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Abstract
Humans are commonly seen as the weakest link in corporate information security. This led to a lot of effort being put
into security training and awareness campaigns, which resulted in employees being less likely the target of successful
attacks. Existing approaches, however, do not tap the full potential that can be gained through these campaigns. On
the one hand, human perception offers an additional source of contextual information for detected incidents, on the
other hand it serves as information source for incidents that may not be detectable by automated procedures. These
approaches only allow a text-based reporting of basic incident information. A structured recording of human
delivered information that also provides compatibility with existing SIEM systems is still missing. In this work, we
propose an approach, which allows humans to systematically report perceived anomalies or incidents in a structured
way. Our approach furthermore supports the integration of such reports into analytics systems. Thereby, we identify
connecting points to SIEM systems, develop a taxonomy for structuring elements reportable by humans acting as a
security sensor and develop a structured data format to record data delivered by humans. A prototypical
human-as-a-security-sensor wizard applied to a real-world use-case shows our proof of concept.

Keywords: Cyber threat intelligence, Human awareness, Human-as-a-security-sensor, Security information and event
management (SIEM)

1 Introduction
Today’s security analytics solutions like Security Informa-
tion and Event Management (SIEM) systems heavily rely
on a huge amount of data in order to reliably detect inci-
dents in organizations (Bhatt et al. 2014). New sources
providing security-relevant data, such as knowledge about
occurred incidents observed by human individuals, can
therefore significantly enlarge the data basis for incident
detection.
During past years, humans or employees were gen-

erally seen as the weakest link in corporate IT security
(Lineberry 2007). To mitigate the risk of humans for IT
security, a lot of effort is put into awareness campaigns
and training of employees (Mello 2017) to ensure that
they receive a basic understanding of this topic. This also
enables them to distinguish between “normal” events and
events harming the organization. However, the ability
to recognize malicious events is not harnessed to its full
extent. Information about potential incidents might be
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hidden in the minds of humans and could be the missing
link for attack detection or for forensic reconstruction of
adverse events. Especially when it comes to nontechnical
traces. Therefore, we argue that the connection of digital
events with non-digital events observed by people is
crucial to IT security.

In this paper, we describe an approach that integrates
the human data source to further processing in security
analytics systems (e.g. SIEM systems). Therefore, we illus-
trate the problem with a motivating example in Section 2.
Subsequently, related work in the area of human-as-
a-security-sensor is portrayed within Section 3. In
Section 4, we present the problem and research question
tackled and show how to integrate human sensors into
SIEM systems in Section 4.1. In Section 4.2, a risk model
and a taxonomy for human threat reporting are proposed.
On this basis we develop a CTI base data structure for
human sensor information in section 4.3 and a data
format for the representation of this data in Section 4.4.
Finally, the proposed approach is evaluated in Section 5
and concluded in Section 6.
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2 Motivating example
In the following section, we use a real-world attack to
illustrate the main problem tackled in this work. The
example underlines benefits that may arise from integrat-
ing the human factor into threat detection mechanisms,
including improved threat detection and additional con-
text information.
Between 2017 and 2018, Kaspersky Lab (Golovanov

2018) investigated several cybersecurity incidents that
go by the name of DarkVishnya. Malicious devices were
directly connected to organizations’ local networks, caus-
ing damage estimated to multiple millions of dollars. As
shown in Fig. 1, the attack was conducted in the following
essential steps:

1 The attacker tries to physically enter the premises of
the attacked organization, claiming to be a person
with legitimate interest (e.g. being an applicant or a
courier).

2 After the successful entrance, the attacker tries to
place a network device unobtrusively and hides it by
blending it into the surrounding area. Moreover, the
device is connected to the local network
infrastructure in order to enable further attack steps.

3 After the attacker has left the organization, the
placed device is remotely accessed by utilizing
standard mobile technologies like GPRS, 3G or LTE
to control it for further attack steps.

4 The attacker scans the network for usable
information and for accessible resources in the local
network. This may include shared folders, servers or
other systems that execute critical actions.
Additionally, brute-force attacks or network sniffing
is used to gain access to login credentials.

5 The attacker tries to exploit the previously gained
access e.g. by installing malware to retain access and
to execute malicious services.

The crux of the attack is that the first three steps are
nearly impossible to detect with technical security sys-
tems like SIEM, or Intrusion Detection Systems (IDS), as
neither the attacker entering the building, nor the plac-
ing of a hardware device leave any digital traces. The
first digital traces that may be detected by security sys-
tems are left at the beginning of the network access.
Unlike automated analyses, employees have the ability to
detect and report such anomalies before technical traces
and potential damages occur. If, for example, a suspicious
person walks around the office building, the employee
might already categorize this event as an anomaly. Addi-
tionally, context information, such as a description of a
person, enhances this first perception. However, employ-
ees are often not able to recognize technical traces, such
as network scans. The example demonstrates that it is
hardly possible to capture the full extent of an attack,
when collecting technical or human traces independently
or if one of them is not considered at all. Therefore,
we propose an approach that enables the acquisition of
anomalies or potential attacks detected by employees,
to translate them into machine readable language and
thus to create the basis for combining these two types
of data.

3 Related work
The first IT security related approaches for threat report-
ing by humans are systems that handle malicious or
unwanted emails. These can be narrowed down to spam
and phishing emails. There are several examples avail-
able in practice that allow to report such threats. These
are in most cases integrated into email software, where
emails can be marked (Google LLC; Microsoft Cor-
poration) or a standalone web interface is provided
(Anti-Phishing Working Group). In most cases, these
reports are used to train phishing or spam filters of the
provider.

