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Abstract

When forecasting stock market volatility with a standard volatility method (GARCH),

it is common that the forecast evaluation criteria often suggests that the realized

volatility (the sum of squared high-frequency returns) has a better prediction perfor-

mance compared to the historical volatility (extracted from the close-to-close return).

Since many extensions of the GARCH model have been developed, we follow the

previous works to compare the historical volatility with many new GARCH family

models (i.e., EGARCH, TGARCH, and APARCH model) and realized volatility with

the ARMA model. Our analysis is based on the S&P 500 index from August 1st, 2018

to February 1st, 2019 (127 trading days), and the data has been separated into an es-

timation period (90 trading days) and an evaluation period (37 trading days). In the

evaluation period, by taking realized volatility as the proxy of the true volatility, our

empirical result shows that the realized volatility with ARMA model provides more

accurate predictions, compared to the historical volatility with the GARCH family

models.
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Chapter 1

Introduction

Volatility is an index for measuring a stock’s trading price changes over time. It is

thought to be a good measurement of risk: higher volatility indicates higher risk and

vice versa.

Volatility is not directly observable, but it can be estimated through the return,

which is defined as a measure of stock price change. In finance, volatility is normally

measured as the (conditional) standard deviation or variance of the return. Investors

often measure and forecast the daily volatility through daily returns, which measure

the profit of holding a stock over a day. However, many researchers argued that

using the daily return with standard volatility models (generalized autoregressive

conditional heteroskedasticity: GARCH- family models) provides a poor forecasting

( e.g., Koopman et al., 2005 ). Andersen and Bollerslev (1998) argued that in a 24-

hours currency exchange market, the standard volatility model does provide a good

estimate and forecast of the true volatility, but the associated data, the innovation of

the daily return a = σϵ, is very noisy due to the error term ϵ. They also pointed out

that the sum of the squared intraday returns provides a better measurement of the

true volatility theoretically and empirically. Martens (2002) showed that the sum of

squared intraday returns could also be used to measure the true daily volatility of a

stock, but the data need to be adjusted first since the stock market do not trade on a

24-hours basis. With GARCH(1,1) model, it is shown that using the rescaled sum of

squared intraday returns improves not only the measurement, but also the prediction

of the daily volatility of a stock.

In the last two decades, because of the availability of high-frequency data, realized
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volatility has gained popularity not only among researchers but also investors. How-

ever, in contrast to the simple daily return, which can be obtained online free of cost,

access to accurate high-frequency data is often expensive. Consequently, many small

investors still prefer to use the daily return to estimate and forecast daily volatility,

and it is still the most popular approach among practitioners.

To overcome the shortcomings of the standard GARCH model, many new mod-

els, which are the extensions of the standard GARCH model, have been developed in

the past two decades. Nelson (1991) proposed the exponential-GARCH model, which

allows for asymmetric effects between positive and negative shock (leverage effect).

Ding et al. (1993) proposed the asymmetric power autoregressive conditional het-

eroscedastic (APARCH) model which also allows the leverage effect. And it has been

reported as significantly improve the goodness of fit of the model.

The previous studies showed that the sum of squared intraday returns has a good

performance on measuring and predicting the true volatility, but they only used the

standard GARCH model for the comparison, and other models from the GARCH

family were not considered in their studies.

For this practicum, we obtained the Standard & Poor’s 500 (S&P 500) index

from August 01, 2018 to February 01, 2019 with 127 trading days for empirical data.

Opening, closing and tick-by-tick prices were available for all trading days in our

sample. The one-step-ahead predictions were generated by sub-samples which contain

90 observations each through the last 37 trading days. We used the GARCH family

models with the daily return data to conduct forecasting. This process involved

model selection, which means we tried different models and select the one which

could better explain the data. Using the autoregressive moving average (ARMA)

model, we conducted forecasting based on the realized volatility, the results from

which are considered as the benchmark to compare with. Forecast evaluation was

based on two loss functions: heteroscedasticity adjusted mean square error (HRMSE)

and heteroscedasticity mean absolute error (HMAE), which are also used in the studies

of Andersen et al. (1999) and Martens (2002). Since the true volatility is not directly

observable, the realized volatility was taken as the estimation of the true volatility,

and used in the loss function.

The result shows that the volatility forecasting conducted based on the realized

volatility does provide a better forecast performance compared to the forecasting
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using the daily return. The daily return is not able to estimate and forecast the daily

volatility accurately.

The remainder of this practicum is organized as follows. In the next chapter,

we present some considerations about the daily return, realized volatility, and the

GARCH family models. In Chapter 3, we introduce our sample set and discuss the

forecasting methodology. Meanwhile, we offer examples for explaining our forecast

methodology in detail. The forecast evaluation and conclusions are presented in Chap-

ter 4.



Chapter 2

Stock return and models

2.1 Volatility

Stocks, are common financial assets. Investors purchase stocks which they think will

increase value. Meanwhile, they sell stocks that to be believed at risk. The behavior

of investors can influence the demand and supply of stocks, that ultimately may affect

the prices. Price fluctuation is a common phenomenon in stock markets as a result of

investors adjusting their opinions constantly due to newly released information such

as updated economic data, companies leadership, policy moves, and political change.

Volatility can be defined as an index of variation of a stock’s trading price over

time. It is a good measurement of risk: higher volatility indicates higher risk and

vice versa. In finance, volatility is normally measured as the conditional standard

deviation or the variance of the return (Tsay, 2014).

Historical volatility, realized volatility and implied volatility are the three most

popular indices of volatility. While historical volatility measures daily return by using

close to close price, realized volatility measures the price variability of intraday returns.

In that way, realized volatility is an index of intraday price risk.
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2.2 Daily return

Historical volatility measures the underlying securities by tracing the price changes

during a certain period. To calculate it, we normally use “return”.

Assume the closing price of a stock on time t and t−1 are Pt and Pt−1, respectively.

Suppose a stock does not experience any dividends taking during the period from time

t−1 to time t. The simple gross return Rt + 1 is defined as:

Rt + 1 =
Pt

Pt−1

where Rt is the simple return. Notice that, when Rt is small, we have that log(1+Rt)≈
Rt (Tsay, 2014). Because of this, we refer to logarithm of the ratio

Pt
Pt−1

as the return.

In percentage, the return is expressed as

rt = 100 log(Rt + 1) = 100(log(Pt)−log(Pt−1))

If we let the time t be day t, the rt presents the daily return.

One property of this transformation for the return Rt is its additivity through

multiperiod returns (Tsay, 2014). For example, The sum of k single-period returns

has the same form of the one for a single period return,

rt[k] = 100 log(Rt[k] + 1)

= 100 log(
Pt

Pt−k
)

= 100 log(
Pt

Pt−1

Pt−1

Pt−2
. . .

Pt−k+1

Pt−k
)

= rt + rt−1 + · · ·+ rt−k+1

=
k−1!

i=0

rt−i

(2.1)

In general, a k-period simple gross return is defined as the product of k one-period

simple gross return:
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1 +Rt[k] =
Pt

Pt−k

=
Pt

Pt−1

Pt−1

Pt−2
. . .

Pt−k+1

Pt−k

= (1 +Rt)(1 +Rt−1) . . . (1 +Rt−k+1)

=
k−1"

i=0

(1 +Rt−i)

(2.2)

Simple gross return exhibits an equivalent property as the additivity of the return,

that is valid when the value of simple return is small. For example, k = 2 by (2.2):

Rt[2] = (1 +Rt)(1 +Rt−1)−1

= Rt +Rt−1 +RtRt−1
(2.3)

When Rt and Rt−1 are small, RtRt−1 ≈0. Thus, Rt[2] ≈Rt + Rt−1. In general,

for any k period:

Rt[k]≈
k−1!

i=0

Rt−i

2.3 Realized volatility

French et al. (1987) proposed a method of estimating the volatility of low-frequency

return through high-frequency data. In recent years, this approach has attracted

the interest of many people due to the availability of high-frequency data. Some

studies point out that the daily realized volatility estimates, which is constructed

from intraday returns, perform better on forecasting than the volatility estimates

based on simple daily return.

