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Abstract. The Gerasimov-Drell-Hearn sum rule and related dispersiveintegrals connect real and
virtual Compton scattering to inclusive photo- and electroproduction. Being based on universal
principles as causality, unitarity, and gauge invariance,these relations provide a unique testing
ground to study the internal degrees of freedom that hold a system together. The present contribution
reviews the spin-dependent sum rules and cross sections of the nucleon. At small momentum
transfer, the data sample information on the long range phenomena (Goldstone bosons and collective
resonances), whereas the primary degrees of freedom (quarks and gluons) become visible at large
momentum transfer (short distance). The rich body of new data covers a wide range of phenomena
from coherent to incoherent processes, and from the generalized spin polarizabilities on the low-
energy side to higher twist effects in deep inelastic scattering.
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INTRODUCTION

The spin structure of the nucleon has been at the forefront ofhadronic physics ever since
Stern and collaborators [1] discovered the large anomalousmoment of the proton. This
pilot experiment indicated that nucleons are composite systems with internal degrees of
freedom, leading also to a finite size and a rich excitation spectrum of protons and neu-
trons. Since the 1950s, these aspects have been under activeexperimental investigation
with the electromagnetic probe. Modern electron accelerators combined with new polar-
ized beam and target techniques have provided a wealth of newprecision data. Because
of the polarization degrees of freedom, these data form a solid basis for a detailed pic-
ture of the nucleon’s spin structure. For real photons, the GDH Collaboration at MAMI
and ELSA confirmed the Gerasimov-Drell-Hearn (GDH) sum rule[2, 3] and determined
the forward spin polarizability (FSP) of the proton, which is an important input for real
Compton scattering (RCS). Collaborations in all three halls of Jefferson Lab collected
a rich body of precision data for electroproduction with polarized beams and targets.
As a result, the evolution of generalized GDH-like integrals and polarizabilities is now
known over a large range of 4-momentum transferQ2. These recent developments have
bridged the gap between the high-Q2 (short range) aspects of deeply inelastic scattering
(DIS) on the nucleon’s constituents and the low-Q2 (long range) phenomena like res-
onance excitation. In the present contribution to the “SpinStructure at Long Distance”
workshop, the focus is on long-range aspects of the nucleon’s spin structure. For detailed
information on this field, the reader is referred to the following review papers: an intro-
duction to doubly-virtual Compton scattering (VVCS) by Ji and Osborne [4], a review
on dispersion theory in RCS and VVCS [5], a report on the GDH sum rule and related
integrals [6], and the recent review by Kuhn, Chen, and Leader [7].

http://arxiv.org/abs/0910.0719v1


FORWARD RCS AND PHOTOPRODUCTION

RCS formalism

The incident photon is described by its 4-momenta of momentum, q = (|~q|,~q), and
polarization,ελ = (0,~ελ ), which obey the relationsq · q = 0 (real photon),ελ · q = 0
(transverse gauge), and~ε∗λ ·~ελ = −1. If the incoming photon moves in the direction of
the z-axis, a circularly polarized photon is characterized by helicities λ = +1 (right-
handed) andλ =−1 (left-handed), and~ε± =∓(êx± iêy)/

√
2. Furthermore, the incident

photon energy in the lab frame is denoted byν and the outgoing photon is described
by the polarization vector~ε ′λ . The absorption of the photon leads to an excited state
with total c.m. energyW =

√
M2+2Mν , whereM is the nucleon mass. The forward

Compton tensor takes the general form

T(ν) =~ε ′∗ ·~ε f (ν)+ i~σ · (~ε ′∗×~ε) g(ν) . (1)

The Compton tensor is invariant under crossing ,ε ′∗ ↔ ε andν → −ν, and therefore
f is even andg odd as function ofν. The amplitudesf andg can be determined by
scattering circularly polarized photons off nucleons polarized along or opposite to the
photon momentum. If the spins are parallel, the excited state must have spinJ≥ 3/2, and
therefore the transition can take place only on a correlatedthree-quark system. The case
of opposite spins is helicity conserving and can take place on a single quark. Denoting
the respective Compton tensors byT3/2 andT1/2, we havef (ν) = (T1/2+T3/2)/2 and
g(ν) = (T1/2−T3/2)/2. Analogous definitions for the helicity-dependent cross sections
lead to the total absorption cross sectionσT = (σ1/2 + σ3/2)/2 and the transverse-
transverse cross sectionσTT = (σ1/2−σ3/2)/2.

