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Abstract 

CityFFD – City Fast Fluid Dynamics Model for Urban Microclimate Simulations  

Mohammad Mortezazadeh Dorostkar, Ph.D. 

Concordia University, 2019 

In recent years, due to the rapid population growth and the preference to live in urban areas, 

urbanization has intensely increased. Currently, based on a United Nation report, 55% of the 

population live in the cities and the number is expected to reach about 68% by 2050. Urban 

microclimate has significant impacts on human life and health, and building energy performance. 

Urban microclimate information, such as wind velocity, temperature, humidity, pollutant 

dispersion levels, and local precipitation, are often important for accurate evaluations of building 

energy performance, indoor and outdoor human comfort, extreme events, and emergency 

situations. For example, it was reported that indoor temperature estimated with the microclimate 

information could be at least 5 °C different from that without it, which could be significant for the 

evaluations of indoor thermal comfort. The study of urban microclimate includes both 

observational and numerical approaches. The observational study is often related to field 

measurements, satellite imagery, and laboratory tests, e.g. in wind tunnels. The numerica l 

approach is often based on computer models, such as CFD (computational fluid dynamics), for 

high-resolution and relatively small computing domains, compared to larger scale regional climate 

models, such as WRF and GEM-SURF. The latter two models are mostly used to model the domain 

size of 1~10 km with the resolution more than 100 m so they are not developed for urban 

microclimate and building- level simulations. In comparison, CFD has been applied to the urban 

microclimate of less than 1 km with a resolution less than 10 m down to the building level. 
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However, conventional CFD solvers often perform unsatisfactorily for microscale and 

complicated problems because of numerical constraints such as stability issues associated with 

CFL condition, which is a necessary condition for convergence while solving certain partial 

differential equations (usually hyperbolic PDEs) numerically. Thus, conventional tools are often 

computationally expensive for modeling microclimates and consequently impractical for urban-

scale problems. Recently, there are an increasing amount of efforts focusing on developing faster 

and accurate CFD techniques such as based on Fast Fluid Dynamics (FFD) methods. A FFD 

method relies on semi-Lagrangian and fractional step methods. FFD methods is fundamentally an 

explicit method without the CFL constraint so it is unconditionally stable even under large time 

steps and coarse grid resolutions, which are common for urban microclimate problems. In the 

meantime, the conventional FFD methods are often dependent on low-order interpolation schemes 

and thus with high numerical errors, which are the main drawbacks of this approach. 

The main objective of this thesis is to develop a fast and accurate CFD solver with a series of new 

computing algorithms based on semi-Lagrangian approach for modeling urban/city scale 

microclimates. The new solver with the name of CityFFD (city Fast Fluid Dynamics), is designed 

for tackling the challenges of large domain, coarse grid, and/or large time step, which are typical 

for urban microclimate simulations, without a heavy reliance on computer resources, such as the 

possibility of running on personal computers. First, a novel high-order interpolation scheme is 

proposed to significantly reduce the numerical errors of conventional semi-Lagrangian solvers. 

The new interpolation scheme enables the possibility of obtaining fast and accurate results even 

on coarse grids. The second algorithm focuses on the simulation accuracy associated with the time 

step of the semi-Lagrangian method. A new scheme of an adaptive time step is developed to adjust 

the time step dynamically according to local truncation errors. To improve the estimation of the 

https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Hyperbolic_partial_differential_equation
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characteristic curves, a new algorithm is proposed by considering the acceleration of the flow 

particles inside the computational domain which can provide highly accurate results and capture 

the complicated flow fields even by using a large time step. The fourth algorithm is to speed up 

the simulation by eliminating the need for solving the Poisson equation, which is often the most 

time-consuming operation of conventional semi-Lagrangian models. The new scheme is based on 

the concept of the artificial compressibility of solving incompressible flows and makes it easier to 

implement parallel computing techniques, such as the NVIDIA GPU CUDA and the OpenMP. 

The last feature of CityFFD is adding Large Eddy Simulation (LES) model to capture the 

turbulence behavior of the flow in urban environments. In this section, a parallel OpenMP 

geometry reader is developed to read the city scale geometries in a fast manner. At the end, the 

proposed CityFFD model is demonstrated by a case study: the modeling of an extreme weather 

event, the snow-storm of the century in Montreal, for evaluating building resilience during the 

storm, to show the importance of urban microclimate and its impact on human health and indoor 

environment.  
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Chapter 1       Introduction 

The two most important topics among building engineers, city planners, and governments are 

building energy performance, and human health and comfort. Based on a United Nation report, 

55% of the global population live in cities by 2050 and this number is expected to reach 

approximately 68% (United Nation, 2014). According to many studies and reports, people in cities 

are facing several serious problems, such as air pollution, high energy costs, urban heat island and 

thermal stress, and environmental hazards like flash flooding (Jacobi et al., 2010). It was reported 

that two main causes of these problems are urbanization and global climate change (Shashua-Bar 

and Hoffman, 2003). In recent years, due to rapid population growth and the preference to live in 

urban areas, urbanization has increased intensely. Urbanization, includ ing both the expansion of 

the cities’ boundaries and the increase in urban textures, is one of the most important reasons for 

urban microclimate change, which can directly affect building energy demand and human health 

and comfort. Additionally, global climate change, such as global warming and future temperature 

increase, can increase the extreme events and heat waves in the cities, and consequently, influence 

citizens’ lives. 

To create safer and healthier cities, it is necessary to study the urban environment to identify urban 

threats and risks for citizens and create solutions. The urban environment is a part of a larger 

domain known as the atmospheric boundary layer (ABL). This layer makes contact with the 

surface of the earth and covers the urban environment (Brown, G., 2001). An important 

characteristic of ABL is rapid variation of air characteristics, such as air wind speed, temperature, 

and humidity, all of which directly affect the urban environment. To study the atmospheric 
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phenomena and ABL characteristics, researchers have highlighted three sub-domains in ABL 

characterized by size and time (Orlanski, 1975; Blocken, 2015): 

1. Macroclimate: This sub-domain has a spatial scale of 100~2000 kilometers and includes 

weather phenomena such as global circulation and tropical cyclones. The temporal scale for 

macroclimate problems is a few days to a couple of years. 

2. Mesoclimate: This sub-domain has a spatial scale from five to a few hundred kilometers and 

includes thunderstorms, precipitation, and sea breezes. The temporal scale for mesoclimate 

events is between one hour and one month. 

3. Microclimate: This sub-domain includes any short-lived weather phenomena in a spatial scale 

of 2 km or less, including heat transfer, near-ground turbulence, vegetation, and surface water 

effects. The temporal scale of these problems can vary from a few seconds to some hours. 

 
Macroclimate 

 
Mesoclimate 

 
Microclimate 

Figure 1-1 Schematic of the special scales in ABL for three sub-domains. 

Various approaches are used to investigate these sub-domains, such as satellite imagery, field 

measurements, and numerical simulations. In recent decades, due to the remarkable progress of 

the computer hardware resources, numerical simulations have gained popularity in the ABL 

airflow modeling and enabled researchers around the world to study the ABL. Because these sub-

domains differ by phenomena, spatial scales, and time periods, different numerical approaches are 

used for each: numerical weather prediction (NWP) for macroclimates, mesoscale meteorologica l 



3 
 

models (MMM) for mesoclimate, and computational fluid dynamics (CFD) for microclimates 

(Toparlar et al., 2017). 

NWP is a mathematical approach to simulate atmosphere and ocean problems (Lynch, 2008). 

NWP models have been developed around the world, such as the HadCM3 by the Hadley Center 

in the United Kingdom and the ECMWF by the European Center for Medium-Range Weather 

Forecasts organization. NWP can generate both short- and long-term weather predictions and 

provide valuable information about climate change. Recently, NWP was significantly improved to 

model regional climates such as tracking tropical cyclones. However, it is not good for modeling 

some important problems that happen in a smaller area, such as wildfires and local microclimate 

events. For these types of problems, other forms of numerical models should be used, such as 

MMM and CFD (Coen et al., 2009). 

MMM is a simulation model for mesoscale problems. This model can capture mesoclimate 

features, such as precipitation, cloud formation, sea breezes, and wildfires (Dudhia, 1989; Pielke, 

1992). MMM can use NWP data as a boundary condition (Blocken, 2015). Two well-known 

MMM tools are the WRF (originally developed by Byrd Polar Research Center at Ohio State 

University) and the GEM-SURF (developed by the Meteorological Research Division, Numerical 

Weather Prediction-Environment Section, Environment Canada and Climate Change) (Skamarock 

and Klemp, 2008; Leroyer et al., 2011). WRF is one of the most popular mesoscale meteorologica l 

models with more than 30,000 users around the world. With this solver, researchers can model 

both real and idealized atmospheric conditions. MMM cannot model microscale flows and capture 

the effect of topography and building configuration on flow properties (Berge et al., 2006; Choi et 

al., 2012). Thus, it is not suitable for modeling urban microclimate at the building level and 

studying its impact on human health and building energy performance. 
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CFD is generally referred to as the microscale numerical model (Blocken, 2015). CFD is a branch 

of fluid mechanics and can provide high-resolution results for various spatial and temporal scales 

from nano- to deca-scales (Holland et al., 2015; Blocken, 2015). In recent decades, CFD has been 

widely used to simulate urban wind and thermal comfort, pollutant dispersion, wind-driven rain, 

and building energy performance, all of which are directly related to human life (Monnen et al., 

2012). CFD can be integrated with MMM and use the data from the mesoscale software as 

boundary conditions for modeling urban microclimate (Choi et al., 2012; Kwak et al., 2015). For 

example, Kwak et al. (2015) simulated urban air quality in a high-rise building area of Seoul, 

Korea by coupling CFD and WRF. In their work, WRF provided the data of horizontal wind 

velocity components and temperatures as boundary conditions for CFD. They determined that 

building geometry and mobile emission had significant effects on urban air quality (Kwak et al., 

2015). According to the literature, CFD should be used for modeling urban microclimate (Moonen 

et al., 2012; Blocken, 2014; Toparlar et al., 2017). In the section of the literature review, CFD is 

introduced with more details. 

1.1. Statement of the problem 

As mentioned previously, people in cities are exposed to various and challenging conditions, such 

as heatwaves and heat island effects, wind and storms, pollutant dispersion, and fire accidents 

(Mirzaei and Haghighat, 2010; Bonsal et al., 2000). Some of these problems happen in a short time 

and around the direct vicinity of people, and could severely affect human life (United States Fire 

Administration, 2006). Therefore, providing fast and accurate microclimate information can play 

an important role in better understanding, controlling and/or reducing the negative effects of these 

problems. As the examples of these problems, this thesis discusses them in terms of two topics: 

human health and comfort, and building energy performance. 
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1.1.1. Human health and comfort 

People spend considerable time in the urban environment, for example, participating in outdoor 

activities or using transportation. Additionally, urban microclimate directly affects the indoor 

environment (Katal, Mortezazadeh, and Wang, 2019). Many researchers have studied the effect of 

urban microclimate—such as air wind speed, temperature, and pollutant dispersion—on human 

health and comfort. 

Air wind speed is under the influence of urban texture. High wind speeds near high-rise buildings 

have been reported being uncomfortable or sometimes dangerous for the pedestrians (Penwarden 

and Wise, 1975; Blocken and Carmeliet, 2004). For example, two deaths were reported in England 

from skull injury from being blown over by high wind speed near tall buildings (Penwarden and 

Wise, 1975). Nowadays, many urban authorities request wind comfort studies before issuing 

permits for new high-rise buildings. Several wind standards and criteria have been proposed by 

wind engineers for pedestrian wind comfort. For example, in Montreal, Canada, the critical mean 

wind speed for winter and summer are 4 m/s and 6 m/s, respectively (Article 39 of the Rѐglements 

refondus de la ville de Montréal). A numerical tool that quickly generates accurate wind 

information in an urban area could help engineers in the preliminary design stage. Additionally, if 

the simulation could be done in real-time or faster, it could provide valuable information for 

different organizations and governments for risks assessment and warning, related to weather 

forecast. 

Thermal comfort is another parameter of urban microclimate that is affected by solar radiation, air 

temperature, humidity, shading, heat and cold wave events etc. Two important parameters 

significantly affect thermal comfort (Harlan et al., 2006; Pantavou et al., 2011): 
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1. Urban heat island being intensified by the rapid urbanization 

2. Heat/cold waves increasingly affected by the climate change 

Hot/cold temperature could lead to thermal discomfort and even serious human health problems, 

including heat exhaustion, heat stroke, heart and lung diseases (Pantavou et al., 2011). Every year, 

there exist many reports on human mortality and disease regarding urban thermal stress. For 

example, in the summer of 2003, a severe heat wave in Europe caused almost 50,000 deaths 

(Mirzaei and Haghighat, 2010). Extreme temperature events, such as heat and cold waves, seem 

also becoming common in Canada, and an important concern among the researchers (Bonsal et al., 

2000; Smoyer-Tomic et al., 2003; Martin et al., 2012). Smoyer-Tomic et al. (2003) mentioned that 

extreme heat wave events frequently happened in Montreal. The residents of Montreal are highly 

vulnerable to extreme heat events due to its low air conditioning rates and many outdated and high-

density buildings (Smoyer-Tomic et al., 2003). 53 deaths were reported in Montreal because of a 

heatwave in the summer of 2018. Using NWP or MMM models, I can predict heat waves in the 

short-term, but this cannot capture the vulnerability at the building level. Although modern CFD 

tools may provide this type of information, conventional CFD models are limited in terms of 

computational speed and resources when modeling the urban microclimate at the building level 

for prediction purposes. 

Urban air pollution, environmental hazards, and emergency situations such as fire accidents are 

other typical problems related to citizen health and safety in cities. Air pollution has been one of 

the major environmental problems, especially in megacities (Mage et al., 1996) and cities with low 

air conditioning rate (Brunekreef and Holgate, 2002). Exposure to pollutants can cause serious 

problems in the human body, such as respiratory and cardiovascular diseases. One of the worst 
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pollutant events of the last few decades was the 1952 London smog event, which caused almost 

over 4000 deaths (Brunekreef and Holgate, 2002; Bell et al., 2004). The main causes of air 

pollution and its spreading in cities include vehicle exhausts, accidental toxic agents, 

anthropogenic heat, including human activities, the heating/cooling system of residential buildings, 

industrial heat producers and users. The urbanization may also cause other environmental hazards, 

such as flooding and fires. Nirupama and Simonovi (2007) studied the effect of urbanization on 

the increasing risks of river flooding in urban areas. They mentioned the increased urbaniza t ion 

leads to the changes in the earth’s surface and river flow (Nirupama and Simonovi, 2007). Fire 

accidents are also among common problems in cities with fatalities, injuries and economic losses. 

These events occur in a short span of time, and their response time are usually less than 10 minutes 

(United States Fire Administration, 2006). Urban texture and wind airflow directly affect fire 

accidents so the urban microclimate plays an important role in controlling or predicting them. For 

these problems, a fast and accurate urban microclimate model is important and may provide critical 

information for their better understanding in an urban context, and identifying solutions for saving 

lives.  

1.1.2. Building energy performance 

The local temperature and wind variation near buildings change the energy consumption of the 

buildings by altering the conductive and convective heat transfer coefficients through the buildings’ 

envelopes (Kolokotroni et al., 2006; Ghiaus et al., 2006). In the United States, the urban heat island 

causes the urban peak electric demand to increase by 5–10% (Akbari; 2005). Many researchers 

and engineers have investigated different scenarios to reduce the energy consumption of buildings. 

For example, Akbari (2005) estimated that approximately $5 billion per year could be saved in 

energy costs in the United States by using cool surfaces and shading trees. 
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Another example of the effect of urban microclimate on building energy performance is wind flow 

change due to urban texture and building configurations. Natural ventilation and passive cooling 

system are the traditional ways to benefit from the microclimate for cooling and provide fresh air 

into buildings (Bahadori, 1985). Orme (2001) mentioned that 68% of the total cooling/heating load 

of buildings is used through HVAC systems. Tong et al. (2016) studied the wind potential for 

natural ventilation and demonstrated that cooling energy usage can be reduced by 8–78% by using 

natural ventilation. 

Developing a fast and accurate urban microclimate model that can calculate building energy 

consumption in real-time or even predict the short-term building energy usages at the city scale 

could help to adjust the supply of the energy systems and control the load on the grids by changing 

operation strategies (Su et al., 2017). This type of model could also help calculate the potential of 

wind and solar energy production at the local environment and help decision-makers, the 

government, and householders access to the data to make wise decisions for saving energy. For 

example, Amado et al. (2018) used a numerical model to predict the potential of solar energy on 

building roofs for PV system installation in the city of Oeiras, Portugal. 

1.2. Objectives of this thesis 

The previous section revealed the need for developing a fast and accurate urban microclimate 

solver. The main objective of this thesis was to develop a fast and accurate airflow simula t ion 

method for modeling urban/city scale microclimates. The new solver needs to tackle the challenges 

of large domain simulation including stability issues, accurate results on the coarse grid, and large 

time step, all of which are typical for urban microclimate simulations, without a heavy reliance on 

computer resources, such as the possibility of running on personal computers. A suitable 
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turbulence model also needs to be selected to capture the turbulence behavior at urban 

microclimate scales. 

Coarse grids and large time steps are inevitable for developing a fast urban microclimate model. 

However, conventional commercial/non-commercial CFD tools are not well equipped to tackle 

these two challenges, which are often associated with the problems of accuracy, and sometimes 

stability and convergence issues. 

In recent years, previous studies have focused on developing fast and stable numerical solvers for 

fluid problems, such as fast fluid dynamics (FFD) methods. These methods rely on fractional step 

methods and a semi-Lagrangian approach, and are mostly used for indoor airflow problems (Zuo 

et al., 2012; Jin and Chen, 2015; Xue et al., 2016). As a result, their current algorithms are limited 

for solving the challenges of "large time step, coarse grids" from urban microclimate simulations. 

Thus, significant work must be done to apply FFD to urban microclimate flows. 

Another concern about developing a suitable urban microclimate solver is the turbulence model. 

In conventional CFD models, using accurate turbulence models for airflow in the ABL and 

microclimate, such as large eddy simulation (LES), are usually too time consuming. Therefore, 

many researchers had to reply on other turbulence models that are less accurate, which is not an 

acceptable solution to modeling many urban aerodynamics problems (Tominaga and Stathopoulos, 

2011). With the computing time saved from a fast and accurate numerical model, it then allows 

allow us to apply more sophisticated turbulence models, such as LES, for solving urban 

microclimate problems. 

A fast microclimate simulation can be achieved by developing new mathematical algorithms 

and/or replying on new programming techniques, such as multi-core CPU computing (i.e. 
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OpenMP), and/or GPU computing. Thus, significant amount of research is thus needed to benefit 

from parallelized flow simulation techniques to access the maximum power of modern computing 

hardware.  

1.3. Summary and thesis work introduction 

This chapter introduces the current research gaps in the study of urban microclimate simula t ion 

and the objectives of this thesis. The difficulties of urban microclimate numerical modeling with 

the current numerical tools, most importantly computational speed and accuracy, are discussed. 

This research focused on the development of a fast and accurate CFD solver, which is so-called 

CityFFD (as City Fast Fluid Dynamics) to simulate large-scale problems, such as urban 

environment, without the need of supercomputers. CityFFD is a novel solver based on FFD 

methods and four newly proposed mathematical algorithms running on parallel programming 

techniques including OpenMP and GPU. 

Chapter 2 presents a comprehensive literature review about urban microclimate simula t ion 

techniques, different turbulence models, and FFD. 

Chapter 3–7 describe five features of CityFFD that make the model a powerful tool for modeling 

city scale problems on personal computers. In Chapter 3, a novel high-order interpolation scheme 

named backward-forward sweep interpolating algorithm is proposed, which can provide highly 

accurate results even on coarse grids. The model is a 4th-order interpolation scheme with the 

combination of 3rd-order backward and 3rd-order forward polynomial interpolation methods. 

Chapter 4 investigates the impact of time steps on the simulation accuracy of the conventiona l 

linear and higher-order FFD with constant time steps by defining the error coefficient functions 

associated with numerical truncation errors. This chapter proposes an adaptive time-stepping 
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method, which first calculates local adaptive time step based on truncation error coeffic ient 

functions, and then obtains global time step based on an averaging function for all grid points and 

minimizing truncation errors. 

Chapter 5 describes the development of a new density-based (DB) semi-Lagrangian method to 

speed up the conventional pressure-based (PB) semi-Lagrangian methods. The semi-Lagrangian-

based solvers are typically semi-Lagrangian PB solvers, where a Poisson equation is solved to 

obtain the pressure field and ensure a divergence-free flow field. As an elliptic-type equation, the 

Poisson equation often relies on an iterative solution, so it can create a challenge of parallel 

computing and a bottleneck of computing speed. This study proposes a new DB semi-Lagrangian 

method, the semi-Lagrangian artificial compressibility, which replaces the Poisson equation with 

a hyperbolic continuity equation and an added artificial compressibility term so a time-marching 

solution is possible. 

In Chapter 6, the temporal accuracy of CityFFD is improved from the first-order to the second-

order by considering the acceleration of the flow field and accurately estimating the characteris t ic 

curve of each fluid particle. A couple of CFD benchmarks are then used to validate the proposed 

algorithm. The transient behavior of complicated flow patterns can be captured even with large 

time steps and coarse grids. 

Chapter 7 is devoted to the CityFFD turbulence model and generating urban 3-D geometry models. 

Based on the literature, the most accurate turbulence model for capturing the turbulence behavior 

of the flow in the ABL level is LES. CityFFD is equipped with the LES-SGS model to simulate 

the turbulence behavior of the flow in the urban microclimate.  
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Chapter 8 is to integrate CityFFD with a building energy model (CityBEM) to simulate an extreme 

event in Montreal (the snowstorm of the century in 1971) and evaluate building resilience during 

the storm. CityBEM provides boundary conditions, including the building surface temperature s 

for CityFFD, and then, CityFFD provides local wind and temperature around each individua l 

building for CityBEM to calculate the energy loads of the buildings, and the indoor temperatures. 

In this chapter, the effect of local microclimate on the indoor environment and human health-

related issues is shown.  

Chapter 9 concludes the thesis with the proposed future work. 
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Chapter 2       Literature Review 

2.1. Urban microclimate simulation 

A numerical model of urban microclimate generally uses CFD (Blocken, 2015). CFD is a branch 

of fluid mechanics and includes different type numerical approaches for solving the conservation 

of equations, such as mass, momentum, and energy. Currently, CFD is widely used to model 

microscale problems up to approximately 2 km in scale (Blocken, 2014; Toparlar et al., 2017). In 

recent years, many researchers have used CFD to model microclimate and environmental problems 

in different generic and real urban settings, such as a group of building blocks, street canyons, and 

different part of cities around the world (Takahashi et al., 2004; Tominaga et al., 2015; Taleghani 

et al.; 2014). For example, Tominaga et al. (2015) simulated the cooling effect of a pond in the 

urban area of Central Hadano (Japan), and concluded that the pond’s evaporation decreases the 

maximum temperature at the pedestrian level by 2°C when the wind velocity is approximately 3 

m/s at the height of 10 m. Takahashi et al. (2004) developed a CFD model to simulate air 

temperature, humidity, and wind velocity and compared the results with the measurement data. 

They demonstrated the proposed model was good for simulating green roofs and green grounds to 

study urban heat island mitigation scenarios (Takahashi et al., 2004). Taleghani et al. (2014) used 

CFD for thermal mitigation strategies in Portland State University (Oregon, USA) and 

demonstrated the effectiveness of using natural elements, such as vegetation and water bodies, to 

reduce air temperatures. 

ANSYS FLUENT (2011) and OpenFOAM (2014) are two well-known software programs for 

modeling airflow problems in different fields. Many researchers have used these tools for urban 

microclimate simulations (Tominaga et al., 2015; Gracik et al., 2015). These tools are very 

powerful to model several types of problems in the field of fluid mechanics. However, the main 
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deficiency of these tools is that they need to use small time steps for convergence issues, so they 

are not practical to model the urban environment. These models are also complicated and require 

the setup of many variables before a simulation. In other words, they are not designed particular ly 

for urban microclimate simulation and need special expertise. Therefore, other software has been 

developed to model urban scale problems in a simpler way, such as ENVI_MET, UrbaWind, 

PALM, SOLENE-microclimate, scFLOW, and KARALIT. ENVI_MET is one of the most well-

known microclimate simulation software programs. It is a parallel CPU-based model and can 

model airflow, pollution, radiation, vegetation, etc. (Ozkeresteci et al., 2003; Bruse, 2004). 

Another program is UrbaWind, a finite volume and steady-state CFD solver equipped with the 

Reynolds-averaged Navier-Stokes (RANS) turbulence model (Kalmikov et al., 2010). UrbaWind 

uses a multigrid algebraic solver to speed up the simulation process. It also benefits from a mesh 

refinement procedure to generate high-quality grids near the walls. All these models are CPU 

parallel–based solvers and they have not accessed to the maximum power of personal computers, 

such as GPU computing. Two other problems with these models are stability issues and CFL 

constraints (Huttner, 2012). Some companies provide fast wind simulation services for users, such 

as Ingrid Cloud. Cloud computing seems a solution but at the moment it is still costly for modeling 

large scale problems and not all users could afford to these services. 

According to the above discussion, the development of a fast, robust, and accurate urban 

microclimate model is necessary. To achieve this goal, different aspects of CFD models, includ ing 

the details of numerical solvers and turbulence models, must be considered. In the following 

sections, these two issues are discussed. 

2.1.1. Numerical solvers 
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The governing equations of mass, momentum, and energy (i.e. the Navier-Stokes equations) are 

often partial differential equations (PDE) with advection and diffusion terms. Diffusion terms are 

usually solved based on implicit methods such as Jacobi, Gauss-Seidel, and multigrid models. 

Advection terms are the nonlinear part of conservation equations and may cause stability problems. 

CFD has two main categories to solve these terms: Eulerian and Lagrangian methods. In the 

Eulerian algorithms, the fluid is considered as a continuum fluid. Then a fixed computationa l 

domain, Eulerian mesh, is defined within the real domain. Finally, all fluid flow variables, 

including pressure, velocity, and density, are considered as a function of space and time within the 

fixed computational domain. Here, the conservation equations are solved on a control volume basis. 

A fast CFD solver often relies on explicit algorithms, wherein one important constraint for Eulerian 

methods, the CFL (Courant-Friedrichs-Lewy) condition, requires that the time step be small 

enough to ensure numerical stability, and therefore potentially slows down the simula t ion 

significantly. In the Lagrangian algorithms, the fluid in the flow field is considered to be a large 

number of individual particles. Then each particle’s path line is followed based on the 

characteristic curves, allowing the conservation of equations to be solved. Although the CFL 

condition may not be relevant in this algorithm, the Lagrangian mesh is not fixed. Thus, a new 

computational mesh needs to be generated at each time step, resulting in a more complicated and 

even slower solution. More details about these two approaches can be found throughout the 

literature (Shirolkar et al., 1996; Loth, 2000). 

In recent years, an increasing amount of efforts have been spent on finding a fast and accurate 

approach known as FFD, which is a combination of both Eulerian and Lagrangian methods. In 

FFD, the advection term is solved based on the semi-Lagrangian method, which was proposed by 

(Courant et al., 1952). In fact, this method considers the fluid as a large number of discrete particles, 
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then follows their path, and finally transfers them to the Eulerian mesh realized by an interpolat ion 

scheme. The FFD method is fundamentally explicit without the CFL constraint so it is 

unconditionally stable, allowing for large time steps and fast simulation for large domains. 

Additionally, it does not need to regenerate the computational mesh at each time step as the 

Lagrangian methods do. Therefore, FFD seems to be one of the appropriate models for urban 

microclimate simulations. FFD is discussed further in Section 2.2. 

CFD solvers can also be investigated based on error and accuracy. Numerical errors include round-

off and truncation errors. A round-off error occurs due to the computers’ limit to represent the real 

value of the numbers (Ueberhuber, 2012). A truncation error is related to the accuracy of the 

numerical methods and has a significant impact on the accuracy (Hoffmann and Chiang, 2000; 

Patankar, 1980). Dissipation and dispersion errors are two common truncation errors in numerica l 

simulation (Hoffmann and Chiang, 2000). Even-order truncation error derivatives cause 

dissipation errors and are characterized by a loss of wave amplitude or damping. Dispersion errors 

are caused by odd-order truncation error derivatives and generate oscillation especially near the 

sharp gradients. These two types of numerical errors are discussed in Chapter 3. There are various 

PDE solvers with different orders of accuracy (Hoffmann and Chiang, 2000; Patankar, 1980). 

