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Abstract

Robust Design of Supply Network Subject to Disruptions by Considering
Congestion Effects

Alireza Ebrahim Nejad
Concordia University, 2019

This thesis is focused on the supply chain disruptions and it reviews cost-efficient risk
mitigation strategies to sustain supply chain functionality when disruptions occur. In particular,
we study the robust design of supply flow subject to minor operational risks and major
disruptions. The contingent sourcing along with strategic stock is incorporated as risk
management strategies. We consider a firm with two suppliers where the main supplier is cost-
effective but prone to disruptions and the back-up supplier is reliable but expensive. The back-up
supplier can scale up its capacity according to a speed related to its configuration in order to
supply the required flow of material when the main supplier disrupts. When minor disruption
occurs, the strategic stock can cover the losses. The design problem considered is to determine

optimal strategic stock level and response speed of volume-flexible back-up supplier.

The back-up supplier might not provide the required supply level instantaneously due to non-
steady production state and congestion during the response time. Therefore, there could be
material shortages if the actual level of available capacity during the response time is ignored.
The first chapter includes the incorporation of the clearing function into a contingency capacity
planning model in order to represent the impact of congestion. The appropriate response speed is
selected through a decision tree analysis considering different attitudes of the decision maker
towards risk. The results show that considering congestion impact is especially critical for risk-
neutral decision makers. The second chapter considers the randomness associated with the
available capacity through a two-stage robust optimization model. The results show
improvement in the quality of optimal solution by considering the randomness. The objective in
the third chapter is to find an equitable solution which has an efficient performance with respect



to all plausible scenarios. Therefore, the Ordered Weighted Averaging aggregation operator is
incorporated in the objective function of a MIP robust model. In order to address the
computational complexity associated with large set of scenarios, a novel clustering based
scenario reduction model based on location covering model is proposed. The results show that
the proposed methodology provide an accurate reduced scenario set within relatively short

computational time.
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Chapter 1

Introduction

1.1 Supply Disruptions

The number of natural and manmade catastrophes which disrupts the supply chain
performance has increased dramatically in the last two decades. The strikes at two of General
Motors parts plants in 1998 resulted in closure of 100 other plants, 26 assembly plants and
shortage of cars in dealers for several months even after the strikes (Snyder et al. 2016). Ford
stopped production in five plants because of the air traffic suspension after the terrorist attacks
on September 11th 2001 (Tang 2007). The longshoremen strike at the LA docks in 2002
significantly impacted the availability of raw materials and products which were supplied from
China and sold or consumed in United States (Vakharia and Yenipazarli, 2009). The
manufacturing plants in Northeastern of United States lost their production capacity for several
days due to the Blackout in August 2003 (Gonge et al. 2013). Such incidences represent the

vulnerability of supply chains to rare but high profile disruptions.

The supply disruptions could have a drastic impact on supply chains missing protection against
them. The Japan tsunami in 2011 interrupted Japanese automotive production, as well as
automotive production companies all over the world dependent on Japanese suppliers; Toyota,
Nissan and Honda closed their plants in Japan and General Motors suspended production in its
assembly plant in USA due to the shortage of parts (Ghadge et al. 2011). Thailand’s floods in
2011 lead to significant interruptions of the global computer hardware supply chain (Wai and

Wongsurawat, 2012). Ericsson lost 400 million euros after a random lightning bolt struck its
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semiconductors supplier firm in New Mexico in 2000 (Tang 2007). Land Rover Discovery
model’s production line was shutdown for a period of nine months as a results of its exclusive
chassis supplier’s bankruptcy which also leads to the loss of 1500 jobs (Revilla and Saenz,
2017). Furthermore, the interruptions in supply flow may also occur by operational risks
(Rezapour et al. 2018). The machine breakdowns in supplier’s firm, slow shipments, customs
delays, and quality defects are common types of operational risks associated with supply flow
which can interrupt the production at manufacturing/assembly plant (Lakovou et al. 2010).
Therefore, the vulnerability of supply chains to supply major disruptions and operational risks
motivates academicians and practitioners in identifying appropriate risk management strategies

which sustain the supply chain performance when such events happen.

Within the last two decades, there have been some examples where companies implement
proactive or reactive risk management strategies in order to recover from disruptions. After the
Hurricane Katrina in 2005, the Home Depot was able to satisfy the customers demand and kept
its stores running thanks to emergency supplies which were stocked-up after lessons learned
from past hurricanes. The Walmart started to stock-up its distribution centers and planned for
alternate distribution network with Hurricane Katrina approaching. Therefore, after the hurricane
struck, Walmart was able to quickly start delivering customers’ orders and recover from
disruption (Schmitt and Snyder, 2012). The proactive planning which both of these companies

implement enable them to recover from Hurricane Katrina quickly.

The Nokia, a cell-phone manufacturer executes a different strategy to deal with shortage of
supply which occurs due to a fire at its semiconductor chip supplier plant, Philips in New
Mexico in 2000. When Nokia realized that Philips could not quickly recover from disruption, it
switched its sourcing strategy to alternate suppliers which replace Philips. This proactive back-
up supplier selection strategy enabled Nokia to recover from the loss of their primary supplier.
However, Ericsson, the other customer of Philips who did not pre-plan for back-up supply
options was impacted and it was exposed to market share losses for several months (Sheffi
2005).



The examples mentioned above present the value of pre-planning which enable the supply chain
to quickly recover from disruptions. However, in order to recover from both operational risks
and disruptions, cost-efficient risk management strategies should be employed in the supply
chain structure based on the expected intensity and length of disruptions. These include strategic
decisions which have long-term implications on supply chain cost and performance and they

should be considered in the design stage of supply chain network (Klibi and Martel 2012).

1.2 Robust Supply Chain Network Design

The strategic decisions which are commonly considered in the supply chain network design
include location and capacity levels of production and distribution facilities, selection of
suppliers and third party contractors for logistic, warehousing, distribution and the location and
level of strategic buffers such as safety stock (Klibi and Martel 2012). These strategic level
design decisions are identified here and now but they impact the supply chain overall

performance which includes operational costs, service level and revenue for several years.

The supply chain network is exposed to day to day activities such as procurement, production,
warehousing, distribution, transportation and demand management which create the material
flow across the network. Today’s supply chains are globalized and dispersed across the world
due to business requirement which also make them vulnerable to uncertainties as described in
section 1.1 (Baghalian et al. 2013). Therefore, in order to ensure the efficiency of the supply
chain network under all circumstances in future, the factor of uncertainty should be considered in

design stage of the supply chain.

The uncertainties in a supply chain network are characterized by price of material, labor,
equipment, finished product and yield, lead time of suppliers, production, assembly plants and
product demand, exchange rates and etc. In addition to these business-as-usual uncertainties,
there are rare catastrophic events which might occur at any stage of supply chain. Such disasters
will shut down the entire supply chain for generally a long period of time. Most recent examples
of supply chain vulnerability to catastrophic events have been elaborated in section 1.1. Under

uncertainty, there might be different levels and quality of information available (Klibi et al.



2010). The partial availability refers to the situation where there is sufficient data available to
estimate the likelihood, length and/or intensity of a future event such as demand seasonality or
the machine breakdown. On the other hand, there might be lack of any information available to
estimate the attributes of a plausible event such as likelihood of an earthquake or a flood. This
latter category is called deep uncertainty which has a drastic impact on supply chain performance

since it is commonly not considered in the design stage of supply chain network.

The concept of robust supply chain network design has raised a lot of attention in decision
making under uncertainty literature. The term robustness represents the efficient flexibility
corresponding to a decision which provides many options for the selections to be made in the
future (Wong and Rosenhead, 2000). Therefore, considering the flexibility in the strategic design
of the supply chain network leads to the definition of a robust supply chain network design as
follows. A supply chain network design can be stated as robust within the planning horizon if it
has the capability to provide sustainable value creation under all plausible future scenarios which
may include business as usual uncertainties with partial level of information available as well as

catastrophic events with deep uncertainty (Klibi et al. 2010).

In order to design a robust supply chain network, the responsiveness and resilience mitigation
strategies could be incorporated into the supply chain structure. The responsiveness strategies
provide resources to protect the supply chain operations against frequent and low impact
variations in supply flow, customer demand and production or transportation capacity levels.
These strategies are embedded into the supply chain network beforehand. The most common
responsiveness strategies include capacity buffers, safety stock pooling, flexible sourcing and
subcontracting, overtime, product substitution, shipment rerouting (Tomlin 2006, Klibi et al.
2010, Chopra and Sodhi 2004, Sheffi 2005). The resilience strategies impact the supply chain
structure by determining the level of resources in order to avoid disruptions and recover fast
when disruptions occur. These strategic policies could also provide the capability for the efficient
implementation of responsiveness strategies. The resilience strategies are provided as a result of
investing in flexible and redundant network design. The flexibility based strategies are
incorporated into the supply chain structure beforehand but they are deployed as needed. Some



examples of flexibility based mitigation strategies include production systems with functionality
to produce multiple products, partially interchangeable and scalable suppliers. The redundancy
based strategies include having extra resources in the supply chain network in order to
compensate for the disrupted resource(s). The excess capacity and safety stock are examples of
redundancy based strategies. The difference between flexibility and redundancy based strategies
is that the flexibility based strategies are determined to have least cost impact since the supply
chain only incurs cost upon the deployment of these strategies. However the challenge with
flexibility based strategies is the time which is required for the solution strategy to become fully
operational. Therefore, the redundancy based strategies are efficient to cover business as usual
uncertainties due to their immediate availability. Furthermore, the flexibility based strategies are
least costly and most efficient to protect against disruptions which have low likelihood of
occurrence but significant impact (Tomlin 2006). The flexibility and redundancy based
mitigation strategies which are known to be efficient to protect the supply chain against supply

uncertainties are presented next.