In realized volatility, it is assumed that there are n equally spaced intraday returns

through day t, and the length of each space is determined as ∆t. Thus the trading

period in day t is T = ∆td. Let rt,i be the return on the market over the ith period

on day t:

rt,i = 100(log(Pt,i)−log(Pt,i−1)); i = 1, . . . , d
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Pt,i is the stock price at the end of ith time interval on day t. Realized volatility

assume rt,i follows the model:

rt,i = µi∆t + δiϵi
#

∆t i = 1, . . . , d

Here, µi and δi are the drift rate and diffusion rate of rt,i; ϵi are i.i.d random variables

independent of the information available on day t−1, Ft−1 and it follows a standard

normal distribution. From equation (2.1):

rt[n] =
d!

i=1

rt,i

=
d!

i=1

(µi∆t + δiϵi
#

∆t)

(2.4)

Let us assume that all information on day t−1 is available Ft−1, and intraday returns

are uncorrelated Cov(rt,i, rt,j|Ft−1) = 0, i ̸= j, we can get the realized volatility (RVt),

which is the conditional variance of the sum of d returns on day t:

RVt = V ar(rt[d]|Ft−1)

= V ar(
d!

i=1

(µi∆t + δiϵi
#

∆t)|Ft−1)

=
d!

i=1

V ar((µi∆t + δiϵi
#
∆t)|Ft−1)

=
d!

i=1

V ar(δiϵi
#

∆t|Ft−1)

=
d!

i=1

∆tV ar(δiϵi|Ft−1)

=
d!

i=1

δ2i∆tV ar(ϵi)

=
d!

i=1

δ2i∆t

(2.5)

In stock markets, the drift µi is assumed to be close to zero when time interval ∆t
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is small. Thus,

rt,i ≈δiϵi
#
∆t

and,

E[
d!

i=1

(rt,i)
2|Ft−1] = E[

d!

i=1

δ2i ϵ
2
i∆t|Ft−1]

=
d!

i=1

∆tδ
2
iE(ϵ

2
t |Ft−1)

=
d!

i=1

∆tδ
2
i V ar(ϵt|Ft−1)

=
d!

i=1

δ2i∆t

(2.6)

Hence, the realized volatility
$d

i=1(rt,i)
2 is the conditional unbiased estimator of

∆tσ2t =
$d

i=1 δ
2
i∆t.

We can approximate the above equation to obtain the realized variance as:

RVt ≈
d!

i=1

r2t,i (2.7)

Although tick-by-tick returns is the finest interval returns which we can use in

practice, the observed returns are distorted by microstructure noise from the market.

Two common examples of microstructure noise are nonsynchronous trading and bid-

ask bounce.

Nonsynchronous trading is caused by timing effects and trading effects. Timing

effects occur due to different time zones of stock markets or different schedules of

stock trading, while trading effects relate to infrequency trading, which means that

stocks are not traded every consecutive interval (Miller et al., 1994). Bid-ask bounce

refers to the situation that a stock price jumps up and down between ask-price and

bid-price in a limited time.

Such noises may cause bias when we are using the empirical quadratic variation to

estimate the underlying volatility, and the problem becomes more serious when the

intervals become finer. Accordingly, an appropriate time interval must be sought in



9

order to acquire the bias-corrected data. Five-minute returns are generally acknowl-

edged as the highest frequency returns which avoid most of the distortions from the

effect of the microstructure (Areal and Taylor, 2002).

Andersen and Bollerslev (1998) constructed realized volatility estimates via cu-

mulative squared intraday returns. They conducted simulations based on five-minute

currency exchange rate of Deutsche Mark-U.S. Dollar and Japanese Yen-U.S. Dollar

from October 1st, 1987 to September 30th, 1992, which excluded weekends due to the

closure of the market. In their study, 288 squared five-minute intraday returns were

summed as the daily realized volatility estimate, and total 260 daily realized volatility

estimates were included:

RVt =
288!

i=1

r2t,i t = 1, . . . , 260

However, the stock market is not like the currency exchange market which oper-

ates 24 hours a day. In fact, different stock markets also have different lengths of

daily operation time. For example, New York Stock Exchange (NYSE) has regular

trading hours from 9:30 am to 4 pm, Eastern Standard Time (EST); while Nasdaq

also operates pre-market trading hours from 4 am to 9:30 am, and after-hours trading

extends from 4 pm to 8 pm, EST. Thus, the number of 5-minute returns depends

on stock market operations time with the absence of overnight 5-minutes returns and

weekend returns. Under this circumstance, it is reasonable to consider the realized

volatility as the combination of 5-minutes daytime returns and an overnight return

(Martens, 2002).

RVt = r2t,0 +
d!

i=1

r2t,i

Here, and rt,i represents the ith intraday return on day t; rt,0 represents the overnight

return on day t: rt,0 = log(Pt,0 )−log(Pt−1,d), Pt,0 is the opening price on day t and

Pt−1,d is the closing price on day t−1.

The overnight return is more “noisy” than daytime 5-minutes return. Martens

(2002) pointed out that market-related news, which is mostly international news,

commonly released during night time, causing the changes of returns to be relatively

large during the evening, comparing to daytime trading hours. However, an overnight

return is not capable of showing all changes occur during a night. For example, after
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an intense, volatile night, the open price of day t is the same as the close price of

the day t−1. Accordingly, the overnight return is 0. In order to account for the
situation that nontrading hours stock returns are more volatile compares to trading

hours stock returns, Martens (2002) suggested to remove the close-to-open return rt,0

and construct a rescaled sum of intraday returns for RVt:

RVt = (1 + c)
d!

i=1

r2t,i

c is a constant parameter so that RVt measures daily volatility.

In the absence of overnight return, it is reasonable to consider c
$d

i=1 r
2
t,i as an

estimate of the sum of overnight intraday returns. Martens (2002) recommended to

measure c as:

c =
V arco
V aroc

V aroc =
1

N

N!

t=1

(log(Pt,d)−log(Pt,0 ))
2

V arco =
1

N

N!

t=1

(log(Pt,0 )−log(Pt−1,d))
2

We can correspondingly obtain realized volatility as:

RVt =
V aroc + V arco

V aroc

d!

i=1

r2t,i (2.8)

Notice that V aroc and V arco are the average squared open-to-close return and the

average squared close-to-open return, respectively from day 1 to day N .

Another method, which is proposed by Areal and Taylor (2002), assigned different

weights to intraday squared returns, according to the distribution of each period

squared return in the total daily intraday squared returns. Hansen and Lunde (2002)

proposed an alternative approach by removing the close-to-open return from (2.8) and

define 1+ c as the proportion of average variance of daily intraday squared returns in

the average daily intraday squared returns 1
N

$N
i=1(
$d

i=1 r
2
t,i).
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2.4 Autoregressive conditional heteroskedasticity

model and its extension

2.4.1 ARCH model

From section (2.2), we defined the stock return at time t as rt, rt = 100(log(Pt)−
log(Pt−1)). In order to understand rt in a proper perspective, we can first consider its

conditional mean µt and variance σ2t :

µt = E(rt|Ft−1), σ2t = V ar(rt|Ft−1) = E((rt−µt)
2|Ft−1)

Note that Ft−1 is the information available at time t−1 (Tsay, 2014).

In finance, the mean and variance of an asset return play important roles in risk

measurement. If an asset return evolves in a continuous manner (Tsay, 2014) and

jump is rare, the mean and variance of the return is predictable. Understanding the

return evolution helps us predict the price changes and control the associated risks.

In this project, our goal is to understand the evolution pattern of the conditional

variance and build an appropriate model for σ2t .

In regular time series, we normally assume the error term comes from a white

noise process, which means errors are uncorrelated with mean and variance constant.

However, in financial time series, it is very likely that volatility is at least autoregres-

sive and conditionally heteroskedastic. Autoregression refers to a time series model

that uses observations from previous time steps as input to a regression equation to

predict the value at the next time step. Heteroskedasticity refers to the situation that

the collection of variables have different variances (overtime, in our case). Therefore,

we need a proper model to describe this phenomenon.

Autoregressive conditional heteroskedasticity(ARCH) model is one of the most

popular models for analyzing heteroskedastic data, which is proposed by Engle (1982).

The ARCH model with n lags, ARCH(n), is expressed as:

rt = µt + at, at = σtϵt, ϵt ∼ N(0, 1)

σ2t = α0 +
n!

i=1

αia
2
t−i
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where α0 > 0, αi ≥ 0 and
$n

i=1 ai < 1.

We can obtain some basic properties of at from above expression.

E(at) = E(σtϵt) = E(σt)E(ϵt) = 0

V ar(at) = E(a2t ) = E(σ2t ϵ
2
t ) = E(σ2t ) = α0 +

n!

i=1

αiE(a
2
t−i) (2.9)

In order to estimate E(σ2t ), we need to first introduce an important concept in

time series, which is called weak stationarity. A time series Xt is said to be weakly

stationary if it has invariant first and second moments, i.e, E(Xt) = µ, V ar(Xt) =

ϑ2, ∀t ∈ Z, and the covariance between Xt and Xt−k only depends on time lag k:

Cov(Xt, Xt−k) = γ(k) (Tsay, 2014).

In an ARCH model, we assume at varies in a fixed range. Statistically, it indicates

that {at} is a weak stationary time series (Tsay, 2014).

