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Different Responses of Greenhouse Gas Emissions to Straw Application 
at Different Seasons in Northeast China

(Tindak Balas Berbeza Pelepasan Gas Rumah Hijau untuk Penggunaan Jerami 
pada Musim yang Berbeza di Timur Laut China)

SHUANG LIANG & HAO ZHANG*

ABSTRACT

Although straw return plays a role in regulating greenhouse gas (GHG) emissions from rice paddy fields, little quantitative 
information is available on the extent at different periods. In this study, gas samples were collected during the rice growing 
period from an in-situ experiment comprising three treatments: no straw return (CK); straw return in the autumn (SR-
A), and; straw return in the spring (SR-S). The results showed that SR-A and SR-S enhanced CO2 and CH4 emissions, but 
reduced N2O emissions during the growing period. The total cumulative CO2 emissions over the entire growing period 
in the SR-S treatment reached 20,383.72 kg ha−1, significantly higher than those of the SR-A and CK treatments. CH4 
emissions for all the growing periods were in the order SR-S > SR-A > CK. The CK and SR-S treatments released the most 
and least N2O during the different periods, respectively. The global warming potential (GWP) of CH4 released by the SR-
S, SR-A and CK treatments reached 26,055.37 kg CO2 eq. ha−1, 12,643.27 kg CO2 eq. ha−1, and 9,237.55 kg CO2 eq. ha−1, 
accounting for 55.80%, 40.35%, and 35.99% of the total GWP, respectively. These results can contribute to management 
of agricultural GHGs in this region.
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ABSTRAK

Hasil jerami telah memainkan peranan dalam mengawal selia pelepasan gas rumah hijau (GHG) daripada sawah padi, 
walau bagaimanapun, hanya sedikit maklumat kuantitatif boleh didapati untuk tempoh masa berlainan. Dalam kajian 
ini, sampel gas telah diambil dalam tempoh pertumbuhan semasa kajian in situ yang terdiri daripada tiga rawatan: 
tiada hasil jerami (CK); hasil jerami pada musim luruh (SR-A) dan hasil jerami pada musim bunga (SR-S). Hasil kajian 
menunjukkan bahawa SR-A dan SR-S meningkatkan pelepasan CO2 dan CH4, tetapi pengurangan pelepasan N2O dalam 
tempoh pertumbuhan. Jumlah keseluruhan pelepasan CO2 yang terkumpul sepanjang tempoh pertumbuhan keseluruhan 
dalam rawatan SR-S ialah 20,383.72 kg ha−1, jauh lebih tinggi berbanding rawatan SR-A dan CK. Pelepasan CH4 untuk 
semua tempoh pertumbuhan adalah seperti berikut SR-S > SR-A > CK. Perawatan CK dan SR-S mengeluarkan N2O paling 
banyak dan paling sedikit dalam tempoh ini. Potensi pemanasan global (GWP) CH4 yang dikeluarkan oleh SR-S, SR-A 
dan CK semasa rawatan mencapai 26,055.37 kg CO2 eq. ha−1, 12,643.27 kg CO2 eq. ha −1 dan 9,237.55 kg CO2 eq. ha−1 
merangkumi 55,80%, 40.35% dan 35.99% jumlah GWP. Keputusan ini boleh menyumbang kepada pengurusan pertanian 
GHG di rantau ini. 

Kata kunci: Gas rumah hijau; hasil jerami; sawah padi; tempoh pembesaran

INTRODUCTION

Increases in atmospheric concentrations of greenhouse 
gases (GHGs) such as carbon dioxide (CO2), methane 
(CH4) and nitrous oxide (N2O) are responsible for current 
and predicted future global warming (Kong et al. 2013) 
and the associated environmental problems. Globally, 
agriculture is a major source of atmospheric GHGs (Ussiri 
et al. 2009), contributing approximately 10%-12% of 
the global total (Smith et al. 2014). Therefore, reducing 
agricultural GHGs is an essential component needed to 
alleviate the adverse impacts of climate warming.
 Crop straw (i.e. rice straw), as an agricultural 
by-product, is an important source of organic C in 