Low-order methods are susceptible to high dissipation errors and high-order methods can lead to 

dispersion errors. The development of a high-order and robust CFD solver is an open topic among 

researchers (Mortezazadeh and Wang, 2017; Fei and Xiaohong, 2006; Zonglin, 2004). 

2.1.2. Turbulence models 

One important characteristic of the airflow is turbulence behavior in the ABL and especially in the 

urban microclimate. Thus, in the CFD simulation of urban environments, the use of an accurate 

turbulence model plays an important role in providing accurate results. There are three turbulence 
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models that have been frequently used in the microclimate problems: (1) RANS; (2) Unsteady 

Reynolds-averaged Navier-Stokes (URANS); and (3) Large Eddy Simulation (LES). RANS is a 

steady-state model and refers to the time-averaging of variables, such as velocity components. This 

model has been used in the vast majority of urban microclimate and outdoor airflow simulat ions 

due to its low computational cost (Blocken et al., 2016). Blocken et al. (2015) demonstrated that a 

3-D RANS model can calculate the mean wind speed at the pedestrian level with acceptable 

accuracy in a comparison with wind tunnel data. Despite its advantages, this model is not able to 

capture transient behavior of ABL problems (Blocken, 2015). URANS is the unsteady RANS 

model and can capture the transient behavior of the flows. Toparlar et al. (2015) studied the thermal 

comfort in Bergpolder Zuid, Rotterdam by a 3-D unsteady CFD model using URANS. They 

validated the CFD results with the satellite image data and showed a good agreement between the 

numerical results and the observational data, thus demonstrating the potential of CFD for accurate 

simulation of urban microclimate. The main drawback of URANS is the need for fine grids near 

walls; thus, LES is recommended for use instead of URANS (Franke et al., 2007). 

LES resolves large scales of turbulence, which are dominant characteristics of the flows in the 

ABL (Smagorinsky, 1963; Sullivan, 1994). LES has been used to model various urban 

microclimate problems, such as natural ventilation simulation and pollutant dispersion in street 

canyons (Jiang et al., 2003; Tominaga and Stathopoulos, 2011; Gousseau et al., 2011). Some 

researchers compared LES and RANS models and concluded LES can provide more accurate 

results for outdoor airflow problems (Tominaga and Stathopoulos, 2011; Gousseau et al., 2011). 

For example, Tominaga and Stathopoulos (2011) showed LES can accurately model diffus ion 

concentration due to its ability to model unsteady fluctuations. Gousseau et al. (2011) simulated 

pollutant dispersion in downtown Montreal. Studying the effect of two different turbulence models, 
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they compared the accuracy of the results with the wind tunnel measurements and showed that 

LES can perform well to model pollutant dispersion. In general, LES is more complex and 

computationally expensive than RANS. Gousseau et al. (2011) mentioned that, for the same 

problem, LES can be seven times slower than RANS. In fact, LES needs high-order numerica l 

schemes or fine grids near walls for the low-order schemes to accurately model the viscous 

sublayer, which is a thin layer near walls (Pope, 2000). It is possible to reduce grid resolutions by 

using LES wall functions (Wang and Moin; 2002). Based on these models, the value of velocity 

or eddy viscosity near walls, inside the viscous sublayer, is analytically or empirically estimated. 

Thus, there is no need to use very fine grids to capture turbulence behavior of the flows inside the 

sublayer. 

2.2. Fast Fluid Dynamics (FFD) 

Fast Fluid Dynamics is a CFD technique for solving the incompressible Navier-Stokes equations 

in a fast manner (Stam, 1999).  Using fractional step method, FFD decomposes Navier-Stokes 

equations to four sub-equations, named 1) diffusion and source term; 2) advection term; 3) Poisson 

equation (projection); and 4) velocity correction (correction). Figure 2-1 shows the schematic of 

FFD used in the present research.  
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Figure 2-1 Schematic of Fast Fluid Dynamics (FFD). 

The reason for the distinction of FFD in comparison with the conventional methods is solving the 

advection term based on the semi-Lagrangian approach. Semi-Lagrangian was proposed by 

Courant et al. (1952) and has been widely used to solve advection terms of the Navier-Stokes 

equations for various problems. Firstly, it was developed for numerical weather forecasting, 

oceanic flows, and shallow water flows (Staniforth and Côté, 1991; Priestley, 1993; Garcia -

Navarro and Priestley, 1994). Staniforth and Côté (1991) provided a comprehensive literature 

review on the semi-Lagrangian method and how it has been extended to different discretiza t ion 

approaches such as finite-difference and finite-element. Later the finite-difference form of semi-

Lagrangian method has been widely used in other sciences such as building airflows (Zuo et al., 

2012; Jin and Chen, 2015; Xue et al., 2016), multiphase simulations (Xiao and Ikebata, 2003; 

Gutiérrez and Bermejo, 2005; Lind and Phillips, 2012), electromagnetic applications (Dolean et 

al., 2010; Grote and Mitkova, 2012), and fluid flow simulations for game engines (Stam, 1999; 

Fedkiw et al., 2001). FFD uses finite-difference form of semi-Lagrangian method. 

In the last decades, many researchers have used FFD in the field of building and environment (Zuo 

et al., 2012; Jin and Chen, 2015; Katal, Mortezazadeh, Wang; 2019). For example, Zuo and Chen 
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(2010(b)) simulated smoke distribution in a room and compared the results with CFD. They 

mentioned that FFD can be about 30 times faster than CFD. Zuo and Chen (2011) validated the 

accuracy of FFD for a problem with particle distribution inside a duct and showed the accuracy of 

FFD is in a good agreement with the experiment and CFD. Jin et al. (2013) simulated different 

types of natural ventilation around a single room with FFD and demonstrated the capability of 

FFD to capture main airflow features. Athanailidi et al. (2014) simulated airflow through two 

buildings and studied the wind funnel effect which is an unpleasant and sometimes dangerous 

phenomenon. Xue et al. (2016) developed a new semi-Lagrangian method based on PISO method, 

named SLPISO, and demonstrated this model is significantly faster than SIMPLE and PISO 

models and able to provide accurate results for the indoor. 

Many researchers integrated FFD with other models and software, such as genetic algorithm, 

Rhino, OpenFOAM, multizone models, Modelica Buildings library, etc (Athanailidi et al., 2014; 

Tian et al., 2017; Katal, Mortezazadeh, Wang, 2019). For instance, Athanailidi et al. (2014) 

coupled Genetic Algorithm (GA) with FFD to find the best configuration for tensegrity structures 

between two buildings to solve the funnel effect. Karagkouni et al. (2014) evaluated the building 

performance by optimizing the wind-induced ventilation and using GA and FFD at the preliminary 

design phase. Tian et al. (2017) integrated multizone model for HVAC system with FFD by using 

Modelica Buildings library platform and simulated isothermal and thermal flow in a single room. 

Waibel et al. (2018) simulated airflow around the buildings by FFD which is implemented in Rhino 

and its visual programming platform Grasshopper.  

The major advantage of using FFD method is its unconditional stability even for large time steps 

because of using semi-Lagrangian method for the advection terms, thus offering faster solution 

than other CFD solvers (Zuo and Chen, 2010(a); Mortezazadeh and Wang, 2017; Mortezazadeh 
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and Wang, 2019). FFD has been also written based on parallel computing and GPU programming 

for further speedup (Zuo and Chen, 2010(a); Mortezazadeh and Wang, 2019, Katal, Mortezazadeh 

and Wang, 2019). Zuo and Chen (2010(a)) mentioned FFD on the GPU can be about 1000 times 

faster than CFD on the CPU. So, it makes this model a powerful solver for modeling large scale 

problems (Katal, Mortezazadeh and Wang, 2019). 

2.2.1. Numerical procedure for FFD 

In this section, the numerical procedure for solving Navier-Stokes equations based on FFD will be 

discussed. The proposed solver in the present work, named CityFFD, is based on the dimensionless 

equations. The governing equations, mass and momentum equations, in the dimensionless forms 

are: 

∇ · 𝑈 = 0 (2-1) 

𝜕𝑈

𝜕𝑡
+ (𝑈 · ∇)𝑈 = −∇𝑝 +

1

𝑅𝑒
∇2𝑈 + 𝑓 

(2-2) 

The conventional pressure-based semi-Lagrangian method comprises four main steps:  

𝜕𝑈

𝜕𝑡
=

1

𝑅𝑒
∇2𝑈 + 𝑓  

(2-3) 

𝜕𝑈

𝜕𝑡
+ (𝑈 · ∇)𝑈 = 0 

(2-4) 

∇2𝑝 =
1

∆𝑡
𝛻. 𝑈 

(2-5) 

𝜕𝑈

𝜕𝑡
= −𝛻𝑝 

(2-6) 

FFD numerical procedure is as follows: 



22 
 

1. Navier-Stokes equation, Eq. (2-2), is first reduced to diffusion and source terms, in the absence 

of pressure and advection terms, and is solved to calculate an intermediate velocity field for 

the diffusion and source terms only (Eq. 2-3). 

2. Equation of the advection term (Eq. 2-4) is then solved by the semi-Lagrangian method to 

obtain the 2nd intermediate flow filed.  

3. Poisson equation of pressure (i.e. pressure correction) is then solved for correcting the pressure 

field (Eq. 2-5).  

4. Based on the pressure corrections, the velocity field is corrected to satisfy the condition of the 

divergence-free flows (Eq. 2-6). 

In the above procedure, both the equations of the diffusion term (Eq. 2-3) and the pressure term 

(Eq. 2-5) are discretized based on the central 2nd-order of accuracy. These equations are ellipt ic, 

so an iterative solver is often needed. Here a three-level V-cycle multigrid method is used to speed 

up the calculation of the diffusion and Poisson equations (Appendix 1).  

To explain the process of solving the Eulerian advection equation, Eq. (2-4), from the Lagrangian 

perspective by the semi-Lagrangian method, wIe start with the advection equation of a general 

scalar term, ∅, along its characteristic curve: 

𝑑∅

𝑑𝑆
= 0 

(2-7) 

where ∅ = 𝑈 for the linear momentum conservation equation and 𝑆 can be written as follows:  

𝑑𝑆 = 𝑈𝑑𝑡   →     𝑆𝑛 ≈ 𝑆𝑛+1 − 𝑈∆𝑡 (2-8) 

Here, 𝑛 + 1 and 𝑛 are the new and current time steps, respectively. Using a first-order temporal 

discretization, Eq. (2-7) becomes: 
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∅𝑆𝑛+1|𝑋𝑎
≈ ∅𝑆𝑛 |𝑋𝑑

                      (2-9) 

Because ∅𝑆𝑛 +1|𝑋𝑎
 is always for the time 𝑛 + 1  and ∅𝑆𝑛 |𝑋𝑑

 for 𝑛 , for simplification and 

generalization, the time terms is dropped so Eq. (2-9) becomes: 

∅𝑎 ≈ ∅𝑑                      (2-10) 

Eq. (2-10) shows that ∅ is considered the same at both arrival and departure points within one time 

step. To calculate ∅𝑑, an interpolation scheme based on the neighbor Eulerian cells is needed (see 

Figure 2-2). 

 

Figure 2-2 Procedure of the semi-Lagrangian method with linear interpolation scheme. 

Conventional FFD is based on a linear interpolation scheme which is low-order of accuracy. First, 

the departure point position is found. To find the position, we move backward to the location, 𝑋𝑑, 

at a distance of one time step times the current flow velocity, 𝑈𝑎∆𝑡, from the arrival point location, 

𝑋𝑎, along the characteristic curve: 

𝑋𝑑 = 𝑋𝑎 − 𝑈𝑎∆𝑡 (2-11) 

In the next step, the neighbor cells are found. In Figure 2-2, 𝑁𝑗 (the Eulerian neighbor cells) shows 

the neighbor cells around the departure point. Using an interpolation scheme, the fluid property 
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values at the departure point are calculated. Eq. (2-12) shows the linear interpolation scheme (2nd-

order of accuracy) which is used to find the value of ∅𝑑 at the departure point: 

∅𝑎 = ∅𝑑 = ∑ 𝑤𝑗∅𝑁𝑗

4

𝑗=1

 
(2-12) 

where the 𝑤𝑗 values are the weights of the interpolation scheme, e.g. for 2-D setup, bilinear 

interpolation can be applied.  

Low-order interpolation schemes thus often cause inaccurate predictions of fluid properties, so, 

poor conservation of advected properties and/or high numerical dissipations (Zerroukat, 2010; Zuo 

et al., 2012). Another thing which affects the accuracy is the position of the departure point and its 

distance from its neighborhood Eulerian cells. My study in the next chapters shows that the 

magnitude of truncation error is smaller if the departure point is closer to the Eulerian grids.  

On the other hand, conventional FFD is based on constant velocity assumption for constructing 

the characteristic curves. This assumption may provide accurate results by using small time step, 

but the huge numerical error, especially for the transient problems, can be seen for the large time 

steps. Using a large time step creates considerable deviation between the location of the estimated 

departure point and the accurate position of the point (see Figure 5-1).  

The conventional semi-Lagrangian solver is pressure-based (PB) and by solving the Poisson 

equation, pressure domain is calculated and free divergence condition is satisfied. Pressure-based 

solver originally developed by Harlow and Welch (1965) for unsteady flow problems and then 

later extended by Patankar and Spalding (1972) for steady-state calculations. In this method, 

computations of the velocity and the pressure fields are decoupled (Blazek, 2005). Here, the 

pressure domain is calculated by solving the Poisson equation and then the velocity is obtained by 
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the pressure domains. On irregular grids, solving the Poisson equation is not straightforward (Min 

and Gibou, 2006). In addition, solving the Poisson equation often needs iterative solvers, making 

it a real challenge for parallelizing FFD-based solvers on modern high-performance computing 

infrastructures, such as OpenMP and/or GPU, especially for large data cases (e.g. tens of millions 

of grids), which may only be solved in a parallel manner. 

In this thesis, four novel ideas are proposed to overcome the drawbacks of conventional FFD 

models and a new FFD model, so-called CityFFD, is developed for modeling urban microclimates 

based on the coarse grids and large time steps. Chapter 3 is for solving the coarse grid problem by 

proposing a new high-order interpolation scheme which is capable to highly control the numerica l 

errors. Chapter 4 is devoted to the time step size and its impact on the accuracy. Here it is shown 

different time steps can significantly affect the magnitude of truncation errors. In chapter 5, a new 

model is proposed to improve the accuracy of FFD by using a high-order temporal method. The 

proposed method can provide accurate results even by using large time steps. Chapter 6 

investigates the computational cost of the different components of FFD. In this section, I show by 

removing the most time-consuming part of the conventional FFD method, the Poisson equation, it 

is possible to speed up the simulation at least three times. The proposed method is also better for 

parallelization techniques. In chapter 7, LES model is added to CityFFD for modeling the 

turbulence of microclimate problems. In the end, chapter 8 is dedicated for an application case. 

Here, a real city is simulated and the importance of urban microclimate on the indoor environment 

and building energy/thermal performance is demonstrated. It is achieved by integrating CityFFD 

with another newly developed model, CityBEM, which is a fast building energy model.  
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Chapter 3       A high-order backward forward sweep interpolating algorithm 

for semi-Lagrangian method 

The contents of this chapter have been published in “Mortezazadeh, M. and Wang, L. L., 2017. A 

high-order backward forward sweep interpolating algorithm for semi-Lagrangian method. 

International Journal for Numerical Methods in Fluids, 84(10): 584-597”. The contents are 

modified, and some parts of the original paper are removed to avoid repetition. 

Conventional semi-Lagrangian methods often suffer from poor accuracy and imbalance problems 

of advected properties because of low-order interpolation schemes used and/or inability to reduce 

both dissipation and dispersion errors even with high-order schemes. In the current work, a 4th-

order semi-Lagrangian method is proposed to solve the advection terms at a computing cost of 3rd-

order interpolation scheme by applying backward and forward interpolations in an alternat ing 

sweep manner. The method was demonstrated for solving 1-D and 2-D advection problems, and 

2-D and 3-D lid-driven cavity flows with a multi-level V-cycle multigrid solver. It shows that the 

proposed method can reduce both dissipation and dispersion errors in all regions, especially near 

sharp gradients, at the same accuracy as but less computing cost than the typical 4th-order 

interpolation because of fewer grids used. The proposed method is also shown able to achieve 

more accurate results on coarser grids than conventional linear and other high-order interpolat ion 

schemes in the literature. 

3.1. Introduction  

FFD relies on an interpolation scheme to calculate the unknown variables at the departure point 

(see Figure 2-1). Conventional FFD is based on the low-order interpolation scheme which often 

causes inaccurate predictions of fluid properties, which is consequently a major source for the 
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well-known drawbacks of the method: e.g. poor conservation of advected properties and/or high 

numerical dissipations (Zerroukat, 2010; Zuo et al., 2012). During the past decades, many 

researchers have tried to solve the problems by developing better discretization schemes (Xiu and 

Karniadakis, 2001; Spiegelman and Katz, 2006), high-order interpolation schemes (Rosatti et al., 

2005; Zun and Xiao, 2016), and hybrid methods combing interpolation schemes with different 

orders (Zuo et al., 2012). Zerroukat (2010) proposed a semi-Lagrangian method equipped with 

conservative remapping scheme. Sun and Xiao (2016) developed a high-order semi-Lagrangian 

scheme based on finite volume method and a non-oscillatory limiter to control the numerica l 

oscillation, an open problem for high-order numerical methods. Xiu and Karniadakis (2001) 

developed higher-order temporal and spatial discretization schemes. Fedkiw et al. (2001) 

considered a monotonic cubic interpolation instead of polynomial interpolations to improve the 

accuracy. While these methods tried to improve the accuracy in different ways, they also add 

complexity and extra computational cost to the semi-Lagrangian method (Zuo et al., 2012). 

Therefore, Zuo et al. (2012) developed a relatively simple hybrid method by combining linear and 

3rd-order backward interpolation schemes: using linear interpolation near the sharp gradient to 

reduce dispersion errors and using the 3rd-order interpolation in other regions to reduce numerica l 

dissipations. However, combining lower- and higher-order interpolations cannot reduce 

dissipation or dispersion errors at the same time and the overall accuracy of a hybrid method is 

often less than expected.  

In this study, an alternate sweep algorithm of a 3rd-order backward and a 3rd-order forward 

interpolation is proposed to improve the accuracy of the semi-Lagrangian method by reducing both 

the dissipation and dispersion errors for all flow regions, especially near regions with sharp 

gradients. The backward or forward interpolation itself is with 3rd-order but the overall accuracy 
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of the proposed method after sweeping can achieve the 4th-order accuracy whereas using much 

fewer grids for interpolation than conventional 4th-order method. The proposed method and its 

order of accuracy are studied using Taylor series for 1-D semi-Lagrangian problem. Then the 

efficiency and accuracy are investigated by applying the method to solving 1-D and 2-D pure 

advection problems, and 2-D and 3-D lid-driven cavity problems governed by the full Navier-

Stokes equations. A V-cycle multigrid method is used to speed up the solutions of the diffus ion 

terms and the Poisson equation.   

3.2. Methodology 

In this section, first the general FFD method for incompressible flows, the semi-Lagrangian 

method, is briefly introduced and then the proposed backward and forward sweep interpolat ing 

scheme is explained. 

3.2.1. Fast fluid dynamics method for incompressible flows 

In this study, the FFD procedure for solving Eqs. (2-3) and (2-6) is as follows: 

1. Eq. (2-3), diffusion and source terms, is solved by using three-level V-cycle multigrid method 

to obtain an intermediate velocity field. 

2. Eq. (2-4), advection term, is solved by using the semi-Lagrangian method with the proposed 

3rd-order backward forward sweep interpolation to get the 2nd intermediate velocity field.  

3. Based on the 2nd intermediate velocity, Eq. (2-6), Poisson equation, is solved for the pressure 

field by the same multigrid method. 

4. Finally, the velocity field is corrected by applying the new pressure field to Eq. (3-5). Then the 

calculation returns to step 1 and iterates till convergence. 

3.2.2. Semi-Lagrangian method 
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As mentioned in section 2-2, an interpolation is needed to calculate ∅𝑑 in Eq. (2-10). First, I need 

to find the neighbor Eulerian cells about 𝑋𝑑 (see Figure 3-1). The Eulerian cells inside the blue 

and red squares shown in Figure 3-1 belong to the 3rd-order forward and backward interpolat ion 

methods, respectively. In comparison, the green square region shows the neighbor cells about 𝑋𝑑 

for a typical 4th-order central interpolation. Here, 𝑛𝑖−1,𝑗−1 to 𝑛𝑖+2,𝑗+2 show the indices of Eulerian 

neighbor cells. 

 

Figure 3-1 Schematic of the 2-D semi-Lagrangian method for 3rd-order backward and forward 

interpolations, and 4th-order central interpolation method. 

3.2.3. The third-order backward forward sweep interpolation method 

Here the proposed method for a 1-D semi-Lagrangian method on a uniform grid, i.e.  ∆𝑥 =

constant, is explained (see Figure 3-2).  
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(a) 3rd-order backward interpolation 

 

(b) 3rd-order forward interpolation 

Figure 3-2 3rd-order interpolation schemes for 1-D advection problem. 

For the 3rd-order backward interpolation scheme in Figure 3-2(a), Taylor series for the neighbor 

cells is applied about 𝑋𝑑 as follows: 

∅𝑛𝑖+1

𝑛 = ∅𝑑 + 𝑠3

𝜕∅𝑑

𝜕𝑥
+

𝑠3
2

2

𝜕2∅𝑑

𝜕𝑥2
+

𝑠3
3

6

𝜕3∅𝑑

𝜕𝑥3
+ 𝑂(∆𝑥4) 

∅𝑛𝑖

𝑛 = ∅𝑑 − 𝑠1

𝜕∅𝑑

𝜕𝑥
+

𝑠1
2

2

𝜕2∅𝑑

𝜕𝑥2
−

𝑠1
3

6

𝜕3∅𝑑

𝜕𝑥3
+ 𝑂(∆𝑥4) 

∅𝑛𝑖−1

𝑛 = ∅𝑑 − 𝑠2

𝜕∅𝑑

𝜕𝑥
+

𝑠2
2

2

𝜕2∅𝑑

𝜕𝑥2
−

𝑠2
3

6

𝜕3∅𝑑

𝜕𝑥3
+ 𝑂(∆𝑥4) 

 

 

(3-1) 

where: 

𝑠2 = ∆𝑥 + 𝑠1, 𝑠3 = ∆𝑥 − 𝑠1 (3-2) 

The 3rd-order backward interpolation scheme for ∅𝑑 can then be obtained by eliminating the first 

and second derivatives in Eq. (3-1): 

∅𝑑 = −
𝑠1𝑠3

2∆𝑥2
∅𝑛𝑖−1

𝑛 +
𝑠2𝑠3

∆𝑥2
∅𝑛𝑖

𝑛 +
𝑠1𝑠2

2∆𝑥2
∅𝑛𝑖+1

𝑛 + 𝐸𝑏 (3-3) 

where the truncation error is 

𝐸𝑏 = −
𝑠1𝑠2𝑠3

6

𝜕3∅𝑑

𝜕𝑥3
+ 𝑂(∆𝑥4) 

(3-4) 

Following a similar procedure, the 3rd-order forward interpolation for ∅𝑑 can be obtained (Figure 

3-2(b)): 
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∅𝑑 =
𝑠2𝑠3

2∆𝑥2
∅𝑛𝑖

𝑛 +
𝑠1𝑠3

∆𝑥2
∅𝑛𝑖+1

𝑛 −
𝑠1𝑠2

2∆𝑥2
∅𝑛𝑖+2

𝑛 + 𝐸𝑓  (3-5) 

where: 

𝐸𝑓 =
𝑠1𝑠2𝑠3

6

𝜕3∅𝑑

𝜕𝑥3
+ 𝑂(∆𝑥4) 

(3-6) 

It is then possible to cancel the leading errors of Eqs. (3-4) and (3-6) because  

𝐸𝑏 ≈ −𝐸𝑓 (3-7) 

Therefore, by alternating the backward at one time-step followed by the forward interpolation at 

the next (i.e. sweeping), the leading errors of both interpolations can be canceled so the 4th-order 

of accuracy can be achieved at the end of 2∆𝑡 by using fewer grids than typical 4th-order methods 

as shown in Figure 3-1. Now the truncation error 𝐸 after two time-step, i.e. 2∆𝑡, is:  

𝐸 = 𝐸𝑏 + 𝐸𝑓 = 𝑂(∆𝑥4) (3-8) 

The alternative sweeping is necessary because if either of the two methods are used separately, the 

error for backward and forward methods is equal to: 

𝐸𝑏,2∆𝑡 ≈ 2𝐸𝑏 = 𝑂(∆𝑥3) 

𝐸𝑓,2∆𝑡 ≈ 2𝐸𝑓 = 𝑂(∆𝑥3) 

(3-9) 

So: 

|𝐸| < |𝐸𝑏,2∆𝑡 | or |𝐸𝑓,2∆𝑡| (3-10) 

Note that although Figure 3-2 uses a uniform mesh as an example, the previous analyses of 

truncation errors also apply to non-uniform/stretched meshes because the derivations actually do 

not need the information of the uniform mesh, i.e. Eq. (3-2), which is provided here only for easier 

representation of the orders of the truncation errors. To demonstrate how the proposed method can 
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be applied to non-uniform meshes, this chapter investigated its performance for both a 1-D and a 

3-D stretched mesh cases in later sections.    

For the 2-D problem in Figure 3-1, the implementation of the sweeping method is as follows (the 

3-D implementation can be done in the similar way): 

1. Taking the 3rd-order forward interpolation as an example in the first time step, Eq. (3-5) is first 

applied to x-direction to obtain ∅𝑑𝑗
, ∅𝑑𝑗+1

 𝑎𝑛𝑑 ∅𝑑𝑗+2
 separately, e.g. for ∅𝑑𝑗

 

∅𝑑𝑗
≈ 𝐴∅𝑛𝑖,𝑗

𝑛 + 𝐵∅𝑛𝑖+1,𝑗

𝑛 + 𝐶∅𝑛𝑖+2,𝑗

𝑛  (3-11) 

where 𝐴, 𝐵, and 𝐶 are the interpolation weights in Eq. (3-5) along the x-direction.  

2. Then applying Eq. (3-11) in the y-direction to find ∅𝑑: 

∅𝑑 ≈ 𝐴′∅𝑑𝑗
+ 𝐵′∅𝑑𝑗+1

+ 𝐶′∅𝑑𝑗+2
 (3-12) 

where 𝐴′, 𝐵′, and 𝐶′ are the interpolation weights for the y-direction.  

3. In the next time step, a similar procedure is applied to the 3rd-order backward interpola t ion 

scheme to obtain ∅𝑑 at 2∆𝑡, which completes one “sweep”. The process is then repeated till 

convergence. 

