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ABSTRACT A broadband high-gain millimeter-wave (mmWave) array beamforming network (BFN) design,
analysis, and implementation based on the Rotman lens antenna array feeding are presented. The BFN is
intended for operation in the (26-40) GHz frequency band for a wide range of potential applications in
the fifth generation (5G). The system is made on Rogers substrate, RO6010, to provide compatibility with
standard planar low-cost processing techniques for millimeter-wave monolithic integrated circuit (MMIC).
The measured results show the system capability of 80° beam scanning for different angles at —39.7°,
—26.5°,—13.3°,0°,+13.3°,426.5°, and +39.5° at 28 GHz. With these features in addition to being compact
size, low profile, and lightweight, this BFN is suitable for various millimeter-wave and 5G applications such
as the advanced multi-in multi-out (MIMO) systems, remote sensing, and automotive radar.

INDEX TERMS 5G antenna, automotive radar, beamforming, beam-switching, high gain, quasi-Yagi,

remote sensing, Rotman lens.

I. INTRODUCTION

The next generation of wireless networks (5G) addresses the
evolution of new kinds of network deployments beyond the
current well-known wireless networks for the horizon 2020.
5G can handle far more traffic at much higher speeds than the
base stations that make up for today’s cellular networks such
as 3G, 4G, and 4.5G (LTE advanced). More reliable services
through ultra-dense radio networking, mesh-like connectiv-
ity, much higher bit rates, low latency, lower infrastructure
cost, more efficient spectrum reuse, and much more, are the
main characteristics of 5G. Therefore, advanced high gain
antennas and BFNs are essential among many other design
challenges are required for 5G [1]. Naturally, the propaga-
tion environment at millimeter wave (mmWave) frequencies,
recommended for 5G, lends itself to a beamforming structure,
where antenna arrays are required to obtain the necessary link
budget. Thus, Analog beamforming (ABF), Digital beam-
forming (DBF), and Hybrid beamforming (HBF) architec-
tures have been agreed to facilitate 5G evolution [2]. In fact,
generating multiple RF beams using an array of antennas
for mmWave systems is a crucial issue, where it should
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meet some challenging requirements. The BFN should have
a wide-bandwidth and RF beam steering capability for a
reasonable data rate in desired angular directions. Another
issue is the compatibility with standard planar low-cost
processing techniques for mmWave monolithic integrated
circuit (MMIC) and high volume production [3]. The beam-
forming concept for the mmWave band is implemented using
Butler matrix as reported in [4], [5]. However, Butler matrix is
anarrow band system, due to its phase shifters [6]. In contrast,
Rotman lens is a well-known beam scanning technique and is
a true-time-delay (TTD) component. It provides beam steer-
ing independent of the frequency. Thus, it exhibits wideband
properties. For its simple structure and cost-effective fabri-
cation process, Rotman lens has been widely used in many
applications such as satellite communication and remote
sensing applications [7]-[9], radar systems for military appli-
cations [10], especially those fulfilling tracking and point-
ing tasks. It is, also, used for automotive radar sensing and
adaptive cruise control [11], [12], imaging and security appli-
cations [13], and as a real-time spectrum-sniffer (RTSS) for
cognitive radio [14].

