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Abstract

Social interactions have been an integral part of human civilization. It reflects

human society and its evolution. The first challenge in the research of social networks

is data acquisition. The high cost and low efficiency are always restrictions. In

addition, most existing studies of network problems are using single datasets to build

their network models. It is paramount to find a general method of obtaining a highly

accurate network model to represent social interactions. Therefore, we propose a

cross-platform system and strategy to collect data through radio sensors and design

a combined scheme with multiple datasets in order to settle this problem. Moreover,

we use complex network theory to build our network models. The next challenge is

network dynamic. A larger number of real-world networks are dynamic, i.e. social

networks, as the topology of a network changes over time. It is also hard to describe

the topological variance of the network using a static network model where it does

not have any time features. Thus, we propose a weighted temporal network model to

illustrate the time effect of social network problems. In this study, we also analyze

the effect of friendship on human social interactions and activities. The relationships

among networks are shown as well. Furthermore, we show the combined network

model provides a highly efficient way to construct social networks.

Keywords: Social Network, Complex Network, Social Interaction, Temporal Net-

work, iBeacon.
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Chapter 1

Introduction

1.1 Background

Most things are not unique and have fellow-creatures. We, as individuals, are a part of

social networks and, as creatures, are elements of biological systems. Analyzing char-

acteristics of the population in broader terms is a mutual way to reveal problems of

networks. Mathematically, the study of networks is known as graph theory [1]. It has

been developed in many fields, the Konigsberg bridge problem [2], the relationships

among social entities [3] and wildlife migrations [4]. Many real networks which have

irregular and complex structures contain thousands or more nodes and evolve dy-

namically via time attracts scientists interests in the study of complex networks. It is

involved in various fields. For example, transmission of infectious diseases is always a

serious problem in all species [5][6]. In addition, animal migration is also an attracted

topic in the field of biology [4]. Biologists focus on studying and understanding the

migration and evolution of wildlife. As a result, there has been a significant increase
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in demand for research on the topic recently. People want to utilize these algorithms

to study what the disease dynamics are, what activities of wildlife in their life are,

and how they construct their own society [1][7][8][9].

On the other hand, a number of medical scientists focus on the infection and pre-

diction of disease in human society, such as HIV [5], SARS [6] and sexually transmitted

diseases [10]. Google also estimates the flu trends via people’s search patterns [11].

Not only in these areas, but other scientists show interests in the study of human

society. A great deal of research has been done in recent years. In 1967, Milgram

held an experiment by sending mails to one person and transferring to others in a

small town to study the connections and structure in human society [12]. With the

development of social media platforms, Facebook, Twitter, and Weibo have become

popular communication tools in human society and daily life [13][14]. By crawling

users’ relations and tweets through Twitter’s open API, Kwak et al. proved that such

interaction data can have a great potential for further research compared to Google

keywords search data [15].

1.2 Motivations and Challenges

1.2.1 A multiple network data model

Social network works mainly based on human mobilities and behaviours. It also in-

cludes differently scaled actual networks and infrastructures. Online social media,

airports systems and university communities are good instances. Such a social struc-

ture and interaction built on the activities, behaviours, and connections of individuals
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can show some aspects of personalities and even predict the behaviours. The studies

on the migration and evolution of social networks show a significant increase of re-

search demands [15][16][17]. These studies are utilized to get solutions to their specific

problems.

To analyze the networks and predict behaviours, at first, we defined a network

and analysis method with actual data as fundamental resources and mathematical

definitions. As the social network can be constructed from various data such as online

social interactions data [3], human transportation data [16], cell phone data [18] and

mobile apps checking data. For example, an efficient way to get the actual data

was proposed from the online social networks such as Facebook, Twitter and Weibo.

Most studies only use single network data to construct the network. The limitations

of such approach are obvious. For instance, the global positioning system (GPS)

function cannot work accurately inside the buildings. Networks based on it cannot

reflect the behaviours and interactions of individuals when they are indoor.

On the other hand, it is very hard to describe network analysis tools that can be

used to resolve network structure, revert real-world behaviours and anticipate trends.

Although the network is fed with actual data, it is not always easy to figure out the

structure and features. A few universal models have been proposed to conduct the

analysis on it [16][18].

1.2.2 Data acquisition via Bluetooth sensors

One way to obtain network data requires cooperation with different industries, for

instance, geographic data from human transportation information [16], cellphone ser-
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vice carrier [18] and mobility data [19]. Alternatively, many researchers also propose

their own data collection methods, such as crawling data from social media [13][20]

and survey data [14]. Nevertheless, time and cost of these approaches are unbearable.

Furthermore, plenty of customized devices have been proposed to collect the social

network data, such as proximity loggers [21] and GPS collectors [22]. Still, the cost of

devices and the difficulty of deployment limit the feasibility of obtaining these data.

Recently, occupancy of mobile phones increases rapidly [23]. A large number of

mobile device data collection schemes have been proposed. The convenience and

extensive coverage of it shows an enormous potential for agile and high efficient data

collection. Thus, introducing iPhone for both data broadcasting and collecting is

natural. At the same time, when using the iPhone for data collection, we can easily

get the timeline of each data collection. This will help us analyze and format our

contact network model.

A restriction of building a Bluetooth connection via two devices requires a couple

of seconds, and even longer when two pedestrians pass by. Sometimes, devices may

not have enough time to build a connection. It will cause invalid data for these two

individuals encounters. To address this problem, we choose iBeacon, a Bluetooth

technology based radio sensor as another data broader and design a specific data

collecting scheme. All smartphones can detect such devices’ signal. Additionally, the

price and power consumption of it is low.
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1.2.3 Social interactions comparison based on temporal net-

work

A common solution to solve the problems of the complex system is to create a network

model and design analysis tools. Traditionally, static network models, which contains

nodes, edges and attributes of them, are suitable for most situations. According to the

previous discussion, it has been involved in epidemiology filed [5][6], transportation

research [16], social network studies [3][18] and many other different fields. Static

network models indeed give a precise description and a clear visualization of the

network problem on a macroscale.

However, many large complex networks are dynamic and the topologies may vary

in different time periods. Specifically, in social networks, interactions between indi-

viduals change rapidly and friendship may vary through time [24]. Relations between

people will break down and establish. Thus, time elements play a crucial part of the

networks. The topologies of these networks are changed in different time periods [24].

Static network models cannot represent these dynamic changes and we will lose lots

of information if overpass time sequence. Thus, we study a temporal network method

to recover the time influence in this paper. By expanding networks on the timeline

and analyzing changes of a network topology, it provides us with a time-based math-

ematical and computational tools to understand the networks better and observe

the evolution of the networks. Thus, we design two dynamic graphs (snapshots), to

transform our two social interactions networks into temporal network models. Then

we also discuss centralities measurements and analyze the time influence on network

topologies and social activities.
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On the other hand, the ties among nodes contain a lot of information on com-

plex networks, i.e. the capacity of transportation networks. The weight of temporal

network is not well studied [25], where it plays an important role in evaluating the

network. For instance, Nathan et al. pointed out that the edge weight which demon-

strates the relations between two nodes will affect the network structure based on

time [24]. Thus, studying the influence of weight on the network topology change is

a problem. We discuss a weighted temporal network model and measurement tools

in this paper to address the problem.