3.3. Case studies 

In this section, the performance of the proposed method in terms of accuracy and computing time 

is compared to different interpolation schemes: linear, the hybrid of Zuo et al. (2012), and a 4th-

order central interpolation for solving a 1-D and 2-D advection problem, and a 2-D and 3-D N-S 

equations. The following standard definitions of errors are used: 𝑙1 norm, 𝑙2 (or the second norm), 

and 𝑙∞ (or the infinite norm) for a 2-D problem as an example (Lauritzen et al., 2010):  
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𝐸𝑙1
=

∑ 𝐴𝑖,𝑗 × |∅𝑖 ,𝑗
𝑁𝑢𝑚𝑒𝑟𝑖𝑐 − ∅𝑖,𝑗

𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 |𝑖𝑚𝑎𝑥 ,𝑗𝑚𝑎𝑥
𝑖,𝑗=1

∑ 𝐴𝑖,𝑗 × ∅
𝑖,𝑗

𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑖𝑚𝑎𝑥 ,𝑗𝑚𝑎𝑥

𝑖 ,𝑗=1

 
(3-13) 

𝐸𝑙2
= √

∑ [𝐴𝑖,𝑗 × (∅𝑖 ,𝑗
𝑁𝑢𝑚𝑒𝑟𝑖𝑐 − ∅

𝑖,𝑗

𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐
)]

2
𝑖𝑚𝑎𝑥 ,𝑗𝑚𝑎𝑥

𝑖,𝑗=1

∑ (𝐴𝑖,𝑗 × ∅
𝑖,𝑗

𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐
)

2
𝑖𝑚𝑎𝑥 ,𝑗𝑚𝑎𝑥

𝑖,𝑗=1

 

(3-14) 

𝐸𝑙
∞

=
max|∅𝑖 ,𝑗

𝑁𝑢𝑚𝑒𝑟𝑖𝑐 − ∅𝑖,𝑗
𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 |

max|∅
𝑖,𝑗

𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 |
 

(3-15) 

3.3.1. 1-D and 2-D advection problems 

To demonstrate the capability of the proposed method for reducing both dissipation and dispersion 

errors, especially near regions with sharp gradients, first a 1-D advection problem of a general 

scalar term, ∅𝑖  , is considered with two common shapes of waves, i.e. a sinusoidal and a step wave, 

as defined by the initial conditions and grids below: 

∅𝑖 = {
sin (4𝜋(𝑥𝑖 − 0.25))

1.0
0.0

        
0.25 ≤ 𝑥𝑖 ≤ 0.5
0.6 ≤ 𝑥𝑖 ≤ 0.8

otherwise

 
(3-16a) 

𝑥𝑖 = [∆𝑥 × (𝑖 − 1)]𝛼           {
𝛼 = 1                       uniform grid

𝛼 = 1.2          nonuniform grid
 

(3-16b) 

where 𝑥𝑖 is the ith position of the advected scalar, the velocity, 𝑢 = 1 [m/s], the time step, ∆𝑡 =

0.005 [𝑠], and the grid resolution is defined by Eq. (3-16b): 𝛼 = 1.0 for the uniform grid and 𝛼 =

1.2 for the non-uniform grid case, for both of which, ∆𝑥 = 0.01 [𝑚]. 
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(a) Uniform grid 𝛼 = 1.0. 

 
(b) Non-uniform grid 𝛼 = 1.2. 

Figure 3-3 Semi-Lagrangian results for the 1-D advection problem with two waves at t = 1 [s] for 

(a) the uniform grid and (b) the non-uniform grid case. 
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Figure 3-3 shows the results for different interpolation schemes at 𝑡 = 1 [𝑠] for both the uniform 

and non-uniform cases. As shown by Figure 3-3(a) for the uniform grid, the dominant error for the 

linear interpolation scheme is the numerical dissipation, while both 3rd-order interpolation methods 

show oscillations, especially near the sharp gradients, caused by dispersion errors as also observed 

by Zuo et al. (2012). Note that the oscillation behavior for the 3rd-order backward and forward 

methods seems opposite, e.g. especially for the step wave. Figure 3-3 also compares the present 

work to the hybrid method (Zuo et al., 2012), and a 4th-order central interpolation method. Table 

3-1 compares quantitatively the errors for different schemes. For the 1-D problem, compared to 

the hybrid method, the proposed method can reduce all types of error criteria by about 50%. 

Additionally, it shows that the proposed method is as accurate as the 4th-order central interpolat ion 

scheme. Figure 3-3(b) shows the performance of the proposed method for the non-uniform grid 

when 𝛼 = 1.2. As expected, the method also applies well to the stretched mesh case with a similar 

performance as the uniform grid case when compared to the hybrid method (Zuo et al., 2012) and 

the 4th-order central method. 

To further verify the conclusion, the study is extended to a 2-D advection problem with init ia l 

conditions defined by Eq. (3-17) and shown in Figure 3-4: 

∅ = {
1.0
1.0
0.0

          
0.1 ≤ 𝑥 ≤ 0.5, 0.23 ≤ 𝑦 ≤ 0.37
0.23 ≤ 𝑥 ≤ 0.37, 0.1 ≤ 𝑦 ≤ 0.5

otherwise

 
(3-17) 

where 𝑥 and 𝑦 represent the position of the cell centers on 2-D coordinates. Here  ∆𝑡 = 0.005 [s]  

and ∆𝑥 = ∆𝑦 = 0.01 [𝑚] with a constant velocity field defined by Eq. (3-18).  The total grid 

number is 400 × 400.  

𝑢 = 1.0 [𝑚/𝑠]  and 𝑣 = 1.0 [𝑚/𝑠] (3-18) 
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Figure 3-4 Initial condition for the 2-D advection problem. 

Figure 3-5 and Table 3-1 compare the results at 𝑡 = 3 [𝑠]. As expected, it is obvious that the 

accuracy of the proposed method is significantly better than the 3rd-order and hybrid methods. 

Figure 3-5 shows that both the backward and forward interpolation have strong dispersion errors 

when used separately. The hybrid method reduces the dispersion errors because of the use of linear 

interpolation, which however increases the dissipation error near the sharp gradient regions. The 

present work is shown to be able to reduce both dispersion and dissipation errors at a similar order 

of accuracy as the 4th-order interpolation method with fewer computing time: 167 s for the present 

work compared to 172 s for the 4th-order method as illustrated in Table 3-1. The difference is not 

noteworthy for this problem but can be significant for other cases as shown later, e.g. 3-D cases. 

Therefore, the present work is able to achieve 4th-order accuracy at the computing cost of the 3rd-

order method.  
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Figure 3-5 Contours of scalar values for the 2-D advection problem solved by semi-Lagrangian 

equipped with different interpolation methods. 

Table 3-1 Comparison of different interpolation schemes for 1-D and 2-D advection problem at 

t=1 [s] for 1-D and t=3 [s] for 2-D. 

Scheme  𝐸𝑙1
 𝐸𝑙2

 𝐸𝑙
∞

 Time [𝑠] 

Linear 
1-D 0.4758 0.3884 0.4809 - 

2-D 1.0925 0.6434 0.7305 161 

3rd-order Backward  
1-D 0.2194 0.2118 0.5281 - 

2-D 0.6675 0.4802 0.9305 167 

3rd-order Forward  
1-D 0.2079 0.2118 0.5291 - 

2-D 0.6213 0.4276 0.9302 166 

Hybrid  
(Zuo et al., 2012)  

1-D 0.1913 0.2393 0.5874 - 

2-D 0.6136 0.5035 0.8762 163 

4th-order Central 1-D 0.0842 0.1267 0.3112 - 
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2-D 0.3297 0.3162 0.6687 172 

Present Work 
1-D 0.0828 0.1256 0.3093 - 

2-D 0.3277 0.3151 0.6692 167 

Note that for a problem with uniform grids, e.g. the current problem, 𝐸𝑙1
 also indicates the error of 

mass conservation as defined by Eq. (3-19): 

𝑚𝑖,𝑗 = 𝐴𝑖 ,𝑗∅𝑖 ,𝑗     →       𝐸𝑐𝑜𝑛𝑠 = 𝐸𝑙1
=

∑ |𝑚𝑖,𝑗
𝑁𝑢𝑚𝑒𝑟𝑖𝑐 − 𝑚𝑖,𝑗

𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐 |𝑖𝑚𝑎𝑥 ,𝑗𝑚𝑎𝑥
𝑖 ,𝑗=1

∑ 𝑚
𝑖,𝑗

𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑖𝑚𝑎𝑥 ,𝑗𝑚𝑎𝑥

𝑖,𝑗=1

 
(3-19) 

Using the proposed method, 70% of the mass imbalance error could be reduced in comparison 

with the linear semi-Lagrangian method, and about 50% in comparison with the hybrid method 

(Zuo et al., 2012). So, by reducing the truncation errors, the proposed method is able to reduce the 

mass imbalance problem which is a well-known drawback of semi-Lagrangian methods.  

3.3.2. 2-D Navier–Stokes equations 

Here, the FFD procedure of solving the full Navier-Stokes equations is implemented with the 

proposed backward and forward sweep semi-Lagrangian method for the advection terms. A typical 

benchmark problem for incompressible flows is used: the 2-D lid-driven cavity flow problem. The 

convergence criterion is 10−6, which is based on the maximum value of the difference between 

the current and previous time step values. In this problem, the fluid moves inside a 2-D square. 

The boundary of the domains are walls with the non-slip condition. The upper wall has a velocity 

in x-direction, 𝑢 = 1.0 [𝑚/𝑠]. The domain is 1 × 1 [𝑚2] with structured and uniform grids.  
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(a) Velocity distribution for 2-D cavity problem using the present method. 

 

(b) Comparison of velocity component in the x-direction for different grids. 

Figure 3-6 2-D lid-driven cavity problem solved by semi-Lagrangian method, Re=1000, 

∆𝑡 = 0.005 [s]. 

Figure 3-6(a) shows the streamline for the cavity flow with 𝑅𝑒 = 1000. Here it is clear that the 

proposed method is able to capture small vortexes even in the corner of the computational domain. 

Figure 3-6(b) indicates u velocity values in the y-direction and it shows that the current method 

can achieve the same accuracy as the 4th-order central interpolation method.  

(1982) 
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Note that the proposed method is faster than the typical 4th-order method because it needs fewer 

grid points and thus fewer floating point operations: the number of arithmetic operations (Saad, 

2003) for the 1-D problem is around 26 × 𝑖𝑚𝑎𝑥  for the present method while 51 × 𝑖𝑚𝑎𝑥   for the 

4th-order method (note 𝑖𝑚𝑎𝑥  is the total number of grids). The advantage of the proposed method 

in comparison with 4th-order central interpolation method is that it reduces the computing time 

approximately 15% as shown by Table 3-2 because a fewer number of nodes are engaged in the 

interpolation. Meanwhile, the comparison between the proposed method and the linear 

interpolation shows the computing time did not increase much while the accuracy is significantly 

improved. Additionally, Figure 3-6(b) shows the present work can give an acceptable accuracy 

even on the coarse grid, i.e. 64 × 64, whereas the linear semi-Lagrangian method is not accurate 

enough even on the finer grids, i.e. 128 × 128. Figure 3-6(b) also shows that for the cavity problem, 

using 128× 128 grids are enough to approximately get the results similar to Ghia et al.’s work, 

which is based on a vorticity-stream function formulation equipped with an implicit multigr id 

method (Ghia et al., 1982). 

Table 3-2 Computational time in seconds for the lid-driven cavity problems. 

Scheme  2-D  3-D 

 Grids Time  Grids Time [𝑠] 
Linear  64×64 21  40×40×40 307 

 128×128 67  60×60×60 1,197 

4th-order central   64×64 26  40×40×40 637 

 128×128 82  60×60×60 2,391 

Present work  64×64 22  40×40×40 403 

 128×128 73  60×60×60 1,575 

 

3.3.3. 3-D Navier–Stokes equations 
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For high-order interpolation schemes (3rd or 4th-order central schemes), more grid points will be 

involved and the computing cost may rise accordingly for all methods. Therefore, it is worthwhile 

to check the performance of the proposed method for 3-D Navier-Stokes problems. Here, the work 

is extended to solve the 3-D lid-driven cavity problem with  𝑅𝑒 = 1000 and compare the results 

with the WENO method, a weighted non-oscillatory (ENO) scheme based on a class of lower–

upper approximate-factorization implicit weighted (Yang et al., 1998), and Jiang et al. (1994) 

results, which are based on a least-square finite element method (LSFEM). Figure 3-7 shows that 

the proposed method is significantly more accurate in comparison with the conventional linear 

semi-Lagrangian method. Therefore, I can use a much fewer number of computational cells than 

linear interpolation method but notably achieve higher accuracy. For example, the accuracy for 

40 × 40 × 40 grids using the present work is much better than 60 × 60 × 60  grid by linear 

interpolation scheme as shown in Figure 3-7(a). The running time for the present work for 

40 × 40 × 40 grids is 403 [𝑠], while for the linear semi-Lagrangian method and 60 × 60 × 60 

grids, the computational time is almost tripled: 1,197 [𝑠].  

 

(1982) 
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(a) Uniform grids. 

 

 
(b) Non-uniform grid of total 40 × 40 × 40 with 𝛼 = 0.5 and 𝛽 = 1.1. 

Figure 3-7 3-D lid-driven cavity flow problem solved by semi-Lagrangian method for (a) two 

uniform grids and (b) one non-uniform grid case. 

In the real applications, stretching grids are often used especially near boundaries such as walls. 

To investigate the accuracy of the proposed method for non-uniform grids, this study used a case 

with non-uniform grids defined by Eq. (3-20) (Hoffmann and Chiang, 2000(a)) and shown by 

Figure 3-7(b).  

𝑥𝑖 =

(2𝛼 + 𝛽)(
𝛽 + 1
𝛽 − 1

)(
𝛾𝑖−𝛼
1−𝛼

) + 2𝛼 − 𝛽

(2𝛼 + 1)[1+ (
𝛽 + 1
𝛽 − 1

)(
𝛾𝑖−𝛼

1−𝛼
)]

 

 

(3-20) 

where 𝛾𝑖 = (𝑖 − 1)∆𝑥 and ∆𝑥 = 0.025 [𝑚].  

Eq. (3-20) is the stretching function for the x-direction only. For the y- and z-directions, a similar 

stretching function is used for the 3-D case here. As shown in Figure 3-7(b), the present work 

performs well for the non-uniform grid case (total grid = 40×40×40) in comparison with the linear 
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semi-Lagrangian and the 4th-order interpolation methods in a similar trend as observed in the 

uniform grid cases in Figure 3-7(a). This confirms the performance of the present work for both 

uniform and stretching grids as expected. 

3.4. Summary and Conclusions  

Because of its unconditional stability even for large time steps, the semi-Lagrangian method has 

been popular among researchers for solving many challenging problems. However, one of its well-

known drawbacks is the inherent high dissipation or dispersion errors and associated mass 

imbalance and/or non-conservations of advected properties due to the interpolation schemes used. 

In this chapter, a high-order semi-Lagrangian method was proposed by using a 3rd-order backward 

and forward sweeping interpolation scheme to improve the interpolation accuracy and reduce the 

non-conservation problems. It has been shown that the alternating sweep of the 3rd-order backward 

and forward method can achieve an overall accuracy of 4th-order with lower computing cost than 

a typical 4th-order method. The present method is also able to reduce both dissipation and 

dispersion errors in all regions: applying the sweeping interpolation scheme can prevent high 

oscillations near sharp gradient regions. The proposed method was verified by 1-D and 2-D 

advection problems, and 2-D and 3-D lid-driven cavity flow problems governed by the full Navier-

Stokes equation. The results showed that the proposed method can reduce the mass imbalance 

problem 70% in comparison with the conventional linear semi-Lagrangian method and 50% in 

comparison with the hybrid method in the literature. The cost to reach 4th-order accuracy is also 

much less than the typical 4th-order method because fewer grid cells are required and thus fewer 

floating point operations are involved. Meanwhile, because of its high-order of accuracy, the 

method was demonstrated for the 3-D lid-driven problem with more accurate but faster results 
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even on coarse grids than the conventional linear semi-Lagrangian method for both uniform and 

non-uniform meshes.  
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Chapter 4       An adaptive time-stepping semi-Lagrangian method for 

incompressible flows 

The contents of this chapter have been published in “Mortezazadeh, M. and Wang, L., 2019. An 

adaptive time-stepping semi-Lagrangian method for incompressible flows. Numerical Heat 

Transfer, Part B: Fundamentals, 1-18.”. The contents are modified, and some parts of the 

original paper are removed to avoid repetition. 

The semi-Lagrangian method is widely applied to solving the advection term of the Navier–Stokes 

(N–S) equations whereas the role of time step is often unclear. This article proposed an adaptive 

time-stepping method, which first calculates local adaptive time step based on truncation error 

coefficient functions, and then to obtain global time step based on an averaging function for all 

grid points. The new method was tested for solving 1-D and 2-D advections with different init ia l 

time steps and grid resolutions, and the transient incompressible N–S equations. Better simula t ion 

accuracy can be achieved than the cases with constant time steps. 

4.1. Introduction  

In the FFD method, interpolation scheme plays an important role: the accuracy of a semi-

Lagrangian method depends much on the interpolation scheme used. In chapter 3, I proposed a 4th-

order backward and forward sweep interpolating algorithm to reduce both dissipation and 

dispersion errors in all regions, especially near sharp gradients at a computing cost of 3 rd-order 

scheme. Here I showed that the accuracy of the semi-Lagrangian method may not be improved at 

all by simply increasing grid resolutions, and it was however more effective to apply higher 

interpolation schemes. Additionally, some researchers developed new techniques to maintain the 

conservation of properties. Other researchers also proposed other ideas to satisfy mass 
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conservation. For example, Jin and Chen (2015) calculated the surplus or deficit values of mass 

conservation at each time step, based which a distribution function was developed to be either 

removed or added to the fluid domain, so the conservation of mass was satisfied. 

On the other hand, for a semi-Lagrangian method with any interpolation schemes, the interpolat ing 

accuracy depends directly on the relative location of the departure point about its neighbor cells, 

i.e. the relative distances (or the weights): 𝑠0, 𝑠1, 𝑡0 and 𝑡1 as shown in Figure 4-1. A special case 

may help to understand such a dependence: when the departure point is at the same location as that 

of the Eulerian grid (e.g. cell center) and an interpolation is thus not needed. In other words, the 

reason that an interpolation scheme is necessary is that the departure points are often different from 

the Eulerian grids. Although most of the previous studies focused on high-order interpolat ion 

schemes, the literature search shows that no study has been conducted on the dependency of the 

semi-Lagrangian method on the locations of departure points about their neighbor cells. Since a 

departure point is determined by tracing the corresponding arrival point backward based on one-

time step multiplied by local velocity along the characteristic curve, its location is thus a function 

of the time step, local fluid velocity, and grid resolution, involving multiple independent variables. 

Therefore, to avoid overcomplicating the problem, this study focuses on the time step and its 

impact on the semi-Lagrangian method, and consequently the full Navier-Stokes (N-S) equations. 

A few key questions need to be answered: 1) For a given interpolation method, what is the actual 

role of the time step for the semi-Lagrangian method in terms of simulation accuracy? 2) Is a 

smaller time step associated with a better simulation accuracy or vice versa? 3) How can the time 

step be adapted (i.e. adaptive time-stepping) to achieve more accurate results?  
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Figure 4-1 Schematic of the semi-Lagrangian method in 2-D coordinates. 

Previous studies on time steps and their adaptive techniques are mostly developed for Eulerian 

methods, especially explicit ones, to overcome stability concerns due to the CFL constraints. A 

constant time step may alleviate the CFL constraints, but it is often computationally expensive. An 

alternative is the use of local adaptive time-stepping methods (Collino, 2003; Carlini et al., 2006; 

Minkoff and Kridler; 2006; Ghough et al., 2011; Grote and Mitkova, 2012; Gander and Halpern, 

2013; Boscheri et al., 2015). Arnone et al. (1993) considered a local time-stepping method to 

achieve the maximum allowable time step for solving steady-state incompressible N-S equations. 

They calculated the time step for each computational cell by defining two different time steps, 

namely, the convective and diffusive time steps. Later, Ghough et al. (2011) extended their work 

to unsteady problems by using a dual time-stepping-method and a local time-stepping for the 

pseudo-time. Rice (1960) proposed a Runge-Kutta method to solve ODE problems to improve the 

convergence rate by splitting and solving the conservation equations by a small and large time step. 

Some other researchers proposed space-time adaptive schemes (Berger and Oliger, 1984; Berger, 
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1985) based on domain decomposition techniques: solving each subdomain by different grid 

resolutions and time steps. Another category of adaptive time-stepping is space-time finite element 

methods: time is considered as another direction like spatial directions and discretized by a finite 

element method (Eriksson et al., 2004).  

Previous studies on adaptive time-stepping for the semi-Lagrangian method are found fairly 

limited in the literature. Among them, the most relevant one from the literature search is the study 

by Carlini et al. (2006), who used two different time steps, i.e. ∆𝑡 and ∆𝑡/2, for solving the level-

set equations of Mean Curvature Motion (MCM) using the semi-Lagrangian. The large time step 

is first used, and the local truncation error is calculated, and the process is repeated for the half 

time step. A combined truncation error is then obtained and evaluated to determine a new time 

step. Although their study managed to adjust time steps by evaluating local truncation errors, there 

is still a lack of a better understanding on the relations among time step, departure point location, 

and more importantly, the associated simulation accuracy. 

In this study, a new adaptive time-stepping semi-Lagrangian method is proposed to modify the 

position of the departure point and improve the accuracy of the method by reducing cumula t ive 

local truncation errors based on a mathematical evaluation of the extrema of the error bounded by 

neighbor Eulerian cells surrounding the departure point. For any given initial time steps (e.g. from 

user inputs), the initial departure point and its neighbor cells are first identified. Functions of 

truncation errors for individual departure point are then constructed about its neighbor cells. This 

chapter then shows that the minima of the error functions can be achieved at two new locations of 

the departure points along the characteristic curve. Both new departure points correspond to the 

local time steps, of which the larger time step is chosen to be the local adaptive time step because 

of its fewer time step iterations required and consequently faster calculation. Using an averaging 
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function, a unique adaptive global time step (i.e. simulation results independent of the initia l time 

steps from the user’s inputs) is then defined for all grids. In the present work, the new method is 

applied to both linear and 3rd-order interpolation schemes as an example, but the general 

methodology can be applied to other high-order interpolation schemes. This chapter starts with a 

general introduction to the semi-Lagrangian method followed by a detailed explanation of the 

proposed algorithm. The performance of the new method is then demonstrated by three cases: a 1-

D and 2-D pure advection problems with both uniform and non-uniform grids, and a transient flow 

around a cylinder governed by the 2-D incompressible N-S equations, in terms of simula t ion 

accuracy as compared to the conventional method with constant time step. Based on the results of 

the adaptive time steps, further discussions were also conducted regarding what is a good estimate 

of an initial time step when using the semi-Lagrangian method for solving the N-S equations. 

4.2. Methodology 

4.2.1. Semi-Lagrangian method 

In the conventional FFD and 2-D coordinates (Figure 4-1), according to Eq. (2-8) the relation of 

locations between the arrival point and the departure point can be shown as the scalar form, and 

then the vector form in terms of �⃗�𝑑 and �⃗�𝑎: 

 
𝑥𝑑 = 𝑥𝑎 − 𝑢𝑎∆𝑡

𝑦𝑑 = 𝑦𝑎 − 𝑣𝑎∆𝑡
→ 𝑋𝑑 = 𝑋𝑎 − 𝑈𝑎∆𝑡   

(4-1) 

Then the characteristic curve can be approximated by: 

𝑦 − 𝑦𝑎 =
𝑣𝑎

𝑢𝑎

(𝑥 − 𝑥𝑎) (4-2) 
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The semi-Lagrangian method calculates the scalar quantity of the arrival point at the time 𝑡 = 𝑛 +

1 from that of the departure point at the time 𝑡 = 𝑛 by using an interpolation scheme about the 

neighbor Eulerian cells of the departure point: 

∅𝑎 = ∅𝑑 = ∑ 𝑤𝑖∅𝑖

𝑛𝑏

𝑖=1

 
(4-3) 

where 𝑛𝑏 is the number of neighbor cells about the departure point, d. For each of the Eulerian 

neighbor cells, 𝑖, the location is defined by 𝑋𝑖,𝑗, 𝑋𝑖+1,𝑗 , 𝑋𝑖,𝑗+1 , or 𝑋𝑖+1,𝑗+1, for the 2-D example in 

Figure 4-1. 𝑤𝑖 is the interpolation weight for each neighbor cell. 

4.2.2. Truncation errors of interpolations 

For any interpolating schemes, the method to find the scalar value at an arbitrary location, 𝑥𝑑, in 

one direction can be generalized by the following polynomial (Stewart, 1996):   

∅𝑥𝑑
≈ ∑

[
 
 
 
 

(

 
 

∏
(𝑥𝑑 − 𝑥𝑗)

(𝑥𝑖 − 𝑥𝑗)

𝑛𝑏

1≤𝑗≤𝑛𝑏
𝑗≠𝑖 )

 
 

∅𝑥𝑖

]
 
 
 
 𝑛𝑏

𝑖=1

 

 

(4-4) 

where 𝑥𝑑 ∈ [𝑥1,𝑥𝑛𝑏]. Here, 𝑖 shows the neighbor Eulerian cells around the departure point. If 𝑛𝑏 

neighbor cells are used, the local truncation error (Stewart, 1996) can be shown to be  

𝐸𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑖𝑜𝑛 = |
1

𝑛𝑏!
∏(𝑥𝑑 − 𝑥𝑗)

𝑛𝑏

𝑗=1

𝜕𝑛𝑏 ∅

𝜕𝑥𝑛𝑏
| 

 

(4-5) 

Here, I define the error coefficient, 𝐶,  

𝐶 = | ∏ (𝑥𝑑 − 𝑥𝑗)
𝑛𝑏
𝑗=1 |   (4-6) 
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In the following analysis, I investigate how the errors and error growths are associated with the 

locations of departure points, and accordingly time steps. I start with the 1-D advection problem 

and then extends the analysis to the 2-D case.  

4.2.3. Error analysis for 1-D problems 

4.2.3.1. Linear interpolation 

First, a common linear interpolation scheme is used here to calculate ∅𝑑 for the 1-D problem in 

Figure 4-2 (for brevity ∅𝑑 is used instead of ∅𝑥𝑑
). Based on a user-defined initial time step, the 

initial location of the departure point is assumed to be located at the point 𝑑 (𝑥 = 𝑥𝑑 in Figure 4-

2), at which the scalar, ∅𝑑, can be interpolated. 

First, I apply the linear interpolation to Eq. (4-4): 

∅𝑑 =
(∆𝑥 − 𝑠1)∅𝑏1 + 𝑠1∅𝑏2

∆𝑥
− (∆𝑥 − 𝑠1)𝑠1

𝜕2∅𝑑

2! 𝜕𝑥2
 

(4-7) 

The truncation error then is: 

𝐸Truncation
linear = | − (∆𝑥− 𝑠1)𝑠1

𝜕2∅𝑑

2! ∂x2
| = 𝐶 ∙ |

𝜕2∅𝑑

2! ∂x2
| = 𝑂(∆𝑥2) 

(4-8) 

where ∅𝑏1 and ∅𝑏2 denote the scalar values at the neighbor cells, i.e. 𝑥𝑏1 and 𝑥𝑏2, respectively in 

Figure 4-2(a). The truncation error shows the linear interpolation is 𝑂(∆𝑥2) in space, indicat ing 

numerical dissipation error. Here, the error coefficient is: 

𝐶 linear = (∆𝑥 − 𝑠1)𝑠1=𝑠1𝑠0 (4-9) 
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Figure 4-2 (a) Schematic of 1-D interpolation method and (b) error coefficient function for 1-D 

problem: quadratic polynomial curve. 

Eq. (4-9) is a quadratic polynomial curve and can be plotted in Figure 4-2(b). It is clear that the 

minimum 𝐶 can be achieved at either left or right bound of ∆𝑥, at which the truncation error would 

become zero. In other words, no interpolation is needed when the departure point is located at the 

left or right boundary points: 𝑠1 = 0 or 𝑠1 = ∆𝑥 . Note here for 1-D advections, the boundary 

points are the same as the neighbor cells about the departure point, which is not the case for higher -

dimensional problems (e.g. 2-D) as discussed in later sections. Then, the adapted new local time 

step can be found for the boundary points 𝑏1 and 𝑏2, respectively: 

∆𝑡𝑏1
=

𝑥𝑎 − 𝑥𝑏1

𝑢𝑎

 (4-10a) 

∆𝑡𝑏2
=

𝑥𝑎 − 𝑥𝑏2

𝑢𝑎

 (4-10b) 

Although both adaptive time steps in Eq. (4-10) ensure zero truncation error, it is always preferred 

to choose the one with a larger time step to reduce the total number of time step iterations. Note 

the adapted time step here is the local time for each grid, which may be the same for a uniform 

grid for a given and uniform flow field, but not for non-uniform grids and/or flows. To allow all 
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the grids to march at the same time step, an averaging function is needed to ensure a global time 

step, which will be discussed with details in a later section. As a result, the departure points may 

not all be adjusted to be the boundary points of a cell. However, Figure 4-2(b) also shows that the 

local truncation error of a cell can always be reduced when the location of the departure point, 𝑥𝑑, 

is as close as possible to either boundary points of the cell of the departure point.  

Here, by plotting the error coefficients and finding their extrema, the impact of departure point 

locations on magnitude of truncation errors is revealed so that they can be minimized by choosing 

an adaptive new time step for a given flow field on a given grid. The above analysis method is 

therefore not limited to linear interpolation but can be extended to higher order schemes. 

4.2.3.2. Higher-order interpolation 

Here, the previous analysis was extended to a 3rd-order backward interpolation for the 1-D problem 

in Figure 4-2(a). Applying Eqs. (4-5) and (4-6), I obtain the following truncation error in Eq. (4-

11), and the error coefficient in Eq. (4-12) for the 3rd-order interpolation. 