Let E(a2t ) = E(σ2t ) = E(a2t−i) = ς2, from (2.9):

E(σ2t ) = α0 +
n!

i=1

αiE(a
2
t−i)

⇒ ς2 = α0 +
n!

i=1

αiς
2

⇒ (1−
n!

i=1

αi)ς
2 = α0

⇒ ς2 =
α0

1−
$n

i=1 αi

Due to the fact that ς2 ≥ 0 and α0 > 0, we require 1 −
$n

i=1 αi > 0, thus 0 ≤
$n

i=1 αi < 1.

Because of this linear inequality constraint, we normally consider the lag n to be

smaller than 3.

If we consider n = 3, give an ARCH(3) model:

at = σtϵt, ϵt ∼ N(0, 1), σ2t = α0 + α1a
2
t−1 + α2a

2
t−2 + α3a

2
t−3



13

with parameter constraints: α1, α2, α3 > 0 and α1+α2+α3 < 1. From the constraint,

we know that it is possible that at least one of the three parameters αp is smaller

than 0.33. Under this circumstance, the dependency of σ2t on a2t−p is too weak to be

considered in this ARCH model(3). Therefore, in practice, the ARCH model of order

two is more parsimonious than a model of higher order, then it is preferred.

ARCH(1) is the most popular model among practitioners for the use of ARCH

model. It can be expressed as:

at = σtϵt, ϵt ∼ N(0, 1), σ2t = α0 + α1a
2
t−1 (2.10)

where α0 > 0 and 0≤α1 < 1.

Combine the (2.9) and (2.10), we can obtain the unconditional mean, variance and

covariance of at of ARCH(1) model:

E(at) = 0, V ar(at) =
a0

1−a1
,

Cov(at, at−s) = Cov(σtϵt, σt−sϵt−s)

= E[(σtϵt−0)(σt−sϵt−s−0)]

= E(σtϵtσt−sϵt−s)

= E(ϵt)E(σtσt−sϵt−s)

= 0.

(2.11)

In applications, it is sometimes required the existence of higher order moments of

at and additional constraints (Tsay, 2014). For example, for study the tail behavior

of at, the fourth moments of it is required. With the assumption of ϵt following a

standard normal distribution:

E(a4t ) = E(σ4t ϵ
4
t ) = E[ϵ4t (α0 + α1a

2
t−1)

2]

= E[ϵ4t (α
2
0 + 2α0α1a

2
t−1 + α

2
1a
4
t−1)]

= E(ϵ4t )E(α
2
0 + 2α0α1a

2
t−1 + α

2
1a
4
t−1)]

= 3E(α20 + 2α0α1a
2
t−1 + α

2
1a
4
t−1)

= 3[α20 + 2α0α1E(a
2
t−1) + α

2
1E(a

4
t−1)]

(2.12)
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Assume at is also fourth moment invariant, E(a4t ) =M4 > 0, from (2.11):

M4 = 3(α
2
0 + 2α0α1

α0
1−α1

+ α21M4 ) > 0

⇒M4 =
3α20 (1 + α1)

(1−3α21)(1−α1)
> 0

⇒ 1−3α21 > 0

⇒ α21 <
1

3

⇒ 0≤α1 <
1√
3

Therefore, the unconditional kurtosis of at is:

E(a4t )

[V ar(at)]2
=

3α20 (1 + α1)

(1−3α21)(1−α1)

(1−α1)2

α20
=
3(1−α1)(1 + α1)

(1−3α21)
=
3(1−α21)

1−3α21

⇒ E(a4t )

[V ar(at)]2
=
3(1−α21)

1−3α21
> 3

The kurtosis of a normal distribution is 3. Therefore, the distribution of at has a

heavier tail when compared to a standard normal distribution, which indicates that

the at from ARCH(1) is more likely to produce “outliers” in contrast to a variable

following a standard normal distribution (Tsay, 2014).

In (2.10), the equation captures the phenomenon that a large shock at−1 is normally

followed by another large shock at, although the influence of the past shocks will

decrease as time goes by. This identity is called cluster volatility in financial time

series, which can cause volatility to be overestimated (Tsay, 2014).

The estimation of ARCH(1) is often conducted through maximum likelihood es-

timation under the assumption of normality of ϵt. Due to the fact that ϵt is a white

noise process, E(at|Ft−1) = E(σt|Ft−1)E(ϵt|Ft−1) = 0 and

V ar(at|Ft−1) = V ar(σtϵt|Ft−1) = E[σ2t ϵ
2
t |Ft−1] = E(σ2t |Ft−1)E(ϵ

2
t |Ft−1) = E(σ2t |Ft−1)

⇒ V ar(at|Ft−1) = E(σ2t |Ft−1) = α0 + α1a
2
t−1 = σ2t ,

the conditional distribution of at: at|Ft−1 follows a normal distribution with mean 0
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and variance σ2t . The conditional density function of at is expressed as:

f(at|Ft−1) =
1#
2πσ2t

exp(− a2t
2σ2t
)

The joint density function f(aT . . . at . . . a1|a0 ) is:

f(aT . . . at . . . a1|a0 ) = f(aT |aT−1 . . . a0 ) . . . f(at|at−1 . . . a0 ) . . . f(a1|a0 )

= f(aT |FT−1) . . . f(at|Ft−1) . . . f(a1|F0)

=
T"

t=1

f(at|Ft−1)

=
T"

t=1

1#
2πσ2t

exp(− a2t
2σ2t
)

= (2π)−
T
2

T"

t=1

(σ2t )
− 1

2 exp(−1
2

T!

t=1

a2t
σ2t
)

(2.13)

ℓ(aT . . . at . . . a1|a0 ) = logf(aT . . . at . . . a1|a0 )

=−T

2
log(2π)−1

2

T!

t=1

log(σ2t )−
1

2

T!

t=1

a2t
σ2t

(2.14)

Plug (2.10) into the above function:

ℓ(aT . . . at . . . a1|a0 ) =−
1

2

T!

t=1

[log(α0 + α1a
2
t−1) +

a2t
α0 + α1a2t−1

]−T

2
log(2π)

We can obtain the maximum likelihood estimates of α0 and α1: α̂0 and α̂1, by

maximizing ℓ(aT . . . at . . . a1|a0 ).

The forecast of at is simple. Consider the a one-step ahead forecast of ARCH(1),

all information is available at time t.

at(1) = σt(1)ϵt+1 σ2t (1) = α̂0 + α̂1a
2
t

at(1) and σt(1) denote the forecast of at+1 and σt+1, t = 1, . . . , T .
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When the forecast step l > 2, the forecasting model can be simplified (Tsay, 2014).

Consider l = 2:

σ2t (2) = α0 + α1a
2
t (1) = α0 + α1σ

2
t (1)ϵ

2
t+1

As E(ϵ2t+1|Ft) = 1, the 2-step ahead forecast becomes:

σ2t (2) = α0 + α1σ
2
t (1)

Let l = 3:

σ2t (3) = α0 + α1a
2
t (2) = α0 + α1σ

2
t (2)ϵ

2
t+2 = α0 + α1[α0 + α1σ

2
t (1)]ϵ

2
t+2

with the assumption of ϵ2t+2 ∼ N(0, 1), E(ϵ2t+2|Ft+1) = 1. The 3-step ahead forecast

satisfies:

σ2t (3) = α0 + α0α1 + α
2
1σ
2
t (1)

In general, when the forecast step l > 1:

σ2t (l) = α0 (1 + α1 + α
2
1 + · · ·+ αl−2

1 ) + αt−1
1 σ2t (1) = α0

(1−αl−1
1 )

1−α1
+ αl−1

1 σ2t (1)

Therefore,

σ2t (l)→
α0

1−α1
, as l →∞

.

2.4.2 GARCH model

ARCH model is simple, but not always efficient. In practice, it is often either not able

to the variation well enough or requires too many parameters. An extension of ARCH

model is proposed by Bollerslev(1986), which is called generalized autoregressive con-

ditional heteroskedasticity (GARCH) model. This model allows the past volatilities

to affect the present volatility. GARCH model can be written as:

rt = µt + at, at = σtϵt, ϵt ∼ N(0, 1)

σ2t = α0 +
m!

i=1

αia
2
t−i +

s!

j=1

βjσ
2
t−j

(2.15)
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with parameters constraints
$m

i=1 αi +
$s

j=1 βj < 1 and α0 > 0, αi, βj ≥ 0.