agro-ecosystems (Liu et al. 2014). Burning straw in 
situ after harvesting is a common practice resulting in 
smog pollution (Bossio 1999; Li et al. 2016) and GHG 
emissions (Crutzen et al. 1979) in China. As an alternative 
to burning, crop straw return to the soil has been widely 
recommended. Crop straw return into the soil has been 
reported to facilitate SOC sequestration (Lal & Bruce 
1999), balance C loss (Chen et al. 2014) and enhance 
crop productivity (Liu et al. 2014). However, the practice 
also affects GHG emissions resulting from soil C and N 
cycles.
 Recent studies on the effect of agricultural straw 
return on CO2 and CH4 emissions have showed varying 
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results, with most noting an increased CO2 (Bhattacharyya 
et al. 2012; Chen et al. 2017b; Wang et al. 2018; Yoo et 
al. 2016) and CH4 (Gaihre et al. 2013; Li et al. 2014; 
Liu et al. 2015; Naser et al. 2007; Zhang et al. 2017a;) 
emissions from agricultural fields, while few noted 
decreased CO2 (Li et al. 2014) and CH4 (Yeboah et al. 
2016) emissions and others have noted no significant 
change in CO2 (Cui et al. 2017) and CH4 (Li et al. 
2013). In addition, some previous studies showed that 
the practice increased N2O emissions from agricultural 
fields (Malhi et al. 2006; Pathak et al. 2006; Shaaban et 
al. 2018) whereas others showed the opposite effect (Hu 
et al. 2013; Yao et al. 2017; Zhang et al. 2011). However, 
Chen et al. (2017b) showed that straw return resulted first 
in a decrease followed by an increase in N2O emissions, 
which contradicted the result of Zhou et al (2017). A few 
studies noted no notable impact of straw return on N2O 
emissions (Gaihre et al. 2013; Yao et al. 2009). Hence, 
there is not as yet a scientific consensus on the effects 
of straw return on GHG emissions. These varying results 
may in part be attributed to differences in management 
practices such as water regime, fertilization, cultivation 
system such as crop rotation and double cropping rice, 
and other variables such as climate and soil properties. 
Most of the above research used crop rotation or double 
rice cropping systems, and few studies in Northeast 
China used single rice cropping. Furthermore, most past 
studies applied straw return during the growing season, 
and few have considered the effects of straw return 
during the non-growing season on emissions during 
the growing season. Some studies showed that the soil 
aerobic condition before irrigation in the spring facilitates 
straw decomposition (Zhang et al. 2018) which may 
influence GHG emissions in the following growing season. 
Therefore, further knowledge of the response of growing 
season GHG emissions to straw return is essential to the 
assessment of greenhouse effects.
 Rice production in China is the second largest 
globally (Frolking et al. 2002), with Western Jilin 
Province in Northeast China contributing a large rice 
yield. The growth period in this region is from mid-
May (rice transplanting) to early October (harvesting). 
Large amounts of rice straw are retained in the soil after 
harvesting in October. Winter lasts approximately 6 
months from the end of October to the end of April of 
the following year, during which there is no cultivation. 
Although much research has been conducted on GHG 
emissions from paddy soil in the area during the growing 
period, little is known regarding the effect of straw return 
during the non-growing period. The overall objectives of 
the current paper were to: determine the effect on the GHG 
emissions from straw return at different growth stages 
in Northeast China and quantify the resulting global 
warming potential (GWP). The results could provide a 
scientific basis for the accurate assessment of the effect 
of straw return on the greenhouse effect and guide field 
management in this area.

MATERIALS AND METHODS

SITE DESCRIPTION

The field experiment was conducted in Songyuan City 
of Western Jilin Province (123°091′ E-124°221′ E, 
44°571′ N-45°461′ N), Northeast China. The entire growing 
season was divided into five periods: green; tillering; 
booting; heading; and grain filling. The experimental field 
has an area of 626.28 m2 (20.4 m × 30.7 m). The main 
paddy soil properties (0 cm-20 cm) before straw return 
were pH of 7.4, moisture = 28.23%, soil organic carbon 
= 23.18 g kg−1, total N = 2.14 g kg−1 and hydrolyzable N 
= 236.75 mg kg−1. 