Recently, Rotman has attracted much attention for use
in 5G wireless networks. In [15], Rotman lens fed a wideband
(25-30) GHz microstrip antenna array for use in 5G wireless
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communication applications is presented. The BFN is real-
ized using a simple and low cost printed circuit board (PCB)
technology to operate at 28 GHz with (—40° to +40°)
scanning range. However, the reported measured return loss
indicates a poor matching performance (S;; < —8.5 dB).
Another BFN with similar fabrication technology is presented
in [16]. The basic idea is realizing a folded Rotman lens with
the use of aperture coupling by multi-branch slots for the
transition between the lens layers. In addition, rectangular
slots are used to feed an array of patch antenna elements
on the top layer. The BFN exhibits a scanning capability
of £30° and good impedance matching between 26 GHz to
29 GHz with a maximum gain of 14 dBi. Although 50%
size reduction is achieved, compared to the conventional
Rotman lens, the multi-layer structure increases the overall
thickness to 6 mm making it relatively bulky. Also, the use
of patch antenna limits the bandwidth of the BFN. Sub-
strate integrated waveguide (SIW) Rotman lens is presented
in [17]-[20]. Seven beam ports and nine array ports Rotman
lens for beam switching application is presented in [17]. The
system has a scanning capability over £24° in X-band. Nev-
ertheless, in SIW Rotman lens the distance between adjacent
beam ports and adjacent array ports must be large to avoid
interference between neighbor waveguides. Consequently,
the lens size increases compared to PCB-based Rotman lens.
More importantly, metallic vias deteriorate S-parameters and
amplitude distribution on array elements [18]. A dual-layer
Rotman lens with 50% size reduction, compared to a con-
ventional one, is introduced in [19], [20] using SIW technol-
ogy in the 24-GHz band. However, the multilayer structure
and the size of 7.21¢ x 12A¢ is electrically large. Further-
more, SIW Rotman lens-based beamforming or multibeam
systems of [17]-[20] show a very narrowband performance
(~4%-T7%), which reduces the spectrum utilization of a TTD
component such as Rotman lens. Alternatively, ridge gap
waveguide (RGW) technology is proposed to realize Rot-
man lens for the advantage of only metal and air are used;
therefore, the dielectric losses associated with PCB or SIW
technologies are eliminated [21], [22]. An RGW Rotman
lens is proposed in [23] for beam scanning in millimeter
wave applications. The design shows a good performance
in terms of S-parameters, especially the transition between
RGW and WR2S8 in the input and output ports. However,
56 mm is needed just for transition section between RGW
and WR28 for each input, or output port, in addition to
50 mm for the parallel plate region of Rotman lens results
in a massive structure. Besides, to the authors’ best knowl-
edge, the physical implementation and measurement results
of mmWave RGW Rotman lens are not reported yet in
the open literature. Also, machining of such device in the
mmWave band is exceptionally costly. Subsequently, there
are some trials to reduce the implementation cost using met-
alized three-dimensional printing technology (3D-Printed) as
reported in [21]. This might explain why only a few solutions
have been reported so far to implement mmWave Rotman
lens using RGW or 3D-Printed. Another possible technique
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is the printed version of RGW (PRGW), which is, by far,
lower cost than RGW. In [24], PRGW Rotman lens operating
at 60 GHz is proposed. The lens scanning range is 40°.
This solution reduces the dielectric losses, where the wave,
in this case, propagates mainly in the air. However, the size
of the BFN will increase, especially, when it is scaled for 28,
or 38 GHz suggested for 5G [1] and also the use of air instead
of a dielectric material increases, generally, the physical size.
The inkjet processing technique is also possible for realizing
Rotman lens with a low profile and low cost such as proposed
in [25].

In this paper, seven-beam ports Rotman lens feeding eight
Quasi-Yagi antenna array is implemented in the PCB technol-
ogy. The proposed lens is designed to operate in the frequency
band 26-40 GHz, where it is reported as one of the candidates
for 5G wireless communications system for both indoor and
outdoor devices [1], [26]. The lens is designed according to
Hansen’s design procedure for optimum Rotman lens param-
eters with maximum gain and minimum phase error [27].
The proposed work takes care of both the amplitude and
the phase error at the same time to determine the design
parameters of the proposed Rotman lens. The performance
of the proposed BFN is compared to related beamforming
systems with different fabrication technologies and exhibits
a relatively high gain, broadband, and reasonable scanning
performance in addition to being low-cost, low profile MMIC
compatible.

The rest of the paper is organized as follows. Section II
discusses the design procedure of Rotman lens based on
Hansen’s modification of original Rotman and Tuner equa-
tions and the optimization process in subsection A. A brief
Rotman Lens design methodology is summarized in subsec-
tion B. Then, in subsection C, it addresses the design of the
Quasi-Yagi antenna, the antenna that is used in the frontend of
the proposed system. Section III shows the simulation results
of the proposed BFN. A prototype of Rotman lens feeding
eight Quasi-Yagi antennas, along with its measured results
and discussion are presented in Section IV. The conclusion is
presented in Section V.

Il. ANALOG BEAMFORMING SYSTEM DESIGN
CONFIGURATION THEORY AND ANALYSIS

In this work, Rogers 6010 substrate with dielectric constant
of 10.2, loss tangent of 0.0023, and thickness of 0.381 mm is
used in the design. Full-wave electromagnetic (EM) simula-
tor CST ver. 16 has been adopted for the simulation.