The unitarity of the scattering matrix relates the absorption cross sections to the
imaginary parts of the respective forward scattering amplitudes by the optical theorem,

Imf(ν) =
ν
4π

σT(ν) , Img(ν) =
ν
4π

σTT(ν) . (2)

By use of the crossing relation and the optical theorem, the amplitudes can be expressed
by dispersion integrals,

Re f (ν)= f (0)+
ν2

2π2P

∫ ∞

ν0

σT(ν ′)
ν ′2−ν2dν ′, Reg(ν)=

ν
2π2P

∫ ∞

ν0

ν ′σTT(ν ′)
ν ′2−ν2 dν ′, (3)

whereν0 =mπ +m2
π/2M ≈ 150 MeV is the threshold of pion photoproduction. Because

σT(ν) is essentially constant for largeν, the dispersion relation (DR) forf (ν) has been
subtracted atν = 0 and the Thomson amplitudef (0) appears as subtraction constant.
On the other hand, recent data suggest thatg(ν) obeys an unsubtracted DR.

For ν < ν0, the amplitudes of Eq. (3) are real and can be expanded as a Taylor series
in ν. This series can be compared to the low-energy theorem (LET)of Low [8] and
Gell-Mann and Goldberger [9]. The LET fixes the leading and next-to-leading terms by
global properties of the nucleon, that is, its massM, chargeeN (ep = 1,en = 0), and



FIGURE 1. The total absorption cross sectionσT for the proton as function of the photon lab energy
ν, in units ofµb. Data from MAMI [12] (solid circles) and Daresbury [13] (open circles), the triangles
represent the 2π contributions measured at MAMI. The lines are MAID results [14] for the total cross
section (solid), one-pion channels (dashed), more-pion channels (dash-dotted), andη channel (dotted).
Figure from Ref. [6].

anomalous magnetic momentκN (κp = 1.79,κn =−1.91),

f (ν) =−e2e2
N

4πM
+(α +β )ν2+O(ν4), g(ν) =− e2κ2

N

8πM2 ν + γ0ν3+O(ν5). (4)

As a result the internal structure (spectrum and excitationstrength) of the complex
system becomes visible only through terms of relative orderν2. These terms contain
information on the dipole polarizabilities of the system, the forward scalar polarizability
α+β and the forward spin polarizabilityγ0. The next order in the expansion is of relative
orderν4 and contains contributions from dipole retardation and higher multipoles.

The comparison of Eq. (4) with the Taylor expansion of Eq. (3)yields

α +β =
1

2π2

∫ ∞

ν0

σT(ν ′)
ν ′2 dν ′ , (5)

πe2κ2
N

2M2 =

∫ ∞

ν0

σ3/2(ν ′)−σ1/2(ν ′)

ν ′ dν ′ ≡ IGDH , (6)

γ0 = − 1
4π2

∫ ∞

ν0

σ3/2(ν ′)−σ1/2(ν ′)

ν ′3 dν , (7)

which are the sum rules of Baldin [10], Gerasimov, Drell, andHearn [2, 3], and Gell-
Mann, Goldberger, and Thirring [9, 11], in order.

The total absorption cross sectionσT is displayed in Fig. 1, together with the contri-
butions of individual reaction channels. The cross sectionis characterized by a shoulder



FIGURE 2. The helicity difference∆σ =σ3/2−σ1/2 for the proton as function of the photon lab energy
ν, in units ofµb. Data from MAMI [15] (solid circles) and ELSA [16] (open circles). The lines represent
MAID results, see Fig. 1 for notation. Figure from Ref. [6].

near threshold (non-resonant pion production), the large peak of theP33(1230) reso-
nance, and smaller peaks in the second and third resonance regions. The two-pion chan-
nels provide a large background for energiesν > 700 MeV. Aboveν ≈ 2 GeV, the
cross section decreases to about 130µb, and at the highest measured energies a weak
logarithmic increase was observed. Obviously, an unsubtracted dispersion relation does
not exist. The situation is quite different for∆σ = σ3/2−σ1/2 plotted in Fig. 2, which
shows a much reduced background and only small helicity differences forν > 1.3 GeV.
We may therefore assume that (i) the high-energy photon is “helicity blind” and (ii) an
unsubtracted DR exists.