1.3 Contributions

In our research, we proposed a complex network approach using multiple network

data to rebuild human interaction and social structure. In the meantime, a method

to combine multiple network data is discussed in the study. It bridges the gaps where

single type dataset limits the robust and accuracy of the network. We also evalu-

ate the performance of our approach. To improve the scalability of data collection,

we introduce iBeacon sensors as data broadcasting devices which the cost is very

low [26]. Meanwhile, due to the low energy cost of such device, iBeacon devices can

provide months, even more than one year working period in a small size and weight

device [27]. Additionally, the relations between friendship and real social interac-

tions are studied in this thesis. Through the method, we believe that it can reduce

researchers’ efforts and works radically. A small-scale experiment was conducted at

Memorial University of Newfoundland (MUN). Daily movements of participants were

tracked by cellphones and iBeacon sensors for two months. In this thesis, we also pro-
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pose a new weighted temporal network model to incorporate the important dynamics

in timeline. Moreover, we present the process of converting static network models

to temporal models. The importance of time elements on social relationships and

activities is demonstrated. We also evaluate the weight effects on temporal network

models.

1.4 Thesis outline

In this paper, we firstly introduced the concepts and related studies of complex net-

work. We also analyze the importance of complex network applications and research

in different fields. Tools and methods to collect network data are also compared in

this part.

In the next chapter, We induced a network data combined approach to extend

applicability and improve the scalability of constructing networks. Especially, we

focus on human social network study with our own datasets. Robust and performance

of it are evaluated in this part. This study fixes the gaps of the normal single data

network, for instance, the limitation of GPS data in the indoor environment.

A cross-platform Bluetooth hardware is also discussed in the next chapter. It

enables us to obtain more data with low cost but a wide range of usage. Associat-

ing with our data combined approach, we generalize three network models to reflect

human interactions and social structures. We also compare features of different net-

works and analyze the relations in static methods, such as centralities to verify our

results.

Additionally, traditional methods consider all data together in a network. How-
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ever, for social networks, individuals and relations are changed with time pass by.

Networks may change rapidly via time. We generalize a temporal network model and

discuss the time impact on different networks.

8



Chapter 2

Related Work

2.1 Applications of complex network

The original idea of the complex network is proposed by Radcliffe-Brown [28]. It is

built for anthropologists and sociologists who expresses more interests in the concept

of “social structure”. In order to understand the “interweaving” and “interlocking”

relations which social actions are organized, the “social network” concept was pro-

posed. Researchers began to study and analyze the content, the actions, and the

connections of the “network”.

Complex network models help researchers, like Meyers and Pourbohloul, to ob-

tain better accurate results of the SARS disease infection simulations and realistic

database [6]. It has already been involved in many different areas for many years. In

epidemiology field, Shweta et al. found out that contact network and homogeneous

models showed more powerful and higher efficient based on their simulation [29]. In

the field of epidemiology, especially infectious disease is strongly corresponding to net-
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work theory [30]. Leon found out that decades before, scientists have proved the con-

nections between there two fields [31][32]. Epidemic spreading analysis attracts many

scientists, epidemiologists, and mathematicians to model complex network framework

for research [33]. Throughout the network model, biologists can generate and analyze

results that the actual source and targets in disease infections [17].

2.2 Research on social network

Furthermore, researchers noticed that social relationship would significantly affect

human health [34]. Major social network studies are conducted on complex net-

works [6][16][18][19]. Albert and et al. have proposed degree distribution and co-

efficient concepts to evaluate networks [7]. Furthermore, Newman has introduced

centralities and defined other algorithms to estimate the networks [8][35]. Mobile

device technology has been growing rapidly in recent years. A team from Stanford

University proposed a social network model based on the users’ locations. The model

could reliably predict human movements and locations dynamically in their future ac-

tivities [18]. However, such approaches consume the power of user cellphones largely,

so the users are affected. Besides, Apple prohibits the ability of Wi-Fi usage for de-

veloping and researching. This would sharply reduce the data source of research, like

Locaccino of Justin and et al. [36]. We utilize Bluetooth technology where almost

every smartphone can easily access. iBeacon, a wireless Bluetooth low energy proxim-

ity logger, is defined as Broader for data broadcasting with UUID, major and minor

value, shown in Table 2.1 for helping users distinguish devices [27]. Major value is

used to tag different groups while devices will be given minor value to be identified.
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Attributes Type Definition

UUID String Universally Unique Identifier

Major value Int Major value of device, for distinguishing in

groups.

Minor value Int Minor value of device, for distinguishing de-

vices in a group.

RSSI Int Received Signal Strength Indicator.

Table 2.1: Data format definition

In the field of social networks, many researchers pay attention to friendship and

mobility [18], population mobility model [16] and predictions [19]. The results of

studies on these topics can predict human mobility, develop cities and prevent dis-

ease infections. Although different networks are analyzed, such as human movement

network and travel location network, various datasets are only fitted to the same

network. There is lack of studies on comparisons among different networks. The

deviations between varied networks within same individuals can also reflect differ-

ence between human relationship and daily activities. We limit our discussion on this

specific point to dig more information from comparing different networks.

2.3 Hardware of network data collection

In biology, complex network can represent communications and living habits of an-

imals. This enables researchers to observe the evolution [21] and transmission of

disease [37] of the species. In this case, scientists have begun to track animals for
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research, like disease infection and migration, many years, even 100 years [4]. Tradi-

tionally, biologists would catch the animals and tag them, like Winkler et al. [38]. By

observing these targets, researchers can generate sampling data [39]. However, the

manually tagging and observing by a human would always cause errors and mistakes.

In addition, it is high cost, laborious, and low accuracy due to the budget of hiring

people and longtime experiment. With the development of science and technology, a

large number of methods and techniques to solve this problem were published in these

years. In Cryan’s research, he and his team chose a biology approach to track long

distance animals’ movements. Hydrogen isotope analysis is a noted method. People

measured the hydrogen isotope ratio of the bat hair to distinguish bats and determine

their migratory movement [40].

Elsewhere, GPS is also introduced to animal tracking. Researchers tied the device

on animals. The weight of the devices has been reduced to only about 50g. Thus, some

birds scientists use such device for tracking migration of small birds [4]. However,

the budget of such hardware is still pretty high. Moreover, the battery life of these

devices cannot support long distance and timeline tracking. Even more, Brooks and

his colleges compared two types of GPS sensor on the zebra to study their behaviour.

They found out that the weight and fit, even in an accepted range or limitation, will

actually take effects on animals’ daily behaviour, which will also affect the research

and result [22].

Doyle and his team have come up with another wireless solution by using Ultra

High Frequency (UHF) radio signals on sheep [41]. These proximity loggers record

data of social interactions between pairs of sheep and researchers can study the so-

ciality of sheep flock. Some existed approaches can help researchers gather lots of
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important information about wildlife, but require specific hardware. Rutz et al. [42]

and Hamede et al. [21] both initialize their research on the customized proximity

loggers [43] for animals tracking and contact network forming, which was figured out

that the network will be changed based on the mature season and the sex. P. Sikka

established a new kind of wireless sensor device, Mica system. However, even during

their series of experiments, they suffered a lot between their own designed two versions

hardware, Mica 1 and Mica 2 [44]. The limitation is obviously detected that specific

and customized hardware would restrict the potential application of reusability or

even cross-cutting research possibility and increase the cost. As smartphones occupy

a large proportion in human society, the trend of it also represents upward [45]. Data

collection from smart devices is used in a large number of studies. To be more specific,

with the development of social media network and maturity of cellphones technology,

many researchers want to find a balance and combination via these methods and have

proposed lots of approaches for social network and contact network studies. A team

from Standford university public a social network model based on the users’ locations,

which the model could reliably predict human movements and locations dynamically

in their future activities [18]. However, such approaches will cost and influent users’

daily usage of cellphones a lot due to the large power consumption.