A. ROTMAN LENS DESIGN CONFIGURATION

Rotman lens was invented in 1963 by Rotman and
Turner [28]. Then, several methods were proposed to improve
the performance of Rotman lens based on modifying the lens
geometry or using optimization methods, e.g. [27], [29]-[31].
Hansen’s modification of Rotman lens is used in this paper.
A typical Rotman lens has M -beam ports, N-array ports, and
D-Dummy ports. The lens can form M-discrete beams in
different angular directions. According to Hansen’s proce-
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dure for designing Rotman lens, the designer should specify
the number of radiating elements (V) to obtain specific gain
performance. Also, the spacing (d) between array elements
on the array axis, is determined based on the wavelength
of a designated frequency, and the desired maximum beam
steering angle (+6p). The radiating element should have a
3dB beam width (BW) greater than or equal (26y). Those are
the general requirements of the BFN. Then, the minimum
number of Rotman lens beam ports (M) for continuous beam-
forming is calculated according to the 3dB BW of the resultant
N-elements array’s pattern for the maximum frequency in the
designated band as follows:

260
M = @))
BWarray

If Rotman designed with beam-ports less than M, the gener-
ated beams would not overlap within 3dB BW of the resultant
array pattern, and hence there will be a signal drop while
steering process. On the other hand, some applications, like
satellite communications, require no overlapping between
the generated beams within 3dB BW. The system, in this
case, is described as a multibeam rather than beamforming
system, where it still can generate beams pointing in different
directions, but overlap beyond 3dB BW [7], [19], [20].

After determining the number of beam-ports and array-
ports, the parallel-plate waveguide region that connects
beam-ports and array-ports is designed based on four sig-
nificant parameters (f, «, 8, and y). Fig. 1 illustrates these
parameters, where f] is the (on-axis) focal length, f> is the
off-axis focal length and are taken from the three points
Fo, F1, and F> (“foci”) of the beam port contour which
is the reference of the input waves and therefore no phase
errors. If Rotman lens is fabricated on a dielectric substrate,
the substrate permittivity (e, ) is specified, and the dimensions
of the lens are reduced by a factor /¢, [29]. For a desig-
nated maximum scanning angle 6y and specific array length
(N —1)d, aprimary geometrical constraint on the lens on-axis
focal length is set to maintain a good amplitude performance
and to keep angles and distances between different input and

FIGURE 1. Hansen’s Modified Rotman Lens.
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output ports relatively closed to each other [29]:
f1 2 2(N —1)d sinfy 2)

The focal angle « is the angle between the on-axis and off-
axis focal lengths and the ratio between them is .

B=r/h 3)

It should be noted that 8 in Hansen’s formulation is the
inverse of the original Rotman lens parameter (g). y is an
expansion factor, which is the ratio between the sin of beam
steering angle (0), corresponding to the off-center focal point,
and the sin of the focal angle () as follows:

y = sinf /sina “4)

y3 is the position of a typical antenna element on the array axis
as shown in Fig. 1. Another critical parameter is the indirect
factor of utility ¢, which has a crucial effect on the amplitude
and the phase error performance of the lens. ¢ is given by

¢ =y3y/h ©)

The last essential parameters for designing Rotman lens are
the normalized lengths (W = w/f}) of the transmission lines
connecting each array-port to the body of the lens [27].

The effect of those parameters on Rotman lens gain
and phase error performance is, briefly, addressed here and
summarized in a simple design methodology for optimum
mmWaves Rotman lens-based BFN, more details can be
found in [27]-[31]. @ and B have a similar effect on the geom-
etry of Rotman lens, in which the increase of any one of them,
with all other parameters are unchanged, results in opening
the beam-ports contour and closing the array-ports contour as
depicted in Fig. 2. Despite the effect on the apparent shape of
the lens, o and § must be conjunctionally selected with other
parameters to obtain an acceptable amplitude performance
and minimize the phase aberrations.

FIGURE 2. Effect of focal angle « and focal ratio 8 on Rotman lens
geometry.