The one-pion contribution to∆σ has the multipole decomposition

[σ3/2−σ1/2]1π = 8π
kπ
kγ

(

−|E0+|2+ |M1+|2−6Re(E∗
1+M1+)−3|E1+|2

−|M1− |2+ |E2−|2+6 Re(E∗
2−M2−)−3|M2−|2± ...

)

, (8)

with kγ andkπ the momenta of photon and pion, respectively. Near threshold the pions
are produced in the S wave (spinJ = 1/2, multipoleE0+), that is,∆σ < 0. In the region
of the P33(1232) with J = 3/2, both helicity cross sections contribute, but sinceM1+
dominates, we haveσ3/2 ≈ 3σ1/2 and ∆σ is positive and large. According to Fig. 2,
σ3/2 dominates the photoabsorption cross section also in the second and third resonance
regions. It was one of the early successes of the quark model to predict the small value of
σ1/2 by cancelation of convection and spin currents. The GDH collaboration extended
the measurement up to 2.9 GeV at ELSA and found thatσ3/2−σ1/2 turns to negative
values atν ≈ 2 GeV, as was also predicted by extrapolation of DIS data [17,18].



TABLE 1. The GDH sum ruleI p
GDH and the forward spin polar-

izability γ p
0 for the proton.

ν [GeV] I p
GDH[µb] γ p

0 [10−4 fm4] Ref.

< 0.2 −27.5±3 0.90±0.05 [14, 19]
0.2−0.8 226±5±12 −1.87±0.08±0.10 [15]
0.8−2.9 27.5±2.0±1.2 −0.03 [20]

total 226±6±12 −1.00±0.08±0.11

sum rule 204 –

GDH sum rule and forward spin polarizability

The helicity dependent cross sections were measured by the GDH Collaboration at
MAMI and ELSA, in the energy range 0.2−2.9 GeV for the proton and 0.2−1.9 GeV
for the neutron (2H target). Based on a LET for pion photoproduction and several data,
the MAID and SAID analyses provide reliable estimates for the threshold region below
0.2 GeV. Table 1 shows that the resulting GDH integral up to 2.9 GeV exceeds the sum
rule value by about 10%. However, Regge estimates for the tail above 2.9 GeV yield
an additional contribution of(−14±2)µb [17, 18]. Furthermore, the LEGS Collabora-
tion has recently remeasured the(γ,π0) reaction in the∆(1232) region and extracted a
smaller contribution than obtained at MAMI, which would further reduce the integral by
(−18±6)µb [21]. In conclusion, the GDH integral for the proton is essentially saturated
by the threshold and resonance regions with only a small contribution of order 5% from
the Regge tail.

A simple analysis of the deuteron data [22, 23] also confirms the validity of the GDH
sum rule for the neutron, albeit with much larger error bars.It remains a fundamental
problem how to extract the neutron properties from a nucleartarget, for example, how to
“divide” coherentπ0 production and proton-neutron break-up between the nuclear and
nucleonic degrees of freedom. Future experiments to determine the sum rule also for the
“neutron target”3He will provide a better understanding of this problem.

Table 1 also lists the experimental results for the forward spin polarizability γ0 of
the proton. Because of the additional factor 1/ν2 relative toIGDH, the threshold region
becomes very important, whereas the high-energy contribution is negligible. The result-
ing delicate cancelation of threshold and resonance contributions poses a big problem
for ChPT and phenomenological models (see Table 10 of Ref. [5]). On the other hand,
the precision experiment of the GDH Collaboration was a firststep to disentangle the 4
spin (dipole) polarizabilities of the proton. At present, only the backward combination
is known from RCS, although with a much larger error bar. Further progress requires
polarization degrees of freedom [24], experimental projects along these lines are under
consideration.