𝐸Truncation
3rd = |

1

6
(𝑥𝑑 − 𝑥𝑖−1)(𝑥𝑑 − 𝑥𝑖)(𝑥𝑑 − 𝑥𝑖+1)

𝜕3∅𝑑

𝜕𝑥3
| = 𝑂(∆𝑥3) 

(4-11) 

𝐶3rd = |(𝑥𝑑 − 𝑥𝑖−1)(𝑥𝑑 − 𝑥𝑖)(𝑥𝑑 − 𝑥𝑖+1)| = 𝑠2𝑠1𝑠0   (4-12) 

Eq. (4-11) shows that the truncation error of the 3rd-order interpolation is dispersive, producing 

oscillations near regions with sharp gradients. From Figure 4-2(a), when 𝑥𝑑 = 𝑥𝑖 (i.e. s1 = 0), or 

𝑥𝑑 = 𝑥𝑖+1  (i.e. s0 = 0), 𝐶3rd  equals to zero so the numerical dispersion error becomes zero. 

Therefore, choosing the new departure point at 𝑏1 or 𝑏2 locally will eliminate numerical dispersion 

errors for the 3rd-order interpolation schemes. This is similar to the linear interpolation case, where 

the numerical dissipation error can be eliminated. 

4.2.4. Error analysis for multidimensional problems 
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Different from 1-D problems, where the characteristic curve follows the direction of the 1-D 

coordinate, the interpolation and its truncation error are more complicated for 2-D or 3-D problems. 

For linear interpolations, a common interpolating method for the 2-D case in Figure 4-1 is the 

bilinear scheme:   

∅𝑑 =
𝑡0 (

𝑠0∅𝑖 ,𝑗 + 𝑠1∅𝑖+1,𝑗

𝑠0 + 𝑠1
) + 𝑡1 (

𝑠0∅𝑖,𝑗+1 + 𝑠1∅𝑖+1,𝑗+1

𝑠0 + 𝑠1
)

𝑡0 + 𝑡1
+ 𝐸Truncation

linear  

 

(4-13) 

where 𝑠0 = ∆𝑥 − 𝑠1, 𝑡0 = ∆𝑦 − 𝑡1, and the truncation error 

𝐸Truncation
linear = |

𝑠1𝑠0

2!

𝜕2∅𝑑

∂x2
+

𝑡1𝑡0
2!

𝜕2∅𝑑

∂y2
| = 𝐶𝑥 ∙ |

𝜕2∅𝑑

2! ∂x2
| + 𝐶𝑦 ∙ |

𝜕2∅𝑑

2! ∂y2
| (4-14) 

where 𝐶𝑥 and 𝐶𝑦 are the error coefficient functions along 𝑥 and 𝑦-directions, respectively. They 

can be further expressed in terms of time steps and the neighbor cell, �⃗�𝑖,𝑗(𝑥𝑖 ,𝑥𝑗) based on Eqs. (4-

1) and (4-6).  

𝐶𝑥
linear = (𝑥𝑎 − 𝑢𝑎∆𝑡− 𝑥𝑖)(∆𝑥 − 𝑥𝑎 + 𝑢𝑎∆𝑡 + 𝑥𝑖) = 𝑠1𝑠0 (4-15a) 

𝐶𝑦
linear = (𝑦𝑎 − 𝑣𝑎∆𝑡− 𝑦𝑗)(∆𝑦 − 𝑦𝑎 + 𝑣𝑎∆𝑡 + 𝑦𝑗) = 𝑡1𝑡0   (4-15b) 

A similar analysis can be applied to the 3rd-order backward interpolation scheme, so I obtain the 

following error coefficient functions. 

𝐶𝑥
3rd = 𝑠2𝑠1𝑠0 (4-16a) 

𝐶𝑦
3rd = 𝑡2𝑡1𝑡0   (4-16b) 

Both Eqs. (4-15) and (4-16) show that the error coefficient functions (either x or y-direction of the 

2-D problem) are the same as that of the 1-D problem in the corresponding direction, indicat ing 

the previous 1-D analysis can be extended to each direction of a multi-dimensional problem 

separately. It is also observed that they are functions of the time step, ∆𝑡, and local velocities and 
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grids, and thus the error could grow differently in x and y-directions. It is possible to plot them in 

terms of the time step. Without losing generality, the curves of 𝐶𝑥  ~ ∆𝑡 and 𝐶𝑦~ ∆𝑡 for the linear 

interpolation are discussed for two cases in terms of the locations of the boundary points (i.e. 𝑏1 

and 𝑏2 in Figure 4-1), depending on how the characteristic curve intercepts the cell of the departure 

point, as shown in Figure 4-3. A similar analysis can be applied to the higher-order interpolations. 

 

  
 

(a) 𝐶𝑦,𝑏1
= 𝐶𝑦,𝑏2

= 0 (b) 𝐶𝑦,𝑏1
 = 𝐶𝑥,𝑏2

= 0 

Figure 4-3 Local error coefficient functions versus time steps for x and y-direction for 2-D problem. 

For 2-D problems, it is possible to generalize to different scenarios how the characteristic curve 

passes through a 2-D cell as shown in Figure 4-3. Note that here the 2-D cell is comprised of all 

neighbor points surrounding the departure point as shown in Figure 4-1. It can be shown from Eq. 

(4-15) that in all cases, either 𝐶𝑥 or 𝐶𝑦 becomes zero at 𝑏1 or 𝑏2, depending on the boundary point 

locations. For example, in Figure 4-3(a), the characteristic curve passes through the two horizonta l 

bounds of the cell so that 𝐶𝑦,𝑏1
= 𝐶𝑦,𝑏2

= 0 at both boundary points, because 𝑡1  =  0 for 𝐶𝑦,𝑏1
, 

and 𝑡0  =  0 for 𝐶𝑦,𝑏2
. Therefore, choosing 𝑏1 as the new departure point to find the new adaptive 
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time step will ensure the truncation error coefficients to be minimal in both x and y directions. In 

comparison, the truncation errors may behave differently as observed in Figure 4-3(b), 

𝐶𝑦,𝑏1
 = 𝐶𝑥,𝑏2

= 0. As a result, choosing either 𝑏1 or 𝑏2  as the new departure point may minimize 

the error in one direction but cause it to grow in the other direction. In fact, different strategies 

may be developed on how to choose 𝑏1 and 𝑏2 to find an adaptive local time step. In this chapter, 

I suggest choosing either 𝑏1 or 𝑏2 to achieve a larger time step to reduce the number of time step 

iterations as explained for the 1-D problem. Other strategies may also be possible, for example, 

choosing the adaptive time step to eliminate/reduce numerical dissipation/dispersion errors in 

specific flow directions or specific flow regions, which I leave to the readers. 

In summary, for multi-dimensional problems, the following local adaptive time stepping scheme 

to reduce the local truncation error growth is proposed as: the new departure point should be chosen 

as either 𝑏1 or 𝑏2, based on whichever the associated new adaptive time step is larger. Once the 

new departure point is chosen, the new time step can be calculated by using Eq. (4-10). 

4.2.5. Calculation procedure for global adaptive time stepping 

The previous section focuses on the local errors and adaptive time step. For all grids in a flow 

domain, each cell may suggest a different local time step. Therefore, to march all grids at the same 

time step, this study proposes an averaging function for the global time step based on the 

distribution of the advected scalars.  

∆𝑡𝑔 =
∑ 𝐴𝑙∅𝑙∆𝑡𝑙

𝑙𝑚𝑎𝑥
𝑙=1

∑ 𝐴𝑙∅𝑙
𝑙𝑚𝑎𝑥
𝑙=1

            (4-17) 

where ∆𝑡𝑔 is the new global time step, 𝐴𝑙 is the area of the 𝑙th local cell for a 2-D problem, 𝑙𝑚𝑎𝑥 

is the number of cells, and ∆𝑡𝑙 is the local time step for each cell found by the local time stepping 
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scheme in the previous section. The overall adaptive time-stepping semi-Lagrangian method is 

then proposed as follows and as illustrated by Figure 4-4: 

1. Based on the user-defined initial time step, ∆𝑡𝑖, the locations of the initial departure points are 

calculated using Eq. (4-1).  

2. The local error growth functions are constructed for all grids using Eq. (4-15) or (4-16) so that 

new local time steps, i.e. ∆𝑡𝑙, are determined following the local time stepping scheme based 

on Eq. (4-10). 

3. The new global time step, ∆𝑡𝑔, is then calculated using the averaging function, Eq. (4-17). 

Using the new global time step, the new locations of all departure points are then updated by 

Eq. (4-1).   

 

Figure 4-4 Adaptive time-stepping steps: (1) step 1, (2) step 2, and (3) step 3, using a local cell as 

an example. 

4.3. Case studies 

In this section, both 1-D and 2-D pure advection problems, and the 2-D N-S equations are solved 

for the demonstration of the new method by comparison to the conventional semi-Lagrangian 

method. The comparison of simulation accuracy is determined by a 𝑙2 and 𝑙∞ norm (Takacs, 1985; 

Ziao and Yabe, 2001). 
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𝐸𝑙2
=

1

𝑁
∑(∅𝑖,𝑗

𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 − ∅𝑖 ,𝑗
𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 )

2

𝑖 ,𝑗

 (4-18) 

𝐸𝑙
∞

=
max |∅𝑖,𝑗

𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 − ∅𝑖,𝑗
𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 |

max |∅
𝑖,𝑗

𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 |
 (4-19) 

where 𝑁 is the total number of grids.  

4.3.1. One-dimensional step wave advection 

The first test case is a 1-D step wave advection problem. The wave moves at a constant velocity 

of 𝑢 = 1.0 m/s with an initial time step of 0.01 [s]. The advected scalar with an initial step shape 

is defined by  

∅𝑥𝑖

𝑡=0 = {
1.0 − 2.0 × (𝑥𝑖 − 0.25)

0.5
0.0

       
0.25 ≤ 𝑥𝑖 ≤ 0.5

0.5 < 𝑥𝑖 ≤ 0.75
otherwise

 (4-20) 

Different grid resolutions are tested here: 

𝑥𝑖 = [0.02 × (𝑖 − 1)]𝛼           {

𝛼 = 1                       𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑔𝑟𝑖𝑑

𝛼 = 1.1       𝑛𝑜𝑛 − 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑔𝑟𝑖𝑑

𝛼 = 1.5       𝑛𝑜𝑛 − 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑔𝑟𝑖𝑑
 (4-21) 

Where 𝛼 is the grid stretching factor, of which a greater value indicates a higher non-uniformity 

of the grid. Here 𝛼 = 1 indicates the uniform grid of 450 cells for the case; 𝛼 = 1.1 is for 370 cells 

with ∆𝑥min = 0.0135 and ∆𝑥max = 0.02658: the highest stretching ratio is about 2; 𝛼 = 1.5 is 

for 220 cells with ∆𝑥min = 0.0028 and ∆𝑥max = 0.06 so the highest stretching ratio is about 22. 

For the non-uniform grids, the grid gets coarser when the wave moves from the left to the right 

along x-direction.   
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(Linear interpolation) 

𝛼 = 1 (450 cells) 

(a) 

(Linear interpolation) 

𝛼 = 1.1 (370 cells) 

(b) 

(3rd-order interpolation) 

𝛼 = 1.1 (370 cells) 

(c) 

Figure 4-5 Comparison between the conventional semi-Lagrangian (SL) and the present work for 

both uniform (α=1)  and non-uniform grid (α=1.1) for the 1-D step wave advection at t=4.5 s. 

Figure 4-5 compares the results for the conventional semi-Lagrangian method (SL), and the 

present adaptive time stepping method with the same interpolation schemes for both uniform and 

non-uniform grids at the time 𝑡 =  4.5 𝑠. The results show that the conventional linear SL method 

suffers strong numerical dissipation errors, and the situation worsens when the non-uniform grids 

are used. In comparison, the adaptive time-stepping semi-Lagrangian method can improve the 

simulation accuracy considerably. For the uniform grid in Figure 4-5(a), because of the uniform 

grid and constant velocity, the adaptive local time step is the same for each grid point, which 

modifies all the departure points to be exactly on the Eulerian grids. The truncation errors are 

consequently zero at all grid points. Thus, the present work can achieve the exact solution after 

using the adaptive time step. When a non-uniform grid is used, 𝛼 = 1.1 in Figure 4-5(b), the 

present work is shown to be able to maintain the level of accuracy. Figure 4-5(c) also shows that 

because of the dispersion error of the 3rd-order interpolation, the conventional SL method is 

strongly dispersive near both sharp gradient regions. By applying the proposed adaptive time 

stepping method, the oscillations are significantly reduced. Therefore, the present adaptive time-
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stepping method is shown to be able to reduce numerical truncation errors, either dissipation or 

dispersion, for both uniform and non-uniform grids. 

To evaluate the time accuracy of the present work, the performance of the adaptive time-stepping 

method can be further illustrated with the details of total error, 𝐸𝑙2
, growth with time in Figure 4-

6. Among all three grid resolutions, I only compare the results for the most non-uniform grid of 

𝛼 = 1.5. The total error of the SL increases with the time significantly and continuously till  𝐸𝑙2
>

0.008 at 𝑡 = 5.5 [s] whereas the present study maintains a constant error of 𝐸𝑙2
< 0.001 for most 

of the time duration because of the use of the adaptive global time step, which varies from 0.025 s 

to 0.054 s. This is because the non-uniform grid gets coarser along the +x-axis so a larger adaptive 

time step is needed to modify all the departure points to get closer to the Eulerian grids, when the 

wave moves from the left to the right with time. Here, the present work is able to dynamica l ly 

adjust the time step at each semi-Lagrangian iteration with the variations of grid sizes for better 

simulation accuracy, which cannot be achieved when the time step is constant. Therefore, the 

present work is shown to produce more time-accurate results than the constant time step SL method 

by limiting the growth of numerical errors through adaptive time stepping. 
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Figure 4-6 Comparison between SL and present work for the error growth with the time for the 

1-D step wave with the non-uniform grid 𝛼 = 1.5. 

In the present study, the time step is adapted when a user defines an initial time step as illustrated 

by the procedure in Figure 4-4. To check the performance of the present work for different user-

defined initial time steps, I compare the results for two initial time steps of 0.01 s and 0.043 s 

between the present work and the conventional SL as shown in Figure 4-7. As expected, the SL 

method produces different results for different time steps. But interestingly, when compared to the 

analytical solution, the larger time step, ∆𝑡 = 0.043 𝑠, causes fewer numerical dissipations and 

thus generates better results than that of ∆𝑡 = 0.01 𝑠. Therefore, it confirms that the time step plays 

an important role in the conventional SL method and a smaller time step seems unassociated with 

better accuracy. By calculating different local time steps (between 0.01 s and 0.062 s) at different 

grid points in this problem as shown by Figure 4-7, the present work is able to improve the results 

significantly. Figure 4-7 also shows that despite different initial time steps, the adaptive time step 

method is able to achieve the same global adaptive time step and thus the same results for both 

initial time steps.  
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Figure 4-7 Comparison of the present work and the SL for different initial 

time steps and local time steps for the 1-D step wave advection 𝒂𝒕 𝒕 =

𝟔. 𝟓 𝒔 with the non-uniform grid 𝜶 = 𝟏. 𝟓. 

4.3.2. Two-dimensional square wave advection 

Here, a 2-D square wave advection problem is investigated with the initial conditions defined by 

Eq. (4-22) and shown by Figure 4-8. 

∅(𝑡=0,𝑥𝑖,𝑦𝑗 ) = {
1.0
0.0

       
(20,20) ≤ (𝑖, 𝑗) ≤ (30, 30)

otherwise
 (4-22) 

 

Figure 4-8 The initial condition of the 2-D square wave advection problem. 
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A uniform grid (100 ×  100) with ∆𝑥 = ∆𝑦 = 0.04 m is used, and the flow field is defined by Eq. 

(4-23). 

𝑢 = 1.0 m/s,   𝑣 = 1.1 m/s      0 ≤ 𝑡 ≤ 2 𝑠 (4-23) 

 

 

 
SL (linear interpolation) 

(∆𝑡 = 0.04 s) 
(a) 

 
SL (linear interpolation) 

(∆𝑡 = 0.06 s) 
(b) 

 
Present work (linear 

interpolation) 
(c) 

 

SL (3rd-order interpolation) 
(∆𝑡 = 0.04 𝑠) 

(d) 

 

SL (3rd-order interpolation) 
(∆𝑡 = 0.06 𝑠) 

(e) 

 

Present work (3rd-order 

interpolation) 
(f) 

Figure 4-9 The 2-D advection problem for a uniform grid at 𝑡 = 2.0 𝑠. 

Here, two different user-defined initial time steps are considered, 0.04 [s], and 0.06 [s]. Figure 4-

9 shows the results at 𝑡 = 2.0 [s] for the conventional SL method and the present work with linear 

and 3rd-order interpolations. I have the following observations: 
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• The results of the SL method depend on user-defined initial time steps. A smaller time step 

does not ensure better accuracy or vice versa.  

• For the SL method, the truncation error may grow differently in x and y-directions. Figure 4-

9(a) shows that it is more in the y-direction than the x for ∆𝑡 = 0.04 s. In comparison, when 

∆𝑡 = 0.06 s in Figure 4-9(b), the error growth seems similar for both directions.  

• When the 3rd-order backward interpolation is used for ∆𝑡 = 0.04 s in Figure 4-9(d), the SL 

result is better than that of the linear interpolation but with a significant difference of errors in 

x and y-directions. The similar pattern was also observed by the previous study (Mortezazadeh 

and Wang, 2017) for high-order backward interpolation schemes of the SL method with 

constant time step due to the use of the backward scheme, where uneven number of neighbor 

cells were used (see Figure 4-2(a)). 

Figures 4-9(c) and 4-9(f) show the results for the present work with the proposed adaptive time 

stepping method. Both results show significant improvement of accuracy over the constant time 

step SL, although the 3rd-order interpolation is more accurate than the linear interpolation. The 

adapted global time step is 0.0727 s at the time step of 𝑡 = 2.0 [s]: a slight adjustment of the time 

step from the original ∆𝑡 = 0.06 s to 0.0727 s contributes to a huge improvement of the accuracy. 

Once again, this case demonstrates how critical the time step of the semi-Lagrangian method can 

become for simulation accuracy.  

4.3.3. Two-dimensional Navier–Stokes equations 

To apply the proposed adaptive time semi-Lagrangian method to solving the N-S equations, an 

unsteady airflow around a cylinder with 𝑅𝑒 = 100 is used as shown in Figure 4-10 based on the 

previous study (Malan et al., 2002). Using the fractional step method (Mortezazadeh and Wang, 
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2017), the advection term is separated from the N-S equations and solved by the present method 

with the 3rd-order backward interpolation. The diffusion term and the Poison equation are solved 

by a V-cycle multigrid solver with Gauss-Seidel as the smoother. The details of the N–S equation 

solver can be found from chapter 3. The computing domain is with a uniform grid of 200 × 100 

cells so ∆𝑥 = ∆𝑦 = 0.08 m. The inlet velocity is horizontal and uniform: 𝑢 = 1 m/s and the outlet 

is set to be the free flow boundary.  

 

Figure 4-10 An unsteady airflow around a cylinder governed by the 2-D N-S equations. 

Figure 4-11(a) compares the results of the proposed adaptive time stepping and the constant time 

step SL method with the initial time step of 0.01 s, and the previous study by Malan et al. (2002), 

who solved the problem by a robust artificial compressibility scheme which is equipped with a 

locally generalized preconditioner. It shows that by adjusting the time step dynamically, the 

proposed method improves the simulation accuracy, especially for peak velocities. Figure 4-11(c) 

compares visually the velocity contours by the three studies: although the 3rd-order conventiona l 

SL method in generally compares well to the result from Malan et al. (2002), apparent 

discrepancies can be observed near the wake regions with sharp gradients; the proposed method 

clearly shows an improvement of the results for these regions. Figure 4-11(b) illustrates that how 
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the present work modifies the global time step dynamically from the initial time step of 0.01 [s] in 

the beginning to a relatively stable time step of about 0.1 [s] at a later stage.  

 

 

 
Malan et al. (2002) 

 
SL (3rd-order) ∆𝑡 = 0.01 𝑠 

 
Present work (3rd-order) 

Figure 4-11 Comparison of the present work for solving the full 2-D Navier-Stokes equations 

with the conventional SL method (initial time step of 0.01 s) and the literature for (a) the velocity 

at the point A in Figure 4-10; (b) the history of the adapted global time steps; and (c) the velocity 

contours. 

𝑁𝑀𝑆𝐸 =
1

𝑁
∑

(𝑃𝑖 − 𝑀𝑖)
2

�̅��̅�

𝑖𝑚𝑎𝑥

𝑖=1

, �̅� =
1

𝑁
∑ 𝑃𝑖

𝑖𝑚𝑎𝑥

𝑖=1

, �̅� =
1

𝑁
∑ 𝑀𝑖

𝑖𝑚𝑎𝑥

𝑖=1

 (4-24) 

(a) (b) 

(c) 
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where 𝑖𝑚𝑎𝑥 = 31 is the total data points for comparison avaiable from the study of Malan et al. 

(2002); 𝑃𝑖 is the result of the present work and 𝑀𝑖 is the reference result from Malan et al. (2002). 

Table 4-1 The normalized mean square errors (NMSE) and CFL numbers for the 3rd-order SL 

method with different initial time steps and the present adaptive time stepping method when the 

flow becomes periodical. 

 3rd-order Conventional SL Present Work 

∆𝑡 (s) 0.005 𝑠  0.01 𝑠 0.04 𝑠 0.087 s ~ 0.106 s 

NMSE 33.5 34.9 20.1 8.6 

CFL 0.06 0.13 0.5 1.09 ~ 1.33 

 

Table 4-1 compares the NMSE for different initial time steps between the 3rd-order SL method 

with constant time steps and the present work, when the flow becomes periodical at the quasi-

steady state. It shows that when solving the full N–S equations, the accuracy of the constant time 

step SL method heavily depends on the time steps; neither smaller nor greater time step ensures 

more accurate result; the present work is shown to be able to adjust the global time step 

dynamically around 0.1 s: from 0.087 s to 0.106 s so the NMSE is well reduced. A closer look at 

the corresponding CFL number shows that the proposed adaptive time stepping method tries to 

maintain CFL ≈ 1 (1.09–1.33) dynamically. It is understandable because the proposed method 

tries to adjust the time step, so the new departure points can stay as close as possible to the Eulerian 

grids. As a result, the arrival point and the new departure point is thus about “one CFL number” 

apart. In summary, with the proposed adaptive time stepping method, I am able to find a new 

global time step with reduced truncation errors. I would also like to point out that the performance 
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of the proposed adaptive time stepping method, when solving the full N–S equations, depends on 

other factors such as the relative significance of advection associated numerical errors, and how 

other terms (e.g. diffusion terms) are affected by the new time step. However, this study provides 

a deeper understanding how the accuracy of a semi-Lagrangian method (either simple linear or 

high-order interpolations) is associated with time step and illustrates that it is possible to adjust the 

time step to reduce truncation errors. 

4.4. Summary and Conclusion 

This article investigates the impact of time steps on the simulation accuracy of the conventiona l 

linear and higher-order semi-Lagrangian method with the constant time steps by defining the error 

coefficient functions associated with the numerical truncation errors. By the analysis of these 

functions for both 1-D and 2-D advection problems, and the full N–S equation problem with linear 

and 3rd-order interpolation schemes, the three questions mentioned previously in the introduction 

are answered: 

1. For a given interpolation method, what is the role that the time step plays in terms of simula t ion 

accuracy? 

The time step directly affects the spatial truncation errors (e.g. the dissipation error for the 

linear interpolation, and the dispersion error for the third-order interpolation), which could vary 

differently in x and y-directions. If the time step is adapted appropriately, the interpola t ing 

errors in x and y-directions can both be reduced. Therefore, by adapting the time step, I can 

control the error growths for a given interpolation scheme. 

2. Is a smaller time step associated with a better simulation accuracy or vice versa? 

Neither smaller nor greater time step is monotonically associated with the accuracy of the SL 

method. A smaller time step can cause poorer simulation results or in other words, reducing 
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the time step arbitrarily cannot guarantee better accuracy of the semi-Lagrangian method. The 

actual role of the time step is directly associated with the truncation error growth as explained 

previously. 

3. How can the time step be adapted (i.e. adaptive time-stepping) to achieve more accurate results? 

An adaptive time-stepping semi-Lagrangian method is proposed to reduce the global numerica l 

truncation errors in both x and y-directions using a local adaptive time stepping scheme to 

reduce the local error, and an averaging function for the global time step to march all grids at 

the same time. The performance of the new method is tested and confirmed for solving 1-D 

and 2-D advection problems and solving the 2-D N–S equations with different user-defined 

initial time steps and with uniform and non-uniform grids. 

It is also noted that when solving the full N–S equations, the proposed adaptive time stepping 

method adjusts the new departure point of a semi-Lagrangian method to be as close as to the 

Eulerian grid: in the case study, its direct outcome is that CFL ≈ 1. Therefore, a time step is 

preferred for a global CFL number of one, which is true for both linear and high-order interpolat ion 

schemes. The further implication from this would be that a good choice of the initial time step for 

a semi-Lagrangian method can be based on CFL ≈ 1 , e.g. using initial velocity boundary 

conditions to estimate a preferred time step. Future confirmation studies are necessary, so the 

initial time-step’s use should be with caution. Future study is also needed to confirm and apply the 

proposed method by extending to the 3-D implementations and developing other adaptive time 

step schemes (e.g. for specific flow directions or regions).  
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Chapter 5       High-order temporal Fast Fluid Dynamics scheme by accurate 

estimation of the characteristic curve 

The contents of this chapter are ready to submit “Mortezazadeh, M. and Wang, L., High-order 

temporal Fast Fluid Dynamics scheme by accurate estimation of the characteristic curve.”. The 

contents are modified, and some parts of the original draft are removed to avoid repetition. 

In the building and environmental problems, the existence of an accurate, fast, and reliable CFD 

solver is crucial for modeling indoor and outdoor environment problems. Building-related test 

cases, such as high-rise buildings and urban microclimate, are mostly large scales. So, numerica l 

simulation of airflow for these typical problems are computationally too expensive. Using coarse 

grids and large time steps can significantly reduce the computational time but it also reduces 

accuracy. In the present work, a new method is proposed to improve the temporal accuracy of the 

Fast Fluid Dynamics (FFD) approach and provide accurate results even on the large time steps. 

The temporal accuracy is improved from the first order to the second order by considering the 

acceleration of the flow field and accurate estimation of the characteristic curves. Performance of 

the proposed method is investigated by simulating a pure advection problem. Then, an airflow 

around a cylinder is studied to compare the transient results. Next, two 3-D indoor and outdoor 

cases are simulated. Indoor airflow is related to forced convection in a single room. Outdoor 

problem is airflow simulation in a step-down canyon. 

5.1. Introduction 

As mentioned before, FFD method is an unconditional stable model which can simulate airflow 

on the coarse grids and large time steps. Using a large time step can significantly reduce the 

accuracy of conventional FFD method. In the present work, a new temporal high-order FFD 
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method is developed to simulate the indoor and outdoor airflow problems with large time step. 

The temporal accuracy is improved by considering the acceleration of the fluid’s particle inside 

the computational domain. So, the estimation of the characteristic curves will be improved. The 

proposed method is applied to a high-order FFD method, discussed in chapter 3, which is suitable 

for accurate simulation on the coarse grids.  

Results show the proposed method can significantly improve the accuracy of the conventiona l 

FFD method, especially for large time steps and coarse grids. In the following sections, the 

methodology will be explained first. Then, the performance of the proposed method is shown for 

a pure advection problem. Later, unsteady airflow around a cylinder, forced convection inside a 

single room, and outdoor airflow around two buildings will be presented for different time steps 

and grid resolutions.   

5.2. Methodology 

In the present work, dimensionless Navier-Stokes equations for the turbulence airflow problems 

is divided into 3 sub-equations (1. diffusion and source terms, 2. advection terms, and 3. pressure 

gradient) by using the fractional step method (see chapter 2): 

𝜕𝑈

𝜕𝑡
= (

1

𝑅𝑒
+ 𝜈𝑡) 𝛻2𝑈 + 𝑓 

(5-1) 

𝜕𝑈

𝜕𝑡
= −(𝑈 · 𝛻)𝑈 

(5-2) 

𝜕𝑈

𝜕𝑡
= −𝛻𝑝 

(5-3) 

In this method, an intermediate velocity domain is estimated by solving Eqs. (5-1) and (5-2). The 

pressure domain based on the intermediate velocity fields is calculated by solving the Poisson 

equation which is defined as follows: 
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𝛻2𝑝 =
1

∆𝑡
𝛻 · 𝑈 

(5-4) 

By using the new pressure field, Eq. (5-3) is solved and new velocity field is calculated. Here, to 

capture the turbulence behavior of the flow, I use zero-equation turbulence model.  

