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ABSTRACT 

Emotion classification via Electroencephalography (EEG) is used to find the relationships 

between EEG signals and human emotions. There are many available channels, which 

consist of electrodes capturing brainwave activity. Some applications may require a 

reduced number of channels and frequency bands to shorten the computation time, 

facilitate human comprehensibility, and develop a practical wearable. In prior research, 

different sets of channels and frequency bands have been used. In this study, a systematic 

way of selecting the set of channels and frequency bands has been investigated, and results 

shown that by using the reduced number of channels and frequency bands, it can achieve 

similar accuracies. The study also proposed a method used to select the appropriate features 

using the ReliefF method. The experimental results of this study showed that the method 

could reduce and select appropriate features confidently and efficiently. Moreover, the 

Fuzzy Support Vector Machine (FSVM) is used to improve emotion classification 

accuracy, as it was found from this research that it performed better than the Support Vector 

Machine (SVM) in handling the outliers, which are typically presented in the EEG signals. 

Furthermore, the FSVM is treated as a black-box model, but some applications may need 

to provide comprehensible human rules. Therefore, the rules are extracted using the 

Classification and Regression Trees (CART) approach to provide human 

comprehensibility to the system. The FSVM and rule extraction experiments showed that 

The FSVM performed better than the SVM in classifying the emotion of interest used in 
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the experiments, and rule extraction from the FSVM utilizing the CART (FSVM-CART) 

had a good trade-off between classification accuracy and human comprehensibility.   
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Contributions of the Thesis 

An efficient emotion classification system using EEG signals has been investigated into 

and the solutions to the research questions have been proposed and developed. The 

contributions of this thesis have been published in referred conference proceedings, as 

shown in Table 0-1. 

Table 0-1 Summary of contributions 

Chapter Contribution Paper No 

II. Background Survey on previous research work on emotion 

models, EEG emotion, channel and sub-

frequency band selections, classification 

techniques, and noise reduction in EEG 

emotion classification. 

(P4) 

III. Channel and Frequency Band 

Selections for Features in the Efficient 

EEG Emotion Classification System 

Channels and sub-frequency bands were 

investigated for the selection, and optimized 

using the Support Vector Machine (SVM) to 

construct an efficient EEG emotion classifier. 

(P3) 

IV. Fuzzy Support Vector Machine for 

EEG Emotion Classification 

1) Selecting appropriate features from the 

findings of Chapter 2 using the Relief 

technique.  

2) Developing a weighted function in the FSVM 

to build a more robust EEG emotion classifier, 

(P1) 
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by better handling outliers from the EEG 

signals. 

V. Rule extraction technique from the 

FSVM  

Developing a rule extraction technique from 

the established EEG FSVM emotion. 

(P2)  
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Introduction 

1.1 Emotion Classification from EEG 

Recently, affective computing has been considered as one of the key areas of interest in 

Human-Computer Interaction (HCI). Affective computing comprises three cognition 

processes, which are attention, memory and decision-marking [1]. Affective computing 

provides the ability for computers to observe, interpret and generate affective features [2]. 

These abilities can significantly improve HCI by creating the interaction between 

computers and humans [3]. Affective computing combines knowledge from areas such as 

psychology, signal processing and, machine learning. The kind of affective computing that 

uses neurophysiological signals is known as affective Brain-Computer Interfaces (aBCI) 

[4].  

In 1924, Hans Berger, a neurologist, captured the first electroencephalogram (EEG) using 

an electrode from a human brain. The EEG revealed electrical signal activities of human 

brains shown as wave patterns. With the advancement of computing power and the 

improvement of EEG equipment, the EEG signal can be better used to interpret the states 

of the cognitive process and behavior such as selective attention, working memory, and 

mental calculations. [5] 
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EEG systems can be used to detect human emotions and form an important area in the 

research of HCI [6]. Emotion is one of the critical factors that can affect human decision 

and behavior, as well as enhance user experience. In the case of the classification of 

emotion using human brain electrical signals, the tasks are to analyze the EEG signals such 

that the behavior can be classified into pre-defined emotional classes [7]. During the past 

decades, an exponential growth of aBCI publications has been observed, and various 

applications have been developed in the areas such as medical treatments, entertainment, 

education, marketing, and robotic control [8-14]. However, according to the reference [15] 

in the thesis, A. Al-Nafjan, M. Hosny, Y. Al-Ohali and A. Al-Wabil indicated that “Some 

examples of limitations in current algorithms and approaches involve time constraints, 

accuracy, the number of electrodes, the number of recognized emotions, and benchmark 

EEG affective databases.” Consequently, an efficient EEG emotion classification system 

for aBCI applications should be developed.  

The effectiveness of EEG emotion classification depends on many factors. One of the 

essential tasks is the ability to perform real-time emotion classification using efficient 

techniques. Some studies [16] [17] suggested that portable and EEG systems for real-time 

applications such as detecting emotion conditions for airplane pilots and bus drivers, as 

well as the desire to reduce the response time in EEG medical applications, should be 

developed. However, most of the studies in aBCI were proposed for off-line applications 

and required a large number of electrode channels [15, 18].  

Another limitation that has been reported in EEG emotion classification is related to 

classification accuracy which is affected by noise [19]. In Brain-Computer Interfaces 
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(BCI), noise is one of the leading issues affecting the performance of classification [20]. In 

fact, the EEG signal is noisy, and as such, noise and outliers are normally unavoidable [23]. 

Therefore, the identification and removal of signals due to artifactual activities is a 

challenge [4]. Although Independent Component Analysis (ICA) was suggested to deal 

with different signal sources [21], ICA is inefficient as it requires many reference channels 

and massive offline training samples [22]. Thus, these two requirements affect the 

development of real-time EEG applications.   

Furthermore, for some EEG medical applications, such as medical diagnosis from EEG 

[23, 24], it is desirable to create an interpretable model to be used by human experts for 

decision-making [25]. Nevertheless, most classification modeling used in EEG emotion 

classification are black-box models, which lack the ability to provide human explanation.  

As a result, these three challenges lead to the need for a system, which requires low 

computation requirements, possesses the ability to handle outliers effectively, and provides 

human comprehensibility. The objectives of this thesis are to addresses these limitations 

and to enable the development of an efficient system. First of all, an efficient emotion 

classification system using EEG should be able to use fewer features, by reducing the 

number of electrode channels and sub-frequency bands. Therefore, the complexity of the 

system is reduced and real-time aBCI applications in the future can be developed more 

easily. Next, noise and outliers in EEG signals should be better managed in order to 

increase classification accuracy. Finally, the system should be transformed into a white-

box model, by extracting the rules from its corresponding black-box model. Consequently, 

expert users will then be able to interpret and evaluate the model for the need of the 
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respective EEG applications. The following section describes in detail the three problems 

concerning EEG emotion classification. 

1.2 Problem Statements  

In this thesis, the efficient emotion classification system using EEG focuses on three 

problems, namely computational challenge, outlier handling, and an interpretable model. 

1.2.1 Computational Challenge 

Recently, EEG emotion classification has become one of the popular topics in aBCI. 

However, majority of the aBCI studies were aimed for offline applications [15]. On the 

other hand, some applications require real-time responses. For example, in the 

development of portable medical support applications for epilepsy patients, there is a need 

to reduce the complexity of the system because using less computational resources and a 

shorter respond time will assist patients promptly. To reduce the computational time, one 

way is to use fewer electrode channels, which are appropriate for the purpose of the 

application. Furthermore, using many and sometimes redundant channels may cause an 

overfitting problem in classification, and a problem in finding the optimal model using 

machine learning techniques. Therefore, there is a need to reduce the number of electrode 

channels for use in real-time applications in the future. [15, 26]  

Most previous studies used various datasets, and appropriate channels were suggested 

differently. For example, 64 channels [27, 28], 32 channels [29, 30] and five channels were 

used [31] respectively for similar purposes. Some studies  [32, 33] selected channels based 
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on brain-activity built on the assumptions of using three or four channels such as the frontal 

lobe lateralization. In contrast, another study [34] conflicted previous studies by 

mentioning that the parietal and central lobes are recommended to acquire the signals, 

rather than the occipital and frontal lobes  for the same purpose. There is no consistent or 

heuristic way of channel selection in EEG emotion classification. Therefore, EEG channel 

selection is an area of research interest in this thesis. This thesis studies the relationship 

between the number of channels and frequency bands for features regarding the same 

benchmark database and classifier for a fair comparison [26]. The set of selected channels 

is then processed by a selected feature selection method (ReliefF) to choose the appropriate 

features. This provides a systematic and effective way of analyzing the channels and 

frequency bands which are suitable for use in EEG emotion classification. 

1.2.2 Outlier Handling  

Most of the time, the EEG is affected by noise, and noise could affect classification 

accuracies. Inconsistent samples in the datasets are normally known as noise [35]. This 

issue can reduce the performance of machine learning techniques because of the 

complexity of data and an increase of computation time. Consequently, dealing with noise 

or outliers of the EEG signals is one of the focus in this research. To deal with noise and 

outliers in EEG signals, ICA seems to be a popular method. However, it requires many 

electrodes and some reference channels to deal with the noise. Therefore, it is not suitable 

for real-time computation [36]. Another approach, Another approach, which is more noise-

tolerant, is the Fuzzy Support Vector Machine (FSVM), and it is proposed to be used to 

deal with the outliers in this thesis.  
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The SVM has been reported to be a commonly used method to provide good recognition 

accuracy in aBCI [15, 37, 38]. It was recommended to be used in aBCI because of its ability 

of regularization. The SVM has a regularization parameter 𝐶 to deal with the 

misclassification issue in the training set [20]. Nevertheless, traditional SVM has been 

reported to be quite sensitive to noise and outliers [39]. Even though the SVM has the 

ability of regularization, it assigns the same value of 𝐶 to all training samples, which might 

include misclassification samples. The FSVM was therefore introduced to cope with the 

outlier issue by assigning various membership values on uncertain instances during its 

learning process [40]. The FSVM also enhances the performance of classification when 

challenged with the outlier issue in the EEG data.  

1.2.3 Interpretable Model 

Using black-box models, such as Artificial Neural Network (ANN), SVM and FSVM, may 

not meet the requirements of some real-world applications in aBCI. [23, 24, 41]. Typically, 

the black-box model is difficult for humans to understand. For real-world applications, an 

understanding on how the model generates the output is important for applications such as 

medical diagnosis and prognosis [42]. There is a need for a machine learning model, which 

is interpretable and capable to interpret the prediction from EEG signals, especially in 

medical applications [43]. Although the SVM has been popular in building EEG prediction 

models, it is difficult to interpret. As a result, rule extraction from a black-box model is 

required because it can provide reasonable rules for a human expert to understand how 

such predictions are made [44]. Consequently, one of the objectives in this thesis is to 
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develop a rule extraction method that can extract rules from the FSVM to provide human 

interpretability to the model and at the same time, maintain emotion classification 

accuracies.  

1.3 Objectives 

In order to develop an efficient emotion classification system using EEG with human 

comprehensibility, the objectives of this research are presented as follows: 

1) To investigate a number of features for EEG emotion classification, in order to 

reduce the complexity of the emotion recognition system. 

2) To propose and investigate a robust technique to enhance the classification 

accuracy, by effectively handling outliers in EEG data. 

3) To extract interpretable rules from the proposed classifier, so as to allow human 

comprehensibility on the EEG-based emotion classifier. 

1.4 Contributions 

The significance of this research is to create an efficient emotion classification using EEG. 

First of all, the essential contribution is a rule extraction technique that can extract 

knowledge from a machine learning model (FSVM) to provide human interpretable EEG 

emotion classification. Next, an appropriate set of EEG channels and frequency bands is 

presented for reducing the complexity of EEG emotion classification. This reduction could 

also assist the rule extraction step in providing appropriate rules to interpret. The final 

contribution is the development of a FSVM framework to handle the outlier problem in the 
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EEG data and increase accuracy performance of EEG emotion classification and its rule 

extraction. 

1.5 Overview of the Thesis  

The structure of the thesis is as follows. This chapter provides a brief introduction to the 

EEG emotion classification system, problem statements, objectives and contributions of 

this thesis. Figure 1-1 shows the framework of efficient emotion classification using EEG. 

 

Figure 1-1 Efficient emotion classification using EEG 
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Chapter 2 is the background of this research, in which emotional models and EEG signals 

are defined. Related work with channel and frequency band selections are also presented. 

Previous machine learning techniques used in the EEG system are also explored, and the 

problem of outliers in the SVM is discussed. Finally, the discussion of channel and 

frequency band selections from other studies is presented.  

In Chapter 3, a relationship between channels and frequency bands for the features is 

investigated by comparing channel selection of various studies from past literature. The 

SVM and EEG benchmark dataset are used for the experiments. After the investigation, 

suggestions and recommendations of the reduced set of channels are presented. 

There are two parts in Chapter 4. The first part involves the use of recommendations from 

Chapter 3 to find appropriate channels and frequency bands for features using the ReliefF 

technique. Secondly, a framework using the FSVM to deal with outliers in the database is 

proposed. A FSVM weight function is presented and used to enhance the classification 

performance of the EEG database. The weight function is used to assign less values to the 

samples which are defined as outliers. Furthermore, a framework using the FSVM is 

compared with the SVM and other classification models in order to evaluate the 

performance. After that, a discussion is presented. 

Chapter 5 presents the rule extraction from EEG signals using FSVM. A technique, which 

is rule extraction from EEG using SVM by Classification and Regression Trees 

(SVMCART), is applied to the framework. The experimental results of CART, 

FSVMCART (rule extraction of FSVM using CART), are then compared with each other 

and discussed. 
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Chapter 6 is the thesis conclusion. It summarizes the major significant contributions of this 

research. The limitations and recommendations for future studies are also presented. 
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Background 

This chapter discusses the background and relevant research works on EEG emotion 

classification. In this chapter, emotion models, EEG signals, placement channels, and the 

process of EEG emotion classification are presented. This serves to explain the concept of 

EEG emotion classification. This chapter also discusses channel and sub-frequency 

selections, noise reduction and machine learning techniques in the EEG emotion 

classification system. The SVM model is then described. Finally, a summary of the chapter 

is presented. 

2.1 Emotion Models 

Aristotle stated human emotion as, “The Emotions are all those feelings that so change 

men as to affect their judgements, and that are also attended by pain or pleasure. Such are 

anger, pity, fear and the like, with their opposites” [5]. Scherer [45] referred to William 

James’s study that emotion in terms of modern experimental psychology is, “…that the 

bodily changes follow directly the perception of the exciting fact, and that our feeling of 

the same changes as they occur is the emotion”. Both quotes are definitions from early and 

modern perspectives respectively. Interestingly, they both state that emotion invokes 

human’s perception and reaction. The study of emotion can provide many benefits, 

especially in HCI [4, 15]. However, emotion is subjective and controversial. For instance, 
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emotion can be classified as cognitive or non-cognitive and emotions can be analyzed using 

discrete or continuous models [46]. In addition, there are a wide variety of emotion 

definitions from psychologists, but discrete and dimension models have been used widely 

in EEG emotion classification systems [4]. 

2.1.1 Discrete model 

Discrete models are based on basic emotions that can be found universally and they are 

distinguished from one another via different physiological theories. Examples of the 

emotions that have been identified are happiness, surprise, anger, fear, sadness, and disgust 

[47]. In addition, Ekman and Friesen interceded six basic discrete emotions which are 

surprise, happiness, anger, fear, sadness, and disgust [48]. This definition was developed 

on the assumption that those emotions can be found in every culture in the world.  

Although discrete models are one of the more popular models that have been used in aBCI 

to identify human emotions, Wang et al. [7] pointed out that the issue of discrete models is 

the question as to which emotions are basic emotions. For example, Ekman et al. added a 

number of basic emotions from six to fifteen in 1999 [49]. In addition, De Sousa argued 

that two basic emotions, namely surprise and disgust, are too easy to be defined as emotions 

[50]. Moreover, Liu et al. added another issue, that although basic emotions are often found 

in most countries, not all of them can be found in some countries. For example, in Poland, 

the Polish do not have the emotion of disgust. Due to the issues found in discrete models, 

this thesis uses dimensional models for classifying emotions instead [51].  
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2.1.2 Dimensional model 

To allow for a generalization of emotion models, the dimensional model has been 

introduced as a combination of multi-psychological dimensions [15]. This is another 

popular model that has been used widely. The models are defined by plotting a scale of 

‘core affect’ on several dimensions. Scherer [45] reported that there are several pairs of 

emotions which can be plotted, such as pleasure and pain, agreeableness and 

disagreeableness, or positive and negative. These models are called bi-polar dimensions 

[5]. The Russel’s model is a popular dimensional model [52]. It is commonly used and 

usually has two dimensions: valence and arousal on the two-axes. The valence axis defines 

the range from negative to positive feelings, whereas the arousal axis defines the emotions 

from calm to excited. The two-dimensional representation of emotional terms (vertical 

dimension: active/passive; horizontal dimension: positive/negative) is shown in Figure 2-

1. In addition, a three-dimensional system was proposed by Wundt [45] for more complex 

emotions. The three-dimensional system is represented in three axes, including excitement 

vs. depression, tension vs. relaxation and pleasantness vs. uncleanness. An example of a 

three-dimensional model has sleep-tension, attention-rejection and pleasantness-

unpleasantness [53]. There is another called the PAD-space [54]. It adds a third axis 

(dominance axis) to the original Russel model.  