In order to understand the parameter constraints and the properties of (2.15), let

us define a new parameter ψt = a2t −σ2t , so that σ
2
t = a2t −ψt and σ2t−j = a2t−j −ψt−j

(Tsay, 2014). Therefore, E(ψt|Ft−1) = E(a2t −σ2t |Ft−1) = E(a2t |Ft−1)−E(σ2t |Ft−1) =

0. Let us plug the new parameter ψt into (2.16):

a2t −ψt = α0 +
m!

i=1

αia
2
t−i +

s!

j=1

βj(a
2
t−j −ψt−j)

⇒ a2t −ψt = α0 +
m!

i=1

αia
2
t−i +

s!

j=1

βja
2
t−j −

s!

j=1

βjψt−j

⇒ a2t −
m!

i=1

αia
2
t−i−

s!

j=1

βja
2
t−j = α0 + ψt−

s!

j=1

βjψt−j

⇒ E(a2t )−
m!

i=1

αiE(a
2
t−i)−

s!

j=1

βjE(a
2
t−j) = α0 + E(ψt)−

s!

j=1

βjE(ψt−j)

(2.16)

In GARCH model, we assume {at} is a weak stationary series, which implies that
E(a2t ) = E(a2t−i). By (2.17):

E(a2t )−
m!

i=1

αiE(a
2
t−i)−

s!

j=1

βjE(a
2
t−j) = α0 + E(ψt)−

s!

j=1

βjE(ψt−j)

⇒ (1−
m!

i=1

αi−
s!

j=1

βj)E(a
2
t ) = α0

⇒ E(a2t ) =
α0

(1−
$m

i=1 αi−
$s

j=1 βj)

(2.17)

E(a2t ) ≥ 0, and α0 > 0, thus 1−
$m

i=1 αi−
$s

j=1 βj > 0, which implies 0≤
$m

i=1 αi+$s
j=1 βj < 1.

In practice, we often consider GARCH(1,1) as our target model:

rt = µt+at, at = σtϵt, ϵt ∼ N(0, 1)

σ2t = α0 + α1a
2
t−1 + β1σ

2
t−1

(2.18)

where α0 > 0;α1, β1 ≥ 0 and 0≤α1 + β1 < 1.
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The properties of GARCH(1,1) model can be easily obtained:

E(at) = 0, Cov(at, at−s) = 0

V ar(at) = E(a2t ) = E(σ2t ) = E(α0 + α1a
2
t−1 + β1σ

2
t−1)

⇒ E(a2t ) = α0 + α1E(a
2
t−1) + β1E(σ

2
t−1)

⇒ E(a2t ) = α0 + α1E(a
2
t−1) + β1E(a

2
t−1)

⇒ E(a2t ) =
α0

1−α1−β1
In order to calculate the unconditional kurtosis of at: κ4 , we need to know the ex-

pression of a4t :

E(a4t ) = E[ϵ4 (α0 + α1a
2
t−1 + β1σ

2
t−1)

2]

= E(ϵ4t )E(α0 + α1a
2
t−1 + β1σ

2
t−1)

2

= 3E[α20 + α
2
1a
4
t−1 + β

2
1σ
4
t−1 + 2α0α1a

2
t−1 + 2α0β1σ

2
t−1 + 2α1β1a

2
t−1σ

2
t−1]

= 3[α20 + α
2
1E(a

4
t−1) + β

2
1E(σ

4
t−1) + 2α0α1E(a

2
t−1) + 2α0β1E(σ

2
t−1) + 2α1β1E(a

2
t−1σ

2
t−1)]

= 3[α20 + α
2
1E(a

4
t−1) + β

2
1E(σ

4
t−1) + 2α0α1E(a

2
t−1) + 2α0β1E(σ

2
t−1) + 2α1β1E(ϵ

2
t−1σ

4
t−1)]

= 3[α20 + α
2
1E(a

4
t−1) + β

2
1E(σ

4
t−1) + 2α0α1E(a

2
t−1) + 2α0β1E(σ

2
t−1) + 2α1β1E(σ

4
t−1)]

= 3[α20 + α
2
1E(a

4
t−1) + β1(β1 + 2α1)E(σ

4
t−1) + 2α0α1E(a

2
t−1) + 2α0β1E(σ

2
t−1)]

(2.19)

Same as ARCH(1) model, we assume at is fourth moment invariant, thus E(a4t ) =

E(a4t−1). Meanwhile, E(a
4
t−1) = E(σ4t−1ϵ

4
t−1) = 3E(σ4t−1); E(a

2
t ) =

α0
1−α1−β1

. From

(2.19):

E(a4t ) = 3[α
2
0 + α

2
1E(a

4
t−1) +

1

3
β1(β1 + 2α1)E(a

4
t−1) + 2α0 (α1 + β1)E(a

2
t−1)]

⇒ (1−3α21−β21 −2α1β1)E(a4t ) = 3α20 + 6α0 (α1 + β1)
α0

1−α1−β1

⇒ E(a4t ) =
3α20 (1 + α1 + β1)

(1−α1−β1)[1−(α1 + β1)2−2α21]

(2.20)

The kurtosis of the GARCH(1,1) is:

κ4 =
E(a4t )

[V ar(at)]2
=

3α20 (1 + α1 + β1)

(1−α1−β1)[1−(α1 + β1)2−2α21]
(1−α1−β1)2

α20
=

3[1−(α1 + β1)2]
1−(α1 + β1)2−2α21
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if 1 −(α1 + β1)2 −2α21 > 0 and α1 ̸= 0, 1−(α1 + β1)2 −2α21 < 1−(α1 + β1)2.

Therefore, κ4 > 3, which means the distribution of GARCH(1,1) has a heavier tail

than normal distribution. Notice that, as the extension of ARCH(1), GARCH(1,1)

also experiences volatility cluster (Tsay, 2014).

The estimation of α0 ,α1 and β1 is simple. We can use the same idea as estimate

ARCH(1): use the conditional distribution of at|Ft−1 to obtain the joint probability

density function of at, under the normality assumption of ϵt. Then maximize the joint

likelihood to obtain α̂0 , α̂1 and β̂1. Due to the space limitation of this project, we will

not discuss the details here, see Tsay (2014).

As ARCH(1), the forecast of GARCH(1,1) can be simplified. Consider 2-steps

ahead forecast σ2t (2):

σ2t (2) = α0 + α1a
2
t (1) + β1σ

2
t (1)

= α0 + α1σ
2
t (1)ϵ

2
t+1 + β1σ

2
t (1)

= α0 + (α1 + β1)σ
2
t (1) + α1σ

2
t (1)(ϵ

2
t+1−1)

(2.21)

Here, we notice that ϵ2t+1 ∼ N(0, 1), which means E(ϵ2t+1−1) = E(ϵ2t+1)−1 = 0.
According, we can obtain our 2-step ahead forecast σ2t (2) = α0 + (α1 + β1)σ2t (1).

We can extend the result to l-step ahead forecast :

σ2t (l) = α0
1−(α1 + β1)l−1

1−α1−β1
+ (α1 + β1)

l−1σ2t (1)

Therefore, the l-step forecast of volatility σ2t (l) only depends on the forecast origin

t and its volatility σ2t .

And σ2t (l)→
α0

1−α1−β1
as l →∞

.

2.4.3 The extensions of GARCH model

Many extension of the GARCH model have been developed since it was first intro-

duced.
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The GARCH-M model

In finance, we can obtain GARCH-M model by considering the direct impact of the

volatility of the return. Here, the “M” stands for “in the mean” (Tsay, 2005). The

GARCH-M(1,1) model is expressed as:

rt = µ+ cσ2t + at, at = σtϵt, ϵt ∼ N(0, 1)

σ2t = α0 + α1a
2
t−1 + β1σ

2
t−1

Here, µ and c are constant parameters and α0 > 0; α1, β1 ≥ 0.

We usually refer to “c” as a risk premium parameter. If “c” is positive, the return

rt is positively related to its volatility and vice versa.

The formulation of the GARCH-M(1,1) model implies that there are serial corre-

lations in rt, which are introduced by σ2t (Tsay, 2014). If the risk parameter c = 0,

the serial correlation will not longer exist.

The EGARCH model

The original GARCH model requires its parameters to be non-negative. This restric-

tion has been criticized as being over restrictive. In order to address this problem,

Nelson (1991) proposed Exponential GARCH (EGARCH) model, which has no re-

striction on αi and βj; it also allows for asymmetric effects between the positive and

negative shocks. EGARCH(1,1) can be defined as:

rt = µt + at, at = σtϵt, ϵt ∼ N(0, 1)

(1−α1B)(log(σ2t )−α0 ) = Bg(ϵt)

Here, α0 and α1 are parameters. B is a lag operator, which means Blog(σ2t ) =

log(σ2t−1) and Bg(ϵt) = g(ϵt−1).