Additionally, based on the Bluetooth technology, all smartphones can easily ac-

cess the iBeacon. Furthermore, some scientists also tried to combine online social

network data with offline location data of users. They utilized the locations of users

to verify, distinguish, and predict two users have a connection in online social media

or not, which this is an indeed practical way to integrate advantages from two dif-

ferent stages [36]. Unlike these methods, the methodology we present in this thesis
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concentrates more on realistic data for generating human real behaviours and their

connections.

2.4 Time effects on complex systems

Complex network theory is involved in many network-based phenomena in the real

world, from biology, for instance, birds migrations [4], to epidemiology such as the

spread of HIV [32]. In epidemiology field, Shweta et al. found out that contact network

and homogeneous models showed more powerful and efficient based on their simula-

tion [29]. Epidemic spreading analysis attracts many scientists, epidemiologists, and

mathematicians to model complex network framework for research [33]. Furthermore,

a large number of social network studies are conducted on complex networks [16][18].

However, these network problems are studied by static network models. In other

words, the topology of the network has invariable features. The nodes and edges in

the network are never changed. However, in real life, such networks are dynamic

where old nodes will be removed and new nodes will be added in the network. The

connectivities of nodes are also changeable. Nathan and his team have token an ex-

periment on the campus of Massachusetts Institute of Technology [24]. They collected

two kinds of data, self-report data from the survey and behavioural data from users’

cell phones. Two networks are created and compared with each other from the two

datasets. Nathan et al. have analyzed them by different time dimensions and found

that interactions between friends will change rapidly in the different time period [24].

It brings an idea about time effects on the social networks. However, they still use

static network models to process data at given time intervals. The influence of time
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continuity and change on networks are not captured.

To make up the gaps, Tang and his team proposed a new temporal distance

metrics to evaluate the evolution of a network on time dimension [46]. In addition,

Hyoungshick and Ross have studied on temporal node centrality. A dynamic network

concept and a time-ordered graph have discussed and a static network is converted

into a temporal network in their study [25]. Moreover, temporal centralities tools are

also studied to evaluate the performance of the temporal networks. The time effects

on network topology is well represented. However, an important feature on network

measurements is ignored, edge weight. Thus, we consider edge weights on temporal

edges in networks to improve the temporal centralities measurements.
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Chapter 3

Inducing Social Interaction

Through Co-location Using Fused

Network Data

Data is a vital characteristic of network problems. It will effect the robustness of

the network. To enhance the capability of networks, we propose a data combined

method to reduce the errors of the original datasets and improve the performance of

the networks in this chapter. Furthermore, by studying social interactions data and

friendship data, we evaluate the diversity of social networks.

3.1 Research questions

Most social networks research relies on a single type of data, for instance, GPS,

Bluetooth or online social applications interaction data, to analyze network structures
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and predict human mobility [18]. Fewer groups use two or more types of data to

construct networks, which still has limitations. The use of GPS is limited indoor

due to the signal-less. This type of data is the main part of constructing a network

in many social network studies. Interactions between two smart devices [18] via

Bluetooth is also a major approach. Even though, it provides stable and usable data

collection, the ability and range of application of cross-platform is a strict problem.

Building connections between two devices costs lots of time. In reality, people do not

have enough time waiting for building connections when they pass by. Thus, using

multiple data together is much necessarily needed. This method is proposed in this

paper.

To show how robust of the method, an easy way to measure the networks based

on combined data becomes the first challenge. In addition, the structure of a network

varies a lot depending on data types. Normalization between two kinds of networks

is another challenge.

Despite users’ actual interactions in daily life, relationships among people put

influence on their mobility [18]. Friendship relies on human’s subjective opinions.

Human daily activities are affected by their work and family events [47]. Human

mobility networks and friendship network have been well studied respectively. How-

ever, they may vary from each other. We focus our research on the relations between

friendship and social interactions, including difference and similarity between them.
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3.2 Methodology

We assume data combined networks and phenomenon of human relations between

actual interactions are given. The network structures are derived and difference be-

tween these networks are shown using a complex network approach. Starting with

the data collection, we utilize general hardware to save cost and improve the scala-

bility. In particular, we design an iOS-based application to monitor and collect daily

activities and interactions of participants.

Representing data into networks is a crucial concern for studying and analyzing

social networks. The network structures vary depending on the definition of nodes and

edges. According to the dataset, we have defined three different types of networks to

observe human interactions. We apply centralities and coefficient algorithms into our

network models to evaluate the networks and analyze them. This process compares

the difference and similarity between networks.

3.2.1 Data collection

• Hardware: Normally, a data collection method only works on a specific re-

search [21][41]. To avoid this, we choose iPhone as both a data collecting and

data providing tool. Bluetooth accessories in the cell phones considerably save

power consumption and cost. This design can save the cost, provide the scala-

bility and improve the reusability for future work.

• Data Definition:

– Friendship data: To generate people actual relations, we propose a survey
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asking participants rank their friends by friendship from high to low. This

data is used to observe and rebuild users actual social relation network.

– Co-location data: When two users pass by each other, their smartphones

will automatically build a connection between them. The data can be

expected to clearly depict human’s interaction.

– Location data: Trace of users’ daily activities is monitored. We set the

accuracy of the GPS as hundreds of meters which can observe the users’

locations but still power efficient.

Attributes Type Definition

UUID String Universally Unique Identifier.

Timestamp Date Data recorded time.

RSSI Int Received Signal Strength Indicator.

Longitude Float The longitude information of user’s location.

Latitude Float The latitude information of user’s location.

Table 3.1: Data format definition

• WMLSIRecorder: Collecting above data, we develop an iOS application WineMo-

col Social Interactions Recorder (WMLSIRecorder) to record our datasets and

construct them. Every data is recorded with a timestamp. Data communica-

tion range is set to 10m based on the Bluetooth protocol. Data are recorded

only when detected devices are in the range of 10m. Additionally, location

information is stored when users move.

19



The app runs in the background mode and stores the above data. As well as,

our application provides a low power cost which only increases 3%−5% in daily

use. It may be acceptable for the experiment and future usage.

3.2.2 Definition of networks

Using datasets we have collected, we characterize three variations from the real-world

social networks. In particular, we define the nodes and edges of the networks. All of

them can be considered as human’s activities and communications with others. To

our best knowledge, major social network research only builds the data model using

one kind of data. We propose a data combined approach to model the diversity of

network structure and enhance the accuracy of the results. Nodes V are denoted by

mobile devices which represent users in all networks.

• Friendship network:

Gf = (V,Ef ,Wf ), (3.1)

where it is summarized from the friendship data, a directed edge Ef from node

u to node v describes the relation between u and v provided by u. The weight

Wf is the set of the relationship’s rank. The closer friendship u has with v, the

larger weight the corresponding edge will be recorded.

• Co-location network: We reconcile data from co-location dataset with location

data from location dataset for constructing a more reliable network structure

to reflect human social network.

Gc = (V,Ec,Wc), (3.2)
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where Ec is the set of weighted and undirected edges among users. The weight

function Wc : Ec → R+, which carries the number of times that the two involved

users have been co-located during the experiment period.

• Location network:

Gl = (V,El,Wl) (3.3)

According to the location dataset, two users, who have a close Haversine dis-

tance (great circle distance of the surface of the earth) within a short time

period, will be built an edge El between them. Morever, every two nodes only

has one edge.