𝜈𝑡 = 0.03874𝐿𝑉 (5-5) 

where 𝐿 is the length of the shortest distance inside the domain from the wall, and 𝑉 is the local 

mean velocity (Chen and Xu, 1998; Mortezazadeh and Wang, 2018). Note that to speed up the 

simulation, the Eqs. (5-1) and (5-4) are solved based on a V-cycle multigrid method (Mortezazadeh 

and Wang, 2016). Additionally, parallel computing (OpenMP) is used to speed up the computation 

(Mortezazadeh and Wang, 2018). 

5.2.1. FFD method 

In the conventional semi-Lagrangian method, the characteristic curve is approximated by 

assuming a constant slope for the characteristic line (line blue in Figure 5-1). Thus, the 

characteristic curve is a straight line. But this assumption can cause some errors in estimating the 

exact position of the departure points because the curvature of the characteristic curves is not 

considered.  

 

Figure 5-1 Characteristic curve on an Eulerian computational domain. 
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In the present work, a new idea based on Kinematics (Beggs, 1983; Whittaker, 1988) is proposed 

to accurately construct the characteristic curves and estimate the position of the departure points. 

Using the initial conditions of a particle, including its position, velocity, and acceleration, the path-

line can be determined and consequently the characteristic curve of the particles within the time 

step can be constructed. The velocity and acceleration of the domain play an important role in 

describing the motion of a particle. The velocity demonstrates the direction and the magnitude of 

the particle’s motion and it equals the first derivative of the path-line, 
𝑑�⃗⃗�

𝑑𝑡
. The acceleration is the 

change rate of velocity magnitude and its direction, and represents the curvature of the path-line. 

It is calculated by the second order of derivative, 
𝑑2 �⃗⃗�

𝑑𝑡2 . In other words, as shown in Figure 5-2, the 

velocity and acceleration represent the slope and curvature of the path-line, respectively. In the 

conventional semi-Lagrangian method, the first order of spatial derivative over the time is 

considered to construct the characteristic curve. However, in the present work, the second order of 

this derivative is also considered.   

 

Figure 5-2 Slope and curvature of the path-line. 

Advection term, Eq. (5-2), is the nonlinear part of Navier-Stokes equations. In the semi-Lagrangian 

method, advection equation is written in the Lagrangian perspective: 

𝜕∅

𝜕𝑡
= −(𝑈 · 𝛻)∅        →             

𝑑∅

𝑑𝑆
= 0 

(5-6) 
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where ∅ is equal to 𝑈 in the Navier-Stokes equations, and 𝑆 is the characteristic curve shown as 

Eq. (5-7): 

𝑑𝑆

𝑑𝑡
= 𝑈 

(5-7) 

Note that in the general form, velocity is a function of time and space, 𝑈(𝑡,𝑥). In the conventiona l 

semi-Lagrangian method, 𝑈(𝑡,𝑥) = 𝑈 + 𝑶(∆𝒕) is considered as a constant value within one time 

step. So, by using the integral function along the characteristic line within one time step [𝑛, 𝑛 + 1], 

the characteristic curve can be written as follows: 

∫ 𝑑𝑆
𝑛+1

𝑛

= ∫ 𝑈𝑑𝑡
𝑛+1

𝑛

          →           𝑆𝑛 ≈ 𝑆𝑛+1 − 𝑈∆𝑡 
(5-8) 

𝑆𝑛 = (𝑥𝑑, 𝑦𝑑) shows the position of the departure point and 𝑆𝑛+1 = (𝑥𝑎 ,𝑦𝑎) shows the arrival 

point. So: 

𝑥𝑑 ≈ 𝑥𝑎 − 𝑢∆𝑡 (5-9) 

𝑦𝑑 ≈ 𝑦𝑎 − 𝑣∆𝑡 (5-10) 

By combining Eqs. (5-9) and (5-10), the path-line of the arrival particle is constructed: 

𝑦𝑑 ≈
𝑣

𝑢
(𝑥𝑑 − 𝑥𝑎) + 𝑦𝑎 (5-11) 

This curve is shown by the blue line in Figure 5-1. 

In the present work, I consider the velocity as a function of time and it can be written as 𝑈(𝑡,𝑥) =

𝑎𝑡 + 𝑈 + 𝑶(∆𝒕𝟐)  where 𝑎  is the acceleration of the arrival cell. Then by using the integra l 

function, Eq. (5-7) can be written as: 
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∫ 𝑑𝑆
𝑛+1

𝑛

= ∫ (𝑎𝑡 + 𝑈0)𝑑𝑡
𝑛+1

𝑛

          →           𝑆𝑛 ≈ 𝑆𝑛+1 − 𝑎
∆𝑡2

2
− 𝑈0∆𝑡 

(5-12) 

Now, the position of the departure point can be found by: 

𝑥𝑑 ≈ 𝑥𝑎 − 𝑎𝑥

∆𝑡2

2
− 𝑢∆𝑡 

 

(5-13) 

𝑦𝑑 ≈ 𝑦𝑎 − 𝑎𝑦

∆𝑡2

2
− 𝑣∆𝑡 

This curve is shown by the green line in Figure 5-1. The accelerations are calculated by: 

𝑎𝑥 =
𝑢𝑛 − 𝑢𝑛−1

∆𝑡
+ 𝑂(∆𝑡2) 

𝑎𝑦 =
𝑣𝑛 − 𝑣𝑛−1

∆𝑡
+ 𝑂(∆𝑡2) 

 

(5-14) 

So, according to the above procedure, I could improve the accuracy of the conventional semi-

Lagrangian method from first order to the second order, and consequently improve the accuracy 

of FFD.  

In the following, I will show the performance of the proposed method for large time step simulat ion. 

The proposed high-order temporal approach is also added to the high-order backward forward 

sweep interpolating scheme (chapter 3) which is a powerful model for coarse grid simulation.  

First, a pure advection problem is solved and the performance of the proposed method for 

estimation of the characteristic curve will be investigated in comparison with the conventiona l 

FFD method. Then some real 2-D and 3-D problems will be investigated. 

5.3. Results 

5.3.1 Pure advection problem 
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Here, the motion of a 2-D projectile under the influence of gravity is simulated by using the semi-

Lagrangian method (the advection solver of FFD). In this problem, the projectile is considered on 

the floor and it starts to move under an initial condition. The projectile is a 2-D square inside a 2-

D domain as shown in Figure 5-3. Here, ∆𝑥 = ∆𝑦 = 0.01. The initial condition is: 

∅ = {
1
0
    

0.2 < 𝑥 < 0.4 𝑎𝑛𝑑 0.2 < 𝑦 < 0.4
otherwise

 (5-16) 

and: 

𝑢0 = 4, 𝑎𝑥 = 0 

𝑣0 = 4,𝑎𝑦 = 𝑔 = −10  

(5-17) 

So, based on the proposed method the characteristic curves are: 

𝑥𝑑 = 𝑥𝑎 − 4∆𝑡 

𝑦𝑑 = 𝑦𝑎 + 5∆𝑡2 − 4∆𝑡 

(5-18) 

Note that the characteristic curves for the conventional semi-Lagrangian method in this problem, 

is: 

𝑥𝑑 = 𝑥𝑎 − 4∆𝑡 

𝑦𝑑 = 𝑦𝑎 − 4∆𝑡 

(5-19a) 

(5-19b) 

where 5∆𝑡2 is missed in Eq. (5-19b). When the time step is small, the effects of the acceleration 

can be neglected, because the truncation error in �⃗⃗⃗�(𝑡,𝑥) = �⃗⃗⃗� + 𝑂(∆𝑡) is small and also 5∆𝑡2 is 

negligible. Figure 5-3(a) shows that for the conventional semi-Lagrangian method the projectile 

follows the path-line, because of the small time step. One can notice that the diffusion errors are 

growing during the simulation. So, using very small time step can increase the numerical errors 

such as diffusion errors. Figures 5-3(b) and 5-3(c) show the results of the conventional semi-
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Lagrangian method and the proposed algorithm by using larger time step. Using large time step 

will reduce both the computational time and the numerical accumulation error. But the large time 

step can also reduce accuracy of the transient results of the conventional FFD method. When the 

large time step is used, the assumption of using constant velocity within one-time step will generate 

large deviation from the exact path-line. But the proposed method can prevent this problem by 

considering the acceleration and curvature of the particle’s movement and consequently accurate 

estimation of the characteristic curve. Figure 5-3(d) shows the results of very large time step. As 

you can see, the conventional semi-Lagrangian method literally failed while the proposed 

algorithm can accurately estimate the new position of the projectile. In this problem, I can easily 

speed up the simulation, for instance, 8 times faster or even more without any effect on the transient 

accuracy.  

Note that conventional semi-Lagrangian (SL) method is only related to the advection term in the 

FFD model. In the current section (5.3.1), I only considered the advection term and discussed 

conventional SL; in the following sections, I will focus on the full Navier-Stokes and FFD model. 

 

 
Conventional SL (FFD), ∆𝑡 = 0.01 

 
Conventional SL (FFD), ∆𝑡 = 0.2 

 
Present work, ∆𝑡 = 0.2 
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Conventional SL (FFD) vs Present work, ∆𝑡 = 0.8 

Figure 5-3 2-D projectile motion, 𝑡 = 0.8 [𝑠]. 

5.3.2 Transient wind flow around a cylinder 

In the building and environment problems, such as airflow around buildings, vortex and 

recirculation regions can occur. Thus, a reliable CFD solver should accurately capture this 

phenomenon. In this section, a well-known 2-D unsteady problem is simulated to study the 

performance of the proposed method for capturing the recirculation areas. Figure 5-4 shows the 

schematic of the 2-D cylinder problem.  

 

Figure 5-4 Schematic of 2-D cylinder problem 
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Here, the velocity at the inlet is 𝑢 = 1, 𝑣 = 0. At the outlet, the pressure is 𝑝 = 0. The Reynolds 

number is 𝑅𝑒 = 100. Note that the Reynolds number is based on the diameter of the cylinder. In 

this problem, when the Reynolds number is higher than 40, an oscillating flow occurs behind the 

cylinder because of the generation of Von Karman vortex street (Panton, 1984). This test case is a 

complicated benchmark problem because of highly non-uniform airflows and large recircula t ion 

region behind the cylinder. Here, the results are compared with Sampaio et al. (1993). Figure 5-5 

shows 𝑣-velocity at the middle of the outlet for different time and space steps. Here it can be seen 

that FFD method with conventional semi-Lagrangian approach is able to provide acceptable results 

by using small time step and fine grids (see Figure 5-5(a)). By using large time step and coarse 

grids, FFD method generates unreliable and low accurate results. Figure 5-5(b) shows the 

simulation for the present work and conventional FFD method for the very large time step. As you 

can see, the conventional FFD method cannot capture transient behavior of the flow and the 

recirculation area behind the cylinder. A comparison between the results of the present work with 

∆𝑡 = 0.35 and ∆𝑥 = ∆𝑦 = 0.08 and the conventional FFD with ∆𝑡 = 0.2 and ∆𝑥 = ∆𝑦 = 0.16 

shows that I can achieve even better and more accurate results on the coarser grids and larger time 

step by the proposed method. Figure 5-6 shows the velocity contours of the problem with ∆𝑡 =

0.35 and ∆𝑥 = ∆𝑦 = 0.08.  
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∆𝑡 = 0.05, ∆𝑥 = ∆𝑦 = 0.04 

(a) 

 
∆𝑡 = 0.35,∆𝑥 = ∆𝑦 = 0.08 

(b) 

∆𝑡 = 0.2, ∆𝑥 = ∆𝑦 = 0.16 

(c) 
Figure 5-5 𝑣-velocity history at the middle of the outlet, 2-D cylinder test case. 

 

Conventional FFD 

 

Present work 

Figure 5-6 v-velocity contour around the 2-D cylinder, ∆t=0.35 and ∆x=∆y=0.08. 

As it is shown in Figure 5-67, the reader can see the capability of the proposed method to capture 

the vortex shedding behind the cylinder for the large time step and coarse grids. So, this method is 

appropriate for the large scales, such as building and environment problems, where using the large 

time steps and coarse grids are inevitable. 

5.3.3 Forced convection airflow in a single room 

In this section, isothermal forced convection in a single room is simulated to demonstrate the 

ability of the solver for indoor airflow problems. Figure 5-7 shows the schematic of the test case.   
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Empty single room 

 

Single room with furniture 

Figure 5-7 Schematic of the forced convection problem in a room. 

Dimensions of room in 𝑥, 𝑦, and 𝑧 directions equal to 𝐿 = 2.44 [m]. The height of the inlet and 

outlet equal to 0.03 [m] and 0.08 [m], respectively. The velocity of supply air is 𝑈0 = 0.455 [m/s]. 

For the other faces of the room and also the block inside the room, I will consider the non-slip 

boundary condition. In these cases, a set of non-uniform grids generated by CFD0-Editor is used 

to provide finer grids near the inlet and the room walls. For the room without and with the furniture, 

the total numbers of grids are 64000 and 316875, respectively. The larger numbers of grids are 

used for the second case because of using finer grids near the furniture inside the room. In this 

problem for both cases, the time step is ∆𝑡 = 1.0. Figures 5-8(a) and 5-8(b) show the conventiona l 

FFD is not able to correctly capture the recirculation area. But the proposed method is obviously 

able to simulate the complicated phenomenon like a big recirculation domain inside the single 

room.  
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Position of plotted result and velocity contour 

 

(a) Velocity profiles at Point 1 (Empty 
single room) 

 

(b) Velocity profiles at Point 2 (Single 
room with furniture) 

Figure 5-8 Velocity profiles along a vertical line at the marked points. 

Figure 5-9 shows the velocity vector distribution inside the room. Here the reader can see the 

proposed method is able to accurately capture the recirculation area inside the single room with no 

furniture and also the small recirculation area behind the furniture in the room with the block. 
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Conventional FFD 

 
Present work 

 

Conventional FFD 

 

Present work 

Figure 5-9 Velocity vectors and contours at the vertical surface x-z at the center of the room. 

5.3.4 Airflow simulation in a step-down street canyon 

In this section, airflow around a step-down street canyon is simulated. Building engineers are 

interested in studying aerodynamics of airflow in urban areas because of many concerns, such as 

air quality, pedestrian comfort, energy consumption of the buildings, and contaminant dispersion 

(Blocken et al., 2012; Toparlar et al., 2015; Addepalli and Pardyjak, 2015; Jandaghian et al., 2018). 

In this test case, the upwind building height is greater than the downwind building height, so it can 

affect the airflow inside the street canyon. Here, 𝐻 , 𝐿 = 0.27𝐻 , and 𝑊 = 0.27𝐻  are the 

dimensions of the buildings and 𝑆 = 0.7𝐻 is the width of the street. 𝑅𝑒 = 53680, which is based 
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on the height of the tallest building. Velocity at the inlet follows the power law and equals 𝑢(𝑧) =

 𝑢∞(
𝑧

𝐻
)0.205 , where 𝑢∞ is the reference velocity. Figure 5-10 shows the geometry of the problem.  

 

Figure 5-10 Schematic of step-down canyon problem. 

The short building will be located inside the recirculation area behind the tall building. Figure 5-

11(a) shows the streamline of the airflow around the buildings. As you can see, there are some 

vortex regions inside the street canyon. Figure 5-11(b) shows a comparison between the 

conventional FFD, present work, and Addepalli and Pardyjak (2015). Results indicate that the 

proposed method can significantly improve the accuracy of the conventional FFD method. In this 

test case, the number of girds on each face of the building is 8 which is less than the minimum grid 

resolution (1/10) based on the AIJ guidelines (Tominaga et al., 2008). So, the proposed method is 

recommended for modeling the outdoor airflow in urban area. The computational time is around 

30 minutes. 
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Figure 5-11 Step-down canyon problem: (a) Streamline around the buildings (Present work), (b) 

Comparison of mean stream-wise 𝑥-velocity along the vertical profile in the middle of street 

canyon. 

5.4. Summary and Conclusion 

In the present work, a new solver based on the semi-Lagrangian approach is proposed to accurately 

simulate airflow problems for the large time steps and coarse grids. In the conventional semi-

Lagrangian method, the curvatures of the characteristic curves are not considered. This causes the 

approximation of the departure points not to be accurate, especially when the time step is large and 

the flow field is highly non-uniform. Based on the proposed method, the curvatures are estimated 

by calculating the acceleration of the arrival cells. Additionally, to reduce the numerical error, 

especially on the coarse grids, I used high-order backward forward interpolation scheme. The 

effectiveness of the proposed method is more significant when the large time steps and coarse 

grids are used.  
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Chapter 6       SLAC – a semi-Lagrangian artificial compressibility solver for 

steady-state incompressible flows 

The contents of this chapter have been published in “Mortezazadeh, M. and Wang, L., 2019. 

SLAC–a semi-Lagrangian artificial compressibility solver for steady-state incompressible 

flows. International Journal of Numerical Methods for Heat & Fluid Flow.”. The contents are 

slightly modified. 

The semi-Lagrangian-based solvers are typically pressure-based, i.e. semi-Lagrangian pressure-

based (SLPB) solvers, where a Poisson equation is solved for obtaining the pressure field and 

ensuring a divergence-free flow field. As an elliptic-type equation, the Poisson equation often 

relies on an iterative solution, so it can create a challenge of parallel computing and a bottleneck 

of computing speed. This study proposes a new density-based semi-Lagrangian method, i.e. the 

semi-Lagrangian artificial compressibility (SLAC), which replaces the Poisson equation by a 

hyperbolic continuity equation with an added artificial compressibility term, so a time-marching 

solution is possible. Without the Poisson equation, the proposed SLAC solver is faster, particular ly 

for the cases with more computational cells, and better suited for parallel computing. The study 

compares the accuracy and the computing speeds of both SLPB and SLAC solvers for the lid -

driven cavity flow and the step-flow problems. It shows that the proposed SLAC solver is able to 

achieve the same results as the SLPB whereas with a 3.03-times speedup before using the OpenMP 

parallelization, and a 3.35 times speedup for the large grid number case (512 × 512) after the 

parallelization. The speedup can be improved further for larger cases because of increasing the 

condition number of the coefficient matrixes of the Poisson equation.  



87 
 

6.1. Introduction 

Conventional FFD method is a pressure-based type of solver (PB), originally developed by Harlow 

and Welch (1965) for unsteady flow problems and then later extended by Patankar and Spalding 

(1972) for steady-state calculations. In these methods, computations of the velocity and the 

pressure fields are decoupled (Blazek, 2005). Here, the pressure domain is calculated by solving 

the Poisson equation and then the velocity is obtained by the pressure domains. On irregular grids, 

solving the Poisson equation is not straightforward (Min and Gibou, 2006). In addition, solving 

the Poisson equation often needs iterative solvers, making it a real challenge for parallelizing semi-

Lagrangian-based solvers on modern high-performance computing infrastructures, such as 

OpenMP and/or GPU, especially for large data cases (e.g. tens of millions of grids), which may 

only be solved in a parallel manner. In comparison, density-based (DB) solvers offer another way 

of solving fluid flows without the need of Poisson equation for pressure, e.g. the artific ia l 

compressibility (AC) based solver for steady-state incompressible flow problems (Kwak et al., 

2005). The AC method was developed by Chorin (Chorin, 1997) and has been used by many 

researchers in different areas (Ramshaw and Mousseau, 1990; Tamamidis et al., 1996; Hejranfar 

et al., 2009; Degroote et al., 2010). By defining an artificial compressibility coefficient, the 

continuity equation is transformed to a hyperbolic equation instead of the elliptic one for PB 

methods, and can be relatively easily solved by marching in the pseudo-time until the divergence-

free velocity field is satisfied at the steady state. Therefore, the Poisson equation of pressure is not 

required. Additionally, the continuity equation in AC based method is naturally parallelizable and 

perfect for GPU computing applications. 

This study proposed the SLAC – a new Semi-Lagrangian Artificial Compressibility solver for 

steady-state incompressible flows to accelerate the convergence of the semi-Lagrangian schemes. 
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This acceleration is achieved by preventing the need for using iterative solvers, such as Gauss-

Seidel, to calculate the pressure fields. Note that here, although both the semi-Lagrangian-based 

fluid solver and the artificial compressibility model are existing methods, the novelty of this study 

is the combination of these two methods for facilitating a better parallel computing process, which 

has not been done by previous studies to the knowledge of the authors. In this study, diffus ion 

terms are solved by a three-level V-cycle multigrid method to speed up convergence. The 

interpolation scheme for the semi-Lagrangian method is the linear interpolation to reduce the 

computational cost. However, the proposed method is not limited to linear interpolation scheme 

but applicable for high-order schemes (Mortezazadeh and Wang, 2017). Additionally, the 

advection term and also the pressure domain in the proposed method are solved by using a parallel 

programming code. Here, the benefit of using artificial compressibility methods in comparison 

with pressure-based methods is shown by two well-known problems, i.e. cavity driven flow and 

step flow problems. This chapter starts by introducing the methodology and the numerica l 

procedure in the second section, followed by the numerical results for the two cases in the third 

section. Then, a discussion section follows about the convergence speed, accuracy-related 

parameters and potential paralleling application of the proposed method. Finally, a conclusion of 

the present work is presented. 

6.2. Methodology 

As mentioned in the previous section, there are two main categories to solve the incompress ib le 

Navier-Stokes equations, named pressure-based (PB) method and density-based method, i.e. 

artificial compressibility (AC) method. Semi-Lagrangian pressure-based (SLPB) method has 

comprehensively explained in section 2.2.1. In the following, details of SLAC algorithm is 

presented. 
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6.2.1. Semi-Lagrangian artificial compressibility method 

Artificial compressibility (AC) method is based on the adaption of the compressible time-marching 

algorithms to low Mach numbers (Reboud et al., 2003). Using AC method for unsteady problems 

needs to implicitly solve time derivative terms. For example, an implicit procedure of dual time -

stepping algorithm was developed for transient problems (Merkle, 1987; Reboud et al., 2003). This 

chapter focuses on applying the AC method to semi-Lagrangian-based fluid solvers at steady state.  

For the SLAC method, Eq. (6-1) is changed by adding the artificial compressibility term:  

1

𝜌

𝜕𝜌

𝜕𝑡
+ ∇ · 𝑈 = 0 

(6-1) 

At the steady state, the additional AC term will vanish, so the steady-state results are the same as 

those of Eq. (2-1). The artificial compressibility coefficient, or the artificial sound speed, 𝛽 > 0, 

is defined by: 

𝑝 = 𝛽2𝜌 (6-2) 

The artificial compressibility coefficient determines the stability and convergence rate of the AC 

scheme (Turkel, 1987; Malan et al., 2002; Esfahanian et al., 2012), and its choice is often case 

dependent. For example, for an inviscid and high Reynolds flow problem, Turkel (1987) showed 

that if 𝛽  was close to the local convective velocity, the AC simulation achieved a better 

convergence rate. Malan et al. (2002) pointed out the following two considerations when choosing 

the value of 𝛽: 1). The Mach number associated with 𝛽 should be kept below unity; and 2). The 

value of 𝛽 should be considered with a distinction between convective dominated and diffus ion 

dominated regions: leading to considering 𝛽 differently for the convection and diffusion problems. 

Eq. (6-3) shows that the selection of 𝛽 may also be related to the time step. The transient term, or 
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the storage term will vanish for a steady-state solution, i.e. the steady-state solution should be 

unique for different combinations of 𝛽  and time step, as long as the simulation converges. 

However, the proper selection of both terms may affect the simulation path to reach the 

convergence, e.g. from a numerical point of view, both terms act like certain levels of relaxation 

terms, although both terms have their own physical implications. For achieving a convergent 

simulation, choosing both terms can be problem dependent as also mentioned by the previous 

studies (Turkel, 1987; Malan et al., 2002), and similar to choosing relaxation factors, mult ip le 

trials sometimes may be needed. A general advice from this study is to choose 𝛽 to be less than or 

close to one. More details are discussed in the later sections of the case studies.  

 Combing Eqs. (6-1) and (6-2), I obtain: 

𝜎
𝜕𝑝

𝜕𝑡
+ ∇ · 𝑈 = 0 

(6-3) 

where 𝜎 =
1

𝜌𝛽2. Here, Eq. (6-3) is turned into the pressure equation by the inclusions of the AC 

and pressure terms so there is no need for the Poisson equation as required by the SLPB method. 

Meanwhile, the removal of the Poisson equation will need the pressure gradient term kept in Eq. 

(2-3). The semi-Lagrangian method and the FSM solution procedure are applied as similarly as 

that in the SLPB method. In summary, the proposed SLAC method is as follows: 

𝜕𝑈

𝜕𝑡
= −∇𝑝 +

1

𝑅𝑒
∇2𝑈 + 𝑓 

(6-4) 

𝜕𝑈

𝜕𝑡
+ (𝑈 · ∇)𝑈 = 0 

(6-5) 

1

𝜌𝛽2

𝜕𝑝

𝜕𝑡
+ ∇ · 𝑈 = 0 

(6-6) 
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As a result, for the pressure domain, the original elliptic-type of equations is transformed into a 

system of hyperbolic equations, which can be solved relatively easily by marching in time. 

Additionally, the solution of Eq. (6-6) does not need iterations, perfect for parallel computing.  

For a better comparison, Table 6-1 compares the conventional SLPB and the proposed SLAC 

methods by different steps and whether numerical iterations are needed. It shows that the SLAC 

only needs three steps and one equation (Eq. 6-4) needs an iterative solution. Therefore, fewer 

arithmetic operations are needed by the SLAC method than the SLPB method. 

Table 6-1 Comparison of the conventional semi-Lagrangian pressure-based (SLPB) method and 

the proposed semi-Lagrangian Artificial Compressibility (SLAC) methods. 

Steps 
Semi-Lagrangian 

Pressure-Based (SLPB) 
 

Need 

Iteration 

Semi-Lagrangian Artificial 

Compressiblity (SLAC) 
 

Need 

Iteration 

Step 1 
𝜕𝑈

𝜕𝑡
=

1

𝑅𝑒
∇2𝑈 + 𝑓  (2-3) Yes 

𝜕𝑈

𝜕𝑡
= −∇𝑝 +

1

𝑅𝑒
∇2𝑈 + 𝑓 (6-4) Yes 

Step 2 
𝜕𝑈

𝜕𝑡
+ (𝑈 · ∇)𝑈 = 0 (2-4) No 

𝜕𝑈

𝜕𝑡
+ (𝑈 · ∇)𝑈 = 0 (6-5) No 

Step 3 ∇2𝑝 =
1

∆𝑡
𝛻. 𝑈 (2-5) Yes 

1

𝜌𝛽2

𝜕𝑝

𝜕𝑡
+ ∇ · 𝑈 = 0 (6-6) No 

Step 4 
𝜕𝑈

𝜕𝑡
= −𝛻𝑝 (2-6) No    

 

In the present work, the conventional semi-Lagrangian method with linear interpolation scheme is 

used to solve the equation of advection term in the Navier-Stokes equations, i.e. Eq. (2-4) in the 

SLPB, or Eq. (6-5) in the SLAC. Note that the proposed SLAC is not limited to the linear scheme 

but applicable to higher-order schemes.  
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6.3. Results 

In this section, two benchmark problems for incompressible flows, i.e. cavity driven and step-flow 

problems, are employed to investigate the performance of the proposed SLAC method in terms of 

accuracy and computing speed compared to the conventional SLPB method. 

6.3.1. Lid-driven cavity problem 

In a 2-D isothermal lid-driven cavity problem (Wang et al., 2017), a unit-length square is set up 

with the top lid moving at a constant speed of 𝑈𝑥 = 1, and all other faces of the square are 

considered as no-slip walls as shown in Figure 6-2. The laminar airflow is modeled for two 

different Reynolds numbers, i.e. 𝑅𝑒 = 1,000 and 5,000. Different grid resolutions were tested from 

100 × 100  as the coarsest grid case to 500 × 500  for the finest. All the simulations were 

performed on a PC system with the Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz and 12 GB RAM.  