1.3 Supply Mitigation Strategies

The impact of supply uncertainties is not limited to the subsequent downstream stage or facility.
The interruptions in supply flow impact the order on-time availability as it moves downstream
from the impacted stage or site. This behavior represents the existence of reverse bullwhip effect
which could be created as result of supply interruptions (Rong et al. 2009). In order to hedge the
supply chain’s performance against supply uncertainties, the most common mitigation strategies

are as follows (Snyder et al. 2016).

e Safety Stock: this is a redundancy based strategy which is deployed proactively.
Furthermore, this extra inventory could be raw material kept in supplier site or finished
good inventory piled in manufacturing firm. The safety stock mitigation is an efficient
strategy to cover frequent and low impact operational risks. However, it is not sufficient
to cover high impact and long disruptions. Furthermore, it is costly to hold inventory for

a long time for disruptions that may never occur.



e Multiple Sourcing: this flexibility based strategy requires the firms to source raw
materials from multiple suppliers. In case one supplier is disrupted, the firm only loses
material flow from disrupted supplier and it still receives supply from non-disrupted
suppliers. However, the order quantities received from non-disrupted suppliers do not
change after disruption.

e Contingent Sourcing: this strategy is considered as an extension of multiple sourcing
where the firm has multiple suppliers. In case one supplier is disrupted, the non-disrupted
suppliers ramp up production in order to cover for the disrupted supplier. This capability
is raised from other supplier’s volume flexibility however the challenge is in making the
substitute supply available within a short response time (Tomlin and Wang, 2010).

e Acceptance: there are some cases where the cost of mitigation strategies exceeds the
benefit associated with them. In such situations, the firm simply accepts the risk of
disruptions and the resulting financial consequences.

e Demand Substitution: it might be possible to shift the demand to another available
product when one product is out of stock because of a disruption. However, this strategy
significantly depends on product’s market such competitor’s status, the phase in product

life cycle in which disruption occurs.

In order to design a robust supply chain network with capability to sustain its functionality under
operational risks and disruptions, the mix of strategic stock along with contingent sourcing is
considered as an efficient strategy (Hopp and Yin 2006, Kouvelis and Li 2012). In this setting,
the strategic stock can be utilized to cover operational risks and the contingent sourcing can be
used as an effective reactive approach to cover major disruptions (Tomlin 2006, Schmitt 2011).
However, the effectiveness of contingent sourcing depends on making the product available
within a short response time (Tomlin and Wang, 2010). The response time is defined as the time
when the firm responds to a supply disruption by placing an emergency capacity increase order
with the backup supplier plus the time required for the backup supplier to provide the required

capacity order (Tomlin 2006).



The response time is a crucial characteristic of contingent sourcing since only a fraction of the
required capacity might be available within this period (Matta et al. 2007). In addition to this,
shifting the demand to the back-up resource during the response time would create congestion
that increases the lead time in that facility. This congestion is created as a result of randomness
associated with parts arrival and back-up supplier production rate. Ignoring these facts in the
supply chain planning stage leads to the overestimation of the available backup capacity,
resulting in creating product shortage within the response time. This may also degrades the
robustness of the supply chain.

The reduction in the response time can be achieved by making investment in scalable equipment
which can quickly ramp up their capacities in small increments, whereas a supplier that is relying
on dedicated equipment to reduce production cost will have a long response time (Putnik et al.
2013). While improving the response time can be similar to reducing the mean time to repair
(MTTR) (Hopp and Iravani, 2012), it is also critical that the backup supplier provides an
appropriate level of capacity during the response time. This is critical mainly due to the loss of
market share during this period, creating significant long-term implications for the firm
(Hendricks and Singhal, 2005). The amount of the available capacity during the response time
depends on response speed defined as the speed of the backup supplier to reach the desired
capacity level (Niroomand et al. 2012). The layout configuration of the backup supplier is one of
the main factors identifying the response speed level. Therefore, a strategy to improve the
available capacity within the response time can be achieved through the backup supplier’s

investment in layout configuration.

The strategic stock could also be used at the beginning of a major disruption and during the
response time to keep the supply chain running until the back-up material can be received
(Schmitt 2011). However, the required level of strategic stock depends on available capacity of
the back-up supplier during the response time. Furthermore, the available capacity of back-up
supplier during the response time depends on level of response speed. Therefore, the level of
strategic stock and response speed of back-up supplier are key strategic level supply chain design

decisions that may significantly impact the operation costs in the future. In order to design a



supply chain network with robustness against supply uncertainties, the optimal level of strategic
stock and response speed of back-up supplier should be identified in the design stage.
Furthermore, an accurate estimate of the backup supplier’s capacity during the response time and
specifically the impact of congestion over capacity should be considered in design stage in order
to prevent potential product shortages in future. These requirements shape the objectives of this

thesis and they are summarized in following section.



1.4 Scope and Objectives

The main scope of this thesis is to present the decision makers with a tool to design a robust
supply chain subject to operational risks and disruptions of supply network. The list of the

specific contributions is summarized as follows.

. To present an approach to determine the available capacity of back-up supplier during
the response time by considering the congestion impact.

. To determine the response speed of back-up supplier and the level of strategic stock in
order to achieve a robust supply chain network subject to supply uncertainties and
random capacity levels during response time when partial information is available.

. To determine the response speed of back-up supplier and the level of strategic stock in
order to achieve a robust supply chain network subject to supply uncertainties and
random capacity levels during response time when there is deep uncertainty about the

future business environment.



1.5 Thesis Outline

This manuscript is organized as follows. Chapter 2 reviews the relevant literature in Supply
Chain Network Design (SCND), Risk Mitigation Strategies, Robustness, and Scenario
Reduction. Chapter 3 presents the modeling assumptions and the mathematical formulation of a
deterministic mixed-integer programming (MIP) based capacity planning model which also

include the non-linear clearing function in order to represent the congestion impact.

Chapter 4 provides a stochastic optimization MIP based capacity planning model in which the
response speed level of back-up supplier and the level of strategic stock are first stage decision
variables and the major and minor disruptions along with level of capacity available during the
response time are considered as random parameters. The scenario tree approach to generate

original scenario set is also presented.

Chapter 5 considers the situation where there is a deep uncertainty about random parameters and
it presents a robust optimization MIP based capacity planning model. Furthermore, the Ordered
Weighted Averaging (OWA) Aggregator operator is incorporated in the objective function of the
robust model in order to achieve a fair solution with respect to all plausible scenarios. The
computational complexity of this problem is reduced by presenting a novel clustering based MIP
scenario reduction model. This model also includes the gradual coverage function of facility
location problems in order to improve the computational time. The thesis ends with conclusions
and future research directions in Chapter 6.
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Chapter 2

Literature Review

In this Chapter we review the relevant literature to this thesis. More specifically, in Section
2.1 we review the concept and application of contingent sourcing as a risk mitigation strategy.
Furthermore, we discuss the requirement to consider the operational characteristics of contingent
sourcing in the design stage of supply chain. In Section 2.2, we explain the concept of robust
supply chain design and the application of solution robustness as a benchmark to measure the
robustness of a supply chain design. We also review the methodologies to compute solution
robustness with respect to different levels of uncertainty. Since the supply chain design problems
with deep level of uncertainty are computationally intractable, we review the literature on
scenario reduction methodologies in Section 2.3. This chapter ends with a summary of gaps

which exist in the reviewed literature.
2.1 Contingent Sourcing

Sethi and Sethi (1990) define flexibility as the capability of changing in order to deal with a
changing environment. They categorize flexibility into two groups called mix flexibility and
volume flexibility. The mix flexibility is defined as the capability to produce multiple products.
The mix flexibility has been incorporated into the design of manufacturing systems and it
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inspires the development of Flexible Manufacturing Systems (FMS). The examples of FMS are
computer numerically automated-CNC machines which can produce a variety of products with
low change over time (Mehrabi et al. 2000). On the other hand, the volume flexibility is defined
as the ability to alter the production capacity of a manufacturing process in order to meet the
demand requirements (Hallgren and Olhager, 2009). The idea of volume flexibility leads to the
development of Reconfigurable Manufacturing Systems (RMS) which has a modular
configuration enabling them to change their production capacity by adding or removing modules
(Koren et al. 1999). An industrial application of RMS is presented in Deif and EIMaraghy (2006)
in electronics industry. Other examples in metal machining and assembly systems can be seen in
Koren et al. (1999).

The concept of volume flexibility could be part of supply chain risk mitigation strategies to deal
with supply uncertainties. In this setting, the supply network includes multiple suppliers where
the suppliers have volume flexibility as a built in technology. In the case of disruption in any of
suppliers, the non-disrupted suppliers will act as back-up and they increase their production
capacity to cover for the disrupted supplier(s). This strategy is also known as contingent sourcing
(Snyder et al. 2016).

There exists a growing body of literature which incorporates the contingent sourcing along with
strategic stock in order to mitigate the impact of supply disruptions. Kouvelis and Li (2012)
evaluate the value of safety stock, safety lead time and emergency back-up in managing
uncertain supply lead-time. The emergency back-up is assumed to consist of price fluctuating
suppliers in which the required capacity is available instantaneously. They conclude that the
effectiveness of emergency back-up increases in randomness associated with original order lead-
time. Qi (2013) studies a supply chain with one retailer and two suppliers which include an
unreliable primary and a reliable but more expensive back-up. The back-up supplier is assumed
to be able to provide the requested capacity immediately, similar to Kouvelis and Li (2012). Qi
(2013) identifies the optimal waiting time of the retailer before switching to the back-up supplier

in the case of primary supplier breakdown. Although these papers assume the instant availability
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of supply flow as the firm places the capacity increase order with back-up supplier, the Table 2.1

presents other works which consider the back-up supply flow to become available after a delay.