3.2.3 Network comparison

Network structures are quite different depending on various data models. To prove the

robust and stability of our data combined model, we use centralities and coefficient in

evaluating networks. Normalization is also a challenge when comparing two different

networks. We use Pearson Coefficient which suggests using expected number of each

value to compare their difference and similarity.

rij =
cov(Ai, Aj)

σiσj
=

∑
k(Aik − 〈Ai〉)(Ajk − 〈Aj〉)√∑

k(Aik − 〈Ai〉)2
√∑

k(Ajk − 〈Aj〉)2
(3.4)

∑
k

AikAjk −
kikj
n

=
∑
k

AikAjk −
1

n

∑
k

AikAjk (3.5)

=
∑
k

(Aik − 〈Ai〉)(Ajk − 〈Aj〉) (3.6)

where 〈Ai〉 denotes the mean n−1
∑

k Aik of the elements of the ith row of the ad-

jacency matrix [35]. It calculates the normalized covariance, similar to the cosine.
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Thus, the range of the coefficient is limited in [−1, 1], where the result is close to the

1, the high similarity it has. If the evaluation of the combined network matches up the

demonstrated single data network, for instance, GPS based network and co-location

based network, we can determine that the combined work can fit the gaps and errors

that single data network cannot have.

3.2.4 Vertex centralities

To evaluate networks, we utilize centralities algorithms. The algorithms are main

measurements in complex networks [7] to convert network models into mathematical

matrix. Despite the data model and network structure, networks having similarity

should have similar centralities trends.

• Degree Centrality Cd: Degree centrality is a widely used method to reflect the

node interactions in networks [35]. The higher degree a node has, the more

influence it may have in a network. We obtain each node in and out degree to

depict their effects.

CD(ui) =

∑n
j=1Aij

N(n)
, (3.7)

where A is the adjacency matrix of the network and N is the maximum possible

degree in a graph has n nodes, which is used for normalized the degree centrality.

• Closeness Centrality Cc: A person is very active in a social network, which

means he/she has numerous interactions with other people. He/She will also

have high influence in the network. Closeness centrality provides a nature value
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to monitor and reflect this situation [48].

CC(u) =
n− 1∑n−1

v=1 d(u, v)
, (3.8)

where a high closeness value indicates larger centrality.

In our project, we use edge weight for the network. The numbers of the edges

between two nodes is set as the weight. Thus, we use Dijkstra’s algorithm to

calculate the weight. We inverse the edge weight w rather than itself as 1
w

to

make nodes have higher centrality when they have larger weight.

• Betweenness Centrality Cb: A node affording data transmissions in a network

plays a vital role. In our social networks, a person, such as a professor, acts

as a bridge via different students. This phenomenon leads to use betweenness

centrality in order to estimate each node importance and to evaluate the per-

formance of networks [49].

CB(u) =
∑
s,t∈U

σ(s, t | u)

σ(s, t)
(3.9)

We still utilize the Dijkstra’s algorithm to add edge weight to the centrality.

3.3 Experiment results

Starting with the experiment, we invited 10 colleagues to install WMLSIRecorder on

their cellphones. Some of them have high collision due to same working space. The

system automatically runs in the background. Data were collected for two months.

We set several filter to clean up our datasets to remove redundant and invalid data.

• Set filter for GPS data with time parameter t1 as 60 seconds.
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Figure 3.1: Co-location data distribution

• Set filter for Device data based on filtered GPS data with time parameter t2 as

300 seconds.

• Combine two different data set. Due to the device data being directed network,

we shape and colour the nodes.

After filtering the data, we represent our data in the map shown in Figure 3.1.

It is obvious that the centre of the map which is MUN is a highly social obvious

happening location. Users have a large number of interactions at this position.
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3.3.1 Diagrams of network structures

Graphical methods are often common selection to fit data to theoretical distributions

for network characterizations. We generate our data models into graphs to provide a

visualization of the networks as shown in Figure 3.2. Users are numbered and denote

the nodes in the network. According to the dataset, a directed edge is built from

a user considering another user as a friend in Friendship network Gf . Additionally,

edges in co-location network Gc represent detections from a user to another. Degree

of each node is coloured from blue to orange in ascending order.
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Figure 3.2: Network models
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3.3.2 Centrality measurements and comparisons

To verify the performance of combined data network Gc, Location network Gl is fed

with Location dataset. Different from Gc, Gl is an undirected network. Thus Gc is

converted to undirected network by merging all weights of edges between two nodes

in order to compare with Gl. Centralities of Gl and Gc are evaluated in Figure 3.3.

Although a few fluctuation occurs, the limit of GPS indoor performance effects as

the main trends of both networks is similar. Specifically, coefficient evaluations of

these two centralities are evaluated as 0.7 and 0.8 respectively, which reveals a high

similarity between two networks.
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Figure 3.3: Centralities of Gl and Gc

3.3.3 Friendship & co-location networks analysis

In Table 3.2, the Pearson Coefficient reflecting a low result 0.15 which manifests

poor relations on Cb. Besides, other coefficient values of centralities are unfavourable
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low. Namely, the similarity of Gf and Gc is exceedingly low. Specifically, compared

with Gf degree centrality, those of Gc have an entirely different trend as well as the

degree value is also varied, shown in Figure 3.4. Rather than friendship affects human

mobility, the influence on daily interactions and events is intensely small.

Cb Coefficient Cc Coefficient Cd Coefficient

0.15 0.084 0.45

Table 3.2: Coeffiecient of Gf and Gc
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Figure 3.4: Degree centralities comparison

However, we still expect that there should have relations between friendship and

social interactions. In our whole experiment, people spend most of the daytime with

colleagues on campus, but the activities are quite different after work [24]. To dig

into the question and capture more details of the time effects on the network, we have

divided the timeline into several different periods.

• Daily time: From 9:00 am to 4:00 pm on weekdays. Our participants are all
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MUN members and their normal working and studying periods are from 9:00 am

to 4:00 pm. Thus, this daily time definition can indicate the common working

period of all candidates in the datasets. At this time period, most candidates

are more likely to stay on campus.

• Night time: From 4:00pm to 8:00am on weekdays. It defines the off-work time.

• Weekends: The whole days of Saturday and Sunday.

According to this, night time and weekends periods are considered as off-work

time. We use it to compare with our Gf . The result is what just expected. The

similarity of these two networks is sharply increased shown in Table 3.3. Thus, we

believe that the social activities after work time of people will be influenced by their

friendship.

Cb Coefficient Cc Coefficient Cd Coefficient

0.65 0.73 0.59

Table 3.3: Coeffiecient of Gf and Gc on off-work time

3.4 Summary

A complex network model with multiple data combination is declared in this paper:

a set of Bluetooth connection data and GPS data combined as co-location network.

Combining multiple network data is an essential method to construct a social net-

work, while single data is limited by the environment. Our model reliably composes
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muti-data and rebuilds social networks. We also developed a system to gather data,

WMLSIRecorder. The tool collects multiple data but works in a low power cost

mode. On the other hand, different environments and social events cause the struc-

ture of social networks varied. We find that friendship has influence on human social

activities, which is more evident during off-work hours.
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Chapter 4

Adding Bluetooth Connectivity

The limitations of single data are discussed in the previous chapter. Moreover, we

find that it is also hard to collect data. Therefore, a low-cost Bluetooth based data

collection approach is discussed in this chapter. The performance of this method is

proved. The advantages of our design are also demonstrated.