In this test case, different artificial compressibility numbers are tested: 𝛽 = 0.2, 0.4, 0.6, 0.8, and 

1.0, and the same flow results are obtained. Figure 6-1 shows the velocity streamlines for 𝑅𝑒 =

5,000: three recirculation areas are formed due to the movement of the top lid with one central 

large region, and two other smaller ones at the lower corners, showing that the SLAC method is 

able to capture the recirculation at different scales. Note that the convergence criterion is when the 

infinite norm is less than 10−5, the simulation is considered to reach the steady state: 

𝐸𝐿
∞

=
max|𝑢𝑛+1 − 𝑢𝑛 |

max|𝑢𝑛 |
 

 (6-7) 



93 
 

 

Figure 6-1 Calculated streamlines of the 2-D lid-driven cavity problem for 𝑅𝑒 = 5,000 using the 

proposed SLAC method. 

 

(a) 𝑅𝑒 = 1,000 

 

(b) 𝑅𝑒 = 5,000 

Figure 6-2 Comparing different time step dt and 𝛽 for the lid-driven cavity problem with 

100 × 100 grids when using the SLAC method. 

Figure 6-2 shows that different values of 𝛽 and 𝑑𝑡 of the SLAC method can reach the same steady-

state results. For this problem, as suggested by the previous study (Malan et al., 2002) and also 

found in this study, the value of 𝛽 was chosen to be equal to or less than one, and a value more 
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than one could cause convergence issues. Comparing Figure 6-2(a) and Figure 6-2(b), a higher Re 

number seems to need a smaller time step for the same value of 𝛽 to ensure convergence, which 

may be related to the fact that the increase of local advection velocity may need a smaller time 

step to capture the information transferred between the departure and arrival points. Therefore, the 

selection of 𝛽 should be combined with the consideration for selecting the time step 𝑑𝑡, both of 

which have been noted as affecting the convergence rate and being case dependent by the previous 

studies (Turkel, 1987; Malan et al., 2002). A good start would be to use β ≤ 1, e.g. 0.5, and an 

appropriate value of 𝑑𝑡, e.g. 0.01.  

The steady-state results in Figure 6-2 are consistent among different β and 𝑑𝑡, which however may 

still be improved when compared to the measurement results. Figure 6-3 illustrates that this can 

be achieved by increasing the grid resolutions for both cases: when doubling the grids in each 

coordinate directions, the accuracy improves significantly. For this problem, the grid-independent 

results can be achieved for the grid number beyond 400 × 400. Meanwhile, the accuracy may be 

further improved by adopting higher-order spatial schemes for the semi-Lagrangian methods as 

explained in my previous study (Mortezazadeh and Wang, 2017). Since the current study focuses 

on the comparison between SLPB and SLAC methods, I will not dwell on how to improve the 

simulations, for which readers with interests can refer to my previous study. Here, for the SLAC 

method, it is important to check if the simulations converge to the same results as the SLPB method 

at the steady state. In Figure 6-3, a closer observation shows both SLAC and SLPB achieved the 

same results for the 𝑥-velocity component, 𝑢, along the vertical center line in the 𝑦-direction of 

the domain. Both results are also close to those from the previous experimental and numerica l 

studies by Ghia et al. (1982) and Malan et al. (2002). 
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(a) 𝑅𝑒 = 1,000, 𝑑𝑡 = 0.01. 

 

(b) 𝑅𝑒 = 5,000, 𝑑𝑡 = 0.005. 

Figure 6-3 Lid-driven cavity flow results for the coarse and fine grids by the SLPB and SLAC 

(𝛽 = 1) methods compared to the previous studies. 

To investigate the computational cost, e.g., for 𝑅𝑒 = 1,000, the number of iterations and the 

computing time for the SLPB is 4,200 and 384 [s], respectively for the 200 × 200 grids, when 

compared to 4,500 iterations with the computing time of 127 [s] for the SLAC. So, the number of 

iterations for both methods are about the same but the SLAC is about 3.02 times faster than the 

SLPB. A more detailed discussion about the computing cost is provided in the later section.  

6.3.2. Step-flow problem 

The lid-driven cavity problem is a case with enclosed computational domain. Here, I chose to 

study the step-flow problem (Armaly et al., 1983) with an open domain for three different 

Reynolds numbers. Figure 6-4 shows the schematic of the step-flow problem in a channel. Here, 

H is equal to 2, and the length of the channel is 20, which is long enough to allow for a free outflow 

at the right side of the domain. S is the half of H. Here, the inlet flow, coming from a long channel, 

is fully-developed with the profile defined by (Zuo et al., 2012): 
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𝑈 = {𝑢 = −6(𝑦 − 𝑆)2 + 6(𝑦 − 𝑆)

𝑣 = 0                                          
 (6-8) 

 

Figure 6-4 Schematic of the step-flow inside a 2-D channel. 

Figure 6-5 shows the calculated streamline results for both SLPB (upper) and the SLAC (lower) 

methods at three different Reynolds numbers. A greater Re number results in a longer length of 

the recirculation zone. In the meantime, the streamline results of SLPB are pretty close to those of 

SLAC for different Re numbers. 

 
𝑅𝑒 = 200 

 
𝑅𝑒 = 400 

 
𝑅𝑒 = 600 

Figure 6-5 Calculated streamlines for the step-flow problem by the SLPB (upper) and SLAC 

(lower) (𝛽 = 1.0). 
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Figure 6-6 The dimensionless recirculation length 𝑥1/𝑠 for different grid resolutions when 

compared to the previous studies. 

Figure 6-6 shows the results in comparison with the previous studies (Armaly et al., 1983; Biswas, 

et al., 2004). Armaly et al. (1983) measured the velocity distribution and reattachment length by 

using Laser-Doppler measurements in Reynolds number range of 70<Re<8,000. They found that 

the flow characteristic is laminar when Re<1,200, and also is mostly 2-D when Re<400. So the 

increasing discrepancy with the Reynolds number in the figure could be attributed to the increasing 

3-D behavior of the flow. In this problem, the time step is dt = 0.01, for which the artific ia l 

compressibility coefficient of β=1.0 is suitable. The convergence of a higher value of β (e.g. β = 

2.0) may be possible but a generally consistent convergence cannot always be guaranteed for this 

problem: a suitable time step must be chosen accordingly. Once again, choosing the value of β is 

problem-dependent and sometimes, multiple trials should be conducted for better and faster 

convergence. An β value less than or equal to one is again advised here. The SLAC results are also 

compared with the numerical simulations by Biswas et al. (2004), and it shows a better agreement 

with their work. Table 6-2 shows the computational time for the SLPB and SLAC methods: at best, 

the latter is about 2.6 times (Re=400) faster than the former for the step-flow problem.  
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Table 6-2 Computational time comparison between SLPB and SLAC methods in the step-flow 

problem. 

Grid Size Reynolds 
Computational time [s] 

SLPB SLAC 

𝑑𝑥 = 0.1 
𝑑𝑦 = 0.02 

200 459 214 

400 429 163 

600 415 164 
 

6.4. Discussions 

6.4.1. Convergence evaluation 

Here, I investigate the computing cost due to solving the Poisson equation for the SLPB method. 

The condition number is an important parameter for evaluating convergences for a linear iterative 

solver. A small condition number represents a well-posed problem and thus a better convergence 

(Pyzara et al., 2011), and in comparison, a large condition number is for an ill-posed and slow 

converging solution.  

For solving a linear system:  

𝐴𝑚𝑎𝑡𝑟𝑖𝑥𝑥𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = 𝐵,   det (𝐴𝑚𝑎𝑡𝑟𝑖𝑥) ≠ 0  (6-9) 

Here, for simplicity I consider 𝐴𝑚𝑎𝑡𝑟𝑖𝑥 = 𝐴. The condition number of Eq. (6-9) is defined by: 

𝑐𝑜𝑛𝑑(𝐴) = ‖𝐴‖ · ‖𝐴−1‖ (6-10) 

where ‖𝐴‖ is the norm of 𝐴 and 𝐴−1 is the inverse of 𝐴. There exists a connection between the 

condition number and the matrix size (Pyzara et al., 2011). If the matrix is well-posed, increasing 

the matrix size will not affect the condition number significantly so a well-posed CFD problem 

tends to maintain a convergence rate even with large grid numbers. In comparison, an ill-posed 

problem is often associated with slow convergence, especially on finer grids.  
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Here, taking the 2-D lid-driven cavity flow as an example, I investigate the condition numbers and 

their association with the convergences of the Poisson equation and the diffusion equation. The 

diffusion equation and the Poisson equation can be discretized as follows: 

𝑈𝑖,𝑗
∗ − 𝑈𝑖 ,𝑗

𝑛

∆𝑡
=

1

𝑅𝑒
[
𝑈𝑖+1,𝑗

∗ − 2𝑈𝑖 ,𝑗
∗ + 𝑈𝑖−1,𝑗

∗

∆𝑥2
+

𝑈𝑖 ,𝑗+1
∗ − 2𝑈𝑖 ,𝑗

∗ + 𝑈𝑖 ,𝑗−1
∗

∆𝑦2
] + 𝑅𝐻𝑆 

(6-11a) 

𝑝𝑖+1,𝑗
∗ − 2𝑝𝑖,𝑗

∗ + 𝑝𝑖−1,𝑗
∗

∆𝑥2
+

𝑝𝑖,𝑗+1
∗ − 2𝑝𝑖,𝑗

∗ + 𝑝𝑖,𝑗−1
∗

∆𝑦2
=

1

∆𝑡

𝜕𝑈𝑖
∗∗

𝜕𝑥𝑖

 
(6-11b) 

Where the 2nd-order central differencing and implicit method are implicitly solved. Here * means 

the intermediate values. Note that for simplicity, in Eq. (6-11a), the 𝑅𝐻𝑆 term includes 𝑓𝑖 for the 

SLPB, and −∇𝑝 + 𝑓𝑖 for the SLAC. Here, the matrix coefficient 𝐴 for the 2-D case can be written 

as: 

𝐴 =

[
 
 
 
 
 
 
 
 
𝑎 𝑏 0
𝑏 𝑎 𝑏
0 𝑏 𝑎

0 … 0
0 … …
𝑏 0 …

𝑐 0 …
0 𝑐 0
… … 𝑐

0 0 𝑏
⋮ 0 0
0 0 0

𝑎 𝑏 0
⋱ ⋱ ⋱
0 ⋱ ⋱

0 0 0
0 0 0
⋱ 0 0

𝑐 0 0
0 𝑐 0
⋮ 0 𝑐

0 0 ⋱
0 0 0
0 0 0

⋱ ⋱ 0
⋱ ⋱ ⋱
0 𝑏 𝑎 ]

 
 
 
 
 
 
 
 

  

 

(6-12) 

where the values of 𝑎, 𝑏, and 𝑐 for the diffusion equation Eq. (6-11a) are: 

𝑎 =
1

∆𝑡
+

2

𝑅𝑒
[

1

𝑅𝑒∆𝑥2
+

1

𝑅𝑒∆𝑦2
],      𝑏 = −

1

𝑅𝑒∆𝑥2
,      𝑐 = −

1

𝑅𝑒∆𝑦2
 

(6-13) 

and the coefficients for the Poisson equation Eq. (11b) are: 

𝑎 =
2

𝑅𝑒
[

1

𝑅𝑒∆𝑥2
+

1

𝑅𝑒∆𝑦2
],                𝑏 = −

1

𝑅𝑒∆𝑥2
,      𝑐 = −

1

𝑅𝑒∆𝑦2
 

 

(6-14) 
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To calculate the condition number for each equation, the following settings are used: a uniform 

grid of ∆𝑥 = 0.01; a coefficient matrix size of 𝐴:20 × 20; the time step of ∆𝑡 = 0.01, and 𝑅𝑒 =

1000. The corresponding condition number of the coefficient matrix is then 

𝑐𝑜𝑛𝑑(𝐴)diffusin = 1.3947,      𝑐𝑜𝑛𝑑(𝐴)Poisson equation = 178.0643 (6-15) 

So, the condition number of the Poisson equation is much greater than the diffusion term. If the 

size of the matrix increases for 𝐴: 100 × 100, the condition numbers become: 

𝑐𝑜𝑛𝑑(𝐴)diffusion = 1.3998,      𝑐𝑜𝑛𝑑(𝐴)Poisson equation = 4.13 × 103 (6-16) 

Therefore, the condition number of the Poisson equation increases drastically with the size of the 

problem as a result of the ill-posed problem. Consequently, the convergence rate of the iterative 

solver is reduced significantly.  

As explained previously, the major computing bottleneck of the SLPB method is the Poisson 

equation and the strength of the SLAC method is the absence of the Poisson equation so a faster 

simulation may be possible. Figure 6-7 shows the effect of increasing the number of grids on the 

computing cost. As expected, with the increase of grid numbers and consequently the size of the 

coefficient matrix, the convergence rate of solving the Poisson equation worsens and the 

computational time significantly increases. When using the SLAC method, the speedup factor 

(
𝑡𝑆𝐿𝑃𝐵

𝑡𝑆𝐿𝐴𝐶
) increases with the grid numbers. The speedup can be further improved by applying parallel 

computing techniques to the SLAC method, which is discussed later. 
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Figure 6-7 Effects of increasing the grid resolutions on computing costs and speedups for the lid-

driven cavity problem with 𝑅𝑒 = 1,000. 

 
𝑅𝑒 = 1,000 

 
𝑅𝑒 = 5,000 

Figure 6-8 Convergence for different 𝛽 for the lid-driven cavity flow problem with 100 × 100 

grid. 

6.4.2. Effect of artificial compressibility 

In this section, the effect of different values of 𝛽  on the convergence rate in terms of mass 

conservation is investigated. As mentioned previously, the selection of 𝛽 value is case dependent 

and sometimes several trials should be conducted to find the most suitable one in terms of 

convergence rate. For the lid-driven cavity flow problem, Figure 6-8 shows the effect of different 

values of 𝛽 and 𝑑𝑡 on the convergence for the lid-driven cavity problem. Here, the convergence 

can be achieved when 𝛽 is smaller than or equal to one. Additionally, larger time step seems to be 
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associated with convergence speed. For 𝑅𝑒 = 1,000 , if 𝛽 = 1.0  and 𝑑𝑡 = 0.01 , a faster 

convergence is achieved when compared to the other setups, and for 𝑅𝑒 = 5000, a combination 

of 𝛽 = 0.5 and 𝑑𝑡 = 0.005 shows a better performance. Therefore, when considering the effects 

of both 𝛽 and 𝑑𝑡, a general advice is to choose a larger 𝑑𝑡 and 𝛽 ≤ 1 as a start trial for better and 

faster convergence. A large value of 𝛽 may cause divergence, e.g. for 𝑅𝑒 = 1,000 and 𝑑𝑡 = 0.01, 

the setting of 𝛽 = 1.1 causes the simulation to diverge. In the meantime, once reaching the final 

steady state, all the simulations with different 𝛽 values in regard to the same convergence criterion 

will achieve the same and unique results as discussed previously. 

6.4.3. Effect of parallel semi-Lagrangian artificial compressibility 

To compare the parallel computing performance of the SLAC with the SLPB, I implemented the 

parallel versions of both solvers by using the OpenMP library (OpenMP, 2015). OpenMP is a well-

known application programming interface (API) for parallelizing a computer program through the 

Hyper-Threading Technology, with which independent work or mathematic operations can be 

assigned to all accessible CPU threads. Here, I calculated the same problem of the lid-driven cavity 

flow with 𝑅𝑒 = 1000, 𝑑𝑥 = 𝑑𝑦 = 1/512, 𝑑𝑡 = 0.004 𝑠 using the OpenMP versions of both 

SLPB and SLAC methods. All the simulations were conducted on the PC system with 12 GB RAM 

and the Intel(R) Core (TM) i7-4790 CPU @ 3.60GHz, which has with 4 CPU cores and 8 threads. 

For evaluating the parallel computing speedup, the following equation from Amdahl’s law (Scott 

et al., 2005) was used : 

𝑆𝑃𝐶 =
1

(1 − 𝑃𝑠𝑜𝑙𝑣𝑒𝑟) +
𝑃𝑠𝑜𝑙𝑣𝑒𝑟
𝐶𝑃𝐶

 
(6-17) 
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where 𝑆𝑃𝐶  is the speedup or the ratio of real computational speed for the parallel simulation to the 

serial simulation. 𝑃𝑠𝑜𝑙𝑣𝑒𝑟  and 𝐶𝑃𝐶  are the portion of solver which is executed on multiple cores and 

the number of cores. Eq. (6-17) shows that if 𝑃𝑠𝑜𝑙𝑣𝑒𝑟 , I can reach the maximum speedup, which is 

equal to the number of cores (Scott et al., 2005) as shown by the linear line in Figure 6-9. But in 

general, sub-linear speedup is expected, due to practical limits such as load balancing and non-

computational sections. Figure 6-9 shows the parallel efficiency and speedup on the present system 

with 4 cores: the SLAC speedup is about 3.6 and for SLPB is about 3.2 when comparing after and 

before implementing OpenMP for each method. The 3.6 times speedup of the parallel SLAC can 

be further improved when using other parallel computing techniques, for example, using graphics 

processing unit (GPU) computing, which will be the next step. 

 

Figure 6-9 Parallel speedup relative to 4 cores on the PC system with 12 GB RAM and the 

Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz, which is with 4 CPU cores and 8 threads. 

Table 6-3 Comparison of computing time [s] between the parallel SLPB and SLAC with non-

parallel simulations for the lid-driven cavity problem with 512 × 512 = 262 k grids. 

Non-Parallel Computing Time (s)  Parallel Computing Time (s) 

SLPB SLAC  SLPB SLAC 

4711 1551  1411 433 
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Table 6-3 compares the speedups for the parallel SLPB and SLAC solvers. Before the OpenMP 

speedup, the proposed SLAC is 3.03 times faster than SLPB, while it increases to 3.35 times after 

the parallel implementation. Therefore, the OpenMP’s SLAC speedup seems not quite impressive 

in this example, which may be due to the fact the OpenMP computing may lead to asynchronous ly 

iterative implementations, causing the side effect on the convergence rate of the iterative methods 

for solving other terms, e.g. diffusion terms (Üresin and Dubois, 1996). 

6.5. Summary and Conclusion 

In the present work, a new semi-Lagrangian method using the artificial compressibility algorithm 

is developed to speed up the conventional semi-Lagrangian method for solving the steady-state 

incompressible flows. The advantage of using the SLAC in comparison with the SLPB method is 

the elimination of the Poisson equation, which is the major bottleneck of the convergence speed 

and thus the computing time of the SLPB solver. For the SLAC method, an artific ia l 

compressibility coefficient, β, is defined, and the continuity equation is transformed to a hyperbolic 

equation of pressures, which can be solved by marching in time without the need of iterations. 

Both β and time step values can affect the convergence rate. Using larger value of 𝑑𝑡 and smaller 

value of 𝛽 are recommended for better convergence, and large value of 𝛽 could cause divergent 

simulations. This study also shows that the SLAC method can achieve the same results as the 

SLPB method while the speedup of about 3.03 times can be obtained. By using the parallel 

OpenMP, the SLAC speedup can be further increased to 3.35 times faster. Additionally, the 

parallel implementation of the proposed SLAC method is also straightforward and relatively easy, 

which makes it a convenient solver for steady-state incompressible flows and potentially for using 

the parallel computing techniques, for example, graphics processing unit (GPU) computing. 
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Chapter 7       LES model implementation with CityFFD, code validation, and 

city-scale simulation 

The contents of this chapter are ready to submit “Mortezazadeh, M. and Wang, L., City Fast 

Fluid Dynamics – CityFFD equipped with LES for modeling urban microclimate airflows.”. The 

contents are modified, and some parts of the original paper are removed to avoid repetition. 

Thermal and airflow simulations in the urban microclimates are important for the studies 

addressing public health and urban energy efficiency, and such studies are often conducted through 

conventional CFD solvers. The main limitation of these CFD tools is that they are computationa lly 

expensive for urban scale cases, and as a result, smaller computational domains or simpler and less 

accurate turbulence models such as RANS have to be used for saving computational time. This 

study developed a City Fast Fluid Dynamics (CityFFD) solver, a high-order FFD approach 

equipped with large eddy simulation (LES) turbulence model to simulate the urban microclimate 

in a faster and more stable manner than conventional CFD models. For the LES validation, two 

well-known test cases, including the airflow around a square cylinder and the natural ventila t ion 

airflow around a building, are modeled. The thermal solver is validated by simulating the natural 

convection inside a square cavity. The results show a good agreement with the experiment and 

other CFD models. For the application, CityFFD is applied to modeling the whole island of 

Montreal, Canada for the wind flows passing through building clusters and the urban temperature 

distribution during a heat wave. Compared to the horizontal area of a typical urban microclimate 

simulation of less than 2 × 2 𝑘𝑚2, in the present study, the area of the test case is almost 400 times 

larger with a reasonable computing time: 45 × 37 𝑘𝑚2.  
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7.1. Introduction 

In Chapter 1, I comprehensively discussed the importance of urban microclimate in human health 

and comfort, and buildings energy performance. In the past decades, many engineers and 

researchers have applied CFD to studying the aerodynamics of airflow around buildings (Blocken 

et al., 2011; Tominaga and Stathopoulos 2011). Some researchers prepared a guideline for various 

parameters of CFD simulations, such as the size of the computational domain, grid resolutions 

near building objects, and numerical models of turbulence solvers (Tominaga et al., 2008). For 

example, Tominaga et al. (2008) mentioned that at least 10 grids are required for each side of a 

building for outdoor CFD simulation. The main concerns of the current CFD tools are the 

simulation speed and accuracy, especially when the turbulence models are used (Tominaga and 

Stathopoulos, 2010; Blocken, et al., 2012). As mentioned before, the turbulence models commonly 

used for the simulations of urban microclimates include three main categories: Reynolds-averaged 

Navier-Stokes (RANS) models, Unsteady Reynolds-averaged Navier-Stokes (URANS), and Large 

Eddy Simulation (LES) (Tominaga 2015). Tominaga and Stathopoulos (2010) demonstrated LES 

is more accurate and reliable in comparison with RANS. But the drawback of the LES model is a 

much higher demand for computational time. A typical CPU time consumption for a LES is almost 

25 times more than the RANS (Tominaga and Stathopoulos, 2010). This drawback makes LES an 

unfavorable choice for large scale simulations (Gousseau et al., 2011; Tominaga and Stathopoulos, 

2010; Tominaga, 2015). Generally, there are two main LES models: Smagorinsky and Dynamic 

LES (Hoffmann and Chiang, 2000(b)). The Smagorinsky LES model is a simple model which is 

able to provide relatively reasonable results, making it a commonly used model in turbulence 

modeling. Compared to the Smagorinsky, the Dynamic LES model is more complicated and time -

consuming.  
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In the present work, I introduce a City Fast Fluid Dynamic (CityFFD) solver with the Smagorinsky 

LES model. CityFFD is a fast and accurate FFD model which is able to provide accurate results 

on the coarse grid and large time step. So, the model can provide the chance of using LES without 

much concern about the computational time. The proposed model is validated by two CFD 

benchmarks, the airflow around a square cylinder and the natural ventilation around a single room. 

Then, the thermal solver is validated by simulating natural convection in a square cavity. The 

results are shown to agree well with the experimental data. For the application, I simulate the whole 

island of Montreal, Canada with the area around 45 ×37 𝑘𝑚2 that is much larger than the typical 

microclimates (area< 2 × 2 𝑘𝑚2 ) simulated by CFD (Toparlar et al., 2017). Montreal is selected 

for simulation because of its specific condition. Montreal is a city with low air conditioning rate, 

and consequently may be vulnerable to extreme events such as heat wave (Smoyer-Tomic et al., 

2003). Therefore, in the current work, one of Montreal’s hottest days in summer 2018 is modelled. 

As mentioned before, there were more than 50 deaths in Montreal because of a heat wave in 

summer 2018. The information of the current simulation study can be used by different users, 

namely, municipal offices, the governments, electric utilities, researchers and engineers, and etc. 

as comprehensively discussed in Chapters 1 and 2.  

7.2. Methodology 

CityFFD solves the following non-dimensional Navier-Stokes equations:  

∇ · 𝑈 = 0 (7-1) 

𝜕𝑈

𝜕𝑡
+ (𝑈 · ∇)𝑈 = −∇𝑝 + (

1

𝑅𝑒
+ 𝜈𝑡) ∇2𝑈 −

𝐺𝑟

𝑅𝑒2
𝑇 

(7-2) 
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𝜕𝑇

𝜕𝑡
+ (𝑈 · ∇)𝑇 = (

1

𝑅𝑒 · 𝑃𝑟
+ 𝛼𝑡)∇2𝑇 + 𝑞 

(7-3) 

where 

Dimensionless time: 𝑡 =
𝑈∞

𝐿∞
𝑡∗ 

Dimensionless length: 𝑋 =
𝑋∗

𝐿∞
 

Dimensionless velocity: 𝑈 =
𝑈∗

𝑈∞
 

Dimensionless pressure: 𝑝 =
𝑝∗

𝜌∞𝑈∞
2 

Dimensionless temperature: 𝑇 =
𝑇∗−𝑇C

∗

𝑇H
∗−𝑇C

∗  

Dimensionless heat source: 𝑞 = (
𝐿∞

𝜌∞𝑐𝑝∞
𝑈∞(𝑇H

∗−𝑇C
∗)
)𝑞∗ 

Reynolds number: 𝑅𝑒 =
𝑈∞𝐿∞

𝜈∞
 

Grashof number: 𝐺𝑟 =
𝑔𝑖𝛽∞𝐿∞

3(𝑇H
∗−𝑇C

∗)

𝜈∞
2  

and Prandtl number: 𝑃𝑟 =
𝜈∞

𝛼∞
 

where * denotes the dimensional value of the parameters. Here 𝑔𝑖 = (0,0, −9.81) is gravity. Air 

Prandtl number for a wide range of temperature from -50 ᴼC to 100 ᴼC is constant 𝑃𝑟 = 0.71. 

Details of CityFFD solver were investigated in the previous chapters.  
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One of the most well-known and accurate turbulence models is LES. LES was initially proposed 

by Smagorinsky (1963) to simulate atmospheric airflows. This model is based on a mathematica l 

method to capture the turbulence characteristic of the flow. LES is developed to reduce 

computational cost by avoiding directly solving the smallest length scales which are the most time -

consuming parts of the turbulence modeling. This is achieved by using low-pass filtering of the 

Navier-Stokes equations (Hoffmann and Chiang, 2000(b)). In the current work, the Smagorinsky 

model (SGS) is added to CityFFD to model turbulence behavior of the flow inside the urban 

microclimates. In this model, the turbulence viscosity in Eq. (7-2) is calculated by the following 

equation: 

𝜈𝑡 = (𝑐𝑠∆)2√2�̅�𝑖𝑗�̅�𝑖𝑗 
(7-4) 

where 𝑐𝑠, ∆, and �̅�𝑖𝑗  are the Smagorinsky constant, the filter width, and rate of the strain tensor, 

respectively. For most applications, the Smagorinsky constant is in the range of 0.1 < 𝑐𝑠 < 0.24 

(Hoffmann and Chiang, 2000(b)). For the filter width, there are several options, and the following 

two options are mostly used by researchers: 

∆= (∆𝑥∆𝑦∆𝑧)1/3 

∆= (∆𝑥2 + ∆𝑦2 + ∆𝑧2)1/3 

(7-5) 

In this work, I use the first one. The strain rate is given by: 

�̅�𝑖𝑗 =
1

2
(
𝜕𝑈𝑖

𝜕𝑋𝑗

+
𝜕𝑈𝑗

𝜕𝑋𝑖

) 
(7-6) 

where 𝑖-index shows the 𝑥, 𝑦, and 𝑧 directions, e.g. 𝑈𝑖 = (𝑢, 𝑣, 𝑤) and 𝑋𝑖 = (𝑥, 𝑦, 𝑧). In the next 

section, I show the performance of the proposed LES method in comparison with other numerica l 

results.  

Turbulent thermal diffusivity is calculated based on the turbulent Prandtl number as follows: 
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𝑃𝑟𝑡 =
𝜈𝑡

𝛼𝑡

 (7-7) 

where 𝑃𝑟𝑡 = 0.3 ∼ 1. The turbulent Prandtl number, also named turbulent Schmidt number, varies 

according to the distance from the earth in the boundary layer (Koeltzsch, 2000). For simplic ity, 

in the present work, I consider 𝑃𝑟𝑡 = 1 and leave other value settings as future work.  

7.3. Results 

In this section, I first simulate 3 different CFD benchmarks to investigate the accuracy of CityFFD 

with LES. The first two validation cases are related to the wind and the last one is for the thermal 

solver.   

