) report into a quantitative assessment. Based 



 

55 
 

on assumed probabilities for each deviation category developed in their model, they obtained a 

failure probability of 0.0085. This value was reduced by 20% when an MPD system was 

implemented.  

 

Grayson and Gans (2012) examined the key elements of a closed-loop circulating system 

(including RCD and MPD influx control) to increase the well control barrier layers and efficiency 

of drilling operations. They compared the risk levels in an open loop system (conventional well 

control) to closed loop system (MPD) by using blowout scenarios that include human errors 

probability (HEP). Their analyses show that the additions of MPD into a well control barrier layer 

reduced the possible risk of a blowout by almost 500%. Handal A. and Øie (2013) proposed a 

safety barrier analysis and hazard identification methodology for an MPD system to identify its 

safety-critical equipment. They used fault tree analysis to illustrate how the failure in an MPD 

pressure control equipment may be critical to BHP control and how the failure of an MPD control 

system may lead to a loss of well control.  

 

The operational and economic benefits are well touted by the technology providers, but limited 

information is available to understand the complexity that an MPD system brings to the drilling 

operation. There are no clear standards to quantify the acceptable influx that an MPD system can 

handle to consider the operation safe. Therefore, more research should be devoted to understanding 

the complexity of MPD operations as this will help to facilitate the development of risk and safety 

models that will be inclusive. In Abimbola et al., (2015), the safety and risk of MPD study was 

focused on constant bottomhole pressure technique of MPD operation but did not investigate the 

operational dependencies of components in the MPD system nor their modes of failure.  
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Thus, this chapter explores the reliability assessment of an MPD system by investigating the kick 

control an operational aspect of a constant bottomhole pressure (CBHP) technique of MPD during 

drilling. The current study is based on the CBHP configuration commonly referred to as dynamic 

annular pressure control (DACP) and uses an assumption that kick has occurred while drilling. 

The kick control operation is modeled using a fault tree and analyzed using a Bayesian Network. 

Additionally, to identify the most critical components in the CBHP kick control operation, 

sensitivity analysis is performed. The outcomes of the analyses are compared with two related 

studies. 

 

4.2 Constant Bottomhole Pressure Technique and Kick Control Model Development 

4.2.1 Constant Bottomhole Pressure Technique and Operation 

Managed pressured drilling (MPD) has many techniques whose operations are well-candidate 

specific. The four most commonly used MPD techniques are constant bottomhole pressure 

(CBHD), pressurized mud cap drilling (PMCD), dual-gradient drilling (DGD) method, and return 

flow control (RFC)-HSE method. Others are controlled mud cap system and continuous circulating 

system. A constant bottomhole pressure technique of managed pressure drilling (CBHP)-MPD is 

generally used in a naturally fractured formation with a narrow drilling window where the pore 

pressure and fracture gradient are very close (Rohani 2013). This MPD technique uses hydraulics 

models to establish wellhead pressure and maintains a suitable equivalent circulating density 

(ECD), annulus pressure gradient, and annulus ECD at a selected location in the wellbore.  

 

According to Chustz et al. (2007), the aims of CBHP are to (1) automatically calculate, in real-

time, the wellhead pressure required to maintain constant downhole pressure; (2) control the choke 
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and pump to generate adequate backpressure; (3) provide automatic kick detection. All CBHP 

systems, which include the dynamic annular pressure control (DAPC) system by Schlumberger, 

Weatherford MPD technology, and GeoBalance® Managed Pressure Drilling (MPD) by 

Halliburton, perform these three objectives. Unlike the DAPC control system, Weatherford MPD 

technology utilizes the Microflux® control system while Halliburton MPD uses the combination 

of an Automated Choke Control System, a GeoBalance® Sentry™ Data Acquisition and the 

Halliburton INSITE Anywhere® GeoBalance® system.  

 

As illustrated in Figure 4.1, the DAPC system’s pressure control and kick detection operations rely 

on a rotating control device (RCD) to seal and allow the pressurization of the wellbore annulus. 

The drilling returns are diverted by the RCD and routed into a choke manifold. The MPD choke 

manifold is used to apply hydraulic backpressure on the annulus during connections and trips to 

replace the friction pressure component of ECD. The backpressure pump is used to energize the 

annular fluid and precisely control the applied backpressure. An MPD control system serves as the 

control hub for all the entire CBHP equipment. The following are the recommended CBHP-MPD 

equipment based on Vieira et al. (2008); Elliott et al. (2011); Fredericks and Reitsma (2006); 

Fredericks (2008); Chrzanowski et al. (2011):   

▪ Rotating Control Device (RCD) 

▪ MPD Choke Manifold 

▪ Flowline 

▪ Downhole Deployment Valve (DDV) 

▪ Non-Return Valves (NRV’s) 

▪ MPD Multiphase Separator 
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▪ MPD Control System 

▪ Back Pressure Pump (BPP) 

▪ Equivalent Circulation Drilling Reduction Tool (ECD-RT) 

▪ Pressure-While-Drilling (PWD) tools 

▪ Coriolis flow meters  

 

4.2.2 Kick Incident Model 

The DAPC system is designed to dynamically keep the BHP constant by using pressure control and 

other specified equipment. The current analysis assumes that kick has occurred, i.e. the BHP has 

dropped below the pore pressure. Additionally, the current study only considers a kick occurrence 

while in drilling-mode. Based on the DAPC operational layout shown in Figure 4.1, the CBHP kick-

control operation is illustrated in a schematic diagram shown in Figure 4.2. 

 

4.2.2.1 Equipment Functionality and Operational Dependency  

The MPD control system plays significant roles in MPD operations; one of the key roles is to regulate 

the pressure in the well during drilling or pipe extension. It performs these operations through two 

control modes: pressure and flow control modes. During pressure control mode, the wellbore pressure 

is maintained overbalanced and within the bottomhole pressure setpoint. However, when the 

bottomhole pressure rises above the pressure setpoint due kick, for example, the MPD control system 

switches to flow control mode by adjusting the choke manifold to increase the backpressure on the 

well annulus. If there is not enough fluid to apply the appropriate backpressure to control the kick, 

the MPD controller activates the backpressure pump to generate the needed backpressure. 

 

Additionally, MPD control system needs feedback from the flow measurements from the Rig mud 

pump (for mud flow-in rate) and Coriolis flow meter (for returns flow rate). These feedback data are 
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used to detect kick occurrence, which will result due to the deviation between the mud pump flow 

rates and the return flow rates. The MPD control system needs a power supply and cable-wire 

connections to ensure communication with other equipment. The accuracies of the PWD tool and 

Coriolis flow meter depend on the correct calibrations of their sensors. The effectiveness of applied 

backpressure on the wellbore depends on the rotating control device (RCD) functionality. The non-

return valve (NRV) ensures the applied backpressure is effective on the wellbore by preventing fluid 

from escaping up into the drillstring via the drill bit. 

 

 

Figure 4.1: CBHP (DAPC) MPD Process Flow Diagram (adapted from Schlumberger’s MPD (2016)) 
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The flow pathways indicated in dashed lines of Figure 4.2 signify the power supply and data 

transmission across the entire system while the pathways indicated in thick lines show the hydraulic 

movement through the system. 
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Figure 4.2 CBHP MPD system kick management operational flow – showing equipment dependency 

and interaction process 

 

The electrical supply/communication to and from the MPD control system in Figure 4.2 is 

represented by “A1”, “A2”, “B”, “C”, and “N” and the hydraulic movements through the choke 

manifold, Coriolis flow meter, Backpressure pump, RCD, and NRV are represented by “F1” and 

“F2”. These notations are described as follows: 

1. “A1” – represents the pressure data inputs required for the integrated pressure management 

control system to calculate the appropriate hydraulic model. 

2. “A2” – represents the flow measurements data inputs required for the MPD control system to 

determine kick by comparing flow-in and flow-out.  
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3. “B” – represents the output command signals from the integrated pressure management control 

system to the choke system and the backpressure pump. The operation of these components 

depends on these output commands and are sent over a high-speed network connection. 

4. “C” – represents the power connection to all devices except RCD, NRV and flowline. 

5. “N” – represents the network connection to the integrated pressure management control system, 

which serves as the hub for all components connected to it as shown in Figure 4.2 

6. “F1” – represents the hydraulic movement (or kick) from the wellbore via the RCD and through 

the choke unit into the Coriolis flow meter and then into the separator. 

7. “F2” – represents the hydraulic movement (or backpressure) from the choke unit via the RCD to 

the wellbore to control or stop influx while the NRV prevents backflow into the drillstring. 

 

4.2.2.2 Kick Incident Scenarios 

The kick control operation commences with the entire system becoming energized by the power 

supply and then uses a network connectivity/cable-wire connection to ensure flow/pressure data 

transfer to and from the MPD control system. The MPD control system receives inflow data from the 

rig pump rate and outflow data from the Coriolis flow meter and processes the flow data for kick 

detection. After kick has been detected, the control system adjusts the choke positions accordingly to 

apply backpressure to the wellbore.  

 

In the kick control operation diagram shown Figure 4.2, all probable failure scenarios identified 

cannot occur sequentially; e.g. the choke system is unable to apply the appropriate backpressure to 

control the influx due to the choke valves not closing or controller not adjusting the valves positions. 

In addition, the Coriolis flow meter may measure inaccurate flow data due to flow sensor failure or 

may not send flow data due to connectivity issue etc. Thus, a sequential failure model may be 

inadequate to account for all these possible scenarios or the CBHP system components’ 



 

62 
 

interactions/dependability. Therefore, the current study utilizes the FT model to identify all possible 

operational failure scenarios and the BN to analyze the model. 

 

4.3 Models Development 

4.3.1 Fault Tree Model 

The fault tree model is developed based on kick management operational flowchart in Figure 4.2. 

The top event (kick control failure) could occur through multiple scenarios of events that could be 

initiated with the failure of any components in the system. While the power supply may have both a 

direct and indirect contribution to the kick control failure, the rig pump, Coriolis flow meter, PWD 

tool, and network connectivity only have indirect contributions. Therefore, the MPD control system, 

RCD, NRV, backpressure pump, and choke manifold have a direct contribution to the kick control 

failure. 

4.3.1.1 MPD Choke Manifold  

The Choke Manifold in this study operates automatically to apply appropriate hydraulic backpressure 

to the wellbore to neutralize kick. The logical relationships of its components are shown in Figure 

4.3. The key components are the choke valves which consist of two main valves and one auxiliary 

valve and the controllers, which consist of main and auxiliary controllers. The main controller 

controls the main choke valves while the auxiliary choke valve is controlled by the auxiliary 

controller. Hence, the choke valves and the controllers both have redundancy configurations. Another 

key component of the manifold system is the communication features which are supplied by an 

electrical power source and network connectivity. The network connectivity relies on cable wire, 

power supply, and live communication with the satellite. Additionally, since backpressure is applied 

through the flowline, blockage or rupture of the piping system in the manifold could result in a failure 

of its operation.  
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4.3.1.2 Backpressure Pump  

The backpressure pump acts as a backup when the MPD choke manifold is unable to provide the 

required backpressure to control influx into the wellbore. Its operation depends on the fluid level in 

the system (mud pit), pump line, auxiliary controller, and communication system. These relationships 

are illustrated in Figure 4.3.  

4.3.1.3 Managed Pressure Control System 

The MPD control system is designed to coordinate the choke manifold and backpressure pump 

operations in providing the necessary hydraulic backpressure to keep the BHP constant during 

drilling or while in a static / circulating condition. More importantly, an MPD control system relies 

on input flow and pressure data from devices such as the Coriolis flow meter, rig pump rate, and 

PWD tool to ensure accurate operations. The logical operation of the MPD control system is shown 

in Figure 4.4. The system consists of four intermediate events, including controller unit failure and 

monitoring system failure. 

The Controller unit performs arithmetic and logical operations and consists of: 

a) A controller panel – which controls the dynamic MPD pressure control equipment and consists 

of multiple interfaces including, a dynamic and static pressure control. Its failure may be due to 

a short-circuited board etc.  

b) Hydraulics models – for simulating physical parameters of fluid in the well 

c) Mechanistic models – for simulating other relevant operational parameters – such as torque, drag, 

ROP, formation conditions (Handal and Øie, 2013). 

The monitoring system supplies the pressure, flow and other hydraulic data to the MPD control 

system from the Coriolis flow meter, PWD tool, and the rig pump. The logical operation of the 

Coriolis flow meter, PWD tool, and the rig pump are shown in Figure 4.5 – 4.7 respectively. The 

Coriolis flow meter failure, for example, could be attributed to the loss of communication to the 
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controller, blockage in a flowline, or flow sensor malfunction. The loss of communication has multi-

level events as shown in Figure 4.7. 

4.3.1.4 Rotating Control Device  

The hydraulic backpressure is applied through the rotating control device (RCD) to the wellbore. In 

the current study, the operational dependency of the RCD is limited to its bearing assembly and 

housing assembly (bowl). These are represented in Figure 5.3. 

4.3.1.5 Non-Return Valve   

The NRV provides one-way flow of fluid from the surface to the bottom of the well via the drill bit 

that prevents the backflow of fluid into the drillstring when there is applied backpressure on the 

annulus (or wellbore). In practice, it is recommended to install two or more NRVs, with at least one 

located at the top of drilling string to serve as an additional safety barrier element (Stødle et al., 2013).   

 

4.3.2 Bayesian Network 

A Bayesian Network (BN) is a graphical model, based on Bayes’ theorem for probability reasoning 

to quantify complex dependencies. It has been widely used in reliability, risk and safety analyses. A 

BN can also be used to describe the causal influence relationships among variables via a directed 

acyclic graph (DAG) in which the nodes represent the system variables and the arcs symbolize the 

dependencies (Bobbio et al., 2001; Khakzad et al., 2011, 2013; Cai et al., 2013; Barua et al., 2016). 

Additionally, the capability of BN to perform both forward and backward analyses make its models 

unique in dynamic risk and safety analysis (Abimbola et al., 2015). The forward analysis uses prior 

probabilities of root nodes and the conditional probabilities to compute intermediate nodes and leaf 

nodes while the backward analysis instantiates the state of a specified node to update the probabilities 

of conditionally dependent nodes (Bobbio et al., 2001; Khakzad et al., 2013a; Abimbola et al., 2015).   
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Figure 4.3: Fault tree diagram showing kick handling operation for CBHP 
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Figure 4.4: Fault Tree diagram of MPD control system in the CBHP kick control operation 
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Figure 4.5: Fault Tree diagram of a Coriolis flow meter in the CBHP kick control operation 
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Figure 4.6:  Fault Tree diagram of PWD tool in the CBHP kick control operation 
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Figure 4.7: Fault Tree diagram of a Coriolis flow meter in the CBHP kick control operation 
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Thus, BN can reduce parameter uncertainty through probability updating and exploit all the modeling 

potentials of graphical probabilistic models (Khakzad et al., 2013; Montani et al., 2005). 

4.3.2.1 Bayesian Network Model 

The BN can be considered as a representation of joint probability distribution with a fundamental 

assumption that not every node is connected to every other node (Korb and Nicholson, 2011). 

Assuming a joint distribution of a set of random variables D1 … Dn is defined as P(D1 … Dn) for all 

values of D1 … Dn. Consider the BN showed in Figure 4.8, which consists of deviations D1, D2, D3, 

and D4 that lead to incident D5. In this illustration, D1, D2, and D4 are root nodes with assigned 

marginal prior probabilities, D3 is an intermediate node with defined conditional probability, and D5 

is the leaf node. Hence, using a chain rule, the joint probability distribution of the BN is the product 

of the conditional probability distributions of the variables D1 = d1, D2 = d2 … D5= d5 (Donohue and 

Dugan, 2003; Jensen and Nielsen, 2007; Korb and Nicholson, 2011; Khakzad et al. 2011). That is: 

𝑃(𝑑1, 𝑑2, … , 𝑑5) =  ∏ 𝑃(𝑑𝑖|
5
𝑖=1 𝑑𝐴𝑖)     (4.5)  

where Ai in equation (4.5) are the parents of node i in the DAG and d1, d2... d5 are the states of 

variables D1, D2... D5. Hence, the joint probability distribution for the BN in Figure 5.8, can be 

determined by equation (4.6) 

𝑃(𝑑1, 𝑑2, … , 𝑑5) = 𝑃(𝑑1)𝑃(𝑑2)𝑃(𝑑4|𝑑1, 𝑑2) 𝑃(𝑑5|𝑑4, 𝑑3)                 (4.6) 

Therefore, for conditional probability independents/distributions such as 𝑃(𝑑4|𝑑1, 𝑑2) can be solved 

by using equation (4.7). 

𝑃(𝑑4|𝑑1, 𝑑2) =
𝑃(𝑑1,𝑑1,𝑑4)

𝑃(𝑑1,𝑑2)
       (4.7) 

This formulation can be generalized for set n random (discrete or continuous) variables with k states, 

making modeling of complex dependencies be possible and the BN to be robust and reliable for safety 

and risk analysis tool (Abimbola et al., 2015; Khakzad et al., 2013).  
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Figure 4.8: Illustrative BN model 

 

4.3.2.2 Model Analysis 

The basic events’ descriptions in the current FT models are presented in Table 4.1. The failure 

probabilities of these basic events are adopted from Abimbola et al., 2014; Abimbola et al., 2015; 

Rathnayaka et al., 2012; Di Natale et al., 2012; Tran et al., 1997; Phillipa et al., 2011.  Rathnayaka et 

al., 2012, for instance, sourced the applicable basic event probabilities from OREDA (2002), Chief 

Counsel’s Report for Macondo incident (2011), experts’ opinions, and eight other sources listed in 

their chapter.  

 

Mapping an FT model into a BN has been performed in many safety and reliability papers. Bobbio 

et al. (2001) described a methodology for mapping a fault tree into a Bayesian network; Duan and 

Zhou (2012) mapped a fault tree into a Bayesian Network to develop an innovative method of 

optimizing fault diagnosis; Khakzad et al. (2011) established a mapping procedure of an FT into a 

BN in process safety analysis; Leu and Chang (2013) transformed an FT to a BN to create a realistic 

and accurate safety risk-assessment model for steel building construction (SC) project; Hence, the 

current model adopts the methods described in Bobbio et al. (2001) for mapping an FT into a BN. 

Figure 4.9 shows the BN model transformation from the FT model in Section 4.3.1.  
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Figure 4.9: Bayesian Network for Kick control incident / Scenario 

 

4.3.3 Sensitivity Study 

Sensitivity analysis was performed on both the FT and BN models to find the weakest link in a kick 

operation system and to identify the system’s safety-critical components. Ferdous et al. (2007) used 

sensitivity analysis comprised of two basic steps in an FT model: cut sets importance determination 

and improvement index estimation. Ferdous et al. (2007) used equation (4.8) to calculate the Cut set 

importance.  
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𝐼𝐶𝑖 =
𝑄𝑗

𝑄0
× 100%      (4.8) 

Where, ICi = cut sets importance, 𝑄𝑗 = cut sets frequency, and 𝑄0= top event frequency.  

Improvement index estimation observes the contribution of each basic event leading to the top event 

by eliminating each basic event from the tree and evaluating its weight on the tree (Ferdous et al., 

2007; Cheong and Lan-Hui, 2004; Lai et al., 1993). Whereas, Zarei et al. (2016) used the ratio of 

variation (RoV) to rank minimum cut set (MCS) based on their criticality. The RoV is used to 

estimate the basic event with the “most contributing factor” (MCF) to top event failure. RoV is 

calculated by using equation (4.9) and RoV (MCS) by equation (4.10) (Zarei et al., 20016). 

𝑅𝑜𝑉(𝐶𝑖) =
𝜋(𝐶𝑖)−𝜃(𝐶𝑖)

𝜃(𝐶𝑖)
      (4.9) 

𝑅𝑜𝑉(𝑀𝐶𝑆) =
Π𝑖𝜖𝑀𝐶𝑆𝜋(𝐶𝑖)−Π𝑖𝜖𝑀𝐶𝑆𝜃(𝐶𝑖)

Π𝑖𝜖𝑀𝐶𝑆𝜃(𝐶𝑖)
     (4.10) 

Where 𝜃(𝐶𝑖) and 𝜋(𝐶𝑖) denote the prior and posterior probabilities respectively while Π𝑖𝜖𝑀𝐶𝑆𝜃(𝐶𝑖) 

and Π𝑖𝜖𝑀𝐶𝑆𝜋(𝐶𝑖) denote prior and posterior minimal cut set probabilities. The comparisons of the 

results obtained using the RoV (MCS) and 𝐼𝐶𝑖 for criticality assessment of an MPD components are 

performed. 