4.1 Research and limitations of current data ac-

quisition

Data collection is a classic problem of network constructions. Building an accurate

dataset is a pivotal issue in network analysis. Craig and his groups design a ques-

tionnaire to collect information from volunteers [14]. It is an effective way to obtain

data. However, the cost of sending people to do the survey is high. Another common

solution asks researchers to code and crawl data from online social media [14][15]. A

huge amount of information can be generalized by this method which gives us more
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details and features to observe the social network. But in most cases, it is not sup-

ported by the official online social media, even though Twitter has shut down its API

to disallow users to access these data. Any changes of these companies will force this

approach to be failed and have updates to fix the problems. It highly relies on third

parties.

In addition, mobile phones have become an important part of human’s life. Grab-

bing data from it is also a delicate way [23]. GPS location data and Bluetooth data

via building connections between two users are well developed in many studies. The

power consumption and connection building time limit its performance. To avoid

this, many proximity loggers were studied. WiFi is widely used in social network

research [36]. However, it requires heavy design and improvements for the buildings

already existed, such as airport and shopping mall [50]. Some mobile systems restrict

the access to WiFi scan. For example, Apple has prohibited publics to acquire WiFi

scan API until 2015. Even now, only parts of developers with its permissions can

touch this. We want to propose a cross-platform scheme to allow every smartphone

benefitting it. Thus, iBeacon becomes the only choice. Some researchers proposed

customized loggers [42], but have to use specific devices for collecting. We decided

to use iBeacon sensors as additional data broader which can be agilely deployed in

the environment. The cost of it is only cheap. My group members and I have also

proposed a fast radio sensor deployment algorithm which minimizes the number of

iBeacons sensors in a space with given size but maximizes the accuracy. It is affordable

and we extended out WMLSIRecorder for collecting and tracking users’ interaction

data by smartphones.
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4.2 WMLSIRecorder extension

We extend our WMLSIRecorder to collect Proximity data from iBeacon. It contains

all data from Table 2.1 and 3.1. We also include a time frame for future use. To diver-

sify the situations of human activities, we propose two types of beacons deployment,

Fixed Beacon Bf , a beacon at a fixed place, and Moveable Beacon Bm, a beacon in a

moveable place. We will talk about it in next section.

Furthermore, we also design a bar chart view for data observing in the foreground

as shown in Figure 4.1. Each detected device or sensor will be represented in a single

cell. The live RSSI data updates and the nearby devices are represented in the cell.

This can let researchers know the exact data update frequency.

Figure 4.1: WMLSIRecorder iOS application
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4.3 Data collection

As we mentioned above, we create an iOS application, WMLSIRecorder, for data

collection. It allows us to be more convenient and fast collect data than manually

recording. The format of the data is represented in Table 2.1

4.3.1 Beacon deployment

In order to diversify the situations of human activities, we divide the beacon deploy-

ment into two main parts, home and office. This will let us obtain data to observe

different activities of a human when they at home and university. In this way, we

assume a series of patterns of the beacon deployment to simulate different kinds of

situation that human might meet in their daily life. Moreover, offline iBeacon which

was previously detected can also be represented in the view. Additionally, there are

two designed types of beacons deployment shown below:

• Bf : Beacon at a fixed place, which means the devices always stay in the same

place, such as the bedroom of the home and the office at the university.

• Bm: Beacon in move place, which means the beacon has high mobility, for

instance, user’s pocket and/or bag.

Bf can figure out that the volunteer is in this fixed location or not, which we can

observe that the interactions of testers in two different parts, home and office. For

the Bmpattern, the devices sometimes will travel with the tester. It will also provide

us more accurate data the place volunteers visited and other testers they met due

to the long connection time between two phones, which we discussed in the previous
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chapter.

Under this regulation, we can observe and record participants’ access to any fixed

locations via Bf . On the other hand, Bm is an evidence to prove the collision and

meeting up for different individuals. Thus, we can get logs when these participants

encounter.

4.3.2 Data format and process

Symbols and definitions of data collection process are given in Table 4.1. To collect

data, we design and format our own dataset for collection. UUID, major and minor

value are collected. Moreover, signal strength data is recorded as RSSI. Due to the

band channel, the signal of Bluetooth devices is easily interfered by other devices in

the environment, such as Wi-Fi, wireless earphones and mouse which use the same

band with Bluetooth [51]. In this situation, when a user gets close to the iBeacon

sensor, sometimes, the application may not detect the iBeacon or RSSI is recorded

as 0. These data are defined as noise. They will affect our dataset. To address this

problem, we restrict the detecting time should be longer than 500 millisecond(ms),

which means that only if the application detects the signal from the iBeacon longer

than 500ms, the data of this collision will be recorded into the dataset.

Furthermore, the connection distance will also cause similar errors. While two

devices lived a little bit far from each other, the RSSI might be always 0 or smaller

than −100. Thus, we only consider the RSSI value between −100 and 0 as valid data

in our project.
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Attributes Symbol Details

User Devices I iPhone

Users U Colleagues in the lab.

Hardware B iBeacon sensors.

Colloision Proximity Dp Collision between device and beacons,

which will record the meet up event be-

tween fixed and moved nodes.

Co-Location Dc Collision between devices, which could

increase nodes meet up chance in data

and the GPS based location informa-

tion.

Time Frame T Eight weeks period.

Simulated Network N Small social network of a lab.

Table 4.1: Data collection define
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4.3.3 Experiment design

In order to build our dataset, we applied for WMLSIRecorder extension in our previ-

ous data collection. Users were required to open their Bluetooth and GPS functions

on their cellphones to ensure the WMLSIRecorder work during this period. Scheme

of the experiment is showing below:

• Data collection via iBeacon: The WMLSIRecorder is installed on each user’s

smartphone. Each participant gets one iBeacon fitted in his/her home as Bf .

We define the action of a user detecting Bf when he/she comes back home as

check-in. Check-out data denotes the status of leaving the house. The check-

in & out status of users in & out home will be observed. Additionally, office

places of participants will also be fited with iBeacon sensors. As our volunteers

come from five different labs, thus, we fit only one iBeacon sensor in each office.

This approach can let us build several small social groups in our experiment

with diverse environments and observe interactions in such small groups and

connections via all of them.

• Data types: The WMLSIRecorder records three types of data as we mentioned,

Bluetooth directed connection data, proximity data and GPS location data.

The radio signal broadcasted by iBeacon sensors will be recorded when a user

reaches the range of the sensors. On the other hand, in the mod of location

data, while users get close to each user, their radio data communication will

be recorded. Here, we defined the close as the distance between each volunteer

should be less than 10 meters and the communication time should be larger

than 1 second, which can filter errors of the system. The GPS information is
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collected as well.

• Time and estimation: This test is held for eight weeks. According to our

design, the individual at least has two status, check-in & out for each his/her

home location every day. Thus, every volunteer will have at least 2 Bf status

data in daily. As we plan to set each data as a node in our proximity network

model in next section, the total numbers of nodes will be at least 2400. Users

have more chance to check-in & out in their office. For example, meeting or

courses in other places and leaving for food and toilets. This will double, even

triple the number of nodes in the network. Hence, we can have enough data for

our experiment to analyze our models.

4.4 Model of proximity data

V1 V2 V3 V4 V6V5

U1 U2 U3 U4 U6U5

Figure 4.2: Bipartite graph design for proximity network Gp

Unlike the previous chapter, proximity data adds a new kind of node into the

network, beacon node V . Hence, a new network model using bipartite graph is

discussed in this section. A bipartite graph can clearly represent the relations between
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two different types of nodes [35]. A directed bipartite graph Gp, shown in Figure 4.2,

is proposed to analyze data and build our network model in this section.