In this thesis, the dimensions of Valence, Arousal and Dominance (VAD) are used to scale 

emotions because they have been reported to be fundamental dimensions, which are widely 

used [4, 15]. Moreover, Wyazesany et al. found that VAD is clearer and more 

understandable than discrete emotions because discrete emotions are more difficult to be 
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monitored precisely, as they are subject to individual perception [55]. Consequently, each 

dimension is divided into two emotions: positive and negative. Mehrabian [56] explained 

that arousal is used to measure how enthusiastic or soporific someone is, valence is used 

to measure how pleasant or unpleasant the human mind is, and dominance is used to 

measure how dominant and submissive a person feels. In other words, positive arousal can 

be excited and negative arousal can be calm, whereas positive valence is probably pleasant 

or joyful and negative valence might be unpleasantness, anger or fear. Finally, positive 

dominance can be a dominant emotion, such as anger. In contrast, fear is a negative 

dominance and submissive emotion [4, 56]. Moreover, a pair of bi-polar dimensions can 

be represented on two dimension axes and merely interpreted to a group of discrete 

emotions, as in Figure 2-1.  

 

Figure 2-1 A two-dimensional representation of emotion terms [source from [57] 
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To measure an emotional response, the Self-Assessment Manikin (SAM) was developed 

to state what participants feel using a picture-oriented questionnaire [58]. 

2.1.3 Self-Assessment Manikin (SAM) 

There are many standard measurements to rate the emotion scales. One of them is known 

as Self-Assessment Manikin (SAM). This measurement has dominated many studies of 

EEG emotion classification [59]. The SAM is used to measure the degree of arousal, 

pleasure, and dominance from the participants. The SAM is a non-verbal pictorial 

assessment technique used to obtain affective data from participants after stimuli were 

presented to them [60]. An example of the SAM assessment is shown in Figure 2-2.  

 

 

Figure 2-2 The Self-Assessment Manikin (SAM) used to rate the affective dimensions of 

valence (top panel), arousal (middle panel), and dominance (bottom panel) [source from 

[60] 
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There are a few ways to express emotion, namely via facial images, speech and more 

recently, biological signals [61]. Besides facial and speech expressions, biological signals 

are another type of input for classifying emotions. EEG is categorized under the biological 

signals group. Although emotion recognition and classification from facial or speech has 

provided satisfactory prediction, in some situations, it may not be so accurate. For example, 

facial expression is easy to be made up and speech expression, in terms of the tone, can 

also be faked easily [38, 62]. Therefore, it is getting more popular for physiological signals 

to be used as an alternative way for emotion classification. 

2.2 Biopotential Signals 

Thakor [63] mentioned that the human body is a combination of various organs. Some of 

the organs, for example, heart, brain, muscles and eyes, produce electrical signals when 

they are performing their functions. Out of these signals, the brain produces 

Electroencephalography (EEG). Secondly, eye movements produce a signal called 

Electrooculography (EOG) and the Electroretinography (ERG) signal is created by the 

retina in the eyes. Thirdly, every movement of the muscles generates signals known as 

Electromyography (EMG). Finally, the heart produces a signal called Electrocardiography 

(ECG). [63] For instance, sample waveforms of ECG, EEG, and EOG are shown in Figure 

2-3 and the amplitude and bandwidth of the bio-signals is shown in Table 2-1. 



17 

 

 

Figure 2-3 Sample waveforms: (a) ECG (b) EEG (c) EMG (d) EOG [source from [63] 

Table 2-1 The bandwidth of the bio-signals 

Source Amplitude (mV) Bandwidth (Hz) 

ECG 1-5 0.05-100 

EEG 0.001-.01 0.5-40 

EMG 1-10 20-2000 

EOG 0.01-0.1 dc-10 

 

These signals have been acquired and used to interpret participants’ emotions. For 

example, ECG and EOG [64], EMG [65], and EEG [30, 66] have been used in respective 

studies. However, using EEG to classify and recognize human emotions has been studied 

widely because it is inexpensive, fast and non-invasive [67]. Moreover, it supplies a good 

resolution; therefore, researchers can study phase changes in response to emotional stimuli 

[68]. As a result, EEG equipment is wearable, economical, portable and useable. 

Furthermore, EEG-based emotion applications can be developed in areas such as e-
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healthcare, e-learning and entertainment [69, 70]. Consequently, this study investigated 

EEG emotion classification based on EEG signals. 

2.3 Electroencephalogram (EEG) and Human Emotion 

Specifically, Mühl et al. [4] indicated that human emotions can be detected by interpreting 

EEG data in terms of time and frequency domains of EEG. For the frequency domain, there 

are five-frequency bands that can be associated with the emotion states. They include: 

delta, theta, alpha, beta and gamma frequency bands, as shown in Figure 2-4.  

2.3.1 The delta band 

The delta band frequencies range from 0.5 to 4 Hz. This range can be found during the last 

state of sleep [71] and motivational states [72]. Medial prefrontal cortex, ventral tegmental 

and nucleus accumbens are parts of the brain that create the delta frequency. A few studies 

[73-75] reported that the more arousal stimuli users receive, the higher the power of the 

delta band signal. 

2.3.2 The theta band 

The theta band frequencies range from 4 to 8 Hz. This range can be found during cognitive 

processes [4], working memory tasks [76, 77] and responding to pleasurable stimuli [78]. 

The theta band power signal has been found on the frontal [74] and parietal [73] regions 

when receiving arousing stimuli. Moreover, feelings of pleasure and displeasure are 

involved with positive valence during the listening to music [79] [80] and in such cases, 

the fronto-medical theta is normally increased. 
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2.3.3 The alpha band 

The alpha band frequencies range from 8 to 13 Hz. This range can be found over the 

parietal, occipital [81] regions and frontal asymmetries [82]. Coan and Allen [82] also 

claimed that frontal alpha asymmetries associate with affective states and neurophysiology. 

Moreover, Niedermeyer [78] has reported that the alpha range plays an important role in 

terms of  relaxed and wakeful states of mind. Additionally, a few studies [83, 84] indicated 

that during the states of relaxation, the alpha power increases. 

2.3.4 The beta band 

The beta band frequencies range from 13 to 30 Hz. This range can be found over the central 

regions of the human brain. This band is related with the sensory-motor system during 

motor activity, motor imagination or sense of touch [85]. In terms of affective states, the 

beta band power increases over temporal regions due to the response to self-induced 

positives and visuals [86, 87]. On the other hand, a decrease of the band power depends on 

the subjective experience [88]. 

2.3.5 The gamma band 

The gamma band frequencies range above 30 Hz. The range can be found in different 

sensory and non-sensory cortical networks [89]. The gamma range is relevant to a wide 

variety of cognitive processes including: attention [90], memory [91], consciousness [92], 

and multi-sensory integration [93]. Concerning affective states, a few studies [87, 94] 

found that the amplitude of the gamma frequency increases with increasingly positive 

valence. Furthermore, in terms of arousal, high and low arousing visual stimuli affect the 
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gamma band power by increasing the value [95-97]. Additionally, it was found that gamma 

activity increases over somatosensory cortices, when an awareness of painful stimuli is 

represented [98, 99]. 

 

 

Figure 2-4 Examples of delta, theta, alpha, beta, and gamma frequencies [source from 

[100] 

To capture raw EEG signals, there are many EEG devices which have been used in medical 

and academic purposes, such as Quik-cap [101], Active-electrodes [10] and EPOC [102]. 

These devices have a number of electrodes. In addition, the International 10-20 system has 

been used to locate placement position spatially [103]. 
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2.4 International 10-20 EEG Placement System  

During the affective stimulus process, electrodes are used to capture EEG signals. 

Although there are two main types of electrodes, namely gel and dry electrodes [104], the 

fundamentals behind them are the same. The electrical activities of the brain are captured 

to input the circuits of the electrodes. The signals are then amplified and recorded onto 

memory devices. The number of electrodes used depends on the number of positions on a 

scalp and the activities of the brain functions that need to be examined.  

The standard used to position the electrodes on the scalp is called the 10/20 System or the 

International 10/20 System. Figure 2-5 shows the 10/20 system positions of the electrode 

placement with 21 electrodes, and the letters to identify the lode is shown in Table 2-2. The 

‘C’ letter in Table 2-2 is used for identification purposes only. Also, the International 10/20 

System, with intermediate 10% electrode positions, was extended from the original 10/20 

System by the American Electroencephalographic Society [104], as shown in Figure 2-6. 

In this thesis, this modified 10/20 System is used to identify the positions of EEG electrode 

placement. 
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Figure 2-5 10/20 International positions of placement 

 

Table 2-2 Letters to identify the lode position 

Electrode Lobe 

F Frontal 

T Temporal 

C Central 

P Parietal 

O Occipital 
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Figure 2-6 Modified 10/20 System [source from [104] 

2.5 Channel and Frequency Band Selections in EEG Emotion Classification 

EEG classification is a process that involves the selection of placements and appropriate 

data acquisition electrode channels on the skull, in order to obtain optimal signals. The 

signals are then decomposed into sub-frequency bands used for the selection of various 

features.  

Al-Nafjan et al. [15] mentioned that there should be fewer channels used in the EEG system 

because of the comfort level of users, system usability and number of features to be 



24 

 

processed. However, a large number of electrode channels has been required from most 

current EEG devices [15]. Mühl et al. [4] reported that the average accuracies of arousal 

and valence classifications are 68% and 65% respectively. In their survey, a number of 

features had been used. For example, 230 features of 5 bands of 32 channels and 14 

asymmetry pairs [29], 216 features of 14 asymmetry pairs of 4 bands, 32 channels of 5 

bands [30], and 3 channels of 3 bands [32]. Yet, very few studies used only one or two 

band(s) for the features [62, 105]. Nonetheless, these studies may not compare the 

relationship of the channels and frequency bands appropriately because they used different 

datasets and features. In order to improve the computation time for real-world applications, 

the reduction of frequency bands and channels is one of the objectives of this study (as 

based on the same dataset and settings). 

Computation time is another concern for an efficient system. Rached and Perkusich [106] 

recommended that choosing techniques and channels of acquiring the EEG signal is the 

issue for improving performance significantly in terms of classifying affective states. 

Supporting this idea, Cheemalapati et al. [16] suggested that developing a portable system, 

of one channel only, is very important for real-time applications to measure stressful 

conditions in the case of airplane pilots and bus drivers. However, their study was a mere 

demonstration of signal detection and the rest of their objectives will only be achieved in 

the future. In addition, Mahajan et al. [17] also claimed that an inexpensive design of the 

EEG system is crucial to assist real-time medical tools to reduce the difficulties and 

reaction time of the EEG system. Nevertheless, the paper showed a design of the 

framework, but it did not present its experiment and results. Furthermore, Szibbo et al. 
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[107] indicated that some limited channels of EEG applications need real-time processing, 

low computation, such as BCI, sleep scoring programs, and Alzheimer’s disease 

recognition. Nonetheless, the study presented a technique to deal with blink artifacts to 

contribute towards real-time EEG applications. Therefore, channel and frequency-band 

selection is one of the purposes in this thesis, in order to reduce the complexity of the EEG 

classification system and enable human comprehensibility. 

The electrode channels, placement positions, and frequency bands are some of the 

controversial topics in aBCI. First of all, there are many studies selecting different numbers 

and locations of EEG placements. Some studies used several electrode channels to acquire 

EEG signals [108, 109], whereas others used only a few channels [105, 110]. Moreover, 

more than twenty channels had been selected in many studies [7, 111]. Secondly, there are 

a few placement positions to be recommended for aBCI. Frontal lobe positions have 

presented a decent performance [4]. In contrast, another study [34] mentioned that the 

parietal and central lobes are recommended for acquiring the signals, rather than the 

occipital and frontal lobes. Finally, there is the issue of the number of sub-frequency bands 

of EEG signals that should be selected for feature extraction. Five sub-frequency bands are 

decomposed and selected widely, including delta, theta, alpha, beta and gamma [7, 108]. 

However, some studies indicated that using a few sub-frequency bands are adequate for 

feature extraction. For example, Bos’s study used only two sub-frequency bands: alpha and 

beta, and they were sufficient for emotion recognition [62]. In general, as observed from 

prior studies, there is no consistent way of determining the channel and frequency band 

selections. As a result, the experiments in Chapter 3 are designed to investigate the 
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relationship of the number of electrode-channels, sub-frequency band selections and 

placement positions. The same benchmark dataset, feature extraction, and classification 

techniques are set for fair comparisons. Furthermore, in the beginning of Chapter 4, 

appropriate features are selected using a feature selection technique.  

2.6 Noise Reduction  

As mentioned in Chapter 1, there is the challenge of noise reduction. As such, noise 

removal is essential to improve classification performance and avoid the overfitting issue 

[112]. There are two main approaches in noise tolerant and noise elimination techniques 

[113]. The difference between both approaches is the way in which noisy data is considered 

and avoided. While the noise tolerant approach focuses on an internal improvement of the 

mechanism in a classifier model, the noise elimination approach focuses on a pre-

processing process to remove noise from a training set [112]. 

Mühl et al. [4] stressed that noise filtering is important to filter noise from relevant EEG 

signals for an effective emotion system. Normally, EEG signals come up with non-

emotional signals, such as power-line and other bio-signal noise, such as eye blink and eye 

movement artifacts called EOG artifacts. There are many techniques that have been applied 

recently to deal with the noise problems, such as those based on Principle Component 

Analysis (PCA) and Independent Component Analysis (ICA) [36]. PCA and ICA can be 

considered as noise elimination approaches because they perform a data pre-possessing 

task. There are many studies using these techniques in EEG classification [66] and [114].  

Kroup et al. [36] made some conclusions as follows. First of all, ICA seems to have the 
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best performance in terms of accuracy, but it is not the fastest in terms of speed. Therefore, 

it is suitable for offline computation. The second one is PCA. This technique is less 

accurate, but the time required is lesser than ICA. In addition, the requirements of real-time 

EEG systems have increased recently. One of these requirements is the number of channels. 

Matiko et al. [115] criticized the issue that for existing techniques of regression, PCA and 

ICA are not suitable for removing eye blink from the channel in non-medical applications. 

Supporting the issue of both PCA and ICA based methods, Khatwani and Tiwari [19] 

highlighted the limitations of both methods, as that of only analyzing in the time domain. 

Moreover, PCA depends on the size of EEG signals for its performance.  

This thesis focuses on noise, which are outliers. In the literature, as mentioned earlier, the 

noise elimination approach might be unsuitable for the outliers in this thesis. To develop 

an efficient EEG emotion classification, a number of features must be reduced because of 

computation time. In other words, a number of channels might not be enough for ICA and 

PCA to provide a good training dataset. Moreover, time consumption is another purpose in 

this thesis. A number of processes should be reduced in the efficient EEG emotion 

classification system. 

2.7 Emotion Classification 

There are many processes for the EEG emotion classification system. First of all, 

participants’ emotions are elicited using external stimulus. Some materials are provided to 

elicit human emotions, such as sounds [109], movies [7, 116] and pictures [117]. These 

materials will be used as training or testing data. After that, the EEG signals can be recorded 
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by the electrode devices. Examples of commonly used systems are Emotive [109] and 

NeuroSky’s MindWave [8]. The number of channels and positions between these systems 

are different, according to the devices and researchers. Nevertheless, many studies [82, 

118-121] suggested that the human frontal lobe is an informative and affective area to 

measure EEG activities. Next, some digital signal pre-processing techniques are used to 

process EEG raw signals, in order to reduce complexity and remove noise and artifacts. 

For example, the raw signals may be reduced by different sampling rates [7, 108, 122]. 

Another example is the decomposition technique. The raw signals, which are within 0.1-

70 Hz, can be decomposed into various sub-frequency bands, such as the delta, theta, alpha, 

beta, and gamma bands [37, 116, 122]. In addition, the raw signals contain not only EEG, 

but also other bio-signals, such as electrooculogram (EOG) and electromyogram (EMG) 

[123]; therefore, artifact removal techniques may be required in this process. After that, the 

feature extraction process, involving the pre-processed signals, is carried out. This stage is 

very important to achieve good results for emotion classification [117]. There are many 

methods to extract the EEG data. Examples of such techniques are Power Spectrum 

Feature [7, 117], Fourier transform [37, 108] and Fractal Dimension [109, 124]. The next 

process is classification. The feature data is trained by one of the many machine learning 

techniques, such as Support Vector Machine [7, 37, 109], Naïve Bayes [8, 108], Fuzzy C-

Mean Clustering or K-means [7], so as to generate a classifier model. Finally, the classifier 

model can be used to benefit applications of EEG emotion classification; for example, in 

treatment (music therapy), providing of pleasure (computer game), marketing, education 

and art [8, 9, 18, 125, 126].  
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2.7.1 Machine Learning Techniques in EEG Emotion Classification 

Many machine learning techniques have been applied for EEG emotion classification. For 

example, Mühl et al. [4] showed in their literature study that the Support Vector Machine 

(SVM), Naïve Bayes (NB), Linear Discriminant Analysis (LDA), K-Nearest Neighbor (k-

NN), Fuzzy Clustering (FC) and Multi-Layer Perception (MLP) were used. Moreover, 

another study by Kim et al. [127] reported that Discriminant Analysis (DA), k-NN, 

Mahalanobis Distance (MD) and SVM were applied. Among these techniques, the SVM 

is used most widely. In addition, Valenzi et al. [37] claimed that the SVM performed the 

best in terms of accuracy over Back-Propagation (BP), Learning Vector Quantization 

(LVQ), Vector Quantization (VQ), Fuzzy C-Mean Clustering (FCM), k-means and k-

medians. Moreover, Jatupaiboon et al. [38] indicated that the SVM performed better than 

other techniques because of the better generalization properties and dealing with the issue 

of dimensionality in emotion classification, as compared to the other methods in the 

comparison studies.  

Consequently, although the SVM has been used by many studies [30, 32, 111, 117, 128, 

129], outliers and noise might decrease the performance of the SVM. The SVM has been 

reported to be quite sensitive to noise and outliers [39]. EEG consists of non-stationary 

signals and contains many noises and outliers. For example, Lotte et al. [20] reported that 

poor signal-to-noise ratio is a characteristic of BCI. Consequently, regular SVM can face 

a problem from EEG data because it can change over time. Besides, Barua and Begun [130] 

claimed that EEG has the same issues as other bio-signals, such as noise and artifacts. 