FORWARD VVCS AND ELECTROPRODUCTION

VVCS formalism

In this section we consider the forward scattering of a virtual photonγ∗ with momen-
tum 4-vectorq on a nucleonN with momentum 4-vectorp. The Lorentz products of
these 4-vectors arep · p = M2, q · q = −Q2, and p ·q = Mν, with Q2 the “virtuality”
of the photon. The Lorentz scalarν takes the value of the photon lab energy,ν = Elab

γ ,
the invariant massW of the excited state isW2 = 2Mν +M2−Q2. The VVCS tensor
T = T(ν,Q2) has the form of a 2×2 matrix in nucleon spinor space,

T =~ε ′∗ ·~ε fT + fL + i~σ · (~ε ′∗×~ε) gTT − i~σ · [(~ε ′∗−~ε)× q̂] gLT , (9)

with~ε ′ and~ε the transverse photon polarizations and ˆq the longitudinal one. Because
of the crossing symmetry,gTT = gTT(ν,Q2) is an odd function ofν, the other 3
amplitudes are even functions ofν. The optical theorem relates the imaginary parts of
the 4 amplitudes to the 4 partial cross sections of inclusivescattering,

Im{ fT , fL,gTT,gLT}=
K
4π

{σT ,σL,σTT,σLT} , (10)

with K = K(ν,Q2) the “equivalent photon energy”. We note that products such as
K σT are independent of the choice ofK, because they are directly proportional to the
measured cross section. For further use we also list the relations between the inclusive
cross sections and the nucleon structure functions used to describe DIS,

{σT ,σL,σTT,σLT}=C

{

F1,
M(1+ γ2)

νγ2 F2−F1, g1− γ2g2, γ(g1+g2)

}

, (11)

with γ = Q/ν and a common factorC = 4π2α2
em/MK. The spin-independent ampli-

tudes fT and fL (or the structure functionsF1 and F2) are of interest in their own
right, however, we concentrate on the spin-dependent amplitudes in the following. The
imaginary parts of the scattering amplitudes get contributions from the Born terms
(poles atν = ±νB(Q2) = ±Q2/2M) and from inelastic processes above pion thresh-
old (ν > ν0(Q2) = mπ +mπ/2M+νB(Q2)). The Born contributions are

gB
TT =−αemν

2M2

(

F2
P +

Q2G2
M

ν2−ν2
B+ iε

)

, gB
LT =

αemQ
2M2

(

FDFP−
Q2GEGM

ν2−ν2
B+ iε

)

, (12)

with GE the electric andGM the magnetic Sachs form factors,FD the Dirac form factor,
andFP the Pauli form factor of the nucleon. Note that the limitsQ2 → 0 andν → 0
can not be interchanged in Eq. (12). In particular, the real photon limit is obtained by
first choosingQ2 → 0. As a result the Born contribution to real photon scattering is
real, because the real photon can not be absorbed on an nucleon. To the contrary, the
virtual photon is absorbed in elastic electron scattering,as is expressed by the pole terms



appearing in Eq. (12). These pole terms fulfill DRs by themselves. The remaining non-
pole or dispersive amplitudes fulfill the DRs

Regdisp
TT (ν, Q2) =

ν
2π2 P

∫ ∞

ν0

K(ν ′,Q2) σTT(ν ′,Q2)

ν ′2−ν2 dν ′ , (13)

Regdisp
LT (ν,Q2) =

1
2π2 P

∫ ∞

ν0

K(ν ′,Q2) ν ′σLT(ν ′,Q2)

ν ′2−ν2 dν ′ . (14)

Forν < ν0, these dispersive amplitudes are real and given by power series,

Regdisp
TT (ν, Q2) =

2αem

M2 ITT(Q
2)ν + γTT(Q

2)ν3+O(ν5) , (15)

Regdisp
LT (ν, Q2) =

2αem

M2 QILT(Q
2)+QδLT(Q

2)ν2+O(ν4) . (16)

Equations (13)- (16) yield the following sum rules:

ITT(Q
2) =

M2

π e2

∫ ∞

ν0

K(ν,Q2)σTT(ν,Q2)

