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A compact high order finite volume scheme for
advection-diffusion-reaction equations

M.J.H. Anthonissen and J.H.M. ten Thije Boonkkamp

Department of Mathematics and Computer Science, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract. We present a new integral representation for the flux of the advection-diffusion-reaction equation, which is based
on the solution of a local boundary value problem for the entire equation, including the source term. The flux therefore
consists of two parts, corresponding to the homogeneous and particular solution of the boundary value problem. Applying
Gauss-Legendre quadrature rules to the integral representation gives the high order finite volume complete flux scheme, which
is fourth order accurate for both diffusion dominated and advection dominated flow.
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INTRODUCTION

Conservation laws are ubiquitous in continuum physics, they occur in disciplines like fluid mechanics, combustion
theory, plasma physics, semiconductor physics etc. These conservation laws are often of advection-diffusion-reaction
type, describing the interplay between different processes such as advection or drift, diffusion or conduction and
(chemical) reaction or recombination/generation. Examples are the conservation equations for reacting flow [7, 12] or
the drift-diffusion equations for semiconductor devices [3, 5].

Their numerical solution requires at least an adequate (space) discretization. There are many (classes of) methods
available, such as finite element, finite difference, finite volume or spectral methods. We restrict ourselves to finite
volume methods; for a detailed account see e.g. [6, 11, 1]. Finite volume methods are based on the integral formulation,
i.e., the conservation law is integrated over a disjunct set of control volumes covering the domain. The resulting discrete
conservation law involves fluxes at the interfaces of the control volumes, which need to be approximated.

Our objective in this paper is to present new expressions for the flux, which will subsequently be used to derive
numerical flux approximations. We restrict ourselves to steady one-dimensional conservation equations. For the flux
approximation we use Gauss-Legendre quadrature, which results in a fourth order accurate discretization scheme. The
numerical flux will only depend on neighboring values of the unknown, resulting in a three-point scheme. The linear
system that needs to be solved is therefore tridiagonal. This compactness is a clear advantage over high resolution
schemes based on flux/slope limiters [4, 11] or (W)ENO reconstruction [8]. Our scheme is inspired by two papers by
Thiart [9, 10].

FINITE VOLUME DISCRETIZATION

In this section we outline the finite volume method (FVM) for a generic conservation law of advection-diffusion-
reaction type. So, consider the following conservation law defined on the interval (a,b)(

mϕ− εϕ
′)′ = s, (1)

where m is the mass flux, ε ≥ εmin > 0 a diffusion/conduction coefficient and s a (chemical) source term. The unknown
ϕ can be, e.g., the temperature or the concentration of a species in a reacting flow. The parameters ε and s are
usually (complicated) functions of the unknown ϕ , however, for the sake of discretization we will consider these
as given functions of the spatial coordinate x. The mass flux m generally has to be computed from the flow equations
corresponding to (1), but in this paper it is assumed to be a given function of x as well. Equations of this type arise,
e.g., in combustion theory [7].



In the FVM, we define a spatial grid {x j} where the variable ϕ has to be approximated and we cover the interval
(a,b) with a finite number of disjunct intervals (control volumes) I j. In this paper we choose the cell-centered approach
[11], i.e., we choose the grid point x j in the center of the jth interval I j. Consequently we have I j := (x j−1/2,x j+1/2)
with x j+1/2 := (x j +x j+1)/2. For ease of presentation, we shall use a uniform grid. Denoting the number of grid points
by N, we have x j = a+ j∆x ( j = 0,1, . . . ,N−1) with ∆x := (b−a)/(N−1) the length of each control volume.

Associated with equation (1) we introduce the flux f := mϕ− εϕ ′. Equation (1) then reduces to f ′ = s. Integrating
this equation over the control volume I j, j = 1,2, . . . ,N−2, we obtain the discrete conservation law

Fj+1/2−Fj−1/2 = Q j, (2)

where Fj+1/2 is the numerical flux approximating f at x = x j+1/2 and where Q j is a quadrature rule for the integral of
s over I j. We shall present a numerical flux Fj+1/2 that depends on ϕ in the neighboring grid points x j and x j+1 only.
Moreover, this dependence will be linear. This means that we are looking for an expression of the form

Fj+1/2 = α j+1/2 ϕ j +β j+1/2 ϕ j+1 + γ j+1/2(s), (3)

where the coefficients α j+1/2 and β j+1/2 only depend on m and ε , and where γ j+1/2 depends on m, ε and s. Substitution
of this expression in the discrete conservation law (2) leads to a tridiagonal linear system for the vector of unknowns
ϕ = (ϕ1,ϕ2, . . . ,ϕN−2)T .