Fig. 1 Attack steps of DarkVishnya
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A second approach commonly applied in practice is
human-to-human reporting. A central contact point (e.g.
the help desk of an organization) is set up. Especially
when implementing an information security management
system (e.g. control A.13.1 of the ISO 27001 standard
demands the reporting of security events or weaknesses
from all employees (ISO/IEC 27001: Information technol-
ogy – Security techniques – Information security man-
agement systems – Requirements 2013)) this is com-
mon practice for reporting security issues by employees
(Hintzbergen et al. 2015). However, this approach entails
some disadvantages. For example, the human point of
contact has to interpret the received information and
decide how to proceed. This might result in wrong
decision-making, especially as help desk personnel are
commonly no security specialists. Additionally, the col-
lected data is poorly structured and not utilizable for
technical analyses in most cases. Although not security
related, the idea of using humans as sensors has been
a topic of interest for a while. For example, Wang et
al. (2014) pursue the idea that social networks might be
the largest existing human sensor networks. Furthermore,
Kostakos et al. (2017) investigate several scenarios, where
humans can act as sensors. They consider, among others,
crowdsourcing markets, social media and the collection of
citizen opinions.
Heartfield and Loukas (2018) recently proposed a more

general approach focused on semantic social engineer-
ing attacks. In their work, they develop and prototypically
implement a framework for reporting semantic social
engineering attacks. They propose a model for predict-
ing the reliability of reports generated by humans and
show, that human sensors can outperform technical secu-
rity systems in their considered context. In addition, they
implement a backend application, which is mainly respon-
sible for incident response and dashboard capabilities. In
one of their previous works (Heartfield et al. 2016), they
also coined the term human-as-a-security-sensor , which
refers to the ”paradigm of leveraging the ability of human
users to act as sensors that can detect and report informa-
tion security threats”. For our work, we adopt the meaning
of the paradigm. This capability is strongly influenced by
the security training the person received in advance. In
addition, an approach for scoring the trustworthiness of
human sensors was introduced by Rahman et al. (2017).
They especially monitor features of the mobile device,
utilized for conducting the report, for predicting the reli-
ability of the provided data.
To sum up the developments in this area, platforms for

reporting potential malicious or unwanted emails were
implemented at first. This was followed by the develop-
ment of processes for human-to-human reporting and
succeeded bymore sophisticated approaches for detecting
semantic social engineering attacks with the help of a

human-as-a-security-sensor framework. However, to the
best of our knowledge, there are no approaches that sup-
port reporting a wide range of possible attacks detectable
by humans. Additionally, there are no concepts for inte-
grating reported incidents into existing, and inmany orga-
nizations already established, security systems (e.g. SIEM
systems). Moreover, the participation of people with dif-
ferent knowledge in the field of cybersecurity, is currently
neglected.

4 Integrated human-as-a-Security-Sensor
(IHaaSS)

Resulting from the explanations in Section 2 and Section 3
we tackle the issue, that observations of humans are
either poorly or not at all integrated into the auto-
matic security analytics process. This raises the follow-
ing research questions:

Q1: What are the connection points of a human-as-a-
sensor to the data flow of a SIEM system?

Q2: How can human-provided information be struc-
tured (data format) in order to facilitate further
technical processing?

Q3: How can incident information be systematically
acquired from people?

To answer these research questions, we applied the
following approach:

1. To answer Q1, we illustrate how to integrate human-
as-a-security-sensors into security analytics in
Section 4.1. This is based on existing data collection
approaches and the generic data flow of SIEM systems
identified in literature (Vielberth and Pernul 2018).

2. To answer Q2 and Q3 it is in a first step necessary to
identify all possibilities a human sensor can report.
This is carried out by developing a risk model and
taxonomy, adhering to the method for taxonomy
development by Nickerson et al. (2013) in Section 4.2.

3. To answer research question Q2, we first
conceptualize a CTI base data structure for the
representation of human sensor data in Section 4.3.
On this basis we then identify suitable CTI data
format standards to realize this base data structure
and extend them for the capturing of human sensor
data in Section 4.4. This allows the integration of
human-generated reports into SIEM systems for
further processing.

4. Finally, the incident information can systematically
be acquired (Q3) following the risk model and
taxonomy, which is restricted by constraints
identified in Section 4.5.

Thereby, we see the main contributions of this paper in
the identification of connection points, the development
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of the taxonomy, the extension of well-established data
formats and the identification of constraints for a system-
atic data acquisition. We also show the practicability of
our approach using a prototypical implementation and an
exemplary real-world use case.

4.1 Integrating human sensors into SIEM
To connect technical data with human-generated traces,
both need to be brought together in one single system.
One way to achieve this is to integrate human knowl-
edge into SIEM systems that are already in place in most
organizations within a security operations center (SOC)
(Crowley and Pescatore 2018). Apart from that, the pre-
sented approach can easily be adapted to other security
monitoring tools.
A SIEM system is essentially designed for the collec-

tion of relevant log data to detect incidents and gain
situational security awareness. In Fig. 2 we extended the
basic SIEM structure as proposed by Vielberth and Per-
nul (2018) with the data flow of an integrated human-
as-a-security-sensor. Hereby, the SIEM first collects rel-
evant event information, in most cases in the form of
log data. This data gets enriched with additional con-
text data and translated in a uniform representation
during the normalization step. The core of the system
lies in the correlation and analysis component, where
information from various sources is connected and inci-
dents are detected using methods such as pattern match-
ing. Monitoring enables security analysts to be actively
involved in the analysis, whereas reporting delivers com-
pliance reports or enables the participation in established
threat intelligence sharing platforms between organiza-
tions. In case of a detected incident, alerting and incident
response triggers necessary reactions to mitigate further
harm. Finally, the storage module is responsible for both,
short- and long-term storage of event data and analysis
results.