Moreover, Barakat and Diederich claimed that some applications, such as medical 
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diagnosis, require a better understanding of how a classifier makes a decision [131]. For 

example, Zhou and Jiang applied C4.5, which is a decision tree, to extract rules from an 

artificial neural network ensemble for three cases of medical diagnosis including hepatitis, 

diabetes, and breast cancers [132]. Likewise, Martens et al. indicated that some 

applications, like a credit score application, need a proven validation before actual 

implementation. Consequently, explanation capabilities are very important [133]. 

Nevertheless, most classifiers in EEG emotion classification are black-box models, which 

lack the ability to provide a human explanation. However, for some expert systems, such 

as medical diagnosis [17], a statement is very crucial for users to consider the procedure of 

the classification. Over the last decades, the SVM has dominated in many applications and 

also in aBCI, as this study mentioned earlier. Even though the SVM has been considered a 

good classifier, Fung et al. [44] mentioned that it is difficult for humans to understand the 

SVM and other linear classifiers, as compared to the rules that can be mapped in terms of 

variable space. Therefore, another objective of this study is to extract rules from the FSVM, 

to provide human comprehensibility, as seen in Chapter 5. Although the SVM may face 

outlier and human comprehensibility issues, it is commonly used successfully in the EEG 

emotion classification system. The next section presents the SVM method and a description 

of how it works. 

2.7.2 SVM 

This section briefly reviews the fundamental principles of the basics of the Support Vector 

Machine (SVM) and discusses a few of its classification problems [40, 134-137]. A binary 

classification problem can be represented by a dataset as follows: 
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{(𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), … , (𝑥𝑙 , 𝑦𝑙)}     (1) 

 

Each 𝑥𝑖 ∈  ℛ𝒩   represents n-dimensional feature points, and it belongs to only one class in 

𝑦𝑖 when 𝑦𝑖 ∈  {−1, 1} for 𝑖 = 1,2,3, … , 𝑙. The objective of the SVM learning algorithm is 

that it tries to find an optimal hyperplane to separate all 𝑥𝑖, which maps the feature inputs 

of a higher dimensional feature space 𝒵, into two classes. In order to find an optimal 

hyperplane, let Φ be a mapping function, and a possible optimal hyperplane can be written 

as: 

 

𝑤 ∙ Φ(𝑥) + 𝑏 = 0       (2) 

 

where 𝑤 ∈  𝒵 𝑎𝑛𝑑 𝑏 ∈  ℛ, each 𝑥𝑖 can be separated by: 

𝑓(𝑥𝑖) = 𝑠𝑖𝑔𝑛(𝑤 ∙ Φ(𝑥𝑖) + 𝑏) =  {
1     𝑤ℎ𝑒𝑛 𝑦𝑖 = 1  

−1, 𝑤ℎ𝑒𝑛 𝑦𝑖 =  −1
   (3) 

 

Finding the optimal hyperplane of linear separation is to find the hyperplane with the 

maximum margin between the two classes.   

 

       Minimum (1

2
 |𝑤|2 ) 

           Subject to 𝑦𝑖(𝑤 ∙ Φ(𝑥𝑖) + 𝑏) ≥ 1 ; 𝑖 = 1,2,3, … , 𝑙.    (4) 

 

In fact, the linear separation is not suitable for most real-world problems because “the 

datasets are not completely linearly separable [134]”. Then equation (4) is modified by 

adding a non-negative variable ξ to:  

 

        Minimum(1

2
 |𝑤|2 + 𝐶 ∑ 𝜉𝑖

𝑙
𝑖=1 ) 
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Subject to 𝑦𝑖(𝑤 ∙ Φ(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 ;  𝑖 = 1,2,3, … , 𝑙;  𝜉𝑖 ≥ 0.  (5) 

 

A measurement of the misclassification can be defined by the term ∑ 𝜉𝑖
𝑙
𝑖=1  because the 

non-negative variable 𝜉 is designed for all input 𝑥𝑖, which are misclassified. Moreover, the 

parameter 𝐶 is a free parameter to be adjusted for maximizing the margin and minimizing 

the misclassification. Therefore, finding the optimal hyperplane is a quadratic optimization 

problem, and the Lagrangian technique was applied by constructing and transforming (5) 

into the dual problem: 

 

      Maximum W(α) ∑ 𝛼𝑖 − 1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗Φ(𝑥𝑖)Φ(𝑥𝑗)𝑙

𝑗=1
𝑙
𝑖=1

𝑙
𝑖=1  

     Subject to ∑ 𝑦𝑖𝛼𝑖 = 0, 0 ≤  𝛼𝑖  ≤ 𝐶, 𝑖 = 1, … , 𝑙𝑙
𝑖=1         (6) 

 

where �̅�𝑖𝑠 = (�̅�1, … , �̅�𝑙) are vectors of Lagrange multipliers. After that, to satisfy equation 

(6), the Karush-Kuhn-Tucker conditions were applied. 

 

�̅�𝑖(𝑦𝑖(�̅� ∙ Φ(𝑥𝑖) + �̅�) − 1 + 𝜉�̅�) = 0, 𝑖 = 1, … , 𝑙     (7) 

 

(𝐶 −  �̅�𝑖)𝜉�̅� = 0, 𝑖 = 1, … , 𝑙        (8) 

 

According to the unknown mapping function Φ, a function 𝐾(∙,∙) was introduced for the 

computation of the dot product of each data point in the feature space 𝒵 as follows: 

 

Φ(𝑥𝑖) ∙ Φ(𝑥𝑗) =  𝐾(𝑥𝑖 , 𝑥𝑗) = (1 + 𝑥𝑖 ∙ 𝑥𝑗)
𝑑

     (9) 

 

where 𝑑 is the polynomial kernel. Thus, the dual problem in equation (6) is transformed 

into:  
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Maximum W(α) ∑ 𝛼𝑖 − 
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖,𝑥𝑗)

𝑙

𝑗=1

𝑙

𝑖=1

𝑙

𝑖=1

 

subject to ∑ 𝑦𝑖𝛼𝑖 = 0, 0 ≤  𝛼𝑖  ≤ 𝐶, 𝑖 = 1, … , 𝑙𝑙
𝑖=1     (10) 

 

A solution to find the optimal hyperplane values for �̅�𝑖 , �̅� is: 

 

�̅� =  ∑ 𝛼�̅�
𝑙
𝑖=1 𝑦𝑖Φ(𝑥𝑖)          (11) 

 

Finally, the decision function of the SVM is given as follows: 

 

𝑓(𝑥) =  𝑠𝑖𝑔𝑛(𝑤 ∙ Φ(𝑥) + 𝑏) =  𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏𝑙
𝑖=1 )   (12) 

2.8 Benchmark Database 

Recently, many EEG devices are available for research purposes and some of these are 

Emotive EPOC, MindWave, MindSet, and OpenBCI [15]. The differences between these 

devices are its prices, the number of electrodes, types of electrodes, and their applications. 

Moreover, instead of capturing EEG signals directly, there are three benchmark datasets 

which are available for research, as shown in Table 2-3. The Database for Emotion 

Analysis using Physiological Signals (DEAP) is used in this study because it provides the 

largest datasets among the three. Moreover, it has three emotion dimensions including 

arousal, valence and dominance. 
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Table 2-3 EEG benchmark datasets [source from [4] 

Name/Link Stimuli Emotions Participants 

eNTERFACE 

http://www.enterface.net/results/ 

Images 

IAPS 

Happiness, 

disgust, 

valence, and 

arousal 

5 

MANHOB-HCI (emotive part) 

http://mahnob-db.eu/hct-tagging/ 

Videos 

(film clips) 

Valence, arousal, 

dominance, and 

predictability 

27 

DEAP (Database for Emotion 

Analysis using Physiological Signals) 

http://www.eecs.qmul.ac.uk/mmv/ 

datasets/deap/ 

Music video clips Valence, arousal, 

dominance, 

familiarity, and 

likeliness 

32 

2.9 Summary  

This chapter began with the related areas of emotion classification. After that, literature 

reviews of the channel and frequency band selections, classification techniques and noise 

reduction in EEG emotion classification were presented. The problems with these topics 

were highlighted to provide the background to the aim of the thesis, which are EEG 

placement channel and sub-frequency band selections, outliers and noise reduction, and 

inability of human comprehensibility in some machine learning techniques. Also, the 

general concept of the SVM was described. Finally, a few benchmark datasets were 

presented.  
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The Investigation of Channel and Frequency Band 

Selections for Features in the Efficient EEG Emotion 

Classification System 

3.1  Introduction 

Mühl et al. mentioned that devising a standard for aBCI is one of the challenges [4]. To 

achieve efficient EEG emotion classification, the appropriate channels and sub-frequency 

bands have to be selected. However, the knowledge concerning the relationship between 

the selection of the channels and sub-frequency bands has shown to be inconsistent with 

channel selection in EEG emotion classification. This chapter aims to investigate the 

relationship between the number of electrode channels and frequency bands, using the 

same benchmark dataset with the same feature extraction and classification technique in 

EEG emotion classification. The objective of this chapter is to determine the relationship 

between the number of channels and frequency bands, in order to find the appropriate 

electrode positions and number of sub-frequency bands to be used. 

This chapter is organized as follows. Section 3.2 describes the benchmark dataset used in 

this thesis. Section 3.3 presents channel selection. The feature extraction approach used: 

Discrete Wavelet Transform (DWT) is shown in Section 3.4. Section 3.5 describes emotion 
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labels. The experimental methodology is presented in Section 3.6. Sections 3.7 and 3.8 

show the results from the use of a number of electrodes channels and positions, as well as 

the number of sub-frequency bands used, respectively. Finally, Section 3.9 is the summary 

of this chapter. 

3.2 Database for Emotion Analysis using Physiological Signals: DEAP 

DEAP [59] is a benchmark dataset for analyzing human affective states. Thirty-two 

participants watched 40 one-minute excerpts of music videos. Meanwhile, they recorded 

EEG signals at a sample rate of 512 Hz from 32 channels after each video finished and they 

had to rate levels of emotions including arousal, valence, and dominance. Having said that, 

like/dislike and familiarity were also rated, but in this thesis, only the three aforementioned 

emotions were used. The SAM was utilized to deliver each emotion level on a continuous 

scale between 1 and 9. Consequently, there were some processes for a pre-processed 

dataset. First of all, the raw dataset was sampled at a frequency rate down to 128Hz. 

Secondly, eye-blink artifacts were detected and removed. Next, the frequencies between 4 

and 45Hz was selected. Finally, the signals were segmented into a one-minute trials and 

three seconds of each trial was removed from the beginning. In this thesis, the pre-

processed dataset was used in all experiments.  

3.3 Channel Selection 

There are two categories of channel selection used in this chapter. The first category is 

based on the position lobes of the International System, as shown in Table 3-1 [138]. The 



37 

 

positions of the human lobes are investigated by comparing each position against the other. 

Therefore, the best placement positions of the human lobe can be identified, so as to acquire 

the EEG signals. The second category is based on numerous previous studies, as shown in 

Table 3-2. A wide variety of channel selection from different lobes have been selected in 

the second category.  

Table 3-1 Category I: Divided by letters of lode positions 

Sub-group Letter of Position Name (number of 

channels) 

Lobe 

1-1 All F(13) All channels on Frontal 

1-2 F3 F4 Fz F7 F8 (5) Some channels on Frontal 

1-3 FC1 FC2 FC5 FC6 (4) Some channels on Frontal 

1-4 Fp1 Fp2 (2) Some channels on Frontal 

1-5 AF3 AF4 (2) Some channels on Frontal 

1-6 All T(2) All channels on Temporal 

1-7 All P(7) All channels on Parietal 

1-8 P7 P3 Pz P4 P8 (5) Some channels on Parietal 

1-9 PO3 PO4 (2) Some channels on Parietal 

1-10 All O(3) All channels on Occipital 

1-11 All C(7) All channels on Central 

1-12 All Letters (32) All channels  
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Table 3-2 Category II: Divided by selecting channels from previous studies 

Sub-Group Position Name (number of channels) Reference 

2-1 F3 F4 (2) [139] 

2-2 F3 F4 Fz (3) [62] 

2-3 AF3 F7 F3 FC5 FC6 F4 F8 AF4 P7 P8 

(10) 

[140] 

2-4 Fp1 AF3 F7 P7 P3 Pz PO3 O1 CP2 C4 T8 

FC6 (12) 

[141] 

2-5 Fp1 Fp2 F7  F3 Fz F4, F8 T7 C3 Cz C4 

T8 P7 P3 Pz P4 T8 O1 Oz O2 (20) 

[111] * 

2-6 All (32) [142] 

3.4 Feature Extraction 

In EEG emotion classification, a spectral feature is one of the popular techniques to extract 

a feature, as shown in Table 3-3. Discrete Wavelet Transform (DWT) is a spectral 

estimation technique [143]. It is one of many signal-processing techniques (which consists 

of several sub-signals) used to decompose signals into different frequency bands [34]. In 

this study, the DWT [7] was selected for decomposing the pre-processed DEAP dataset 

into five frequency bands including delta, theta, alpha, beta, and gamma. Moreover, db4 

was chosen as mother wavelets according to the good results in the EEG feature extraction 

[144]. Also, Amin et al. reported that this wavelet energy is suitable and appropriate for 

classifying EEG signals regarding medical applications [145]. Figure 3-1 shows the DWT 

orders and Table 3-4 shows the results.  
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Table 3-3 Some Feature Extraction Techniques in EEG Emotion Classification 

Reference Features 

[26] Spectral features, PCA 

[17] Spectral features, Coherence measures 

[146] Spectral features 

[28] Spectral features, Hemispheric asymmetry 

[59] Spectral features, Hemispheric asymmetry 

[111] Spectral turbulence 

[33] Signal averaged per participant, Adaptive filtering high-order 

crossing 

[30] Spectral features, Hemispheric asymmetry 

[147] Time frequency features, Mutual information between electrodes 

pair 

 

 
 

Figure 3-1 DWT orders 
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Table 3-4 Sub-Frequency Bands 

Orders Name of Frequency 

Band 

Frequency Range (Hz) 

CA5 Delta 0-4 

CD5 Theta 4-8 

CD4 Alpha 8-16 

CD3 Beta 16-32 

CD2 Gamma 32-64 

CD1 Noise 64-128 

 

According to Section 2.3 Electroencephalogram (EEG) and Human Emotion in Chapter 2, 

human emotion can be interpreted from the delta, theta, alpha, beta, and gamma frequency 

bands. After that, to measure the energy as a function of frequency, the conventional 

technique is spectral analysis. Therefore, the average powerband of each band has been 

selected to be a feature in the thesis. 

The average power band of each sub-band is calculated for the features as follows. For 

example, the average power band of Delta is expressed as follows: 

 

𝐴𝑣𝑔. 𝑝𝑜𝑤𝑒𝑟𝑏𝑎𝑛𝑑  𝑜𝑓 𝐷𝑒𝑙𝑡𝑎 =  
∑ (𝐶𝐴5(𝑖))

2𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐶𝐴5
𝑖=1

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐶𝐴5
    (13) 

 

 

3.5 Emotion Labels 

Dimensional models are selected in this chapter for the emotion model, as mentioned in 

Chapter 2. There are three dimensions, namely arousal, valence, and dominance. Each 

emotion dimension will be further classified into two emotions: low or high. The emotion 
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that the participant gives a rating of greater than or equal to 5 is a high emotion, whereas 

the emotion which is below 5 is a low emotion. Also, the maximum emotion is eight. There 

are three criteria of emotion as shown in Table 3-4. 

 

Table 3-5 Names of Emotions 

Emotion Model The Number of Emotions  Emotion Name 
 

Arousal 2 Low Arousal (LA) / High Arousal (HA) 

Valence 2 Low Valence (LV) / High Valence (HV) 

Dominance 2 Low Dominance (LD) / High Dominance (HD) 

3.6 Methodology 

In this thesis, four tasks are carried out in order to achieve an efficient emotion 

classification system, as shown in Figure 3-2. The first task is to study the relationship 

between the number of electrode channels, and frequency bands for feature selection. After 

that, feature extraction is conducted to select the appropriate features. The next task is the 

classification process using a technique to improve handling with the outliers. The final 

task is rule extraction. Task 1 is the focus in this chapter. 
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Figure 3-2 The efficient emotion classification system 

The DEAP is the dataset used with 32 participants. Each participant has 40 trials. The same 

thirty-two trials were randomly selected for a training set, and eight trials became the 

testing set. The SVM is selected as a classifier in this chapter, via LIBSVM [148], because 

it was recommended for EEG emotion classification (as mentioned in Chapter 2). There 

are optimum 10 times of the experiment and the best result was selected. Moreover, 10-

fold cross-validation was used each run.  Dependent classification is used because of the 

higher accuracy [4]. Dependent classification means that each user has their own training 

and testing processes. As a result, each user has their own classifier model. There are two 

categories, as mentioned in Section 3.3, on Channel Selection. For feature extraction, the 

average power bands of sub-frequency bands are used. 
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There are two experiments used to study the relationship between the channel and sub-

frequency band selections as the features in the EEG emotion classification system. In 

experiment one, a relationship of channel selection is studied to find the most appropriate 

electrode placements. After that, a relationship between the number of sub-frequency bands 

and feature selections is investigated in order to recommend the number of sub-frequency 

bands that should be used. The choices between two and five channels are shown in 

experiment two (Figure 3-3). 

 

Figure 3-3 Experimental Methodology 

3.7 Results from the determination of the Number of Electrode Channels and 

Positions 

In this experiment, two results, which are Categories I and II, are presented based on the 

channel selection. Both are two-emotion classification for each dimension model. The 

average power band of each sub-frequency band is used as a feature. As a result, there are 

five features per channel. 
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Table 3-6 shows the results of the two-emotion classification from Category I. The best 

result of arousal is sub-group 1-5, which is a pair of AF3-AF4. The best result of valence 

and dominance is sub-group 1-8, which is a combination of P7-P3-Pz-P4-P8. 