Gp = (U, V,Ep,Wp). (4.1)

We consider that each user, or called collecting device, is denoted by a node u. Node

v represents each iBeacon. The edge Ep between u and v represents the detection for

users to iBeacon sensors. The direction is always from u to v due to only the user

detecting iBeacon. Here, Ep is the edge set weighted by the number of times that a

user is in the proximity of a beacon.

4.4.1 Conversion of network

4.4.1.1 One mode projection

In Chapter 3, we have presented our Gf and Gc networks as directed graphs. However,

their only have one type mode. Comparing them with our new Gp model will be a

challenge. To address the problem, Gp is converted to a one mode graph Gu which

only contains nodes U in the network as same as Gf and Gc by the following steps:

• All nodes B are removed from the Gp network.

• If a node B is detected by multiple nodes U , an edge Eu will be built between

every two node U . Moreover, the edge weight of Ep will be summed to the new

edge Eu.

Although, the information of the network will be lost during the conversion and

relations between node B and node U are removed, summarising the weight of the
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Ep to the Eu can reduce the loss. Furthermore, we added a time filter to improve

the precision. The weight of the edge Eu will only be counted when the two nodes U

detected the same node B in a specific time shift. It can avoid overvaluing the weight

of the whole network Gu.

4.4.1.2 Directed to undirected network

After one mode projection, the original directed bipartite graph is converted to an

undirected network Gu. However, Gc is a directed network which represents the

detection from one user to another user. Comparing this two network, we firstly

should convert Gc to an undirected network. To simplify the problem, the directions

of the edge in Gc are removed. Weights of two directions between two nodes are

added together.

4.5 Result and Evaluation

Dataset is built and collected by our WMLSIRecorder for a period of two months.

Although, the RSSI data will have lots of error and gaps [27], and in order to gen-

erating an accurate and stabilized network model in performing and reconstructing

the real behaviors of people, which the model can be a very effient way to reproduce

people real life in society, we user our Gc network to verify the new network model

Gp as we have proved the performance of Gc in the previous chapter.

• Mathematics approaches: Centralities are chosen to evaluate and compare

two networks. We keep using three types centralities, betweenness centrality,
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closeness centrality and degree centrality. Additionally, normalized Pearson

coefficient is adapted too.

• Experiment setup:

– The broadcasting gap of the iBeacon sensor is set to 500ms. It can provide

a high-frequency signal refresh rate to prevent users missing any iBeacon

sensors and extend the battery life to 1 year long.

– A large number of errors will occur due to the previous setting. We added

a Time parameter t3 as 300s. In every 300s, only one detection of the same

iBeacon sensor will be recorded for each user.

– To reduce the overvaluation of the network, we set another Time parameter

t4 as the 60s. It only allows for an Eu existed when two nodes detected

the same iBeacon sensor within t4.

4.5.1 Network representation

Figure 4.3 demonstrates the proximity data of the network Gc. Each participant is

marked by numbers. iBeacons sensors are merged into ourGc via one mode projection.

4.5.2 Network comparison

A natural way to compare two networks is to quantify the networks. We evaluate

three types of centralities for both Gc and Gp. Obviously, a user in both two networks

has similar centrality value in all measurements shown in Figure 4.4. To be more
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Figure 4.3: One-mode proximity network Gu. Colour from orange to blue represents

the degree of each node from low to high.

important, some nodes even has exactly same centralities, for instance, node 3 and 4

obtain same centralities in both Figure 4.4(a) and 4.4(b).

Cb Coefficient Cc Coefficient Cd Coefficient

0.70 0.71 0.72

Table 4.2: Coeffiecient of Gc and Gp

Furthermore, the similarity between Gc and Gp is also studied to measure the

performance of the Gp. As expected, the coefficients of all centralities are close to

1. The result shows a proximity-based network model can demonstrate the relations

and connections between people accurately and precisely.
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Figure 4.4: Centralities of Gc and Gp. 4.4(a) illustrates the betweenness centrality of

Gp and Gc. In 4.4(b), degree centrality of two networks is shown. 4.4(c) represents

the closeness centrality.

4.5.3 Remarks

In this chapter, we propose a cross-platform hardware data collection solution by

using iBeacon sensors and mobile devices. The price of the sensors is cheap. Moreover,

smartphones own a great part of the cell phones market. The performance of such
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method is also proved. Thus, our approach can rapidly reduce the cost of the research

and widely used in different scenarios.
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Chapter 5

Analysis Between Co-location

Interactions And Proximity Using

Temporal Network

We take a superficial look at the time effects on the co-location network Gc topolo-

gies and discussed its similarity compared with friendship network Gf in the previous

chapter. It brings a distinct result compared with non-time influence network. How-

ever, it still uses the static networks methods and roughly intercepts parts of the

networks. Thus, we decide to use temporal network models to build and analyze our

datasets.
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5.1 Gaps between static and dynamic network on

social network research

Static network is a mature way to study many network problems, such as protein

network, transportation network and food chain network. However, time is an essen-

tial element of some networks, especially large networks. For example, interactions

between individuals change rapidly in the social network. Moreover, the relationship

is also varied based on different time periods. There will be always new one built

and old one broke up. Thus, time elements play a crucial part of the networks. The

topologies of these networks are changed in different time period [24]. In this situa-

tion, the static network model cannot represent such kinds of information. Thus, we

study a temporal network method to recover the time influence in this paper.

On the other hand, the weight of temporal network is not well studied [25], where

it plays an important value in evaluating the network. For instance, Nathan et al.

pointed out that the edge weight which demonstrates the relations between two nodes

will affect the network structure based on time [24]. Thus, studying the influence of

weight on the network topology change is a problem. We discuss a weighted temporal

network model and measurement tools in this paper to address the problem.

5.2 Temporal network & dynamic algorithm

In this section, we model our data by using temporal graph tools on two networks,

co-location network Gc and proximity network Gp from the definitions in Chapter 3.

Furthermore, we also add time elements to the network to study the time effect on
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the network.

5.2.1 Temporal network model

To build our temporal network model, we use the method from Hyoungshick and

Ross [25]. In their study, they add time elements to the network model and construct

temporal graphs. The temporal graph is a directed graph that describes both struc-

tures and changes of the structures. The temporal network model allows us to study

the evolution of users interactions (e.g. co-location of each other and proximity to

landmarks) over time.

5.2.1.1 Temporal co-location network

V

T Time

1

V2

V3

V4

3

1

V1

V2

V3

V4

V1

V2

V3

V4

2

1

4
2

3

21

1 T2 T3

Figure 5.1: Snapshots of the network

Creating a temporal network out of a static network with the edge event log has

two steps. This is a similar procedure to Hyoungshick [25]. First, we divide the entire

time period of the event log [0, T ] into dT/∆T e intervals of ∆T each. With each

interval Ti (i = 1, 2, . . . , dT/∆T e), we can create a static weighted graph as in 4.1
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co-location network, denoted

Gi = (V,Ei,Wi). (5.1)

Gi is called the i-th snapshot of G (i.e. Figure 5.1). See Algorithm 1 for details.

Next, we build the temporal graph using the snapshots Gi (i = 1, 2, . . . , dT/∆T e).

The temporal graph is a weighted directed graph on |V | × (dT/∆T e + 1) vertices.

These vertices are organized in dT/∆T e+ 1 stages of |V | each, and each snapshot Gi

defines the connectivity from stage i and stage i+ 1. Specifically, we denote

G = (V , E ,W) (5.2)

and each vertex vi,j is the i-th vertex of the snapshots in stage j. From stage j to

stage j + 1, there are two types of edges:

1. horizontal edges (vi,j, vi,j+1) for i = 1, 2, . . . , |V |, and

2. cross edges (vi,j, vi′,j+1) and (vi′,j, vi,j+1) if and only if ∃(vi, vi′) ∈ Ei.