EXPERIMENTAL DESIGN

The experiment incorporated randomized 4 m × 4 m square 
plots and three replicates. The following three treatments 
were implemented: CK (no straw return); SR-A (straw 
return in the autumn after harvest, 5th October 2016), 
and; SR-S (straw return in the spring before irrigation 
and rice transplanting, 14th May 2017). Each plot was 
isolated using custom-built thin stainless-steel plate 
(25 cm × 400 cm × 400 cm) buried to a depth of 15 cm. All 
the surface litter and above-ground vegetation (including 
straw) in all the treatments were removed after the harvest. 
In the SR-A and SR-S treatments, each plot received 8 kg 
air-dried straw (equivalent to 5,000 kg ha−1). Chemical 
fertilizer and farmyard manure were not applied during 
the growing season.

SAMPLING AND MEASUREMENT OF CO2, CH4 
AND N2O FLUXES

Gas sampling was conducted from 15th May 2017 to 
30 September 2017 using static chambers. Gas samples 
were collected every 3 days over the entire growing 
season between 9:00 am and 11:00 am. The hourly 
emission flux of the measured gas from 9:00 am to 11:00 
am was converted into that for 24 h of one day using the 
calibration coefficient 1.24 by Tang et al. (2016) who 
studied the same region with this research. Every chamber 
consisted of two removable parts, namely a bottom collar 
(50 cm × 50 cm × 30 cm) with a seal groove and an upper 
compartment (50 cm × 50 cm × 100 cm). A circulating 
fan was attached to each upper compartment to ensure 
complete gas mixing. Four samples from a single plot were 
collected every 10 min over a 30 min duration. The static 
chambers were moved out of the plots after each sampling. 
Air temperature data were recorded at Songyuan weather 
station (Jilin Province, China).
 Concentrations of CO2, CH4 and N2O in the gas 
samples were analyzed by gas chromatography (GC, 
Agilent 7820A, Santa Clara, CA, USA) within 24 h of gas 
sampling. The analyses of concentration and of CO2, CH4 
and N2O fluxes were as described by Zhang et al. (2005). 
The calculation of mean and cumulative fluxes and GWP 
were as described by Zhang et al. (2017b). The GWP values 
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of CH4 and N2O were calculated over a time scale of 100 
years. Statistical analyses were performed using SPSS 23.0 
software (International Business Machines Corporation, 
State of New York, USA). All figures were drawn using 
Sigma plot 13.0 (Systat Software, Inc., State of Illinois, 
USA).

GWP (kg CO2 eq. ha−1) was calculated as follows:

 GWP = FCO2 + 25FCH4 + 298FN2O (1)

FCO2, FCH4, and FN2O are the cumulative flux of CO2, CH4, 
and N2O across the entire growing period, respectively.

RESULTS

VARIATIONS IN CO2, CH4, AND N2O FLUX

The CO2 flux increased from the green period to the tillering 
period (Figure 1A). The first peaks in CO2 emissions for 
the CK and SR-A treatments were on the 5th July, 2017, 

respectively, whereas that of the SR-S treatment was on 
17th July, 2017. The maximum peak values for the three 
treatments were of the order: SR-S (1,152.65 mg m−2 h−1) 
> SR-A (1,139.26 mg m−2 h−1) > CK (894.82 mg m−2 h−1). 
The second peaks for the three treatments were observed 
on the same day during the grain-filling period.
 CH4 fluxes were relatively low during the green period 
(0.75 mg m−2 h−1-6.64 mg m−2 h−1) and the grain-filling 
period (0.04 mg m−2 h−1-12.58 mg m−2 h−1) (Figure 1B). The 
CH4 fluxes increased during the tillering period in the three 
treatments. A notable single peak in CH4 flux was observed 
during the booting period in each of the three treatments. 
The peak value for the SR-S treatment (93.69 mg m−2 h−1) 
was much higher than those that occurred later for CK 
(35.02 mg m−2 h−1) and SR-A (42.96 mg m−2 h−1).
 Extreme variability was evident in the daily N2O 
fluxes in the CK treatment, alternating between a high of 
105.45 μg m−2 h−1 and low of 16.25 μg m−2 h−1 (Figure 1C). 
Relatively less N2O flux variability was evident in the SR-A 
and SR-S treatments, at 13.14 μg m−2 h−1−72.31 μg m−2 h−1 
and 12.76 μg m−2 h−1−48.23 μg m−2 h−1, respectively. 