For integrating human sensors into SIEM (Q1), we
extend the basic SIEM data collection approach. Accord-
ing to Holik et al. (2015) and Turnbull (2019), two funda-
mental approaches can be applied. They both distinguish
between push- and pull- based log collection. Since we do
not collect log data, but human-generated incident infor-
mation, these two approaches require adaptation. In the
following, both approaches are described in the context of
this paper:

• Push: The push method applies when an employee
initially detects an incident and actively delivers the
gathered information to the system. It is important to
offer guidance for enabling humans to provide
information in a structured way, especially if their
knowledge about security is limited. Additionally,
employees might report information in different
levels of detail, depending on how much they know
about the incident. The push approach is similar to
systems pushing log data into SIEM systems as
described in literature (Holik et al. 2015). Thus, the
connection point of the push approach is the event
collection (compare Fig. 2).

• Pull: In traditional SIEM systems, the pull approach
basically refers to polling-based systems (Turnbull
2019), which query the data periodically, generally in
fixed time intervals. Since periodically polling
information from human sensors is hardly feasible,
we only pull information in certain cases. These cases
occur during certain steps of the SIEM data flow (as
described subsequently), which are the connection
points for the pull approach. The pull approach is
applied if important information is missing during
the monitoring or analysis of incidents. Presumably,
this happens in case an incident is reported by people
with little knowledge about IT security or about the
context of the incident. The lack of information can

Fig. 2 Integrating human-as-a-security-sensor into the SIEM Data Flow
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either be detected automatically during the
correlation and analysis phase, or by human experts
monitoring the system or during incident response
steps. Furthermore, needed information might be
missing in case technical indications about an
incident occur, but previous attack steps were not
reported. For instance, technical traces from step
four of the attack in Fig. 1 could be identified in the
system, while previous attack steps were not
reported. Therefore, it is necessary to advice
employees to report missing hints. In order to gain
more information, an expert can interview the
reporting person and guide him to contribute further
or more detailed information.

4.2 IHaaSS incident model and taxonomy
For being able to develop a format (Q2) and structure
the acquisition of information (Q3), it is necessary to
capture everything that human-security-sensors can per-
ceive. Information security management standards and its
associated resources provide a good basis by providing
risk assessment guidelines. These consider and evalu-
ate mostly future risks. However, in our approach we
want to report past incidents, requiring to adjustment for

some elements. Regarding the NIST Guide for Conduct-
ing Risk Assessments (Joint Task Force Transformation
Initiative 2012) and Juliadotter and Choo (2015), the key
risk factors are Threat Sources, Threat Events/Vector, Tar-
gets/Vulnerabilities and Impact. All four risk factors are
observable or can at least be assessed by human sensors
and thus, have to be dealt with. The resulting threat model
can be seen in Fig. 3.
In the proposed Integrated Human-as-a-Security-Sensor

(IHaaSS) incident model, there are two types of threat
events: threat events caused by humans or technical
sources (commonly security events) and events which are
not necessarily assignable to a source (especially safety
events). Threat events can be either initiated by threat
sources or by previous events. Furthermore, it is possible
that no entities are affected, or the affected entities are not
(yet) known. The same applies to the expected impacts.
This leads to the conclusion that only threat events are
mandatory elements, as without threat events there is no
need to report.
In order to get a deeper insight into human sensor

reports, we examine the four risk factors in more detail,
thereby create a taxonomy for human-as-a-security-
sensor threat reporting. This taxonomy classifies and

Fig. 3 IHaaSS Incident Model and Taxonomy
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structures the security-related artifacts a human sen-
sor can observe. Thereby, we loosely adhere to the
method for taxonomy development by Nickerson et
al. (2013). However, we did not develop a completely
new taxonomy, but rather combined and adapted exist-
ing taxonomies to fit the purpose. Thereby we fol-
lowed the “conceptual-to-empirical approach” (Nicker-
son et al. 2013), because of the existing foundations
and a well-established knowledge base in this area. The
identified objects are described in more detail in the
following:

• Threat Sources: Threat sources are the starting
point of the incident and can initiate subsequent
threat events. This part of the taxonomy is based on
the NIST Taxonomy of Threat Sources (Joint Task
Force Transformation Initiative 2012). However, to
avoid overlaps with subcategories of threat events,
we narrow the scope. In the context of our paper, a
threat source is an entity, which can decide and
initiates events. Thus, the environment defined as a
threat source by NIST is equal to a threat event in
our taxonomy as we argue that environmental
factors cannot take decisions. Additionally,
environmental events might be initiated by sources
and are therefore better classified as events (e.g. a
fire can be set by a person). However, the risk model
process remains unaffected, because events can
initiate other events. As a result, environmental
events can still trigger structural events such as
outages.

• Threat Events: Threat Events are the processes
actually causing harm to an organization and thus
are the key component of an IHaaSS report. Our
taxonomy of threat events is based on the ENISA
Threat Taxonomy (Marinos 2016) with some
changes in order to fit in the rest of our model. We
have defined more general categories, which allow
the distinction between intentional (Attack) and
potentially unintentional (Technical, Environmental,
Legal) events. This is especially important in order
to form dependencies in Section 4.5. Furthermore,
the environmental events are merged with
environmental threat sources from the NIST
Taxonomy of Threat Sources (Joint Task Force
Transformation Initiative 2012).

• Entities: The identification of relevant assets (asset
inventory) is much discussed in academic literature
and by industry, due to its importance to risk
management (Fenz et al. 2014). Our approach,
however, is somewhat broader, which is why we talk
about entities (e.g. other organizations may be
affected, which are not necessarily an asset for the
company). The entity taxonomy is taken from (Joint

Task Force Transformation Initiative 2012), wherein
it is called adverse impact.