Note that all edges in G are directed and each edge in the snapshots introduces two

cross directed edges in G. W is the temporal edge weight defined as the number of

connections from node vi at stage j to node vi′ at stage j+ 1. Besides, the horizontal

edges will have an edge weight defined as M where Mj is the mean of all nodes

W from stage j to stage j + 1. A temporal co-location network model is shown in

Figure 5.2 We also provide the pseudocode of creating temporal networks models in

Algorithm 2.

5.2.1.2 Temporal proximity network

We can also create a temporal version of the proximity network (Equation 4.1) using

a similar workflow.
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Algorithm 1 Create snapshots
Input:

G = (V,E,W ) : Static weighted graph

L : Time sequence of vertex interactions in [0, T ]

∆T : Time interval length

Output: G1, G2, . . . , GdT/∆T e, where Gj = (Vj, Ej,Wj)

INIT

1: for j = 1, 2, . . . , dL/∆te do

2: Vj = V

3: Ej,Wj = φ

4: Gj = (Vj, Ej,Wj)

5: end for

CREATE SNAPSHOTS

6: for each log entry r in L do

7: tr = time stamp of r.

8: u = detecting device.

9: v = detected device.

10: j = dr/∆te

11: if (u, v) /∈ Ej then

12: add (u, v) to Ej

13: Wj(u, v) = 1

14: else

15: Wj(u, v) = Wj(u, v) + 1

16: end if

17: end for
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Algorithm 2 Snapshots to Temporal Graph

Input: G1, G2, . . . , GT/∆T , where Gi = (Vi, Ei,Wi)

Output: G = (V , E ,W)

INIT

1: V = {vi,j|i = 1, 2, . . . , |V | and j = 0, 1, . . . , dT/∆T e

2: A,C,M = φ

ADD CROSS EDGES

3: for j = 1, 2, . . . , dT/∆T e do

4: for each edge (vi, v
′
i) ∈ Ej do

5: add edge (vi,j−1, vi′,j) to E

6: add edge (vi′,j−1, vi,j) to E

7: W(vi,j−1,vi′,j) = Wj(vi, v
′
i)

8: W(vi′,j−1,vi,j) = Wj(vi, v
′
i)

9: Aj−1 =W(vi,j−1,vi′,j) +W(vi′,j−1,vi,j)

10: Cj−1 = Cj−1 + 2

11: end for

12: end for

ADD HORIZONTAL EDGES

13: for j = 1, 2, . . . , dT/∆T e do

14: Cj−1 = Cj−1 + |V |

15: Mj−1 = Aj−1/Cj−1

16: for i = 1, 2, . . . , |V | do

17: add edge (vi,j−1, vi,j) to E

18: W(vi,j−1,vi,j) =Mj−1

19: end for

20: end for
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Figure 5.2: Temporal co-location network model.

1. Give a bipartite graph Gp = (U, V,Ep,Wp) for the proximity network, the event

log file, time period [0, T ], and a ∆T , we can generate a series of snapshots

Gj = (Vj, V
′
j , Ej,Wj), for i = 1, 2, . . . , dT/∆T e using Algorithm 1.

2. We next project each Gj to the vertex set Vj (e.g. the users). The weight will

sum all edge weights of two nodes v who have interactions with the same node

v′ in its snapshot.

3. We use the same method defined in temporal co-location network, Algorithm

2, to build our temporal proximity network.

We make two points here. First, using Algorithm 1 for bipartite graphs is nature.

The only difference is that the bipartite one has two vertex sets, respective to co-

location snapshot. Second, the information of the network will be lost during the

conversion and relations between node V and node V ′ are transformed, our edge
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weights can reduce the loss.

5.2.1.3 Centrality measurements

According to our temporal network models, Equation 5.2, we expand the static graphs

into time-based graphs. The temporal graph G is a series of stages connected by

snapshots (i.e. Figure 5.2), which can be processed algorithmically as static graphs

but shows more details than the static ones. Thus, it is natural to use standard

centrality tools to evaluate these graphs.

On the other hand, we are curious about the influence of a person in a social

network, i.e. a person, who is a professor, acts as a bridge via different students.

Betweenness centrality can represent this phenomenon. Additionally, a person is

very active in a social network, which means he/she has numerous interactions with

other people [35]. He/She will also have high influence in the network. Closeness

centrality provides a nature value to monitor and reflect this situation.

• Closeness centrality C:

C(u) =
n− 1∑n−1

v=1 d(u, v)
, (5.3)

where a high closeness value indicates larger centrality. d(u, v) is the distance

from u to v. We inverse the edge weight w rather than itself as 1
w

to make nodes

have higher centrality when they have larger weight.

• Betweenness centralities B:

B(u) =
∑
s,t∈U

σ(s, t | u)

σ(s, t)
, (5.4)
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Figure 5.3: Static co-location and proximity network

where σ(s, t) is the number of all shortest paths from node s to t and σ(s, t | u)

is the path from s to t that goes through u. The larger edge weight will give

more influence on betweenness centrality [49].

5.3 Evaluation and analysis

In our experiment, we used the datasets from our previous chapters, proximity data

and co-location data. We analyze the change of social interactions on the timeline in

this section. We also discuss the difference between snapshots and static networks by

mean and variance of edge weights. Furthermore, centralities of temporal co-location

and proximity networks are evaluated, along with their correlations.
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5.3.1 Influence of different time periods

In Figure 5.4, we present a one-month period to observe the frequency of our partic-

ipants’ interactions in co-location network. Interactions among all volunteers within

one hour is considered as the frequency of the hour in our network. The gray scale is

changed from white to black according to the frequency updating from low to high.

We can observe that the frequency of the day 7, 14 and 21 are higher than other

days. The reason is that these three days are Monday, where people have more

interactions. However, the next Monday on day 28 is different, where the Winter

semester is over and many participants are off campus.

An important feature which indicates that most interactions have happened be-

tween 9:00 am and 5:00 pm is a key point to demonstrate the time effects on social

activities. Participants can also have interactions after their works, even at midnight,

such as 2:00 am to 5:00 am on day 10 and 1:00 am on day 12, although it is not as

high as daytime hours. (It only has few influence on the whole network. But this

captured phenomenon cannot be observed on static graphs.) Thus, time can give us

more information about social dynamics that static networks cannot.

5.3.2 Time variance of co-location and proximity networks

To understand the time influence on social networks, we study the difference between

snapshots and the static networks. In addition, we also discuss temporal centralities

to demonstrate how the network topology changes with time.
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Figure 5.4: Frequency of total interactions, from 2017/04/04 to 2017/05/03

5.3.2.1 Snapshot of the network topology

We extract one-day social interactions in our dataset. From Figure 5.4, the day 7 has

a high frequency of social activities, which we believe that the network topology of it

will be most similar to the whole network structure.

In Figure 5.3, two static network diagrams represent the whole time period topol-

ogy of co-location network and proximity network, respectively. Besides, we find that

topologies of the two networks on a single day varies a lot. In the static co-location

network, the node 9 has interactions with all nodes, except node 4. But node 9 only

interacts with node 6 in the corresponding snapshot graph shown in Figure 5.5(a).