The asymmetric effect is determined by g(ϵt), which is defined as the following

function:

g(ϵt) = δϵt + γ[|ϵt| −E(|ϵt|)]

where δ and γ are parameters.
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Compared to the GARCH model, the conditional variance σ2t has become log(σ
2
t )

in the EGARCH model, which allows negative value. Therefore, the constraints on

the parameters are relaxed (Tsay, 2014). The asymmetric effect of the shocks is

introduced by g(ϵt−1). To better understand this character, we can express log(σ2t )

from the EGARCH(1,1) in another way:

(1−α1B)(log(σ
2
t )−α0 ) = Bg(ϵt)

⇒ log(σ2t )−α0 −α1(log(σ
2
t−1)−α0 ) = g(ϵt−1)

⇒ log(σ2t )−α1log(σ
2
t−1) = α0 (1−α1) + g(ϵt−1)

(2.22)

Since ϵt ∼ N(0, 1), |ϵt| is following a folded normal distribution, E(|ϵt|) =
%

2
π . Thus,

g(ϵt−1) can be rewritten as:

g(ϵt−1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δϵt−1 + γϵt−1−γ
%

2
π , if ϵt−1 > 0

δϵt−1−γϵt−1−γ
%

2
π , if ϵt−1 < 0

−γ
%

2
π , if ϵt−1 = 0

(2.23)

Note that the sign of ϵt depends on at.

Plug (2.23) into (2.22):

log(σ2t ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α1log(σ2t−1) +
*
α0 (1−α1)−γ

%
2
π

+
+ (δ + γ)at−1

σt−1
, if at−1 > 0

α1log(σ2t−1) +
*
α0 (1−α1)−γ

%
2
π

+
+ (δ−γ)at−1

σt−1
, if at−1 < 0

α1log(σ2t−1) +
*
α0 (1−α1)−γ

%
2
π

+
, if at−1 = 0

(2.24)

In (2.24), we can transform at−1

σt−1
to | at−1

σt−1
| and take exponential on both sides:

σ2t =

⎧
⎪⎨

⎪⎩

σ2α1
t−1η exp[(γ + δ)|

at−1

σt−1
|], if at−1 > 0

σ2α1
t−1η exp[(γ−δ)| at−1

σt−1
|], if at−1 < 0

σ2α1
t−1η, if at−1 = 0

Here, η = exp
*
α0 (1−α1)−γ

%
2
π

+
.

The coefficient −δ shows that positive and negative at−1 offer asymmetric effects
to σ2t .
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The TGARCH model

Threshold GARCH (TGARCH) model, which was proposed by Zakoian (1994), is an-

other useful model in financial time series for the volatility with asymmetric responses

to positive and negative returns. In practice, the volatility of a stock return often rises

higher in response to negative returns other than positive. In financial time series, we

call this phenomenon leverage effect(Ding et al., 1993).

The TGARCH(1,1) model is defined as:

rt = µt + at, at = σtϵt, ϵt ∼ N(0, 1)

σ2t = α0 + (α1 + γ1It−1)a2t−1 + β1σ2t−1

α0 > 0; α1, γ1, β1 ≥ 0. It−1 is an indicator function:

It−1 =
,
1, if at−1 < 0

0, otherwise

From the model, it is easy to see that a negative at−1 contributes (α1 + γ1)a2t−1 to

σ2t while a positive at−1 only contributes a1a
2
t−1.

The APARCH model

The TGARCH model belongs to the family of asymmetric power autoregressive con-

ditional heteroscedastic (APARCH) model which was proposed by Ding et al. (1993).

The APARCH(1,θ,1) model is commonly used in practice. It is expressed as:

rt = µt + at, at = σtϵt, ϵt ∼ N(0, 1)

σθ
t = α0 + α1(|at−1|+ γ1at−1)θ + β1σ2t−1

Note that α0 > 0; θ, α1, β1 ≥ 0 and −1 < γ1 < 1.

Notice that, when γ1 = 0, the APARCH model does not have the asymmetric

effect of at; positive and negative at−1 have the same effect on σθ
t . Parameter θ plays

an essential role in the APARCH model, but it does not have a specific interpretation.

Ding et al. (1993) mentioned that there is no any obvious reason for the conditional
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variance σ2t to be linearly correlated with a
2
t in the GARCH model, and their proposed

general model covers most cases. Tsay (2014) pointed out that although there is no

good interpretation for θ, it does improve the goodness of fit.



Chapter 3

Data and empirical results

3.1 Data selection

S&P 500 index is a stock market indicator whose objective is to measure market cap-

italization of the leading 500 companies that trade in the American stock markets.

The S&P 500 index is based on the last transaction price of each stock. This in-

dex covers about 80% available market capitalization, provides a broad view of U.S.

financial market health.

For this practicum, we use the data of S&P 500 index from August 01, 2018

to February 01, 2019 (127 days), excluding weekends and holidays, through the

Bloomberg terminal. The opening and closing times of S&P 500 index are the same

as NYSE, which is 9:00 and 4:15 pm, respectively. Although some stocks in S&P 500

index have pre-market and post-market trading sessions, the majority trades at any

time during the trading period. Therefore, we do not consider price changes out of

the normal trading period.

We divide our observation into two periods, one for estimation and the other for

evaluation. This means that the parameters are estimated based on the data from the

estimation period, and one-step-ahead forecasts are based on the models produced in

the estimation section. This method is introduced in the work of Hasen et al. (2005).

Because the availability of real data in the evaluation period, we can use this for

examining the forecasting performance of our models.

For intraday data, we separate the normal trading time of a day into 81 five-minute
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intervals. The last price in every five minutes interval is selected as the interval closing

price. The estimation of the weight parameter in realized volatility model, ĉ≈0.2609,
which is higher than what Martens (2002) obtained from 1990-1994 S&P 500 future

index, ĉ ≈ 0.2099. It indicates that the overnight returns are more volatile in late
2018, than in early 1990s.

3.2 Descriptive statistic

The graphs of Figure 3.1 are the time series, histogram, and auto-correlogram of the

daily return and realized volatility for the data from the estimation period. The

summary statistics are presented in Table 3.1.

The daily return exhibits signs of volatility after October 2018. Seven large shocks

can be observed: four of them are positive, and the others are negative. The auto-

correlogram shows there is no strong correlation in the return series except the seventh

lag.

The realized volatility also experienced a significant increase in October 2018.

Before this date, the volatility was stable and below 0.5. Afterward, it abruptly

changed up and down between 0.4 and 5. The auto-correlogram structure presents a

weak periodic pattern in the series.

Daily return Realized volatility
Mean -0.074 0.792

Minimum -3.342 0.074
Maximum 2.271 4.729

Standard deviation 1.060 0.964
Skewness -0.752 1.857
Kurtosis 1.586 3.211

Table 3.1: Summary statistics of the daily return and realized volatility of S&P 500
index from August 1st, 2018 to December 7th, 2019.
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Figure 3.1: The daily return (first row) and daily realized volatility (second row) with
linear plot (first column), histogram (second column) and auto-correlogram (third
column). The graphs relate to the data of S&P 500 index from Aug 1st, 2018 to Dec
7th, 2019.

3.3 Forecast methodology and criteria

As mentioned in the previous section, we separate our data into two periods: one for

estimation and the other for evaluation. Our forecasting was conducted as follows. We

obtained 37 sub-samples which contained 90 days of observations each. An individual

sub-sample was used for estimating one-day-ahead volatility. For example, the first

sub-sample contained data from the 1st of August to 7th of December 2018; we use

the model whose estimates are based on this sub-sample to forecast the volatility of

10th of December 2018. The second sub-sample, which contained observations from

2nd of August to 10th of December 2018, was used for building a model to forecast the

volatility of 11th of December 2018. This forecasting method used the idea of “rolling

windows”: we conducted forecasting based on the sub-samples. A sub-sample moves

one trading day ahead each time with a constant sub-sample size 90. The process

repeats until we obtain 37 out-of-sample forecast result. Please note that the models,

which are estimated based on the sub-samples, belong to the GARCH model family.
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The next step was to evaluate the performance of our forecasting. Although the

true volatility σ2t is not observable, the realized volatility RVt is an observable unbiased

estimator of ∆tσ2t , which has been proved in Chapter 2. Therefore, it is reasonable to

use RVt to evaluate our forecast performance. Here, we consider two forecast criteria:

HRMSE =

-../ 1

37

127!

t=91

0
1− RVt

∆tσ̂2t

12

HMAE =
1

37

127!

t=91

22221−
RVt

∆tσ̂2t

2222

(3.1)

Here, ∆tσ̂2t represents the forecast volatility of day t. The above two forecast

criteria are also considered by Andersen et al. (1999) and Martens (2002).