Table 2.1 Summary of the reviewed supply chain design problems with contingent sourcing

Strategic Design _— Back-up
Author(s) Decision(s) Objective(s) Availability
. . Safety stock, Safety lead .
Kouvelis and Li time, Time and Size of Total cost minimization Immediate
(2012) back-up order back-up
Qi (2013) Cap waiting time, Safety Total cost minimization Immediate
stock back-up

Bundschuh et al
(2003)

Bilsel and
Ravindran (2011)

Fang et al (2012)

Hopp and Yin
(2006)

Schmitt and Singh
(2012)

Suppliers selection

Primary and back-up
suppliers selection and
order allocation

Optimal sourcing strategy
Safety stock and back-up
capacity locations

Safety stock location,
Back-up response type

Improving reliability and robustness

Total cost and total lead-time
minimization, Maximizing total

quality of products

Total cost minimization

Total Cost minimization

Total cost minimization, Target

service level

After response
time

After response
time

After response

time

After response
time

After response
time

2.1.1 Response Time

Bundschuh et al. (2003) present different models for strategic design of robust and reliable
supply chain. In the robust model, the supply chain could have contingency supply after a pre-
determined lead time when disruptions occur. This is provided through extra supply of remaining
suppliers in addition to their regular contractual supply. Bilsel and Ravindran (2011) develop a
multi-objective stochastic supplier selection and order allocation model with randomness in
demand, supplier’s capacity and costs. They assume that the back-up supplier might require a
positive lead time before supplying the required service level. Furthermore, Bilsel and Ravindran
(2011) demonstrate the value of the solutions achieved by stochastic model compared to the
deterministic counterpart in their problem. Fang et al. (2012) propose a dynamic programming

formulation to select the optimal sourcing strategy for different risk profile settings. They assume
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the back-up supplier to have unlimited capacity which would be available after response time.
The authors present the companies optimal sourcing strategy between dual and contingent

sourcing where the latter is promising if the back-up supplier has short lead-time.

Hopp and Yin (2006) try to find the optimal placement of the inventory and/or back-up capacity
to protect a multi-echelon supply network in the case of catastrophic failures. They conclude that
the inventory or back-up capacity should be provided at most in one node along each path to the
customer. The location of inventory is strongly affected by the response time since it can
improve the product availability during this period. Schmitt and Singh (2012) determine the
location of the safety stock and response type of the back-up resource in a multi-echelon supply
chain where disruptions could occur at any stage. They assume the back-up supplier to have
limited capacity and provide the disrupted capacity partially after a certain period called response
time. The results show that finished goods inventory increase service level significantly. In
addition to this, it is better to have quick and small response as the probability of the upstream
disruptions increase. While, the cited papers above assume the supply capacity to be entirely
available after the response time, there are a few papers in literature which study the strategies to
reduce the response time.

Schmitt (2011) studies the optimal selection of the response speed of the back-up resource in a
multi-echelon supply chain where disruption might happen at any stage in order to protect a
predetermined service level under all plausible future scenarios. Although Schmitt (2011)
assumes that the firm can make investments in equipment to improve the response speed but she

does not explain those investments explicitly.

Wang and Koren (2012) identify machine configuration as a parameter which affects the
response speed of manufacturing systems. In a serial configuration, the response speed is slow
since the added capacity can only become available after completing the capacity installation and
ramp-up phases of all stages. On the other hand, the pure parallel configuration provides faster
response speed level because each machine could go under the aforementioned phases
independently. However, this may come at the higher investment cost since each machine should
be capable of performing all the steps in order to create a parallel configuration. The differences
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in the manufacturing system configuration indicate that the configuration selection of the back-
up resource affects directly the response speed and it should be considered in the supply chain

design stage where the trade-off is between cost and response speed.

2.1.2 Response Time Characteristics

The back-up resource may provide some portion of the supply order during the response time.
Klibi and Martel (2012) consider the partial availability of the capacity of a depot during the
recovery period. They propose a discrete stepwise function to represent the gradual capacity
recovery of the disrupted depot based on the intensity of the disruption and the time to recovery.
Niroomand et al. (2012) illustrate the partial availability of the capacity within the response time
in a strategic capacity planning model. The authors consider a two-echelon supply chain where
the production stage includes a dedicated manufacturing system (DMS) and a reconfigurable
manufacturing system (RMS) as a volume-flexible backup resource achieved through
reconfiguration. The reconfiguration process refers to capacity installation and ramp up/down
phases. The model incorporates a partial availability of the RMS capacity during the ramp-up
phase to better represent the modular structure of the RMS. However, these models ignore a
critical aspect in the level of material flow which is originated in the back-up resource during the

response time.

2.1.3 The Impacts of Congestion on Throughput during the Response Time

In a situation where the main resource is disrupted, its demand would be transferred to the
backup resource under a contingency strategy. This may create an overload of demand at the
backup resource due to the randomness in production capacity during the response time. This
randomness is a result of frequent occurrences of the system breakdown, rework, scrap and low
skill of the operator to work with new configuration during the response time (Matta et al. 2007).
As a result of this overload, queues will build up, degrading performance due to the congestion.
Ignoring this fact may result in creating products shortages during the response time along with

negative financial impacts (Pahl et al. 2007).
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In order to consider the impact of congestion on the system throughput, Kim and Uzsoy (2008)
employ the clearing function in a multi-work center capacity expansion problem. The clearing
function is initially introduced by Karmarkar (1989) and presents the expected throughput of a
resource over a planning period as a function of the expected Work in Process (WIP). The
majority of studies that use clearing functions are in the production planning field. There are a
few studies in risk management which consider the impact of congestion. Vidyarthi et al. (2009)
propose a stochastic capacity planning model for a two-echelon supply chain that includes
distribution centers and customers under random demand arrivals. The model’s objective is to
minimize the lead time and capacity expansion costs, while the relationship between the lead
time and congestion is captured through queuing models. Even though Vidyarthi et al. (2009)
represents the congestion effect in a capacity planning model under the common problems of
matching supply and demand, this phenomenon so far is ignored in the literature that focuses on
the management of major disruptions (Hopp and Yin 2006, Schmitt 2011).

2.2 Robustness

Recently, the concept of robustness has drawn a lot of attention in the literature with focus on
decision making under uncertainty. The robustness concept could have different meanings based
on the decision making context in which is it applied to (Roy 2010). While the model robustness
measures the solution feasibility, the solution robustness measures the performance of solution
with respect to the optimal solution of each scenario (Mulvey et al. 1995). This thesis is focused
on solution robustness or more specifically supply chain network design robustness. In the
supply chain management literature, the term robustness is defined as the extent to which the
supply chain is able to carry its functions for a variety of plausible scenarios (Snyder and Daskin,
2006). Furthermore, a supply chain design is identified as robust if it has capability to sustain
value creation under operational risks and major disruptions in future (Klibi et al. 2010, Wieland,
2013).

2.2.1 Solution Robustness

In order to evaluate the robustness of a supply chain design with respect to future disruption

occurrences, the concept of solution robustness has been applied as a performance measure in
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several papers. A solution is called robust if it remains close to optimal for any occurrence of
scenarios (Sahebjamnia et al. 2018). Baghalian et al (2013) identify the optimal location of
facilities subject to supply side disruptions by minimizing the trade-off between expected cost of
supply chain and solution robustness. They compute the solution robustness based on the
difference between the cost of each scenario and expected cost of all scenarios. This approach
has been frequently applied in supply chain network design problems in order to compute the
solution robustness (Sadghiani et al. 2015, Rouzhen and Wang 2016, Nooraie and Parast 2016,
Joonrak et al. 2018).

In the same context of problems, there have been other methodologies incorporated into the

problem’s formulation in order to measure solution robustness. Snyder and Daskin (2006) p -

robust formulation minimizes the expected cost of the supply chain while bounding the relative

regret in each scenario to be lower than the constant p . They compute the regret of a solution in

a given scenario as the difference between the cost of the solution in that scenario and the cost of
the optimal solution for that scenario. Sawik (2014) develop a combinatorial stochastic
optimization formulation in order to identify robust solutions in a supplier selection and demand
allocation problem subject to supplier disruptions. He tries to minimize the ordered weighted
averaging aggregation of the expected value and the expected worst-case value of the objective
function in order to obtain an equitably efficient solution. Such a solution is expected to
equitably optimize the performance of a supply chain with respect to all plausible scenarios as

well as in the worst-case scenario.

2.2.2 Solution Robustness under Deep Uncertainty

All approaches cited above could be applied into the supply chain network design problems in
order to achieve solution robustness when the probabilities of scenarios are available. However,
there is an open challenge for the case in which the scenario probabilities are unavailable called
deep uncertainty (Klibi et al. 2010). Terrorist attacks, epidemics, geo-political instability,
extreme weather events due to the climate change and related natural catastrophes are typical
examples which are typically rare and hard to predict (Heckmann et al.2015). The Minimization

of maximum cost or regret (absolute or relative) is one of the most common approaches to
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achieve solution robustness when scenario probabilities are not available (Kouvelis and Yu,
2013). However it is known to be too pessimistic because of considering only the worst case

scenario.

In order to compute solutions with less level of conservatism, Roy (2010) presents a new
robustness formulation called bw-robustness which not only provides a solution that guarantees
an objective value of at least W across all scenarios but also maximize the probability of
reaching a target value of b (b>w). This approach holds great appeal for managers due to its
simplicity however the results are limited to the range provided by two boundary values of W
and p. Kalai et al. (2012) propose another robustness approach called lexicographic « -
robustness which minimizes not only the maximum cost but also the second largest cost, the
third one and so on with respect to a given threshold called « . This methodology is considered

as a combination of Minmax and p -robust formulation described earlier. Furthermore, the

lexicographic o -robustness formulation compensates for the conservatism of Minmax
formulation by reordering the performance vector e.g. cost from the worst to the best and
identify the robust solution such that the reordered performance vector is close to a given
threshold. Although the lexicographic « -robustness approach is known to provide fair solutions
with respect to objectives considered, but it has equivalent computational complexity to Minmax

formulation especially for problems with large number of scenarios (Kalai et al. 2012).