FIGURE 1. Measured mean flux of CO2, CH4, and N2O in the three treatments. Note: CK treatment = no straw 
return, SR-A treatment = straw return in the autumn (5th October 2016) after harvest, and SR-S treatment = straw 

return in the spring (14th May 2017) before irrigation and rice transplanting
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VARIATIONS IN MEAN CO2, CH4, AND N2O FLUX                
DURING THE DIFFERENT PERIODS

Of the treatments, SR-A showed the highest mean fluxes of 
CO2 during the green and tillering periods (Figure 2A). The 
highest and lowest mean fluxes of CO2 during the booting 
to grain-filling periods were by the SR-S and CK treatments, 
respectively. The highest mean fluxes of CO2 in the CK, 
SR-A and SR-S treatments were observed in the booting, 
tillering and booting periods, respectively.
 Of the treatments, SR-S had a significantly higher 
mean CH4 flux during every growing period (Figure 2B). 
Relatively low mean CH4 fluxes were observed during the 
green period (1.25 mg m−2 h−1–3.51 mg m−2 h−1) and the 
grain-filling period (1.40 mg m−2 h−1–3.33 mg m−2 h−1). Peaks 
in mean CH4 flux of 20.53 mg m−2 h−1, 29.15 mg m−2 h−1 
and 66.72 mg m−2 h−1 were observed during the booting 
period in the CK, SR-A, and SR-S treatments, respectively.
The lowest and highest mean N2O fluxes of each period 

were found in the SR-S and CK treatments, respectively 
(Figure 2C). The mean N2O fluxes during different periods 
of the three treatments followed the order of booting > 
tillering > heading > green > grain filling.

CUMULATIVE EMISSIONS OF CO2, CH4, AND N2O

Of the treatments, SR-A emitted the most CO2 during 
the green and tillering periods (Figure 3A). The highest 
cumulative CO2 emissions for all three treatments were 
during booting period. The SR-S treatment released 
6,939.601 kg ha−1 during the booting treatment, 
1,410.55 kg ha−1 and 1,914.04 kg ha−1 higher than those 
of SR-A and CK, respectively. The total cumulative CO2 
emissions over the entire growing period in the SR-S 
treatment reached 20,383.72 kg ha−1, significantly higher 
than those of the SR-A and CK treatments by 2,023.99 kg ha−1 
and 4,390.32 kg ha−1, respectively (Figure 3A).

FIGURE 2. Mean flux of CO2, CH4, and N2O during the different periods in the three treatments. 
Note: different uppercase letters A, B, C, and D indicate significant differences between different periods in the same treatment, while different 
lowercase letters a, b, and c indicate significant differences among treatments in the same period. The same below.
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 The order of treatments releasing the most CH4 in 
each growing period was SR-S > SR-A > CK (Figure 3B). 
The maximum cumulative CH4 emissions were observed 
during the booting period at 162.63 kg ha−1, 230.87 kg ha−1 
and 528.38 kg ha−1 for the CK, SR-A and SR-S treatments, 
respectively, contributing 44.01%, 45.65% and 50.70% 
of the total emissions during the entire growing period, 
respectively.
 Of the treatments, CK and SR-S released the most 
and least N2O during the different periods, respectively 
(Figure 3C). The booting period showed the highest 
maximum cumulative N2O emissions. The CK, SR-A and 
SR-S treatments contributed 1,455.50 g h−1, 1,113.30 g h−1 
and 864.06 g h−1 of total N2O, respectively, 30.96%, 
30.40% and 31.00% of which originated from booting 
period, respectively.