Consequently, it seems that the channels on the frontal lobe are useful for arousal emotion, 

whereas the channels on the parietal lobe are crucial for valence and dominance 

classifications. Furthermore, using more channels for classification did not guarantee a 

better result. In contrast, using fewer channels showed better results in this experiment. 

Table 3-6 Result of Category I 

Sub-Group Accuracy 

Arousal Valence Dominance 

1-1 57.8 56.77 61.98 

1-2 54.69 52.08 56.77 

1-3 52.60 55.73 63.02 

1-4 57.29 47.40 61.98 

1-5 59.90 54.17 52.60 

1-6 56.77 56.25 60.42 

1-7 55.21 53.65 65.63 

1-8 58.33 58.85 66.15 

1-9 54.69 51.56 61.98 

1-10 55.21 56.25 56.77 

1-11 55.21 56.77 61.46 

1-12 57.29 54.69 59.90 

Avg. 56.25 54.51 60.72 
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Table 3-7 presents the results of the two-emotion classification from various selected 

channels of Category II. The best result for arousal classification is sub-group 2-5, which 

is a combination of 20 channels from different lobe zones. The best results for valence and 

dominance are sub-group 2-6 (which is all 32 channels) and sub-group 2-3 (which 

combines ten channels between the frontal and parietal lobes). Surprisingly, the best results 

in this experiment for Category II are different from Category I. Both best results of 

Category II were mixed from various positions to provide the best results. 

Table 3-7 Result of Category II 

Sub-Group Accuracy 

Arousal Valence Dominance 

2-1 51.56 49.48 57.81 

2-2 49.48 50.52 53.65 

2-3 52.08 53.13 64.06 

2-4 54.17 51.56 63.54 

2-5 60.94 51.56 60.42 

2-6 57.29 54.69 59.90 

Avg. 54.25 51.82 59.90 

 

For the overall classification from Tables 3-6 and 3-7, sub-group 2-5 is the best for two-

emotion classification of the arousal model by using 20 channels from many positions on 

the human lobe. Nevertheless, it is better than the second best, which is sub-group 1-5. 

Interestingly, the two channels of sub-group 1-5 can provide an equal classification 
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performance when compared with the 20 channels. For valence and dominance 

classifications, sub-group 1-8, using five channels from the parietal lobe, is the best. 

Therefore, although this experiment cannot indicate the exact channel positions that should 

be chosen as the best positions of two-emotion classification, frontal and parietal channels 

seem to be crucial for better classification. Also, using a few channels can provide a decent 

performance of emotion classification. These results are useful for feature selection. 

3.8 Results from determination of the Number of Sub-Frequency Bands  

The last experiment in this chapter is to investigate the relationship of the number of sub-

frequency bands for the features. There are two types: using two (alpha, beta) [62, 105] 

and five (delta, theta, alpha, beta, gamma) bands per channel as the features. Table 3-8 

shows two-emotion classification for each dimensional model of Category I and Table 3-9 

shows two-emotion classification of each dimensional model of Category II. 

For Table 3-8, the average accuracy of using five sub-frequency bands as the features is 

better than using two bands for valence and dominance emotions. In contrast, the average 

accuracy of using two sub-frequency bands as the features is better than using five bands 

for the arousal emotion. Similarly, Table 3-9 indicates the same trend as Table 3-8. 

Although the results cannot suggest precisely the best sub-frequency band for the features, 

it appears that the results generated from the models using only two bands is similar to that 

of five bands.  

To sum up, in this experiment, using more channels does not guarantee a higher accuracy. 

In contrast, it might reduce the classification performance. However, the results reveal that 
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using fewer sub-frequency bands for the features in this environment did not reduce the 

performance significantly. This information will be used to find appropriate sub-frequency 

bands for the features in Chapter 4. 

 

 

Table 3-8 Two-emotion classification of each dimensional model of Category I 

Sub-Group Accuracy 

Arousal Valence Dominance 

5 bands 2 bands 5 bands 2 bands 5 bands 2 bands 

1-1 57.81 58.33 56.77 53.65 61.98 55.21 

1-2 54.69 58.33 52.08 53.65 56.77 56.25 

1-3 52.60 62.50 55.73 54.17 63.02 64.58 

1-4 57.29 57.81 47.40 53.65 61.98 57.29 

1-5 59.90 56.77 54.17 52.08 52.60 53.65 

1-6 56.77 57.81 56.25 57.29 60.42 56.77 

1-7 55.21 51.04 53.65 56.77 65.63 62.50 

1-8 58.33 58.33 58.85 56.77 66.15 56.77 

1-9 54.69 57.29 51.56 48.44 61.98 56.25 

1-10 55.21 57.81 56.25 47.40 56.77 54.69 

1-11 55.21 63.54 56.77 56.25 61.46 55.21 

1-12 57.29 58.33 54.69 53.65 59.90 61.46 

Avg. 56.25 58.16 54.51 53.65 60.72 57.55 
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Table 3-9 Two-emotion classification of each dimensional model of Category II 

Sub-Group 

 

Accuracy 

Arousal Valence  Dominance 

5 bands 2 bands 5 bands 2 bands 5 bands 2 bands 

2-1 51.56 59.38 56.77 53.65 61.98 55.21 

2-2 49.48 57.29 52.08 53.65 56.77 56.25 

2-3 52.08 58.33 55.73 54.17 63.02 64.58 

2-4 54.17 57.81 47.40 53.65 61.98 57.29 

2-5 60.94 56.25 54.17 52.08 52.60 53.65 

2-6 57.29 58.33 56.25 57.29 60.42 56.77 

Avg. 54.25 57.90 53.73 54.08 59.46 57.29 

 

Nevertheless, the classification results in this chapter are lower, as compared to some 

previous studies, as shown in Table 3-10. The reason for the lower classification results is 

because the model used a smaller number of channels, bands and features. Moreover, no 

parameter optimization was applied in the SVM technique and it is also sensitive to noise, 

as mentioned in Chapter 2; whereas EEG signals normally contain some noise. These 

issues will be addressed in the next chapter.  

Table 3-10 A comparison of classification results  

Emotion Accuracy 

Best results Previous Study [[4]]*  

Arousal 63.54% 68% 
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Valence 58.85% 65% 

Dominance 66.15% - 

* The average accuracies of arousal and valence classifications of five studies 

3.9 Summary 

In this chapter, the relationship of the number of EEG electrode placements (channels), 

emotions, and sub-frequency bands for the features has been investigated. Various channels 

and sub-frequencies were compared with the same database, features, and classifier. There 

are three observations made in the chapter. The first investigation began with the 

relationship of the number of channels in EEG emotion classification. The results could 

not indicate exactly the best combination of channels for all emotion classifications. 

However, the EEG signals from a few frontal positions can be considered for arousal 

emotion and some parietal positions are appropriate for valence and dominance emotions. 

Therefore, the channels from both groups will be selected for feature selection in the next 

chapter. Moreover, using fewer channels did not drop the classification performance 

significantly. Next, the number of sub-frequencies for the features between two and five 

bands was compared. Interestingly, this study revealed that using two bands was sufficient 

for two emotion classification using EEG. This observation can confirm that an emotion 

system can use fewer sub-frequency bands instead of all bands for the features. As a result, 

some features can be reduced. These observations will be useful to design an efficient 

emotion classification framework for the rest of the thesis because of the possibility of a 

reduction of channel and sub-frequency selections. As a result, there are two outcomes that 
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have been identified. 1) In EEG emotion classification, the channels of the frontal and 

parietal should be considered in the selection. 2) Using several channels and sub-frequency 

bands for features is sufficient for the purpose of the EEG emotion classification in this 

thesis. Thus, the objective of this chapter has been achieved.



 

51 

 

Fuzzy Support Vector Machine for EEG Emotion 

Classification 

4.1 Introduction 

Many machine learning algorithms have been applied in aBCI, but the most used 

classification method is the SVM [130]. The SVM has shown to provide a higher accuracy 

than many conventional learning methods, when dealing with classification problems 

[149]. Furthermore, the SVM has worked successfully in many real-world classification 

problems in different domains [134]. However, conventional SVM has to be improved 

when used in the aBCI field due to the characteristic of EEG signals, which are non-

stationary and contain noise or outliers [20]. The SVM has shown to be sensitive to noise 

and outliers [39]. Lin and Wang [40] introduced a fuzzy approach on the SVM to handle 

these problems and it has been called Fuzzy Support Vector Machines (FSVMs). The 

difference between the traditional SVM and FSVM is that the samples in the SVM are 

treated equally, whereas the samples are treated with different fuzzy membership values in 

the FSVM [150]. To the best of the author’s knowledge, the application of the FSVM to 

aBCI has not been investigated. Furthermore, some studies suggested that portable and 

EEG systems for real-time applications should be developed for practical uses; for 

example, detecting emotion conditions in airplane pilots and bus drivers [16], and the need 
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to reduce the response time in EEG medical applications [17]. Consequently, these goals 

inspired this chapter, that of reducing the number of EEG features. This investigation will 

assist in real-time and practical EEG applications in the future, by suggesting an 

appropriate set of channels and frequency bands for feature extraction in an efficient EEG 

emotion classification system, with a focus on accuracy and computation time. With 

respect to accuracy, the FSVM, with a weight function, is used in this chapter to deal with 

the outliers amongst the EEG data. The idea behind the weight function is to give less 

informative weights for the samples, which are considered outliers. In other words, 

samples, which are further from the class centers, should be considered as less important 

for training in the FSVM model. For effective calculation, the determination of appropriate 

channels and bands are selected in order to reduce the number of features associated with 

the FSVM.  

As a result, this chapter is divided into two main parts. The first part focuses on the feature 

selection technique. The objective of this part is to reduce and find the best combination of 

bands and channels as the features using the feature selection technique. The second part 

is the FSVM which is enhanced for dealing with outliers in the EEG emotion classification. 

4.2 Feature Selection  

After channel zone and frequency band selections in Chapter 3, many features  remain, and 

a large number of features may cause an increase in computation cost and overfitting in a 

learning model [151]. Besides, from the results in Chapter 3, it is indicative that using less 

channels and bands could work for two-emotion classification. However, there are 
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differences as to how the channels and bands can be selected. Therefore, the next step is to 

use a Feature Selection (FS) technique to find an appropriate set of features. FS is one of 

the crucial processes for the learning machine, so as to acquire better accuracy. The attempt 

of FS is to find a subset of features that are relevant to the target class [152], and eliminate 

irrelevant and redundant features in the process. An irrelevant feature means that the 

feature does not induce the target class, while a redundant feature means that the feature 

adds nothing to the target class [153]. Therefore, FS is used to reduce irrelevant and 

redundant features. Consequently, FS can enhance prediction performance by facilitating 

data visualization and data understanding, reducing training and computational times, 

decreasing storage and measurement requirements and addressing the curse of high 

dimensional data [154]. As a result, FS has been widely applied in various applications 

such as text categorization, information retrieval, and DNA micro-array analysis [155]. FS 

has also been used in many EEG emotion classification and recognition applications [as 

illustrated in references [10, 30, 156, 157]. There are three main approaches to FS: Filter, 

Wrapper, and Embedded methods. Before determining which technique is used for FS in 

this research, some advantages and disadvantages of these methods are explained below.  

4.2.1 Filter Models 

In the filter models, the features are evaluated without the utilization of classification 

algorithms but these techniques depend on the characteristics of the training data [151]. In 

other words, filter methods are independent of any specific classifiers. The advantages of 

this category are the independence of the learning machine, lower computational cost and 

good generalization ability [155]. This category has a lower time consumption because it 
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is a pre-processed technique which ranks the features based on specific criteria. In contrast, 

the other two methods need to evaluate performance together with the classifier, and 

therefore the computation is more complex. However, some useful features could be 

missed with the filter methods, especially when used alone. Those features could be crucial 

when combined with other features [158] due to the lack of interaction with the classifier 

[155]. Some examples of filter methods include INTERACT [159], ReliefF [160], and 

Information Gain [161]. 

4.2.2 Wrapper Models 

The significant disadvantage of filter methods is that they completely ignore the selected 

feature set on the evaluation of the learning algorithm [162, 163]. Wrapper methods were 

designed to solve this issue by interacting with a classifier as a part of the selection 

algorithm [155]. Based on this assumption, the classifier evaluates and selects a feature 

subset according to its predictive power [154]. Wrapper methods typically use cross-

validation to estimate the accuracy of the learning machine. Therefore, it is an iteration 

process. Although it can capture feature dependencies, there are a few disadvantages of 

this category; namely the fact that it is expensive, there is a risk of overfitting and it is a 

classifier-dependent selection [155]. Wrapper-C4.5 and Wrapper SVM [164] are examples 

of this category. 

4.2.3 Embedded Models 

Embedded models are a function of feature selection in the training process of a selected 

learning machine [155]. In other words, the feature selection process is embedded in the 
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classifier construction. Embedded models have a few benefits over filter and wrapper 

approaches [151]. They can capture feature dependencies as well as wrapper methods but 

the computation time is lower than the wrapper approach [158]. For example, Recursive 

Feature Elimination for Support Vector Machines (SVM-RFE) performs feature selection 

in itself and removes incompetent features, which are indicated by the SVM, during the 

iteratively training process [165]. Another example is Feature Selection - Perceptron (FS-

P). It has an embedded selecting method based on a perceptron which is the interconnection 

weights. These weights are used to decide which features will be used [166]. However, the 

embedded approach has a lack of independence from the classifier [155]. 

Most researchers agree that there is no perfect method for all problems, but for a specific 

problem setting, there might be one approach that suits the environment [155]. In this study, 

the filter approach is used to find the appropriate features for the emotions. Filter methods 

are the fastest in terms of computation cost, and it is independent of the classifiers. This 

study tries to find the significant features in a process prior to the selected classifier. 

Moreover, due to the potential real-time applications of EEG emotion classification, an 

independence from the classifier in filter methods could be beneficial, as compared to 

wrapper and embedded approaches. In addition, Bolon-Canedo et al. [155] indicated that 

one of the filter methods, which is the ReliefF technique, was faster than the embedded and 

wrapper methods in their study. Furthermore, it had a good generalization ability, and it 

was the best approach to deal with noise in the datasets of their experiments. Therefore, 

this technique was selected in this thesis. The next section presents the conceptual and 

algorithmic descriptions of the original Relief-based. 
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4.2.4 Relief-based Feature Selection 

The original Relief algorithm was developed by Kira and Rendell based on instance-based 

learning [167]. Chikhi and Benhammada [168] explained the main idea of the algorithm to 

be, “ … to estimate the quality of attributes according to how well their values distinguish 

between instances that they are near each other”. Figure 4-1 shows the pseudo code of the 

Relief algorithm. 𝑅𝑖 is a randomly selected instance, called target instance 𝑅𝑖, and there 

are two instances to be searched. H is the nearest instance from the same target class of 𝑅𝑖, 

called nearest hit H. In contrast, M is the nearest instance from the deferent target class of 

𝑅𝑖, called nearest miss M. The algorithm updates the quality estimation, which is a feature 

weight W for all attributes A (W[A] = weight of feature ‘A’). The quality of estimation 

W[A] is decreased when instances 𝑅𝑖 and H have different values of attribute A, and the 

attribute A separates two instances with the same class. Therefore, A is not desirable. On 

the other hand, W[A] is increased when instances 𝑅𝑖 and M have different values of 

attribute A, and the attribute A separates two instances with the same class. As a result, A 

is desirable. The whole process is complete when it repeats m times, where m is a user-

defined parameter. 

The difference between the values of attribute A for two instances, 𝐼1 and 𝐼2, can be 

calculated by the distance function 𝑑𝑖𝑓𝑓(𝐴, 𝐼1, 𝐼2), where 𝐼1 = 𝑅𝑖 and 𝐼2 is either H or M. 

diff() is defined as (14) for nominal attributes and (15) for numerical attributes: 

𝑑𝑖𝑓𝑓(𝐴, 𝐼1, 𝐼2) = {
0, 𝑖𝑓 𝑣𝑎𝑙𝑢𝑒(𝐴, 𝐼1) = 𝑣𝑎𝑙𝑢𝑒(𝐴, 𝐼2)
1, 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (14) 

𝑑𝑖𝑓𝑓(𝐴, 𝐼1, 𝐼2) =  
|𝑣𝑎𝑙𝑢𝑒 (𝐴,𝐼1)− 𝑣𝑎𝑙𝑢𝑒 (𝐴,𝐼2)|

max(𝐴)−min(𝐴)
    (15) 
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Input: for each training instance a vector of attribute values and the class value 

Output: the vector 𝑊 of estimations of the qualities of attributes 

1: set all weight 𝑊[𝐴]:= 0:0; 

2: for 𝑖 ≔ 1 to 𝑚 do begin 

3: randomly select an instance 𝑅𝑖; 

4: find nearest hit 𝐻 and nearest miss 𝑀; 

5: for 𝐴 ≔ 1  to 𝑎 do 

6: 𝑊[𝐴] ≔ 𝑊[𝐴] −
𝑑𝑖𝑓𝑓(𝐴,𝑅𝑖 ,𝐻)

𝑚
+

𝑑𝑖𝑓𝑓(𝐴,𝑅𝑖,𝑀)

𝑚
 

7: end 

Figure 4-1 Pseudo code of Relief algorithm [168] 

The max and min are respectively the maximum and minimum value of A over the entire 

set of instances. The first Relief can deal with a two-class problem, nominal and numerical 

attributes, but it cannot work with incomplete and noisy data. [168] Nevertheless, the EEG 

signal may contain noise. Therefore, the original algorithm may not cope with the noise 

issue in the EEG data.  