2.3 Scenario Reduction

In order to reduce the computational complexity in stochastic programming and robust
optimization associated with large number of scenarios within the original scenario set, one
solution is to develop a reduced scenario set of the original set by selecting a few representative
scenarios. This approach is called scenario reduction in literature. There are different scenario
reduction techniques in literature including backward reduction and forward selection heuristics
developed by Dupacova et al (2003), k -means clustering algorithm (Sutiene et al. 2010) and the
probabilistic distance based reduction methodologies (Zeballos et al. 2014, Li et al. 2014).
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The forward selection heuristic determines scenarios that will not be eliminated in a recursive
manner. The scenarios with the minimum sum of the distances to the unselected scenarios are
preserved. The termination condition is a specified number of scenarios that has to be preserved.
The backward reduction heuristics has an inverse mechanism with the objective set to identify
scenarios that have to be deleted. Both of these approaches have been frequently applied in
supply chain network design literature (Govindan and Fattahi 2017, Esmaeili et al. 2016, Hamta
et al. 2017). Furthermore, Dupacova et al. (2003) states that the reduced scenario sets determined
by forward selection heuristic are slightly better with respect to accuracy however the

computation requires higher CPU time.

Heitsch and Romisch (2003) propose new versions of forward selection and backward reduction
algorithms presented by Dupacova et al. (2003). The major differences include considering all
deleted scenarios into each backward step of backward reduction algorithm simultaneously and
also assigning identical weights to each scenario in the objective function of optimization model
in order to simplify the forward selection processes. The new algorithms are called fast forward
selection and simultaneous backward reduction. When comparing accuracy, Heitsch and
Romisch (2003) results show that fast forward selection algorithm has best performance.
Furthermore, the simultaneous backward reduction algorithm also provides more accurate
solutions compared to backward reduction algorithm of Dupacova et al. (2003) but at the

expense of higher computational times.

Sutiene et al. (2010) develop a new clustering approach called k -means clustering which group
data points into clusters such that each data point is in the cluster whose mean is closest. Khatami
et al. (2015) utilize this methodology to reduce the size of the scenario set prior to applying
Benders’ decomposition to solve their closed-loop supply chain network design problem. Crainic
et al. (2014) use k -means clustering to create multi-scenario sub-problems. Applying a
progressive hedging-based meta-heuristic to solve sub-problems, the results show that the quality
of solutions is improved compared to the case where heuristic is applied to single-scenario sub-
problem. Furthermore, the time complexity is proved to be linear with respect to the number of

scenarios.
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Zeballos et al. (2014) apply a reduction algorithm based on the probability distance metric to
their multi-period, multi-product, closed-loop supply chain (CLSC) design problem which is
subject to uncertain levels in the amount of raw material supplies and customer demand. The
probability distance is a function of scenario probabilities and the distances between scenario
values. Therefore, the reduction algorithm deletes scenarios when they are close or have small
probabilities. Finally, a sub-set of the original scenario set is achieved which include preserved
scenarios with new probabilities. The preserved scenarios represent the deleted scenarios and
their new probabilities are the summation of their probabilities in the original scenario set plus
the probabilities of scenarios which are represented by them. Furthermore, the reduction
algorithm Zeballos et al. (2014) applied to their CLSC problem can be found in the library
SCENRED of GAMS. Their results show the importance of using a reduction algorithm to
decrease the size of the problem, considering several outcomes at each time period for each

uncertain parameter.

Li et al. (2014) propose a new scenario reduction approach which minimizes not only the
probabilistic distance between the distributions of the original scenario set and the reduced
distribution of selected scenarios but also the difference between the best, worst and expected
performance. To the best of our knowledge, this approach is the only MIP optimization based
scenario reduction methodology available in literature. Li et al. (2014) results show that their
approach has a better performance compared to GAMS scenario reduction routine SCENRED?2.
However, this method is constrained by the size of the problem such that it cannot compute the
reduced scenario set for problems with large number of scenarios in an efficient manner. In order
to address this limitation, Li and Floudas (2016) develop a sequential scenario reduction
framework for problems with multiple uncertain parameters. First, the scenario set is
decomposed into multiple subsets where each subset is created based on a single uncertain
parameter. Next, the single stage scenario reduction approach proposed by Li et al. (2014) is
applied to each subset. Finally, the selected scenarios correspond to each subset are included in
the reduced scenario set. Li and Floudas (2016) results verify the efficiency of the proposed
decomposition based approach in solving large scale problems generated from multiple uncertain
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parameters. However, this approach is not applicable to large scale scenario sets developed based

on a single uncertain parameter since such problems are not decomposable.

2.4 Conclusion

In the first part of literature review, we focus on the works which apply contingent sourcing as
part of their risk mitigation strategies to deal with supply disruptions. Considering the response
time as a crucial parameter in the successful implementation of contingent sourcing, we review
the literature on strategies to reduce the response time. The investment in the back-up supplier
configuration helps to increase the response speed however the efficiency of this strategy
depends on the consideration of available capacity levels during response time. There are works
in the literature such as Klibi and Martel (2012), Niroomand et al. (2012) which focus on
estimation of the partial capacity available during the response time but the impact of the
congestion created as result of randomness in production rate of back-up supplier over system
throughput is ignored so far. This may result in overestimating the back-up supplier capacity
during the response time and therefore creating product shortages. We resolve this issue in

Chapter 3 by incorporating the clearing functions into the contingency capacity planning model.

The selections of the optimal level of back-up supplier’s response speed and strategic stock are
our design problems; therefore we focus on the robust design of supply chain in the second part
of our literature review. Furthermore, we model the randomness associated with available
capacity during the response time in a robust optimization model in Chapter 4. Former studies
such as Bundshuh et al. (2003), Bilsel and Ravindran (2011), Fang et al. (2012) and Schmitt and
Singh (2012) ignore this fact in their analysis. This may result in an inaccurate representation of

the production capacity during the response time.

The concept of solution robustness could be applied to measure the robustness of a supply chain
design solution. Therefore, our objective is to achieve solution robustness in identifying our
design decisions. In order to achieve solution robustness, there are two streams of research which
consider different levels of information that might be available about uncertain parameters. The
first stream assumes there is enough information available to estimate the probabilities of

disruptions. The common approaches to achieve solution robustness are minimization of the
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trade-off between expected cost and solution robustness (Baghalian et al. 2013) and p -robust

formulation (Snyder and Daskin, 2006). In Chapter 4, we assume that scenario probabilities are
available and we apply an approach similar to Baghalian et al. (2013) to achieve solution

robustness.

The second stream represents the situation where it is not possible to estimate the probabilities of
disruptions. In this case, the lexicographic « -robustness formulation proposed by Kalai et al.
(2012) could be applied in order to achieve fair solutions with respect to all plausible scenarios.
However, there is computational complexity associated with this approach especially for

problems with large number of scenarios.

The scenario reduction is known as an efficient approach to reduce the computational complexity
in stochastic programming and robust optimization when scenario sets are large. The review of
literature on the most well-known scenario reduction techniques reveals that the MIP
optimization models calculate the reduced sets with better solution quality compared to heuristic
based techniques (Li et al. 2014) however they cannot compute the reduced set for problems with
large number of scenarios in a reasonable time. Therefore, we propose a novel clustering based
MIP optimization scenario reduction model which includes the gradual coverage function in
order to improve the computational time in Chapter 5. The computed reduced sets are then used
in a robust optimization model which includes an Ordered Weighted Averaging aggregator
operator in its objective function in order to achieve fair solutions when scenarios probabilities

are not available.
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Chapter 3

Responsive contingency planning in supply
risk management by considering congestion

effects

In this Chapter, we focus on contingent sourcing as a cost-effective risk management
strategy to deal with major supply disruptions. In order to improve the supply chain
responsiveness, our objective is to determine the appropriate response speed level of the volume-
flexible backup supplier. To this end, we develop a decision-making tool which considers the
operational characteristics of contingent sourcing such as response time and congestion impacts
in order to make an accurate decision. We evaluate the impact of the different failure and
recovery probabilities over the selection process. Furthermore, we investigate whether it is

important to consider the congestion effects in the supply chain strategic level design decisions.

We consider a single product supply chain that includes a warehouse with dual sourcing as
presented in Figure 3.1. The main supplier is cost-effective as a result of dedicated facilities

(DMS) but prone to disruptions. It could be up or down completely for an integer number of
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periods within the planning horizon. Similar to the Nokia and Chiquita’s suppliers (Tomlin
2006), we assume that there is a backup supplier located in a low-risk region that is available
when the main supplier is disrupted. The backup supplier has volume-flexible production
facilities where it can scale up its capacity according to a speed related to its configuration.

Furthermore, the production cost of the backup supplier P, is higher than the main supplier’s

production cost P, due to its scalability.

The supply chain is analyzed in a long-term planning horizon T (multiple years). This
assumption is made because of the fact that the planning horizon should be longer than the
recovery period of any disruption scenario (Tomlin 2006, Schmitt 2011). Furthermore, each
period t represents a quarter. The product demand is deterministic and follows the classical
lifecycle pattern which includes introduction, growth, maturity and decline phases (Rink and
Swan, 1979). It is assumed that the product demand is not affected by the disruption since the
main supplier is not located in the demand region. Demand in any period, D,, must be met by the

main and backup supplier. If the demand is not met within its period, it is considered as lost,

represented by ;.

DMS Supplier

Warchouse

RMS Supplier

Figure 3.1 The supply chain network configuration

As illustrated in Figure 3.2, the main supplier provides the required supply up to a maximum

level of Cy during normal periods. The raw material py, would be released into the DMS
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facility at the beginning of the period, which results in the production throughput of X, .. Due to
the queuing effects, there would exist a work in process inventory, @, .. Furthermore, the

inventory level at the end of the period is represented by v ;.