GLOBAL WARMING POTENTIAL (GWP)

The GWP of different GHGs are presented in Table 1. CO2 
was the predominant GHG for the CK (62.32%) and SR-A 
(58.59%) treatments, followed by CH4 (35.99% and 

40.35%, respectively) (Table 1). In contrast, CH4 (55.80%) 
was the predominant GHG for the SR-S treatment, followed 
by CO2 (43.63%). GWPCH4 in the SR-S treatment reached 
26,055.37 kg CO2 eq. ha−1, factors of 2.06 and 2.82 those in 
the SR-A and CK treatments, respectively. N2O contributed 
1.69%, 1.06% and 0.55% to the total GWP in the CK, SR-A 
and SR-S treatments, respectively. The total SR-S GWP was 
46,696.57 kg CO2 eq. ha−1, factors of 1.49 and 1.82 those 
in the SR-A and CK treatments, respectively.

DISCUSSION

CO2 FLUX

Temperature is one of the key factors affecting microbial 
activities and CO2 emissions (Li et al. 2008). Rising 
temperatures (as observed in our study; Figure 4) have 
been shown to facilitate microbial respiration (Zhang et 
al. 2017b) during the green and tillering periods, resulting 
in enhanced CO2 flux. In our research, the first peak in 
CO2 flux in the three treatments resulted from sufficient 

FIGURE 3. Cumulative emissions of CO2, CH4, and N2O during the different periods in the three treatments
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substrate (including straw, residual root and other organic 
matter in the soil) being available for facilitating increase in 
microbial respiration. Furthermore, with the rapid growth 
in the rice plants, the plants’ respiration contributed to 
CO2 flux. However, the CO2 flux reduced with decline 
in available substrate. Drainage implemented after the 
heading period resulted in anaerobic conditions, which 
further led to increased CO2 emissions and the second peak 
in CO2 flux in the three treatments. Decreasing temperature 
then resulted in reduced CO2 flux.
 Straw return enhanced CO2 emissions during the 
growing period, in accordance with results reported by 
Bhattacharyya et al. (2012) and Wang et al. (2018). Straw 
amendment resulted in increased substrate availability for 
microorganisms (Zheng et al. 2015) and suitable conditions 
for microbial C-turnover (Chen et al. 2017a), thus resulting 
in increased soil CO2 emissions. Therefore, the SR-S and 
SR-A treatments emitted more CO2 than the CK treatment 
during all the periods.
 Straw incorporation during autumn in the SR-A 
treatment resulted in prolonged aerobic decomposition 
(Zhang et al. 2018) due to drainage implemented after 
the heading period. Consequently, soil organic carbon 
input increased (Loya et al. 2004), resulting in increased 
available substrate during the green and tillering periods, 
which further led to higher mean CO2 flux and higher 
cumulative CO2 emission than those from the SR-S 
treatment. However, the anaerobic conditions (Spormann 
& Widdel 2000) present after irrigation and the high 
carbon/nitrogen ratio (Khalil et al. 2001) retarded straw 
decomposition for the entire growing period during spring 

in the SR-S treatment. Abundant substrate was thereby made 
available for a longer period, leading to a CO2 flux peak 
several days later (first peak), and in the SR-S treatment 
this led to greater CO2 mean flux compared to the SR-A 
treatment in combination with higher cumulative CO2 
emissions during the booting to grain-filling periods. In 
addition, the total CO2 emissions during the entire growing 
period in SR-S treatment were higher than that in the SR-A 
treatment. 

CH4 FLUX

Irrigation created a suitable environment for methanogens. 
Given the presence of temperature-sensitive methanogenic 
bacteria (Keppler et al. 2006), the CH4 fluxes during the 
three treatments increased with increasing temperature 
during the green and tillering periods. The available 
methanogenic substrate was an important factor restricting 
CH4 production. Therefore, peaks in CH4 flux were 
observed in the three treatments.
 Our results showed that CH4 emissions were greatly 
enhanced by straw incorporation into the soil, consistent 
with the findings of Gaihre et al. (2013), Liu et al (2015) 
and Naser et al. (2007). Straw in the field is a source of 
methanogenic substrates (Li et al. 2014) and it selectively 
favors the growth of methanogenic populations, thereby 
accelerating CH4 production (Conrad & Klose 2006). 
In addition, straw decomposition acts as an electron 
donor, contributing to increased soil reduction, which is a 
favorable condition for CH4 production (Lee et al. 2010; 
Minamikawa & Sakai 2006). Straw incorporation into 

TABLE 1. The global warming potential (GWP) of greenhouse gases in the three treatments