These aberrations are resulted by the difference in path
lengths between a central ray of length (h = H /f1) through
the center of the array-ports contour and any other ray of
length (I = L/f1), both of which are traced from an arbitrary
point on the beam-ports contour through the lens and nor-
mally terminate to the generated wavefront as shown in Fig. 1.
The normalized path difference is a function of both the scan
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FIGURE 3. Normalized Path difference variation with the location on the
array-ports curve for different ray angles. «= 35°, 8 = 0.875, and 6y = 45°.

angle 6 and the position along the array contour ¢, and can
be derived geometrically [28].

§P = /&, (I — h) + /e, W+y3sind ©6)

where ¢, is the effective dielectric constant in the transmis-
sion lines region. Fig. 3 illustrates the variation of the normal-
ized path difference with ¢ for different ray angles 6. It can be
seen that the path difference for rays of the focal points (0 =
0° and £35°) is zero, while it increases for rays between foci
such as 6 = 25°, and even more for rays beyond foci, like the
case of ray angle 8 = 40°. Therefore, optimization of & and
is needed to minimize the phase error for rays outside foci
since they, usually, have larger phase error [27]. Moreover, ¢
is bounded by an upper limit which varies with the focal ratio
for a given focal angle as shown in Fig. 4. This limit sets a
constraint on « and 8 values during the optimization process.
For specific acceptable path difference calculated using (6)
and a given {max, an appropriate range of o and B can be
chosen from Fig. 4 [27]. Furthermore, various optimization
methods can be used to solve the following objective function
for @ and B which minimize the total absolute path difference
for all ports.

M N
18P Tpra1 = ZZ |Ve, (1 —h) + e, W +y3sing| (7
11

Some of these methods are based on numerical techniques
such as genetic algorithms (GA) [32]. Another method is
introduced in [33] based on having three zero error posi-
tions on the array axis for each beam port. The presented
results in [33] show a considerable path difference reduc-
tion compared to [27], [28]. However, the lens performance
optimality is not obtained only from the phase error point
of view. Amplitude performance, on the other hand, is also
an important design factor that must be considered. With-
out providing both of phase error and amplitude perfor-
mance together, the picture of BFN performance optimality
is somewhat incomplete. For example, Fig.5 shows the path
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difference for two different o« — 8 pairs at the center frequency.
Based on (7), the total absolute path difference of o= 35°
and 8= 0.92 shown in Fig. 5a is 0.9318, which is better
than 1.2092 of = 40° and = 0.92 depicted in Fig. 5b.
Furthermore, with o= 35° and = 0.875 shown in Fig. 3,
the total absolute path difference is 0.7994. However, the path
difference minimization does not indicate the whole perfor-
mance of the BFN, where the gain amplitude performance
shown in Fig. 5c indicates that about 4.363 dB amplitude
variation between the center beam and the outer one in case
of o= 35°, B= 0.875, which is relatively high. This variation
is improved to 2.243 dB in case of o= 35° and f= 0.92, and
even better for o= 40° and = 0.92 with only 1.754 dB of
amplitude variation. In other words, Rotman lens designer
should satisfy, for typical applications, a reasonable phase,
and amplitude performance together. Table 1 summarizes the
amplitude and the total path difference performance for the
three « — B pairs.

TABLE 1. Path difference and amplitude performance comparison for
three «—p pairs.

a B Total Path difference Amplitude Variation
|8P|Total (dB)

35° 0.875 0.7994 4.363

35° 0.920 0.9318 2243

40° 0.920 1.2092 1.754

Other parameters are set tobey =1, f;/A =4, and 6, = 45°

The amplitude performance is approximated by applying
aperture theory and uniform distribution to each port, to esti-
mate the amount of electromagnetic (EM) coupling between
any two ports [7], [31].

Sij =Jo (kwising;) x j, (kwjsing;)

[ i (kedi ke W) 8)
Ad;;

Jo(x) = sin(x)/x &)

where k, and k, are the phase constants in the parallel plate
region and the transmission lines, to the array ports side,
region respectively, d;; is the distance between the port i and
port j phase centers, w;, w;, are the port widths, and ¢;, ¢; are

FIGURE 4. Variation of the upper limit on parameter ¢ with the focal
length for different focal angles.
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(a

(b)

(c)

FIGURE 5. Path difference and amplitude performance for different « — g
pairs: (a) Path difference for « = 35° and g = 0.92. (b) Path difference for
« = 40° and B = 0.92. (c) Normalized radiation patterns for three
different o — g pairs. (y = 1, f; /A = 4, and ¢y = 45°).

the angles between the normal to the port aperture and the
line connecting the port phase centers.