If the main supplier which is equipped with DMS fails due to a major disruption, the scalability of
the back-up supplier with RMS is being used to supply the required flow of material. Therefore,
the backup supplier increases its capacity to meet the warehouse demand. The time and the

magnitude A, of these changes are decided in a multi-period contingency capacity planning

model with respect to the trade-off between shortage cost S, RMS reconfiguration cost R, RMS

excess capacity cost E, and RMS production cost P, , as described in section 3.1.1.

HH Demand Level

[] DMS Capacity

j [] RMS Capacity

‘ Disruption Periods

Max DMS
Capacity

Time

‘/—/ S */—/
Response Time Ramp down Period

v

DMS Fails

Figure 3.2 An example of a contingency plan execution.

The RMS consists of machines having a base structure on which modules can be added to

increase the capacity. Each module can increase the capacity with discrete steps C, where

smaller increments mean better scalability. Furthermore, there is an upper limit f on the number
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of modules that can be attached to a base due to machine or space limitations (Jordan and Grave,

1995). The target capacity & would be gradually achieved within the response time due to the

reconfiguration process (Koren et al. 1999). Therefore a fraction of the target capacity

represented by z, is available during the response period. Since the backup supplier is not fully

capable of producing at the required rate during the response time, shifting the demand to the
backup supplier creates an overflow of demand, resulting in congestion. This congestion would
decrease the throughput during the response time due to the increase in the lead time.

In order to implement a responsive contingency planning, operational characteristics such as
response time should be considered in the design stage (Tomlin et al. 2010). Otherwise, the
supply chain may incur shortages due to overestimation of the production capacity. For this
purpose, we model the available capacity during the response time and the impact of the

congestion over the system’s throughput, described in sections 3.1.1.1 and 3.1.1.2 respectively.

As indicated in Figure 3.2, the backup facility reaches the desired level at the end of the response
time. Furthermore, the backup supplier ramps down to its initial capacity at the end of the
disruption, when the main supplier resumes supplying the product to the warehouse. The amount
of the available capacity during the response time depends on the response speed such that a
faster response speed provides more capacity within the response time. Furthermore, the
response speed depends on the RMS layout configuration (Hale and Moberg, 2005).

A parallel configuration leads to a faster response speed compared to a serial configuration. A
configuration with mostly parallel machines will increase the available capacity during the
response time at the expense of increased reconfiguration cost. On the other hand, the RMS
capacity within the response time is important, since the supply chain incurs shortage costs if the
available capacity level during this period is lower than the required capacity. As a result of these
factors, RMS layout configuration should be determined at the design stage of the supply chain
in order to minimize the expected costs. Note that the selected configurations would remain fixed
during the planning horizon while the capacity might change upon the realization of the different

disruption scenarios.
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In this Chapter, we identify a scenario as the status of the main supplier within the planning
horizon. It could be active or inactive due to the disruption occurrences. With respect to the
frequency and the length of disruptions within a specified planning horizon, several scenarios
can be identified. Since the focus is on the rare catastrophic events, we determine the scenarios
where disruptions occur once within the planning horizon. Therefore, disruption scenarios are

generated with respect to the time of occurrence m and the length of the disruption n.

In the following section, we present a two-stage solution methodology to determine the
appropriate response speed of the backup supplier. For a given response speed, the contingency
plans corresponding to the disruption scenarios are generated in the first stage. This is repeated
for various speed levels. In the second stage, the appropriate speed level is selected in a decision

tree analysis.

3.1 Solution methodology

In order to find the optimal response speed of the backup supplier, a solution methodology based
on mixed integer programming and decision tree analysis is proposed as illustrated in Figure 3.3.
We first develop a mixed integer programming (MIP)-based multi-period capacity planning
model for a deterministic demand within the planning horizon. Afterwards, the capacity plan is
subjected to a set of possible DMS disruption scenarios, where each scenario’s probability of

occurrence is calculated using discrete Markov chain distribution.
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Generation of the Contingency Plans

o o J MIP-Canacity Plannine Made]

Disruption
Scenarios

Response Speed :
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— — — |—p! MIP-Capacity Planning Mode! [«
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| | Costs of contingency capacity plans

;H

Evaluation of the Response Speeds
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-¢——— Disruption
Scenarios

Decision Tree Analysis

Optimal Response Speed

Figure 3.3 Solution methodology.

Each disruption scenario is inserted to the MIP model to represent the capacity disruptions to the
DMS facility, which in turn will trigger the need for the RMS to ramp up its supply capacity to
meet the demand. We analyze three different response speed levels; each corresponds to a certain
level of available capacity during the response time. For each speed level, the MIP model
generates the contingency capacity plans and their resulting costs corresponding to different
disruption scenarios. The costs of the contingency capacity plans as well as the probabilities of
disruption scenarios are then incorporated in a decision tree. For a given failure and recovery
probability, the optimal response speed under all plausible future scenarios is selected through

this decision tree analysis.

Since the selection of the response speed can depend on the attitude of the decision maker
towards risk, we can determine the optimal policy under risk-neutral and risk-averse conditions.
The risk-neutral decision maker selects the optimal response speed with the objective of

minimizing the expected cost under all plausible scenarios, while the risk-averse decision maker
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would like to minimize the expected cost of worst-case scenarios. The worst-case scenarios are
identified as the scenarios which have the highest operational cost according to the objective

function.

We first introduce the MIP capacity planning model in section 3.1.1. More detailed explanations
are provided for the constraints representing the available capacity during the response time and
congestion effects in sections 3.1.1.1, and 3.1.1.2. The modifications required to generate the
contingency plans are given in 3.1.2. Finally, the decision tree analysis is presented to provide
details on the second phase of the proposed methodology.

3.1.1 Capacity planning model

The first step of the proposed methodology consists of the mixed integer programming model to
determine the capacity, production, inventory and WIP levels of DMS and RMS suppliers for a
predetermined planning horizon. The list of notations and decision variables is shown Table 3.1
and

Table 3.2.
Table 3.1 List of Notations
Indices

t Current time
d DMS supplier
r RMS supplier
i Number of added or removed modules
i RMS nominal capacity level

Input parameters
T :{1, 2,...,T'} Planning horizon consisting of T' periods
M A big number
D, Demand at time t
Ry Production cost of DMS
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P, Production cost of RMS
R Reconfiguration cost
s Shortage cost
E, Excess capacity cost of DMS
E, Excess capacity cost of RMS
Hy Finished good holding cost of DMS
H, Finished good holding cost of RMS
W Work in Process holding cost of DMS
W, Work in Process holding cost of RMS
My Release material cost of DMS
M, Release material cost of RMS
C, Maximum DMS capacity
C RMS Module capacity
" The coefficient of the upper limit for actual RMS capacity
' change
. The coefficient of the lower limit for actual RMS capacity
change
| :{0,1, 2., f} Set of number of modules that could be added or removed
with maximum of f
J ={C,2C,..., fC} Set of RMS nominal capacity levels
Table 3.2 List of decision variables
Decision variables
X4t DMS production at time t
X RMS production at time t
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RMS added capacity at time t

RMS removed capacity at t

Lost demand at time t

DMS satisfied demand at time t

RMS satisfied demand at time t

DMS excess capacity at time t

RMS excess capacity at time t

DMS finished good inventory at time t
RMS finished good inventory at time t
DMS Work in Process at time t

RMS Work in Process at time t
Amount of raw material released to DMS at time t

Amount of raw material released to RMS at time t

RMS actual capacity at time t
RMS nominal capacity at time t
RMS actual capacity added at time t

RMS actual capacity removed at time t
1if i modules are added to RMS; 0 otherwise
1 if nominal capacity j is reached; 0 otherwise

1 if demand loss exists; 0 otherwise

1 if there is capacity addition; O otherwise
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The objective function (1) includes the production cost, the system reconfiguration cost, the lost
demand and the excess capacity costs, the holding cost of the finished good inventory, the work

in process holding cost and the raw material purchasing cost.

Minimize Z =" {P,Xx,, + P.X, + R(A; +A))+Ss, + Eye,, +E &, + Hyvy +Hv,,

teT (l)
+Wy05 + W, +Mypy + Mrpr,t}

r“rt

After the demand is realized for a period, it could be satisfied through the inventory or the
current RMS and DMS production (2), (3). The unsatisfied demand is lost and it is not carried
over to the next period (4). We assume that it is not possible to have both demand loss and the
inventory at the end of any period (5), (6). The work in process inventories consist of the jobs in
the queue or under operation. Constraints (7) and (8) represent the balance equations between the

raw material release, production quantity and WIP level for each period.

Constraints:

Vit =Vara T Xa = Zay vteT (2
Vie =Viea + X0 — 70 vteT (3
g+ +S =D vteT (4
s, <M(—b) vteT (5
Vye +Vee S Mb vteT (6)
Og =Wy 1+ Pyr —Xay vteT (7)
Oy = O Pr— Xy vteT (8)

The production of the DMS and RMS are limited to the available capacity of each system, and
any unutilized capacity is considered as excess capacity (9), (10). The maximum workload in any
period is bounded by the available capacity during that period, since the utilization of a resource
cannot exceed 100% (11), (12).

Xt TEa4 =C, VteT 9
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X & =T, vieT (10)
@y 1+ Py <C, vteT (11)

wr,t—1+pr,t Sz.t VteT (12)

Since RMS capacity can be changed to respond to DMS disruptions, the response time and the
capacity changes should be represented in the MIP model. The following section describes how
these two transitions are represented.