Now, we need a benchmark to be used to compare those two forecast criteria for

GARCH models. Therefore, with the realized volatility as the data of our benchmark,

we process one-day ahead forecast through ARMA model, then use equation (3.1) to

calculate the benchmark forecast criteria.

Here, we introduce an autoregressive (AR) model (Shumway and Stoffer, 2017):

xt = φ0 +
k!

i=1

φixt−i + at

where at ∼ N(0, σ2a).

In this model, The value of xt only depends on the past lagged series {xt−i}, i =
1, . . . , k.

Another possibility is to use the moving average (MA) model (Shumway and Stof-

fer, 2017):

xt = α0 −
s!

j=1

αja
2
t−j + at

where {at} ∼ N(0, σ2a). In MA model, the value of xt depends on the past error term

{at−j}, j = 1, . . . , s.

Although those two models look different, they can be easily transformed into each

other by expanding the series {xt−i}.
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In practice, we often require a high order of AR or MA model with many param-

eters to describe the data adequately. By combining the AR and MA process, we

can often achieve an appropriate model with a relatively small amount of parameters

(Tsay, 2014). This model is named as the autoregressive moving average (ARMA)

model:

xt = φ0 +
k!

i=1

φixt−i + at−
s!

j=1

αjat−j

at is the white noise process with mean 0 and variance σ2a at time t. In this model,

the value of xt does not only depend on the past lagged values xt−1, xt−2, . . . , xt−i but

also the error terms from the current and past periods, which improves the efficiency

of predicting (Tsay, 2014).

It is worth noticing that the volatility σ2t from GARCH model can be written in

a ARMA-like model form (Tsay, 2014). From equation (2.16), let ψt = a2t −σ2t :

σ2t = α0 +
m!

i=1

αia
2
t−i +

s!

j=1

βjσ
2
t−j

= α0 +
m!

i=1

αi(σ
2
t−i + ψt−i) +

s!

j=1

βjσ
2
t−j

= α0 +
m!

i=1

αiσ
2
t−i +

s!

j=1

βjσ
2
t−j +

m!

i=1

αiψt−i

(3.2)

It is obvious that ψt is not a white noise process, thus the above transformation

is not exactly a ARMA model.

3.4 Volatility model of the daily returns

In this section, we will give an example of conducting one-step-ahead forecast of

volatilities. In this example, we try to forecast the volatility of December 10th 2018

(day 91) with the daily return data.

Figure 3.2 shows the time series of the logged daily close price of S&P 500 index

during the estimation period. This graph has several features. First, the logged

close price shows a downward trend; it experienced a rapid drop at the beginning of

October, 2018. Second, the price exhibits a weak cyclical pattern with an variable
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duration. A possible explanation for this weak periodic pattern is that it is an artifact

due to the data size. However, since the project is about forecasting volatility in a

short term; it is common that the time series shows a weak or no cyclic pattern.

Before building a model for volatility, we first consider removing the time trend

and periodic pattern.
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Figure 3.2: The logged daily close price of S&P 500 index from August 1st, 2018 to

December 7th, 2019.

We begin with removing the time trend from our data. Let Ct be the logged close

price at time t, and use time index t as an explanatory:

Ct = α0 + α1t+ zt

Here, zt is the innovation from the time series at time t.

Table 3.2 is the summary statistics of the fitted linear regression model:

Ct = 7.98−0.0009 t+ zt

with standard error 0.004712 and 8.993 ∗ 10−5 , respectively. The intercept is positive
and the time slope is negative, while they are both significant. The standard error of

zt is 0.02216.

Figure 3.3 shows the time series and auto-correlogram of the innovation series

zt. From the time series plot in Figure 3.3, it is obvious that the time trend has
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Call:
lm(formula = logclose ∼ time)
Residuals:
Min 1Q Median 3Q Max

-0.046274 -0.017494 -0.002738 0.016663 0.040219
Coefficients:

Estimate Std. Error t value P(> |t|)
(Intercept) 7.980e+00 4.712e-03 1693.649 < 2e-16 ***
time -8.736e-04 8.993e-05 -9.714 1.39e-15 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.02216 on 88 degrees of freedom
Multiple R-squared: 0.5174, Adjusted R-squared: 0.5119
F-statistic: 94.35 on 1 and 88 DF, p-value: 1.393e-15

Table 3.2: Summary statistics of the sample trend model.

been removed. In the auto-correlogram, the correlation first decay slowly; then starts

to increase since the 16th lag. This phenomenon occur in circles, which suggests a

periodical pattern in the series; now we will try to remove it.
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Figure 3.3: The time series and auto-correlogram of the innovation zt.

The auto-correlogram in Figure 3.3 suggests every circle contains 62 observations.

Let w as a frequency index: w = 1
62 and t as a time index: t = 1, . . . , 90. The periodic
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model is defined as (Shumway and Stoffer, 2017):

pt = β0 + β1 cos(2πwt) + β2 sin(2πwt)

Please note that zt = pt + xt. xt is the logged close price after removing time trend

and periodic pattern.

Table 3.3 shows the summary statistics of our periodic model. Under 5% significant

level, β0 , β1 and β2 are all significant. The standard error of residuals is 0.01509. The

fitted periodic model can be written as:

pt = 0.0034−0.0187 cos(2πwt)−0.0140 sin(2πwt)

Figure 3.4 maps the fitted series (the smooth line in the top graph) and residuals

(bottom graph) of the periodic model.

Call:
lm(formula = m1$residuals ∼ cos(2*pi/62*time) + sin(2*pi/62*time))
Residuals:

Min 1Q Median 3Q Max
-0.042836 -0.008003 0.001489 0.009395 0.042753

Coefficients:
Estimate Std. Error t value P(> |t|)

(Intercept) 0.003436 0.001669 2.059 0.0425 *
cos(2*pi/62*time) -0.018671 0.002288 -8.160 2.33e-12 ***
sin(2*pi/62*time) -0.014029 0.002321 -6.043 3.66e-08 ***
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.01509 on 87 degrees of freedom
Multiple R-squared: 0.5417, Adjusted R-squared: 0.5311
F-statistic: 51.41 on 2 and 87 DF, p-value: 1.826e-15

Table 3.3: Summary statistics of the sample periodic model.
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Figure 3.4: The fitted series of our periodic model and innovation zt (first row);

Residuals from the fitted periodic model (second row).

Now, we can express the daily return as:

rt = 100(log(Pd,t)−log(Pd,t−1))

Here, log(Pd,t) is the modified logged close price on day t, which has been detrended

and deperiodiced.

In section 2.4.2, we consider the return series rt satisfies:

rt = µt + at, at = σtϵt, ϵt ∼ N(0, 1)

In order to predict at, we first need to remove µt, which is the conditional mean of rt:

µt = E(rt|Ft−1), from the series.

From Figure 3.5, it is obvious that the mean of rt moves up and down over time.

Since we already eliminated the time trend and periodical pattern from rt, it is possible

that other factors influence our series.

In the statistical jargon we often say that a time series xt is auto-correlated at
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lag-k if ρk =
Cov(xt,xt−k)√

V ar(xt)V ar(xt−k)
̸= 0, which indicates that xt depends on xt−k. The

collection of ρk is called: auto-correlation function (ACF). In contrast, by controlling

the contribution from the values of shorter lags xt−i, 0 < i < k, partial correlation

function (partial ACF) gives the partial correlation between xt and xt−k with their

own value (Tsay 2005).

s

−2

0

2

Aug Sep Oct Nov Dec
Date

Dai
ly re

turn

Figure 3.5: The time series of the sample daily return rt.

In Figure 3.6, the first row and second row present the sample ACF and PACF

of the daily return series, respectively. The ACFs and PACFs do not appear any

high values. The eighth lag is significantly correlated, which should be considered in

modeling the mean series µt. Here, we consider three models for µt: AR model, MA

model and ARMA model.

Tsay (2014) mentioned that ACF is useful for identify MA process because ACF

cuts off at lag-p for a MA(p) series. For AR process, PACF cuts off at lag-q for a

AR(q) series. According to those rules, we initially consider AR(9), MA(9) as the

candidate models for our sample. ARMA process combines AR and MA processes.

Comparing to AR and MA models, it can often obtain a good fit of data with a

smaller number of parameters. In our case, we initially considered ARMA(4,4) as a

candidate model for covering a sufficient amount of correlations.
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Figure 3.6: The auto-correlogram and partial auto-correlogram of the sample daily

return series: rt.

Through model fitting, we notice that the coefficients of some lags in the models

are not significant. After removing their corresponding coefficients and refitting the

models, we obtain an AR(8), a MA(9) and an ARMA(2,2) model.