Table 4.1: Basic events and their probabilities (sources: Abimbola et al., 2014; 2015; Rathnayaka et 

al., 2012; Di Natale et al., 2012; Tran et al., 1997; Phillipa et al., 2011) 

 

Events Event Description Prior Probability (Pi) Posterior probability (Po) Po/Pi 

1 RCD Bearing assembly failure 1.43E-03 5.10E-02 35.66 

2 RCD Bowl failure 3.14E-03 1.12E-01 35.66 

3 Flowline blockage 3.60E-03 1.28E-01 35.66 

4 Insufficient fluid in circulation 2.00E-03 7.13E-02 35.66 

5 Pump line blockage / rupture 3.60E-03 1.28E-01 35.66 

6 Auxiliary choke valve failure 2.50E-02 2.55E-02 1.02 

7 Power supply failure 2.50E-03 8.91E-02 35.66 

8 Loss of communication with satellite 2.00E-03 7.13E-02 35.66 

9 Cable wire failure 1.00E-06 3.57E-05 35.66 

10 Main controller failure 2.52E-04 2.54E-04 1.01 

11 Auxiliary controller failure 2.52E-04 2.54E-04 1.01 
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12 Choke valve #2 failure 2.50E-02 2.55E-02 1.02 

13 Choke valve #3 failure 2.50E-02 2.55E-02 1.02 

14 Controller panel failure 2.52E-03 8.99E-02 35.66 

15 Incorrect hydraulic model 1.00E-03 3.57E-02 35.66 

16 Mechanistic simulator failure 2.00E-04 7.13E-03 35.66 

17 Flow sensor failure 1.10E-04 3.92E-03 35.66 

18 Pressure sensor failure 1.10E-04 3.92E-03 35.66 

19 Loss of service water 1.00E-04 3.57E-03 35.66 

20 Loss of vacuum system 1.00E-04 3.57E-03 35.66 

21 Network device damage 5.00E-03 2.78E-01 59.43 

22 Non-return valve failure  3.12E-02 3.47E-02 35.66 

 

 

4.4 Results and Discussion 

4.4.1 Model Results 

The BN model is built and analyzed using decision modeling software, GeNIe 2.1, a product of 

BayesFusion LLC, available at http://www.bayesfusion.com/. By performing a forward propagation, 

the failure probability of the top event (kick control failure) is obtained as 0.0574. This estimation is 

based on installing one NRV in the bottomhole assembly.  In practice, however, it has been 

recommended to install more than one NRV in parallel to provide a redundant function, such as 

installing one NRV above the bit and another above the BHA. Since NRV failure improvement can 

be easily implemented by installing another NRV in the BHA, further analysis is performed after 

installing NRV#2 parallel to NRV#1. Thus, the probability of the top event is recalculated and a value 

of 0.0280 is obtained.  

The structural modification decreases the failure probability of the top event by approximately 50%. 

Although there is currently no knowledge of available literature with which to compare this result, 

the failure probability seems to be slightly high for an MPD system. For instance, based on the study 

conducted by Cunningham and O’Banion (2013) of Micro Motion Inc. on Smart Meter Verification, 

the estimated failure probability a Coriolis flow meter is 2.40E-06. Hence, a conclusion can be drawn 

that the estimated top event failure probability obtained is high for this MPD system.  

http://www.bayesfusion.com/
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To update the probability belief, an assumption was made that kick control failure had occurred by 

setting the “kick control failure node” (the leaf node) to a failure state and conducting a backward 

propagation. The posterior failure probabilities of the basic events (parent nodes) are calculated and 

the results are shown in the 4th column of Table 4.1. The ratio of the posterior probability to prior 

probabilities of the basic event (shown in Table 4.1) shows that only the “Main controller failure”, 

“Auxiliary controller failure”, “Choke valve #1 failure”, “Choke valve #2 failure”, and Choke valve 

#3 failure retain their prior probabilities or showing insignificant change. These show that the 

posterior derivations for these four components have insignificant influence on the kick control 

failure; this may be due to their redundant configuration in the MPD system structure. The rest of the 

components, however, have posterior probabilities of about 35 times higher than their prior 

probabilities, except for Network device damage that has a posterior probability of 59 times the prior 

probability, making it the most significant basic event. 

 

4.4.2 Sensitivity analyses  

The sensitivity analyses are performed using two methods: numerical modeling and GeNIe 2.1 

software modeling. The numerical modeling approach uses the models described in section 4.3.3, the 

cut set importance and rate of variation of MCS to investigate the influence of the basic event 

components and barrier elements on kick control operation. The GiNIe software approach is direct, 

more comprehensive, and easy to use. The Sensitivity analysis on GeNIe is performed by setting a 

node as the target node over which the GeNIe performs the sensitivity analysis.  

4.4.2.1 Numerical model approach  

Basic event analysis  

Using two NRVs installed in parallel to each other within the bottomhole assembly, network device 

damage achieves the highest cut set importance (ICi) of 17.44%, followed by flowline 
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rupture/blockage and pump line blockage with 12.56% apiece, and RCD bowl failure with 10.95%. 

These results are shown in column #3 of Table 4.2. These results, using the cut set importance, are 

compared with the RoV MCS method and are shown in Figure 4.10. The results from both methods 

are consistent with each other and both show that network device damage achieves the most critical 

basic event. Consequently, in the basic event sensitivity analysis approach, network device damage 

is the most critical components in the kick control operation.  

Table 4.2 Safety-critical assessments of a Kick control system (basic event approach) 

MCS Basic event Components 
ICi (%) (with 2 NRVs 

installed in parallel) 

C1 Bearing assembly failure 4.99 

C2 Bowl failure 10.95 

C3 Choke valves failure 0.05 

C4 Pressure manager controllers 0.02 

C5 Loss communication to satellite 6.98 

C6 Cable wire failure 0.003 

C7 Network device damage 17.44 

C8 Power supply failure 8.72 

C9 Flowline blockage 12.56 

C10 Insufficient fluid in circulation 6.98 

C11 Auxiliary controller failure 0.88 

C12 Pump line blockage / rupture 12.56 

C13 Electrical panel failure 8.79 

C14 Incorrect hydraulic model 3.49 

C15 Mechanistic simulator failure 0.70 

C16 Flow sensor failure 0.02 

C17 Pressure sensor failure 0.38 

C18 Loss of service water 0.38 

C19 Loss of vacuum system 0.35 

C20 Non-return valve failure 3.40 

 



 

75 
 

 

Figure 4.10: Sensitivity Analysis of basic events probabilities 

 

Barrier element analysis  

The barrier element approach observes the contributions from the perspective of kick control 

equipment. This approach gives information on the equipment that is most critically important in the 

kick control operation. As shown in Table 4.3, 38.47% of cut set importance is obtained in an MPD 

control system, followed by 29.1% in backpressure pump and 23.2% in choke manifold. This analysis 

shows that an MPD control system is the most critical kick control barrier element that receives the 

most priority for improvement to enhance kick control operation reliability. 

 

Table 4.3: Failure probability data for each kick control barrier elements 

Equipment (kick-control barrier elements) ICi (%) with 2 NRVs in parallel 

MPD control system 38.47 

MPD choke manifold 23.21 

Backpressure pump  29.10 

RCD 7.60 

NRV  1.62 

 

 

4.4.2.2 GeNIe software method  

Basic event analysis  

The sensitivity study is performed by setting the kick control failure node (top event) as the target 

node. The software performs a complete set of derivatives of the posterior probability distributions 
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over the target nodes using each of the probability parameters in the BN. The sensitivity rankings are 

shown in Figure 4.11. Based on the results (Tornado plots), Network device damage is ranked as the 

most sensitive or critical basic event followed by the flowline rupture/blockage, pump line blockage, 

and RCD bowl failure. These results are consistent with the numerical model method results.  

More comprehensive sensitivity analysis is performed by observing selective parent nodes (basic 

event) components to see how each influences the entire system’s performance in kick control 

operation. This is done by setting the node to a failure state and conducting a backward propagation. 

The analysis outputs show that basic events including the loss of communication with the satellite, 

network device damage, cable wire damage, or power supply failure individually have substantial 

effects on the kick control operation. This may be due to the equipment’s dependence on network 

connectivity and power supply to transmit data signals and send/receive action commands across an 

MPD control system, choke manifold, and backpressure pump. These basic events are collectively 

referred to as “system communication failure” (SCF). 

 

Figure 4.11: Tornado plots showing the top 10 critical basic events for kick control operation 
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The contribution of system communication failure’s occurrence to kick control operation is depicted 

in Table 4.4. For instance, a “loss communication with satellite” occurrence results in 100% failure 

occurrence of communication loss to the controllers, network connectivity, Coriolis flow meter, rig 

pump, monitoring system, MPD control system, choke manifold, backpressure pump, and the top 

event (kick control operation).  

 

Table 4.4: Effects of loss communication on kick control operation 

Kick control operation 

components 

F
a
il

u
re

 o
cc

u
rr

en
ce

 

li
k

el
ih

o
o
d

 

F
a
il

u
re

 o
cc

u
rr

en
ce

 

li
k

el
ih

o
o
d

 

F
a
il

u
re

 o
cc

u
rr

en
ce

 

li
k

el
ih

o
o
d

 

F
a
il

u
re

 o
cc

u
rr

en
ce

 

li
k

el
ih

o
o
d

 

loss comm. to controllers 100% 100% 100% 100% 

electrical/comm. Failure 100% 100% 100% 100% 

loss comm. to the satellite * 100% NA NA 

network connectivity failure 100% 100% 100% 100% 

power supply failure NA† * NA NA 

network device damage NA NA * NA 

cable wire failure NA NA NA * 

Coriolis flow meter failure 100% 100% 100% 100% 

Rig pump failure 100% 100% 100% 100% 

PWD failure NA 100% 100% 100% 

Monitoring system failure 100% 100% 100% 100% 

MPD control system failure 100% 100% 100% 100% 

Choke manifold failure 100% 100% 100% 100% 

Backpressure pump failure 100% 100% 100% 100% 

Kick control failure 100% 100% 100% 100% 

 

                                                           
 

* Communication components under investigation (setting evident to failure) 
† NA denotes component that is not being affected during investigation 
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These results show the dependency of this equipment on the availability of satellite communication 

to perform their functions. Power supply failure, network device damage, and cable wire damage 

shown in Table 4.5 (3rd, 4th, & 5th column respectively) however, influence more components than 

the loss of communication with the satellite. The influence of power supply failure occurrence and 

loss of communication with satellite are illustrated in Figures 4.12 and 4.13 for better clarity and 

comprehension.   

 

Figure 4.12: Loss of comm. with satellite influence on a kick control operation 

  

Figure 4.13: Power supply failure influence on a kick control operation 
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Figure 4.14 shows the limited influence of flowline and pump line rupture/blockage on kick control 

operation, which only affects the operation of the Coriolis flow meter, Rig pump, monitoring system, 

MPD control system, choke manifold, and backpressure pump. Thus; an occurrence of flowline and 

pump line rupture/blockage will cause 100% failure occurrence likelihood of this equipment. 

 

Figure 4.14: Effects flowline rupture/blockage on a kick control operation 

 

Table 4.5 shows the influence of each monitoring equipment component (Coriolis flow meter, rig 

pump, and PWD tool) on the kick control operations with the Coriolis flow meter exhibiting the most 

influence. For instance, the effects of the Coriolis flow meter failure on kick control operation 

depicted in the 3rd column of Table 4.5, shows that failure of Coriolis flow meter will not only 

propagates to a 100% failure occurrence of the monitoring system, MPD control system, choke 

manifold and backpressure pump but also increases the likelihood of “loss of communication to the 

controller” and “rig pump failure” to 67% and those of “network connectivity” and 

“electrical/communication failure” to 45%. The point here is to emphasize how directly or indirectly 

a failure of one or more dependable components could affect the functionality of other components.  

The influence of the Coriolis flow meter and Rig pump failure are better illustrated in Figures 4.15 

and 4.16 respectively. 
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Table 4.5: Effects of monitoring system components failure on a kick control operation 

Kick control operation 

components P
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loss comm. to controllers 0.7% 67% 66% 98% 

electrical/comm. Failure 0.7% 45% 45% 98% 

loss comm. to the satellite 0.2% 18% 18% 0.2% 

Network connectivity failure 0.5% 45% 53% 66% 

power supply failure 0.2% 22% 22% 45% 

network device damage 0.5% 38% 38% 66% 

flowline obstruction/rupture 0.4% 32% 32% 0.4% 

Coriolis flow meter failure 1.1% * 67% 54% 

Rig pump failure 1.1% 67% * 54% 

PWD failure 0.3% 27% 27% * 

Monitoring system failure 1.7% 100% 100% 100% 

MPD control system failure 2.1% 100% 100% 100% 

Choke manifold failure 1.3% 100% 67% 54% 

Backpressure pump failure 1.6% 100% 67% 54% 

Kick control failure 5.8% 100% 100% 100% 

 

 

Figure 4.15: Influence of Coriolis flow meter failure on a kick control operation 
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Figure 4.16: Influence of Rig pump failure on a kick control operation 

 

Barrier element approach 

The RCD and NRV failures are only limited to their components due to their independencies on other 

equipment during kick control operation except themselves. For instance, in a scenario when there is 

an influx during drilling and hydraulic backpressure is applied on the well annulus, the NRV’s 

function prevents upward flow up the drillstring (i.e. U-tube effect). Thus, this specific operation has 

no relationship with e.g., pump’s failure. Hence, the influence of the MPD control system, choke 

manifold, and backpressure pump is shown in Figure 4.17. It is observed that an MPD control system 

failure occurrence exhibits most influence in a kick control operation due to its highest number of 

operational dependencies and interactions with other components to perform its function. For 

instance, Choke manifold and backpressure pump operations have no dependencies on the 

functioning of Flow and Pressure sensors, Electrical panel, Mechanistic simulator, Controller unit, 
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and Hydraulic Model; however, MPD control system does. These inferences are also consistent with 

those from the numerical model method.  

 

 

Figure 4.17: Influence of kick control barrier elements on a kick control operation 

 

4.4.3 Discussion 

The reliability of constant bottomhole pressure (CBHP) technique of MPD depends on the design of 

its components and their operational dependencies in managing kick or other abnormal pressure 

events. While one of the focus of this work is to investigate the reliability of the MPD system, the 

functionality and operational dependency of all components in the system are also examined.  For 
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the CBHP system utilized in this study, the estimated failure probability to control/mitigate kick 

occurrence is initially obtained as 0.0574 when the NRV installed in the MPD system setup was only 

one. However, when the system setup is modified by installing two NRVs in parallel in the drillstring 

for a redundant configuration, the failure probability of kick control operation decreases to 0.0280 

about 50% drop from the previous estimation. The reliability rose from about 94% to 97%.  This 

analysis shows how a modification in the system structure can improve its overall reliability.  

 

Failure of an MPD system to control kick can occur through several scenarios and can be initiated 

from any component. Failure initiation of any component in the system, excluding those that are 

redundantly structured, will propagate to a failure of kick control operation. For instance, a failure of 

one of the three choke valves installed in parallel for redundancy will not propagate to kick control 

failure; however, when the last choke valve backup fails, the kick control failure occurs.  Moreover, 

a component’s failure not only propagates to kick control operation’s failure but increases the failure 

likelihood of other components in the system. This increase in component’s failure likelihood 

depends on the extent of interactions between the failed component and other components in the 

system. For instance, a network device failure will not only cause kick control operation to fail but 

also results in loss of communication, monitoring system failure, MPD control system failure, choke 

manifold failure etc. Additionally, flowline rupture, for example, only influence the functionality of 

MPD hardware components that process and handle hydraulic control during a kick control operation, 

and they include Coriolis flow meter, Rig pump, MPD control system, choke manifold, and 

backpressure pump. These examples show that components have various degree of dependency to 

each other to perform their functions during kick control operation and that the system failure does 

not have a sequential approach.  
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The sensitivity study also provides valuable information about the most critical components or 

equipment in an MPD system. The criticality assessments of the basic event's components show that 

network device is the most critical components ahead of the flowline/ pump line rupture, RCD bowl 

failure, electrical panel failure, and power supply failure. Further comprehensive analysis shows that 

all components that are associated with communication/data transmission functions collectively 

exhibit the most influence in kick control operation. This may be due to the reliance of key equipment, 

such as MPD controller, choke manifold and backpressure pump, on network connectivity to execute 

their functions during kick control operation. These results are consistent with those of Bhandari et 

al. (2015) who found the communication failure event to have the highest percentage of contribution 

to a kick or a blowout occurrence in an MPD operation.  

 

For a kick-control equipment approach, MPD control system is ranked as the most critical equipment. 

A further investigation shows that the monitoring equipment, i.e. Coriolis flow meter, Rig pump, and 

PWD, exhibits the most contribution, ~76%, to MPD control system’s failure.  Among the monitoring 

equipment, the Coriolis flow meter and the Rig pump exhibit most influence in kick control operation. 

These findings are consistent with the work of Abimbola et al., (2015) who identified the RCD, Rig 

pump and MPD control system as the main contributing factors in an MPD hardware system failure. 

Table 4.6 summarizes the comparisons of the results in this study to those in Bhandari et al. (2015) 

and Abimbola et al. (2015). 

 

Therefore, the study provides an important insight into how the MPD system’s components interact 

during kick control or pressure management operations. While the operation of several components 

depends on the functionality of one or more components in the MPD system, the failure scenarios 

occurrences are non-sequential. Thus, this insight, which was not addressed in Abimbola et al. (2015), 
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is useful when performing system design improvement for enhanced safety and reliability. Such 

design improvement may include reducing the excessive dependencies that occur within the system 

and changing the critical components configurations to be redundant. This study, however, is limited 

to the operational analysis of dynamic annular pressure control (DAPC) system (a constant 

bottomhole pressure technique of MPD), whose layout and operational process are different from the 

Weatherford’s MicroFlux® MPD system and the Halliburton’s GeoBalance® MPD system. Thus, 

the outcomes of this study may not broadly apply to all constant bottomhole pressure MPD system. 

Therefore, the future study may involve the analyses of this MPD system to formulate better 

conclusions on safety and reliability of MPD operations. 

 

Table 4.6: Summary of outcomes between the FT and BT models on a kick control operation 

 Current study 
Bhandari et al. 

(2015) 

Abimbola et 

al. (2015) 

Categories BN model BN model BN model 

Most safety-critical 

components 

Communication components: e.g. 

Network device and power supply 

Flowline / pump line  

Communication 

components 
NA 

Most safety-critical CBHP 

equipment 
MPD control system NA 

 

MPD control 

system, Rig 

pump, RCD 

Most safety-critical 

component of an MPD 

control system 

Monitoring equipment (Coriolis flow 

meter, rig pump) 
NA        NA 
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4.5 Conclusions 

The current study presents a reliability assessment of kick control operation in a constant bottomhole 

pressure technique of managed pressure using a dynamic annular pressure control system. A fault 

tree model is used to develop all possible scenarios and conditions within the system that can lead to 

a kick control failure and then mapped into Bayesian Network for analyses. Firstly, the estimated 

reliability of kick control operation of the system increases from 94% to 97% after structural 

modification of installing two non-return valves in parallel, instead of one, in the bottomhole 

assembly for a redundancy. Secondly, the top-three most safety-critical components in kick control 

operation include network device, flowline, and Rig pump line. Further analysis shows that 

communication related components have the most influence on kick-control operations compared to 

flowline/Rig pump line rupture whose influence is only limited to equipment that processes hydraulic 

control e.g., choke manifold. However, at the equipment level, managed pressure drilling control 

system exhibits the most influence on kick- control operation, making it the most safety-critical 

equipment. Further analysis of the control system shows that monitoring equipment is the most 

safety-critical set of equipment (accounting for about 76% of its failures). Lastly, the kick control 

failure of a managed pressure drilling system can occur in several scenarios and can be initiated from 

any component in the system. Additionally, due to operational dependencies among components, a 

failure of any component does not only cause a failure of the kick-control operation but increases the 

failure likelihood of dependent components. Consequently, these outcomes show that the modes of 

failure in a managed pressure drilling system are non-sequential. In conclusion, it is recommended 

that a future study involving the analyses of the Weatherford’s MicroFlux® MPD system and the 

Halliburton’s GeoBalance® MPD system be completed to formulate broader conclusions on safety 

and reliability of MPD operations.  
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Chapter 5 Nonlinear model predictive control of gas kick in a 

Managed Pressure Drilling system 
 

Preface 

This chapter presents an MPD control model, which consist of a nonlinear model predictive 

controller (NMPC) and a two-phase flow hydraulic model. for performing numerical simulation of a 

managed pressure drilling. A paper version of this chapter has been published in the Journal of 

petroleum science and engineering (2019), Vol. 174 pp. 1223–1235. Along with the co-authors, Dr. 