• Expected Impact: The expectation of possible
impacts is usually quite hard to classify for humans.
Therefore, the human sensor commonly provides
qualitative estimations, especially when the IT
security knowledge is low. Nevertheless, this
estimation can be very helpful for evaluating further
actions and reactions. Very Low to Very High is a
rating of the effect of the event as described by the
NIST (Joint Task Force Transformation Initiative
2012). It ranges from “negligible” to “multiple severe
or catastrophic effects”.

4.3 Conceptualizing a CTI data structure for human
sensor data

In the previous sections, we introduced connecting points
for the integration of human knowledge into SIEM sys-
tems and developed a taxonomy that serves as an infor-
mation basis for the acquisition of threats detected by
humans. In this section, we lay the theoretical founda-
tions for the integration of human-provided information
into SIEM data processing. The central factor for this inte-
gration is the harmonization of data structures to ensure
compatibility of information. As shown in 4.1, SIEM sys-
tems work with both normalized raw data and enriched
context data, which can be summarized under the term
Cyber Threat Intelligence (CTI). To enable the integration
of these types of information, we propose an approach
of translating the human provided information into the
existing CTI data structures in this section. To this end, we
first discuss the types of information that can be provided
by human sensors and classify them in the context of CTI
information. On this basis, we then propose a CTI data
structure that allows to fully capture information provided
by human sensors to answer the research question Q2 on
a general level. Finally, Table 1 summarizes the results of
this section
The work of Burger et al. (2014) serves as a basis for

the allocation of human sensor information to CTI data
structures. It divides CTI into the three main categories
Intelligence, Attribution and Indicator. Intelligence refers
to rather complex issues such as concrete procedures of
attackers or methods for mitigating security incidents,
which cannot be fully acquired from automated analy-
ses. Although a deeper expert knowledge is necessary for
the final evaluation of intelligence information, untrained
employees can contribute valuable information, which
may make an incident detection possible in the first place.
An example of this would be the detection of unautho-
rized physical access to protected resources. The Attribu-
tion category describes various types of additional contex-
tual information about a security incident. These include,
for example, information on attackers or affected devices.
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Table 1 CTI base model extensions

Classification Taxonomy UPSIDE Model Changes

Intelligence Threat Events Attack Attack Event -

Technical - Technical Event

Environmental - Environmental Event

Legal - Legal Event

Expected Impact Result Result

Attribution Threat Sources Actor Attacker Actor

Structure - Structural Source

Entities Assets Attack Target Affected Entity

Persons Attack Target Affected Entity

Indicator Threat Events Indicator -

This data is also only recognizable to a limited extent
through automated analyses. Since attribution informa-
tion usually does not require specific specialist knowledge,
employees can also make a valuable contribution here.
For example, employees can help identifying a poten-
tial attacker and point out potentially affected devices. In
contrast to these categories, Indicator describes specific
system events that can, for example, be obtained from
system logs. Since log files contain extensive information,
they are usually evaluated using automated analyses and
can only be used to a limited extent within a human sensor
platform. However, when an incident is captured, addi-
tional fine-granular informationmay also be provided. For
example, a malicious email provides information about
a potential attack or an attacker, but also provides fine-
grained information within its source code. As a result,
indicator information is not primary information that is
obtained from human observations, but secondary infor-
mation that is collected when entities are created and
populated. Summarizing, it can be stated that human
sensors can mainly contribute to analyses with context
information from the categories Intelligence and Attribu-
tion whereas Indicator information is only used to a very
limited extent.
After performing a classification of human sensor data

in the context of CTI data structures, we propose a CTI
data structure that is able to cover the full range of human
sensor information in the following. To achieve this,
we utilize the previously introduced categories Intelli-
gence, Attribution and Indicator to describe the individual
changes necessary. More specifically, we use the UPSIDE
model that describes CTI base entities byMenges and Per-
nul (2018) to determine and discuss entities that can be
mapped by CTI data structures and those that are still
missing for the representation of human provided infor-
mation. On this basis, we propose conceptual adaptations
to existing CTI data structures to support human sensor
data as described in our taxonomy.

• Intelligence: The Intelligence category describes
the attack patterns used, countermeasures taken and
additional information on incidents such as the
expected impact. The Threat Events and Expected
Impact sections of the taxonomy can be assigned to
this category. Threat events are divided into active
(attack) and passive (technical, environmental and
legal) incidents. According to the CTI base model, the
description of active attacks is possible by defining
attack events and the underlying procedure. Incidents
without an active component are not supported so far.
In addition, the model offers the possibility to define
the result of an attack as result entity. This allows
"Expected Impact" from our taxonomy to be mapped,
however, this also only applies for active attacks.

• Attribution: The Attribution category defines
various contextual information, such as information
about attackers and targets. The sections Threat
Sources and Entities from the taxonomy can both be
assigned to this category. In the area of threat sources,
the CTI base model can represent active attackers.
Although, an unintentionally involved actor and other
threat sources cannot be defined yet. In the taxonomy
section entities, both assets and persons can be
represented within the CTI base model. However,
these can only be represented as targets in connection
with an attack. It is not possible to represent any
other kind of participation of these entities.

• Indicator: The Indicator category is used to display
detailed information within threat events. The entity
indicator from the CTI base model defines a generic
representation within a security incident that can be
assigned to any other entity. Accordingly, the
requirements of the taxonomy are basically fulfilled
in this area.