ν2 dν , (17)

γTT(Q
2) =

1
2π2

∫ ∞

ν0

K(ν,Q2)σTT(ν,Q2)

ν4 dν , (18)

ILT(Q
2) =

M2

π e2

∫ ∞

ν0

K(ν,Q2) σLT(ν,Q2)

νQ
dν , (19)

δLT(Q
2) =

1
2π2

∫ ∞

ν0

K(ν,Q2) σLT(ν,Q2)

ν3Q
dν . (20)

with ITT(0) =−(M2/2πe2) IGDH andγTT(0) = γ0. ForQ2 → 0, σLT/Q is finite and also
ILT(0) andδLT(0) exist, although they can not be determined with real photons.

The one-pion contribution to∆σ of the proton is displayed in Fig. 3 as function of
the c.m. energyW for several momentum transfers. The figure shows that both the pion
S-wave production near threshold and theP33(1232) resonance contribution decrease
rapidly withQ2. A striking feature is seen in the second and third resonanceregions, for
which ∆σ changes sign atQ2 ≈ 0.3GeV2. For largerQ2 the high energy contributions
increase in strength relative to the first resonance region.Equation 8 explains one of the
reason why this happens. The photoexcitation of theD13(1520) is dominated by electric
dipole radiation (multipoleE2−). However, magnetic quadrupole radiation (multipole
M2−) becomes more and more important with increasing virtuality of the photon. The
results are the observed sign change of∆σ andσ1/2 dominance ifQ2 increases further.
Finally, if Q2 reaches values beyond 4GeV2, the resonance structures become small
fluctuations on top of the low-energy tail of DIS.

Information on the longitudinal strength and the amplitudeσLT is still scarce. Con-
siderable progress has been made by the RSS Collaboration who measured both spin-
dependent cross sections nearQ2 = 1.3GeV2. Figure 4 shows the measured photon
asymmetries as function of the c.m. energyW. These asymmetries are related to the
cross sections byA1 = σTT/σT and A2 = σLT/σT . Several resonance structures are



FIGURE 3. The helicity difference∆σ = σ3/2 −σ1/2 = −2σTT for the proton as a function of c.m.
energyW and for momentum transfersQ2 = 0,0.5,1.0, and 2.0 GeV2 according to MAID [14]. The lines
shows the total result (solid) and the contributions of one-pion (dashed), more-pion (dash-dotted), andη
(dotted) production. Figure from Ref. [6].

clearly visible in both asymmetries. We conclude that the total absorption cross section
σT contains a much stronger non-resonant background than is the case for the spin-
dependent cross sectionsσTT andσLT . As a result we may argue that integrals over the
latter cross sections are essentially saturated by the resonance region belowW = 2 GeV.
The structure ofσTT =−1

2∆σ is as found in the previous Fig. 3 for the one-pion channel,
except for the regionW = (1.35−1.5) GeV in which large contributions from two-pion
channels are expected. The amplitudeσLT has a similar peak structure, however, in com-
parison withσTT it appears suppressed. Moreover, the higher peaks are shifted to lower
energies. The sharp peak of both amplitudes nearW= 1.34 GeV is somewhat surprising.
The closest resonance,P11(1440), has a large width and also the two-pion contribution
is expected to yield a broad structure, see Figs. 1 and 2.

The one-pion contribution toσLT has the following multipole expansion:

[σLT ]1π = 4π
kπQ
kγKW

Re[S∗0+E0++2S∗1+(3E1++M1+)

−S∗1−M1−+2S∗2−(E2−−3M2−)±·· ·] , (21)



FIGURE 4. The photon asymmetries for the proton as a function of the c.m. energyW at momentum
transferQ2 ≈ 1.33GeV2. Data from the RSS Collaboration [25], triangles:A1, solid circles:A2. Dotted
and dashed lines: fits toA1 andA2, respectively, dot-dashed line: DIS extrapolation toA1 [26], dashed
line: phenomenological fit toA1 [27]. Figure from Ref. [25].

with KW = (M/W)K. A comparison of Fig. 4 with Eq. (21) yields the relative phases
of the charge and transverse multipoles, more precisely therelative phase of the helicity
amplitudes,S∗1/2A1/2. The immediate result isS∗0+E0+ > 0 near threshold,S∗1+M1+ < 0
near theP33(1232), andS∗2−M2− < 0 near theD13(1520). The peak nearW = 1.63 GeV
may be due to theS31(1620), which has large values and same signs forS0+ andE0+.