After obtaining the values of «, B, and ¢, lengths of
the transmission lines connected to the array elements are
obtained by solving the following quadratic equation [27]:

aW? + bW+c =0 (10)

where a, b, and ¢ are functions in «, 8, and ¢.

The phase centers of the corresponding array ports and
beam-ports are obtained using Peter Simon formula [31]
Once the phase center coordinates of all beam-ports and
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array-ports are obtained, a horn of width about (A/2) is created
around each phase center [27]. The axis of the horn is normal
to the port curve. These horns are tapered out of the lens
parallel plate region, with a reasonable length, to provide
a better impedance match between the feed and lens body.
Otherwise, received wave will be transferred into higher order
modes in the tapered region and cannot propagate through the
feed, but will be reflected [34].

Finally, the side walls of Rotman lens are attached to
D number of matched dummy ports to absorb the incom-
ing wave on it and provide a reflection-less termination of
the parallel-plate region. There is no specific number of
dummy ports that should be selected for Rotman lens design,
even in the original proposal of [28]. The vast majority
of Rotman lens designs have multiple dummy ports, such

s [15]-[19], [32]. On the other hand, some Rotman lens
designs adopt only a single dummy port in each side as
reported in [20]. According to [35], the side walls curvature,
and the dummy ports number and size have some impact on
the side lobe level but no visible effect on the main beam.
Therefore, dummy ports number, size, and position should
be optimized to obtain an acceptable phase and amplitude
performance, where they still contribute to the magnitude
and phase variation at the array ports due to the multipath
reflection. It should be noted that some Rotman lens designs
do not employ dummy ports and are replaced by absorbing
material [21], [36]. Also because there is some energy lost to
the dummy ports, [21] suggests a bed of nails technology to
guide the waves instead of dummy ports for effective energy
reuse.

B. ROTMAN LENS DESIGN METHODOLOGY

The proposed optimum mmWaves analog beamforming sys-
tem can be designed according to the following brief and
simple designing steps:

1. Select N number of a typical antenna element that
has broadband, a wide 3dB BW (BW pens), and
gain performance satisfies the required total array
gain.

2. Determine the maximum scanning range (+6p), pro-
vided that 200 < BW gjemen: (of the maximum required
frequency).

3. Calculate the minimum required number of Rotman
lens beam-ports (M) using (1) based on the required
application. Note that increasing M increases the scan-
ning accuracy. On the other hand, it increases the
mutual coupling between ports.

4. Calculate the minimum required on-axis focal length
(f1) using(2).

5. Calculate the indirect factor of utility ¢ using (5) by
setting y3 = Yimax and & = {max-

6. Choose appropriate values of @ and S that satisfy {max
from Fig. 4 as initial guess. Further optimization can be
done using (7) and (8) to ensure optimum performance
for both of amplitude and phase.
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7. Calculate and plot the path difference for the range of

[—&max> ¢max] using (6) and (7). If the path difference

exceeds specified maximum permissible limit or ampli-

tude performance declines below a minimum specified

level using (8), repeat 6.

Solve the quadratic equation (10) to obtain W.

9. Calculate the phase center coordinates for both beam

and array ports as in [31].

10. Create a horn of width about 1/2) around each phase
center coordinate with an axis normal to the port curv.

11. Taper the horn, with a reasonable length, toward the
feed.

12. Create D number of matched dummy ports at the two
side walls of the lens. Otherwise, use absorbing mate-
rial or guiding structure.

