Universiti Teknologi MARA

Monitoring Air Conditioning in Class using GSM Technology

Liyana Syazwani binti Ramli

Thesis submitted in fulfilment of the requirements for Bachelor of Computer Science (Hons) Data Communication and Networking Faculty of Computer and Mathematical Sciences

DECEMBER 2018

STUDENT DECLARATION

I certify that this thesis and the project to which it refers is the product of my own work and that any idea or question from the work of the people, published or otherwise are fully acknowledge in accordance with the standard referring practices of the discipline.

.....

LIYANA SYAZWANI BINTI RAMLI 2016351723

DECEMBER 3, 2018

ABSTRACT

Air conditionings are provided in most classrooms or lecture halls in high education institutions as they provide comfortable temperature for students during lecture hours. However, the increasing number of universities has increased the amount of energy demand in Malaysia. Leaving the classrooms and lecture halls without switching off the air conditionings after lecture hour ends has led to energy wastage problem. Polis Bantuan (PB) in UiTM Perlis have the responsibility in ensuring that all of the air conditionings in the classrooms and lecture halls have been switched off to prevent electricity wastage. In order to reduce the PB burden of having to go and check for every classroom and lecture hall, a system for monitoring air conditioning usage from PB's mobile phone is proposed. The prototype system allows PB to monitor whether an air conditioning unit in a classroom or lecture hall is on or off. The prototype system requirements are Arduino UNO R3 board, LM35 temperature sensors, a GSM module as well as Arduino IDE. Three experiments were conducted in this project which are the functionality test of LM35 temperature sensors, GSM network performance and functionality of the completed prototype. Result from the functionality test of LM35 temperature sensors shows that the sensors are able to produce quite accurate reading. The result of GSM network performance tested on 3 selected locations shows that there is not much difference in the delay of SMS transmission, which means the system is able to provide real time information. The accuracy test done on the prototype system shows that the system is able to tell whether the air condition unit is on or off. In the future, this project which was successfully implemented has potential to assist PB to monitoring classroom and lecture hall air conditions in UiTM Perlis.

TABLE OF CONTENTS

CONTENT	PAGE
SUPERVISOR APPROVAL	ii
STUDENT DECLARATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
TABLE OF CONTENTS	vi
LIST OF FIGURES	ix
LIST OF TABLES	xi
CHAPTER ONE : INTRODUCTION	
1.1 Background	1
1.2 Problem Statement	2
1.3 Objectives	3
1.4 Project Scope and Limitation	3
1.5 Significant of the Project	4
CHAPTER TWO : LITERATURE REVIEW	
2.1 Problem of Waste Energy	5
2.2 Monitoring System	6
2.2.1 Types of Monitoring System	6
2.3 Microcontroller	7
2.3.1 Types of Microcontroller	7
2.3.1.1 Microcontroller 8051	7
2.3.1.2 PIC Microcontroller	7
2.3.1.3 AVR Microcontroller	8
2.3.2 Arduino	8
2.3.1.1 Arduino UNO	8
2.3.1.2 Arduino MEGA	9
2.4 Sensor	9
2.4.1 Temperature Sensor	10
2.4.1.1 LM35 Temperature Sensor	10
2.4.2 Humidity Sensor	11

CHAPTER FOUR : PROJECT DEVELOPMENT AND IMPLEMENTATION

4.1 Testbed Set Up	27
4.1.1 GSM Module	27
4.1.1.1 Testing for GSM SIM900A connection	27
4.1.1.2 Testing for calling to and from GSM SIM900A	28
4.1.1.3 4.1.1.2 Testing for sending messages to and from	28
GSM SIM900A	
4.2 LM35 Temperature Sensors	29
4.3 Hardware Development	30
4.3.1 Connection between Arduino UNO R3 and LM35	31
Temperature Sensors	
4.3.2 Connection between Arduino UNO R3 and GSM/GPRS	32
SIM900A	
4.3.3 Connection between Arduino UNO R3 LM35	33
Temperature Sensors and GSM/GPRS SIM900A	
4.4 Prototype Development	34
4.5 Test Cases	36
4.5.1 LM35 Temperature Sensors	36
4.5.2 Prototype Accuracy Test	37
4.5.3 GSM Network Performance Test	37
4.6 Analysis	37
4.6.1 Temperature Readings of LM35 Sensor versus	37
Thermometer Application	
4.6.2 Effect of Weather Condition in Classroom Temperature	37
4.7 Summary	38
CHAPTER FIVE : RESULTS AND ANALYSIS	
5.1 Experimental Results	39
5.1.1 LM35 Temperature Sensor Functionality Test	39
5.1.2 Prototype Accuracy Test	42
5.1.3 GSM Network Performance Test	43
Location 1: UITM Perlis	43
Location 2: Arau to UITM Perlis	44