VVCS sum rules, polarizabilities, and higher twists

Whereas Eqs. (17) and (19) are appropriate definitions in theresonance region,
asymptotic QCD is described by integralsI{1,2} over the nucleon structure functions,

I{1,2}(Q
2) =

2M2

Q2

∫ x0

0
g{1,2}(x,Q

2)dx≡ 2M2

Q2 Γ{1,2}(Q
2) , (22)

with Γ{1,2} the inelastic contribution to the first moment of the respective structure func-
tion andx = Q2/2Mν the Bjorken variable. Assuming a “superconvergence relation”,
Burkhardt and Cottingham [28] postulated that the inelastic contribution to the first mo-
ment ofg2 is canceled by the elastic contribution, which leads to the relation

I2(Q
2)≡ 2M2

Q2

∫ x0

0
g2(x,Q

2)dx=
1
4

FP(Q
2)

(

FD(Q
2)+FP(Q

2)
)

. (23)

This result is astounding, because it relates the excitation spectrum to ground state
properties at all distances. If the BC sum rule holds, the discussed integrals take the
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following values at the real photon point:

I1(0) = ITT(0) =−1
4

κ2
N , I2(0) =

1
4

κN(eN +κN) , ILT(0) =
1
4

eNκN. (24)

The integralI p
1 and the related momentΓp

1 are displayed in Fig. 5. In the left inset,
the CLAS data are compared with MAID [5]. The full line including one- and two-pion
channels as well as the eta describes the measured contribution up toW = 2 GeV (open
circles, [29]) reasonably well, the one-pion contribution(dashed line) fails already at
relatively small momentum transfer. Also the DIS contributions become increasingly
important at larger values ofQ2, see the dash-dot-dotted line and the solid circles. The
right panel shows a comparison of the data with ChPT predictions. It is evident that
the predictions fail forQ2 > 0.05 GeV2, probably because of vector-meson and reso-
nance contributions. The agreement is expected to improve for the isovector combina-
tion Γp

1 −Γn
1, because the largeP33(1232) contributions cancel in this expression. The

experimental data have been fitted to the form [42]

Γp−n
1 (Q2) =

(κ2
n −κ2

p)Q
2

8M2 +a
Q4

M4 +b
Q6

M6 + . . . , (25)
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with the resultsa = 0.62±0.05±0.18 andb = 0.77±0.11±0.27. The prediction of
HBChPT atO(p4) agrees,a = 0.58 [41], whereas Lorentz invariant BChPTO(p4)
yields a much larger valuea= 1.87 [35].

Recent experimental results for the forward spin polarizabilities (FSPs) of proton and
neutron are shown in Fig. 6. The left panel comparesγ p

TT(Q
2) with ChPT and MAID in

the low-Q2 region. Whereas MAID reproduces the values close to the photon point, it
misses the data at larger momentum transfers. As in the case of real photons, the pre-
dictions of ChPT miss the data completely. In the central panel, γ p

TT is multiplied with
a factorQ6, because this product approaches the third moment of the structure function
g1 at large values ofQ2. In the limit of Bjorken scaling, this moment should approach
a plateau, which may have been actually reached atQ2 = 4−5 GeV2. These results are
remarkable for the following reasons. The FSP at the photon point is −1 (here and in
the following in units of 10−4 fm−4), a very small value compared to the RCS backward
spin polarizability of about−38. The data points at the highest valuesQ2 translate into
FSPs of about 3· 10−4, four orders of magnitude smaller than the RCS value, that is,
the generalized polarizabilities disappear rapidly ifQ2 approaches the scaling region.
The right panel in Fig. 6 shows the two FSPs of the neutron,γn

TT(Q
2) andδ n

LT(Q
2). The

agreement with MAID is quite acceptable, in particular forδ n
LT (lower part of the panel).