Syed Imtiaz, Dr. Faisal Khan, and Dr. Stephen Butt, I have co-authored this chapter. I developed the 

model, made first attempt to perform the model analysis, and interpret the data and results. The co-

author Faisal Khan helped in developing and validating the concepts, reviewed and corrected model 

results, and contributed in preparing, reviewing and revising the manuscript. The co-author Dr. Syed 

Imtiaz helped in the model development, improvement, interpretation, and validation, and in 

organizing and revising the manuscript. The co-author Dr. Stephen Butt contributed through 

assisting in analyzing the data, validating simulation results and revising the manuscript. Co-authors 

Drs. Imtiaz, Butt and Khan reviewed the revisions and provided feedback which I have implemented. 

I prepared the first draft of the manuscript and subsequently revised the manuscript based on the co-

authors’ feedback and the peer review process. 

Abstract 

Managed pressure drilling (MPD) operation utilizes a fully automated control system to manage kick 

during drilling which typically utilizes a proportional-integral (PI) controller and a single-phase flow 

model. This study proposes an MPD control system that uses a nonlinear model predictive controller 

(NMPC) and a two-phase flow model for computing annular pressure and choke valve dynamics 

during kick control operation. The performance of the proposed model is demonstrated by simulating 
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kick control operation and compared their results with a single-phase linear model. The results 

confirm that the single-phase model underestimates key well control parameters (including kick size, 

bottomhole pressure and choke pressure), which may be due to ignoring gas-phase flow behaviour 

on mud density and the choke valve performance. Additionally, the performance of the proposed 

model is tested by validating the gas kick simulation results from a lab-scale MPD setup and a gas 

kick event from a field’s case study based on North Sea drilling operation. The comparison of the 

control performance between the proposed NMPC model against the PI controller utilized in the field 

study confirms that the NMPC responds more swiftly to disturbance, such as kick than the PI 

controller. 

Keywords: NMPC; MPD; Kick; Pressure control; Flow control; Drilling 

5.1 Introduction 

Well control is one of the most significant operations in drilling; more so in offshore exploration and 

production. It is even more challenging considering that most prospects for hydrocarbon resources 

are drifting exploration into the deepwater (Graham et al., 2011) or posing operational challenges 

that range from depleted formations (such as reservoirs with narrow pressure windows) to high-

pressured formations. The narrow margins are most prominent in deepwater applications where much 

of the overburden is the seawater (Malloy and McDonald, 2008). These extreme drilling 

environments heighten geological uncertainties and their complexity are becoming the norm in 

nowadays drilling operations. Issues, such as well control incidents (e.g. kick) are periodically 

encountered and can increase operational costs (e.g. lengthy non-productive time - NPT) and risk, 

especially when drilling using an open hydraulic system (i.e. conventional - overbalanced drilling 

method). Some of the associated risks with deepwater drilling are discussed in Bhandari et al., (2015); 
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Pui et al. (2017), in addition to proposing useful methodologies to assess and reduce the overall risk 

in an MPD operation. 

 

Kick mechanisms have been covered explicitly in the literature, including in Khakzad et al. (2013). 

Thus, to avoid or reduce the likelihoods of kick during drilling, managed pressures drilling (MPD) 

has been implemented to maintain the downhole pressure within the drilling pressure window, even 

during kick events. MPD operation combines the use of automated drilling and specialized equipment 

to achieve well control objectives (Godhavn, 2010). Contrary to conventional drilling practice that 

relies primarily on mud weight as the primary safety barrier element (Khakzad et al., 2013), managed 

pressure drilling operation utilizes, in addition to mud weight, special equipment such as a rotating 

control device, choke manifold, backpressure pump, and MPD control system to control the 

downhole pressure. Because an MPD is operated in a closed loop system, it improves the safety, 

efficiency, and economic of drilling operations while avoiding continuous flow to the surface (Gala 

and Toralde, 2011; Rohani, 2012; Malloy and McDonald, 2008; Kok and Tercan, 2012; Sule et al., 

2018b). 

 

Sule et al. (2018b) identifies MPD control system as the most safety-critical component; thus, brings 

MPD control system under the microscope of safety and reliability investigation, which justifies the 

significance of this study. Automatic control solutions for complex and challenging operations, such 

as drilling, have been adequately covered in the literature, including its economy and safety benefits 

(Godhavn 2010; Godhavn et al., 2011; Zhou and Nygaard, 2011). In an automated MPD system, a 

combination of hydraulic model and control system is used to automatically control downhole 

pressure during drilling operations (Godhavn 2010; Godhavn et al., 2011). The key objective of an 

MPD is to accurately control the downhole pressure by regulating the backpressure to compensate 
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for annular pressure fluctuations. Thus, in an automated MPD system, the automatic operation of the 

choke manifold is performed by a control system, which typically consists of two main parts: a 

hydraulic model (to estimate the downhole pressure in real-time) and a controller scheme (to 

automates the choke manifold to maintain the desired choke pressure). The hydraulic models can be 

simple or advanced, although the latter is more challenging and complex (Kaasa et al., 2011) and the 

controller ranges from proportional integral derivative (PID) controller scheme to a non-linear model 

predictive controller (NMPC).  

 

Automatic pressure control system for an MPD generally adopts the simplified hydraulic model. The 

detail of its derivations is available in Kaasa et al. (2011). Godhavn (2010) presents a tunable PI 

controller that utilizes feedback and feed-forward control to control the choke pressure, whereby the 

feed-forward loop compensates for disturbances gain and the closed loop feedback compensates for 

error and maintain system equilibrium. To improve the performance and the capabilities of kick 

estimation and automatic well control system, Zhou et al. (2010) presents adaptive observers for 

estimating the flow rates through the well and the reservoir pore pressure for improved kick 

management using a PI controller. Zhou et al. (2011) presents an MPD automatic control procedure, 

which uses a switched control scheme and a PI controller that, on one hand, regulates the annular 

pressure in the well during drilling and on the other hand, attenuates kick in the event of a reservoir 

influx.  

Stamnes et al. (2011) presents a method to redesign adaptive observers that use an adaptive law based 

on delayed observers to give better parameter estimation and robustness properties; however, the 

method is computationally intensive for the added marginal improvement. Godhavn et al. (2011) 

presents a nonlinear model-based control scheme and observers to improve pressure control during 

MPD operations using a feedback linearization method. Hague et al. (2013) utilizes a switched 
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control concept in controlling bottomhole pressure; whereby an MPD system controller manipulates 

the choke and backpressure pump by switching between a combination of pressure and flow control 

when there is no influx, and pure flow control when a kick is detected. Li and Kamel (2016) develops 

a controller tuning parameter framework for a PI controller that improves the robustness of MPD 

control system stability and pressure control performance based on the work of Godhavn et al. (2011).  

However, most processing systems are nonlinear; thus, in some cases when linear control solutions, 

such as in PID controller, are insufficient to capture the nonlinearity of a system, the nonlinear 

controller is sought. Therefore, the nonlinear model predictive controller (NMPC) is one of the 

advanced and sophisticated nonlinear process controllers that has been a major research focus area 

within the control community in the recent decades (Godhavn et al. 2011). Its application in drilling 

automation is only emerging compared to all other industries such as automation, robotics, and 

aeronautics. Nygaard and Nævdal (2006) presents a nonlinear model predictive control (NMPC) 

scheme for stabilizing the well pressure during oil well drilling. Breyholtz and Aamo (2008) develops 

a low-order nonlinear model predictive controller to control bottomhole pressure within specified 

setpoint during pipe connection operation in MPD setup. Nandan and Imtiaz (2016) proposes a 

nonlinear model predictive controller for automatic control of an MPD system. Park (2018) presents 

a new Hammerstein-Wiener nonlinear model predictive controller for bottomhole pressure regulation 

in controller design.  

Another important aspect of an MPD control model is the accuracy estimation of the choke/ 

bottomhole pressure and kick size. Gas kick incident is particularly severe and challenging to manage, 

especially in deepwater drilling. Unfortunately, this topic has not been adequately addressed in most 

MPD control model simulations and only a few studies have sparsely discussed the effects of gas-

phase influx in their MPD control simulator. Zhou et al. (2011) noted that because their model does 
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not account for gas-phase, the estimation of reservoir fluid that contains gas-phase will cause 

considerable modelling error in influx size. As discussed in Kaasa et al. (2011), an influx of liquid 

and gas mixture into the annulus will cause the bulk modulus in the annulus to drop; thus, affect the 

model estimation of influx size and/or the casing pressure. Aarsnes et al., (2016) proposes a simple 

model of two-phase (gas–liquid) flow based on the drift-flux model to account for gas influx effects 

on casing pressure transient and to estimate the effective bulk modulus in the annulus. Aarsnes et al. 

(2014) and Ambrus et al. (2017) propose a choke model for a mixed flow to account for both liquid 

and gas phase flowing through the choke.   

Thus, the current study proposes a two-phase flow nonlinear model predictive controller based on 

Nandan and Imtiaz (2016) for automatic control of an MPD system. The hydraulic model is a 

modified Kaasa et al. (2011) model using a simplified transient two-phase flow model proposed in 

Aarsnes et al. (2014), Aarsnes et al. (2016) and Ambrus et al. (2017). In addition, the study shows 

the underestimation in influx size and choke pressure from Nandan and Imtiaz (2016), which did not 

account for the effect of gas phase influx during kick attenuation operations.  

 

5.2 Managed Pressure Drilling (MPD) Control System 

It has been shown that the real-time advanced hydraulic model needs calibration data for accurate 

prediction of downhole pressure. These can be found in Rommetveit and Vefring (1991); Bjørkevoll 

et al. (2000); Bjørkevoll et al. (2003); Bjørkevoll et al. (2008); Petersen et al. (2001); Petersen et al. 

(2008a); Kutzensov et al., (2010). However, due to computational challenges and insufficient data to 

calibrate the physical parameters of an advanced hydraulic model, it falls short of contributing to the 

overall accuracy of downhole pressure prediction (Kaasa et al., 2011). When a control system is only 

responsible for low-frequency changes within a bandwidth of its closed-loop instead of high-

frequency dynamics, then the system is more robust to disturbances. A control system with simple 
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and relatively accurate within the bounded frequency of interest can be implemented in an MPD 

control system (Kaasa et al., 2011; Godhavn, 2010). 

Kassa et al. (2011) proposed a simplified hydraulic model using the governing equation of state, 

continuity (mass transfer) equation, momentum equation, and energy equation. The simplified 

hydraulic model used in MPD control system is based on a hydraulic flow path categorized into two 

control volumes: the drill string volume (CV 1) and the annulus volume (CV 2) as shown in Figure 

5.1. The drillstring control volume captures the mud flow from the rig pump through the drill pipe to 

the bit while the annulus control volume captures the mud flow from the bit through the annulus to 

the choke valve topside. If the reservoir influx does not enter the drill string, the pressure dynamics 

inside the drill string and the flow rate exiting the bit can be described adequately by a simplified 

single-phase liquid flow model.  Thus, equations (5.1) and (5.2) can be used to compute the pump 

pressure and flow rates through the bits. The annulus control volume, which is affected by reservoir 

influx, will be described by the two-phase flow model in this section.  

𝑑𝑃𝑝

𝑑𝑡
= �̇�𝑝 =

𝛽𝑑

𝑉𝑑
(𝑞𝑝 − 𝑞𝑏)     (5.1) 

 

         �̇�𝑏 =
1

𝑀
(𝑃𝑝 − 𝑃𝑐 − 𝐹𝑑𝑞𝑏

2 − 𝐹𝑎(𝑞𝑟𝑒𝑠 + 𝑞𝑏)2 + (𝜌𝑑 − 𝜌𝑎)𝑔ℎ𝑇𝑉𝐷)   (5.2) 
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Figure 5.1: Managed pressure drilling control system process flow diagram 

 

5.2.1 Two-phase hydraulic model with choke pressure dynamics  

5.2.1.1 Model Assumptions and Limitations 

Given the complexity of flow dynamics involved in drilling-fluid hydraulics, a simplified model that 

removes unnecessary complexity without sacrificing the accuracy of system performance, such as in 

managed pressure drilling (MPD) control system, is desirable. More so, Kaasa et al. (2011) expressed 

that in practice, much of the complexities do not contribute to the improvement of the overall 

accuracy of pressure estimation during MPD operations. Thus, the current model adopts the 

simplification presented in Aarsnes et al. (2016) and Ambrus et al. (2017) for the drift-flux model 

with the following assumptions: 

a) A steady-state flow with constant temperature profile throughout the length wellbore (i.e. 

temperature transient is neglected. 

b) The variation of liquid density is negligible along the flow path in time and space 

c) The velocity of the gas-liquid mixture is uniform in space when calculating the pressure profile 
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d) The annulus (pipe) is a single control volume (this allows a lumped expression for pressure 

dynamics in the annulus). 

e) The pressure transient terms are neglected when computing the gas and liquid velocities. 

Thus, these assumptions limit the model performance to non high-temperature high-pressure well. In 

a high-temperature high-pressure well, temperature transient effects are significant and cannot be 

neglected or ignored. Additionally, the model simplification causes the pressure fluctuations to 

propagate instantaneously; thus, affects the accuracy of the model during fast transients. 

 

5.2.1.2 Two-phase flow in the annulus 

Aarsnes et al. (2016) begins the development of a simplified two-phase flow model in the pipe from 

a classical Drift-Flux Model (DFM) formulation described in Evje and Wen (2015); Gavrilyuk and 

Fabre (1996). The detail description of the derivation can be found in (Aarsnes et al., 2016; Ambrus 

et al., 2017). Then applied the model to a pressure dynamic in the wellbore annulus through to choke 

valve. The two-phase flow model directly affects the choke pressure dynamics in the annulus due to 

the influx of gas-phase into the control volume, as in Figure 5.1. For simplicity, Aarsnes et al. (2016) 

lumped the pressure dynamics by treating the annulus (or flow pipe) as one control volume, and 

applied mass conservation law to define the modified choke pressure dynamic as:  

𝜕𝑃(𝑥,𝑡)

𝜕𝑡
≈

𝜕𝑃𝐿

𝜕𝑡
=

𝛽𝐿

𝑉
(𝑞𝐿 + 𝑞𝐺 − 𝑞𝑐 + 𝑇𝐸𝐺)  (5.3) 

Where𝛽𝐿 is the bulk modulus of fluid in the annulus, 𝑉 is volume of the annulus, 𝑞𝐶 , 𝑞𝐺 , and 𝑞𝐿 are 

flow rate through the choke, flow rates of mixture in gas phase, and liquid phase respectively, and 

𝑇𝐸𝐺  is total gas expansion. 𝑇𝐸𝐺  is the effect of in-domain gas expansion on the lumped pressure 

dynamics and given by: 
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𝑇𝐸𝐺 = 𝑇𝑋𝐸 − 𝐴 ∫
𝐶0𝛼𝐺

𝛾𝑃
𝑑𝑥

𝜕𝑃𝐿

𝜕𝑡

𝐿

0
    (5.4) 

The 𝑇𝐸𝐺  is then divided into two terms, which affects the effective bulk modulus of the gas–liquid 

mixture, �̅�, and the remaining term, 𝑇𝑋𝐸, which accounts for source terms and the gas expansion 

when propagating through the negative pressure gradient. 𝑇𝑋𝐸 is determined by equation (5.5) and 

𝑣𝐺0 is initial gas velocity. 

𝑇𝑋𝐸 = 𝐴(𝑣𝐺(𝐿) − 𝑣𝐺0)    (5.5)   

By inserting equation (5.5) into (5.3), the choke pressure dynamic becomes:  

𝜕𝑃𝐿

𝜕𝑡
(1 +

𝛽𝐿

𝐿
∫

𝐶0𝛼𝐺)

𝛾𝑃
𝑑𝑥

𝐿

0
) =

𝛽𝐿

𝑉
(𝑞𝐿 + 𝑞𝐺 − 𝑞𝑐 + 𝑇𝑋𝐸)  (5.6) 

By defining the effective bulk modulus term, equation (6.6) is further simplified as:  

𝑑𝑝𝑐

𝑑𝑡
= �̇�𝑐 =

�̅�

𝑉𝑎
(𝑞𝑏 + 𝑞𝑏𝑝𝑝 + 𝑞𝑟𝑒𝑠 − 𝑞𝑐 + 𝑇𝑋𝐸)   (5.7) 

Where the effective bulk modulus is determined by: 

�̅� =
𝛽𝐿

1+
𝛽𝐿
𝐿

∫
𝐶0𝛼𝐺

𝛾𝑃
𝑑𝑥

𝐿
0

    (5.8)  

The 𝑣𝐺  is the velocity of the gas, 𝛼𝐺  is the volume fraction of gas in the liquid-gas mixture,  𝐶0 is a 

drift flux distribution parameter, 𝛾 is a gas expansion factor, 𝐿 is the total vertical depth, and P is the 

pressure. In Aarsnes et al. (2014) and Aarsnes et al. (2016), the mass conservation law is expressed 

for the gas and the liquid mixture separately and closure relations are developed to solve the volume 

fraction 𝛼𝐺  and pressure P.  Thus, the following equations are defined: 

𝜌𝑚 = 𝛼𝐺 𝜌𝐺 +  𝛼𝐿 𝜌𝐿       (5.9) 

𝑣𝑚 = 𝛼𝐺 𝑣𝐺 +  𝛼𝐿 𝑣𝐿       (5.10) 



 

97 
 

𝛼𝐺 +  𝛼𝐿 = 1     (5.11) 

Where 𝜌𝑚 is the density of the mixture, (𝛼𝐺 𝜌𝐺 = 𝑛) is the mass variable of gas, (𝛼𝐿 𝜌𝐿 = 𝑚) is the 

mass variable of the liquid, 𝑣𝑚 is the mixture velocity, 𝛼𝐺 and 𝛼𝐿 are the volume fractions of gas and 

liquid respectively, and 𝑣𝐺 and 𝑣𝐿 are the velocities of fluid in the gas phase and liquid phase 

respectively. The sum of volume fractions of gas and liquid must be satisfied as in equation (5.11). 

The phase densities are defined as a function of the pressure, P and sound velocities 𝑐𝐺,𝐿 . 

𝜌𝐺 =
𝑃

𝑐𝐺
2(𝑇)

 ,    𝜌𝐿 = 𝜌𝐿,0 +
𝑃

𝑐𝐿
2   (5.12) 

By combining equations (5.11) and (5.12), the relations for determining the volume fractions from 

the mass variables are obtained as follows: 

      𝛼𝐺 = 0.5 −

𝑐𝐺
2

𝑐𝐿
2𝑛+𝑚+√∆

2𝜌𝐿,0
    (5.13) 

∆= (𝜌𝐿,0 −
𝑐𝐺

2

𝑐𝐿
2 𝑛 − 𝑚)

2

+ 4
𝑐𝐺

2

𝑐𝐿
2 𝑛𝜌𝐿,0   (5.14) 

The pressure term can then be obtained by equation (5.15).  

𝑃 = {
(

𝑚

1−𝛼𝐺
− 𝜌𝐿,0) 𝑐𝐿

2,   𝑖𝑓 𝛼𝐺 ≤ 𝛼𝐺
∗ = 0

𝑛

𝛼𝐺
𝑐𝐺

2                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (5.15) 

Where 𝛼𝐺
∗  is the condition when the gas phase vanishes and 𝜌𝐿,0 is the reference liquid density. The 

gas velocity 𝑣𝐺  in equation (5.5),  can be obtained traditionally by so-called slip relation as given by 

equation (5.16)   

𝑣𝐺 = 𝐶0𝑣𝑚 + 𝑣∞      (5.16) 

Where 𝑣∞ is the slip velocity, 𝐶0 is the distribution parameters, and 𝑣𝑚 is the mixture velocity and is 

obtained by equation (6.11). The parameters: 𝑣∞ and 𝐶0 can be determined from Bhagwat and Ghajar 

(2014). However, because of the transition between the single and two-phase flow, a more involved 



 

98 
 

relation, with state-dependent parameters is needed (Aarsnes et al., 2016); thus, equation (5.17) is 

proposed. 

𝑣𝐺 = (𝐾 − (𝐾 − 1)𝛼𝐺)𝑣𝑚 + 𝛼𝐿𝑆    (5.17) 

Where K and S are positive constants where K ≥ 1 and S ≥ 0.  