3.1.1.1 The impact of response time on RMS capacity

In order to have an appropriate estimation of the available capacity of the RMS during the
reconfiguration process, we assume that only a portion of the added capacity is available during
the response time. Therefore, during this period we deal with two characteristics of capacity: the
nominal capacity and the actual capacity. The nominal capacity determines the amount of

capacity that the system is set to reach for the following period (13).

=8t A —A vteT (13)
Tt:é—l+ut_|t vVteT (14)
& = fC vteT (15)

The actual capacity will be less than the nominal capacity since some portion of the nominal
capacity is lost during the ramp-up period. In a ramp-down period, the actual capacity will be
slightly higher than the target level. Therefore, the system is not able to reach the nominal
capacity instantly. The actual capacity represents the amount of capacity that is available during
the response time (14). During the reconfiguration process, we assume that RMS capacity can be
added or removed by changing the modules of the system. The maximum number of modules
that could be added to a system determines the maximum RMS capacity (15). Since adding or
removing of the modules requires a new setup, we assume that adding or removing each module

incurs a reconfiguration cost.
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Within the recovery period, Klibi and Martel (2012) represent the gradual capacity recovery of
the disrupted depot. In contrast, we assume that there is no supply from the main supplier.
Furthermore, we assume that the RMS provides the capacity gradually during the response time.
The available capacity of the RMS is modeled as a fraction of nominal capacity through the
constraint set (16) to (17).

u +l <U (A +AD)+M A=y, Viel,VteT (16)

u L =L (A +A ) -MA-y,,) Viel,VteT (17)

For each capacity change, we assume that L, to U, of the added capacity is available during the
response time, where U,, L, €[0,1]. The impact of the RMS response speed is illustrated through
the RMS’s available capacity during the response time, such that there is more capacity
availability within the response time as the response speed increases. This is indicated through
the coefficients of the upper bound U, and lower bound L, in constraints (16), (17). The value of
these coefficients would be higher for faster speed levels. This can be explained by observing the
evolution of the throughput curve TH(t) during the response time. As shown in Figure 3.4, the
actual capacity during the ramp-up period is measured by the area under the throughput curve.
Accordingly, the maximum capacity that can be added is equal to the area determined by
TH(A;)xt=A,. The evolution of this throughput curve depends on the layout configuration
type (Niroomand et al. 2012). A serial configuration will demonstrate a slower evolution in the
beginning of the response time and will reach the desired throughput only at the end of a period
when all the stages’ reconfiguration is complete. On the other hand, a parallel configuration’s
throughput curve can improve faster thanks to better scalability (Wang and Koren, 2012). This

will result in improved capacity availability for a parallel configuration.
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Figure 3.4 The throughput curve during response time.

We assume that the nominal capacity can be changed in predetermined module sizes, which are
identified in constraint (18). In any period where there is a reconfiguration process, there could
only be a capacity addition or removal (19), (20). These constraints prevent the selection of both
capacity addition and removal simultaneously. The response time is also determined through a
set of binary variables, in the case of no reconfiguration process; no capacity could be added or
removed (21) - (23).

A +A :gicyi,t vteT (18)
A{ +Uu, < Mg, vteT (19
A+ <M(1-q) vteT (20)
Z;:yi,t =1 vteT (21)
At++UtSMZf1:yi,t vteT (22
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A{+ltsMiyi,t vteT (23)
i=1
The consideration of supply disruptions at the main supplier can result in an overflow of the
demand towards the backup supplier. This overflow results in an accumulation of WIP despite
the ramp-up at the backup supplier. There are two drawbacks associated with this situation. First,
the congestion created by this overflow will decrease the throughput. Second, the decreased
throughput will then result in lost demand. Furthermore, the effects of congestion are also
important in order to properly assess the actual capacity of the suppliers, especially in a

contingency strategy.

3.1.1.2 The impact of the congestion on throughput

Under the contingent rerouting strategy, the disruption in the supply chain can lead to significant
losses if the selected backup supplier is not responsive enough. These losses can have negative
implications in the short term as well as in the long term. In the short term, there would be some
lost sales if customers are not filled promptly. In the long term, the incurred losses may result in
losing market share to competitors and end up being far more severe than short-term losses
(Farahani et al. 2013). In our context, the amount of these losses depends on the scalability of the
backup supplier. Despite the scalability level of the backup supplier, rerouting the total demand
at the beginning of the response period will create an overflow when the backup capacity is not
100% available. As a result of this overflow, the congestion effects such as queue build up and
increased lead time will be observed. Therefore, the amount of the backup supply during the

response time would be limited.

The consideration of congestion effects can allow better representation of the available capacity
during the response period. This representation will allow determining the appropriate response
speed level of the backup supplier. In order to incorporate the effects of congestion, we present
the suppliers as a single server system with Poisson arrivals and general service time distribution
(M/G/1 system). The relationship developed using this model allows developing the clearing

function, defining the relationship between the workload and throughput in steady state
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(Missbauer 2002). Based on this clearing function, the expected system throughput E(X,) in any

period is a function of the expected work load E(@,_, + p,), available capacity 7 and the mean

and the variance of the processing time:

E(x,) = %[r+ k+E(w_ +p,) —\/12 +2tk +k* = 27E(@,_ + p) + 2KE(@,_, + p,) + E(o_, + p,)? J (24)

Where k is defined based on the mean 1 and the variance iz of the processing time as
i o
follows:
uo? 1
K="—+— (25)
2  2u

The clearing function in (24) is concave and nonlinear (Missbauer 2002). An outer
approximation approach has been used to generate a set of lines in order to linearize the MIP
model. In order to minimize the error between the actual curve and the approximated lines, the
location and the number of tangent points are determined by the subtractive clustering method
(Chiu 1994). This allows identifying the number of lines that will approximate the clearing

function. The detailed explanation of the method is presented in Appendix A.

Based on this linearization, the constraints generated for each supplier can be defined as follows.
The production by the DMS supplier could not be more than the expected throughput, which is
estimated by its clearing function (26). This estimation is based on a predetermined service rate.

The set of lines n represents the clearing function where A is the slope and B, is the constant

value of the line 7 .
Xg0 <A (@444 +p4)+B, vVneN VteT (26)

Since the RMS has varying capacity levels within the planning horizon, a set of binary variables

are presented in (18), (27), (28) to activate the clearing function corresponding to each level.
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Sgt =ijj,t vteT (27)
ka:l vteT (28)

Similar to (26), the production of the RMS supplier in the periods with fixed capacity level j is

limited by the expected throughput (29). In this constraint, the set of lines N; is employed to

replace the clearing function.
X <A (@, + o) +B, +M(2-Y,, —K;,) Vjeld,VnpeN,VteT (29)

If there is a change in the capacity level of the RMS supplier, the throughput during the

reconfiguration period is a function of both the workload and actual capacity, as indicated in
Figure 3.5.

Throughput

400

200

180

185 0

Capacity Workload

Figure 3.5 Clearing function.
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In order to incorporate this clearing function in the MIP model, it should be converted into a set
of hyper planes. Based on this conversion, the production quantity of the RMS supplier within

the response time once it adds i modules to reach to the capacity level of j could not exceed the

expected throughput (30).

For any capacity increment scenario i, j , the expected throughput is approximated through the
set of hyper planes V. In this set, the parameters A, B, are the slopes with respect to the

workload and capacity respectively and G, is the constant value of the hyper plane v.

X <A@ +p)+B -G +M@2-y, -k, Viel,Vjiel,VoeV VteT (30)

NE
The above constraint incorporates the set of hyper planes V;'; as an upper bound over the

production quantity of the RMS when it increases its capacity level. In order to apply this

constraint for capacity reduction case, the set of hyper planes V;7; is presented in (31).

X <A@, +p)+B -G, +M2-y,-k,) Viel,Vjel VoeV,VteT (31)

ij?

The non-negativity constraints are presented as follows:

Xq0 20, X, >0, A7 >0, A, 20, §,>0, 7,,>0, 7,, >0, &,20, &,>0,

rt — rt —

Ve 20, v, 20, 0, 20, o, 20, p,; 20, p,, 20, 7,20, & =20, u, >0,

ne VteT (32)
l, >0, b, 6{0,1}, (o} 6{0,1}
Y, €{0.1 Viel,VteT (33)
ki {03} Viel,VteT (34)

While the presented MIP model generates the capacity plan under the normal operational
condition of the DMS, additional variables and constraints allow integrating the disruption
scenarios and generating the performance information for each scenario. In the case of DMS
failure, the contingency capacity plan is generated by modifying the MIP according to the steps

explained in the following section.
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3.1.2 Representation of disruptions in the MIP model

In generating the contingency plan for each disruption scenario, the following sets of changes are

incorporated in the MIP model. First, the binary variable o, is incorporated to indicate the DMS

supplier failure.

1 If DMS is available
O = vteT (35

0 otherwise
Once the DMS supplier is disrupted, the demand could be satisfied through current inventory
and/or RMS production (36). For a given disruption scenario there should be no production and
material release to the DMS supplier when it is disrupted (37), (38). The DMS WIP level during
the disrupted periods remains equal to the WIP level of the last period before the disruption (39).

Vot =Vara T OXg — 74, vteT (36)
Xgi t&q, =0, Cy vieT (37)
Pay S MG, vteT (38)
Oy =0y 0 (0g —Xq1) vteT (39

In order to avoid the MIP model building inventory in advance of the disruption period m, the
inventory levels of the DMS and RMS and the capacity plan of the RMS for the periods before

the disruption are set to the values obtained in the initial capacity planning model. These values

are presented in constraints (40)-(42) by ly,, I;;, c, accordingly. This allows generating a

contingency plan, which requires the use of the backup supplier for the disrupted periods.

Vae = lgy Vtell.,m-1  (40)
Vee = ex vt ell.,m-1  (41)
Y. =C, Vte{l..m-1 (42
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These changes allow generating the supply chain contingency plan under the failure of the DMS
supplier. In the disruption periods, the MIP model should trigger a capacity change in the backup
supplier according to a preselected response speed.