Contrary to all expectations, ChPT fails to describeδ n
LT even atQ2 = 0.1 GeV2.

The validity of the BC sum rule is demonstrated by the upper panel of Fig. 7 show-
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FIGURE 7. Top: Γn
2 as function ofQ2. Inelastic contribution measured by the E94010 Collaboration

(solid circles, [44]) compared to MAID (solid line, [14]), open circles: measured data plus elastic contri-
bution [45], diamonds: measured data plus elastic plus DIS contributions.
Bottom: The inelastic contribution to the neutron momentdn

2 as function ofQ2. Data from JLab E94-
010 (open circles, [44]) and SLAC E99-117/E155x (square, [46]), compared to MAID (solid line, [14]),
HBChPT (dotted, [33]), relativistic ChPT (dash-dotted line, [35]), and a prediction of lattice QCD [47] at
Q2 = 5 GeV2. Figure from Ref. [44].

ing Γn
2(Q

2). The data of the E94010 Collaboration [44] (solid circles) are in reasonable
agreement with MAID [14] (solid line), both integrated overthe excitation spectrum
from threshold toW = 2 GeV. Addition of the elastic contribution leads to the open
circles, further addition of the DIS estimate to the diamonds at slightly negative values.
The observed cancelations support the existence of the BC sum rule for the neutron. A
recent result of the RSS Collaboration yields an even more striking result for the proton.
At Q2 = 1.28 GeV2, the (positive) DIS contribution cancels 99% of the (negative) elastic
and resonance contributions, the remainder is far below theexperimental error [48].

Up to this point we have concentrated on GDH-like integrals and polarizabilities,
which are defined by low energy expansions of VVCS amplitudes. Starting from asymp-
totic QCD, the operator product expansion describes the evolution of the structure func-
tions by a power series in 1/Q2. The first moment ofg1 takes the form [49]:

∫ 1

0
dx g1(x,Q

2) = Γ̃1+(a2+4d2+4 f2)
M2

9Q2 +O

(

M4

Q4

)

, (26)

with only a logarithmicQ2 dependence of̃Γ1, a2, d2, and f2. In the nomenclature of the
OPE, the leading term̃Γ1 is twist 2,a2 is a target mass correction and also of twist 2, and
d2 and f2 are matrix elements of twist-3 and twist-4 quark gluon operators, respectively.
Several model estimates as well as lattice QCD calculationshave been performed for the



twist-3 matrix elementd2. The inelastic contribution is given by [50]:

dinel
2 (Q2) =

Q4

8M4

{

I1(Q
2)− ITT(Q

2)+
M2Q2

αem
δLT(Q

2)

}

. (27)

BecauseITT(0) = I1(0) =−κ2/4, the RHS of this equation is determined by the slopes
of the generalized GDH integrals at the real photon point, and therefored2(Q2) can be
predicted also by ChPT, at least for sufficiently smallQ2. The lower panel of Fig. 7
compares the recent data of the JLab E94-010 Collaboration [44] for dn

2(Q
2) to the

predictions of MAID and ChPT [33, 35].

CONCLUSIONS

Since the 1980s, deep inelastic scattering (DIS) at CERN, HERMES, and SLAC has pro-
vided invaluable information on the nucleon structure functions and their moments. In
particular, the Bjorken sum rule, a strict prediction of QCD, was shown to agree with the
data. However, a complete picture of the spin dynamics requires measurements over the
full range of momentum transfer, from long-range (coherent) to short-range (incoherent)
phenomena. For this reason, several dedicated experimentswere launched to study the
nucleon’s spin structure from photoproduction to electroproduction at low and interme-
diate momentum transfer. As a result of these efforts, a wealth of new precision data has
been assembled over the past decade, and more data are expected in the coming years.