 

5.2.1.3 Choke flow model  

For a two-phase (liquid-gas mixture) flowing through the choke, the flow rate through the choke can 

be modeled as a function of choke parameter, choke opening, density, and pressure drop through the 

choke. By applying a mass conservation law to the total mass flow rate of the two-phase liquid-gas 

mixture and averaging the density of the two-phase mixture, the mass flow rate through the choke is 

determined by equation (5.18) from Ambrus et al. (2017).  

𝑤𝑐 = 𝑢𝑐 𝐴𝑜𝐶𝑑√
2(𝑃𝑐−𝑃0) 
𝜒𝐿
𝜌𝐿

+
𝜒𝐺

𝛾2𝜌𝐺

    (5.18) 

Where 𝑢𝑐 is the choke control input from the choke valve ranges between position 0% and 100%, i.e. 

𝑢𝑐 = [0 – 1], 𝑤𝑐 is the mas flow rate of the two-phase mixture through the choke, 𝜒𝐿 is the liquid 

mass fraction, 𝜒𝐺  is the gas mass fraction, 𝛾 is the gas expansion factor. With 𝜒𝐿 and 𝜒𝐺  sum up to 

unity, 𝜒𝐿 or 𝜒𝐺  can be computed as f(volume fraction 𝛼, density 𝜌, and velocity 𝑣) as given in 

equation (5.19):  

𝜒𝐺 =
𝛼𝐺𝜌𝐺𝜈𝐺

𝛼𝐺𝜌𝐺𝜈𝐺+𝛼𝐿𝜌𝐿𝜈𝐿
;  𝜒𝐿 = 1 − 𝜒𝐺     (5.19) 

 

The mass flow rate through the choke in equation (5.19) can be expressed in terms of volume flow 

rate to obtain a modified two-phase flow choke model given in equation (5.20) as:  
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 𝑞𝑐 = 𝑤𝑐 (
 𝜒𝐿

𝜌𝐿
+

 𝜒𝐺

𝜌𝐺
) = 𝑢𝑐 𝐴𝑜𝐶𝑑 (

 𝜒𝐿

𝜌𝐿
+

 𝜒𝐺

𝜌𝐺
) √

2(𝑃𝑐−𝑃0) 
𝜒𝐿
𝜌𝐿

+
𝜒𝐺

𝛾2𝜌𝐺

   (5.20) 

5.2.2 Model implementation algorithm  

The hydraulic model used in the current study is a modified Kaasa model (Kaasa et al., 2011) 

equipped with a simplified two-phase flow model that accounts for the gas-phase influx into the 

wellbore during kick event. The two-phase flow model utilizes drift flux model to describe the choke 

pressure dynamics in the annulus and the choke flow model at the surface (Aarsnes et al., 2016; 

Ambrus et al., 2017). Thus, based on the model system in Figure 5.1, the model implementation 

algorithm in the NMPC operation is given in Figure 5.2. 

 

Figure 5.2: The Model implementation algorithm 

a
i+1 

    a
i 
 

Decrease u%  

Calc new Pc Pp qc qb  

Update Pc Pp a 

qb qc  

Liquid kick 

Compute a
eff

  

a
eff

 < a 

Decrease u%  

Calc new Pc Pp qb 

qc 

Update Pc Pp a qb qc  

Gas kick 

    Initialize: 𝑃𝑏ℎ
𝑠𝑒𝑡 

Pp Pc qp, qc, qb P
pore    

d a Fa Fd   

     Calc Pbh, qb 

P
bh

 < P
bh

et
 

 P
bh

 > Ppore 

(qc – qp) <  

Kick detected 


i+1 

<< 
i 
 

Compute  α
g 
v


 c

g 
 

v
m
 

l 


g 
P … 

Continue loop op 

end 

Op time 

elapsed 

N

o 

Y 

Y N

o 

N

o 

Y 

Y 

N



 

100 
 

5.3 The Controller Design Strategy 

The main goal of a nonlinear model predictive control, NMPC, is to utilize optimized feedback and 

predictive control to stabilize and track nonlinear systems. The NMPC block uses plant references, 

setpoints, known disturbances and current state estimate as inputs to iteratively to solve horizon 

optimal control problem at each assigned sampling timestep and obtain a fast convergence (Grüne 

and Pannek, 2017). One common and popular choice to achieve such fast convergence between the 

reference output and predicted output, is the quadratic function (Grüne and Pannek, 2017), which is 

utilized in Nandan and Imtiaz (2016). Thus, the control strategy used in the current study is based on 

Nandan and Imtiaz (2016) nonlinear model predictive control structure, whose core elements include 

the cost function, prediction model, state constraints, and input constraints. Additionally, the 

information on NMPC optimization formulation, such as discretization and finite parameterization, 

optimal control, tuning, and stability can be found in Grancharova and Johansen (2012).  

 

5.3.1 NMPC controller setup 

In the current study, a discrete-time nonlinear system optimization is used and is defined as follows: 

𝑥(𝑡 + 𝑘) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑑) 

𝑦(𝑡) = 𝐶𝑥(𝑡) 

Where 𝑥(𝑡), 𝑢(𝑡), 𝑎𝑛𝑑 𝑦(𝑡) represent the state, input, and output variables respectively, 𝑑 represents 

a bounded disturbance parameter, and 𝑓 represents the mapping (or state space) function. In the 

current study, the control variables for the NMPC is setup as follows:  

• State vector 𝑥,   𝑥 =  [𝑃𝑝, 𝑃𝑐 , 𝑞𝑏]
𝑇
    (5.21) 

• Control variable 𝑢  𝑢 = 𝑢𝑐      (5.22) 

• Control output 𝑦  𝑦 = 𝑃𝑏ℎ (bottomhole pressure)  (5.23) 
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• Disturbance 𝑑   𝑑 = 𝑞𝑟𝑒𝑠 (influx)    (5.24) 

The nominal state space equation and the output of the system are given by equations 5.25 and 5.26 

respectively.   

�̇� = 𝑓(𝑥, 𝑢)      (5.25) 

𝑦 = 𝑔(𝑥)      (5.26) 

At the initial step of the iteration, the predicted states, given by equation (5.27), is augmented by 

adding a disturbance 𝑑 equal to zero (𝑞𝑟𝑒𝑠 = 0) and a disturbance integrator (Morari and Maeder, 

2012) given by equation (5.28) and (5.29). The prediction model is numerically integrated using 

explicit Runge-Kutta 4,5 method (Nandan and Imtiaz, 2016): 

𝑥(𝑘 + 𝑇) = 𝑥(𝑘) + ∫ 𝑓(𝑥(𝜏))𝑑𝜏
𝑘+𝑇

𝑘
    (5.27) 

𝑥(𝑘 + 𝑇) = 𝑥(𝑘) + ∫ 𝑓𝑎𝑢𝑔(𝑥(𝜏), 𝑑(𝑘))𝑑𝜏
𝑘+𝑇

𝑘
  (5.28) 

𝑑(𝑘 + 𝑇) = 𝑑(𝑘)      (5.29) 

 

Where 𝑥(𝑘) is the current state and 𝑇 is the sampling interval, and 𝑓𝑎𝑢𝑔 is the augmented state 

function. 

The optimization control formulation is given by equation (5.30), where the cost function 𝑗 is set to 

minimize the error between the equilibrium state targets �̅� and system state 𝑥(𝑘) and between the 

equilibrium control input targets �̅� and current control input 𝑢(𝑘) to achieve offset free tracking of 

reference input 𝑦(𝑘) = 𝑃𝑏ℎ
𝑟𝑒𝑓

, i.e. the bottomhole pressure setpoint reference. In this work, the cost 

function set to zero.   
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𝐽 = min
𝑢

∑ (�̂�(𝜅) − 𝑥)𝑇𝜆1(�̂�(𝜅) − 𝑥) + 𝜆2(𝑢(𝜅) − 𝑢)2

𝑘+𝑚

𝜅=𝑘

                          (5.30) 

Where 𝜆1 ∈ ℝ3×3 and 𝜆2 ∈ ℝ1×3  are cost function weights and 𝑚 is the prediction horizon. This 

optimal control problem is subject to the following constraints: 

 𝑥 = 𝑓𝑎𝑢𝑔(𝑥, 𝑢, �̂�(𝑘))     (5.31) 

 𝑦(𝑘) = 𝑔𝑎𝑢𝑔(𝑥, �̂�(𝑘))    (5.32) 

�̂�(0) = �̂�𝑟𝑒𝑠      (5.33) 

�̂� ∈ 𝕏, �̂� ∈ 𝕏𝑁𝐿 , 𝑢(𝑘) ∈ 𝕌    (5.34) 

�̅� ∈ 𝕏, �̅� ∈ 𝕌      (5.35) 

Where the state and input constraint set: 𝕏 and 𝕌 are given by equations 5.36 and 5.37: 

𝕏 ∶= [

𝑃𝑝
𝑚𝑖𝑛 ≤ 𝑃𝑝 ≤ 𝑃𝑝

𝑚𝑎𝑥

𝑃𝑐
𝑚𝑖𝑛 ≤ 𝑃𝑐 ≤ 𝑃𝑐

𝑚𝑎𝑥

𝑞𝑏𝑖𝑡
𝑚𝑖𝑛 ≤ 𝑞𝑏𝑖𝑡 ≤ 𝑞𝑏

𝑚𝑎𝑥

]    (5.36) 

𝕌 ∶= [𝑢𝑐
𝑚𝑖𝑛 ≤ 𝑢𝑐 ≤ 𝑢𝑐

𝑚𝑎𝑥]    (5.37) 

The main control objectives are to identify and maintain reservoir influx, account for the effects of 

gas-phase in the reservoir influx mixture and track the output reference 𝑟(𝑘) = 𝑃𝑏ℎ
𝑟𝑒𝑓

. Additionally,  

a nonlinear state constraint equation to control influx within a defined threshold, in this case, is given 

by equation (6.38):   

𝕏𝑁𝐿 ∶= [0 ≤ (𝑞𝑐 − �̅�𝑏𝑖𝑡) ≤ 𝜖]   (5.38) 

Where �̅�𝑏𝑖𝑡 is the equilibrium state target for the flow rate through the bit and 𝜖 = 0.  
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5.3.2 Flow rates and reservoir pressure estimations 

State space parameters consisting of the flow rate through the bit, 𝑞𝑏, reservoir influx flow rate, 𝑞𝑟𝑒𝑠, 

and  reservoir pressure, 𝑃𝑟𝑒𝑠,  are usually unknown and are unmeasured parameters during drilling 

and are required for the NMPC controller to obtain the target equilibrium. For example, the NMPC 

controller needs a reservoir pressure estimate to compute new pressure setpoint. Thus, the current 

study adopts the adaptive observers from Zhou et al. (2011) to estimate these state pace parameters. 

The adaptive observers for estimating the flow rate through the bit, 𝑞𝑏, are given in equations (5.39) 

and (6.40) below: 

�̇̂�𝑝 =
𝛽𝑑

𝑉𝑑
(𝑞𝑝 − �̂�𝑏 + 𝑙1(𝑃𝑝 − �̂�𝑝))   (5.39) 

�̇̂�𝑏 = −𝛾1(𝑃𝑝 − �̂�𝑝)    (5.40) 

Where 𝑙1 and 𝛾1are positive design constants and 𝑃𝑝 − �̂�𝑝 = �̅�𝑝 and (𝑞𝑏 − �̂�𝑏) = �̅�𝑏 are defined as 

the error variables. The 𝑞𝑟𝑒𝑠,  observers are given by equations (5.41 and 5.42). 

�̇̂�1 = 𝑞𝑝 + 𝑞𝑟𝑒𝑠 − 𝑞𝑐 + 𝑙2(𝑞1 − �̂�1)   (5.41) 

�̇̂�𝑟𝑒𝑠 = −𝛾2(𝑞1 − �̂�1)    (5.42) 

Where 𝑙2 and 𝛾2are positive design constants and (𝑞1 − �̂�1) = �̅�1 and (𝑞𝑟𝑒𝑠 − �̂�𝑟𝑒𝑠) = �̅�𝑟𝑒𝑠  are 

defined as the error variables. Finally, using the reservoir influx model based in equation (5.10), the 

observer for estimating the reservoir pore pressure can be obtained using equation (5.43 and 5.44), 

where �̇̂�2 is the reservoir adaptive observer.   

�̇̂�2 = 𝑞𝑝 + 𝑘(�̂�𝑟𝑒𝑠−𝑃𝑏ℎ) − 𝑞𝑐 + 𝑙3(𝑞1 − �̂�2)   (5.43) 

�̇̂�𝑟𝑒𝑠 = 𝛾3(𝑞1 − �̂�2)    (5.44)  
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By applying an adaptively updated law, the reservoir is estimated using equation (5.44); where 𝑙3 and 

𝑘are positive design constants and 𝛾3 is an adaptation gain. Therefore, �̂�𝑟𝑒𝑠−𝑃𝑏ℎ should converge to 

zero as the error variable �̅�𝑟𝑒𝑠 = (𝑃𝑟𝑒𝑠 − �̂�𝑟𝑒𝑠) tends to zero.   

 

5.3.3 Controller operation algorithm 

The primary goal of an NMPC is to predict the future behaviour of the process control over a finite 

time horizon and determines an optimal control input that meets the requirement of the cost function 

at a sampling instant. The NMPC operation algorithm, as illustrated in Figure 5.3, consists of three 

components: the optimizer, the state estimator, and the target tool and are defined as follows: 

i. the optimizer applies all defined system constraints to compute an optimal open-loop control 

trajectory that satisfies the system constraints and the minimization cost function. 

ii. the estimator predicts the future outputs of the plant by using the input and output data from 

the plant, and 

iii. the target tool finds a state and input target to obtain the desired output of the system while 

applying state and integrated disturbance estimates and setpoint values.    

 

After setting the number of iterations, sampling time, prediction horizon, and initial values (time, 𝑡0, 

state vector, 𝑥0 and control input, 𝑢0), the NMPC iteration begins by: 

a) obtaining new initial values,  

b) solving the optimal control problem by applying the defined constraints and cost function to 

obtain a new control input 𝑢𝑘.  

c) applying the control 𝑢𝑘 to plant model and compute open loop solution of the system 
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d) applying control 𝑢𝑘 and system output 𝑦𝑘  to the estimator, which uses moving horizon 

estimation to predict the state �̂�, and disturbance �̂� trajectories.  

e) applying state �̂�, �̂� and input system reference, 𝑦𝑟𝑒𝑓 in the target state to find the desired 

output for the system 

f) applying the optimal input trajectory to the system until the next sampling instant, during 

which the horizon is shifted, and the procedure is repeated until the number of iterations set 

is elapsed.  

 

 

 
Figure 5.3: NMPC Controller operation loop 

 

5.4 Results and Discussion 

In this section, series of simulations are performed to demonstrate the gaps in the model presented in 

Nandan and Imtiaz (2016) and the errors that result when multi-phase kick fluid (or reservoir influx) 

is treated as a single-phase liquid flow. In addition, the current NMPC MPD control model is 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 

𝐶𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  𝑀𝑜𝑑𝑒𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑖𝑎𝑛𝑡𝑠 

𝑃𝑙𝑎𝑛𝑡 𝑀𝑜𝑑𝑒𝑙 
𝑥(𝑘 + 𝑇) = 𝑥(𝑘) + 

∫ 𝑓𝑎𝑢𝑔(𝑥(𝜏), 𝑑(𝑘))𝑑𝜏
𝑘+𝑇

𝑘

 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 

𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 

𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑡𝑎𝑡𝑒  

𝑦𝑘   𝑂𝑢𝑡𝑝𝑢𝑡 

𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑚𝑐𝑒 (𝑞𝑟𝑒𝑠) 

𝑦𝑟𝑒𝑓  

𝑢𝑘 

𝑠𝑡𝑎𝑡𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 �̂�𝑘 

𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑜𝑟 �̂� 

𝑥𝑡 ,  𝑢𝑡  ,  �̂�𝑘    
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validated using the results from a lab-scale MPD system simulator and a field case study. The NMPC 

controller is executed using a MATLAB code based on Grüne and Pannek (2017). The NMPC 

scheme in the current study is an extension of Nandan and Imtiaz (2016) and uses a sequential 

discretization method to solve the finite horizon optimization problem. The sampling intervals are set 

as 5 and 6 seconds based on simulation objectives and controller performance sensitivity in Grüne 

and Pannek (2017). The pressure window and pump flow capacity, which are used to set the controller 

bandwidth (or constraints), is based on the reservoir (pore pressure) and a fracture pressure and 

surface equipment safe operating range. So, the aim of the controller is to safely detect and attenuate 

kick while maintaining a downhole pressure window.  

5.4.1 Effects of the gas-phase influx on kick attenuation  

Using a single-phase flow liquid model in an MPD controller may underestimate the kick size or the 

choke pressure needed to successfully stop the influx due to ignoring gas flow behaviour. The control 

model presented in Nandan and Imtiaz (2016) only considers reservoir influx as a single-phase liquid; 

thus, the NMPC scheme does not account for a gas-phase influx behaviour, which is expected when 

the overpressured zone is encountered during drilling. The following highlights the difference 

between the proposed model and Nandan and Imtiaz (2016): 

a) Nandan and Imtiaz control model implements a single-phase hydraulic flow while the 

proposed model implements a two-phase liquid-gas hydraulic flow model 

b) In Nandan and Imtiaz (2016), the annulus bulk modulus model is fixed, even after influx of 

reservoir fluid into the well, whereas the proposed model accounts for change in bulk modulus 

of annulus fluid after reservoir influx is encountered to ensure more accurate estimation of 

the required choke pressure to stabilize the bottomhole pressure (BHP) set point. 
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c) The choke model implemented in Nandan and Imtiaz (2016) model ignores the characteristic 

effects of gas-phase fluid in the reservoir influx, which lead to underestimation of influx size 

and required surface backpressure to regain wellbore stability; whereas the choke model in 

the proposed model implements a two-phase (liquid-gas mixture) flow to accounts for the 

characteristic effects of gas-phase and to improve the accuracy of kick size and surface 

backpressure required to regain wellbore stability. 

Thus,  kick control simulations are performed to demonstrate the performance of the proposed model 

against the Nandan and Imtiaz (2016). The plant state and input constraints used in these simulations 

are given in Table 5.1.  

Table 5.1: Plant parameters (Sources: Nandan and Imtiaz, 2016; Aarsnes et al., 2016) 

Parameter Value Unit 

Volume of annulus  (𝑽𝒂) 89.9456 𝑚3 

Volume of drillstring (𝑽𝒅) 25.5960 𝑚3 

Mass parameter  (𝑴) 8.04 × 108 𝑘𝑔/𝑚3 

Bulk modulus in annulus (𝜷𝒂) 2.3 × 109 𝑃𝑎 

Bulk modulus in drillstring (𝜷𝒅) 2.3 × 109 𝑃𝑎 

Density in drillstring (𝝆𝒅) 1300 𝑘𝑔/𝑚3 

Density in annulus (𝝆𝒂) 1300 𝑘𝑔/𝑚3 

Friction factor in drillstring (𝑭𝒅) 1.6 × 1010 𝑠2/𝑚6 

Friction factor in annulus  (𝑭𝒂) 2.08 × 109 𝑠2/𝑚6 

Choke discharge coefficient (𝑪𝒅) 0.6  

Choke discharge area (𝑨𝟎) 0.002 𝑚2 

Choke downstream pressure (𝑷𝟎) 1.013 × 105 𝑃𝑎 

Total vertical depth  (𝑯) 3500 𝑚 

Permeability Production index  (𝑲𝒑𝒊) 613.3 × 10−9 𝑚3/𝑠𝑃𝑎  

Gas mass flow fraction ,  𝝌𝑮 0.1  
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Liquid mass flow fraction ,  𝝌𝑳 0.9  

Speed of sound in gas ,  𝒄𝑮 345.8 𝑚/𝑠 

Density of gas ,  𝝆𝒈 1.2 𝑘𝑔/𝑚3 

Gas expansion factor ,  𝜸 0.3  

Volume flow fraction ,  𝜶𝑮 0.1 𝑚3/𝑠 

 𝐒𝐥𝐢𝐩 𝐥𝐚𝐰 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 𝐊 1.2  

 𝐒𝐥𝐢𝐩 𝐥𝐚𝐰 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 𝐒 1  

 

Sourcing the plant and controller tuning parameters from Nandan and Imtiaz (2016) as shown in 

Tables 5.2 and 5.3, the effects of gas-phase influx is demonstrated and presented. To estimate the 

effect of gas-phase inflow to the wellbore, the physical properties of air is assumed for a gas-phase. 