3.1.3 Decision tree analysis

Due to the stochastic nature of the disruptions, an optimal response speed can be identified based
on the expected supply chain costs and the attitude of the decision maker towards risk. In
identifying the optimal response speed for the backup supplier, a decision tree analysis is
conducted. The decision tree is a well-known technique in the field of decision analysis under
risk (Berger et al. 2004).

As indicated in Figure 3.6, the square node is the decision options and the circle nodes represent

the chance events. The decision options regarding the response speeds RS, include Fast speed

RS,, Medium speed RS, and Slow speed RS,. For a disruption scenario (m,n) belonging to the
set of all plausible future scenarios s with the probability of Rm,n)» each of these response
speeds associated with the backup supplier corresponds to a total cost Z(Rs,,m,n) S a result of

the contingency plan generated in the MIP model. This allows computing the expected cost

corresponding to each decision through the following formula:

ERSK)= 2. RmmZ(Rrs,,mn) vkell,2,3  (43)
(m,n)eS
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Figure 3.6 The decision tree for the optimal selection of the response speed (e.g., T=8).
In order to identify the probability of each disruption scenario, the Markov discrete time

distribution is incorporated. The parameter « represents the probability of a disrupted period

following a non-disrupted period (failure probability). The parameter B defines the probability

of a non-disrupted period following a disrupted period (recovery probability). Based on these

assumptions, the probability of a disruption at time m with the length of n is computed through

(44)

ne{l..T-m},vm<T (45)
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I:)Disruption (m’ n) = CZ(l_ a)mil (1_18)n71 N=T-m+1L,Vm<T (46)

The details regarding the derivation of these formulas can be found in Appendix B. The expected
cost criteria can be used to identify the optimal response speed where the decision maker is risk-
neutral. The response speed, which minimizes the expected cost of the supply chain under all
plausible future scenarios, is the optimal speed. If the decision maker is risk-averse then the

criteria of Conditional Value at Risk CVaR can be utilized.

Once the decision maker is risk-averse, the risk of high losses as a result of disruptions is
controlled by the confidence level , . This means that there is a target cost of portfolio VaR such
that the costs for , percent of the scenarios would be less than or equal to VaR . The remaining
1-y percent of scenarios are the worst-case scenarios. A risk-aversive decision maker minimizes

the expected cost of the worst-case scenarios defined as Conditional Value at Risk CVaR (Sawik
2012):

CVaRgy, =VaRy +(1—7)" D PuyAuy (47)
(u.v)eS
Where (U,V) are the scenarios that cost more than VaR and A are defined as follows:
A(u,v) = Z(RSk,u,v) _VaRRSk (48)

The optimal response speed could also be identified with the objective of minimizing the
expected supply chain costs under all plausible future scenarios as well as the expected supply
chain costs when subjected to worst-case disruptions. In this case, a coefficient 4 represents the
weight of these objectives in the decision-making stage. For that purpose, the following formula

is employed.

Min 2E(RS,) + (1~ 2)CVaRy, (49)

The decision tree analysis allows identifying the appropriate response speed of the backup
supplier with the objective of minimizing the expected supply chain costs with respect to the
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attitude of the decision maker towards risk. The selection of the optimal policy depends heavily
on the probability of failure and recovery of the main supplier. The value of these probabilities
can depend on several parameters, such as the hazard exposure level of the geographical zone in
which the facility is located, as well as the ability to return to the operational condition once it is
disrupted (Klibi et al. 2010). Section 3.2 presents an example to investigate the optimal selection
of the response speed with respect to different failures and recovery probabilities of the main

supplier.

3.2 Numerical Experiments

This section presents an example in order to illustrate the proposed methodology. We consider
the supply chain associated with a product whose lifecycle lasts for eight periods. The demand

level follows a classical pattern over the lifecycle of the product, as indicated in Table 3.3.

Table 3.3 Demand scenario

t 1 2 3 4 5 6 7 8
D, 406 530 580 629 629 486 384 303

The MIP model is used to generate the capacity plan by determining the capacity, production,
raw material, inventory and WIP levels within the planning horizon. In identifying the capacity
plan, the following assumptions have been made regarding cost and capacity-related input data,
as indicated in Table 3.4.

While the raw material purchasing cost is the same for both suppliers, the production cost of the
RMS is higher than that of the DMS (Tomlin 2006). Therefore the WIP and the finished good
inventory holding cost of the RMS are higher than for the DMS. There are three different RMS
reconfiguration costs corresponding to three different response speed levels. The reconfiguration

costs increase as the response speed levels are improved.

Table 3.4 Supplier’s costs parameters $/Unit
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Cost
M M Hq H R(Slow) R(Medium)  R(Fast)

r r

parameter

Value 20 20 20 100 10 15 35 40 40 60 100

The RMS excess capacity costs and the product’s shortage costs are presented in Table 3.5. The
product shortage costs are defined with respect to the demand pattern, such that there is a higher
shortage cost in the introduction and growth periods compared to the maturity periods of the
lifecycle. On the other hand, the decline periods have a lower shortage cost compared to the
maturity phase.

Table 3.5 Excess and shortage costs $/Unit

t 1 2 3 4 5 6 7 8
E, 20 25 30 35 40 50 60 70
S 460 430 410 390 370 350 330 310

The supplier with the DMS facility has a fixed capacity of 500 while the RMS-equipped supplier
can vary its capacity according to the steps indicated in Table 3.6. The initial configuration of the
RMS is a base which provides 100 units of capacity. It can raise its capacity level by adding

modules according to Table 3.6.

Table 3.6 RMS capacity levels with respect to its structure pcs/Period

i 0 1 Module 2 Modules 3 Modules
J 100 200 300 400

The coefficients of the upper and lower bounds in constraints (16), (17), which represent the
amount of the available capacity during the response time, are identified in Table 3.7. According
to scalability characteristics explained in 3.1.1.1, we consider higher values for faster response
speed configurations. Since adding higher capacity would result in a longer reconfiguration
process, the percentage of available capacity decreases as the number of added modules

increases (Niroomand et al. 2012).
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Table 3.7 The coefficients of capacity boundaries corresponding to different speeds

Response speed Slow Medium Fast

Number of added modules (i) 1 2 3 1 2 3 1 2 3

U, 0.75 05 04 085 065 05 095 085 0.7
L 05 04 02 065 05 03 08 0.7 055

Based on the stated assumptions regarding the supply chain and input data, the following
experiments are conducted. First, we present the benefit of considering the effects of congestion
in evaluating the performance of a contingency strategy. Second, an optimal contingency
strategy is assessed by identifying the response speed of the RMS within a range of failure and
recovery probabilities. The selection of optimal response speeds are then evaluated based on the
attitude of the decision maker towards risk. Specifically, we look at the value of considering
congestion in the selection of response speed at various levels of tolerance to risk. We quantify

this impact through the difference in service levels.

The MIP model to generate the regular capacity plans as well as the contingency plans has been
implemented in ILOG CPLEX version 12.5. By setting the desired optimality gap to 0.0001, the
results of the contingency plans have been obtained with an average optimality gap of 0.0015 at
an average computation time of 4.5 seconds.

3.2.1 The impact of congestion on contingency strategy performance

In this section, the impact of considering the congestion is evaluated by observing the supply
chain service level under two conditions. First, the MIP model is used to determine the capacity
plan, the production quantities, WIP and inventory levels corresponding to DMS and RMS
suppliers without considering the impact of congestion (load-independent model). For this
purpose, the constraints (26), (29), (30), (31) representing the clearing functions are removed.
This implies that any amount of release to a production system will be exactly produced which is

an overestimation of capacity.
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Afterwards, the clearing functions present the actual production quantity of the DMS and RMS
based on the capacity and WIP levels which have been determined in the load-independent
model. The actual demand losses are then computed by the difference between demand and
production quantities obtained using the clearing function. This will give the actual service level
which is determined as a fraction of satisfied demand over the total demand within the planning

horizon.

Second, in order to compute the supply chain service level once the congestion impact is
considered (load-dependent model), the proposed MIP model including clearing functions is
executed. To illustrate the results, we present the case for a DMS disruption scenario at time 3
with a length of 3 periods, in Table 3.8.

The production quantities X, X, in the load-independent model are overestimated as a result

of ignoring the congestion (e.g., X;, =500 while the actual production value is 432). Once the
impact of congestion is considered (load-dependent model), the MIP model would increase the
RMS capacity & to a higher level compared to the load-independent model to cover the
shortages (e.g., & =100in the load-independent model versus &, =200 in the load-dependent

model). As a result of this, the service level of the load-dependent model would be higher than
its load-independent counterpart. This behavior is observed in all plausible scenarios.

Table 3.8 Capacity planning in load-independent versus load-dependent models

Decision Variables 1 2 3 4 5 6 7 8

MIP results in load-independent capacity plan (no congestion

effects)

Xd 1 474 500 0 0 0 486 384 303
& 100 100 400 400 400 100 100 100
7 100 100 250 400 400 250 100 100
Xet 0 0 250 400 400 0 0 0

Actual production levels due to congestion effects
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ACT x4,
ACT x,,
st

Service Level

419 432 0 0 0 424 358 290
0 0 186 333 333 0 0 0

55 68 356 296 296 62 26 13
0.70

Service Level

MIP results with load-dependent capacity plan (with congestion
effects)
431 405 0 0 0 425 379 302
100 200 400 400 400 100 100 100
100 184 330 400 400 250 100 100
0 100 262 333 333 61 5 1

0 0 318 296 296 0 0 0
0.77

Figure 3.7 represents the service level of the load-independent model and load-dependent model

for disruptions which might occur at time 3 at varying lengths, with an RMS at medium response

speed.
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Figure 3.7 The impact of considering congestion effects on service level.