Model Estimate Std. Error t value P(> |t|)
AR(8):
ar1 -0.0301 0.0100 -0.3011 0.7633
ar2 0.0424 0.1008 0.4210 0.6738
ar3 -0.1370 0.1058 -1.2942 0.1956
ar4 -0.2325 0.1077 -2.1590 0.0308 *
ar5 -0.0993 0.1063 -0.9341 0.3502
ar6 -0.1210 0.1051 -1.1518 0.2494
ar7 0.0002 0.1063 0.0015 0.9988
ar8 -0.3606 0.1053 -3.4256 0.0006 ***

intercept -0.0122 0.0536 -0.2272 0.8202
σ2 estimated as 0.8986: log-likelihood = -122.27, aic = 264.55
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 3.4: Summary statistics of the AR(8) model.
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Model Estimate Std. Error t value P(> |t|)
MA(9):
ma1 0.0039 0.1316 0.0295 0.9764
ma2 -0.0602 0.1156 -0.5208 0.6025
ma3 -0.3737 0.1306 -2.8621 0.0042 **
ma4 -0.1940 0.1331 -1.4568 0.1452
ma5 -0.1347 0.1106 -1.2181 0.2232
ma6 -0.2601 0.1090 -2.3866 0.0170 *
ma7 0.2141 0.1304 1.6415 0.1007
ma8 -0.4857 0.1178 -4.1230 3.739e-05 ***
ma9 0.2904 0.1137 2.5546 0.0106 *

intercept -0.0035 0.0131 -0.2635 0.7922
σ2 estimated as 0.7098: log-likelihood = -116.5, aic = 255.01
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 3.5: Summary statistics of the MA(9) model.

Model Estimate Std. Error t value P(> |t|)
ARMA(2,2):
ar1 -0.1745 0.1948 -0.8960 0.3703
ar2 -0.7067 0.2135 -3.3102 0.0009 ***
ma1 0.1784 0.1416 1.2598 0.2077
ma2 0.8695 0.1640 5.3021 1.145e-07 ***

intercept -0.0259 0.1180 -0.2193 0.8264
σ2 estimated as 1.047: log-likelihood = -128.54, aic = 269.08
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 3.6: Summary statistics of the ARMA(2,2) model.

Table 3.4, Table 3.5 and Table 3.6 show the summary statistics of the AR(8),

MA(9) and ARMA(2,2) models, respectively. After removing the insignificant coef-

ficients, we refit those three models again. The summary statistics are presented in

Table 3.7.

By comparing the log-likelihood of those three models with zero-coefficients re-

moved, we notice that the performance of the AR(8) model is better than the ARMA(2,2)

model, but worse than MA(9) model. This result is understandable considering the

MA(9) model contains two more lags than the AR(8) model. Furthermore, according

to the AIC, MA(9) is still the most parsimonious model and it should be preferred

over AR(8) and ARMA(2,2).
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Model Estimate Std. Error t value P(> |t|)
AR(8): rt = φ1rt−4 + φ2rt−8 + at
ar4 -0.2338 0.1088 -2.1480 0.0317 *
ar8 -0.3503 0.1068 -3.2798 0.0010 **
ar1, ar2, ar3, ar5, ar6, ar7 and intercept are insignificant, whose coefficients are set to be 0
σ2 estimated as 0.9452: log-likelihood = -124.36, aic = 252.73
MA(9): rt = α1at−3 + α2at−6 + α3at−8 + α4at−9 + at
ma3 -0.3198 0.1077 -2.9686 0.0030 **
ma6 -0.3082 0.1169 -2.6370 0.0084 ***
ma8 -0.5327 0.0928 -5.7423 9.34e-09 ***
ma9 0.3205 0.1158 2.7682 0.0056 **
ma1, ma2, ma4, ma5, ma7 and intercept are insignificant, whose coefficients are set to be 0
σ2 estimated as 0.79: log-likelihood = -119.43, aic = 246.85
ARMA(2,2): rt = φ1rt−2 + α1at−2 + at
ar2 -0.5393 0.2688 -2.0063 0.0448 *
ma2 0.7003 0.2224 3.1490 0.0016 **
ar1, ma1 and intercept are insignificant, whose coefficients are set to be 0
σ2 estimated as 1.065: log-likelihood = -129.17, aic = 262.34
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 3.7: Summary statistics of the AR(8), MA(9) and ARMA(2,2) model once
zero-coefficients are removed from the models.

Figure 3.7 shows the ACF and PACF of the residuals at from the refitted AR(8)

model (first row), MA(9) model (second row) and ARMA(2,2) model (third row).

According to Figure 3.7, MA(9) performs better on removing auto-correlations while

AR(8) is better on removing partial auto-correlations. To this end, it seems that

either MA(9) or AR(8) is a good choice for our sample. Because AR(8) has lower

number of parameters, I am going to select it as the model of our data.

Therefore, our fitted model is:

rt =−0.2338rt−1−0.3503rt−8 + at

Here {at} is a white noise process with mean 0 and variance σ2t .

Table 3.7 and Figure 3.7 (first row) shows that the AR(8) model describes the

data efficiently, and the residual series at presents no significant correlation.
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Figure 3.7: The auto-correlogram and partial auto-correlogram of the residuals from
AR(8) (first row), MA(9) (second row) and ARMA(2,2) (third row) models.
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Figure 3.8: The auto-correlogram and partial auto-correlogram of the squared residual

series from AR(8): a2t .
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Since we already modeled the mean series of rt: µt, {at} can be easily substracted
as the model residuals. Meanwhile, according to equation (2.18),

E(a2t ) = E(σ2t )

where σ2t is the volatility.

Figure 3.8 shows the sample ACF and PACF of the series a2t . Clearly, both plots

indicate that the squared residual series a2t may have some serial correlations. Con-

sequently, the sample ACF and PACF of a2t suggests that the volatility σ
2
t could be

modeled as ARCH effects (Tsay 2005).

We will start with a simple model: GARCH(1,1) for volatility. The model is

specified as:

rt = µt + at, at = σtϵt, ϵt ∼ N(0, 1)

σ2t = α0 + α1a
2
t−1 + β1σ

2
t−1

According to Table 3.7 and Table 3.8, our fitted model is:

rt =−0.2338rt−1−0.3503rt−8 + at, at = σtϵt

σ2t = 0.1307a
2
t−1 + 0.8489σ

2
t−1

(3.3)

The estimates of α1 and β1 are all significant.

Figure 3.9 shows the sample time series, ACF and PACF of the standardized

residuals series: ϵt =
at
σt
.

The ACF and PACF plots suggest that no serial correlation remains in ϵt or

ϵ2t . In Table 3.8, the Ljung-Box test of the standardized residuals gives Q(10)=3.515,

Q(20)=15.4627. Ljung-Box statistics of ϵ2t series also shows Q(10)=4.2168, and Q(20)=6.72.

Consequently, the AR(8)-GARCH(1,1) model in equation (3.3) is adequate for describ-

ing the auto-correlation and conditional heteroscedasticity of our sample under 95%

confidence level.
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Figure 3.9: Model checking of the GARCH (1,1) model in equation (3.1).
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Formula= ∼ garch(1,1)
Conditional Distribution: Normal

Error Analysis:

Estimate Std. Error t value P(> |t|)
α0 0.0446 0.0266 1.678 0.0933 .

α1 0.1307 0.0663 1.970 0.0489 *

β1 0.8489 0.0664 12.793 <2e-16 ***

Log-likelihood: -116.704; normalized: -1.3113; AIC: 2.68; BIC: 2.7739

Standardised Residuals Tests:

Statistic p-Value

Jarque-Bera Test R χ2 131.3341 0

Shapiro-Wilk Test R W 0.9134 1.8751e-05

Ljung-Box Test R Q(10) 3.5149 0.9666

Ljung-Box Test R Q(15) 9.9062 0.8256

Ljung-Box Test R Q(20) 15.4627 0.7493

Ljung-Box Test R2 Q(10) 4.2168 0.937

Ljung-Box Test R2 Q(15) 5.4486 0.9876

Ljung-Box Test R2 Q(20) 6.72 0.9975

LM Arch Test R TR2 3.7885 0.987

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 3.8: Summary statistics of the GARCH(1,1) model of sample squared residuals

a2t .

From R output, â90 = −1.8248 and σ̂90 = 2.0595. With equation (3.1), we can
obtain the volatility of 10th of December, 2018 (day 91):

σ̂291 = 0.1307(−1.8248)2 + 0.8489(2.0595)2 = 4.0359

If we repeat the process presented above, we can obtain one-day-ahead forecast

volatilities σ̂2t from 11
th of December 2018 to 1st of February 2019.
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3.5 ARMA model of the realized volatility

In this section, we forecast the realized volatility of December 10th, 2018 (day 91)

RV91; this case is considered as an example of processing one-step-ahead forecast of

realized volatility.