Table 5.2: Observer and Controller tuning parameters (Source: Nandan and Imtiaz, 2016) 

Parameter Value Unit 

𝒍𝟏 1 × 10−7  

𝒍𝟐 0.2  

𝒍𝟑 0.2  

𝜸𝟏 2 × 10−6  

𝜸𝟐 0.005  

𝜸𝟑 5 × 106  

𝑲𝟎 4.9066 × 10−9 𝑚3/(𝑠 ∙ 𝑃𝑎) 

Tuning 

𝝀𝟏 𝑑𝑖𝑎𝑔[0 1 0] 

𝝀𝟐 1000 

𝒎 (prediction horizon) 4 

𝑻 (sampling interval) 5, 6 𝑠 
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Table 5.3: State and control input constraints (Source: Nandan and Imtiaz, 2016) 

Parameter Value Unit 

Minimum pump pressure,  𝑷𝒑
𝒎𝒊𝒏 8 × 105 𝑃𝑎 

Maximum pump pressure,  𝑷𝒑
𝒎𝒂𝒙 200 × 105 𝑃𝑎 

Minimum choke pressure,  𝑷𝒄
𝒎𝒊𝒏 8 × 105 𝑃𝑎 

Maximum choke pressure,  𝑷𝒄
𝒎𝒂𝒙 100 × 105 𝑃𝑎 

Minimum bit flow rate,  𝒒𝒃
𝒎𝒊𝒏 −0.002 𝑚3/𝑠 

Maximum bit flow rate,  𝒒𝒃
𝒎𝒂𝒙 0.0283 𝑚3/𝑠 

Minimum choke control input,  𝒖𝒄
𝒎𝒊𝒏 0 % 

Maximum choke control input,  𝒖𝒄
𝒎𝒂𝒙 100 % 

 

By applying the model algorithm described in Figure 6.2 and the NMPC controller scheme in Figure 

5.3, the well geometry is setup using the data in Table 6.1. At initial condition, the bottomhole 

pressure tracks the pressure setpoint 𝑃𝑏ℎ
𝑟𝑒𝑓

which is set to 480 bars and the pore pressure is set to 475 

bars. Prior to the kick event, the rig pump flow rate is running at a fixed rate of 1200 LPM and no 

backpressure pump is installed. After about 240 s of operation, the kick is initiated by increasing the 

reservoir pore pressure to 485 bars, resulting in liquid- and gas-phase mixture of reservoir influx. To 

compare the proposed two-phase flow NMPC controller model to Nandan and Imtiaz (2016), the 

current controller model was initially configured to obtain single-phase liquid flow model results as 

in Nandan and Imtiaz (2016).  

Figures 5.4a – 5.7a show the bottomhole pressure, choke pressures, reservoir influx, and choke 

opening plots when implementing a single-phase flow NMPC controller model while Figures 5.4b – 

5.7b show similar plots when implementing the proposed model. In both cases, the controller 

identifies reservoir influx (wellbore instability) at time t = 240 s and responds by closing the choke 
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valve to apply backpressure on the annulus. Thus, the increase in the choke pressure in Figure 5.5 

leads to a corresponding increase in the bottomhole pressure and the estimated reservoir pressure, 

which is used to set the new bottomhole setpoint as shown in Figure 5.4. This is consistent with choke 

opening in Figure 5.7. Thus, Figures 5.6 shows the reservoir influx size from the moment kick occurs 

and kick response time of about 120 s. 

Moreover, Figures 5.4 – 5.7 results also show that the single-phase model underestimates the kick 

size, the choke pressure, and bottomhole pressures setpoint compared the proposed two-phase NMPC 

model. This is because of gas-phase flow behaviour, which drifts up the annulus with a non-zero slip 

velocity, expands as it rises to the surface, and causes the bulk modulus of the annulus fluid to drop. 

This is consistent with the field estimation of effective bulk modulus presented in Manum and 

Hjulstad (2018) as: 𝛽𝑒𝑓𝑓 = 𝑐2𝜌𝑏𝑢𝑙𝑘; where 𝑐 is the speed of sound and 𝜌𝑏𝑢𝑙𝑘 is the bulk density. The 

increase of kick size shown in Figure 5.6b is also consistent with the influx behaviour due to gas kick 

simulation in Sule et al. (2018a).  Thus, Figures 5.4b – 5.7b show the effects of gas-phase influx 

behaviour when compared to the results in Figures 5.4a – 5.7a, where bottomhole pressure is higher 

by 3 bars, choke pressure by 2 bars and influx peak by about 52 LPM - about 90% increase). 

Similarly, the choke opening plots in Figure 5.7b drops by 10% more than in Figure 5.7a. 

Consequently, these gas-phase effects are unaccounted when an automated MPD hydraulic model 

implements a single-phase flow model. 

Another important observation is that the NMPC controller can estimate the magnitude of an 

anticipated disturbance ‘kick’ and proactively commence the attenuation procedure before the influx 

is set to occur. These predictive actions can be seen in Figures 5.4b – 5.7b, where the reservoir influx 

attenuation procedure commences approximately 20 s ahead of the time kick is set to occur.  
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Figure 5.4: Effects of the gas-phase influx on Bottomhole pressure estimation 

  

Figure 5.5: Effects of the gas-phase influx on choke pressure estimation 

 

5.4a (single-phase liquid flow model) 5.4b (two-phase liquid-gas flow model)  

5.5a (single-phase liquid flow model) 5.5b (two-phase liquid-gas flow model)  
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Figure 5.6: Effects of the gas-phase influx on an influx size estimation 

 

Figure 5.7: Effects of the gas-phase influx on the choke valve operation 

 

5.6a (single-phase liquid flow model) 5.6b (two-phase liquid-gas flow model)  

5.7a (single-phase liquid flow model) 5.7b (two-phase liquid-gas flow model)  
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5.4.2 Model validation 

To demonstrate the validity of the proposed two-phase flow NMPC, the proposed model is applied 

to numerically simulate/calibrate gas kick attenuation operation conducted in a laboratory MPD setup 

and in a field MPD study. 

5.4.2.1 Laboratory experimental setup 

Amin (2017) designed and developed a lab-scale automated MPD system setup located in the process 

engineering facility at Memorial University of Newfoundland. The experimental setup consists of 

16.5 ft tall concentric well section in which the inner pipe functions as the drillstring and the outer 

pipe functions as the annular casing section of a well. The well section is connected to a piping system 

to replicate the surface return system/circulation loop on a drilling rig and together form a flow loop. 

The well setup design is installed with several types of pressure transducers, flow meters, and control 

valves at various points of the flow loop and other fixed equipment including an air compressor and 

water tank. The automated MPD setup utilizes output feedback NMPC controller with a nonlinear 

Hammerstein Weinner (H-W) model to maintain the bottomhole pressure at the desired setpoint 

(𝑦𝑟𝑒𝑓 = 𝑃𝑏ℎ
𝑠𝑒𝑡) under various disturbances, such as reservoir kick. Many scenarios are tested during 

the simulation, including drill pipe extensions and gas kick attenuation. The latter is the focus in the 

current study. Detail information of the design and NMPC controller setup, equipment specifications, 

and various drilling scenarios simulated can be found in Amin (2017)  

 

Amin (2017) experimentally simulates gas kick by injecting a pressurized air at 41 psi to the 

bottomhole section of the setup 140 seconds after starting the operation. The pump flow rate is fixed 

at 60 LPM and the bottomhole pressure setpoint is set to 40 psi. The results are shown if Figure 5.8, 

which consists of the pressure and flow rate plots.  
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Table 5.4: Experimental setup parameters 

Parameter Value Unit 

Volume of annulus & drillstring  (𝑽𝒂,𝒅) 0.0054 𝑚3 

Mass parameter  (𝑴) 8.04 × 108 𝑘𝑔/𝑚3 

Bulk modulus in annulus (𝜷𝒂)  1.3083 × 105 𝑃𝑎 

Bulk modulus in drillstring (𝜷𝒅) 1.3083 × 105 𝑃𝑎 

Density in drillstring (𝝆𝒅) 1000 𝑘𝑔/𝑚3 

Density in annulus (𝝆𝒂) 1000 𝑘𝑔/𝑚3 

Friction factor in drillstring (𝑭𝒅) 5.4025 × 107 𝑠2/𝑚6 

Friction factor in annulus  (𝑭𝒂) 5.4025 × 106 𝑠2/𝑚6 

Choke discharge coefficient (𝑪𝒅) 0.6  

Choke discharge area (𝑨𝟎) 0.00028 𝑚2 

Choke downstream pressure (𝑷𝟎) 1.013 × 105 𝑃𝑎 

Total vertical depth  (𝑯) 4.75 𝑚 

Permeability Production index  (𝑲𝒑𝒊) 913.3 × 10−9 𝑚3/𝑠𝑃𝑎  

 

It is shown that the NMPC controller is initially tracking the bottomhole pressure until kick occurs 

and then switches to flow control at t = 140 s by closing the choke valve to apply backpressure until 

the kick is stopped at t = 225 s. The pressure setpoint after kick attenuation reaches 50 psi and is set 

as the new bottomhole pressure setpoint after the kick is attenuated.  

Using the proposed model, the numerical simulation begins by calculating the required input 

parameters from the experimental setup in Amin (2017) to run the automated MPD control model 

developed in section 5.2 and 5.3. Table 5.4 shows the detail of the initial and calculated parameters. 

The physical properties of air and gas volume fraction of 0.2 are used in this simulation. The 

numerical simulation results are presented in Figure 5.9a (pressure plots) and Figure 5.9b (the flow 

rates plots).  
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As shown in Figure 5.9a, the NMPC controller successfully tracks the bottomhole pressure setpoint 

within 50 seconds of simulation and this response is replicated in the choke pressure curve. Also, in 

Figure 5.9b, the rig pump flow rates into the system is set equal to the flow rate out through the choke 

until at time t = 140 s when the gas kick is initiated. The NMPC controller identifies the gas kick and 

switches into flow control mode approximately 20 s prior to influx occurring as shown Figure 5.9b. 

The gas kick is fully attenuated at t = 230 s and the new bottomhole setpoint is estimated at about 52 

psi, 2 psi higher than the experimental result.  

Thus, the proposed model successfully replicates the experimental results. The kick size, which peaks 

just below 80 LPM in the experiment compares well with the numerical simulation. Also, the choke 

pressure and the  BHP rise from around 33 psi and 40 psi respectively to around 45 and 50 psi 

respectively in both the experimental and numerical simulation results. In addition, to demonstrate 

the effect of gas-phase influx, the proposed model is set to implement a single-phase flow, the kick 

size results obtained are shown in Figure 5.10a. It is observed that the kick size in Figure 5.10a is 

significantly underestimated compared to the kick size in Figure 5.9b (also shown in 5.10b), when 

the NMPC implements a two-phase (liquid-gas) flow hydraulic model.  
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Figure 5.8: Experimental result of gas kick control simulation (Source: Amin, 2017) 

 

 

Figure 5.9: Numerical simulation results using proposed NMPC controller model 

Figure 5.9a Figure 5.9b 
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Figure 5.10: Gas-phase flow effect during gas kick event simulated in a lab MPD setup 

 

5.4.2.2 Validation a field case study 

Zhou et al. (2016) investigates two alternative well control procedures in an MPD operation: the 

dynamic shut-in (DSI) procedure and the automatic kick control (AKC) procedure; the current study 

focuses on the latter procedure. The AKC utilizes a feedback Proportional-Integral controller and a 

feedforward control scheme. The feedback-feedforward control automatically tunes the choke valve 

opening in a backpressure MPD setup while the main pump flow and the backpressure pump flow 

are manually operated. From the equipment side, the AKC utilizes pressure-while-drilling (PWD) 

tool technology to record pressure measurements at a frequency of 0.5 Hz and transmit them to the 

surface. A detailed description of the PI controller structure and AKC procedure can be found in their 

paper (Zhou et al., 2016). The AKC performance is illustrated using two case studies from a North 

Sea drilling operation; however, for this study, only one case is needed, thus case #1 (Well 1: short 

well with water-based mud) is used.    

Figure 5.10a (single-phase liquid flow model) Figure 5.10b (two-phase liquid-gas flow model ) 
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The well has a true vertical depth (TVD) of 1720 m and uses a water-based mud of density 1475 

kg/m3. The well geometrical details are given in Table 5.5. Prior to the gas kick incident, the 

bottomhole pressure and reservoir pore pressure are 261 and 263 bars respectively. The rig pump and 

backpressure pump flow rates are fixed at 2000 and 400 LPM respectively. The gas kick occurs at t 

= 300 s. Keeping the rig pump and the backpressure pump flow fixed, the choke responds by 

controlling the choke valve until the flow rate through the choke equals the rig pump flow rate into 

the well for pressure stabilization and influx attenuation. The field results are presented in Figures 

6.11a (well flow rates plots) and 6.12a (pressure plots).  

   Table 5.5: Well parameter setup for the numerical simulation of field results  

Given well data in Zhou et al. (2016) Computed data based used for simulation based on given data 

Parameter Value Parameter Value Unit 

Measured depth  2300 m Volume of annulus  (𝑉𝑎) 22.596 𝑚3 

True vertical depth  1720 m Volume of drillstring 𝑉𝑑) 28.945 𝑚3 

Annulus inner diameter  0.2445 m Mass parameter  (𝑀) 8.04 × 108 𝑘𝑔/𝑚3 

Drillpipe outer diameter  0.1397 m Bulk modulus in annulus (𝛽𝑎) 1.3 × 109 𝑃𝑎 

Drillpipe inner diameter  0.1183 m Bulk modulus in drillstring (𝛽𝑑) 1.3 × 109 𝑃𝑎 

Open hole length  291 m Density in drillstring (𝜌𝑑) 1475 𝑘𝑔/𝑚3 

Open hole diameter  0.2159 m Density in annulus (𝜌𝑎) 1475 𝑘𝑔/𝑚3 

Mud density  1.475 sg Friction factor in drillstring (𝐹𝑑) 4.36 × 106 𝑠2/𝑚6 

Reservoir start TD  2290 m Friction factor in annulus  (𝐹𝑎) 3.6 × 105 𝑠2/𝑚6 

Reservoir height  2 m Choke discharge coefficient (𝐶𝑑) 0.6  

Reservoir pore pressure  263 bars Choke discharge area (𝐴0) 0.0056 𝑚2 

  Choke downstream pressure (𝑃0) 1.013 × 105 𝑃𝑎 

  Total vertical depth  (𝐻) 1720 𝑚 

  Prod. index (𝐾𝑝𝑖) 9.3 × 10−7 𝑚3/𝑠𝑃𝑎  
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To numerically replicate this case study using the proposed two-phase flow NMPC controller model, 

the given well geometry and initial operating conditions are used compute the required parameters 

for setting up the hydraulic model and the control objectives presented in Table 5.5. Using the 

physical properties of air and assuming gas volume fraction of 20%, the numerical simulation of gas 

kick is performed, and the results are presented in Figures 5.11b and 5.12b. Figures 5.11b shows the 

flow rate plots of the main pump (𝑞𝑝)and backpressure pump (𝑞𝑏𝑝) fixed at 2000 and 400 LPM 

respectively, the flow rate through the choke (𝑞𝑐),  and reservoir influx (𝑞𝑟𝑒𝑠). While Figure 5.12 

shows the bottomhole and choke pressure plots. It can be observed that the numerical model results 

accurately replicate the field results with 𝑞𝑟𝑒𝑠 peaking at 200 LPM and the new choke and bottomhole 

pressure setpoints around 18 bars and 268 bars respectively after the gas kick is successfully 

attenuated.  

Neglecting any limitations in field processing equipment in the field study, a closer observation of 

the simulation results shows that the NMPC controller performs better than the PI controller utilized 

in Zhou et al. (2016) due to faster response to influx disturbance and quicker attenuation of the same 

gas kick size (i.e. the gas influx is stopped at approximately 100 seconds swifter in the proposed 

model compared to the field results; see Figure 5.11b).  
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Figure 5.11: Field vs model  simulation results of well flow rates in automatic kick attenuation 

operation 

 

Figure 5.12: Field vs model  simulation results of choke and bottomhole pressures in an automatic kick 

attenuation operation 

5.11b (Two-phase flow NMPC controller model 

results) 

5.11a (Field results from Zhou et al. (2016))  

Flow rates through the mud pump, BP pump, and choke 

5.12b (Two-phase flow NMPC controller model results) 
5.12a (Field results from Zhou et al. (2016))  

Measured pressure at choke and downhole  
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5.5 Conclusions and future study 

Automated managed pressure drilling operation relies on advanced hydraulic model and control 

scheme to detect and attenuate kick. It is evident that kick fluid is generally multi-phase, i.e. liquid-

gas mixture, and that an MPD system is a nonlinear process; therefore, a PI control scheme is not 

robust enough and a single-phase liquid flow model will neglect the gas-phase behaviour in the kick 

fluid. Thus, the current study proposes an MPD control system that utilizes a nonlinear model 

predictive controller (NMPC) and a two-phase flow model for computing annular pressure and choke 

valve dynamics during kick control operation. To highlight the control improvement in the proposed 

model, its performance is compared against a single-phase flow model performance during a multi-

phase kick control simulation. The results show that the single-phase model underestimate key well 

control parameters, including the kick size by about 52 LPM (or ~ 90%), bottomhole pressure by 3 

bars and choke pressure by 2 bars compared to the proposed model. These estimation errors in using 

a single-phase liquid model is attributed to neglecting the characteristic effects of the gas-phase 

influx. 

Furthermore, the proposed model successfully validates gas kick control simulation results from a 

lab-scale MPD setup and a gas kick case study from a field based in the North Sea MPD operation. 

For the lab-scale setup, which utilizes an NMPC controller and induces gas kick by discharging air 

into the bottom of the well, the proposed model accurately replicates the simulation results including 

the kick size peaking just below 80 LPM and the new bottomhole pressure setpoint of around 50 psi 

after the kick is attenuated.  Meanwhile, for the field case study, which utilizes a PI controller in MPD 

control system, the proposed control model not only perfectly replicate the field control results (with 

kick size peaking around 200 LPM and bottomhole pressure around of 268 bars after the gas kick is 

attenuated), it responds more swiftly to kick disturbance than the PI controller by attenuating the gas 

kick approximately 100 s faster. 
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Chapter 6 Risk Analysis of Well Blowout Scenarios during Managed 

Pressure Drilling Operation 

Preface 

This chapter presents a dynamic risk assessment model for assessing the safety of a managed 

pressure drilling operation. A version of this chapter has been submitted for review in the Journal 

of Petroleum  Science and Engineering. Along with the co-authors, Dr. Syed Imtiaz, Dr. Faisal 

Khan, and Dr. Stephen Butt, I have co-authored this chapter. I developed the model, made first 

attempt to perform the model analysis, and interpret the data and results. The co-author Faisal Khan 

helped in developing and validating the concepts, reviewed and corrected model results, and 

contributed in preparing, reviewing and revising the manuscript. The co-author Dr. Syed Imtiaz 

helped in the model development, improvement, interpretation, and validation, and in organizing and 

revising the manuscript. The co-author Dr. Stephen Butt contributed through assisting in analyzing 

the data, validating simulation results and revising the manuscript. Co-authors Drs. Imtiaz, Butt and 

Khan reviewed the revisions and provided feedback which I have implemented. I prepared the first 

draft of the manuscript and subsequently revised the manuscript based on the co-authors’ feedback 

and the peer review process 

Abstract 

Offshore drilling involves complex operations and equipment; thus, faces many operational 

challenges, including well control incidents. The managed pressure drilling (MPD) provide a safer 

alternative; however, this technology, for the most part, is still in its infancy. Potential risks during 

well control operation in MPD need to be identified, assessed and managed. The current study 

presents an advanced dynamic blowout risk model (DBRM) to assess the safety during the managed 

pressure drilling operation. The DBRM involves three key steps: a dynamic Bayesian network (DBN) 

model, a numerical simulation of an MPD kick control operation, and dynamic risk analysis. The 
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proposed DBRM implements a novel approach for simulating an MPD failure and assessing blowout 

risk through varying MPD kick control parameters/variables in a simulated system, which are 

instrumental for setting the safe/failure operating thresholds for an MPD control system. The 

proposed DBRM is successfully applied in assessing the dynamic risk of a blowout in an MPD 

operation based on a case study from the Amberjack field in the Gulf of Mexico. The results show 

that the presence of drilling hazards, such as depleted formation, increases the likelihood of 

circulation loss and thus, the kick occurrence, and that an MPD failure likelihood increases as the 

kick intensity exceed the designed limits of an MPD control system. The increased likelihoods of 

these two events increase the risk of a blowout. Conversely, MPD failure and blowout risk can be 

reduced by up to 96% by making the control system robust.  