Kononenko et al. [160] developed the ReliefF (Relief-F) algorithm to increase the ability 

of the original one. As a result, it can deal with incomplete and noisy data. Figure 4-2 shows 

the algorithm of ReliefF. In the algorithm, 𝑅𝑖 is selected randomly, the same way as in the 

case of Relief. The difference between both algorithms is that the ReliefF searches for k-

nearest neighbours of 𝑅𝑖 within the same class, whereas the Relief searches for only one. 
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These k nearest neighbours are called nearest hits 𝐻𝑗. In the opposite target class of 𝑅𝑖, k 

nearest neighbours are called nearest misses 𝑀𝑗(𝐶). As a result, ReliefF searches for k 

nearest hits and misses. In addition, it makes the algorithm more robust in terms of 

decreasing redundant and noisy attributes because of the usage of average values of both 

𝐻𝑗 and 𝑀𝑗(𝐶) [168]. Consequently, ReliefF may suit the EEG data due to noise handling. 

Moreover, ReliefF can deal with a multi-class problem according to the prior probability 

of that class P(C). However, this thesis focuses on two-class problems. For more 

information, the multi-class problem can be found in [168]. Consequently, ReliefF is 

selected as a feature selection in this chapter. 

Input: for each training instance a vector of attribute values and the class value 

Output: the vector 𝑊 of estimations of the qualities of attributes 

1: set all weight 𝑊[𝐴]:= 0:0; 

2: for 𝑖 ≔ 1 to 𝑚 do begin 

3: randomly select an instance 𝑅𝑖; 

4: find 𝑘 nearest hit 𝐻𝑗; 

5: for 𝑒𝑎𝑐ℎ 𝑐𝑙𝑎𝑠𝑠 𝐶 ≠ 𝑐𝑙𝑎𝑠𝑠𝑒(𝑅𝑖) do 

6: from class 𝐶 find 𝑘 nearest misses 𝑀𝑗(𝐶); 

7: for 𝐴 ≔ 1  to 𝑎 do 

8: 𝑊[𝐴] ≔ 𝑊[𝐴] − ∑
𝑑𝑖𝑓𝑓(𝐴,𝑅𝑖,𝐻𝑗)

(𝑚.𝑘)

𝑘
𝑗=1 + ∑

𝑃(𝑐)

1−𝑃(𝑐𝑙𝑎𝑠𝑠(𝑅𝑖))≠𝑐𝑙𝑎𝑠𝑠(𝑅𝑖) ∑
𝑑𝑖𝑓𝑓(𝐴,𝑅𝑖 ,𝑀𝑗(𝐶))

(𝑚.𝑘)

𝑘
𝑗=1  

9: end 

Figure 4-2 Pseudo code of ReliefF algorithm [168] 
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4.2.5 Methodology for Selecting Appropriate Features 

The results from Chapter 3 recommended that frontal and parietal channels are appropriate 

for the selection in EEG emotion classification. Moreover, a number of sub-frequency 

bands can be reduced. Therefore, the channels from both groups are selected in task 2, FS, 

as shown in Figure 3-2. These channels use five features per channel, including the average 

powerband of the delta, theta, alpha, beta, and gamma as input features. All features are 

presented in Table 4-1, while Figure 4-3 shows the methodology of FS. There are four 

processes in this task, as shown in Figure 4-4, using the proposed feature selection 

technique. 

 

 

Figure 4-3 Methodology of feature selection 



60 

 

Table 4-1 Input features 

Feature Number Feature Name Feature Number Feature Name 

1 Fp1-Delta 29 Fp2-Alpha 

2 AF3-Delta 30 Af4-Alpha 

3 P3-Delta 31 P4-Alpha 

4 P7-Delta 32 P8-Alpha 

5 Po3-Delta 33 Po4-Alpha 

6 Pz-Delta 34 Fp1-Beta 

7 Fp2-Delta 35 AF3-Beta 

8 Af4-Delta 36 P3-Beta 

9 P4-Delta 37 P7-Beta 

10 P8-Delta 38 Po3-Beta 

11 Po4-Delta 39 Pz-Beta 

12 Fp1-Theta 40 Fp2-Beta 

13 AF3-Theta 41 Af4-Beta 

14 P3-Theta 42 P4-Beta 

15 P7-Theta 43 P8-Beta 

16 Po3-Theta 44 Po4-Beta 

17 Pz-Theta 45 Fp1-Gamma 

18 Fp2-Theta 46 AF3-Gamma 

19 Af4-Theta 47 P3-Gamma 

20 P4-Theta 48 P7-Gamma 

21 P8-Theta 49 Po3-Gamma 

22 Po4-Theta 50 Pz-Gamma 

23 Fp1-Alpha 51 Fp2-Gamma 
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24 AF3-Alpha 52 Af4-Gamma 

25 P3-Alpha 53 P4-Gamma 

26 P7-Alpha 54 P8-Gamma 

27 Po3-Alpha 55 Po4-Gamma 

28 Pz-Alpha   

 

 

 

Figure 4-4 Proposed feature selection method 

 

1) The ReliefF method ranks all features from the most to the least important for each 

emotion. In the first process, the channel, which is more important, is assigned a 

higher-ranking value (weight value of ReliefF) for a particular emotion. In contrast, 
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a lower-ranking value is assigned to the channel which has less importance for 

classifying that emotion, according to ReliefF.  

2) In the second process, Ranking Values (RVs) can then be assigned by equation 

(16). RVs are designed to indicate how important a particular feature is for that 

specific emotion. Although a weight value of ReliefF method can interpret meaning 

in the same way as RVs, the weight value may give an extreme value due to the 

distance function of the ReliefF method. Consequently, a summation of weight 

values of each feature from all emotions might not indicate the essential features. 

In contrast, RVs present how important the features are using a gradual ratio. As a 

result, RVs do not provide extreme values.  

 

𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑉𝑎𝑙𝑢𝑒 (𝑅𝑉) = (1 −
𝑅𝑎𝑛𝑘𝑖𝑛𝑔

𝑎 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠
)                             (16) 

 

3) The third process is to select the top ten repeated features from all emotions using 

the summation of the RVs of each feature from the three emotions. After that, 

according to the summation values, the top ten features are chosen as a starting 

point for the trial and error process, so as to select the best set of features for the 

three emotions.  

4) Finally, the SVM is used to select appropriate features by evaluating the 

classification performance. There are optimum ten runs of the experiments and the 

best result was selected. Moreover, 10-fold cross-validation was used each run. In 

this process, the top ten selected features are reduced one by one to evaluate a 
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classification result. After reducing the ten features to just one, all classification 

results are compared against one another. The best classification result will indicate 

how many features should be selected in EEG emotion classification.  

4.2.6 Feature Selection Experiments: Results and Discussion 

Table 4-2 shows all features, after the ReliefF method ranked the features for each emotion, 

as well as the RVs. The results reveal that the top ten best features for each emotion are not 

identical. Therefore, the best features for one emotion may not be the best for another 

emotion. However, one objective of this thesis is to find fewer appropriate features for all 

emotions according to the objective of the reduction of a number of features, as mentioned 

in Chapter 1. To achieve the objective, the proposed RVs were used instead of weight 

values. 

Table 4-2 ReliefF method results and ranking values 

Emo

-tion 

Arousal Valence Dominance 

Rank Feature 

Weight 

([w]) 

  

RV Feature 

Weight 

([w]) 

 

RV Feature 

 Weight 

([w]) 

 

RV 

1 Fp1-Gamma 0.0010989 0.98 AF4-Theta 0.0014483 0.98 Fp1-Delta 0.0015706 0.98 

2 Fp2-Gamma 0.0010006 0.96 Po4-Beta 0.0013475 0.96 P4-Gamma 0.00125051 0.96 

3 Fp2-Alpha 0.0009388 0.95 Po4-Theta 0.0012785 0.95 AF3-Gamma 0.0012361 0.95 

4 AF3-Alpha 0.0009041 0.93 AF4-Gamma 0.0012624 0.93 Fp1-Theta 0.00120495 0.93 

5 Fp2-Theta 0.0008345 0.91 Fp2-Gamma 0.0012289 0.91 Po3-Gamma 0.00120387 0.91 

6 Fp2-Beta 0.0007145 0.89 Po4-Alpha 0.0012195 0.89 AF4-Delta 0.00106671 0.89 

7 AF4-Gamma 0.0006941 0.87 AF4-Beta 0.0012168 0.87 Fp1-Alpha 0.00102631 0.87 

8 Pz-Beta 0.0006838 0.85 AF4-Delta 0.0011555 0.85 AF4-Gamma 0.00088118 0.85 

9 P3-Alpha 0.0005703 0.84 Fp1-Gamma 0.0011355 0.84 Af4-Theta 0.00086518 0.84 
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10 Pz-Alpha 0.0005434 0.82 Fp1-Beta 0.0010326 0.82 AF4-Alpha 0.00076665 0.82 

11 P7-Alpha 0.0005112 0.80 Fp2-Beta 0.0009768 0.80 Fp1-Gamma 0.00068639 0.80 

12 AF3-Theta 0.0004621 0.78 Fp2-Alpha 0.000949 0.78 Fp1-Beta 0.00060159 0.78 

13 Pz-Theta 0.0004184 0.76 Fp1-Delta 0.0008988 0.76 AF3-Alpha 0.00055928 0.76 

14 Pz-Gamma 0.0004074 0.75 P4-Gamma 0.0008811 0.75 Af4-Beta 0.00055601 0.75 

15 P3-Theta 0.0003897 0.73 Po4-Gamma 0.000845 0.73 Po4-Gamma 0.00051553 0.73 

16 P8-Delta 0.0003655 0.71 Fp2-Theta 0.0008432 0.71 Af3-Theta 0.00043053 0.71 

17 Pz-Theta 0.0003512 0.69 Fp1-Theta 0.0008342 0.69 Fp2-Alpha 0.00041468 0.69 

18 P8-Beta 0.0003266 0.67 AF4-Delta 0.0008138 0.67 P4-Theta 0.00037933 0.67 

19 P8-Theta 0.0002872 0.65 P3-Beta 0.0007818 0.65 Fp2-Gamma 0.0003657 0.65 

20 P7-Delta 0.0002268 0.64 P4-Alpha 0.0007618 0.64 P4-Beta 0.00035404 0.64 

21 Pz-Delta 0.0002242 0.62 Fp1-Alpha 0.0007559 0.62 AF3-Beta 0.00025546 0.62 

22 P8-Alpha 0.0001722 0.60 P4-Beta 0.0007487 0.60 Po3-Delta 0.0002076 0.60 

23 P4-Alpha 0.0001649 0.58 AF3-Alpha 0.0007272 0.58 P4-Delta 0.00018868 0.58 

24 AF3-Delta 0.0001302 0.56 AF3-Beta 0.0006966 0.56 Po3-Alpha 0.00012439 0.56 

25 Fp2-Delta 0.0001113 0.55 Pz-Beta 0.000683 0.55 Fp2-Theta 0.00005669 0.55 

26 P7-Gamma 0.0000619 0.53 AF3-Gamma 0.0006656 0.53 P7-Gamma 0.00002903 0.53 

27 Po3-Theta 0.0000598 0.51 Po3-Alpha 0.0006135 0.51 Fp2-Beta 0.0000286 0.51 

28 AF3-Beta 0.00003 0.49 Po3-Gamma 0.0006092 0.49 AF3-Delta 0.00001299 0.49 

29 P7-Theta 0.000013 0.47 P4-Theta 0.0005934 0.47 Fp2-Delta 0.0000025 0.47 

30 Fp1-Alpha -0.0000374 0.45 AF3-Theta 0.0004932 0.45 P4-Theta -0.00001132 0.45 

31 Fp1-Theta -0.000062 0.44 Po3-Beta 0.0004833 0.44 Po3-Beta -0.00008482 0.44 

32 AF3-Gamma -0.0001247 0.42 Pz-Deta 0.0003868 0.42 Po4-Alpha -0.00010995 0.42 

33 P3-Delta -0.0001371 0.40 P3-Gamma 0.0003418 0.40 Po3-Theta -0.00038863 0.40 

34 Po3-Beta -0.0001374 0.38 P8-Delta 0.0003338 0.38 Po4-Theta -0.00047968 0.38 

35 P8-Gamma -0.0001447 0.36 P7-Theta 0.000272 0.36 Po4-Delta -0.000618 0.36 

36 Fp1-Beta -0.0002204 0.35 Po3-Theta 0.0002614 0.35 Pz-Delta -0.00094622 0.35 

37 P4-Theta -0.0002745 0.33 P3-Alpha 0.0002559 0.33 P8-Gamma -0.0010701 0.33 

38 P7-Alpha -0.0003422 0.31 Pz-Alpha 0.0002453 0.31 Po4-Beta -0.00113852 0.31 

39 Po4-Alpha -0.0003667 0.29 Pz-Theta 0.0001621 0.29 P7-Beta -0.00138872 0.29 
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40 Po3-Delta -0.0003908 0.27 P3-Delta 0.000135 0.27 P3-Delta -0.0014874 0.27 

41 P3-Gamma -0.0004411 0.25 P7-Delta 0.0001302 0.25 P8-Beta -0.00152243 0.25 

42 P4-Gamma -0.000446 0.24 Pz-Gamma 0.0001196 0.24 P3-Gamma -0.00164649 0.24 

43 P4-Beta -0.0004636 0.22 P7-Alpha 0.0000421 0.22 P7-Alpha -0.00165847 0.22 

44 Po4-Gamma -0.000506 0.20 p3-Theta 0.0000273 0.20 P7-Theta -0.00175907 0.20 

45 P4-Delta -0.0006233 0.18 Fp2-Delta -0.0000242 0.18 P8-Alpha -0.00201386 0.18 

46 Po3-Gamma -0.0006292 0.16 P7-Beta -0.0000699 0.16 Pz-Gamma -0.0020182 0.16 

47 AF4-Alpha -0.0006691 0.15 Po4-Delta -0.0000858 0.15 P8-Delta -0.00202974 0.15 

48 Po4-Delta -0.0006794 0.13 P4-Delta -0.0001267 0.13 Pz-Theta -0.00247542 0.13 

49 Fp1-Delta -0.0007042 0.11 P7-Gamma -0.0002077 0.11 P8-Theta -0.00266481 0.11 

50 P7-Beta -0.0007324 0.09 AF3-Delta -0.0002299 0.09 P3-Theta -0.00266776 0.09 

51 AF4-Theta -0.0008262 0.07 Po3-Delta -0.0002832 0.07 Pz-Alpha -0.00268228 0.07 

52 AF4-Beta -0.0008444 0.05 P8-Alpha -0.0003924 0.05 P3-Alpha -0.00303989 0.05 

53 Po4-Theta -0.0009669 0.04 P8-Beta -0.0004812 0.04 P3-Beta -0.00315271 0.04 

54 Po4-Beta -0.0011026 0.02 P8-Theta -0.0004914 0.02 P7-Delta -0.00320384 0.02 

55 AF4-Delta -0.0017565 0.00 P8-Gamma -0.0006128 0.00 Po4-Gamma -0.00371719 0.00 

 

To select the appropriate features for classifying all emotions, a summation of RVs for all 

emotions is calculated for each feature. Table 4-3 shows the results of the summation 

values of RVs. Then, the top ten appropriate features are selected as an initial number of 

features for the next process. The SVM is a classifier used to evaluate a classification result. 

Five random participants of the DEAP dataset are selected to classify all emotions using 

simple random sampling. The reason the process does not use all samples is because of 

generalization and the need to prevent any selection bias [169]. Then, each random 

participant does a 10-fold cross-validation. The top ten selected appropriate features are 

AF4-Gamma, Fp1-Gamma, Fp2-Gamma, Fp2-Alpha, AF3-Alpha, Fp2-Beta, Fp2-Theta, 

Fp1-Theta, P4-Gamma, and Fp1-Beta. Table 4-4 and Figure 4-5 show the classification 
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results using one to ten features. Some accuracy results in Table 4-4 cannot be generated 

because of no recall value for the positive or negative emotion. In other words, a 

classification model has no recall value. This is not practical because the model can only 

predict one target class. Consequently, there are some with no accuracy results in Table 4-

4. The result of this experiment shows that six features provide the best results. After using 

less than six features, the classification accuracies dramatically decreased. The result can 

be interpreted that as the features are less than six, they are not enough to distinguish two 

classes properly. In contrast, while using more than six features, the extra features may not 

have new information to enhance the ability of the classification. Moreover, the extra 

features may cause an overfitting issue. As a result, this experiment can conclude that using 

six features, which are AF4-Gamma, Fp1-Gamma, Fp2-Gamma, Fp2-Alpha, AF3-Alpha, 

Fp2-Beta, is appropriate for classifying all emotions using the EEG data. 