After comparing our taxonomy with the capabilities of
the CTI base model, we discuss necessary adjustments for
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the integration of human sensor information in the follow-
ing. Several adjustments are necessary within the Intelli-
gence section. Since only attack events are supported, it
is necessary to introduce additional entities to be able to
map passive events. This includes technical events, envi-
ronmental events and legal events. In addition, the result
of an event must be adapted in such a way that the result
of passive events can also be represented. The Attribu-
tion area also requires several adjustments. On the one
hand, the attacker element must be extended in such a
way that a passive participant can also be represented.
In addition, it is also necessary to introduce an addi-
tional entity to represent a structural source for incidents.
Finally, entities can be represented completely, but only
in the context of an attack. Here an appropriate exten-
sion is necessary so that entities can also be affected by
passive events. The indicator area does not require any
adjustments at the conceptual level. Summarizing, Table
1 gives an overview of the results of this section. Column
Classification assigns the results to the respective CTI cat-
egory, while column Taxonomy shows the elements of the
taxonomy under consideration. The UPSIDE Model col-
umn shows the assignment to the CTI base model and
column Changes shows the necessary adjustments to the
base model to support human sensor information.

4.4 A structured representation for threat intelligence
reported by humans

In the previous sections, we introduced connection points
for integrating human knowledge into SIEM systems and
a taxonomy that defines the information basis for the
acquisition of threat information detected by humans.
Subsequently, we introduced the theoretical foundation
for a CTI data structure that is able to represent human
sensor data. Based on these findings, we develop a CTI
data format in this section that allows to capture infor-
mation provided by human sensors and enables further
technical processing according to research question Q2.
In developing the data format we pursue two main objec-
tives. On the one hand, we aim to achieve a high com-
patibility to existing SIEM systems to allow a direct inte-
gration of additional information into the system. On the
other hand, we aim to create a format that allows a com-
plete representation of human sensor data. More specifi-
cally, the full scope of the taxonomy shown in Section 4.2
needs to be covered. In order to meet these require-
ments as completely as possible, we first select existing
and well supported CTI data format standards as devel-
opment basis in the following. Subsequently, we propose
a specification of necessary extensions for the integration
of human sensor data according to Section 4.3.
Event collection modules within SIEM systems handle
heterogeneous raw data from different log sources. This
data is then translated into homogeneous indicator data

structures to allow further processing. Literature pro-
vides different standards for the structured representation
of indicators, such as CybOX1 or openIoC2. These data
structures are commonly referred to as Indicators of Com-
promise (IoC) as they depict a set of observations associ-
ated with a threat (Appala et al. 2015). These basic inci-
dent data can furthermore be enriched using intelligence-
and attribution data, such as information about attackers,
utilized attack patterns or attackers’ objectives as shown
by Burger et al. (2014). Together, they allow the represen-
tation of complex security incident information as shown
in Section 4.3. Literature also offers different standards
for representing enriched incidents information, such as
STIX, IODEF, VERIS and X-ARF (Barnum 2014; Dan-
durand et al. 2015; Menges and Pernul 2018). In order to
allow the representation of human delivered information,
we chose the combination of the existing formats CybOX
and STIX as development basis. Both formats are issued
together by MITRE3 and a combined usage is explicitly
intended. Since these formats are most commonly applied
to represent comprehensive threat intelligence informa-
tion (Shackleford and SANS Institute 2015; Sauerwein
et al. 2017), high compatibility to existing systems can
be assumed. Moreover, they offer broader representation
capabilities in their basic configuration than compara-
ble formats as shown by Menges and Pernul (2018) and
therefore, represent a solid foundation for the integration
of human delivered information. Both CybOX and STIX
are briefly introduced in the following and examined for
necessary extensions to represent human delivered infor-
mation afterwards.
CybOX provides an extensive catalog of object types
for the description of the indicator layer. Each object
represents individual components of log files, such as
files, processes or network packets and offers description
options at a detailed level. For example, the object type file
allows the description of basic file properties such as path,
extension or file name but also additional information
such as permissions, compression procedures or creation
date. STIX is the most extensive and widespread format
for the structured representation of cyber threat intelli-
gence information available today (Burger et al. 2014). It
provides flexible data structures, such as non-structured
free-text attributes, built-in controlled vocabularies using
predefined values (vocabs) as well as integrated references
to external data sources such as platform or vulnerability
databases (enumerations). STIX uses indicators provided
by CybOX as information basis and a wide range of well-
defined data definitions to express the intelligence and
attribution information for threats. The data model con-
sists of the following core concepts. Incident is the central

1https://cyboxproject.github.io
2https://github.com/mandiant/OpenIOC_1.1
3https://www.mitre.org

https://cyboxproject.github.io
https://github.com/mandiant/OpenIOC_1.1
https://www.mitre.org


Vielberth et al. Cybersecurity            (2019) 2:23 Page 9 of 15

entity for structuring the incident information. TTP (Tac-
tics, Techniques and Procedures) and Course of Action
to describe the Intelligence layer. Campaign, Threat Actor
and Exploit Target describe the Attribution layer. Indica-
tor, Observable serves as interface to the Indication layer
that is essentially provided by CybOX. Moreover, numer-
ous attributes for a detailed expression of these concepts
are provided by the data model (Barnum 2014; Menges
and Pernul 2018; Fransen et al. 2015).
After this short introduction of the data formats STIX
and CybOX, we develop adjustments for these formats to
represent human delivered incident information follow-
ing the IHaaSS taxonomy (see Section 4.2) and CTI data
structure (see Section 4.3) in the following. For this pur-
pose, we first discuss the missing elements within the data
formats based on the CTI basic data structure. On this
basis, we propose the following changes to the formats to
allow the integration of human sensors.