INTEGRAL REPRESENTATION FOR THE FLUX

We first find an integral representation for the flux. Our numerical flux will readily follow from this representation.
The derivation is a modification of the theory in [2]. In order to find the flux f j+1/2 at the eastern cell edge x j+1/2

located between the grid points x j and x j+1 we consider the boundary value problem (BVP)
(
mϕ− εϕ ′

)′ = s for the
unknown ϕ on (x j,x j+1) with Dirichlet boundary conditions ϕ(x j) = ϕ j, ϕ(x j+1) = ϕ j+1. It is convenient to define
the variables λ , P, Λ and S for x ∈ (x j,x j+1) by

λ :=
m
ε

, P := λ∆x, Λ(x) :=
∫ x

x j+1/2

λ (ξ )dξ , S(x) :=
∫ x

x j+1/2

s(ξ )dξ . (4)

Here, λ is the ratio of advection and diffusion, P and Λ are the Peclet function and Peclet integral and S is the integral
of the source term s. P and Λ generalize the well-known Peclet number [11]. Integrating the differential equation
from x j+1/2 to x we get the integral balance f − f j+1/2 = S. Using the definition of Λ in (4), it is clear that the flux
can be rewritten as f = −ε

(
ϕ e−Λ

)′eΛ. Substituting this into the integral balance and integrating from x j to x j+1, we
obtain the following expression for the flux f j+1/2:

f j+1/2 =−
e−Λ j+1ϕ j+1− e−Λ j ϕ j∫ x j+1

x j ε−1e−Λ dx
−
∫ x j+1

x j ε−1e−ΛSdx∫ x j+1
x j ε−1e−Λ dx

, (5)

where Λ j = Λ(x j), etc. We set C j := 1/
∫ x j+1

x j ε−1e−Λ dx, and define the homogeneous and inhomogeneous fluxes as

f (h)
j+1/2 := C je−Λ j ϕ j−C je−Λ j+1ϕ j+1, f (i)

j+1/2 :=−C j

∫ x j+1

x j

ε
−1e−ΛSdx. (6)

Note that these fluxes correspond to the homogeneous and particular solution of the BVP, respectively. Moreover, only
the homogeneous flux depends on ϕ . Choosing a suitable quadrature rule for all integrals appearing in the coefficients
C je−Λ j and −C je−Λ j+1 leads to the first two terms in the right hand side of (3). The third term will follow from the
inhomogeneous flux that we consider next.

Substituting the expression for S in (6), changing the order of integration and applying the linear transformation
σ := (x− x j)/∆x, we find the following representation for the inhomogeneous flux

f (i)
j+1/2 = ∆x

∫ 1

0
G(σ)s(x j +σ∆x)dσ , G(σ) =


C j∆x

∫
σ

0
ε
−1e−Λ dη , for 0≤ σ ≤ 1/2,

−C j∆x
∫ 1

σ

ε
−1e−Λ dη , for 1/2 < σ ≤ 1,

(7)



in which G is the normalized Green’s function for the flux. Note that G relates the flux to the source term and is different
from the usual Green’s function, which relates the solution to the source term [6]. G is discontinuous at σ = 1

2 with
jump G( 1

2
−)−G( 1

2
+) = 1. The value σ = 1

2 corresponds with x = x j+1/2. For the special case of constant m and ε the
Green’s function reduces to

G(σ ;P) =

{
(1− e−Pσ )/(1− e−P), for 0≤ σ ≤ 1

2 ,

−(1− eP(1−σ))/(1− eP), for 1
2 < σ ≤ 1.

(8)

Note that we use the notation G = G(σ ;P) to denote the dependence on the Peclet number P. G satisfies the symmetry
property G(σ ;P) = −G(1−σ ;−P). We shall base our numerical approximation of the inhomogeneous flux on (7)
with the Green’s function G replaced by (8), so we use (8) even for nonconstant P.

DERIVATION OF THE NUMERICAL FLUX

In this section we propose quadrature rules for all integrals that appear in the expressions we have derived for the
homogeneous and inhomogeneous fluxes. Since we would like the finite volume scheme to be fourth order accurate,
we choose the standard 2-point Gauss-Legendre approximation, viz.∫ b

a
g(x)dx≈ b−a

2

(
g
(

a+b
2
− b−a

2
√

3

)
+g
(

a+b
2

+
b−a
2
√

3

))
=: GL(g,a,b). (9)

We start with the homogeneous flux. We use (9) to approximate Λ(x) with GL(λ ,x j+1/2,x). Next we apply the
quadrature rule again to find C j ≈ 1/GL(ε−1e−GL(λ ,x j+1/2,x),x j,x j+1). This provides us with a fourth order accurate
approximation for the homogeneous flux, cf. (3),

f (h)
j+1/2 = C je−Λ j ϕ j−C je−Λ j+1ϕ j+1 ≈ α j+1/2 ϕ j +β j+1/2 ϕ j+1, (10)

if we define

α j+1/2 :=
e−GL(λ ,x j+1/2,x j)

GL(ε−1e−GL(λ ,x j+1/2,x),x j,x j+1)
, β j+1/2 :=− e−GL(λ ,x j+1/2,x j+1)

GL(ε−1e−GL(λ ,x j+1/2,x),x j,x j+1)
. (11)

Next we consider the inhomogeneous flux. Use (7) and split the integral in the part from 0 to 1/2 and the part
from 1/2 to 1. On the first and second interval we need to integrate

f1(σ) :=
1− e−P(x j+σ∆x)σ

1− e−P(x j+σ∆x) · s(x j +σ∆x), f2(σ) :=−1− eP(x j+σ∆x)(1−σ)