Keywords: Dynamic Bayesian network, Bow-tie, MPD control system, kick, safety barrier, blowout 

 

6.1 Introduction 

Well control is one of the most challenging operations in drilling; especially in offshore exploration 

and production. More so that most prospects for hydrocarbon resources are drifting exploration into 

the deepwater (Graham et al., 2011) or posing operational challenges that range from depleted 

formations (such as reservoirs with narrow pressure windows) to high-pressure formations. The 

narrow pressure margins are most prominent in deepwater applications where much of the 

overburden is the seawater (Malloy and McDonald, 2008). Well control incidents, such as kick, are 

frequently encountered and can increase operational costs (e.g. lengthy non-productive time - NPT) 

and risk. Risk analysis is a vital tool in the process and oil and gas industries to identify and analyze 

all risks associated with an operation and develop strategies to prevent and mitigate those risks. In 

drilling operations, the risk of blowout accident is central to well control strategies and overall safety 
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of the operation due to the catastrophic consequence of a blowout, such as fire and explosion, multiple 

fatalities, environmental damage, loss of assets, and fines (Graham et al. 2011). 

 

Kick mechanisms and the implementation of managed pressures drilling (MPD) to maintain the 

downhole pressure in troubled wells, such as in the depleted formations, fractured formations, 

overpressured formations, or formations with narrow drilling windows have been covered explicitly 

in the literature (Khakzad et al., 2013; Gala and Toralde, 2011; Rohani, 2012; Malloy and McDonald, 

2008; Kok and Tercan, 2012). The safety benefits that MPD technologies bring to conventional 

drilling may be measured or assessed through the improvement in safety barriers of conventional 

primary well control, especially in deepwater drilling. Gabaldon et al. (2014) used well control barrier 

envelopes to describe how MPD improves influx management and prevents unnecessary shut-in or 

blowout; in Zan and Bicke (2014) MPD implementation reduce failure probability of a well control 

incident by 20%; in Grayson and Gans (2012), the well control barrier layers provided by MPD 

system reduced the possible risk of a blowout by almost 500%. However, the safety and reliability 

assessments of an MPD system have only seen limited focus. In Abimbola et al., (2015) safety 

analysis of an MPD operation identifies an RCD as the most important critical component. This 

conclusion is slightly modified in Sule et al (2018b), in which detailed analysis of the MPD system’s 

operational interactions reveals that an MPD control system has the most influence on the 

success/failure of MPD operation, thus, the most safety critical components.  

 

Many studies have assessed the risk of well control incidents using several risk analysis tools. 

Conventional risk assessment techniques, including Fault Tree (FT), Event Tree (ET), and Bow-Tie 

(BT) are incapable of capturing the dynamic effects of operational risks, such as change in well 

conditions due kick or sudden failure of equipment during drilling operations, and inability to assess 
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the sequential dependencies among process variables in risk estimations (Barua et al., 2016; Khakzad, 

et al., 2012;). Bayesian network (BN), is a more flexible modelling approach that can perform both 

forward and backward analyses and suitable for dynamic risk and safety analyses (Bobbio et al., 

2001; Langset and Portinale, 2007; Khakzad et al., 2011, 2013; Cai et al., 2013; Barua et al., 2016; 

Sule et al.,2018b). However, these BN models are only restricted to one-step posterior analysis and 

are not capable of explicitly modeling the changes in events likelihood or relationship over time.  

Thus, a dynamic Bayesian Network (DBN), which is a temporal extension of BN capable of modeling 

influences over time, has been developed to address the dynamic restrictions in the BN models 

(Murphy, 2002; Cai et al., 2013). The DBN models have been used in many probabilistic analyses of 

dynamic systems and operations across many industries, including oil and gas, process, 

manufacturing, computing etc. For instance, DBN has been used by Cai et al., (2013) in quantitative 

risk assessment of human factors on offshore blowouts; Wu et al., (2016) in prediction and diagnosis 

of offshore drilling incidents; Dong and Yue (2016) in identification of functional connections in 

Biological neural networks; Amin et al., (2018) in dynamic availability assessment of safety-critical 

systems; Zhu et al., (2019) in Fatigue damage assessment of orthotropic steel deck; Luque and Straub 

(2019) in optimal inspection strategies for structural systems.  

Thus, the present study proposes an advanced dynamic blowout risk model (DBRM) for assessing 

the risk in managed pressure drilling kick control operation. The model integrates a numerically 

simulated MPD kick control model to a dynamic blowout risk methodology using a dynamic 

Bayesian Network (DBN) model. The main objective is to develop a risk assessment model for 

numerically simulating and assessing the safety of a managed pressure drilling operation as well 

control barrier element during drilling. Given the dynamic nature of a drilling operation, the current 

study uses a DBN model to give the model capability to update the risk during drilling when latest 
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information is available and to evaluate the influence of an MPD control failure propagation to a 

blowout incident. A brief discussion of MPD control model, BN and DBN model will be presented 

in section 6.2; the dynamic risk methodology in section 6.3; the application of the dynamic blowout 

risk model will be demonstrated in section 6.4 using a field case study, and the results and discussion 

are presented in section 6.5. 

    

6.2 Modeling concepts 

6.2.1 A managed pressure drilling control operation 

Managed pressured drilling (MPD) has many techniques whose applications are based on well 

specific conditions. One of the most commonly used MPD techniques is a constant bottomhole 

pressure (CBHP) technique, which is suitable for a naturally fractured or depleted formation with a 

narrow pressure margin between the pore pressure and fracture gradient (Rohani 2013). This MPD 

technique uses hydraulics models to establish wellhead pressure and maintains a suitable equivalent 

circulating density (ECD) and annulus pressure gradient in the wellbore. One of the common 

commercially available CBHP system is a dynamic annular pressure control (DAPC) system by 

Schlumberger, which is adapted for the current study. A detailed description of the DAPC system 

operation, components operational interactions and modes of failure can be found in the author’s 

previous work (Sule et al., 2018b). The DAPC system consists of a rotating control device (RCD), 

MPD choke manifold, backpressure pump, MPD control system integrated with a real-time hydraulic 

simulator, non-return valve (NRV), pressure relief valves (PRV), and monitoring equipment 

(pressure while drilling (PWD) tool, Coriolis flow meter, and rig pump.  

The DAPC system’s pressure control relies on RCD to seal and allow the pressurization of the 

wellbore annulus and to divert the mud returns into the choke manifold. The MPD choke manifold is 

used to apply hydraulic backpressure on the annulus to manage the bottomhole pressure. When 
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needed, the backpressure pump is activated to supplement annular fluid required to apply precise 

backpressure and the NRV prevents the backflow of mud into the drillstring. Figure 6.1 illustrates 

the system’s kick control operation, where the flow pathways indicated in dashed lines signify the 

power supply and data transmission across the entire system while the pathways indicated in thick 

lines show the hydraulic movement through the system. The detailed analysis of the DAPC system 

in kick control operation from the authors’ previous work, (Sule et al., 2018b), identifies an MPD 

control system as the most safety critical component.  

The subsequent work by the authors (Sule et al., 2019) proposes an advanced nonlinear model 

predictive control (NMPC) model for an MPD control system that can capture the dynamic and 

nonlinear process of an MPD system and the multiphase behaviour of kick fluid during drilling. The 

MPD control model, which is an integral part of the dynamic blowout risk model methodology 

described in section 6.3, has been tested and validated using laboratory experiments and a field case 

study in Sule et al., (2019).  
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Figure 6.1: CBHP MPD system kick management operational flow – showing equipment dependency 

and interaction process (Source: Sule et al., 2018b) 

 

6.2.2 Bayesian network and dynamic Bayesian network 

6.2.2.1 Bayesian network model 

Bayesian Network (BN) describes the causal relationships among variables via a directed acyclic 

graph (DAG) in which the nodes represent the system variables and the arcs symbolize the 

dependencies. The capability of BN to perform both forward and backward analyses make it unique 

in dynamic risk and safety analysis (Bobbio et al., 2001; Khakzad et al., 2013a; Abimbola et al., 

2015). BN can be considered as a representation of joint probability distribution (JPD) with a 

fundamental assumption that not every node is connected to every other node (Korb and Nicholson, 

2011). For instance, assuming a joint distribution of a set of random variables D1 … D5 is defined as 

P(D1 … D5) where D1, D2, D3, and D4 that lead to incident D5 (Figure 6.2). In this illustration, D1, 

D2, and D4 are root nodes with assigned marginal prior probabilities, D3 is an intermediate node with 

defined conditional probability, and D5 is the child node. Hence, using a chain rule, the JBD of the 
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BN is the product of the conditional probability distributions of the variables D1 = d1, D2 = d2 … D5= 

d5 (Korb and Nicholson, 2011; Khakzad et al. 2011). That is: 

 

𝑃(𝑑1, 𝑑2, … , 𝑑5) =  ∏ 𝑃(𝑑𝑖|
5
𝑖=1 𝑑𝐴𝑖)   (6.1) 

  

where Ai in equation (1) are the parents of node i in the DAG and d1, d2... d5 are the states of variables 

D1, D2... D5. Hence, the JPD for the BN in Figure 6.2, can be determined by equation (6.2) 

 

𝑃(𝑑1, 𝑑2, … , 𝑑5) = 𝑃(𝑑1)𝑃(𝑑2)𝑃(𝑑4|𝑑1, 𝑑2) 𝑃(𝑑5|𝑑4, 𝑑3)   (6.2) 

 

Therefore, for conditional probability independents/distributions such as 𝑃(𝑑4|𝑑1, 𝑑2) can be solved 

by using equation (6.3). 

𝑃(𝑑4|𝑑1, 𝑑2) =
𝑃(𝑑1,𝑑1,𝑑4)

𝑃(𝑑1,𝑑2)
    (6.3) 

 

 

Figure 6.2: Illustrative BN model 
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6.2.2.2 Dynamic Bayesian Network 

A dynamic Bayesian network (DBN) is a BN extended with a time dimension to model the behaviour 

of dynamic systems, whereby the dynamic extension does not mean the network structure or 

parameters changes dynamically but a dynamic system is modeled (Murphy, 2002; Hulst, 2006). A 

DBN model consists of time-slices with each time-slice containing its own variables. The DBN 

formalism based on Murphy (2002) conform to two assumptions: a DBN model is defined as a first-

order Markov model (i.e. 𝑃(𝑍𝑡|𝑍1, … , 𝑍𝑡−1) = 𝑃(𝑍𝑡|𝑍𝑡−1)) and the transition model 𝑃(𝑍𝑡|𝑍𝑡−1) 

remain the same for all time-slices, 𝑡 (Murphy, 2002; Hulst, 2006). Thus, a DBN is defined by a  pair 

(𝐵1, 𝐵→). Where 𝐵1is a BN that defines the prior distribution of the state variables 𝑃(𝑍1) and 𝐵→ is a 

two-slice temporal Bayesian network (2TBN) that defines the transition model 𝑃(𝑍𝑡|𝑍𝑡−1) as 

follows:  

 

𝑃(𝑍𝑡|𝑍𝑡−1) =  ∏ 𝑃(𝑍𝑡
𝑖|𝑃𝑎(𝑍𝑡

𝑖)                                                            (6.4) 

𝑁

𝑖=1

 

Where 𝑍𝑡
𝑖 is the i-th node at time-slice t of components variables, 𝑃𝑎(𝑍𝑡

𝑖) are the parents of 𝑍𝑡
𝑖 at 

same time-slice 𝑡 or previous time-slice 𝑡 − 1, and 𝑁 is the number of random variables in 𝑍𝑡
𝑖 (Hulst, 

2006). While the nodes in the first time-slice have no parameters associated with them, the nodes in 

the second time-slice of the 2TBN have a conditional probability tables (CPT). Thus, for a DBN with 

a sequence of length T slices, the joint probability distribution can be obtained by unrolling the 2TBN 

network (Hulst, 2006) as:  

 

                       𝑃(𝑍1:𝑇) =  ∏ ∏ 𝑃(𝑍𝑡
𝑖|𝑃𝑎(𝑍𝑡

𝑖)                                                                       (6.5)           

𝑁

𝑖=1

𝑇

𝑡=1
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However, to improve the DBN modeling power, Hulst (2006) developed extended DBN formalism 

from the Murphy (2002) DBN formalism as kth-order Markov processes where 𝐵→ is defined as 

(𝑘 + 1)𝑇𝐵𝑁 instead of 2TBN. Thus, the transition model 𝑃(𝑍𝑡|𝑍𝑡−1, 𝑍𝑡−2, … , 𝑍𝑡−𝑘) for a kth-order 

Markov process is defined:     

                    𝑃(𝑍𝑡|𝑍𝑡−1, 𝑍𝑡−2, … , 𝑍𝑡−𝑘) = ∏ 𝑃(𝑍𝑡
𝑖|𝑃𝑎(𝑍𝑡

𝑖) 

𝑁

𝑖=1

                            (6.6) 

 

This extended DBN formalism is distinguished from Murphy’s definition in that the set of parents is 

not restricted to nodes in previous or current time-slice but can also contain nodes in time-slices 

further in the past. Thus, unrolling the (k + 1)TBN and then multiplying all the CPTs can obtain the 

JPD for a sequence of length T slice, which ends up with the same definition in eq (6.5). 

 

Graphical representation of a kth-order Markov process with a (k + 1)TBN is simplified by using 

temporal arc, which is an arc between a parent node and a child node with an index that denotes the 

temporal order or time-delay k > 0 (Hulst, 2006). Figure 6.3 shows two graphical visualizations of 

second-order DBN, in which Figure 6.3a illustrates the graphical representation without temporal 

arc; thus, can appear complex and cumbersome with higher order, i.e. many variables and different 

temporal orders per time-slice. However, in a visualization shown in Figure 6.3b, it is immediately 

clear that the DBN has three temporal arcs (Xt−2 → Xt, Xt−1 → Xt, and Yt−1 → Yt) and two non-

temporal arcs (Ut → Xt, Xt → Yt), where this is less obvious from the (k + 1)TBN visualization.  
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Figure 6.3: Comparison of visualization of a second-order DBN between using  (a) t = 3 time-slices and 

(b) using temporal arcs (Source: Hulst, 2006).         

 

In addition to introducing the temporal arc, Hulst (2006) introduced temporal plate in the extended 

DBN formalism to avoid every node to be copied to every time-slice when unrolling the DBN for 

inference as in the case of Murphy (2002) DBN formalism due to its memory waste and higher 

computational power requirement. So, all nodes outside the temporal plate are not copied when 

unrolling but their arcs are, meaning that they will remain constant over time. These nodes are termed 

contemporal nodes on the DBN. 

 

Thus, DBN models in the extended DBN formalism by Hulst (2006) is implemented in the DBN of 

the proposed model via the GeNIe modeling software by BayesFusion (available at 

https://www.bayesfusion.com). Additionally, several inference algorithms, such as filtering (or 

monitoring), prediction, and smoothening are available (Murphy, 2002; Hulst, 2006) and their goal 

in a DBN is to calculate 𝑃(𝑋𝑡|𝑦1:𝜏). The filtering (where 𝑡 = 𝜏) is to keep track of the current state 

for rational decision making; the prediction (where 𝑡 < 𝜏) is to evaluate the effect of possible actions 

on the future state; and smoothing (where 𝑡 > 𝜏) is useful to get a better estimate of the past state, 

because more evidence is available at time t than at previous time-step (𝑡 − 1). All these inferences 

are supported in the GeNIe software.  
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6.3 Methodology to Develop Dynamic Blowout Risk Model (DBRM) 

The proposed dynamic blowout risk model (DBRM), shown in Figure 7.4, is to assess the safety of 

managed pressure drilling (MPD) operation during kick control operation. A blowout incident can 

lead to disastrous consequences as evident in the deepwater horizon accident in 2010 (Graham et al., 

2011). In the current work, undesired pressure is recognized as the gas kick and a blowout is 

considered as the undesirable consequence due to failure of an MPD (a primary well control safety 

barrier) in preventing and/or containing kick and failure of the BOP system (secondary well control 

safety barrier) to contain the well.  

 

The DBRM framework in Figure 6.4, begins with identifying drilling hazards (step 1); identifying 

the safety system, equipment, process barrier (step 2); collecting incident analysis reports to identify: 

root causes to system or operational failure, drilling events (kick or circulation loss), escalation 

analysis and underlying failure consequences, including blowout (step 3); developing the FT and ET 

models of top and pivoting events to establish BT (step 4); mapping BT into BN to develop a DBN 

model for dynamic risk assessment (step 5); and performing model analysis and probability updating 

using data collected from simulations and from an expert or outside source (step 6). The extension of 

step 2 (i.e. the safety barrier components) identifies MPD system as the initial safety barrier element 

in well control operation and it proceeds to numerical simulation phase for kick control operation 

using an advanced NMPC MPD control model. As shown in Figure 6.4, the numerical kick control 

simulation loop is designed with failure/safe operating thresholds for four kick control parameters 

(backpressure, bottomhole pressure, kick size, and surface equipment) relevant during an MPD 

operation. 
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Figure 6.4: Dynamic blowout risk model framework for an MPD kick control operation 

 

The operation ends if any of these safe operating thresholds are violated or operation time is elapsed. 

Finally, the simulation data collected is converted into probability distribution and then fed into the 

DBN for phase 3 operation, which is the risk assessment of the drilling operation.  
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Figure 6.5: Numerical simulation model process flow diagram for the DBRM framework in Fig. 6.4 

   

7.3.1 Hazard identification by Bow-Tie model 

This is the phase There are many techniques available to perform hazard identification; however, one 

of the most intuitive techniques is the Bow-Tie  model, which provides one of the best graphical 

representation of a complete accident scenario progression and the effectiveness of the various safety 

barriers (Wu et al., 2016; Khakzad et al., 2013).  A simplified BT model is composed of an FT 

diagram on the left-hand side identifying the basic events leading to the top event and located at the 

middle of the BT and an ET on the right-hand side identifying possible consequences of the top 

(investigating) event given the effects of the safety barriers. A more complex BT may involve more 
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than one FTs in which at least one of the FT top event will be an initiating event of the ET (located 

at the center of BT) and other FTs top events may fault analysis of the safety barriers in the ET section 

of the BT. The BT also help identify logical relationships among basic and intermediated events 

leading to top event and illustrate the sequential failure of safety barriers due to the escalation of the 

top event (Khakzad et al., 2013). A simplified BT model is illustrated in Figure 6.6a. 
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Figure 6.6: Creating a BN model from the BT model 
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6.3.2 DBN model development 

6.3.2.1 BT to BN Mapping 

The BN model mapping and construction is developed using a decision modeling software, GeNIe 

2.3, available at http://www.bayesfusion.com/. The transformation of BT to the BN model is 

performed using the mapping algorithm proposed in Khakzad et al. (2013). Figure 6.6b shows the 

BN model version of the BT model after mapping algorithm has been implemented. The mapping of 

BT to BN illustrated in Figure 6.6 is a simplified example, whereby the basic events (BE) of the FT 

are mapped as the root nodes, intermediate event as intermediate node, top event as pivot node, and 

the safety barriers (SB) and consequence as the safety and consequence nodes respectively. Unlike 

BT, the BN can capture the dependency of safety barriers on the top event and among safety barrier 

elements by means of drawing causal arcs as shown in Figure 6.6b; where the influence of top event 

on the SB1 and that of SB1 on SB2 nodes can be analyzed. Lastly, the gate relationships, such as 

“OR” and “AND” gates, among the BT components, are used to define the conditional probability 

relationships among the nodes in the BN. 

 

6.3.2.2 Developing DBN model 

The GeNIe software is used to create the DBN model in the current work. The GeNIe software 

implements the extended DBN formalism based on Hulst (2006) discussed in section 6.2.2 of this 

chapter. The temporal extension of BN to develop the DBN model is initiated by enabling the 

temporal plate on the GeNIe Network. The DBN model in GeNIe does not focus on time-slices but 

rather on variables; thus, allows for compact modeling of higher order temporal influences. This is 

possible due to the temporal arc that imposes temporal influences on the DBN model and the number 

within the arc denotes their order. 

http://www.bayesfusion.com/
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 For instance, as shown in Figure 6.7, an influence of zero-order, which is a normalized temporal arc, 

signifies instantaneous influence, the first order, marked by [1] represents an influence spanning over 

one time-step, and an influence of higher order span over multiple time-steps, e.g., [2] represents 

slower influences that span over two time-steps. Furthermore, a looping influence, as shown in Figure 

6.7, which originates and ends at the same node TE, gives the DBN model the capability to analyze 

the TE impacts on itself in future (i.e. first-order influence). The probability inference is performed 

by updating temporal beliefs to obtain marginal posterior probability distributions as a function of 

time or by setting temporal evidence from historical data and updating the temporal beliefs. 