Moreover, node 1 and 4 even do not exist in this snapshot. Similar to the co-location

network, three nodes do not show up in the proximity snapshot graph. Edges are also
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reduced, for instance, there is no edge between node 2 and 3 in the snapshot graph,

while the corresponding edge exists in the static network. Thus, we can clearly ob-

serve that the topology varies via time.
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Figure 5.5: One day snapshot of the network topology

5.3.2.2 Numbers of interactions on timeline

Before evaluating the networks, we analyze the changes of interactions among users,

edge weight, on the timeline, as shown in Figure 5.6. Based on two one-mode snap-

shots, co-location and proximity, we can obtain a series s of edge weight between two

users over the one-month period. Thus, the mean and variance of s is calculated.

For co-location snapshots, the mean value of edge weight, i.e. numbers of encounters,

fluctuates between 0 to 40’s (i.e. Figure 5.6(a). Only triangle is showing because of

undirected graphs.). However, the variance of it goes into a state of high volatility

(i.e. Figure 5.6(c)). For projected proximity snapshots, the fluctuation of the mean
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value is in the range of 0 and 20’s. In Figure 5.6, the highest variance of it is 75 times

more than the mean one.
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5.3.2.3 Temporal centrality evaluation

In this section, we use centrality measurements to reveal the evolution of networks.

We use two variants of the temporal networks. One is unweighted graphs shown in

Figures 5.7(a) and 5.7(b). The other is weighted shown in Figures 5.7(c) and 5.7(d),

which can reflects the influence of encounter frequencies. Betweenness centralities of

each node on different time intervals are presented. The higher betweenness centrality

a user has the darker shade in the figure. We can observe that the centralities of each

node change over time. For instance, in Figure 5.7(a), user 2 obtains the highest

centrality on day 6 but has no value from day 21 to 23. In addition, each column

demonstrates centralities of all nodes on a single day interval. It is obvious that the

topology of the network is varied over time.

Furthermore, we compare two temporal networks, co-location and proximity, to

illustrate the weight effect on network models, as shown in Tables 5.1 and 5.2. We

use Pearson coefficient to process our evaluation. It suggests using expected number

of each value to compare two arrays and calculates the normalized covariance, similar

to the cosine. The range of the coefficient is [−1, 1], where the closer to 1 the result

is, the higher similarity they have. Bc and Bp represent the betweenness centrality of

unweighted temporal co-location network and proximity network, respectively. Be-

tweenness centralities of the two weighted temporal networks are denoted by B′c and

B′p. Closeness centralities of two networks are following the similar definitions as B.

Compared the network itself, the weight has less effect on closeness centrality, i.e. the

coefficient of Cc and C ′c is 0.92 and the value of Cp and C ′p is 0.9. The reason is that

we use the inverse of the weight w when calculating the closeness centrality (Equation
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5.3) and it has a small dynamic range, which have little impact on the mean distance

from a node to another. However, the result for between closeness is distinct. The

weight attribute is considered to bring more changes to a network, for instance, 0.16

and 0.32. That is, a greater edge weight can modify the betweenness centrality in

a greater deal using our definition (Equation 5.4). From this phenomenon, we can

obtain that nodes with high betweenness centrality varies greatly and the influence

of a person are also changed over time in social networks. On the other side, the sim-

ilarity of two different networks is also changed dramatically, for instance, comparing

Bc with Bp and B′p, the coefficient is changed from 0.64 to 0.06, and comparing Cc

with Cp and C ′p, the difference of them is 0.3. This change illustrates that the edge

weight also takes a massive impact on the performance of networks.

Coefficient Bc B′c Bp B′p

Bc 0.32 0.64 0.06

B′c 0.10 0.72

Bp 0.16

B′p

Table 5.1: Coeffiecient of betweenness centrality on temporal networks.
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Coefficient Cc C ′c Cp C ′p

Cc 0.92 0.62 0.3

C ′c 0.64 0.44

Cp 0.90

C ′p

Table 5.2: Coeffiecient of closeness centrality on temporal networks

5.4 Consequence

In this chapter, we discuss the effects of time on social interactions, i.e. co-location

network and proximity network. We first propose two static models to reproduce two

social networks. Second, we study two types of snapshots, one-mode and bipartite,

to extend static models by adding the time factor. Then, we propose a weighted

version of the temporal network model and present the procedures of converting static

network models to temporal models. Moreover, the measurement tools of temporal

graphs are also studied. We find that the variation of social activities among people on

different time periods. Additionally, we confirm the time variance of social networks

and the evolution of network topologies, and we show the effectiveness of edge weight

on temporal network models.
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(b) Unweighted proximity network
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(c) Weighted temporal co-location network
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Figure 5.7: Time variance of temporal co-location and proximity network betweenness
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Chapter 6

Contributions & Future Work

Through our research, we hope that we would have contributions to trajectories of

social network research and temporal network models. The network models we built

and analyzed can help other researchers find out social connections of people more

clearly. We also propose a multi-data combined network approach. It can solve the

limitation of single data network and improve the robustness. At the same time,

a Bluetooth-based cross-platform data collection method is dicussed in this thesis.

By using the iBeacon sensors, our system provides a low-cost and high performance

data collection approach. Moreover, it can not only use for social network research,

but other network problems data collection. We also studied the similarity between

friendship network and social interactions network at the side of static network. Al-

though friendship network topology is different, relative to co-Location network, they

still have high similarity on off-work periods. On the other word, social interactions

of people will be effected by their friendship after their working time. Furthermore,

the time variance on the social networks is also analyzed. We generalize a weighted
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version of the temporal network model to unveil the impact of time elements on

co-location and proximity network.

However, there are still some insufficient points in our study. The number nodes

in our dataset is not large enough. Thus, we plan to make a large-scale simulation

in future. Furthermore, we find some other interesting and potential ideas that can

extend our current research.

6.1 Large-scale simulation

Our models and methods can easily migrate and fit for the large-scale scenes, such

as country-wide human society and the site of wild animals. The large-scale human

activities simulation would let scientists observe the daily social events and interac-

tions with others of people. The Network Simulator 2, NS2, could be an effective tool

for us to simulate a large-scale social network based on the data we collected in the

research. This tool is originally built for simulation of wired or wireless networks [52].

It is also a proper instrument for our simulation. Furthermore, all nodes during in

the small-scale experiment will be randomly times. The large-scale human activities

simulation will be hold based on the data and model we obtain. This simulation

would let scientists observe the daily social events and interactions with others of

people.
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6.2 Prediction

Predicting human activities or social structure change is also a popular topic these

days. It can help scientists to prevent disease infection and city development. Based

on our model, we believe the data structure and connections of human could also help

us to predict possibility of people future behavior after a very long observing time

period and more specific algorithm.

6.3 Living laboratory & large scale experiment

Complex network is also widely used in the field of bioglogy. We could also apply our

research and model on wildlife. We have a potential opportunity to work with some

biologists at MUN to put to research on wild animal, Caribou, at Fogo island. Parts

of caribou will be targeted with the devices. This experiment will be a long distance

and scale test. We will both correct our data from caribou by biologists and tourists.

Then we would look forward to fill the data into our network model to provide data

structure and further information for helping biologists with their research. Biologists

could use this model to predict the migration of wild animals. Even more, it may

also help virologist to predict virus infection.

6.4 Temporal network development

The temporal network studied in this paper opens abundant space to explore for

future research. Temporal weights can be further studied, which it does not only one

attribute, the number of interactions between two nodes, but has more features. We
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also plan to build bipartite temporal graphs which can describe the network data

precisely where there are two types of nodes, for instance, proximity network. In

addition, we believe that the temporal network can be also appled in other fields. For

instance, it can be developed in economics, i.e. the evolution of relations between

inverstors and investees.
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