Table 4-3 Summation values of RVs 

Rank Feature Summation of RVs Rank Feature Summation of RVs 

1 AF4-Gamma 2.65 29 Po4-Delta 1.37 

2 Fp1-Gamma 2.62 30 Po4-Beta 1.29 

3 Fp2-Gamma 2.52 31 Po3-Beta 1.26 

4 Fp2-Alpha 2.42 32 Po3-Delta 1.26 

5 AF3-Alpha 2.27 33 P4-Theta 1.25 

6 Fp2-Beta 2.2 34 P8-Delta 1.24 

7 Fp2-Theta 2.17 35 P3-Alpha 1.22 

8 Fp1-Theta 2.06 36 Pz-Alpha 1.2 

9 P4-Gamma 1.95 37 Fp2-Delta 1.2 

10 Fp1-Bata 1.95 38 Pz-Theta 1.18 

11 Fp1-Alpha 1.94 39 P7-Gamma 1.17 

12 Af3-Theta 1.94 40 Pz-Gamma 1.15 
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13 AF3-Gamma 1.9 41 AF3-Delta 1.14 

14 P4-Alpha 1.89 42 P7-Theta 1.03 

15 AF4-Theta 1.89 43 P3-Theta 1.02 

16 Po3-Alpha 1.87 44 P8-Alpha 0.96 

17 Fp1-Delta 1.85 45 Po3-Delta 0.94 

18 AF4-Alpha 1.82 46 P3-Delta 0.94 

19 Af4-Beta 1.67 47 P7-Delta 0.91 

20 Af3-Beta 1.67 48 P3-Gamma 0.89 

21 Po4-Gamma 1.66 49 P4-Delta 0.89 

22 Po4-Alpha 1.6 50 P8-Alpha 0.83 

23 Po3-Gamma 1.56 51 P8-Theta 0.78 

24 AF4-Delta 1.56 52 P7-Alpha 0.75 

25 P4-Beta 1.46 53 P8-Gamma 0.69 

26 Pz-Beta 1.4 54 Po4-Delta 0.64 

27 Pz-Delta 1.39 55 P7-Beta 0.54 

28 P3-Beta 1.38    

 

Table 4-4 Classification results using one feature to ten features 

Participant Emotion Number of Features / Accuracy (%) 

1 2 3 4 5 6 7 8 9 10 

s01 Arousal - - 62.5 62.5 62.5 75 62.5 37.5 62.5 50 

s01 Valence 37.5 50 50 50 50 62.5 37.5 50 50 62.5 

s01 Dominance - - - - 75 50 62.5 75 62.5 62.5 

s05 Arousal 50 37.5 37.5 62.5 50 50 37.5 37.5 50 50 

s05 Valence 62.5 50 62.5 37.5 62.5 75 62.5 62.5 37.5 75 

s05 Dominance 37.5 75 62.5 75 75 75 75 75 75 37.5 

s07 Arousal - 37.5 37.5 12.5 62.5 62.5 62.5 50 62.5 12.5 

s07 Valence - - - 62.5 75 75 50 50 50 50 

s07 Dominance - 25 - 37.5 25 37.5 37.5 37.5 37.5 37.5 
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s21 Arousal - - - - - 75 75 75 75 75 

s21 Valence 50 62.5 50 37.5 37.5 50 87.5 87.5 75 75 

s21 Dominance - - 62.5 62.5 75 62.5 62.5 62.5 50 62.5 

s31 Arousal 75 62.5 62.5 37.5 62.5 62.5 62.5 62.5 75 75 

s31 Valence - - 62.5 37.5 75 50 50 37.5 62.5 50 

s31 Dominance - 50 50 37.5 37.5 62.6 37.5 37.5 50 50 

Avg. 19.59 28.25 37.69 38.53 51.88 58.19 54.34 52.84 55.25 52.19 

 

Nevertheless, the six selected appropriate features for classifying all emotions are different 

from the best six features for classifying each emotion as shown in Table 4-5. In other 

words, the selected six appropriate features from this experiment may not be optimal to 

classify each emotion. Consequently, this chapter compares the classification results of 

these features, as shown in Table 4-6. 

 

Figure 4-5 Classification results using one feature to ten features 



69 

 

Table 4-5 Top six features 

Rank All Three Emotions 

(Six selected appropriate features) 

Arousal 

(Six best 

features) 

Valence 

(Six best 

features) 

Dominance 

(Six best 

features) 

1 AF4-Gamma Fp1-Gamma AF4-Theta Fp1-Delta 

2 Fp1-Gamma Fp2-Gamma PO4-Beta P4-Gamma 

3 Fp2-Gamma Fp2-Alpha PO4-Theta AF3-Gamma 

4 Fp2-Alpha AF3-Alpha AF4-Gamma Fp1-Theta 

5 AF3-Alpha Fp2-Theta Fp2-Gamma PO3-Gamma 

6 Fp2-Beta Fp2-Beta PO4-Alpha AF4-Delta 

#channels 

#bands 

#features 

- 4 Channels (AF4, Fp1, 

Fp2, and AF3) 

- 3 Bands (Gamma, Alpha, 

and Beta) 

- 6 features 

- 8 Channels (Fp1, Fp2, AF3, Fp2, AF4, PO4, 

P4, and PO3 

- 5 Bands (Delta, Theta, Beta, Gamma, and 

Alpha) 

- 17 features 

 

Table 4-6 Classification results for each emotion between proposed feature selection and 

top six feature selections 

Emotion Proposed selected appropriate six features 

(%) 

Top best six features for each emotion 

(%) 

Arousal 68.36 69.53 

Valence 70.31 71.09 

Dominance 68.55 69.76 

 

The result shows that the six selected appropriate features using the proposed feature 

selection technique are not the best results for each emotion. Instead, it is slightly lower 



70 

 

than using the top six best features in each emotion by around one percent. In addition, the 

proposed six appropriate features have four channels and three sub-frequency bands to 

provide the complete results for each emotion. On the other hand, to provide the best results 

in all emotions, there are seventeen features to be collected from eight channels and five 

sub-frequency bands, which are Fp1-Gamma, Fp2-Gamma, Fp2-Alpha, AF3-Alpha, Fp2-

Theta, Fp2-Beta AF4-Theta, PO4-Beta, PO4-Theta, AF4-Gamma, PO4-Alpha Fp1-Delta, 

P4-Gamma, AF3-Gamma, Fp1-Theta, PO3-Gamma, and AF4-Delta. Even though the 

selected appropriate features, which are AF4-Gamma, Fp1-Gamma, Fp2-Gamma, Fp2-

Alpha, AF3-Alpha, and Fp2-Beta, do not perform the best in each emotion’s classification, 

the classification results using these features are quite similar as when using the best 

features. In contrast, the EEG emotion classification system using the selected appropriate 

features uses fewer channels and sub-frequency bands. As a result, one of the objectives of 

this thesis, which is to reduce the complexity of the EEG system, can be achieved. In 

Mühl’s survey, previous studies have used many features and channels. For example, they 

utilized five sub-bands and 14 symmetrical pairs of the left and right hemisphere with four 

sub-bands. In comparison, only four channels with three sub-bands are used in this study. 

Moreover, using fewer features in this research could have many benefits such as avoiding 

the overfitting problem, making it easier to select the optimal model, and reducing 

computational complexity. 

Table 4-7 shows the comparison results between task 1 in Chapter 3, and task 2 in this 

chapter. After selecting the appropriate features, the classification performance is notably 

better in arousal and valence emotions and slightly better in the dominance emotion. 
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Table 4-7 The comparison between Task 1 and Task 2 

Emotion 

 

Accuracy 

Task#1 

Feature selection (previous studies) 

Task#2 

Feature selection (ReliefF) 

Arousal 60.94% 68.36% 

Valence 58.85% 70.31% 

Dominance 66.15% 68.55% 

 

Nevertheless, all earlier experiments used the SVM classifier, but the SVM has been 

reported to be quite sensitive to noise and outliers [170]. Meanwhile, the EEG has non-

stationary signals and contains noise and outliers [20, 130]. Therefore, the SVM might not 

perform the best, as EEG data normally contains outliers. Having said that, the outlier issue 

is one of the objectives of this thesis. Consequently, the FSVM has been investigated for 

the EEG emotion classification in this chapter to deal with the problem. 

4.3 FSVM 

Due to the SVM’s issue, the FSVM was used to cope with the problem. This section briefly 

describes the details of the FSVM and its formulations according to [40, 134]. For 

implementing the FSVM, there are two main approaches. The first one is based on Lin and 

Wang [40]. In the SVM training process, a fuzzy membership value is assigned to different 

values. It depends on how crucial each sample is for the SVM learning process. Therefore, 

these samples can contribute differently during the learning process for separating the 

hyperplane [134]. Secondly, Wang et al. [171] applied the FSVM by assigning two 
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membership values for each class. One is for the positive class, while the other is for the 

negative one. In this research, the first approach is used because this thesis focuses on 

dealing with outliers. Lin and Wang [40] indicated that outlier and noise issues could be 

resolved by assigning the fuzzy membership, 𝑠𝑖, where 0 <  𝑠𝑖  ≤ 1, for each training 

sample 𝑥𝑖. The meaning of 𝑠𝑖 is the attitude of the importance of its class in the 

classification problem. Batuwita and Palade [134] called the fuzzy membership 𝑠𝑖 as 

weight 𝑚𝑖 because it is more common that the higher weight that is assigned to the more 

important point. Therefore, in this thesis, it is also called weight 𝑚𝑖 because it is easy to 

understand that 𝑚𝑖s represents the importance of those samples in the FSVM training 

algorithm.  

Let 𝑆 be a set of labeled training points:  

(𝑦1, 𝑥1, 𝑚1), (𝑦2, 𝑥2, 𝑚2), … , (𝑦𝑙 , 𝑥𝑙 , 𝑚𝑖)   (16) 

 

where 𝑥𝑖 ∈ ℛ𝑁. Each 𝑥𝑖 belongs to a class label 𝑦𝑖 ∈ {−1,1}. Each 𝑥𝑖 also has a weight (a 

fuzzy membership value), 𝜎 ≤ 𝑚𝑖 ≤ 1, with 𝑖 = 1,2, … , 𝑙 and 𝜎 is a small number, which 

is greater than zero. The reformulation of the SVM is shown as follows: 

 

Minimum (
1

2
 |𝑤|2 + 𝐶 ∑ 𝑚𝑖𝜉𝑖

𝑙

𝑖=1

)  

Subject to 𝑦𝑖(𝑤 ∙ Φ(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖   

𝑖 = 1,2,3, … , 𝑙;  𝜉𝑖 ≥ 0.     (17) 
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After that, the Lagrangian technique [40] was applied to equation (17) and it transforms 

the problem of FSVM optimization into: 

Maximum W(α) ∑ 𝛼𝑖 − 
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖,𝑥𝑗)

𝑙

𝑗=1

𝑙

𝑖=1

𝑙

𝑖=1

 

Subject to ∑ 𝑦𝑖𝛼𝑖 = 0 

𝑙

𝑖=1

                    

 0 ≤  𝛼𝑖  ≤ 𝑚𝑖𝐶,     𝑖 = 1, … , 𝑙                             (18) 

 

There is only one turning parameter and only one difference between the SVM (10) and 

FSVM (18). In the SVM, there is only one way to control the margin by turning the only 

𝐶, but there are many free parameters to be assigned in the FSVM due to 𝑚𝑖𝐶. In other 

words, a number of free parameters in the FSVM is equal to a number of training samples. 

In the SVM, 𝐶 is used to balance the margin for maximizing a distance between two 

classes, and it is considered the cost of misclassifications. A larger C allows for a narrower 

margin. Therefore, it gives a small number of misclassifications for the training set. In 

contrast, a wider margin can be assigned by a smaller 𝐶, and it disregards more training 

samples. On the other hand, in the FSVM, weight 𝑚𝑖 plays a significant role in controlling 

how crucial the sample 𝑥𝑖 is in the FSVM training process. A bigger 𝑚𝑖 makes a narrower 

margin due to 𝑚𝑖𝐶. It consequently means that 𝑥𝑖 is vital in the training set. Conversely, a 

smaller 𝑚𝑖 makes a wider margin, and 𝑥𝑖 has less significance in the FSVM training 

algorithm. [40, 134] 

As a result, this thesis investigates the FSVM for EEG emotion classification. The FSVM 

has the ability to control the priority of each instance during the training process. Therefore, 
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for instances, which are considered as outliers, they can be assigned less informative values 

or be ignored during the training process. The fundamental FSVM is adapted and extended 

by using a weight function for the fuzzy membership values in the efficient EEG emotion 

classification.  

Uncertain data, which locates further from class centers, is identified as outliers. This data 

will be assigned a smaller amount of fuzzy membership values (weight values). Therefore, 

during the learning process, the outliers can be reduced. The primary objective of this 

section is to improve the classification accuracy of EEG emotion classification by dealing 

with the outliers on the selected appropriate features using the FSVM. 

4.3.1 Weight Assignment  

Lin and Wang [40] introduced a fuzzy membership function to deal with outliers. It uses 

the class center to reduce the effects of outliers. The function calculates the distance 

between a point and its class center, in order to assign a membership value 𝑠𝑖. However, in 

this study, 𝑠𝑖 is called a weight value 𝑚𝑖 , as mentioned earlier.   

Suppose there is a sequence of training points: 

 

(𝑦1, 𝑥1, 𝑚1), … , (𝑦2, 𝑥2, 𝑚2).    (19) 

 

Denote 𝑥+ is the mean of class positive, whereas 𝑥− is the mean of class negative. Let 𝑟+ 

be the radius of class positive as: 

 

𝑟+ =   |𝑥+ − 𝑥−|{𝑥𝑖:𝑦=+1}
𝑚𝑎𝑥     (20) 
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and  𝑟− is the radius of class negative as: 

 

𝑟− =   |𝑥− − 𝑥+|{𝑥𝑖:𝑦=−1}
𝑚𝑎𝑥     (21) 

 

Let weight 𝑚𝑖 be a function of the mean and radius of each class: 

𝑚𝑖 =  {  
1 −

|𝑥+−𝑥𝑖|

𝑟++ 𝛿
, 𝑖𝑓 𝑦𝑖 =  +1

1 −
|𝑥−−𝑥𝑖|

𝑟−+ 𝛿
, 𝑖𝑓 𝑦𝑖 =  −1

      (22) 

 

Where 𝛿 is a small number to avoid the case 𝑚𝑖 = 0. 

Consequently, equation (22) can generate a weight value for each instance and assign them 

to the FSVM model, which is equation (17). As a result, an instance with a smaller value 

of  𝑚𝑖 is considered as an outlier and has less importance during the training process. In 

contrast, when an instance has a bigger value of  𝑚𝑖, it is considered a very important 

instance during the training process.  

4.4 Methodology 

This section deals with task 3, which uses the FSVM to deal with outliers in EEG data, as 

shown in Figure 3-2. The FSVM for EEG Emotion Classification (FSVM-EEGEC) is 

explained. The six selected appropriate features (selected from the feature selection task) 

are assigned as input data in the classification process. The FSVM utilizes weight values 

from the weight function, as per equation (22). The weight function, using the class center 
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[40], is applied to deal with outliers. After that, the classification results of the FSVM are 

compared with the SVM with the same parameters (Appendix I) using 10-fold cross-

validation. Moreover, the FSVM is compared to other machine learning techniques which 

have been used in EEG emotion classification. Figure 4-6 shows the methodology of task 

3. LIBSVM has been used for both models with a radial basis function (RBF) [148]. The 

experiment uses dependent classification. There is only one difference between these two 

models. The FSVM uses the weight function for 𝑚𝑖, whereas SVM assigns 1 to every 𝑚𝑖 , 

as shown in Figure 4-7. 

  

 

Figure 4-6 FSVM methodology 
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Figure 4-7 The experiment of Task 3 

 

4.4.1 Feature Extraction 

In this case, pre-processed DEAP EEG data was used. The signals of the six selected 

appropriate channels had been selected using the feature selection technique, as discussed 

at the beginning of the chapter, including AF4, Fp1, Fp2, and AF3. The DWT was used to 

decompose the EEG signal, which was combined from five sub-frequency bands into a 

single frequency band. Daubechies 4 (D4) was selected as the mother wavelet of the DWT 

as Amin et al. [145] reported that this wavelet energy is suitable and appropriate for 

classifying EEG signals regarding medical applications. Then, three sub-frequency bands 

of the selected appropriate channels were selected including Gamma, Alpha, and Beta. As 

a result, there are six appropriate features, AF4-Gamma, Fp1-Gamma, Fp2-Gamma, Fp2-

Alpha, AF3-Alpha, and Fp2-Beta. After that, the average power band of the selected 

appropriate features was calculated. 
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4.4.2 FSVM Training and Testing Processes 

Before the FSVM training process, there is one pre-processing step. The objective of this 

process is to generate the weight values. For each participant, the whole data was randomly 

divided into training and testing sets of 80% and 20%, respectively. The training set is 

divided into positive, and negative groups depending on their target class labels. After that, 

the weight values of both groups are carried out by weight equation (22). Next, the FSVM 

training process uses the weight values. The FSVM has an ability to decrease the 

importance of the samples, which are considered outliers. As mentioned earlier, during the 

training process, these samples are assigned lower values of weight, 𝑚𝑖 (17). In contrast, 

the traditional SVM training process does not provide a parameter to level the significance 

of each sample in equation (5). Therefore, every sample in the SVM has the same effect in 

the SVM training process. 

4.5 Experimental Settings 

This section describes the experiment settings. There are two experiments. Both 

experiments use the selected appropriate features, which are AF4-Gamma, Fp1-Gamma, 

Fp2-Gamma, Fp2-Alpha, AF3-Alpha, and Fp2-Beta. Each participant data was divided 

into the 80% training and 20% testing sets randomly. First of all, the FSVM and the SVM 

are compared with each other in terms of accuracy performance for all emotions. Only 

participant number 27 cannot generate models because there is only one target class. 

Therefore, it is not necessary to build a model that can predict only one result. Both FSVM 

and SVM models use the LIBSVM with the same set of parameters. Moreover, the FSVM 
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uses the weight values  𝑚𝑖 with parameter 𝐶 (𝑚𝑖𝐶), whereas the SVM has only one value 

for parameter 𝐶. Secondly, the FSVM and other classifiers were compared with respect to 

the performance based on the appropriate features.  

4.6 Results and Discussions 

Table 4-8 shows the classification performances between the FSVM and SVM models 

using the selected appropriate features. The results indicate that the FSVM is significantly 

better than the SVM in all emotions. Based on the average results, using the FSVM 

provides a better performance than the SVM on the arousal, valence, and dominance 

emotions at around 8.20%, 8.98%, and 7.26% respectively. As a result, the FSVM could 

deal with outliers which they usually associate with EEG signals. The FSVM can handle 

the issue by giving the degree of priority for the samples in the learning process. The 

samples, which are indicated as outliers, have fewer valuable weights during the learning 

process. FSVM gives a higher priority for each sample close to its class center and less 

importance for a sample further from its class center. However, some results show that the 

SVM is better than the FSVM. For example, in arousal and valence, the FSVM is worse 

than the SVM for participant number 27. The reason probably depends on a data 

characteristic because the data of this participant may not be too noisy. Nevertheless, the 

FSVM attempts to decrease the importance of some data during the learning process 

because it gives fewer valuable weights for samples that are further from its class center. 