*®

C. ANTENNA DESIGN CONFIGURATION

The single antenna element of the proposed BFN is
a Quasi-Yagi antenna of [37]. Unlike the narrowband
microstrip patch antenna, this type of antennas provides
ultra-wideband that makes it a good selection for TTD beam-
forming systems. The selected Quasi-Yagi antenna with its
dielectric lens follows the endfire radiation antennas’ fam-
ily. Likewise, Vivaldi antenna own ultra-wideband and the
endfire radiation. Vivaldi antenna has wider BW and broader
frequency band than Quasi-Yagi antenna. However, Quasi-
Yagi antenna provides higher gain, more compact size, and
lighter weight than Vivaldi antenna [38]. Another advantage
of the endfire antennas that makes them suitable for planar
Rotman lens is their main radiation is less affected by the
unwanted radiations, emitted by twisted transmission lines
of the array or beam port sides than the broadside antennas,
especially at mmWave frequency band. Since one of our
main objectives in this paper is to design a compact size
BFN, Quasi-Yagi antenna is selected for its compact size, low
profile and light-weight in addition to its ultra-wideband. The
antenna consists of two major parts as shown in Fig. 6. The
first part includes a finite length dipole, reflector, directors
and, a transition structure and is located on the top layer of
the substrate. On the bottom layer, a U-shaped MS-to-SL
balun is placed to feed the driver dipole. This part represents
an excitation source for a dielectric slab waveguide (DSW),
which is the second part of the antenna. The antenna’s input
impedance is 50 €2 and is connected to a microstrip line with
wr = 0.365mm (Zy = 50 €2) followed by another microstrip
line of w,, = 0.178mm width (Z; = 67 €2). This impedance
is selected to match the input impedance of the Quasi-Yagi
array at the center of the driven element and is usually
small, and is strongly influenced by the spacing between
the reflector and the driver [39]. The last microstrip line is
curved in U-shape to feed the driving dipole through the
MS-to-SL transition, providing a single-ended-to-differential
conversion with a wide bandwidth. The U-shaped MS-to-SL
balun is optimized to achieve a good impedance matching.
A dielectric lens enhances the directivity of the Quasi-Yagi
antenna with hole slots are inserted in the dielectric substrate
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FIGURE 6. Quasi-Yagi antenna for the proposed BFN.

to reduce its effective permittivity and consequently, ensure
that higher order modes are not excited in the dielectric slab
waveguide (DSW) [37].

Ill. SIMULATION RESULTS

Following the calculation and parametric optimization of the
lens parameters as discussed in section II, the analog beam-
forming system is designed with the parameters specified
in Table 2. The performance of the beamforming system is
evaluated for the single antenna element, lens structure, and
the overall integrated beamforming system as follows.

TABLE 2. Main Parameters of the proposed BFN.

Parameter Symbol Value
On-axis focal length fi Sk
Focal angle a 40°
Focal ratio V4 0.9
Expansion Factor y 1
Scanning range +6 +40°
Number of Array-ports N 8
Number of Beam-ports M 7
Number of Dummy-ports D 2
Substrate thickness h 0.381 mm
Total Lens length / 70.00 mm
Total Lens width w 50.00 mm
dielectric constant & 10.2

A. SINGLE ELEMENT

Quasi-Yagi antenna of [37] is designed with lower gain for
broader 3dB beamwidth performance so that it allows a wide
scanning range. As shown in Fig. 7a, the single element of
Quasi-Yagi antenna exhibits broadband of (26-40) GHz. The
antenna shows an average gain of 7 dBi and BW better than
(>83°) in the band (26-34) GHz and gradually decreases to
70° for (34-40) GHz, which is normal due to the larger aper-
ture with respect to operating wavelength as shown in Fig. 7b.
This is reflected on the absence of the 3 dB BW overlap
beyond 34 GHz.

B. ROTMAN LENS
The proposed lens is designed with eight array ports as shown
in Fig. 8. The original design requires seven beam-ports,
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FIGURE 7. Quasi-Yagi antenna performance over (26-38)GHz: (a) Gain
and return loss. (b) Radiation patterns.

FIGURE 8. Simulated 7 x 8 x 2 Rotman lens design.

according to (1), to steer the beam within a maximum scan
angle of 40°, and minimum array element spacing of 0.5A¢.
Thus, based on (2) a minimum focal length of 4.5 is calcu-
lated. Therefore, the focal length is set to be 5iy. To have
equal length transmission lines, so that the system is fre-
quency independent, additional space between the lens array
ports and the array antenna elements is necessary.