• Intelligence: Previously, it was shown that attack
events can be mapped within the CTI base model,
whereas other events are not available yet. Using the
taxonomy, we are able to limit these additional events
to the categories Structural, Environmental and
Legal. In order to also support these events within the
data format, we have defined the additional entities
"Technical Event", "Environmental Event" and "Legal
Event". All these entities are derived from the basic
entity TTP, which describes tactics, techniques and
procedures used in the course of an attack. An
essential property of TTP objects is the structured
representation of attack patterns. For this purpose,
STIX uses the CAPEC Enumeration, a freely available
data set of known attack patterns for the
unambiguous description of specific attacks. In order
to achieve a comparable functionality for the
additionally defined events, we defined a
corresponding vocabularies for structural, legal and
environmental events. Each vocabulary offers
predefined event definitions according to our
taxonomy. In addition to the event definitions, the
area of intelligence also offer possibilities for
describing the expected impact of an incident. For
this purpose it was previously shown that the base
model only provides impact definitions that emerge
from active attacks. Although this is basically also
true for the data format, its data definitions do not
explicitly restrict the representation of incident
results to an underlying attack. As a result, no
changes are necessary to enable the definition of
specific event results.

• Attribution: It was shown that an integration of
structural sources is necessary for addressing passive
threats within the CTI base format. In addition, it was

shown that the entities are limited to the expression
of active attacks. The data format already provides
elements such as Threat Actor, Exploit Target to
represent active attacks and attackers, and Asset
Vocabulary to define assets. To enable the integration
of passive threats, we extend STIX with the definition
of an additional entity "structural source" as intended
in the CTI base format. Since this is an alternative
threat source, the object is derived from the existing
Threat Actor object and exists on the same level. This
object is extended by an additional vocabulary
"StructuralSourceTypeVocab" to be able to represent
structural threat sources in a structured way. Since
this extension of threat sources also extends the
scope of attribution, we additionally defined an
extension of the asset vocabulary. This makes it
possible to define additional assets that can occur in
connection with passive threats.

• Indicator: The indicator category is used to
represent incident event information on a high level
of detail, which are basically able cover the event
information that may be delivered by humans.
However, humans are usually not capable of
delivering information on this level of detail and will
rather provide unstructured data fragments.
Consequently, such data fragments must be evaluated
afterwards and the format must allow the
unstructured data to be recorded at the time of
acquisition. For this reason, we have also added an
extension to the Observable object that allows to
include unstructured data, which can later be
translated into structured CybOX information.

In addition to these specific extensions, all objects were
equipped with specific IHaaSS IDs and to enable addi-
tional references between the objects. This allows employ-
ees to express their perception by establishing links
between objects. These additional connections can then
be separately evaluated by analysts and integrated into the
analysis results. In summary, it was shown in this section
that STIX already fulfills numerous requirements for the
implementation of an IHaaSS platform. However, the for-
mat requires different extensions to fully match the tax-
onomy according to the CTI base model. To achieve this,
additional entities to represent structural threat sources
as well as environmental, structural and legal events are
defined within the data model. Moreover, different vocab-
ularies are introduced to unambiguously represent these
entities. Finally, the Observable object is extended by
an attribute for the unstructured capture of event data.
Table 2 gives an overview of all these adjustments to the
data format.A detailed overview of the specific extensions
integrated as well as the actual object specifications can
be found in the repository published together with this
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Table 2 STIX extensions

Classification Base entity Additional Entity Additional attribute

Intelligence TTP Structural Event StructuralEventTypeVocab

TTP Environmental Event EnvironmentalEventTypeVocab

TTP Legal Event LegalEventTypeVocab

Attribution Threat Actor Structural Source StructuralSourceTypeVocab

Incident

Indicator Observable Observation

work4. The repository includes XML-schema definitions
for the STIX schema extension types and vocabularies that
are developed with this work.

4.5 Structured acquisition of human-as-a-security-sensor
information

To implement a system harvesting incident information
from a human sensor, it is necessary to develop a syste-
matic approach to guide the user through the acquisi-
tion (Q3). This supports the structured input into a data
format 4.4 and encourages human sensors to provide
as much information as possible. The process for guid-
ing the user is basically given by the IHaaSS Incident
Model and Taxonomy as shown in Fig. 3. Thereby, mul-
tiple threat sources, threat events, and entities can be
specified consecutively. The expected impact is estimated
for the whole incident and thus recorded only once. The
respective subtypes for sources, events or entities are also
gathered in hierarchical sequence to avoid overstrain-
ing of the user. Each event is assigned a cause (either a
threat source or another threat event), which leads to a
chain of events. However, the process is subject to some
constraints. More precisely, threat events cannot be ini-
tiated by some threat sources or preceding threat events.
The constraints for our acquisition process are defined as
follows and explained in more detail subsequently. The
notation is based on the formal model of Klingner and
Becker (2012):

prohibits(Attack) = Environmental ∨ Legal (1)

prohibits(Technical) = Legal (2)

prohibits(Environmental) = Legal (3)

prohibits(UnusualNaturalEvent)
= Actor ∨ Structure ∨ Attack

∨ Technical ∨ Legal
(4)

Equation 1 defines that an attack cannot be initiated
by an environmental or a legal event. The reason for this

4http://tinyurl.com/y3h5k25t

is that an attack requires action by a human being or
at least some technical device and thus cannot be initi-
ated by nonhuman events or sources. Furthermore, the
cause of a technical security event cannot be a legal event
(Eq. 2), technical events can only follow physical events or
sources. The same applies to environmental events (Eq. 3).
Unusual natural events (e.g. sunspots) cannot be caused
by any other events or sources except Environmental ones
as stated in Eq. 4, because they have a natural cause.
These constraints are the most explicit ones. It would be

possible to define additional constraints considering more
detailed layers of the underlying taxonomy. However, the
constraints would depend on the organization where they
are implemented and would not be unambiguous.