7.3.1. Airflow around a square cylinder 

In this section, the turbulent flow passing a square cylinder is simulated and the result is compared 

with the experiment and other numerical simulations. This problem is with 𝑅𝑒 = 22000 and the 

characteristic of this problem with the mentioned Reynolds number is quasi 2-D (Bouris and 

Bergeles, 1999). The schematic of the computational domain and the average streamline around 

the square cylinder are shown in Figure 7-1.  
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Figure 7-1 Average velocity field (Streamline) around 2D square. 

In this problem, a uniform computational grid, ∆𝑥 = ∆𝑦 = 0.05, about 40 times coarser than the 

same case done by Bouris and Bergeles (1999), is considered and the time step is ∆𝑡 = 0.01. 

Figure 7-2 shows the simulated average velocity along a horizontal line passing the center of 

square cylinder.  

 

Figure 7-2 𝑢 along a horizontal line passed the center of the square cylinder. 
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Figure 7-2 shows that the proposed model has a good agreement with the experiment and another 

CFD based LES model proposed by Breuer and Pourquie (1996). It can be seen that 𝑘 − 𝜀 

turbulence model overestimate the size of recirculation zone behind the cylinder and the results 

while LES models can generate more accurate results and capture the correct size of vortices 

behind the cylinder. Figure 7-2 also shows a good agreement between CityFFD simulation data 

and experiment. So, LES model used in CityFFD can accurately capture the recirculation regions.  

7.3.2. Natural ventilation around a single building 

The second validation study is based on the cubic building with an opening, which was first 

conducted experimentally by Jiang in 2003 (Jiang et al, 2003) in a boundary layer wind tunnel.  

The dimension of the cubic building model is shown in Figure 7-3. The cubic building is designed 

with a size of 250 mm (250×250×250 mm3). There are two openings with the size of 84 mm (width) 

×125 mm (height) located at the windward and leeward of the building, respectively. In this study, 

only the cross-ventilation case was considered, and both doors will be set as the open boundary 

condition. Here, the inlet wind profile is based on the power-law distribution with an exposure 

component of 0.17.  

 

Figure 7-3 Dimension of the single cubic building model (Jiang et al, 2003). 

In the previous study (Jiang et al, 2003), the velocities at different locations were collected for 

comparing the simulation results with the experimental results measured by Laser Doppler 
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Anemometer. In this case, the velocities at four locations were used for validation: X= -3H, X= -

H/25, X=H/2, X= H+H/25) (see Figure 7-3). Generally, the results show a good agreement with 

the literature. For the windward part, X= -3H and X= -H/25, the simulation results are quite close 

to the experiment data at the different elevations. However, for the leeward part, X=H/2 and 

X=H+H/25, the results show a good agreement at the height from 0 to 0.25 m, while above 0.25 

m (the height of the building) the simulation overestimates the velocity compared to the 

experimental data. In summary, in this typical single building for the cross-ventilation study, 

CityFFD shows an acceptable performance. 

 

 

 

Figure 7-4 Comparison of mean velocity profile between simulation and experimental results. 
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7.3.3. Natural convection in a square cavity 

Here, to validate the thermal solver, I simulate natural convection in a square block. In this problem, 

four faces of the block have the adiabatic thermal condition and two vertical faces have a constant 

temperature (Figure 7-5).  

 

Figure 7-5 Schematic of natural ventilation problem in a square cavity. 

 Because of the buoyancy effect, the air inside the cavity and near the hot face goes up and a 

recirculation airflow is generated inside the cavity. Temperature distribution and airflow pattern 

inside the domain are directly related to the Grashof number. In these types of problems, another 

dimensionless number, Rayleigh number, is defined: 𝑅𝑎 =In some problems such as natural 

convection, there is no explicit definition of reference velocity. So, dimensional velocity 

components are nondimensionalized with 
𝛼
∞

𝐿
∞

 which equals to thermal diffusivity divided by length 

scale. Detail of this procedure is provided in Appendix 2. For more information, I refer the reader 

to Appendix 2. Figure 7-6 shows the capability of CityFFD to model characteristics of the flow 

under the influence of temperature with high accuracy. In this problem, natural convection with a 

wide range of different 𝑅𝑎 and consequently 𝐺𝑟 is modeled to show the performance of CityFFD 

for even large temperature differences. Larger value of  𝑅𝑎 means larger difference between 𝑇H
∗ 
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and 𝑇C
∗ , that mean higher buoyancy effect. For 𝑅𝑎 = 103 and 𝑅𝑎 = 104 , a uniform vortex is 

generated inside the cavity, but for larger values of 𝑅𝑎 two small vortices are created inside a big 

one. It also affects the temperature distribution. For larger value of 𝑅𝑎 the temperature variation 

will change from vertical distribution to a almost horizontal one.  

    

    
(a) Airflow pattern. 

    

    
(b) Temperature distribution 

𝑅𝑎 = 103 𝑅𝑎 = 104 𝑅𝑎 = 105 𝑅𝑎 = 106 
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Figure 7-6 Natural convection in a square cavity for different Rayleigh numbers, upper: de Vahl 

Davis (1983), lower: CityFFD. 

7.3.4. Simulation of Great Montreal, Canada 

As mentioned before, Montreal is city with low air conditioning rate and vulnerable to heat stress 

problems (Smoyer-Tomic et al., 2003). More than 120 heatwave events happened in Montreal 

during 1942-1994, which is almost 2 times more than the average of events in Canada’s cities. In 

the following, Montreal’s microclimate is simulated for the hottest temperature recorded during 

the heatwave in summer 2018 (28 June-3July). Table 7-1 shows the weather information: 

Table 7-1 Weather information July 2, 2018, 2:00:00 PM. 

Air temperature  𝟑𝟓.𝟑 ℃ 

Wind speed 4.7 𝑚 𝑠⁄  

Wind direction (from north) 230 𝑑𝑒𝑔 

Relative humidity 42 % 

 

To generate the geometry of the whole city, here I used OpenStreetMap data (Haklay and Weber, 

2008). OpenStreetMap creates a free editable map of the world with the collaboration of more than 

2 million users (Neis and Zipf, 2012). Buildings information in OpenStreetMap lacks attributes 

such as height. To access the correct shape of the building heights, I use a Google Earth API to 

find the correct elevations of the building roofs. Figure 7-7 shows the original OpenStreetMap and 

the modified data after using Google Earth API.  
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Figure 7-7 3-D building geometry and building’s height modification. 

The total simulation region is 45 × 37 × 1.5 km3 with more than 100,000 buildings. The total 

computational grids are 160 million. Uniform grids are used in this case and the grid’s size is 25 

m. Ground temperature is estimated around 37 ᴼC. In this work, by considering a similar material 

for all the buildings and applying the effect of solar radiation, I estimated the surface temperature 

which equals to 40 ᴼC. This case ran on the computer with a NVDIA GTX TITAN V graphics 

card. It took 50 hours to get the converged results.  

Figure 7-9 presents the thermal distribution inside the city at the pedestrian level. In dense urban 

area, because of more buildings and slower wind velocity, higher temperature is expected.  
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Figure 7-8 Temperature distribution in Montreal (July 2, 2018, 2:00:00 PM) (a) Whole Montreal 

island (b) Downtown of Montreal. 

The results could show the most vulnerable overheating regions in the city. Higher temperature 

can be seen in downtown of Montreal. This region is a dense urban area so higher heat generation 

and lower wind velocity is expected. Thus, higher air temperature is trapped at the pedestrian level 

and in the street canyons. By this type of information, Montreal municipality or the government 

can identify high-risk areas and take actions to reduce the risks of heat stress.  

The main purpose of this simulation is to demonstrate the performance of CityFFD for modeling 

real urban scale problems on personal computers. To improve the accuracy of the simulation for 

modeling extreme events, such as heatwaves, it is necessary to accurately calculate the building 

surface temperatures by considering the building envelope materials and indoor conditions. 

Additionally, transient simulation of airflow is crucial to capture the effect of diurnal temperature 

and wind. In this work, I didn’t consider the terrain, such as mountain because of the lack of such 

information in OpenStreetMap. But these type of information can be obtained by using Google 
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Earth API. In the next chapter, for a further demonstration, I study the urban microclimate by 

considering the individual information of each building and its urban microclimate impact.  

7.4. Summary and Conclusion 

CityFFD, a high-order semi-Lagrangian approach equipped with large eddy simulation (LES) 

method, is developed to simulate urban microclimates in a fast manner. The following conclusions 

is obtained: a) The validation study shows that CityFFD can achieve accurate results and gather 

reliable velocity information at different locations, even for the case with indoor airflows involved.  

The results are in a good agreement with the experiments; b) The thermal solver is validated for 

various values of temperature differences. The results show the capability of CityFFD for 

modeling thermal airflow problems; c) For urban scale simulations, which typically requires high 

computing cost for conventional CFD tools, CityFFD is able to model large metropolitan cases 

with less computing power and better efficiency than conventional tools. Here a very large domain 

has been simulated by CityFFD which is considerably larger than typical microclimate domains 

that have been simulated by CFD. The simulation has been done on a personal computer without 

needs of supercomputers or clusters.  
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Chapter 8 Modeling building resilience against extreme weather by integrated 

CityFFD and CityBEM simulations 

The contents of this chapter have been published in “Katal, A., Mortezazadeh, M. and Wang, L.L., 

2019. Modeling building resilience against extreme weather by integrated CityFFD and CityBEM 

simulations. Applied Energy, 250, pp.1402-1417.”. The contents are modified. The paper is based 

on the integration of two in-house models, CityFFD and CityBEM. CityBEM has been proposed 

by Ali Katal and is a Building Energy Model. Details of this model are briefly introduced in 

Appendix 3.  

In the past decade, urban building energy models have been developed to address the increasing 

concerns over energy consumption and greenhouse gas emission due to rapid urbanization and 

building resilience as a result of climate change. These models can estimate energy consumption, 

GHG emission and resilience response of buildings in an urban area, and evaluate retrofit strategies 

for architects, engineers, researchers, and policymakers. It has been recognized that local 

microclimate and neighborhood effects play an important role in urban building energy modeling. 

Creating an urban building energy model also requires the collection of extensive building data, 

which is a time-consuming process. In this study, I developed an integrated platform by combining 

CityFFD (City Fast Fluid Dynamics), an urban-scale fast fluid dynamics model for microclimate 

modeling, and CityBEM (City Building Energy Model), a new urban building energy model with 

a library of 1,700 building archetypes for facilitating urban model creation. Local aerodynamics 

and heat transfer information are exchanged between both models at each time step. Graphics 

processing unit computing is also applied to CityFFD for simulation speedup. The simulation of 

the 1971 Montreal snowstorm of the century was conducted as a case study of more than 1,500 

buildings of an island near Montreal, Canada for the investigation of their resilience against the 
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three-day power outage due to the storm. Building retrofit analysis was also conducted to evaluate 

the added level of resilience. The results show that the proposed platform can produce high-

resolution results of building thermal load, microclimate condition, and building behavior during 

weather extremes.  

8.1. Introduction 

Rapid urbanization with the increased energy consumption, especially in the building sector, and 

increased greenhouse gas (GHG) emissions draw a lot of attention to the understanding of building 

energy usages at an urban scale, i.e. so-called urban building energy modeling (UBEM) (Chen et 

al., 2017). Through UBEM, municipal governments, urban planners, and building and 

environment researchers can investigate the effect of future potential energy savings through new 

technologies, standards/codes, and energy management policies on existing or new constructions 

in terms of urban energy usage and their associations with GHG emissions and regional 

environmental qualities. There exist two main UBEM approaches: the top-down and the bottom-

up models. In top-down models, a group of buildings are analyzed as a single group unit, and they 

do not provide the energy consumption of each individual building (Howard et al., 2012; Swan 

and Ugursal, 2009). These models are incapable of modeling different energy demand-supply 

scenarios and retrofitting strategies and cannot provide a detailed analysis of a specific 

neighborhood (Fabri and Tarabusim, 2014). In contrast, the bottom-up models simulate each 

building individually by statistical and/or physics-based methods in aggregations to the urban, 

state or country scale (Robinson et al., 2009). The bottom-up models can provide detailed analyses 

of every single building, evaluate the impact of new technologies, predict the future energy 

consumptions of a specific existing neighborhood, and even of future urban developments. The 

bottom-up models can be categorized into two different types: statistical and physics-based models. 
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The statistical models use historical energy usage of end-use buildings or some sample buildings 

to calculate the total energy uses. The historical data of energy consumption and economic 

indicators are provided by governments’ sources, which may not be available and accessible for 

all urban areas (Swan and Ugursal, 2009). Another major limitation of such statistics-based models 

is poor characterizations of energy services and coarse spatial/temporal resolution of the analysis 

(Howard et al., 2012). In contrast, the physics-based models apply heat and mass balance equations 

to each individual building with the capability of achieving any spatial and temporal resolutions. 

Physics-based models require buildings’ geometrical and non-geometrical parameters includ ing 

buildings’ shape, glazing, envelope thermal properties, occupancy rate and schedule to create the 

model and calculate buildings energy consumption (Cerezo et al., 2014). Physics-based models do 

not require the historical energy consumption data as required by the top-down and statistica l 

bottom-up models. Physics-based models only require buildings parameters and weather data to 

analyze buildings energy consumption. Therefore, they can be used for the analysis of future city 

infrastructures, which makes them a promising method for future urban-scale energy consumption 

and GHG emission analysis studies.  

In recent years, several physics-based UBEM tools have been developed, such as CitySim, Urban 

Modeling Interface (UMI), CityBES. CitySim has been established by Ecole Polytechnique 

Fédérale de Lausanne University (Robinson et al., 2009), and uses a simplified resistor-capacitor 

network model to estimate the energy usage by buildings at the scale of an urban district. Urban 

Modeling Interface (UMI) (Davila et al, 2016) is based on the 3-D modelling software platform 

Rhino (McNeel R. Rhino 6 for Windows 2018) and uses EnergyPlus. UMI has been firstly used 

to estimate hourly energy demand of the Boston city. CityBES has been developed by the 
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Lawrence Berkeley National Lab (Hong et al., 2016), and is an open web platform for simula t ing 

city building energy efficiency. 

Most of these existing UBEM platforms use weather data from one or several nearby weather 

stations for the energy analysis of all buildings. Therefore, they have not considered the impacts 

from localized microclimate environment. The airflow velocity and temperature around buildings 

are affected by building configurations, heights and neighboring building locations. Different wind 

velocity and temperature around buildings have also a direct impact on building thermal load in 

terms of local convective heat transfer coefficients and rates, and air infiltration through envelopes 

(Gracik et al., 2015). To better predict individual building energy use, therefore, it is important to 

consider local microclimate and aerodynamics conditions, and neighborhood effects on building 

energy consumptions (Quan et al., 2015; Hong et al., 2016).  

Computational fluid dynamics (CFD) can be used to generate local microclimate conditions of 

airflow around buildings. However, the main challenge of using conventional CFD tools, such as 

ANSYS Fluent (2011) or OpenFOAM (2014), is the high computational time in solving urban-

scale problems typically with several millions of grids. For example, previous studies show that 

solving a problem with 1-10 million of grids using commercial software on a personal computer 

takes several days or even weeks (Gousseau et al., 2011). Urban microclimate simulations need a 

fast solver, which cannot be done using existing CFD tools. Therefore, a fast CFD solver is needed 

for the simulation of such large-scale problems as urban microclimate modeling.  

In the present work, I introduce a new urban scale model, which integrates two in-house models: 

CityFFD (Mortezazadeh and Wang, 2018) and the CityBEM. The CityFFD model is based on a 3-

D Fast Fluid Dynamics (FFD) solver (Mortezazadeh and Wang, 2017) for the prediction of local 
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microclimate and neighborhoods. Compared to the conventional CFD model, the CityFFD solver 

is a high-order semi-Lagrangian-based model, which is unconditionally stable, fast and accurate 

to simulate urban aerodynamics. The model is written in the NVIDIA CUDA (2011) for Graphics 

processing unit (GPU) computing to achieve superior performance on a personal computer.  

The CityBEM is a new energy model for buildings and other infrastructures (e.g. tunnels) covering 

all key heat and mass transfer mechanisms for the calculations of building heating/cooling loads 

including solar radiation, wall conductive heat transfer, internal heat gain, and infiltration. The 

model is considerably faster than other simulation engines with acceptable accuracy for urban scale 

energy analysis. The two urban scale models are integrated as follows: the average air velocity and 

temperature at each building surface are calculated by CityFFD for the calculations of the heat 

transfer and infiltration through building envelope as the input boundary conditions for CityBEM. 

The building surface temperatures are calculated by CityBEM to be applied as the boundary 

conditions for the CityFFD solver at the next time step simulation. Therefore, the integrated 

CityFFD and CityBEM can simulate both outdoor airflow and temperature, building thermal load 

and indoor air temperature within an urban area in a fast manner without the need of using a 

supercomputer. Meanwhile, a new comprehensive archetype library is defined, which includes 

1,700 archetypes of different buildings types and ages to cover all the buildings located in the 

urban area under investigation. The chapter is organized as follows: the methodology is introduced 

in Section 2 followed by a case study of an urban area, the Ile-des Soeurs located in Montreal, 

Canada, for the evaluation of building and city resilience against the extreme events such as ice 

storms, snowstorms and power outages in Section 3. Section 4 is the conclusion and discussion 

about current and future studies. As mentioned before, details of CityBEM are available in 

Appendix 3.  
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8.2. Methodology 

8.2.1. Overview 

The process of modeling an urban-scale problem can be divided into two main steps: model 

preparation, and model simulation. The model preparation includes all the tasks to prepare the 3-

D model of the city for the simulation: preparing GIS geometrical input data, weather data, and 

creating archetype building dataset. When the city model is ready, the simulation step applies the 

integrated model by running the CityFFD and CityBEM (Figure 8-1) in a sequential and interactive 

manner, i.e. Ping-pong (Figure 8-2) (Hensen, 1995). The CityFFD solver takes building geometry 

and weather data as inputs to simulate approaching wind conditions, and temperature distributions 

around the buildings. Then the average wind velocities, directions, and temperatures around each 

surface of buildings calculated by CityFFD, along with the geometry and archetype data are used 

as the inputs for CityBEM for the calculations of heating/cooling demands, energy uses, and indoor 

air temperatures of each building. The building surface temperatures calculated from CityBEM are 

then used as the boundary conditions of CityFFD for the next time step. The framework of the 

integrated model is shown in Figure 8-1. The method of “Ping-pong” data transfer means that the 

data are only transferred once between the two solvers at each time step (Figure 8-2). A more 

detailed flow diagram of solving a problem with an integrated framework is shown in Figure 8-6. 
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Figure 8-1 The integration framework of CityFFD and CityBEM. 

 

Figure 8-2 The integration procedure of CityFFD and CityBEM. 

8.2.2. Model creation 

Based on Figure 8-1, three input data sets are required for the simulation: geometry and physical 

data, archetype library, and weather data. 

… 
… 
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8.2.2.1. Building geometry and physical data 

The geometrical data include building footprints, heights, window-wall-ratios (WWR), number of 

floors, orientations, and other physical data including building envelopes, occupancy information, 

year of constructions, and building types. For various urban regions, different geographic datasets 

can be integrated to provide the required data. 

8.2.2.2. Archetype library 

The geometry data sources do not provide all required data in section 8.2.2.1, such as building 

envelope and construction data. Although the information can be gathered for small groups of 

buildings, it remains a challenge to measure or collect the information for a large urban area with 

thousands of buildings. In the context of urban building modeling, for the characterization of such 

building properties, the building stock is divided into “archetypes”. The creation of an archetype 

library requires two steps: segmentation and characterization. In the segmentation step, the 

building stock is divided into a couple of groups by use, age, shape, etc. In the characteriza t ion 

step, a set of properties such as building envelope, thermal properties, and occupancy schedule are 

assigned to each group (Reinhart and Davila, 2016). 

8.2.2.3. Weather data 

The input weather dataset contains hourly measured or existing environmental variables such as 

dry bulb temperatures, solar radiations, relative humidity, wind speeds and directions. Here, the 

dry bulb temperatures, wind speeds, and directions are the boundary conditions for the CityFFD 

model whereas the solar radiation data are the input data for CityBEM.  

8.2.3. Simulation models 

8.2.3.1. CityFFD - high-order city-scale FFD model 

As mentioned in the previous section, modeling local microclimate and capturing the effects of 

neighborhoods on the aerodynamics in a city are remaining challenges of UBEM, mostly related 
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to huge computational costs (Gousseau et al., 2011). Some mathematical constraints of the 

conventional CFD programs, e.g. a small Courant–Friedrichs–Lewy (CFL) number required for 

the stability of a simulation, lead to the long computational time, especially for a typical desktop 

personal computer (PC) (Mortezazadeh and Wang, 2017). Details of CityFFD have been 

investigated in the previous chapters.  

The turbulence closure here is achieved by using a zero-equation turbulence model, which is a fast 

and relatively accurate (Chen and Xu, 1998):  

𝜈𝑡 = 0.03874𝐿𝑉 (8-1) 

Similar to the previous chapter, here 𝑃𝑟𝑡  is equal to 1. Details of the proposed method have been 

presented in chapters 3-7. 

The CityFFD model uses hourly typical meteorological year (TMY) weather data as the boundary 

conditions. The code is developed by the NVIDIA CUDA computing language with a typical 

speedup of more than 15 times faster than the central processing unit (CPU) counterpart. 

8.2.3.2. CityBEM – Fast energy modeling of buildings and infrastructures 

CityBEM is a physics-based simulation model for urban thermal loads and energy uses. The model 

takes as the inputs including building information: geometry, construction materials, light ing, 

HVAC, etc.; and building uses and operations: occupancy schedules, lighting, plug-loads, and 

thermostat settings, so it is possible to run the annual calculations on an hourly or shorter-time-

step basis. General information about CityBEM is presented in Appendix 3. 

8.2.3.3. Integration of CityFFD and CityBEM 

The CityFFD model provides local aerodynamics conditions around each building to CityBEM 

including average temperatures, average wind velocities and local exterior surface convective heat 
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transfer coefficient around external surfaces of each building, calculated using all mesh cells on 

each surface of the building (See Figure 8-3). The local outdoor temperature and wind velocity are 

used for the calculation of exterior convective heat transfer coefficient. The building surface 

temperatures calculated by CityBEM are used as boundary condition by CityFFD for the next time 

step simulation. Because of using the ping-pong method in transferring data between CityFFD and 

CityBEM, it is important to start the simulation with an accurate initial condition. For this purpose, 

at the first time-step, the data is transferred between CityFFD and CityBEM in an inner loop until 

the convergence with a criterion of 1 × 10-3. The converged building surface temperatures are then 

used as the initial data for CityFFD simulation. Figure 8-4 shows the flow diagram of parameters 

initialization and transient simulation. For the transient simulation stage in Figure 8-4, the 

integrated model allows for running sub-loops at each time step as the first time-step does. 

However, because the city-scale climatic data will not change much with the CityBEM data, 

especially for the case study in this chapter (Section 8.3), the data are therefore exchanged only 

once for the rest of the time steps (“Ping-pong”). This also helps to save computing time. It might 

be possible that the Ping-pong method becomes inapplicable for other cases, for which I am 

conducting more studies and will report as future work. 

 



130 
 

 

 

 

(a) 

 

(b) 

Figure 8-3 CityFFD data provided for the CityBEM model. 

 

Figure 8-4 Flow diagram of solving a problem by integration of CityFFD and CityBEM. 
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8.3. Case study - urban building energy simulation of Ile-des Soeurs 

As a case study, the Ile-des Soeurs community in Montreal, Canada was selected. In this section, 

the preparation of the input data including building geometrical data, physical property data, and 

weather data for the Ile-des Soeurs is explained first. Then, a hypothetical power outage in the 

region based on the real event of the Montreal “snowstorm of the century” (SOC) in March 1971 

was simulated to study the thermal resilience of the region. The effect of building envelope 

retrofitting on the thermal performance of the buildings is then studied to demonstrate using the 

proposed urban models for a real scenario.  

8.3.1. Urban district 

As a part of the city of Montreal, Quebec, Ile-des Soeurs is an island with a total area of 3.74 𝑘𝑚2, 

around 1,500 buildings, and 19,000 populations (SC. 2011-data products). The island is primarily 

composed of multi-unit residential apartments, condos and townhouses. The various types of 

buildings with different years of constructions and the available database of buildings geometry 

make the island a good test case for the current study. Figure 8-5 shows the aerial map view of the 

Ile-des Soeurs with years of constructions (Rocha, 2018).  

https://en.wikipedia.org/wiki/Montreal
https://en.wikipedia.org/wiki/Quebec
https://en.wikipedia.org/wiki/Island
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Figure 8-5 The Ile-des Soeurs aerial view map (left) (Google) and Ile-des Soeurs building year of 

construction map (right) (Rocha, 2018). 

8.3.2. Data preparation 

Multiple global and local datasets including Google Maps (Google), OpenStreetMap (Haklay and 

Weber, 2008), City's property assessment office (VdM. Consultation) were used to acquire 

buildings’ geometrical and physical data. The CityFFD model of the island with the enclosing 

computational domain is shown in Figure 8-6. The inlet and outlet boundary conditions were 

varied according to the hourly wind speeds and directions provided by the historical weather data 

at the Montréal-Trudeau International Airport (YUL) (ECCC. Historical Data, 2018). The inlet 

wind profile is defined using the power-law function. The upper surface of the domain was 

modeled as a symmetric condition by setting the normal gradients of the velocity components to 

be zero (Tominaga et al., 2008). 
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Figure 8-6 The CityFFD simulation model of Ile-des Soeurs. 

Table 8-1 Archetype segmentations for the estimation of operation hours and average loads. 

Building type 

Operation hours Occupancy Appliances Lighting 

Time Day 
Usage 

rate 

Load 

𝑾 𝒎𝟐⁄  
Usage 

rate 

Load 

𝑾 𝒎𝟐⁄  
Usage 

rate 

Load 

𝑾 𝒎𝟐⁄  

Detached house 00:00-0:00 7 0.60 2.8 0.60 2.4 0.10 8.0 

Apartment 

building 
00:00-0:00 7 0.60 4.2 0.60 3.0 0.10 8.0 

Office building 07:00-18:00 5 0.55 7.0 0.55 12.0 0.55 12.0 

Department 

store 
08:00-21:00 7 0.60 9.3 1.00 1.0 1.00 20.0 

Hotel 00:00-00:00 7 0.58 5.6 0.37 1.0 0.41 8.0 

Restaurant 06:00-00:00 7 0.46 19.7 0.20 4.0 0.64 20.0 

Sport, termina l, 

theatre 
08:00-22:00 7 0.60 9.3 0.00 0.0 1.00 14.0 

School 08:00-17:00 5 0.50 21.3 0.50 8.0 0.50 15.0 

Daycare center 07:00-19:00 5 0.40 15.5 0.40 4.0 0.40 15.0 

Hospital 00:00-00:00 7 0.54 10.8 0.62 4.0 0.62 9.0 
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Other building information also needs to be defined, such as WWR, building envelopes, and 

occupancy schedules. WWR and envelope properties are required for the calculation of solar 

radiation through glazing and conductive heat transfer through building exterior walls. Occupancy 

information is needed for the calculation of internal heat gain from occupants. For this information, 

an archetype library of 1,700 archetypes classified according to the ages and types is defined in 

this work. Here, buildings were classified by three segmentation parameters: 1) building type for 

occupancy and internal load estimation, 2) building type for WWR estimation, and 3) year of 

constructions to estimate building envelope properties. For the internal load estimation, following 

the ASHRAE 90.1 building code (Thornton et al., 2011), the building stocks were divided into 10 

groups for the estimation of operation hours and average loads (Ahmed et al., 2017) as summarized 

in Table 8-1. 

The building usage rates are calculated from the average usage rates of the building during 

operational hours. The geometrical datasets here do not provide building WWR information. 

Therefore, the WWR is considered as an archetype parameter. Following the recommendations 

from the U.S. Department of Energy (Liu, 2018), 17 reference building types were considered with 

the WWR values ranging from 11% to 90% (Winiarski et al., 2007). For the year of construction, 

10 construction periods were considered by using the dataset averaged over the data provided by 

the Quebec construction code of different years (RdbQ, 2018) as shown in Table 8-2. 
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Table 8-2 Archetype segmentation by year of construction for the estimation of building 

envelope characteristics. 