First, we check the time series, ACF and PACF of the sample realized volatility

RVt, t = 1, . . . , 90, which are shown in Figure 3.10.
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Figure 3.10: The time series, auto-correlogram and partial auto-correlogram of the

sample realized volatility RVt from August 1st, 2018 to December 7th, 2019.

From the time series in Figure 3.10, the realized volatility does not appear any lin-

ear trend or periodical pattern, which is also supported by the sample ACF. However,

in the sample ACF and PACF, the first lag presents a high value, which suggests us

to take the first difference of the series: Dt = RVt−RVt−1 (Tsay, 2014). Figure 3.11
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presents the time series, auto-correlogram and partial auto-correlogram of the first

difference of the sample realized volatility.
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Figure 3.11: The time series, auto-correlogram and partial auto-correlogram of the

first difference of the sample realized volatility: Dt.

According to the time series in Figure 3.11, Dt does not show any linear trend

or periodical pattern. In the ACF plot, the sixth, ninth, eleventh and fifteenth lags

are significant; in the PACF plot, the second, sixth, tenth and twenty-fourth lags are

significant, although none of them appears high value. Therefore, we first consider

two models, AR(10) and MA(9) for the series Dt.

Table 3.9 and Table 3.10 show the summary statistics of the AR(10) and MA(9)

models. After removing the insignificant coefficients, we refit the models again. The

summary statistics of the refitted models are presented in Table 3.11.

Figure 3.12 presents the ACFs and PACFs of the residuals from the refitted AR(10)
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Model Estimate Std. Error t value P(> |t|)
AR(10):
ar1 -0.2656 0.0948 -2.8014 0.0051 **
ar2 -0.4430 0.0977 -4.5350 5.760e-06 ***
ar3 -0.3352 0.1021 -3.2828 0.0010 **
ar4 -0.3229 0.1067 -3.0269 0.0025 **
ar5 -0.0722 0.1024 -0.7053 0.4806
ar6 -0.4114 0.0987 -4.1690 3.060e-05 ***
ar7 -0.2323 0.1026 -2.2630 0.0236 *
ar8 -0.3880 0.0987 -3.9313 8.448e-05 ***
ar9 -0.2594 0.0955 -2.7174 0.0066 **
ar10 -0.4328 0.0928 -4.6634 3.110e-06 ***

intercept 0.0160 0.0153 1.0428 0.2971
σ2 estimated as 0.3252: log-likelihood = -77.98, aic = 179.96
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 3.9: Summary statistics of the AR(10) model with sample Dt.

Model Estimate Std. Error t value P(> |t|)
MA(9):
ma1 -0.1458 0.1130 -1.2906 0.1969
ma2 -0.3212 0.1397 -2.2998 0.0215 *
ma3 -0.2610 0.1468 -1.7781 0.0754 .
ma4 0.0028 0.1330 0.0209 0.9834
ma5 0.5024 0.1460 3.4425 0.0006 ***
ma6 -0.3275 0.1148 -2.8522 0.0043 **
ma7 -0.4616 0.1275 -3.6192 0.0003 ***
ma8 -0.1640 0.1197 -1.3700 0.1707
ma9 0.4325 0.1343 3.2196 0.0013 **
σ2 estimated as 0.3311: log-likelihood = -81.37, aic = 182.73
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 3.10: Summary statistics of the MA(9) model with sample Dt.

and MA(9) model. It is obvious that those two models explain the auto-correlations

in the series Dt well, there is no significant correlation left.

In Table 3.11, although AR(10) model contains three more parameters, its AIC

does not improve significantly compared to MA(9) model. Consequently, it seems

MA(9) model is a good option for our data. The time series of the residuals from

MA(9) shows in Figure 3.13.
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Model Estimate Std. Error t value P(> |t|)
AR(10):
ar1 -0.2476 0.0940 -2.6332 0.0085 **
ar2 -0.4190 0.0946 -4.4290 9.469e-06 ***
ar3 -0.3035 0.0950 -3.1933 0.0014 **
ar4 -0.2910 0.0999 -2.9133 0.0036 **
ar6 -0.3829 0.0928 -4.1257 3.697e-05 ***
ar7 -0.2021 0.0966 -2.0914 0.0365 *
ar8 -0.3659 0.0960 -3.8122 0.0001 ***
ar9 -0.2444 0.0949 -2.5747 0.0100 *
ar10 -0.4253 0.0934 -4.5530 5.289e-06 ***
ar5 and intercept are insignificant, whose coefficients are set to be 0
σ2 estimated as 0.3311: log-likelihood = -78.73, aic = 175.46
MA(9):
ma2 -0.4962 0.1512 -3.2808 0.0010 **
ma5 0.4377 0.1165 3.7580 0.0002 ***
ma6 -0.3627 0.0974 -3.7229 0.0002 ***
ma7 -0.3996 0.1425 -2.8039 0.0050 **
ma8 -0.1825 0.0979 -1.8651 0.0622 .
ma9 0.3415 0.1501 2.2758 0.0229 *
ma1, ma3 and ma4 are insignificant, whose coefficients are set to be 0
σ2 estimated as 0.3155: log-likelihood = -83.21, aic = 178.41
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 3.11: Summary statistics of the AR(10) and MA(9) model with sample Dt once
zero-coefficients are removed from the models.

The fitted model can be written as:

Dt =−0.4962ad,t−2 + 0.4377ad,t−5 −0.3627ad,t−6−0.3996ad,t−7
−0.1825ad,t−8 + 0.3415ad,t−9 + ad,t

(3.4)

Here, ad,t−i ∼ N(0, σ2a) and Dt = RVt−RVt−1.

From R output, RV90 = 3.0861, ad,89 = 1.1609, ad,86 = 0.2258, ad,85 = −0.3925,
ad,84 = 0.4182, ad,83 = −0.1179 and ad,82 = 0.2652. Plug them into equation (3.4),

we can obtain the one-step-ahead forecast of the realized volatility of December 10th,

2018 (day 91):

R̂V 91 = RV90−0.4962ad,89+0.4377ad,86−0.3627ad,85−0.3996ad,84−0.1825ad,83+0.3415ad,82

⇒ R̂V 91 = 2.6962
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Figure 3.12: The auto-correlogram and partial auto-correlogram of the residuals from
AR(10) model (first row) and MA(9) model (second row) about the sample series Dt.
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Figure 3.13: The time series of the residuals from MA(9) model about sample RVt.



Chapter 4

Forecast evaluation and conclusion

As mentioned in Chapter 3, our forecasting results are constructed based on the data

from the estimation period. Using the daily return and the realized volatility, we

conducted one-day ahead forecasting through the GARCH family models and the

ARMA model, respectively. Our evaluation period is from the 10th of December,

2018 to the 1st of February, 2019, which contains 37 trading days. We calculated the

realized volatility of each trading day from the evaluation period to compare with our

forecasting results for assessment. The forecasting results are presented in Figure 4.1

as a dashed line along with the realized volatility displayed as a solid line.

As revealed in Figure 4.1, the volatility that is forecasted based on the daily

return did not accurately predict all the shocks that occurred during the evaluation

period. The forecasts on dates before December 28th 2018 appear to be lower than

the actual volatility, although the forecasts since December 28th 2018 are higher than

the actuality.

The volatility that is forecasted based on the realized volatility describes well

the general changes of the actual volatility from the evaluation period, although the

forecasting values are generally higher than the actual volatility. This forecast based

on realized volatility also fairly predict the three shocks occurred during the period

of study although they seem to be one day behind the actual occurring date.
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Figure 4.1: One-day ahead forecasting results of historical volatility (first row) and

realized volatility (second row) from the evaluation period (displayed in red dash).

The black solid line presents the realized volatility.

Evaluation criteria
Data HMAE HRMSE

Daily return with GARCH(1,1) 0.7072 0.9360
Realized volatility with MA(9) 0.5989 0.7747

Table 4.1: Evaluation criteria: HMAE and HRMSE with prediction results.

Table 4.1 shows two forecasting evaluaton criteria: HMAE and HRMSE, which

are also used in the studies of Andersen et al. (1999) and Martens (2002). The

forecasts conducted based on the realized volatility has HMAE: 0.5989 and HRMSE:

0.7747, which are lower than the forecasts result based on the daily return. It indi-

cates that the predictions based on the realized volatility perform better compared

to the forecasts based on the daily return (Martens, 2002). This result matches our

interpretation of Figure 4.1 and suggests that the volatility forecasting based on the

daily return is not as good as the one based on realized volatility. Some previous
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studies, which are conducted by Andersen and Bollerslev (1998), Martens (2002) and

Koopman et al. (2005), also show similar results.
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