5 Evaluation
In the previous sections, we presented an approach for
integrating human sensor information into SIEM sys-
tems. Therefore, we first discussed possible connecting
points for the interaction between human sensors and
SIEM systems. We also developed an incident model that
extends the scope of SIEM threat detection by incidents
that are additionally detectable by human sensors. Based
on these findings, we extended the STIX data model to
create data structures capable of capturing this informa-
tion and proposed a concept for the structured acqui-
sition of human sensor information. In design science
research, demonstration is like a light-weight evaluation,
to show that the artifact works to solve instances of a
given problem (Venable et al. 2012; Peffers et al. 2007).
To evaluate that our approach achieves its purpose in
our context, we demonstrate it threefold: First, we explain
our prototypical implementation, which shows that it
is realizable in practice. Thereafter, we use the exam-
ple from chapter 2 to show that it can be mapped to
the IHaaSS Incident Model and Taxonomy presented in
Section 4.2. Finally, we demonstrate how this example
would be represented in the STIX based format presented
in 4.4. Hereby it is worth mentioning, that a taxonomy
is never perfect and has to be shaped and extended as
the field of its purpose advances (Nickerson et al. 2013).
Furthermore, it is hardly possible to evaluate the tax-
onomy going beyond a demonstration, since it can only

http://tinyurl.com/y3h5k25t
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be shown exemplary, that it fits its intended purpose.
This is especially true for the context of this paper, as
there are almost no limits to the variety of cyberattacks
and incidents. To the best of our knowledge, there is
no similar taxonomy describing the artifacts that can be
recognized by human security sensors. Thus it is not
possible, to compare the performance of our taxonomy
to others.

5.1 Prototypical implementation
Our application prototype realizes the rendering of infor-
mation delivered by human security sensors into the
structured threat intelligence information. A working
example of the IHaaSS prototype is available online5.
The prototype pursues two different goals. On the one
hand, it demonstrates the use of IHaaSS in a possible
scenario for the structured acquisition of incident infor-
mation to show the overall validity of our approach.
On the other hand, it illustrates the value of informa-
tion delivered by human security sensors and the com-
bination possibilities with data from existing analytics
processes. The application consists of two major compo-
nents: First, a wizard component that allows the reception
of incident information delivered by humans. Second,
a server component that translates the acquired inci-
dent information into the structured format to be fur-
ther processed afterwards. The frontend is implemented
by using Angular6 and Typescript7. Java EE in combi-
nation with a Glassfish8 application server was used to
implement the STIX conversion logic and the database
access.
Figure 4 shows a screenshot of the first step in the

wizard component. The wizard is divided into two com-
ponents. In the first component, the information can
be entered by the user. The second part (Captured ele-
ments) gives an overview of already declared incident
elements so that the user can see what has been previ-
ously entered. The wizard is structured in four steps as
specified by the taxonomy. At first, the threat sources
can be reported. Thereby, an arbitrary number of sources
can be added. For selecting a source, the user is pre-
sented a drop-down list containing the elements of the
first layer of the taxonomy (Actor and Structure). When
an element is selected, a second drop-down list with the
elements of the next layer is displayed. This continues
until there are no sub-elements left. The same selection
mechanism is implemented for event types and entities in
subsequent steps. Only for events a "triggered by" input
field is added to specify the previously reported threat
source or threat event that initiated the event. There the

5http://tinyurl.com/yyqqlgg7
6https://angular.io/
7https://www.typescriptlang.org/
8https://javaee.github.io/glassfish/

selectable events get filtered according to the constraints
defined in chapter 4.5. In the fourth and final step, the
estimated impact of the whole incident can be entered.
Furthermore,the following additional information is
requested:

• Email: The email is used to enable follow-up contact
to the user who reported an incident for example
when additional information is required.

• Date: The date on which the incident occurred. The
current date is used as default value.

• General description of the incident: A free text
explanation of the incident enables the statement of
additional context information.

• Technical data: This input field is used for providing
technical information like log data or the content of a
phishing mail. This information could also be
gathered partially automatically as described by
Heartfield and Lukas (2018) depending on the
incident and the organizations’ infrastructure.

After the incident information was acquired by the wiz-
ard component, the data is transferred to the backend
component. The backend provides the conversion logic,
which translates the information collected by the wiz-
ard into corresponding STIX objects. It also provides the
underlying data storage for persisting the translated STIX
objects for later use.

5.2 Case study
In order to evaluate the wizard in combination with the
underlying taxonomy and constraints we show how an
employee could report an incident using the wizard. We
used the DarkVishnya incident as shown in Section 2 as an
exemplary use-case, which we iterate through below. Note
that we take the role of a fictional employee that could
have observed the incident. Thus, we only consider occur-
rences that may have been observed by a non-technical
staff member for this example. The potential selection
steps within the wizard are subsequently shown in brack-
ets. For this incident, we identified the following two
threat sources:

1 An unknown person is observed inside the premises
(Actor → Individual → Outsider)

2 A suspicious hardware device is seen in an office
room
(Structure → IT Equipment → Processing)

Moreover, two threat events can be identified:

1 The person falsely claims to have legitimate access
and enter s the premises
(Attack → Physical attacks → Unauthorized entry to
premises)

http://tinyurl.com/yyqqlgg7
https://angular.io/
https://www.typescriptlang.org/
https://javaee.github.io/glassfish/
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Fig. 4 Screenshot of the wizard for reporting incidents by humans

2 The hardware device is placed in an office room and
connected to internal network infrastructure
(Attack → Nefarious activity/Abuse →
Manipulation of hardware and software)