1− eP(x j+σ∆x) · s(x j +σ∆x), (12)

respectively. We use once more the Gauss-Legendre quadrature rule:

f (i)
j+1/2 ≈ (GL( f1,0,1/2)+GL( f2,1/2,1))∆x =: γ j+1/2(s). (13)

THE HIGH ORDER FINITE VOLUME-COMPLETE FLUX SCHEME

The numerical flux at the eastern cell interface x j+1/2 of the control volume I j can be written as in (3), where the
coefficients α j+1/2, β j+1/2 and the function γ j+1/2 are as defined in the previous section. A similar expression holds
for the numerical flux Fj−1/2 at the western cell interface x j−1/2. Substituting these in the discrete conservation law
(2) and using the Gauss-Legendre rule for Q j, we find

β j+1/2 ϕ j+1 +
(
α j+1/2−β j−1/2

)
ϕ j−α j−1/2 ϕ j−1 = GL(s,x j−1/2,x j+1/2)− γ j+1/2(s)+ γ j−1/2(s), (14)

which we shall refer to as the high order finite volume-complete flux (HOCF) scheme. The scheme has a three-point
coupling for ϕ , resulting in the following linear system Aϕ = b, where ϕ is the vector of unknowns and where the
vector b contains the source term contributions and boundary data. The matrix A is tridiagonal.



NUMERICAL RESULTS

In this section we apply the central difference (CD) and the high order complete flux (HOCF) schemes to a model
problem to assess their (order of) accuracy. We consider both diffusion-dominated and advection-dominated flow. We
solve the BVP

(
mϕ− εϕ ′

)′ = s on (0,1), with Dirichlet boundary conditions ϕ(0) = 0, ϕ(1) = 1, and with mass flux
m(x) = 1−bsin(πx) and source term s chosen such that the exact solution is given by ϕ(x) = a(sin(απx)− sin(απ))+
e(x−1)/ε−e−1/ε

1−e−1/ε
, see [11]. Note that for 0 < ε� 1 the solution has a thin boundary layer of width ε near x = 1. We take the

following parameter values: a = 1, b = 0.95, α = 3 and ε = 1 (dominant diffusion) or ε = 1/100 (dominant advection).
Let h = ∆x = 1/(N−1) be the grid size, with N the number of grid points. To determine the accuracy of a numerical
solution we compute the error eh := ||ϕ−ϕ∗||∞, where ϕ∗ denotes the exact solution restricted to the grid.

Table 1 shows eh and the reduction factors eh/eh/2 for both schemes. Clearly, eh/eh/2 → 4 for h→ 0 for the CD
scheme, and consequently, it displays second order convergence behaviour for h→ 0. For the new high order scheme
eh/eh/2→ 16, so it is indeed fourth order accurate for both dominant diffusion and dominant advection. Note that the
accuracy of the HOCF scheme is vastly superior to CD on identical grids.

TABLE 1. Errors and error quotients.

ε = 1 ε = 1/100

CD HOCF CD HOCF

h−1 eh eh/eh/2 eh eh/eh/2 eh eh/eh/2 eh eh/eh/2

10 7.977 ·10−02 4.10 1.944 ·10−04 16.21 5.321 ·10−01 1.34 1.621 ·10−01 7.93
20 1.944 ·10−02 3.99 1.199 ·10−05 15.88 3.983 ·10−01 2.14 2.043 ·10−02 10.17
40 4.875 ·10−03 4.01 7.549 ·10−07 16.03 1.863 ·10−01 3.36 2.009 ·10−03 13.90
80 1.217 ·10−03 4.00 4.708 ·10−08 15.99 5.546 ·10−02 4.56 1.445 ·10−04 15.44
160 3.045 ·10−04 4.00 2.944 ·10−09 16.01 1.217 ·10−02 3.99 9.364 ·10−06 15.85
320 7.611 ·10−05 4.00 1.839 ·10−10 15.92 3.047 ·10−03 4.03 5.907 ·10−07 15.96
640 1.903 ·10−05 1.155 ·10−11 7.557 ·10−04 3.701 ·10−08

CONCLUSIONS

We have derived an integral representation for the flux of the advection-diffusion-reaction equation from a local BVP
for the entire equation, including the source term. As a consequence, the flux consists of two parts, i.e., a homogeneous
and an inhomogeneous part, corresponding to the homogeneous and particular solution of the BVP, respectively. Thus,
the inhomogeneous part takes into account the effect of the source term on the flux. An alternative representation of the
inhomogeneous flux in terms of a Green’s function is given. The integral representation is the basis for the numerical
flux approximation. We apply the 2-point Gauss-Legendre quadrature rule to all integrals involved, resulting in a fourth
order accurate discretization, uniformly in the (local) Peclet numbers. Moreover, the discretization leads to a compact,
tridiagonal system, which can be solved very efficiently. This feature is clearly an advantage over high resolution
methods based on flux/slope limiters or (W)ENO reconstruction. Numerical results confirm that our method is fourth
order accurate indeed.
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