In our design, the dummy port horn has a wide aperture
that assembles having multiply dummy ports at the side walls;
this also reduces the number of the dummy loads needed for
terminating the side walls of the parallel plate region. The
rest of the parameters are selected according to the design
methodology in the previous section. The simulation results
indicate good impedance matching for the proposed lens,
where reflection coefficients of all beam-ports, as illustrated
in Fig. 9a, are better than —13 dB. Fig. 9b and Fig 9c show the
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(a

(b)

(c)

(d)

FIGURE 9. S-parameters performance of the proposed Rotman lens:

(a) Beam-ports reflection coefficients. (b) Array ports S-Parameters when
beam-port 4 is activate, the rest of ports are not shown for symmetry
reason. (c) Array ports S-Parameters when beam-port 7 is activate. (d) The
normalized transmitted power for each beam port.

magnitude of the S-parameters at the array-ports when they
are fed by the center and the edge beam-ports, respectively.
The ideal average power level at the eight element array-ports
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TABLE 3. Comparison of the proposed beamforming system with other related works.

Reference  Number of Ports ~ Frequency FBW Scanning Range  Gain Electrical Size Fabrication Antenna Element
s Technology
MXNxD GHz % degree dBi mm?
[18] 7xTx8 15.5-16.5 6.25 -30° to +30° 13 530 % 6.4 A SIW Vivaldi
[20] 7x15%2 23.6-24.6 4.17 487 to+48° 226 T2h % 12 % SIW Slotted WG
[23] 5x7x14 26.4-40.1 412 20° to +20° - >17.8 % 17.8 X RWG WR28
[24] 11x16x8 60 - -40° to +40° - Not reported PRGW -
[21] 5x5%0 6-18 100 -30° to +30° - 522 % 6.12%  3D-P-RGW  Double ridge horn
[25] 5%8x8 50-70 333 -30° to +30° - 7.6 %% 8.77 ko inkjet -
[32] 8x10x28 6-18 100 287 t0+28°  12-20.6 12 2% 12 X PCB Double ridge horn
[16] 7x10%8 26-29 10.9 29° to +29° 143 4.0 2% % 8.40 A PCB Patch
[15] 5x6x4 25-30 182 -40° to +40° - T3k x 1122 PCB Patch
This work Tx8x2 26-40 424 -40° to +40° 14.0 5500 % 7.70 A PCB Quasi-Yagi

FIGURE 10. The relative size of the proposed Rotman lens with high
dielectric material compared to designs with low dielectric constant
materials.

fed by the center beam-port, in the absence of material losses,
is about —9 dB for each port. However, the selection of,
relatively, high dielectric material results in a dielectric loss,
in addition to metallic and other types of loss. Also, there
is a modest amplitude tapering experienced by array-ports,
due to different distances from beam-port. The tapering effect
increases when feeding from the edge beam port. All these
effects contribute to power level reduction. Consequently,
the BFN’s gain decreases compared to the gain of ideal N
element, uniformly excited and equally spaced linear array.
The relative total transmitted power accounts for all types of
loss and is calculated using the simulated S-parameter of all
array-ports fed by each beam-port as follows [19]

N

Pr=> |5, j=12..M (11)
i=1

The proposed BFN has good S-parameters magnitude at the
array-ports, with a relative transmitted power level ranges

VOLUME 7, 2019

FIGURE 11. The Phase difference between adjacent array ports of the
proposed Rotman lens.

FIGURE 12. Integration of the antenna array with Rotman lens.

between —1.5 dB to —2.9 dB over 26-40 GHz as shown
in Fig. 9d. The rest of the ports are not reported for sym-
metry reason. These levels indicate an efficiency above 71%
for the center beam-port, 60.3% for beam-port 3, 55% for
beam-port 2, and 51.3% for beam-port 1. These losses are
expected as discussed and increase unavoidably with the
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(a

(b)

(c)

(d)

FIGURE 13. Simulated Radiation patterns of the proposed BFN:
(a) 26 GHz (b) 28 GHz. (c) 32 GHz. and (d) 38 GHz.

increase of the scanning angle, especially, at higher fre-
quencies. However, the lens size is tremendously reduced
compared to air-filled or low dielectric material Rotman lens
design as shown in Fig. 10.
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The phase distributions across the array-ports show a linear
behavior as depicted in Fig. 11. Although the phase error
of the three focal points is theoretically zero, the multipath
reflection might result in some phase deviation. The phase
error for the center beam-port is about +3.5°, increases to
the maximum phase error of 6.6° for beam-port 1 due to
the multipath reflection and the mutual coupling between
adjacent ports. A phase error of £5.4° is for beam-port 2 and
+6.2°, for beam-port 3. Nevertheless, the radiation patterns,
in the next section, indicate that the phase error is still within
an acceptable range.