Period 
U-value (𝑾 𝒎𝟐𝑲⁄ ) 

Roof Wall Floor Window 

1958 1.42 1.7 0.45 5.7 

1964 1.42 1.7 0.45 5.7 

1974 0.6 1.0 0.45 5.7 

1981 0.35 0.6 0.45 5.7 

1990 0.25 0.45 0.45 5.7 

1995 0.25 0.45 0.45 3.3 

2002 0.25 0.35 0.25 2.0 

2006 0.25 0.35 0.25 2.2 

2010 0.25 0.35 0.25 2.2 

2013 0.18 0.26 0.25 1.6 

 

As mentioned previously, the historical weather data during the SOC from the Montreal-Pierre 

Elliott Trudeau International Airport station were used including dry bulb temperature, wind 

velocity, wind direction, and total solar radiation. As for the computing costs and resources, the 

total number of grids in the CityFFD simulation is around 10 million and the computational time 

of each time step is almost 12 minutes on a PC with 12 GB RAM and the Intel(R) Core(TM) i7-

4790 CPU@3.60GHz and the NVIDIA GeForce GTX 745 graphic card. The computational time of 

the CityBEM solver for all buildings was about less than 3 seconds for onetime-step, which is 

considerably faster than a typical city scale analysis. 

8.3.3. Model verification 

mailto:CPU@3.60GHz
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Uncertainties in input data are one of the main limitations of UBEM models (Mosteiro-Romero et 

al., 2017). Occupant behavior is an important factor in the uncertainty of the physics-based models 

(Sun and Hong, 2017). The archetype library used in UBEM tools is another source of uncertainty 

which can affect the accuracy of the simulations (Cerezo et al., 2017). Therefore, validation and 

calibration processes are important in UBEM tools for better simulation. Most of UBEMs have 

been calibrated using monthly, or yearly measured data and only a few of them have been validated 

against hourly measured data. 

In this case study, the annual space heating and cooling energy consumption in the buildings were 

calculated and compared with the corresponding metered data provided by the Hydro-Quebec 

(Hydro- Québec, 2018) (see Figure 8-8). Hydro-Quebec provides the annual detailed electric ity 

consumption of buildings. In Canada, about 63 percent of residential building energy use is for 

space heating and cooling (Natural Resources Canada, 2013). To compare to Hydro-Quebec 

electricity consumption data, it is necessary to find the buildings using mostly electricity for 

heating and cooling. In Montreal, most of the residential buildings built before 1990 use electric ity 

for space heating. Therefore, for the island modeled in this study, about 170 single-family 

residential building, most of which were built before 1990, was selected for the comparison. To 

calculate the annual heating and cooling energy consumption of the building, monthly average 

weather data were used in the CityFFD model as shown in Figure 8-7. The outdoor airflow and 

temperature were simulated for 12 months of the year by CityFFD at quasi-state simulations to 

obtain average local temperature around buildings’ surfaces for CityBEM to calculate the annual 

thermal load of the buildings. The hourly thermal load was then multiplied by the number of hours 

per month to calculate the total monthly and then annual load of a building.  
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Figure 8-7 Monthly average weather data used for the calculation of the annual thermal load of 

the buildings. 

Figure 8-8 shows the histogram of error percentage distribution in predicting the annual space 

heating and cooling energy consumption. The average error of the predicted energy consumption 

is 47%. According to the ASHRAE standard the average error for monthly energy consumption of 

a single building is around 15% (Quan et al., 2015) but for the urban level building energy 

simulation average error reported by previous works is around 69% (Quan et al., 2015) which has 

been considered the acceptable level of accuracy for UBEM, because of more uncertainties in the 

assumed data and modeling parameters. In this study, some of the buildings show the error greater 

than 100%, probably because some buildings may use natural gas heating instead of electrical 

heaters. The lack of data regarding space heating type details could be therefore one of the major 

sources of uncertainty, which may be reduced with more data from other official sources. 
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Figure 8-8 Histogram of error in calculating the annual energy consumption of buildings. 

8.3.4. Modeling building resilience during the snowstorm of the century 

One of the major applications of urban energy modeling is the investigation of the city/community 

thermal (or energy) resilience against extreme weather events. In this study, I modeled one 

historical snowstorm on March 4th, 1971, the so-called Snowstorm of the Century (SOC) of 

Montreal. 47 cm snow was dumped on Montreal with a maximum 110 km/h wind, resulting in 

broken power lines and cables and a major power outage lasting for full ten days on the island. 

Because most of the households in Montreal relied on electric heating, the power outage caused a 

severe drop in indoor air temperature in these households. In this section, three consecutive days  

after the storm were simulated by the proposed integrated urban model to study the snowstorm 

impact on indoor and building temperatures of the Ile-des Soeurs community with a focus on the 

thermal resilience. Figure 8-9 shows the input weather data of these three days which is provided 

by Environment Canada (ECCC. Historical Data).  
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Figure 8-9 Input weather data during the March 4-6 snowstorm in 1971. 

 

Figure 8-10 Buildings surface temperature difference with and without using the local 

microclimate data calculated by CityFFD. 

In order to show the necessity of using local microclimate data provided from CityFFD for 

CityBEM simulation, first, I did the CityBEM simulation with constant weather data for all the 

buildings. Then, the simulation has been repeated using integrated CityFFD and CityBEM model 

considering the effect of local microclimate on CityBEM simulation. The difference of calculated 
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buildings surface temperature at a selected time step is shown in Figure 8-10. The average building 

surface temperatures calculated by the integrated model (with local detailed microclimate 

conditions considered) is about 2.5 °C higher than that by using the historical weather data from 

one Environment Canada weather station for the March 4 – 7, 1971 for all buildings. The increased 

surface roughness parameters in urban areas than non-urban regions, where weather stations are 

often located, often result in lower wind velocities and thus lower building exterior heat transfer 

effects (Bornstein and Johnson, 1977). CityFFD is able to capture these local variations of wind 

and heat transfer effects and their impacts on the reduced heat loss from building exterior surfaces. 

So, the building exterior surface temperatures become generally higher than those by using the 

weather data (without local variations and applied to all buildings) from the weather station. With 

and without the local weather conditions considered, the calculated building surface temperatures 

vary from 0 to 3 °C, depending on different building’ materials and convective heat transfer 

coefficients as a function of local aerodynamics around buildings. The temperature difference of 

3 °C could become critical in terms of building survivability and resilience in the power outage 

condition during storms as discussed in the later section (see Section 8-3.5). 

To show the effect of local aerodynamics on building’s thermal performance, the effects of local 

wind conditions (i.e. different wind directions and speeds) around a group of buildings are shown 

in Figure 8-11. The left figure shows the results for the south wind of 1.39 𝑚 𝑠⁄  at 2:00 pm and 

the right is for the east wind of 2.22 𝑚 𝑠⁄  at 11:00 pm of March 6th. In comparison, the local 

airflow patterns and velocities around the buildings varied significantly. A closer look near a high-

rise building highlighted by the arrow reveals that the average wind velocity around the specified 

surface of the building is 0.1 𝑚 𝑠⁄  and 6 𝑚 𝑠⁄ , respectively. In the left figure, the airflow is 

perpendicular to the particular surface as indicated by the arrow, and the wind velocity near the 
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wall is significantly low, creating a stagnation point. While in the right figure the airflow is parallel 

to the surface. Therefore, the air moves over the surface without considerable resistance and the 

local wind velocity is higher than the left. Higher wind velocity leads to a higher rate of surface 

convection (see Appendix 3). The resultant convective heat transfer coefficient is 

3.95 (𝑊 𝑚2 · ℃⁄ ) for the left case, and 41.18 (𝑊 𝑚2 · ℃⁄ ) for the right.  

 

  

  

Figure 8-11 Local microclimate variations with different wind directions and speeds modeled by 

CityFFD: left (1.39 𝑚 𝑠⁄  south wind) and right (2.22 𝑚 𝑠⁄  east wind). 



142 
 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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Figure 8-12 Buildings temperature map during power outage caused by snowstorm, from top to 

bottom: (a). March 04, 13:00, (b). March 05, 01:00, (c). March 05, 13:00, (d). March 06, 01:00, 

(e). March 06, 13:00, and (f). March 07, 01:00. 

Figure 8-12 shows the building indoor air temperatures at different times after the power outage. 

The initial temperatures for all buildings were set to be around 21 °C at about 13:00, March 4 th, 

1971. After about 12 hours to 1:00, March 5th (Figure 8-12(b)), most of the building temperatures 

dropped below zero, although the ambient temperature did not decrease significantly during the 

same period, i.e. < 1 °C, as shown in Figure 8-12. Later around 13:00, March 5th (Figure 8-12(c)), 

with the increases of both the ambient temperature to around -4 °C and the solar radiation, the 

temperatures returned to above zero degree for most of the buildings. Then due to the sudden 

decrease of the ambient temperature to around -12 °C, all buildings reached the lowest 

temperatures at about 1:00 of March 6th (Figure 8-12(d)): the lowest temperature could be close to 

the ambient level, less than -11 °C, for many buildings. In the following day of March 7th (Figure 

8-12(e)), the solar radiation peaked around the noon, so all buildings were heated returning to the 

above-zero-degree level: some buildings could be as high as around 8 °C under the “sunshine”. 

All the temperatures then later again dropped back to below zero at the night after 12 hours (Figure 

8-12(f)). Therefore, the time history of the calculated indoor temperatures illustrates the major 

impacts of the ambient conditions on indoors, especially the solar radiation. It also shows that 

without heating, the temperatures dropped so quickly to below zero just within a few hours for all 

buildings, although there existed a certain level of delays for some buildings. 
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One way to identify the group of buildings most vulnerable to the SOC is to compare the resultant 

temperatures at one of the worst scenarios during the storm. Figure 8-13 shows the indoor 

temperatures when the outdoor temperature was the lowest during the storm. The highest 

temperatures were observed for quite a few high-rise multi-unit residential buildings (MURBs) at 

the left (the North), lower (the West), and the right sides (the South) of the island. These are the 

newer constructions and the left-side and the right-side communities are the newest ones. In 

comparison, some MURBs were with the lowest temperature, e.g. a few buildings in the lower part 

of the island, because these buildings were older buildings. Therefore, the year of construction is 

one of the most significant parameters in terms of storm vulnerability. On the other hand, for 

buildings with similar years of constructions, e.g. for the right-side (the southern) community, 

some low-rise residences showed lower temperatures than the high-rises nearby. These high-r ises 

were insulated as well as the low-rises and have more surface areas for benefiting from passive 

solar heating. This indicates that the building type also plays an important role in terms of 

vulnerability.  

 

Figure 8-13 Buildings indoor air temperature at the lowest outdoor temperature during the storm. 

A more vulnerable building is less resilient against an extreme weather event. Here, one way to 

define “building resilience” is that a building remains safe to occupy during a power outage. For 

example, if a building is well-insulated or designed to remain functional probably from passive 
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solar heating in the winter, it is considered being resilient enough to sustain the power outage 

condition. A parameter, the Passive Survivability-Winter (PSW) (O’Brien and Bennet, 2016), is 

thus defined and applied here to evaluate the resilience of buildings, which is the time (in hours) 

from when heating is shut off to when the indoor operative temperature reaches 15 °C (59 °F) from 

an original heating set-point of 21°C (70°F). Figure 8-14 shows the calculated PSW values for all 

buildings. The PSW varies from 1 to more than 3 hours depending on building types and year of 

constructions. Specifically, the rate of temperature decrease varied among buildings due to various 

building envelope materials, occupancy schedule, WWR, and local microclimate data. It should 

be noted that within the immediate few hours of the power outage, the sky was cloudy, and the 

calculated solar heat gain was found to be negligible, so the building temperatures dropped 

relatively fast. Higher buildings seem to have lower PSW values when compared to low-rise 

residences on the island. Without the added benefits from solar heating, these buildings have 

greater footage and surface areas and thus are subject to higher heat losses. Therefore, the building 

resilience against the extreme cold events is closely related to building type, year of construction 

and ambient condition, especially solar radiation, for the current study. Although the ambient 

conditions may be predicted, they are not controllable. In comparison, the first two factors are 

directly related to the thermal insulation levels, which can be managed to improve the survivability 

and energy performance. This study, therefore, demonstrates the possibility of retrofitt ing 

techniques to enhance building resilience.  
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Figure 8- 14 Calculated building resilience in terms of “Passive Survivability-Winter” (PSW) 

after the power outage. 

8.3.5. Building retrofit to improve resilience 

Another major application of the proposed model is to evaluate building retrofitting strategies to 

improve their resilience against the winter power outage, for example, adding more thermal 

insulations is one of the common choices. Here, an 80-mm thick expanded polystyrene (EPS) layer 

was added to the outer surface of all the external walls of all buildings of the island. The R-value 

of the EPS layer is around 2.1 𝑚2𝐾 𝑊⁄ , which doubles the insulations for old high-rise residentia l 

buildings, which are among the vulnerable buildings as shown in Figures 8-13 and 8-14. Figure 8-

15 compares the temperature profile of one selected old high-rise building (one of the four 

buildings in the top right part in Figure 8-13) before and after adding the extra insulation layer. 

The PSW value increases about two more hours with the added insulation. Interestingly, it was 

also found that the extra insulation also prevents the building from reaching to 0 ℃ and thus avoid 

the freezing of water pipes and other problems for the whole duration of the three-day power 

outage. Therefore, in terms of the resilience against property damages, a single layer of extra 

insulation seems to be quite effective against the power outage for the building under consideration. 

For other buildings, a single retrofit measure may not be enough for keeping them from freezing, 

so it is also possible to evaluate other retrofitting options, preferably based on building specifics, 
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e.g. using thermal storage and emergency heating devices etc. This case study is mostly for the 

demonstration purpose and more detailed analysis can be explored further in the future studies.  

On the other hand, as noted previously from Figure 8-10, the calculated temperatures with the local 

microclimate information from CityFFD are on the average 2.5 °C higher than without it.  For the 

selected building in Figure 8-15, this may be translated into that the building could remain above 

the freezing temperature for most of the time even without adding the insulation layer since the 

lowest temperature is around -3 °C. Accordingly, the current level of insulation for retrofitt ing 

may be overestimated and could be reconsidered for economic concerns. Moreover, for the same 

building, when the extra insulation layer was added, this temperature difference also means a few 

more hours of survivability time (i.e. PSW), which are critical for occupants and buildings 

themselves during extreme weathers. This analysis again shows the importance of including urban 

local microclimate into urban building energy model when evaluating building thermal response 

and resilience against weather extremes.   
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Figure 8-15 Effect of installing an insulation layer to the exterior surface of an old high-rise 

residential building on enhancing building resilience. 

8.4. Summary and Conclusion 

This study introduces a new urban-scale simulation framework of integrating a fast fluid dynamics 

model, CityFFD, and an urban building energy model, CityBEM, with the focus on exchanging 

local microclimate data between these two models at an urban scale. The microclimate from 

CityFFD can affect local infiltration and heat transfer through building facades. To simulate such 

a microclimate, CityFFD applies the high-order backward and forward sweep interpolation scheme 

and the semi-Lagrangian approach to providing the local aerodynamic information around 

buildings. With this information, CityBEM predicts heating/cooling load and building indoor and 

surface temperatures, which are then applied as the input boundary conditions for CityFFD at the 

following time-step simulation. A case study of about 1,500 buildings in the Ile-des Soeurs, 

Montreal, Canada was investigated for the effectiveness of the proposed integration model. A 
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comprehensive archetype library of 1,700 archetypes was developed from this work to cover a 

wide range of building types. The results show that the proposed model can provide high-

resolution results of local microclimate and airflow data around each individual building for a 

better prediction of building thermal responses and loads. The building resilience against the power 

outage during the 1971 snowstorm of the century in Montreal was studied and a retrofitt ing 

analysis was also conducted by adding external insulation layer to improve the resilience of the 

buildings.  

My future work will focus on the further development of both CityFFD and CityBEM models and 

their applications for other resilience analysis for buildings and infrastructures, e.g. under extreme 

weather conditions, summer overheating and heat waves, and future climate changes. The plan 

includes also adding pollutant dispersion models for the study of outdoor and indoor characterist ics 

such as air quality at urban scales, where because of many sources of pollutants, the airflow around 

the buildings and neighborhood effects can play an important role on the pollutant distribution, 

and thus human health. A fast and accurate simulation framework of the integratio n of the models 

like the proposed CityFFD and CityBEM is therefore needed for these problems. 
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Chapter 9       Conclusions and Future Work 

9.1. Conclusions 

This research established a fast and accurate CFD model to simulate urban microclimates even on 

personal computers. The proposed microclimate model (CityFFD) is a spatial and temporal high-

order algorithm and capable of high accurate simulation by using large time step and coarse grid, 

which are two inevitable features of modeling urban scale problems. Here, it has concluded that: 

• Currently, conventional CFD solvers are not suitable for modeling large scale problems, such 

as city/urban scales, because of some constraints such as CFL condition. Additionally, there 

are some CFD software developed for urban microclimates. But none of them are GPU based 

and cannot run big cases on personal computers. 

• FFD method is a fast and unconditionally stable CFD model. But the drawback of typical FFD 

methods is low accuracy, especially on the coarse grids and large time steps. They may 

generate dissipation errors on coarse grids and near recirculation regions. To overcome these 

problems, a group of novel numerical algorithms has been developed. 

• A new 4th-order interpolation scheme, backward forward sweep interpolating, was proposed 

in order to highly reduce dissipation errors even on coarse grids. The proposed model can also 

control dispersion errors near the sharp gradients. The other feature of this scheme is the 

speedup of the calculation in comparison with the conventional 4th-order schemes, because of 

using fewer arithmetic operations. 

• Then, it is noted that the time step may affect the accuracy of a semi-Lagrangian method. In 

fact, a time step directly affects the position of departure points and consequently varies the  

magnitude of truncation error. Here, I demonstrated the smaller time step cannot always 
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guarantee better accuracy. So, by developing an adaptive time step based on minimizing the 

truncation errors, I could control the error growth during the simulation. 

• Using large time step can affect the estimation of characteristic curves and generate errors in 

transient simulation and complex airflow problems, such as airflows with unsteady vortexes. 

In the conventional semi-Lagrangian methods, characteristic curves are estimated by the 

assumption of constant velocity which means the particles move along a straight line. But the  

flow’s particles can have acceleration and then curvature in their path line. This assumption 

can generate the deviation between the estimated position of the particles and the real position, 

particularly for very large time steps. Here, I proposed an idea to estimating the characterist ic 

curves by considering the velocity and acceleration of the particles. The proposed algorithm 

improves the temporal accuracy of the semi-Lagrangian method to the 2nd-order.   

• My study demonstrated that the most time-consuming part of FFD method is the solution of 

the Poisson equation to calculate pressure domain. The condition number of the coeffic ient 

matrix in the Poisson equation is large leading to slow convergences and fluctuations. Here, 

by using the concept of artificial compressibility method, I replaced Poisson equation with the 

mass conservation equation, which is a hyperbolic equation and can be easily solved by a 

marching process in time. The proposed model, the Artificial Compressibility Semi-

Lagrangian method (SLAC), is almost three times faster than conventional semi-Lagrangian 

methods in the case investigated, and the speedup rate can be further increased for larger 

problems, which may suffer from greater condition numbers of the Poisson equation and thus 

poorer convergences. The proposed method is also more compatible for parallel computing 

such as GPU programming.  
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• LES has been known for modeling urban microclimates and the LES-SGS model was added 

into CityFFD, which is then validated by the data from the literature. The CityFFD with LES 

was then demonstrated for the simulation of the whole Montreal island on a personal computer. 

The domain size is significantly larger than typical microscale problems simulated in the 

literature with an acceptable computing cost. 

• At the end, CityFFD was applied to an extreme event in an urban area to demonstrating the 

impact of the urban microclimate on the building indoor environment. This work was based 

on a two-way interaction between CityFFD and CityBEM, which is a building energy model. 

I concluded that the local environment has a significant effect on the indoor conditions and 

building energy and thermal performance. 

9.2. Future work 

• For urban microclimate modeling, there are other important parameters which can affect 

human health and comfort, and building performance, such as humidity, solar radiation, 

pollutant dispersion, vegetation effect, and wind-driven rain. For example, humidity and solar 

radiation are two important health and comfort parameters during heatwaves. Adding these 

new components to CityFFD for a better understanding of the urban microclimate is necessary 

and important. 

• The current turbulence model in CityFFD does not have wall functions so I cannot apply 

coarse grids to model the walls. Using wall function methods for turbulence models can help 

reduce the number of computational grids and may further speed up the simulation.  

• Modeling very large-scale problems, such as 1 billion computational cells, needs some extra 

consideration for the GPU calculation. At this moment, CityFFD can run the cases around 

200,000,000 cells but may have some technical problems for 1 billion grid case. To overcome 
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this issue, I may need to decompose the coefficient matrixes to the sub-matrixes. The boundary 

conditions in CityFFD are calculated by OpenMP. Meanwhile, the performance of CityFFD 

can be further improved by porting as many as calculations to GPU.   

• Another issue which is particularly important for an accurate simulation of urban microclimate 

is to define accurate boundary conditions. Currently, weather station data are used for modeling 

the transient problems. Accurate boundary conditions for a microscale problem can be 

provided from mesoscale models (MMM), such as WRF and GEM-SURF. A two-way or one-

way interaction between CityFFD and MMM models can provide a powerful tool for modeling 

urban microclimates.  

• More validation of CityFFD for large scale simulations is also important. I have validated the 

model by using the data from the literature, such as wind tunnel test data. At urban scales, it is 

challenging to find the measured and detailed urban microclimate data for validat ion. 

Therefore, it is necessary to find a new way to validate CityFFD for modeling urban/city scale 

problems, e.g. comparing CityFFD to MMM, GEM-SURF and/or WRF etc.  
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Appendix 1 V-Cycle Multigrid 

V-cycle geometric multigrid with three levels: fine grid, average, and coarse girds is shown in the 

following Figure. Multigrid method has three main steps:  

1. Smoothing: solving the main equation on the fine grid by using a few iterations of a 

conventional iterative method, such as Jacobi and Gauss-Seidel methods.   

2. Restriction: solving the error equation on the coarse grid by transferring the data from fine to 

coarse grids.   

3. Interpolation or prolongation: transferring the calculated errors to fine girds and modifying the 

data calculated from smoothing step.  

 

Interpolation and restriction in V-Cycle multigrid solver 

Elliptic equations, Eqs. (2-3) and (2-5), can be written in a general matrix form after linearizat ion:  

𝐴𝑈𝑖 = 𝑏𝑖 

where 𝐴 is the coefficients’ matrix. This equation is solved by two iterations of the Gauss-Seidel 

method on the fine grid to find 𝑉𝑖 , the approximate of 𝑈𝑖 . Then I calculate the residual 𝑅𝑖 : 
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𝑅𝑖 = 𝑏𝑖 − 𝐴𝑉𝑖 

I then write the error equation 𝑒𝑖 = 𝑈𝑖 − 𝑉𝑖:   

𝐴𝑒𝑖 = 𝑅𝑖 

The next step is to transfer the solution of the error equation from the fine grid to the average grid, 

so-called the restriction step, by ten Gauss-Seidel iterations on the fine grid. For transferring, I 

used a first-order linear interpolation scheme in all three mesh directions. Then the whole 

procedure, recalculating residual, reconstructing error equation, and retransferring the error 

equation from average grid to coarse grid, will be repeated on the coarse grid. Then I go to the 

final step, the interpolation step when I transfer the results of the error equation from the coarse 

grid to the average grid by the linear interpolation. Here, I solve the error equation by two Gauss-

Seidel iterations for smoothing followed by the linear interpolation to transfer the results of the 

error equation from the average grid to the fine grid. Now the new velocity values can be found 

from the correction:  

𝑈𝑖 = 𝑒𝑖 + 𝑉𝑖 

If the convergence criterion is satisfied, I go to the next time step. Otherwise the whole procedure 

is repeated. 
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Appendix 2 Dimensionless form of governing equations for natural convection 

problems 
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= 1 

So, Prandtl and Rayleigh Numbers are as follows: 

𝑃𝑟 =
𝜇∞/𝜌∞

𝛼∞

=
𝛼∞

𝜐∞
 

𝑅𝑎 =
𝑔𝛽∞𝐿∞

3(𝑇H
∗ − 𝑇C

∗)

𝛼∞𝜈∞
 

The dimensionless governing equations are: 

∇ · 𝑈 = 0 

𝜕𝑈

𝜕𝑡
+ (𝑈 · ∇)𝑈 = −∇𝑝 + 𝑃𝑟∇2𝑈 − 𝑅𝑎. 𝑃𝑟.𝑇 

𝜕𝑇

𝜕𝑡
+ (𝑈 · ∇)𝑇 = ∇2𝑇 + 𝑄 

where: 

𝑄 =
𝑄∗

𝜌∞𝑐𝑝∞
𝛼∞(𝑇H

∗ − 𝑇C
∗)

𝐿∞
2
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Appendix 3 CityBEM 

CityBEM is a building energy model developed by Ali Katal. The model treats a building as a 

single-block air capsule with an indoor air cavity enclosed by walls and windows. The total thermal 

load of the building (𝑄𝑡) consists of external and internal parts, including wall/window/roof/floo r 

heat transfer (𝑄𝑤𝑎𝑙𝑙) , fenestration radiation heat (𝑄𝑓𝑒𝑠) , and infiltration-related heat transfer 

(𝑄𝑖𝑛𝑓 ); and various internal loads (𝑄𝑖𝑛𝑡) ASHRAE handbook (2013).  

𝑄𝑡 = 𝑄𝑤𝑎𝑙𝑙 + 𝑄𝑓𝑒𝑠 + 𝑄𝑖𝑛𝑓 + 𝑄𝑖𝑛𝑡  

Fenestration heat transfer includes the direct beam solar heat gain 𝑄𝑏 , diffuse solar heat gain 𝑄𝑑 , 

and conductive heat gain 𝑄𝑐 , which are calculated as. 

𝑄𝑓𝑒𝑠 = 𝑄𝑏 + 𝑄𝑑 + 𝑄𝑐  

Building infiltration rate depends on tightness, prevailing wind speed and direction, which can be 

quantified by using either air change rates or leakage details.  

𝑄𝑖𝑛𝑓 = 𝐹 · 𝜌 · 𝐶𝑝𝑎(𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛) 

where 𝐹 represents the infiltration rate (𝑚3 𝑠⁄ ), 𝜌 and 𝐶𝑝𝑎 represent the density and specific heat 

of the infiltrated air, respectively.  

The internal loads account for those from occupants, lighting, equipment, and appliances. 

𝑄𝑖𝑛𝑡 = 𝑄𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑡𝑠 + 𝑄𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔 + 𝑄𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡  

Here, all internal loads are calculated using the data provided by the archetype library in chapter 

8. 
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Indoor air temperature calculation 

The CityBEM model allows setting the indoor air temperature to be constant for the calculation of 

the mechanical heating/cooling energy demands or allowing the variation of indoor temperatures 

with the outdoor conditions during power outages.  

𝑚𝐶𝑝𝑎

𝑑𝑇𝑖𝑛

𝑑𝑡
= 𝑄𝑡 → 𝑇𝑖𝑛

𝑡+1 = 𝑇𝑖𝑛
𝑡 +

∆𝑡

𝑚𝐶𝑝𝑎

𝑄𝑡  

Where  

𝑚 = the indoor air mass (𝑘𝑔) 

𝐶𝑝𝑎 = the indoor air heat capacity (𝐽 𝑘𝑔. 𝐾⁄ ) 

𝑇 𝑡+1 = the indoor air temperature at time 𝑡 + 1 (𝐾) 

𝑇 𝑡 = the indoor air temperature at time 𝑡 (𝐾) 

∆𝑡 = the time step of the simulation (𝑠) 

Calculation of in-wall temperature 

The heat balance equation is also solved for wall internal temperatures. Following Figure shows 

the thermal resistance network model used for modeling a wall. The right-hand side of the transient 

heat balance equation is discretized implicitly, and the tridiagonal matrix equation is solved using 

the Thomas algorithm. In this study, five thermal nodes were used for all the walls to calculate the 

temperature distribution inside the wall.   
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Thermal network model of a wall. 

𝐶𝑖

∆𝑇𝑖

∆𝑡
=

𝑇𝑖−1
𝑡+1 − 𝑇𝑖

𝑡+1

𝑅𝑖−1 + 𝑅𝑖

+
𝑇𝑖+1

𝑡+1 − 𝑇𝑖
𝑡+1

𝑅𝑖 + 𝑅𝑖+1

+ 𝑆𝑖 