Treatments
GWPCO2

/ (kg CO2 eq. ha−1)
GWPCH4

/ (kg CO2 eq. ha−1)
GWPN2O

/ (kg CO2 eq. ha−1)
Total GWP

/ (kg CO2 eq. ha−1)
CK
SR-A
SR-S

15993.39 a
18359.72 b
20383.72 c

9237.55 a
12643.27 b
26055.37 c

433.74 a
331.76 b
257.49 c

25664.68 a
31334.75 b
46696.57 c

Conversions of CH4 and N2O to GWP in CO2 eq. were GWP100 of 25 and 298, respectively. Values of GWPCO2, GWPCH4, GWPN2O and total GWP followed by a different 
letter differ significantly among themselves (p<0.05)

FIGURE 4. Recorded daily mean temperature during the entire growing period
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the soil can also result in lower soil redox potential (Li 
et al. 2014; Liu et al. 2015), which favors CH4 formation 
by methanogenic bacteria (Hadi et al. 2010). Therefore, 
in our study, the SR-A and SR-S treatments produced more 
CH4 across all the different periods than the CK treatment. 
The later CH4 flux peak observed in the SR-S treatment is 
possibly linked to the straw being able to host sufficient 
available methanogenic substrate for a longer time period. 
Freshly-added straw before irrigation could possibly 
donate more electrons and provide a more suitable 
reductive condition for CH4 production relative to straw 
added in autumn, which results in aerobic decomposition 
until irrigation. Therefore, the SR-S treatment emitted more 
CH4 than the SR-A treatment.
 Methanogens are strict anaerobes (Li et al. 2011); 
therefore, the aerobic condition resulting from drainage 
after the heading period and decreasing temperature greatly 
restrained the activity of methanogenic bacteria resulting 
in a falling CH4 flux during the grain-filling period. 

N2O FLUX

In the present study, straw incorporation notably 
suppressed N2O emissions, consistent with other research 
findings (Bhattacharyya et al. 2012; Wang et al. 2018; 
Zhang et al. 2017a). N2O emissions are influenced by 
denitrification and nitrification. Straw application with a 
high C:N ratio can result in increased net N immobilization 
(Jensen 1997) and lower N mineralization and a relatively 
lower abundance of nitrogen. This further leads to lower 
quantities of available N (NH4

+-N and NO3
−-N) for 

nitrification and denitrification, resulting in lower N2O 
emissions (Liu et al. 2015; Millar & Baggs 2004). Straw 
application can result in a reductive soil environment 
(Liu et al. 2015) and increased soil Fe2+ content (Wang 
et al. 2011), favoring the reduction of N2O to N2, thus 
decreasing the N2O/N2 ratio and lessening N2O emissions 
(Mathieu et al. 2006; Senbayram et al. 2012). Previous 
investigations have shown that rice straw incorporation 
can significantly change the soil microbial community 
structure, thereby increasing the relative abundance of 
the nosZ-population to facilitate N2O reduction (Chen 
et al. 2012). Straw addition has been shown to result in 
an increased relative abundance of Clostridium (Wang et 
al. 2018), which is able to employ NO3

−-N as an electron 
acceptor during anaerobic conditions, thereby reducing it 
back to N2 (Katayama et al. 1999), thus, decreasing N2O 
emissions. This process explains why the CK treatment in 
our study maintained higher N2O emissions than the SR-A 
and SR-S treatments. Compared to the SR-A treatment, the 
lower N2O emissions observed in the SR-S treatment might 
be due to its restrictive reductive soil environment, which 
resulted in a stronger inhibitory effect on N2O production.

CONCLUSION

The experimental paddy field was a source of CO2, CH4 and 
N2O during the growing period. Rice straw incorporation 

elevated CO2 and CH4 emissions, but decreased N2O 
emissions during growing period. Straw application in the 
spring emitted more CO2 and CH4 and less N2O compared 
to application in autumn. CH4 and N2O emissions during 
the booting period contribute most to the GWP among 
different periods, respectively. Straw application in the 
spring resulted in CH4 being the predominant GHG instead 
of CO2. Straw incorporation, particularly, in spring, 
promoted the GWP of the paddy field during growing 
period.
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