C. ROTMAN LENS-BASED BEAMFORMING SYSTEM

Eight Quasi-Yagi antennas are integrated with the proposed
lens as shown in Fig. 12. The main beam points at seven
different angular directions, as shown in Fig. 13 covering the
range of £40°. The beam directions are uniformly distributed
at +£40°, +26.7°, £13.33°, and 0°. The maximum achieved
simulated realized gain is 14.5 dBi at 28 GHz for the center
beam. There is a side lobe of a significant level (SLL ~
—9 dB) when beam-port 1 is activated at 28 GHz, however,
itis out of the designated field-of-view. The radiation patterns
of 38 GHz show a gain drop beyond 3dB at +40° due to the
single antenna element’s 3dB BW, as explained previously in
section A.

IV. EXPERIMENTAL RESULTS AND MANUFACTURING
To validate the proposed analog BFN, Rotman lens with

seven input ports feeding eight Quasi-Yagi antenna array is
fabricated and tested as shown in Fig. 14. The lens is 50mm

FIGURE 14. Proposed BFN prototype.

FIGURE 15. Measured reflection coefficients of the proposed BFN.

VOLUME 7, 2019
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(a

(b)

(c)

(d)

FIGURE 16. Measured Radiation patterns of the proposed BFN:
(a) 26 GHz (b) 28 GHz. (c) 32 GHz. and (d) 38 GHz.

by 70mm size. The measured reflection coefficients depicted
in Fig. 15 show good impedance matching below —10 dB
over a broad frequency band (26-40) GHz, for all beam-ports.
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The maximum measured gain for the center beam is about
14 dBi at 28 GHz. The radiation patterns shown in Fig.16 val-
idate the system steering capability by providing beams at
—39.7°, —26.5°, —13.3°, 0°, +13.3°, 4+26.5°, and +39.5°.

The radiation patterns have some ripples, especially for
the wide angle rays, this is due to some imperfections of
the chamber room. The steered beam radiation patterns are
vulnerable to such ripples due to the contribution of their
side lobes to multipath reflection from different walls of the
chamber room, while the central beam has no or less ripples.

It can be seen from Fig. 9a, Fig. 13, Fig. 15 and Fig. 16 that
the simulation and measurement results are in a good agree-
ment. Measured gain is slightly less than the simulated one
and ranges between 13.8 to 14 dBi. This difference might
be caused by the excessive dielectric losses in the addi-
tional length that is needed to separate the connectors at the
input port side, and also the use of the end lunch connector
to excite the microstrip line introduces additional losses.
However, the measured results are quite encouraging taking
into account the misalignment losses. The proposed analog
BFN is compared to some relevant works as summarized
in Table 3. It exhibits a reasonable gain level, especially with
its compact size. It is smaller than all systems mentioned
in Table 3 except [18] and [21] but is better than both of
them for its low-cost, low profile, and extremely light-weight.
In addition, the proposed system has a better broadband
than [18] with more than 42% FBW. Besides, the proposed
system has a wide scanning range of £40° which is better
than most of the relevant systems in Table 3. Reference [20]
has wider scanning range and a quite high gain but is very
narrowband with only 4.17 % FBW. References [21] and [32]
present BEN systems of 100% FBW, which is really a quite
broadband, but they have a low scanning range (|6p| < 30°)
compared to the proposed system in this paper.

V. CONCLUSION

An analog beamforming system using a compact-size Rot-
man lens fed eight Quasi-Yagi antenna array for 5G and
mmWave applications is presented. The proposed system
is fabricated using standard planar low-cost processing
PCB technology for MMIC in the 26-40 GHz band. The
antenna and the beamforming system design methodology is
described in details, and its performance is confirmed experi-
mentally. The system exhibits good impedance matching and
beam steering capability. A range of +40° is achieved which
is better than most of the relevant systems in Table 3. The
BFN bandwidth (S1; < —10 dB) is larger than 42 % and
is limited by the single antenna element bandwidth. With
such performance and compactness, the proposed system is
qualified for a wide range of potential 5G applications such
as the advanced MIMO and hybrid beamforming systems.
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