 

Figure 6.7: Simplified case illustration of a DBN model using GeNIe  

6.3.3 Numerical simulation of MPD kick control operation 

This is the phase 2 of the DBRM framework. The numerical model simulation implements an MPD 

control model proposed in earlier work by the authors (Sule et al., 2019) that utilizes a nonlinear 

model predictive controller (NMPC) and a two-phase hydraulic flow model for computing annular 

pressure and choke valve dynamics during kick control operation. The NMPC controller is executed 

using a MATLAB code based on Grüne and Pannek (2017). The sampling intervals are set as 5 
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seconds based on simulation objectives and controller performance sensitivity in Grüne and Pannek 

(2017).  

The pressure window and pump flow capacity, which are used to set the controller bandwidth (or 

constraints), is based on the reservoir (pore) pressure, the fracture pressure and the surface equipment 

safe operating range. While the aim of the controller is to safely detect and attenuate kick while 

maintaining a downhole pressure window, the numerical simulation will push the controller beyond 

its safe operating thresholds for the purpose of the current work.  

 

The MPD control plant model implemented in the numerical simulation is described by equations 

(6.7 – 6.12) below and are based on the process flow diagram in Figure 6.8. A detailed description of 

the hydraulic model and the NMPC controller scheme can be found in Sule et al. (2019). 

  

𝑑𝑃𝑝

𝑑𝑡
= 𝑃
̇

𝑝 =
𝛽𝑑

𝑉𝑑
(𝑞𝑝 − 𝑞𝑏)   (pump pressure dynamics)     (6.7)  

 �̇�𝑏 =
1

𝑀
(𝑃𝑝 − 𝑃𝑐 − 𝐹𝑑𝑞𝑏

2 − 𝐹𝑎(𝑞𝑟𝑒𝑠 + 𝑞𝑏)2 + (𝜌𝑑 − 𝜌𝑎)𝑔ℎ𝑇𝑉𝐷)  (bit flow dynamics)  (6.8) 

𝑑𝑃𝑐

𝑑𝑡
= �̇�𝑐 =

�̅�

𝑉𝑎
(𝑞𝑏 + 𝑞𝑏𝑝𝑝 + 𝑞𝑟𝑒𝑠 − 𝑞𝑐 + 𝑇𝑋𝐸)   (choke pressure dynamics)  (6.9) 

𝑤ℎ𝑒𝑟𝑒 �̅� (𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑏𝑢𝑙𝑘 𝑚𝑜𝑑𝑢𝑙𝑢𝑠) =
𝛽𝐿

1+
𝛽𝐿
𝐿

∫
𝐶0𝛼𝐺

𝛾𝑃
𝑑𝑥

𝐿
0

 , 𝛼𝐺 +  𝛼𝐿 = 1     (6.9b) 

  𝑞𝑐 = 𝑢𝑐  𝐴𝑜𝐶𝑑 (
 𝜒𝐿

𝜌𝐿
+

 𝜒𝐺

𝜌𝐺
) √

2(𝑃𝑐−𝑃0) 
𝜒𝐿
𝜌𝐿

+
𝜒𝐺

𝛾2𝜌𝐺

  (two-phase choke flow model)   (6.10) 

𝑤ℎ𝑒𝑟𝑒  𝜌𝐺 =
𝑃

𝑐𝐺
2(𝑇)

 , 𝜌𝐿 = 𝜌𝐿,0 +
𝑃

𝑐𝐿
2    (gas and liquid densities)   (6.10b) 

𝑃𝑏 = {
𝑃𝑐 + 𝐹𝑑𝑞𝑏

2+𝜌𝑎𝑔ℎ𝑇𝑉𝐷

𝑃𝑝 − 𝐹𝑞𝑝
2+𝜌𝑎𝑔ℎ𝑇𝑉𝐷

   (bottomhole pressure)    (6.11) 
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𝑞𝑟𝑒𝑠 = 𝑘𝑝(𝑃𝑟𝑒𝑠−𝑃𝑏ℎ)    (reservoir influx)    (6.12) 

Where 𝑃𝑝, is the rig pump pressure, 𝑞𝑝 is rig pump flow rate, 𝑉𝑑 and 𝑉𝑎 are the volume of the 

drillstring and annulus respectively, 𝛽𝑑 and 𝛽𝑎 are the bulk moduli of mud in the drill string and 

annulus respectively, 𝑞𝑏 is the flow through the bit, 𝑃𝑐 is the upstream choke pressure, 𝑞𝑐 is the flow 

through the choke, 𝑞𝑟𝑒𝑠 is the reservoir influx flow rate, 𝐹𝑑and 𝐹𝑎 are frictional pressure loss in the 

drillstring and annulus respectively, 𝜒𝐿 is the liquid mass fraction, 𝜒𝐺  is the gas mass fraction. and 𝑢𝑐 ∈

[0,1] is the choke opening (or choke control input). 

 

Figure 6.8: Managed pressure drilling control system process flow diagram 

 

6.4 Application of proposed risk model framework 

6.4.1 Case study background 

The Amberjack field, located 32 miles off the coast of Louisiana in Mississippi Canyon Block 109 

in 1030 ft of water, is discovered by BP in 1983 and by 1992 38 wells had been completed and were 

producing oil and gas from various sand packages. A redevelopment program initiated with the A16 
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ST1 and A25 ST1 wells in 1999 after about 10 years of production encountered significant 

challenges, including, reduced fracture gradient, unmanageable equivalent circulation density (ECD), 

and wellbore instability through the overburden and depleted reservoir sands above the target 

formation. These resulted in undesirable drilling events, including gas influx. However, with the 

implementation of Schlumberger DAPC constant bottomhole pressure MPD technique to drill the 

troubled reservoir section, the operator successfully managed the bottomhole pressure windows, 

within ± 0.16 ppg while drilling, ± 0.12 ppg while tripping, and ± 0.05 ppg while rolling over the 

mud from 14.8 to 15.0 ppg, to reach the target depth. In this drilling operation, the influx was limited 

to 2.5 bbl and shut-in-casing-pressure to 150 psi. Detail information of this case study can be found 

in Fredericks et al. (2011). 

 

6.4.2 MPD kick control simulations 

6.4.2.1 Plant and control model development 

An MPD system that meets the downhole drilling operating requirements for the Amberjack case 

study and key surface equipment, including the RCD and the MPD choke manifold is developed. 

This is done using the operational limits set in the Amberjack MPD case study for influx rate of 2.5 

bbl./min, surface casing pressure of 150 psi and target formation fracture and pore pressures of 8353.8 

psi (15.3 ppg) and 8080.8 psi (14.8 ppg) respectively. Using these operational requirements, M-I 

SWACO RCD 3† and AUTOCHOKE† drilling choke are selected for the Schlumberger DAPC 

system. The RCD 3† has a maximum static pressure of 3000 psi and a dynamic pressure of 1000 - 

1500 psi at 100 - 80 rpm respectively and the AUTOCHOKE† is available in 3000, 10000 and 15000 

psi models.   
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Consequently, a further model analysis is achieved by developing “MPD kick control variables” to 

assess the success/failure of the kick control operation. The MPD kick control variables consist of 

surface backpressure 𝑃𝑐, bottomhole pressure 𝐵𝐻𝑃, kick size , 𝑞𝑟𝑒𝑠, and allowable surface pressure 

for RCD (𝑅𝐶𝐷_𝑃𝑙𝑖𝑚) and drilling choke  (𝐶ℎ𝑜𝑘𝑒_𝑃𝑙𝑖𝑚).  

Table 6.1 presents the failure thresholds for kick control variables, based on the drilling operation 

limitations, which determines when control operation may fail. The controller/ model error listed as 

category 3 is not numerically defined; thus, the study considers the failure probability database 

available to describe its contribution to MPD control system failure. The numerical model begins by 

using the well geometry and the pressure profiles described in the Amberjack field MPD case study 

to compute the required kick control parameters for setting up the hydraulic model and the control 

objectives for gas kick control numerical simulations. The narrow pressure margins between the pore 

pressure/minimum BHP setpoint (14.8 ppg) and fracture pressure/maximum BHP setpoint (15.3 ppg) 

in the target formation section are used to set the controller pressure constraints (boundaries) for the 

MPD system, i.e. 

[𝑃𝑝𝑜𝑟𝑒 ≤ 𝐵𝐻𝑃𝑟𝑒𝑓 ≤ 𝑃𝑓𝑟𝑎𝑐 = 14.8 (𝑝𝑝𝑔) ≤ 𝐵𝐻𝑃𝑟𝑒𝑓 ≤ 15.3 (𝑝𝑝𝑔)]   (6.13) 

The 𝐵𝐻𝑃𝑟𝑒𝑓is computed using the given mud weight of 14.85 (ppg) to maintain the required ECD.     

Table 6.1: Operational limits for an MPD control model simulation 

Category 1: drilling parameters Failure threshold 

Gas kick rate (size) > 2.5 bbl./min 

Formation fracture pressure (Fp)/maximum BHP setpoint > 8353.8 psi (576 bars) 

Formation pore pressure (Ppore)/minimum BHP setpoint < 8080.8 psi (557 bars) 

Bottomhole pressure setpoint 8190 psi (565 bars) 

Category 2: surface equipment allowable pressure  
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RCD 3†‡  > 1500 psi 

AUTOCHOKE† > 10000 psi 

Category 3: controller / model error  

    

  

6.4.2.2 Kick control simulations in an automated MPD control system 

Normal operating condition 

The simulations are performed using a MATLAB code based on Grüne and Pannek (2017) and the 

detail control model setup can be found in Nandan et al. (2016); Sule et al. (2019). The first step of 

the numerical simulations is tuning the model to calibrate the field data reported in the Amberjack 

case study (Fredericks et al., 2011) when implementing the operational limits of rig pump flow fixed 

at 398 GPM,  BHP setpoint = 15 ppg (565 bars), casing pressure below 150 psi (10.3 bars), minimum 

BHP setpoint not exceeding 14.8  ppg (557 bars) and maximum BHP setpoint not exceeding 15.3 

ppg (576 bars) set in the study. Table 6.2 summarizes well parameter used in setting up the MPD 

control model.  

The results are shown in Figure 6.9 (a and b). Figure 6.9b shows the results of an unplanned fire drill 

for testing the MPD system in the case study. As seen in the plot, while pumping at around 398 GPM, 

and maintaining the BHP setpoint of 15 ppg and backpressure (Pc), the rig pump is intentionally 

stopped to see how the MPD system will respond in maintaining the ECD and moments later, the 

pump is restarted, and the operation went back to normal. The goal for this study, however, is to set 

the normal operating conditions for the control model before running failure simulations. Figure 6.9a 

shows the model tuning results, in which the controller swiftly tracks the BHP setpoint (within 40 s), 

                                                           
 

‡ Trademark 
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to set system’s normal control operation without any disturbance while the pump flow rate is fixed 

at around 398 GPM. 

Table 6.2: Well parameter for MPD control simulation based on Amberjack case study   

Parameter Value Unit 

Volume of annulus  (𝑽𝒂) 180.95 𝑚3 

Volume of drillstring 𝑽𝒅) 74.86 𝑚3 

Mass parameter  (𝑴) 8.04 × 108 𝑘𝑔/𝑚3 

Bulk modulus in annulus (𝜷𝒂) 2.3 × 109 𝑃𝑎 

Bulk modulus in drillstring (𝜷𝒅) 2.3 × 109 𝑃𝑎 

Density in drillstring (𝝆𝒅) 1779.5 𝑘𝑔/𝑚3 

Density in annulus (𝝆𝒂) 1779.5 𝑘𝑔/𝑚3 

Friction factor in drillstring (𝑭𝒅) 6.29 × 107 𝑠2/𝑚6 

Friction factor in annulus  (𝑭𝒂) 6.39 × 106 𝑠2/𝑚6 

Choke discharge coefficient (𝑪𝒅) 0.6  

Choke discharge area (𝑨𝟎) 0.0022 𝑚2 

Choke downstream pressure (𝑷𝟎) 1.013 × 105 𝑃𝑎 

Total vertical depth  (𝑯) 3200 (10500) 𝑚 (ft) 

Prod. index (𝑲𝒑𝒊) 6.833 × 10−7 𝑚3/𝑠𝑃𝑎  

Gas mass flow fraction,  𝝌𝑮 0.2  

Liquid mass flow fraction,  𝝌𝑳 0.8  

Speed of sound in gas,  𝒄𝑮 345.8 𝑚/𝑠 

Density of gas,  𝝆𝒈 1.2 𝑘𝑔/𝑚3 

Gas expansion factor,  𝜸 1.4  

Volume flow fraction,  𝜶𝑮 0.2 𝑚3/𝑠 

 𝐒𝐥𝐢𝐩 𝐥𝐚𝐰 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 𝐊 1.2  

 𝐒𝐥𝐢𝐩 𝐥𝐚𝐰 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 𝐒 1  
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Figure 6.9: Model tuning results to set the normal operating conditions vs the field results. 

 

Failure simulations 

The required objective of an MPD control system is to detect and attenuate the kick. Using the 

operational limitations and the failure thresholds presented in Table 1, kick control failure simulations 

are numerically performed by initiating kick through pore pressure increase above the BHP setpoint 

of 15 ppg (565 bars or 8190 psi) while maintaining the mud pump flow at 398 GPM. Because the 

goal is to simulate kick control failure that consequently leads to a blowout scenario, the pore pressure 

is initially increased to 566.5 bar (8207 psi) just above the BHP setpoint to run the first simulation, 

and then increased incrementally by 0.5 bar until failure thresholds of the kick control variables are 

exceeded. As shown in Table 6.3, a total of eight kick simulations are numerically performed and the 

drilling parameters including BHP, backpressure (𝑃𝑐), choke flow rate (𝑞𝑐), reservoir influx (𝑞𝑟𝑒𝑠), 

and choke valve opening (𝑢𝑐) are computed and plotted. 

     

For example, to initiate the gas kick scenario for run #1, the reservoir pore pressure is increased to 

566 bars at time T = 240 s while keeping the rig pump flow rate constant at 398 GPM. As soon as 
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controller detects the kick, the choke opening, which have an operating range of [0 −  1], 

automatically starts to decrease to deliver corresponding choke pressure (backpressure) on the 

annulus to increase the BHP setpoint until the kick is attenuated and a new BHP setpoint is set. The 

simulation is repeated for the remaining runs until the kick control operation starts to fail due to the 

kick control variables exceeding their failure thresholds.  

Table 6.3: Kick simulation runs for MPD control failure 

 
Run # 

Pore pressure 

(bars) 

Pore pressure 

(psi) 

S
u
cc

es
sf

u
l 

si
m

u
la

ti
o
n
s 

0 557 [initial] 8080.8 [initial] 

1 566 8207 

2 566.5 8214.25   

3 567 8221 

4 567.5 8228.75 

F
ai

le
d
 

si
m

u
la

ti
o
n
s 

5 568 8236 

6 568.5 8243.25 

7 569 8250.5 

8 569.5 8257.75 

 

 

6.4.3 Failure probability distributions for MPD kick control variables  

The failure probability estimations of MPD kick control variables are performed by transforming the 

failure data obtained from kick control simulations into probability data. The control variables are 

described based on drilling parameters (allowable BHP, backpressure, and kick size/ flow rate), the 

surface equipment pressure containment rating of an RCD and a drilling choke, control model failure. 

The numerical simulation results obtained for each kick control variable are used to generate their 

cumulative probability distributions. 𝑃 represents the probability of failure at any observation 
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obtained using equation (6.14), i.e. each computed value of the kick control variable 𝑥, including 

BHP setpoint, backpressure, influx size, and RCD-drilling choke pressure at a discrete time. Where 

a mean 𝜇 and standard deviation 𝜎 are determined by equations (6.15) and (6.16). Thus, the failure 

probability of each kick control variable is estimated from the cumulative distribution curve, i.e. the 

probability from the point where the control variable exceeds the failure threshold.  

𝑃 = 𝐹(𝑥|𝜇, 𝜎) =
1

𝜎√2𝜋
∫ 𝑒

−
(𝑡−𝜇)2

2𝜎2  𝑑𝑡𝑥

−∞
   (6.14) 

𝜇 =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1       (6.15) 

𝜎 = √
1

𝑁−1
∑ (𝑥𝑖 −𝑁

𝑖=1 𝜇)2    (6.16) 

 

6.4.4 Dynamic Bayesian Network model development 

The BN model is developed by mapping the BT model into a Bayesian network using the illustrated 

example shown in Figure 6.6. In this study, two fault trees top events (kick event as the initiating 

event and MPD failure as the first safety barrier element of the event tree) are developed. The kick 

event FT (Figure 6.10) is developed based on the history of drilling challenges in the case study 

(Fredericks et al. (2011). Meanwhile, the MPD kick control failure FT model in Figure 6.10, (a 

primary well control safety barrier), is developed based on the operational interactions and 

dependencies among the MPD system components illustrated in Figure 6.1. The ET model in Figure 

6.10 consists of the kick event as the initiating event, the well control safety barrier elements, and the 

consequences. The safety barrier elements include: an MPD, a BOP system, and escalation barriers 

preventers (casing and wellhead, ignition prevention, and emergency response plan (ERP). Detail 

discussion on ignition prevention barriers and emergency response plan can be found in Rathnayaka 

et al., 2013; IADC Deepwater Well control guidelines, 2015.   
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The DBN model in Figure 6.11 is an extension of BN model is set up in a temporal plate with 160 

time-slices for dynamic analysis using a Normal arc, which assumes that any occurring event will 

have an instantaneous influence on the system operation. For instance, drilling into a high-pressure 

zone where 𝑃𝑝𝑜𝑟𝑒 > 𝐵𝐻𝑃 provides  instantaneous effect of kick occurrence. The 160 time-steps is 

based on the simulation time set for the MPD kick control operation. Furthermore, the consequence 

node consists of a total of seven states outcomes, a safe state plus six others described in Table 6.4. 

A safe state outcome named “no kick” is added to the consequence node state account for no kick 

event. To assess the impacts of kick control variable nodes on themselves in the future, i.e., 

𝑝(𝑍𝑡|𝑍𝑡−𝑘), the temporal arc from each node is looped back to itself as shown in Figure 6.11. This 

can be interpreted as how the prior node event impacts the occurrence of the node event on the present 

day. The probability of kick event or blowout, for example, is evaluated by forward analysis, and the 

posterior probability given the occurrence of these events is evaluated by backward analysis.  

 

Table 6.4: Consequences resulting from well control failure  

Consq. Outcomes  Description  

C1 Kick controlled The MPD control system successfully attenuate kick  

C2 Kick uncontrolled MPD failed but the kick is contained by BOP system 

C3 Blowout contained BOP system failed but Wellhead/casing prevent release to surface 

C4 Blowout Wellhead and casing failed to contain kick event escalation to blowout 

C5 Fire and explosion Ignition prevention failed to prevent fire and explosion escalation 

C6 Catastrophic accident Emergency response plan failed causing fatalities, loss of asset, 

environment damage, monetary losses etc.   
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Figure 6.10: Bow-tie model for loss of well control in an MPD operation 
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Figure 6.11: DBN model for risk analysis of loss of well control in an MPD operation 

 

6.5 Results and discussions 

The simulation results, including kick control simulations, probabilities distribution of kick control 

variables, and dynamic analysis of blowout consequence are presented. The failure probabilities of 

basic events used are presented in Table 6.5.  

 

Temporal plate (160 time-steps) 
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6.5.1 MPD control failure simulations 

For each kick control simulation run, all kick control variables are computed at every 5 seconds of 

sample time defined in the control model. The results for backpressure, BHP setpoint, and influx size 

(𝑞𝑟𝑒𝑠) are presented in Figures 6.12, 6.13, and 6.14 respectively. As shown in Figures 6.12 – 6.14,  

the controller automatically identifies reservoir influx at time t = 240 s and responds by applying 

backpressure on the annulus. Thus, the increasing backpressure leads to a corresponding increase in 

the BHP setpoint in attempt to attenuate the kick. It can also be noted, in Figures 6.12 – 6.14, that the 

backpressure, BHP and kick size increases with higher pore pressure (𝑃𝑝) of the formation until the 

MPD kick control variables exceed their failure thresholds defined in Table 6.1.  

 

Figure 6.12: Simulation results of backpressure for successful/failed kick control operations 
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psi (567.5 bars) will not exceed the backpressure failure threshold of 150 psi; thus, the MPD control 

system will result in a successful kick control operation. However, when the formation pore pressure 
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exceed failure threshold of 150 psi; thus, results in failure of kick control. The same explanations 

apply to the BHP results shown in Figures 6.13 a and b. However, the kick size does not exceed its 

failure threshold of 2.5 bbl/min until the formation pore pressure increases to 8257.75 psi (569.5 bars) 

as shown in Figure 6.14.  