In addition, a network device was identified as a neg-
atively affected entity. Thus, assets are selected from the

wizard. Finally, the impact is estimated as low, since the
employee may not be able to judge the whole extent
of the incident. After the data is collected from the
human sensor, it is translated into the corresponding
STIX data objects by the server component as described
in the following. The outsider (1) who falsely claimed
to have legitimate access to the premises is translated
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into a Threat Actor object. Its specific properties are
mapped to the internal vocab "ThreatActorTypeVocab"
that was extended within this work. The technique of
gaining unauthorized access to the premises is translated
into a TTP object and matching attack patterns from
the CAPEC enumeration are mapped. The suspicious
hardware device (2) attached to the internal network
is then mapped to a structural source object and its
specifics are mapped using the "StructuralSourceType-
Vocab" created with this work. The action of planting
a malicious device is described using a further TTP
object and the corresponding CAPEC attack patterns
analogous to the first TTP object. After creating these
specific entities, the general descriptions of the incident
as well as the time of the occurrence, affected assets,
and the expected impact are recorded using an Inci-
dent object. All these objects are then finally wrapped
using a Report object. The complete STIX report for
this exemplary use-case is appended to this work as sup-
plementary material. Moreover, it can be viewed under
the past incidents overview section within the wizard
prototype9.
Considering the results of this incident, there are dif-

ferent possible connecting points to automated analy-
ses within a SIEM system. Firstly, the generated report
delivers information about the approximate time of the
occurrence, the exact location as well as the affected net-
work device and possibly even the used network port.
This data can then be enriched with the correspond-
ing log information from the SIEM system in order
to clarify the findings. Furthermore, if an electronic
access control has been circumvented in any way, the
log data available can also be used as further evidence
and to enrich the incident information gathered from the
employee.

5.3 Discussion
The prototypical implementation has shown three key
aspects: First, it was demonstrated, that it is possible
to represent the beforehand theoretically defined IHaaSS
incident model and taxonomy (Section 4.2) as a wizard-
like application. This application guides the user through
the taxonomy and enables him to select and report all
possible elements. Second, the acquisition can be con-
ducted in a structured way since the constraints defined
in Section 4.5 were all implemented within the proto-
type. Nevertheless, practical usage over a longer period
of time will reveal whether these constraints are exhaus-
tive. Third, the acquired data can be translated into a STIX
representation, which could be further used for security
analytics systems, despite the volume of possible user
input.

9http://tinyurl.com/y5tsoxo3

The case study has shown that it is generally possible to
apply the prototype for a real-word incident. Therefore, it
was validated with an expert who analyzed the attack as
a member of the incident response team. However, only
a broad long-term study can show the usability, which we
will address in the future.

6 Conclusion and future work
In this paper, we present an approach for acquiring and
structuring incident information from human sensors to
prepare it for the use within security analytics systems
such as SIEM systems. Therefore, we identify the connec-
tion points of human sensors within a SIEM system (Q1)
and answer the question how the reportable information
can be structured (Q2). Thereby the IHaaSS Incident
Model and Taxonomy is deduced, which consists of the
four components threat sources, threat events, entities
and expected impact. The incident model builds the basis
for a data format suitable for representing threat intel-
ligence information reported by humans. An important
factor while developing the data format is to maintain the
compatibility with existing and well-established formats,
in our case STIX. For acquiring the data from human
sensors in a structured way (Q3) we propose a process
where we define some constraints, which ensure that the
collected data is not contradictory. Finally, the approach
is evaluated from three directions. First, we prototypi-
cally implement the approach and second, an example
use-case is mapped to the IHaaSS Incident Model and
Taxonomy to show its practicability. Finally, the use case
was represented in the proposed STIX-based format.

Since the examined subject of human-as-a-sensor, espe-
cially with its focus on security, is a rather new topic,
there is a lot of potential for future research. A topic
marginally tackled in this paper is the connection of
human-generated data with machine-generated data,
which for example originates from log files. The data
collected from humans may be extended by automatically
or manually deriving relationships to machine data. To
achieve this, different approaches such as rule-based
correlation and aggregation may be used. In order to
facilitate the definition of rules, it can be helpful to visual-
ize the generated data. Therefore, existing approaches as
presented by Böhm et al. (2018) could be extended to the
proposed data format. Machine learning techniques also
show a lot of potential regarding the correlation of data
acquired by humans and machine-generated data.
Our present work considers the acquisition and struc-

turing of information delivered by humans. However, we
have not examined forensic and legal requirements. Nev-
ertheless, considering these requirements is of great rel-
evance especially when the collected data is supposed to
be used as evidence in court afterwards. Furthermore,

http://tinyurl.com/y5tsoxo3
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human generated data may also play an important role in
the incident response process and thus should be qualified
as data foundation for forensic analyses. Since reports may
contain personal data, the topic needs additional consider
ation from a legal point of view.
An additional research gap can be identified with regard

to motivating employees for reporting detected incidents.
On the one hand, incentives have to be created and on
the other hand, barriers keeping employees from report-
ing have to be removed. For example, if a person reports
an incident, which denigrates a colleague, it might be an
unwanted result. In this context, obfuscation techniques,
such as anonymization or pseudonymization, may help
to solve some of these problems. Additionally, changes to
the corporate culture are required, so that it is considered
normal for employees to report detected incidents, as it
is for example in an anti-fraud culture. In this regard the
analysis and assurance of data quality is especially impor-
tant due to the possibility of erroneous inputs by humans.
Finally, the proposed approach is rather generic. Thus, it
has to be adopted to the respective context for practical
use. Especially the proposed taxonomy could be refined in
order to depict more corporate information and it has to
be tailored to match the corporate culture.
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