As a result, due to this allocation of weights, the noise or outliers of this participant could 
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be minimized, but the FSVM could also remove some significant information which are 

minority (treated as outliers). Therefore, the SVM is better than the FSVM in this case. 

Table 4-8 Classification results between FSVM and SVM using the six selected 

appropriate features 

Emotion Arousal(%) Valence(%) Dominance(%) 

Participant# SVM FSVM SVM FSVM SVM FSVM 

1 75 87.5 50 75 87.5 75 

2 62.5 75 62.5 62.5 87.5 87.5 

3 75 87.5 75 87.5 62.5 75 

4 62.5 75 50 87.5 62.5 75 

5 75 75 75 75 87.5 87.5 

6 50 50 75 75 50 75 

7 62.5 62.5 62.5 75 50 62.5 

8 62.5 75 87.5 87.5 62.5 75 

9 62.5 75 62.5 75 62.5 75 

10 75 75 62.5 87.5 75 100 

11 100 100 62.5 75 62.5 87.5 

12 75 87.5 62.5 75 87.5 87.5 

13 62.5 62.5 87.5 87.5 75 75 

14 62.5 75 75 87.5 75 75 

15 37.5 87.5 75 75 62.5 62.5 

16 50 62.5 62.5 87.5 50 50 

17 87.5 100 37.5 75 75 100 

18 62.5 75 100 100 87.5 75 

19 62.5 62.5 62.5 75 75 75 



81 

 

20 75 75 87.5 87.5 50 75 

21 62.5 62.5 75 62.5 50 62.5 

22 62.5 87.5 62.5 75 62.5 87.5 

23 75 75 87.5 87.5 50 62.5 

24 87.5 87.5 87.5 87.5 62.5 62.5 

25 62.5 75 75 75 75 87.5 

26 62.5 75 62.5 75 62.5 62.5 

27 75 62.5 100 87.5 - - 

28 75 75 62.5 87.5 87.5 75 

29 62.5 75 87.5 87.5 62.5 75 

30 75 87.5 62.5 62.5 75 75 

31 62.5 75 62.5 62.5 75 75 

32 87.5 87.5 50 75 75 75 

Avg. 68.36 76.56 70.31 79.30 68.55 75.81 

 

Table 4-9 shows the classification results between the FSVM and other machine learning 

techniques using EEG in emotion classification. The conventional machine learning 

methods used for the comparison study include Naïve Bayes[8], KNN[65], MLP[146], 

Fisher LDA[156] and SVM [111, 128, 129]. The purpose of this experiment is to compare 

the proposed FSVM classifier with other established classifiers. The selected appropriate 

features were used in the comparison based on the same dataset, which is the DEAP. 

Moreover, each classifier had been run ten times to obtain a set of training and testing 

accuracies. The best results of each classifier were then selected for the comparison. The 

results of these methods were compared with the FSVM using the weight function. The 
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results demonstrate that the FSVM is the best model for EEG emotion classification in this 

research. 

Table 4-9 FSVM compared with other machine learning techniques 

Emotion 

Naïve Bayes 

[8] 

KNN 

[65] 

MLP (NN) 

[146] 

Fisher LDA 

[156] 

SVM 

[111, 128, 129] 

FSVM 

 

Arousal 60.78% 65.89% 62.87% 60.93% 68.36% 76.56% 

Valence 60.31% 64.79% 57.19% 65.27% 70.31% 79.30% 

Dominance 60.95% 65.20% 66.22% 56.47% 68.55% 75.81% 

  

The reason FSVM and SVM perform much better than MLP is due to the small data size 

used in this thesis. Generally, ANN is worse than SVM when the data size is smaller [172]. 

In order to prove this point, the best result from the ten experiments using optimized 

parameters was reported in this thesis. As a result, due to the small database in this thesis, 

MLP is based on ANN, so it did not perform well as SVM. However, the FSVM has the 

same problem as the SVM in terms of human comprehensibility. They are both black-box 

models and lack the ability of human understanding. The next chapter will focus on rule 

extraction from the FSVM to provide information that enables human comprehensibility. 

4.7 Summary 

This chapter focused on reducing the number of features and improving the handling of 

outliers. First of all, ReliefF was used in a feature selection process. ReliefF method is a 

technique used to estimate the quality of attributes, and it can distinguish a pair of instances 

that are near to each other. Therefore, it was used to rank the features in each emotion. 
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After that, the top ten repeated features from all emotions were selected using the 

summation of RVs. Then, the SVM was used as a classifier to evaluate the classification 

performance of these features. To select an appropriate number of features, the top ten 

selected appropriate features were used at the beginning. Then, the classification process 

was repeated by reducing the number of features from ten to one. After that, all 

classification results were compared against one another. The features that provided the 

best results were selected. The experiment indicated that using the six features: AF4-

Gamma, Fp1-Gamma, Fp2-Gamma, Fp2-Alpha, AF3-Alpha, and Fp2-Beta, is appropriate 

for EEG emotion classification. These features come from four channels and three sub-

frequency bands. Even though the selected appropriate features do not provide the best 

results for each emotion, when compared with the top best six features of each emotion, 

the selected appropriate features can then be used to substitute for the best features. In 

addition, it provides only slightly worse classification results (by around 1-2%) than the 

best features for each emotion classification. However, in the real world, we would not 

know the emotion beforehand and thus, by using the best set of the selected appropriate 

features for all emotions, we would then be able to classify all emotions correctly. 

Therefore, one of the objectives of this thesis, to contribute the efficient emotion 

classification using EEG by reducing the number of features and complexity of the system 

using a feature selection technique, has been achieved.  

The second focus of this chapter is to improve the handling of outliers using the FSVM. 

The SVM is one of the most popular techniques in EEG emotion classification but it has 

been reported that it is quite sensitive to outliers, as EEG normally contains some noise 
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and outliers. The FSVM was utilized in this research to deal with outliers because it can 

assign a fuzzy membership. The fuzzy membership is used for each data point and the 

FSVM is reformulated such that different input points can make different contributions to 

the learning of the decision surface. The weight function, which calculates a distance 

between a point to the point’s class center, assigns values for every fuzzy membership 

value in this study. Consequently, a point which is further from its class center, is assigned 

a lower weight value, whereas a point which is closer to its class center, is assigned a higher 

weight value. In other words, the point which has a lower weight is considered an outlier. 

In contrast, the point which has a higher weight is considered a good point for training. As 

a result, the FSVM can deal with the outliers in the EEG data. The classification results 

confirmed that the FSVM is better than the SVM in arousal, valence, and dominance 

emotions around 8.20%, 8.98%, and 7.26% respectively. The best results using the FSVM 

are 76.56% in arousal, 79.30% in valence and 75.81 in dominance. Therefore, another 

objective of this thesis, that of improving the handling with outliers in order to enhance 

classification accuracy for the efficient emotion classification, has also been achieved. 

Additionally, based on the same settings, the FSVM provided the best accuracy among 

Naïve Bayes, KNN, MLP, Fisher LDA, and SVM techniques, while using the appropriate 

features. These observations are useful for the development of an effective EEG emotion 

classification system because the reduction of sub-bands and channels for features will 

reduce the computation time, and the handling of outliers will provide compatible results 

in EEG emotion classification 
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Rule Extraction from EEG Signals using Fuzzy Support 

Vector Machine for Emotion Classification 

5.1 Introduction 

The FSVM was used in the previous chapter as a classifier in EEG emotion classification. 

However, the FSVM is similar to the SVM in terms of human comprehensibility. Barakat 

and Diederich claimed that some applications, such as medical diagnosis, require a better 

understanding of how a classifier makes a decision [131]. For example, Zhou and Jiang 

applied C4.5, which is a decision tree, to extract rules from an artificial neural network 

ensemble for three cases of medical diagnosis including hepatitis, diabetes, and breast 

cancers [132]. Likewise, Martens et al. indicated that some applications, like a credit score 

application, need a proven validation before implementation. Consequently, explanation 

capabilities are very important [133]. Nevertheless, techniques with comprehensible 

inability, such as the SVM, have dominated in many applications and also in aBCI, as this 

study mentioned earlier. Even though the SVM has been considered a good classifier, Fung 

et al. [44] mentioned that the SVM and other linear classifiers are difficult to be understood 

by humans, as compared to rules that can be mapped in terms of variable space. As 

mentioned earlier, the FSVM was developed from the SVM. Thus, the FSVM also has the 
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same issue. Therefore, the aim of this chapter is EEG rule extraction from  

the FSVM to provide human comprehensibility.  

This chapter is organized as follows: Section 5.2 briefly describes four SVM rule extraction 

methods that can be applied to the FSVM. In addition, it discusses the advantages and 

disadvantages of each technique. The Classification and Regression Tree (CART) is briefly 

described in Section 5.3. Section 5.4 presents the methodology for rule extraction using the 

FSVM with the CART. Section 5.4 consists of experimental results and discussions. 

Finally, a summary is presented in Section 5.5.  

5.2 Rule Extraction Techniques  

Martens et al. [133] indicated that there are two objectives of rule extraction. First, the 

common usage of rule extraction is to understand the classification of a black box model 

of data and then generate rules that explain it. The second usage is to enhance the 

performance of rule induction by removing noise in the data. This chapter aims to gain the 

benefit of rule extraction for understanding the black box model of the FSVM and to obtain 

the rules from the EEG data. As the structure and implementation of the FSVM is similar 

to that of the SVM, SVM rule extraction methods can be applied to the FSVM in this 

research. Barakat and Bradley published a survey study of rule extraction from SVMs, 

which were divided into four categories [42]. First of all, the SVM is a closed-box. 

Secondly, the rules are extracted directly from the model support vectors (SVs). Next, the 

rules are extracted from the utilization of the decision function and SVs. Finally, SVs, the 

separating hyperplane and training data are added to the list of considerations in order to 
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obtain the rules. However, they reorganized these categories into region-based rules, fuzzy 

rule extraction, sequential covering rule extraction and decision tree-based rules, according 

to the analysis of the algorithms as follows. 

5.2.1 Region-based rules  

The input space is mapped into regions by utilizing the SVM decision function and/or the 

model SVs. After that, the regions can be refined and translated into rules. There are three 

types of regions: ellipsoids such as SVM+ [173], hyper-rectangles such as HRE [174] and 

hyper-cubes such as MK-SVMII [175]. However, extracting rules from ellipsoids hyper-

rectangles might suffer in terms of comprehensibility because these techniques use all the 

input features of their processes, although some features do not contribute to the 

classification decision. Moreover, in case of hyper-cube regions, it is specific for the SVM 

kernel, even if it is comprehensible and efficient. [42] 

5.2.2 Decision tree-based rules  

The idea in this technique is to learn what the SVM model has learned by using a decision 

tree learner. The main concept is an artificial dataset which is generated by the SVM model. 

In other words, the class of the training set is replaced by the output of the SVM model. 

Then, one of the decision tree learners is used to learn the artificial dataset and generate a 

tree that can devise rules from the data [131, 176, 177]. These methods create a useful 

number of rules along with decent accuracy. However, Martens’s method [177] might 

generate some cases which are non-existence in reality because the method creates many 

extra samples close to the SVM and SVs. [42] 
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5.2.3 Fuzzy rule extraction 

This method [178] is different from previous techniques because it generates fuzzy rules. 

However, Barakat and Bradly [42] indicated that it provided low accuracy and 

comprehensibility. The reason why it lacks comprehensible expressions is because the 

fuzzy rules need the knowledge of fuzzy theory and fuzzy set to understand the rules. In 

contrast, the rules of region-based and decision tree-based are easier to understand because 

the rules show directly the relationship between inputs and outputs. 

5.2.4 Sequential covering rule extraction 

Barakat and Bradly [42] recommended the use of the SQRex-SVM [179] because of a good 

trade-off between performance and comprehensibility. The rules of the SQRex-SVM are 

extracted directly from SVs using a modified sequential covering method [180]. 

Nevertheless, Reddy et al. [170] claimed that the SQRex-SVM would suffer from noise. 

Also, Chen et al. [170] indicated that “the main disadvantage of this method is that it is 

prone to having binary classification difficulty.”  

In this research, the decision tree-based rule technique is used to extract rules from the 

SVM and FSVM because it provides concise rules and good performance, whereas the 

region-based rules technique might lack human comprehensibility because of the 

redundancy of the features. Moreover, the region-based rules technique is dependent on 

the FSVM and SVM kernel, whereas the decision tree-based rule technique is flexible 

because it can be used for every kernel. Furthermore, the sequential covering rule 

extraction technique is not selected in this study because it is quite sensitive to noise, while 

the EEG data typically contains noise and outliers. There is only one disadvantage of using 
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the decision tree-based rule. It might not have any existing case in reality [181], but 

emotion classification is not a serious case of security-related issues. This study aims to 

understand the black-box model for emotion classification and generate rules that humans 

can understand easily. 

The idea of the decision tree-based rule technique is to treat the SVM as a black-box by 

using another machine learning technique, which is a decision tree learner, to learn what 

the SVM has learned [179]. Figure 5-1 shows the process of this approach. The basic 

concept is to create artificial labeled samples which are created by the SVM. Then, the 

artificial labels are replaced instead of the original target class. Therefore, the new artificial 

dataset represents the knowledge of the FSVM. [131] Similarly, the FSVM follows the 

same method in this chapter. 

 

Figure 5-1 Learning-based rule extraction approach [179] 
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5.3 CART 

In this chapter, a machine learning technique, the Classification and Regression Tree 

(CART), is being used as a second classifier to extract rules from the FSVM. There are 

many decision tree algorithms such as C4.5 [182] and ID3 [183]. The CART [184] is 

another popular decision tree. The main difference amongst these algorithms is the 

approach to grow and prune a tree. In this study, the CART was selected to extract rules 

from the FSVM, as recommended by Lavanya and Ku-Rani, who claimed when comparing 

ID3, C4.5 and CART for medical datasets, that the larger the size of the data, the better the 

performance of the CART [185]. Moreover, Singh et al. [186] indicated that the CART is 

the most powerful to handle the outliers, whereas ID3 and C4.5 are susceptible to the 

outliers.  

The CART, a binary tree, was introduced by Breiman. The Gini Index is used for the 

splitting criterion by measuring how pure a node is. Equation (23) shows the Gini Index 

[187].  

1 − ∑ 𝑝2(𝑖)𝑖                              (23) 

 

Where p(i) is the observed fraction of class i (p(i) = Count of specific class / Total count 

of members). If the Gini index equals zero, a node contains samples which belong to only 

one class i. In other words, the node is a purity data set. The Example 1 shows the use of 

Gini index as follow: 
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The Example 1 

Assume there are two regions to be selected by CART. Region one contains {1,1,1,0,0} 

and Region two contains (1,1,1,1,1). Gini Index is used to select the best region between 

them by measuring the purity of each area. 

𝐺𝑖𝑛𝑖𝑟𝑒𝑔𝑖𝑜𝑛1 = 1 − (
3

5
)

2

− (
2

5
)

2

= 0.48 

 𝐺𝑖𝑛𝑖𝑟𝑒𝑔𝑖𝑜𝑛2 = 1 − (
5

5
)

2

−  (
0

5
)

2

= 0 

The Region two has been split by CART because the Gini index of region two is lower 

than the Gini index of the region one. In other words, region two is purer than the region 

one because it contains only positive class members, whereas region one contains three 

positive class and two negative class members. 

 

Due to the ability of the CART in terms of human comprehensibility, it is utilized as a 

decision tree leaner for the FSVM, as shown in Figure 5-1. 

5.4 Methodology for Rule Extraction using FSVM with CART 

There are several steps for the FSVM-CART. Most of the steps follow the methods 

utilizing the SVM model as a closed-box [42], as seen in Figure 4-1. First of all, a 

benchmark database was used, which is the pre-processed database of the DEAP. In this 

study, arousal, valence and dominance emotions were classified. Each main emotion was 

divided into two targets: positive and negative emotions. There were 32 participants and 

40 samples per participant for each main emotion. Next, the appropriate features, AF4-
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Gamma, Fp1-Gamma, Fp2-Gamma, Fp2-Alpha, AF3-Alpha, and Fp2-Beta, were selected 

because of the highest average accuracy of the three emotions from the FSVM classifier in 

the previous chapter. After that, the selected features and their labels from both channels 

were randomly divided into two groups, which are training and unseen sets respectively, 

with a ratio 8:2 (32 samples for the training set and 8 samples for the unseen set). Then, 

the training set was used to build the FSVM classifier using the LIBSVM [148] with a 

radial basis function kernel. A ten-fold cross-validation was applied to find the best model 

during the learning process. After that, due to the limitations of the training set per 

participant (32 samples), an unlabeled set was created from the input range of the training 

set with a normal distribution for each participant. The unlabeled set is a set for the FSVM 

classifier to predict, so the result of this process is called an artificial set. The idea of the 

artificial set is similar to that of synthetic data [131]. Finally, a new classifier model was 

built from the artificial dataset by the CART. In addition, the Gini Index was used to 

estimate the probability to split a node with weight 𝑤 =
1

𝑛
, when the sample size is 𝑛 [187], 

and a pruning method was cut off because the aim of this study is using the CART to extract 

rules from the SVM. The Example 2 shows the relationship of 𝑤 and equation 23 as follow: 
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The Example 2 

Region A contains {0,1} 

𝐺𝑖𝑛𝑖𝑟𝑒𝑔𝑖𝑜𝑛𝐴 = 1 − (
1

2
)

2
− (

1

2
)

2
= 0.5 

Region A is not pure because 𝐺𝑖𝑛𝑖𝑟𝑒𝑔𝑖𝑜𝑛𝐴 = 0.5 so w = ½ = 0.5; n = 2. As a result, w does 

not equal one so region A must be split by CART. 