 

Figure 6.13: Simulation results of BHP for successful/failed kick control operations 

 

 

Figure 6.14: Simulation results of kick size for successful/failed kick control operations 
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6.5.2 Failure probability results 

The cumulative distribution obtained for the kick control variables, including backpressure, BHP, 

kick size, and allowable pressure of RCD and drilling choke, are presented in Figures 6.15 – 6.18 

respectively. The RCD failure probability analysis is performed using the results obtained for 

backpressure operation. This is because an MPD system can only apply surface backpressure within 

the available pressure control rating of an RCD (Hannegan et al., 2017). Furthermore, because the 

allowable working pressure of the surface equipment will be based on the equipment with the least 

pressure rating, the failure probability of the drilling choke will be equal to the failure probability 

obtained for the RCD. Thus, the failure probability of the RCD and drilling choke is estimated from 

the simulated backpressure results exceeding the RCD failure threshold of 1500 psi. The failure 

probabilities of each MPD kick control variable are computed from their respective cumulative 

distribution curve. For instance, in the case of backpressure, the probability that the backpressure 

exceeds the failure threshold, i.e. 𝑃 =  [𝑃𝑐 > 150 (𝑝𝑠𝑖)] is computed. The computed probabilities for 

all MPD kick control variables are presented in Table 6.5 and implemented in the failure and blowout 

analysis of MPD operation.  

These computed failure probabilities are reasonable considering the drilling challenges in the case 

study. Thus, because of the narrow pressure margin between the pore pressure and the fracture 

pressure of the target formation in the Amberjack case study, approximately 2% increase in the pore 

pressure may result in about 75.5%, 72.9%, 75.3%, and 15.4% likelihoods that the backpressure, 

BHP setpoint, kick size, and RCD respectively will exceed their safe operating thresholds. 
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Table 6.5: Failure probabilities of MPD control variables in a kick control operation 

MPD control variables 
Failure probability 

Pp = 8243.25  (psi) Pp = 8250.5  (psi) Pp = 8257.75 (psi) Average 

Backpressure 0.7636 0.7513 0.7496 0.755 

BHP setpoint 0.7458 0.7191 0.7230 0.729 

Kick size No data No data 0.7534 0.753 

RCD/Drilling choke 0.2080 0.1144 0.1401 0.154 

 

 

Figure 6.15: Cumulative distribution of backpressure obtained in MPD kick control simulation     

 

Figure 6.16: Cumulative distribution of BHP setpoint obtained in MPD kick control simulation     

 

Figure 6.17: Cumulative distribution of reservoir influx obtained in MPD kick control simulation 
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Figure 6.18 Cumulative distribution of RCD obtained in MPD kick control simulation 

 

6.5.3 Failure and risk analysis of an MPD and blowout inferences  

6.5.3.1 Forward analysis of the DBN model 

Using the prior probabilities of basic events presented in Table 6.6 and performing a forward analysis 

on the DBN model for the given 160 time-slices provides one-step Bayesian updating of the network 

variables and outputs probability observations for the entire times-steps (i.e. from  𝑡 = 0 − 𝑡 =

159 𝑠). The results for the 159th time-slice are shown in Figure 6.19. The probability of kick event 

occurring, given 74% chance of circulation loss and 9% chance of hydrostatic pressure loss, is 

estimated as 0.760. It is shown here that the 74% likelihood of circulation loss is due to a high chance 

of fractured formation given a 73% likelihood of formation depletion, as indicated in the case study. 

Moreover, the failure probability of an MPD kick control operation is estimated as 0.752. About 73% 

of MPD kick control failure is contributed by an MPD control system failure, which has a failure 

likelihood of 98.9% due to MPD kick control variables exceeding their safe operating thresholds. 

The MPD control operation accounts for the operational limits of the surface equipment and the 

robustness of an MPD control model whose failure occurrence probability is estimated as 98% in this 

case. The control model execution, which depends on the control design limits, is highly influenced 

by the severity of the disturbance, such as kick, due to wellbore/formation instabilities. 
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The probabilities of these two nodes (kick event and MPD system) propagate through other 

operational safety barriers nodes in the model to estimate the likelihood of risk. The results are shown 

in Figure 6.19. For instance, given the 76% likelihood that kick event occurs results in no kick 

consequence likelihood of 24%. Additionally, the high probability of 75% that the MPD system 

safety barrier fails, results in about 1% likelihood consequence that kick is controlled. Thus, the 

chances that kick escalation is uncontrolled, a blowout is contained, or blowout incident occur 

depends on the failure probabilities of the BOP system and wellhead/casing safety barriers. In this 

case, the chance of well control incident leading to blowout risk is estimated as 32% and the risk of 

blowout escalation, including fire explosion and catastrophic accidents are estimated as about 7% 

and 2% respectively.  

 

Furthermore, to assess the influence of kick control events occurrence on itself in relation to the DBN 

analysis, the conditional probability table (CPT) for each kick control event is defined with respective 

prior probabilities of occurrence at t = 0 and updated (posterior) probabilities of occurrence at t = 1 

(i.e. a time prior), and perform temporal probability updating. These analyses increase the failure 

likelihoods of kick occurrence, MPD failure, and blowout risk by 29%, 29%, and 50% respectively 

as shown Figure 6.20, compared to analysis with no prior evidence as shown in Figure 6.19. This is 

highly useful for risk prediction and diagnostic analyses of an MPD operation when evaluating the 

safety of the operation 
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Table 6.6: Basic events and their probabilities (Sources: Khakzad et al., 2013; 2013a; Abimbola et al., 

2015; Rathnayaka et al., 2012; Di Natale et al., 2012; Tran et al., 1997; Phillipa et al., 2011; OREDA, 2002; 

Sule et al., 2018b) 

Events Event Description Prior Probability (Pi) Posterior probability (Po) Po/Pi 

1 RCD Bearing assembly failure 1.43E-03 1.44E-03 1.01 

2 RCD Bowl failure 3.14E-03 3.17E-03 1.01 

3 Flowline blockage 3.60E-03 3.63E-03 1.01 

4 Insufficient fluid in circulation 2.00E-03 2.02E-03 1.01 

5 Pump line blockage / rupture 3.60E-03 3.63E-03 1.01 

6 Auxiliary choke valve failure 2.50E-02 2.50E-02 1.01 

7 Power supply failure 2.50E-03 2.52E-03 1.01 

8 Loss of communication with satellite 2.00E-03 2.02E-03 1.01 

9 Cable wire failure 1.00E-06 1.01E-06 1.01 

10 Main controller failure 2.52E-04 2.52E-04 1.00 

11 Auxiliary controller failure 2.52E-04 2.52E-04 1.00 

12 Choke valve #2 failure 2.50E-02 2.50E-02 1.00 

13 Choke valve #3 failure 2.50E-02 2.50E-02 1.00 

14 Controller panel failure 2.52E-03 2.54E-03 1.01 

15 Incorrect hydraulic model 1.00E-03 1.11E-04 1.01 

18 Pressure sensor failure 1.10E-04 1.11E-04 1.01 

19 Loss of service water 1.00E-04 1.01E-04 1.01 

20 Loss of vacuum system 1.00E-04 1.01E-04 1.01 

21 Network device damage 5.00E-03 5.04E-03 1.01 

22 Non-return valve failure  3.12E-02 3.12E-02 1.00 

23 Pump failure 4.00E-02 5.20E-02 1.30 

24 Wrong mud density   3.00E-02 3.90E-02 1.30 

25 Annulus losses  1.00E-02 1.30E-02 1.30 

26 Riser rupture 1.00E-02 1.30E-02 1.30 

         Computed failure probability of kick control variables from an MPD control failure simulations 

27 Depleted formation 7.29E-01 9.47E-01 1.30 

28 Drilling choke / RCD limit exceeded 1.54E-01 1.61E-01 1.05 

29 Flow rate (q_res) limit exceeded 7.53E-01 7.84E-01 1.05 

30 Surf. Backpressure limit exceeded 7.55E-01 7.89E-01 1.05 

31 BHP exceeded Frac. pressure 7.29E-01 7.63E-01 1.05 
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Figure 6.19: Unrolled DBN results representing the 159th time-slice of the blowout risk evaluation 

 

Figure 6.20: Risk comparisons of prior and posterior probability analysis of @ 159th time-slice 
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6.5.3.2 Backward analysis of the DBN model 

The probability distributions computed for kick control variables are fed into the DBN model as 

temporal evidence to assess and monitor the physical behaviour of the kick control operation 

simulation. These involve six temporal root nodes (6-TRN), including BHP setpoint exceed maximum 

BHP limit, surface backpressure limit exceeded, depleted formation, reservoir influx limit exceeded, 

and RCD/ drilling choke pressure limits exceeded. The backward analysis (i.e. updating the temporal 

beliefs) is performed to obtain marginal posterior probability distributions as a function of time. The 

results shown in Figure 6.21 gives a better picture of the dynamic operation involved in well control 

events, such as kick and blowout consequences. As shown in Figure 6.21, the probability distribution 

inference for kick occurrence follows that of the depleted formation and while that of an MPD kick 

control failure follow those of the MPD kick control variables.  

For instance, the chances of formation collapse due to depletion is low at the beginning and gradually 

increases with operation time. This in turns increases the chances of circulation loss and consequently 

a risk of kick occurrence. Because the circulation loss event has about 90% contribution to kick event 

occurrence, an inference that is consistent with the Amberjack case study background, the risk of 

kick event follows the probability distribution of circulation loss event. Similarly, as the likelihood 

of the nodes BHP set point, choke pressure, kick size, RCD and drilling choke equipment pressure 

limits exceeding their safe operating thresholds increase, given the limitations of narrow pressure 

margins in the target depth of the Amberjack redevelopment well, the risk of failure of an MPD kick 

control operation increases. Simultaneously, these results are propagated through the operational 

safety barrier components for dynamic risk evaluation.  
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Figure 6.21: Results of kick control simulation during an MPD well control operation 

 

 

The dynamic risk probability distributions of the key well control events discussed thus far are clearly 

presented in Figures 6.23 and 6.23. Figure 6.22 mirrors the drilling events demonstrated in the 

numerical simulation of an MPD kick control operation whereby gas kick is initiated after a period 

of incident-free operation and then followed by a period with an increasing chance of MPD kick 

control variables exceeding their failure thresholds. Figure 6.23 presents the resulting dynamic 

changes of operational risk as a function of time. For instance, as shown in Figure 6.22, the risk of 

blowout can be expressed in three phases, when it is initially below 20% during the initial periods of 

operation, then the risk slowly increases after kick occurrence but with MPD kick control variables 

Temporal plate (160 time-steps) 
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still within operating safe limits, and then suddenly spikes to about 50% after MPD control system 

has failed. Also shown, is an increase in the likelihood of an escalation event, such as fire and 

explosion.    

Further analysis is performed by setting the temporal evidence of an MPD control system and 

circulation loss nodes to 100% success and 100% “not_occur” respectively and updating the temporal 

beliefs. In the case of MPD control system, though given the evidence of kick event occurring, the 

likelihood of MPD kick control failure reduced to about 2% from 75%; thus, improves the likelihood 

of “kick controlled” consequence to about 94% from 1% and reduces the risk of blowout to 2% from 

about 50% at the 159th time-slice. This confirms the MPD control system as the most safety-critical 

component in an MPD system (Sule et al., 2018b) due to its dominant influence on the success of an 

MPD operation. Moreover, a 100% likelihood of non-occurrence circulation loss not only increases 

the likelihood of “no kick” consequence to about 91% but also reduces the risk of a blowout to about 

4%  and the chance of MPD failure to about 9%. The significance of circulation loss to kick 

occurrence and blowout risk in these results are consistent with the drilling challenges experienced 

in the Amberjack case study. 
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Figure 6.22: Dynamic failure probability analysis of MPD kick control operation 

 

 

Figure 6.23: Dynamic operational risk analysis of blowout during an MPD kick control operation 
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6.6 Conclusions 

The current study focuses on developing a dynamic risk assessment model for assessing the safety 

on MPD operation. Thus, this chapter proposes an advanced dynamic blowout risk model (DBRM) 

framework for a managed pressure drilling operation, which involves three phases of operation: a 

dynamic Bayesian network (DBN) risk model development, numerical simulation an MPD kick 

control operation, and dynamic risk analysis. One of the advanced features of the proposed DBN 

model is the ability to model complex processes with time-delay without copying nodes across 

multiple time-slices and modeling power of up to 1000 time-slices. The DBRM model integrates a 

numerical simulation of a kick control operation performed using an MPD control model presented 

in Sule et al. (2019) to the proposed DBN model. Another important novelty feature of the proposed 

model is the introduction of an MPD kick control parameters/variables, which are instrumental in 

setting safe/failure operating thresholds for an MPD control operation and performing numerical 

simulations of an MPD failure and blowout risk analyses. These parameters include BHP setpoint, 

backpressure, kick size, and RCD/drilling choke limits.  

 

The proposed model has been applied to a case study from the Amberjack field in the Gulf of Mexico 

where the drilling hazards include depleted formation and narrow pressure margins between pore and 

fracture pressure. Analyses of the logical causal relationships leading to kick occurrence and MPD 

system failure are established to develop a dynamic risk model based on DBN. Series of numerical 

simulations are performed, and the data collected based on the MPD kick control variables are 

transformed into a probability distribution for dynamic risk analysis. The results show that the 

likelihood of kick occurrence increases with an increasing likelihood of circulation loss due to the 

increasing likelihood of depleted formation resulting in the fractured formation. Simultaneously, this 

is causing an increasing likelihood of MPD failure as primary well control barrier due to an MPD 
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kick control variables exceeding their safety thresholds; consequently, increasing the risk of a 

blowout. Further analysis shows that 100% success of an MPD control system increases the 

likelihood of MPD kick operation success by 96% and reduces the risk of a blowout by about 96% 

while circulation loss occurrence is significant to the chances of well control event, such as kick. 

These results consistently mirror the drilling scenarios experienced in the Amberjack case study.
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Chapter 7 Conclusions and Recommendations 

7.1 Conclusions 

This thesis presents a comprehensive and novel approach, illustrated in Figure 7.1, to enhance the 

safety of well control operation by advancing the kick detection technique and assess the reliability 

and safety of managed pressure drilling (MPD) system.  

 

From this research, it has been found that downhole drilling parameters, such as the weight on bit, 

the torque on bit, rotary speed, and axial-bit vibrations, can be implemented as kick-indicators for 

earlier kick-detection techniques The most significant new finding of the study is the damping 

behaviour of drilling vibrations, which ranges between 33 – 89%, due to the gas influx. These kick-

indicator parameters may be coupled with surface systems, such as a standpipe, to enhance, validate 

and confirm gas kick occurrence during drilling. These findings not only advance the reliability of 

kick detection operation but can be used to validate a flow-detection technique, such as in an MPD 

early kick detection system. A Bayesian network (BN) model is developed to assess the reliability of 

an MPD during a kick-control operation using a dynamic annulus pressure control (DAPC) system. 

It is found that: the estimated reliability of kick control operation increases from 94% to 97% after 

structural modification of the system; a failure of a managed pressure drilling system can be initiated 

by any of its components due to their operational interactions and dependencies to function; the 

failure of any component does not only cause a failure of the kick-control operation but increases the 

failure likelihood of the dependent components; the modes of failure of an MPD system/operation 

are non-sequential; and finally, an MPD control system is the most safety-critical components of the 

system.  
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Figure 7.1: Integrated kick detection enhancement with safety and reliability assessment model for a 

managed pressure drilling in well control  operation 
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and validated using experimental work and field reports. The improvement in this MPD control 

model is highlighted by comparing its hydraulic model performance against a single-phase flow 

hydraulic model and the results show that the single-phase model underestimate key well control 

parameters, including the kick size, bottomhole pressure, and choke pressure. The kick size is 

underestimated by about 52 LPM (or ~ 90%), the bottomhole pressure by 3 bars and choke pressure 

by 2 bars. This is because its two-phase hydraulic model captures the essential aspects of multiphase 

flow dynamics in reservoir influx. An advanced model predictive controller (NMPC) was 

implemented on the MPD system.  Results show that NMPC structure has a better performance over 

a proportional integral (PI) controller due to its predictive ability, as well as ability to handle 

nonlinearity of an MPD system process. The controller also offers enhanced safety to the system by 

implementing operational constraints on the system. 

 

The MPD system equipped with NMPC was used to simulate the failure and risk scenarios of an 

MPD control operation. Thus, the simulated MPD system was used in developing a dynamic blowout 

risk model (DBRM) to simulate blowout scenarios and assess the safety of the well control during a 

managed pressure drilling operation.  

 

The DBRM involves three key modeling processes: a dynamic Bayesian network (DBN) model, a 

numerical simulation of an MPD kick control operation, and dynamic risk analysis. The DBN is a 

temporal extension of a static BN that explicitly capture the modeling changes in events likelihood 

or relationship over time. Furthermore, the DBRM implements a novel approach for simulating an 

MPD failure and blowout risk assessment through varying MPD kick control parameters/variables in 

a simulated system. These are instrumental for setting the safe/failure operating thresholds for an 

MPD control system. The kick-control variables include the BHP setpoint, backpressure, kick size, 
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and RCD/drilling choke pressure limits. This is a highly useful risk assessment tool to run a prediction 

and a diagnostic analysis of an MPD operation over time for a safe decision making. The DBRM has 

been successfully applied to assess the dynamic risk of blowout scenarios in an MPD operation based 

on a case study from the Amberjack field in the Gulf of Mexico, and the results consistently mirror 

the drilling scenarios experienced in the case study. 

 

7.2 Recommendations 

Following future studies are recommended: 

i. Early kick detection system: In this Ph.D. research, several downhole drilling parameters 

have been found to confirm a gas kick occurrence in real-time, given their unique responses 

to a gas kick. For example, when a gas kick is experienced in the wellbore, a rotary speed is 

seen to increase while the weight on bit, torque on bit and axial vibration of the bit are seen 

to decrease. Another important gas kick-indication is the damping effects of the drilling 

vibrations due to a gas influx. Thus, incorporating these downhole drilling parameters data, 

in real-time, to the flow data being processed in the MPD control system may not only 

enhance the earlier kick detection operation but also may be used to validate kick occurrence.  

Figure 7.2 illustrates the architecture of this recommended concept, whereby the downhole 

drilling parameters being monitored are interfaced with the flow monitoring at the surface 

and then fed into the MPD control module to perform the analysis. The conceptual illustration 

presented in Figure 7.2 is only focusing on the data transmission components of an MPD 

operation. This enhanced kick detection system may involve a redesign of the control 

algorithm in the MPD controller to implement both the downhole drilling parameters and flow 

data information to evaluate kick detection operation. Thus, the controller may base its kick-
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detection evaluation primarily on the downhole drilling parameters or on both the downhole 

drilling parameters and flow data.  

 

 

Figure 7.2: A recommended concept for an enhanced earlier kick detection (EKD) in an MPD system 

 

ii. Investigation of a PMCD and DGD operations for safety and reliability assessment.  

Given the efforts to develop a safety and a reliability assessment tool for a managed drilling 

operation, this research has focused only on the constant bottomhole pressure (CBHP) 
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in this work, with additional specified tools and design configurations suitable to accomplish 
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compared to the CBHP technique. Therefore, the work that has been done in this research 

may be built upon to investigate the PMCD and DGD operations in a future study.  

 

iii. Reliability assessment of the Weatherford's MicroFlux® MPD system and the 

Halliburton's GeoBalance® MPD system  

Because the DAPC system, which uses @balance control service, is a Schlumberger MPD 

system,  a future study involving the analyses of the Weatherford's MicroFlux® MPD system 

and the Halliburton's GeoBalance® MPD system may be desirable to formulate broader 

conclusions on safety and reliability of MPD operations. 

 

iv. Field testing and implementation of the NMPC control model developed in this research 

work  

The nonlinear model predictive controller (NMPC) is still evolving in drilling automation 

where a PID controller, which is best suited for a linear system, is still a commonly use 

controller scheme for an MPD control system. Therefore, a future study focusing on 

performing field testing and implementation of an NMPC control model developed in this 

research work may be explored. 

 

v. Implementation of two-phase hydraulic and heat transfer models in an MPD control 

model.  

Because the MPD hydraulic model implemented in this research assumed that the heat 

transfer process is negligible in the well, its application is limited to a  non-high temperature 

high-pressure well. Therefore, a future study on hydraulic model that does not neglect or 
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ignore the temperature transient effects in the well may be explored so that the MPD control 

model can be applied in high-temperature high-pressure wells. 
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