Recent photoproduction experiments at MAMI and ELSA have proved the satura-
tion of the Gerasimov-Drell-Hearn (GDH) sum rule for the proton at photon energies
of 2−3 GeV, that is, the physics of the anomalous magnetic moment of the nucleon is
essentially determined by the resonance region. However, the Regge tail of the integrand
may provide a contribution of 5−10 %, and therefore an experiment at higher energies
would be helpful. Because nuclear and nucleonic degrees of freedom are intertwined, the
situation for the neutron deserves further studies, such asthe comparison of results de-
rived from different “neutron targets” and measurements ofall the decay channels (inco-
herent and coherent pion production, non-pionic decays). Due to the energy-weighting,
the (leading) spin polarizability is now well known. However, the experiments have also
the potential to determine the higher polarizabilities and, through DRs, the full ampli-
tude for forward scattering.

Collaborations in Halls A, B, and C of the JLab have provided arich body of high-
quality data with virtual photons. The generalized GDH integral and related integrals
were investigated from very small (Q2 = 0.01 GeV2) to quite large (Q2 = 5 GeV2) mo-
mentum transfer and over the full resonance region (W ≤ 3 GeV). The data for the gen-
eralized GDH integral of the proton are characterized by a rapid variation withQ2 from
large negative values for real photons to a zero atQ2 ≈ 0.2 GeV2, followed by positive
values in the 1/Q2 tail towards the Bjorken scaling region. Quite spectacularis the new
information on the second (longitudinal-transverse) spinstructure function. The neutron
data support the validity of the Burkhardt-Cottingham (BC)sum rule, a fascinating pre-
diction connecting an integral over the excitation spectrum to ground state properties
(nucleon form factors) at all values of momentum transfer, that is, at all distances. At



Q2 = 1.28 GeV2, a recent experiment confirmed the BC sum rule also for the proton.
Systematic investigations over the full range of momentum transfer are prerequisite to
prove the sum rule beyond doubt. As for real photons, the neutron results should be
checked by extraction from different nuclear targets, in particular with regard to nuclear
corrections at small momentum transfer.

The recent JLab experiments have also determined the two generalized spin polariz-
abilities of the nucleon, which yield information on the spatial distribution of the polar-
ization densities. The rapid decrease with momentum transfer indicates that these po-
larizabilities are completely dominated by long-range phenomena, an interplay of non-
resonant pion production near threshold and resonance excitation. Contrary to earlier
expectations, ChPT has not been very successful in describing the fine tuning of these
two contributions at small values ofQ2. In the scaling region (Q2 > 4−5 GeV2), the
DIS contributions to the polarizabilities become important. However, in this region the
polarizability has dropped by 3−4 orders of magnitude relative to the real photon point.
As for real photons, experiments with virtual photons have the potential to determine
the higher generalized polarizabilities and thus the full forward amplitude. The Hall A
Collaboration has also investigated the evolution of higher-twist functions to lowQ2.
The continuation of the dynamic twist-3 momentd2 peaks atQ2 ≈ 0.5 GeV2 and can
be well described by resonance contributions. The strong variation withQ2 indicates the
importance of higher terms if the twist expansion is extended towardsQ2 ≈ 1 GeV2. A
continuation of these experiments to largerQ2 is of high interest in order to determine
the point at whichd2 approaches its asymptotic value.

In summary, considerable progress has been made in our qualitative understanding
of the nucleon’s spin structure over the full range of momentum transfer. As the vir-
tuality of the photon increases, the strongly correlated many-body system “nucleon” is
seen through a microscope with better and better resolution, and the pertinent degrees of
freedom change from Goldstone bosons and collective resonances to the primary con-
stituents, the quarks and gluons. Although we have witnessed a steady improvement of
ab-initio calculations such as ChPT and lattice QCD, a quantitative understanding of the
inclusive processes in the resonance region is still missing. However, the new inclusive
experiments have proved without doubt that the resonance region ofW < 2 GeV plays
an important role over a wide range of momentum transfer. In order to fully compre-
hend the nature of these resonances, semi-inclusive experiments are asked for, such as
one-pion electroproduction in the higher resonance regions. In particular, the consider-
able longitudinal strength shown by the inclusive data above W < 1.5 GeV may have
important consequences for the multipole analysis of one-pion resonance decay.

We conclude that the wealth of new data has been both informative and challenging
for theory, and we look forward to further experimental and theoretical advances in our
quest to understand the nucleon’s spin structure in the realm of non-perturbative QCD.
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