After splitting, there two subregions; A1 contains {1} and A2 contains {0}. Both 

subregions are pure, and therefore do not need to be split further. 

 

Consequently, the if/then rules and a decision tree of the CART will reveal what the FSVM 

has learned. All the steps are shown in Figure 4-2. 

 



 

94 

 

Figure 5-2 Steps of SVM-CART processing [modified from [42]
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5.5 Experiments, Results, and Discussion 

Besides the results from the FSVM-CART model, the same training dataset and unseen 

datasets were experimented by the SVM, CART, FSVM and SVM-CART models for 

comparison purposes. All experiments in this study are of the dependent classification 

because of the higher accuracy [4] and noting of exact rules from each participant. Tables 

5-1, 5-2 and 5-3 show the results of arousal, valence and dominance emotions. In the 

dominance experiment, participant number 27 was removed because there is only one 

target class. Table 5-4 shows an average accuracy of each emotion. Figure 5-3 and Table 

5-5 show an example of the decision tree and IF/THEN rules of participant number 1 for 

the arousal emotion respectively.  

Table 5-1 Arousal emotion (%) 

Participant no. SVM FSVM CART CART-SVM CART-FSVM 

1 75 87.5 62.5 87.5 100 

2 62.5 75 50 62.5 75 

3 75 87.5 62.5 50 87.5 

4 62.5 75 50 62.5 62.5 

5 75 75 50 62.5 62.5 

6 50 50 25 75 75 

7 62.5 62.5 50 75 75 

8 62.5 75 25 50 50 

9 62.5 75 62.5 75 75 

10 75 75 87.5 87.5 87.5 
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11 100 100 50 50 75 

12 75 87.5 87.5 87.5 100 

13 62.5 62.5 87.5 62.5 62.5 

14 62.5 75 75 50 50 

15 37.5 87.5 75 50 87.5 

16 50 62.5 37.5 50 62.5 

17 87.5 100 75 75 75 

18 62.5 75 37.5 62.5 75 

19 62.5 62.5 87.5 50 62.5 

20 75 75 87.5 75 75 

21 62.5 62.5 62.5 62.5 62.5 

22 62.5 87.5 62.5 50 62.5 

23 75 75 25 62.5 87.5 

24 87.5 87.5 75 100 100 

25 62.5 75 37.5 75 75 

26 62.5 75 37.5 50 62.5 

27 75 62.5 50 62.5 75 

28 75 75 62.5 62.5 75 

29 62.5 75 62.5 50 62.5 

30 75 87.5 75 75 62.5 

31 62.5 75 37.5 50 62.5 

32 87.5 87.5 75 87.5 87.5 

Average 68.36 76.56 58.98 65.23 73.44 
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Table 5-2 Valence emotion (%) 

Participant no. SVM FSVM CART CART-SVM CART-FSVM 

1 50 75 75 50 62.5 

2 62.5 62.5 50 50 75 

3 75 87.5 50 50 75 

4 50 87.5 25 62.5 75 

5 75 75 50 75 75 

6 75 75 62.5 100 100 

7 62.5 75 50 75 75 

8 87.5 87.5 50 75 75 

9 62.5 75 25 75 87.5 

10 62.5 87.5 87.5 87.5 87.5 

11 62.5 75 37.5 62.5 62.5 

12 62.5 75 50 62.5 87.5 

13 87.5 87.5 100 50 87.5 

14 75 87.5 87.5 75 75 

15 75 75 50 87.5 87.5 

16 62.5 87.5 50 62.5 100 

17 37.5 75 62.5 50 87.5 

18 100 100 100 75 75 

19 62.5 75 50 75 87.5 

20 87.5 87.5 87.5 75 87.5 

21 75 62.5 62.5 62.5 62.5 

22 62.5 75 75 50 50 
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23 87.5 87.5 50 50 50 

24 87.5 87.5 75 50 62.5 

25 75 75 75 62.5 62.5 

26 62.5 75 75 62.5 75 

27 100 87.5 87.5 75 75 

28 62.5 87.5 75 62.5 87.5 

29 87.5 87.5 50 87.5 100 

30 62.5 62.5 75 62.5 62.5 

31 62.5 62.5 50 50 50 

32 50 75 62.5 75 75 

Average 70.31 79.30 62.89 66.41 76.17 

 

Table 5-3 Dominance emotion (%) 

Participant no. SVM FSVM CART CART-SVM CART-FSVM 

1 87.5 75 75 75 75 

2 87.5 87.5 50 75 100 

3 62.5 75 62.5 62.5 75 

4 62.5 75 62.5 75 75 

5 87.5 87.5 75 87.5 87.5 

6 50 75 62.5 62.5 62.5 

7 50 62.5 62.5 62.5 50 

8 62.5 75 75 50 75 

9 62.5 75 75 62.5 75 

10 75 100 75 62.5 75 
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11 62.5 87.5 87.5 75 75 

12 87.5 87.5 75 75 75 

13 75 75 62.5 62.5 62.5 

14 75 75 37.5 62.5 62.5 

15 62.5 62.5 62.5 62.5 75 

16 50 50 62.5 75 75 

17 75 100 87.5 87.5 87.5 

18 87.5 75 75 87.5 87.5 

19 75 75 50 75 75 

20 50 75 75 62.5 87.5 

21 50 62.5 37.5 62.5 62.5 

22 62.5 87.5 25 50 62.5 

23 50 62.5 62.5 75 87.5 

24 62.5 62.5 50 50 50 

25 75 87.5 87.5 87.5 87.5 

26 62.5 62.5 62.5 50 62.5 

27 - - - - - 

28 87.5 75 37.5 50 50 

29 62.5 75 50 50 62.5 

30 75 75 75 25 62.5 

31 75 75 50 75 87.5 

32 75 75 87.5 87.5 87.5 

Average 68.55 75.81 63.71 66.53 73.39 

 



100 

 

Table 5-4 Average performances (%) 

Emotion FSVM FSVM-CART SVM SVM-CART CART 

Arousal 76.56 73.44 68.36 65.23 58.98 

Valence 79.30 76.17 70.31 66.41 62.89 

Dominance 75.81 73.39 68.55 66.53 63.71 

 

 

Figure 5-3 The decision tree of participant number 1 from FSVM-CART on Arousal 

emotion while 0 is negative arousal and 1 is positive arousal (x1, x2, x4 and x5 are AF4-

Gamma, Fp1-Gamma, Fp2-Beta and AF3-Alpha respectively)   
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Table 5-5 IF/THEN rules of participant #1 from FSVM-CART on arousal emotion 

Rule# Rule 

1 If Fp2-Beta < 7.46 then Rule#2 else if Fp2-Beta >= 7.46 then Rule#3. 

2 If Fp2-Beta < 7.89 then Positive Arousal else if Fp2-Beta >= 7.89 then 

Negative Arousal. 

3 If Fp1-Gamma < 5.04 then Rule#4 else if Fp1-Gamma >= 5.04 then 

Positive Arousal. 

4 If AF4-Gamma < 5.13 then Negative Arousal else if AF4-Gamma >= 

5.13 then Positive Arousal. 

 

From Table 5-4, the best results of arousal, valence, and dominance emotions are from the 

FSVM model. The second-best model is the FSVM-CART and the worst model to classify 

each emotion is the CART. These results came from the same unseen dataset. The results 

indicate that the FSVM is the most suitable for emotion classification (in terms of 

accuracy), but it is only better than the FSVM-CART by 3.12%, 3.13%, and 2.42% for 

arousal, valence, and dominance respectively. In contrast, the FSVM-CART, SVM-CART 

and CART have an ability of comprehensibility, whereas the FSVM and SVM do not.  

Regarding human understanding, the FSVM cannot provide a comprehensible expression. 

Consequently, the FSVM-CART plays a crucial role to deliver information that the FSVM 

has learned in a way that humans can understand. Unlike the FSVM, the FSVM-CART can 

express information in the form of the decision tree, as shown in Figure 5-3. Moreover, 
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this decision tree can be transformed to IF/THEN rules, as shown in Table 5-5. Apart from 

human understanding, the FSVM-CART is also better than the SVM-CART and CART in 

terms of accuracy, as can be seen from the results in Table 5-4. It may, therefore, be 

concluded that if accuracy is the most important factor of EEG emotion applications, then 

the FSVM should be applied. In contrast, if human comprehensibility and accuracy are 

considered, the FSVM-CART is a reasonable choice for that application. Furthermore, this 

proposed framework could be applied to other classifiers that cannot express the 

relationship between the input and output of the system. The reason why the accuracy of 

FSVM-CART is slightly lower than the FSVM may be the fact that the FSVM-CART in 

this study wasn’t optimized in the CART process. For example, there is no optimization 

for a number of leaf nodes in the FSVM-CART. Therefore, the overfitting issue might 

occur in the model. Moreover, for the example as shown in Figure 5-3, the number of 

appropriate features is decreased from six features in the FSVM down to four features in 

the FSVM-CART. In the process of the FSVM-CART, it tries to split the criterion by 

measuring how pure a node is. This process might cut out some crucial information of the 

input features. Therefore, two features were cut off in the FSVM-CART. Moreover, the 

objective of the FSVM-CART is to extract human interpretable rules from the trained 

FSVM model. As demonstrated in past researches from the literature, the optimization 

between interpretability and accuracies is always a challenge. In this thesis, the FSVM-

CART has been optimized to generate a set of interpretable rules. However, the 

performance is still slightly lower than the original trained FSVM model. 
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5.6 Summary  

This chapter was undertaken to design a system which can explain how the black-box 

model of the FSVM works in terms of human comprehensibility. The proposed 

combination method of rule extraction between Fuzzy Support Vector Machines and the 

Classification and Regression Tree (FSVM-CART) was used for EEG emotion 

classification. There are two contributions to this thesis. First of all, the FSVM-CART can 

extract rules from the FSVM classifier into the form of a decision tree, so that human 

comprehensibility can be achieved. The second benefit of the FSVM-CART is the 

improvement of accuracy over the CART. While the CART can directly extract rules from 

the data, the proposed technique performed significantly better than the CART. Even 

though the FSVM was slightly better than the FSVM-CART concerning the accuracy, the 

FSVM-CART could be better than the FSVM for applications that require both human 

understanding and accuracy. The findings of this study will help developers to produce 

efficient EEG emotion classification applications in terms of the white-box model. 

Therefore, the objective of this chapter has been achieved. 

.  
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Conclusion and Future Work 

6.1 Research Summary and Contributions 

The primary objective of the current research was to develop an efficient emotion 

classification system using EEG with human comprehensibility. This was evaluated 

through three sub-objectives. First of all, a number of feature selections were investigated 

and efficiently selected, in order to reduce the complexity of the system. Secondly, a robust 

technique was used to enhance classification accuracy, by effectively handling the outliers 

in EEG data. Finally, interpretable rules were extracted from the proposed classifier to 

allow for human comprehensibility on the EEG emotion system. To archive the sub-

objectives, four tasks had to be carried out (as shown in Figure 6-1).  

 

Figure 6-1 An efficient emotion classification framework 



105 

 

A summary of each task is as follows: 

• In task 1, Chapter 3, the comparative experimental results suggested that by using fewer 

channels and sub-frequency bands for the features, it does not significantly drop the 

classification accuracies. Moreover, the results revealed that some frontal channels are 

useful for arousal emotion. In contrast, the channels on the parietal lobe are crucial for 

valence and dominance emotions. As a result, only 55 features from some frontal and 

parietal channels were selected as inputs. These observations can be used in the next 

task, feature selection, in order to reduce the number of features. 

• Task 2, the first part of Chapter 4, consists of feature selection. The proposed method 

using the ReliefF technique is applied to reduce and select appropriate features for 

building the model. The results of this study indicate that AF4-Gamma, Fp1-Gamma, 

Fp2-Gamma, Fp2-Alpha, AF3-Alpha, as well as Fp2-Beta are appropriate features used 

to classify three emotions, namely arousal, valence, and dominance. Consequently, 

tasks 1 and 2 can reduce the number of features from 160 to six, using four channels 

and three sub-frequency bands. The findings from this task clearly present the 

appropriate set of EEG channels and sub-frequency bands for reducing the complexity 

of the EEG emotion classification, which may suit real-time applications in the future. 

Moreover, this reduction could also assist the rule extraction step by providing compact 

rules to interpret. 

• In task 3, the second part of Chapter 4, it establishes an efficient and effective 

classification technique. Due to the sensitivity of the SVM with the outliers, the FSVM 

was used to improve the classification accuracy in the EEG data. The distance function 
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between a point and its class center was utilized. It assigned the weight value (fuzzy 

membership value) to each point during the learning process. The experimental results 

showed that the FSVM is significantly better than the SVM in arousal, valence, and 

dominance; around 8.20%, 8.98%, and 7.26% respectively.  

• In the final task, Chapter 5, the proposed combination method, FSVM-CART, was 

developed to extract human comprehensible rules and provide a better understanding of 

the FSVM model for impending practical applications. Like the SVM, the FSVM is a 

black-box model, and it lacks the ability of human comprehensibility. The idea of the 

proposed method is to use another white-box machine learning technique to learn what 

the FSVM has learned. The experimental results indicate that the FSVM-CART can 

extract rules from the FSVM. It can generate a binary tree and transform to If/Then rules 

instead of the black-box one. However, the FSVM provides slightly better classification 

results as compared to the FSVM-CART (around 2-3% better), but the FSVM-CART 

has a good trade-off between classification accuracy and human comprehensibility. As 

a result, the rule extraction technique, which can extract knowledge from the FSVM to 

provide human interpretable EEG emotion classification, is the essential contribution of 

this study. 

Consequently, the contributions of each task can develop an efficient emotion classification 

system using EEG with human comprehensibility. In particular, portable applications 

which require fewer features and a white-box model can be derived from the findings of 

this study. 
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6.2 Recommendations for Future Research 

Future work of the current study may be extended as follows: 

• A proposed method for rule extraction, the FSVM-CART, can be developed. The 

classification accuracy of the FSVM-CART is slightly lower than the FSVM. This 

is probably because the CART in the FSVM-CART is not optimized. It is 

suggested that by using a pruning method, it will likely increase the classification 

performance of the FSVM-CART. 

• All experiments in this study are participant-dependent classifications. As such, 

the limitation is that the proposed system required a training process for each user. 

In the future, participant-independent classifications should be studied and 

developed with generalization. 
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Appendix I 

There are SVM/FSVM parameters. 

Participant 

Number 

Arousal emotion 

 

Valence emotion 

 

Dominance 

 

Kernel c gamma Kernel c gamma Kernel c gamma 

1 RBF 10000 0.0005 RBF 10000 0.0005 RBF 10000 0.0005 

2 RBF 10000 0.0000005 RBF 10000 0.0000005 RBF 10000 0.0000005 

3 RBF 10000 0.000005 RBF 10000 0.0000005 RBF 10000 0.0000005 

4 RBF 10000 5E-10 RBF 10000 5E-10 RBF 10000 0.000000005 

5 RBF 10000 0.00005 RBF 10000 0.00005 RBF 10000 0.00005 

6 RBF 10000 0.00005 RBF 10000 0.00005 RBF 10000 0.00005 

7 RBF 10000 0.00005 RBF 10000 0.00005 RBF 10000 0.00005 

8 RBF 10000 0.00000005 RBF 10000 0.0000005 RBF 10000 0.0000005 

9 RBF 10000 0.00000005 RBF 10000 0.00000005 RBF 10000 0.0000005 

10 RBF 10000 0.000005 RBF 10000 0.0000005 RBF 10000 0.0000005 

11 RBF 10000 0.000005 RBF 10000 0.0000005 RBF 10000 0.0000005 

12 RBF 10000 0.0005 RBF 10000 0.0005 RBF 10000 0.0005 

13 RBF 10000 0.0005 RBF 10000 0.0005 RBF 10000 0.0005 

14 RBF 10000 0.000005 RBF 10000 0.0000005 RBF 10000 0.0000005 

15 RBF 10000 0.000005 RBF 10000 0.0000005 RBF 10000 0.0000005 

16 RBF 10000 0.000005 RBF 10000 0.0000005 RBF 10000 0.0000005 

17 RBF 10000 0.00000005 RBF 10000 0.00005 RBF 10000 0.00005 

18 RBF 10000 0.00000005 RBF 10000 0.00000005 RBF 10000 0.00000005 

19 RBF 10000 0.0000005 RBF 10000 0.0000005 RBF 10000 0.0000005 

20 RBF 10000 0.00005 RBF 10000 0.00005 RBF 10000 0.00005 

21 RBF 10000 0.00005 RBF 10000 0.00005 RBF 10000 0.00005 

22 RBF 10000 0.000000005 RBF 10000 5E-10 RBF 10000 5E-10 

23 RBF 10000 0.0005 RBF 10000 0.0005 RBF 10000 0.0005 
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24 RBF 10000 0.00000005 RBF 10000 0.00000005 RBF 10000 0.00000005 

25 RBF 10000 0.0000005 RBF 10000 0.0000005 RBF 10000 0.0000005 

26 RBF 10000 0.00000005 RBF 10000 0.00000005 RBF 10000 0.00000005 

27 RBF 10000 0.00005 RBF 10000 0.00005 RBF 10000 0.00005 

28 RBF 10000 0.000005 RBF 10000 0.000005 RBF 10000 0.000005 

29 RBF 10000 0.0000005 RBF 10000 0.0000005 RBF 10000 0.0000005 

30 RBF 10000 0.0000005 RBF 10000 0.0000005 RBF 10000 0.00005 

31 RBF 10000 0.00005 RBF 10000 0.00005 RBF 10000 0.00005 

32 RBF 10000 0.0005 RBF 10000 0.0005 RBF 10000 0.005 
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