The results show that considering the congestion effects in developing a contingency plan for a
supply chain improves the service level. This is due to the fact that the backup supplier capacity
can be planned accordingly. As indicated in Figure 3.7, the service level decreases in both cases
as the length of the disruption increases. This happens due to losing the main supplier, which has
a higher capacity level compared to the backup supplier. As the disruption length increases we
observe that the service level difference between two cases decreases. This is due to the fact that

the backup supplier can’t replace the main supplier over long periods of disruption.

The results presented so far show improvement in the service level of the supply chain by
considering congestion. Furthermore, the supply chain responsiveness to major disruptions
improves once the appropriate response speed of the RMS is determined at the design stage of
the supply chain configuration. While considering congestion improves the accuracy of the
decision-making process, it also increases the complexity of the solution methodology. So the
questions are what is the impact of not considering congestion? Under which risk tolerance
levels is it worth considering the impacts of congestion? The following section answers these
questions through the use of the proposed methodology.

3.2.2 The value of incorporating congestion in the selection of response speed

In identifying an appropriate response speed in a contingency strategy, the trade-off between the
investment cost of responsiveness and lost sales can be considered as main determinants. The
outcome from this trade-off can be different depending on the attitude of the decision maker

towards risk.

For the given example, the response speed of the RMS is determined through the decision tree
analysis which is explained in section 3.1.3. This selection is based on the outcomes of the MIP
model which excludes the clearing functions. Moreover, it is done with respect to three different
attitudes of the decision maker toward risk. The impact of the different failure and recovery
probabilities on the decision-making process is evaluated by a sensitivity analysis. The failure

probabilities range between 0 and 0.2 with increments of 0.05, while the recovery probabilities
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are within 0 and 0.5 with increments of 0.1. With the objective of evaluating the benefit of
considering congestion, the aforementioned process is repeated by adding the constraints related

to the clearing function to the MIP model.

3.2.2.1 Risk-neutral decision maker

In a risk-neutral behavior, the optimal response speed is selected by comparing the expected cost
of the supply chain under all plausible future scenarios. The probability of occurrence for each
scenario is determined by the failure and recovery probabilities of the DMS supplier. As
illustrated in Figure 3.8, the expected cost of the supply chain grows as the failure probability

increases and/or the recovery probability decreases.
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é’. >08000.0 Recovery Probability = 0.3
1)
------- Recovery Probability = 0.4
458000.0
= = Recovery Probability = 0.5
408000.0
358000.0
308000.0 = : : : ‘
0 0.05 0.1 0.15 0.2
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Figure 3.8 Sensitivity analysis of the expected costs of the supply chain.
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The probability of the scenarios with disruption increases as the failure probability increases.
Since these scenarios have higher cost compared to the scenario without disruption, the expected
cost of the supply chain increases. On the other hand, the probability of the scenarios with long
disruptions increases when the recovery probability decreases. These scenarios have higher cost

compared to the scenarios with short disruptions. Therefore the expected cost of the supply chain

increases.
A. Load Independent B. Load Dependent

50% - 50% -
Z40% Z 40% -
S 30% - 3 30% -
:Té n;-.. Slow
g 20% - g 20% - % Medium
2 ]
€ 10% - & 10% - B Fast

0% ; . ‘ 0% ‘ . ; ‘

0 0.05 01 0.15 0.2 0 0.05 01 0.15 0.2
Failure Probability Failure Probability

Figure 3.9 Optimal response speed, Risk-neutral.

Figure 3.9 represents the optimal selection of response speed for various failure and recovery
probabilities in two conditions. Figure 3.9.A indicates the results once the congestion effects are
ignored in the decision-making stage. The slow speed is optimal in most of the failure and
recovery probability combinations except the region corresponding to high failure and a long
recovery period. Since a higher amount of the capacity is required within the response time for

those situations, the medium speed is selected.

The results presented in Figure 3.9.B are achieved by considering the congestion impact. The
selected response speeds are at higher levels compared to Figure 3.9.A. These differences result
from the need to have higher speed levels to cover the losses that would be created as a result of
congestion. In such cases, there are significant improvements in the expected service level of the
supply chain, as presented in Table 3.9. For a selected subset of failure and recovery

probabilities, the expected service level of the supply chain is presented in Table 3.9.

51



Table 3.9 The expected service level of the supply chain (%)

Failure Probability (o )

Recovery

Probability (B ) 001 005 01 015 0.2
Load-Dependent Models 959 909 914 886 851
Load-Independent Models 0.2 813 775 738 698 731
Improvement in Service Level 146 134 175 189* 120
Load-Dependent Models 96.2 925 888 911 87.1
Load-Independent Models 0.5 815 786 758 725 744
Improvement in Service Level 147 139 13.0 187* 127

*A slower response speed is selected in load-independent model

As shown in Table 3.9, the expected service level of the supply chain is higher when congestion
effects are incorporated. In addition, the improvement in service level is significant if an
incorrect response speed level is selected when congestion effects are ignored (e.g., B = 0.2, a =
0.1 and o =0.15).

3.2.2.2 Risk-averse decision maker

In the case where the decision maker is risk-averse, the response speed is selected to minimize
the expected cost of the worst-case scenarios according to the level of risk aversion. Figure 3.10
presents the selection of the response speed when the congestion is ignored for a risk-averse

decision maker at various tolerance levels.
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Figure 3.10 Optimal response speed, Risk-averse, Load-independent models.

For the low level of the risk aversion e.g., vy = 82.5%, the slow speed is not optimal since it
provides a low capacity within the response time. The medium speed is selected as the optimal
speed in all combinations of the failure and recovery probability since there are 17.5% of the
worst-case scenarios in the decision-making stage which require a higher amount of the capacity

within the response time.

As the decision maker becomes more risk-averse, the focus would be on the smaller portion of
the worst-case scenarios, albeit those with higher impacts. Therefore, more capacity within
response time is required to minimize the impact of such disruptions. As a result, the need for
medium speed is reduced and the tendency to select fast speed increases. The optimal selection

of the response speed when we consider the congestion effects is indicated in Figure 3.11.
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Figure 3.11 Optimal response speed, Risk-averse, Load-dependent models

Incorporating congestion provides the same trend in the selection of response speed:

as the

decision maker is more risk-averse, faster speeds are selected. However, higher speed levels are

selected for various levels of the risk aversion compared to Figure 3.10. These would lead to

significant improvements in the expected service level of the supply chain, as illustrated in Table

3.10.
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Table 3.10 Improvements in the expected service level of the supply chain with load-dependent
models (%), Risk-averse

Failure Probability (a )

Recovery Y
Probability ( B)

0.01 0.05 0.1 0.15 0.2

82.5% 1460 13.30 13.00 21.00* 22.00*
87.5% 1460 17.00* 19.00* 1410 14.00
o 92.5% 1460 16.00* 13.90 1410 14.00
97.5% 15.00* 13.30 14.00 14.10 14.00
82.5% 1470 1400 1390 11.30 12.70
87.5% 1470 1400 1390 11.30 12.70
0o 92.5% 1470 14.00 1390 14.00 15.00
97.5% 1470 1400 14.00 14.70 15.00

*A slower response speed is selected in load-independent model

For a decision maker with the risk aversion level of 82.5%, the correct selection of response
speed by considering the congestion impacts increases the expected service level of the supply
chain by 21% and 22%. However, these improvements decrease as the level of the risk aversion
increases (e.g., 16% for y = 92.5%). This is due to the fact that as the decision maker becomes
more risk-averse, faster speed levels would be selected for high probability of failure and/or low

probability of recovery in both load-dependent and load-independent models.

3.2.2.3 Mean-risk approach

The optimal response speed could also be determined by considering the risk neutrality and risk
aversion simultaneously. In this case, the weight of the risk neutrality and risk aversion in the
decision-making process are determined through A and 1-A respectively in (49). Figure 3.12
indicates the optimal selections of response speed by ignoring the congestion impact for y =

97.5% with different values of A.

55



50% epmaemoncn
Py Yot
ot b s
LI IR QO

£ a0% s s
RO T R i ey

3

g Resee:

| 30% frsonsiiies
0’0.0.0’0’0 K

= idststeceet

a Jodetetecetes
ttetint

ol et

20% s

(] 0RO

H ossones

] totatelsts
HRRAA

H retoteted’

S 10% 55

e 1U7A o0
Ko
!

0%

0 0.05 0.1

0.15
Failure Probability

0.2

[}
2
o
4
a
£
@
2
®
@
@
3

g

g

g

o
5

[GEES SRR e hovont by AR
P R R AHRRE L J‘l’O‘v“.: ¥ ,:':(’4 1:.:.:.:’:’:’:
} e

‘
e
s

D R A R R R KRR
s Geaanasasad
OO0

S
S

5o
5
thees

..
Setatels
e

S
3

e
e
e
e
<

otet
sseiete
OO
sasaseseset
aSstete!

%
3
o
2
%
2

5
s
2020

o

5505050505
500
RSy

0 0.05 0.1 0.15
Failure Probability

0.2

Recovery Probab

D A B OO

D R PR L OROR0

st Ty oyt RO eed

Py Gt oy R
o

R K X O I AL 00y
B e Rt
B e L RS

L O DS N0
s e e r e et

LRI LR
00000000:::.:%.” RS R ATRAKK
CUDSRIELaos
XK KA
Slow
% Medium
B Fast

0 0.05 01 0.15
Failure Probability

0.2

Figure 3.12 Optimal response speed, Mean risk, Load-independent models, y = 97.5%.

For the low value of A, the fast response speed has been selected as the optimal speed for the

majority of the failure and recovery probability combinations. This is due to relatively high

importance of worst-case scenarios and the need for more capacity within the response time.

However as the weight of the risk neutrality increases, the lower levels of the response speed are

selected. The effect of incorporating the congestion in the decision process of a mean-risk

decision maker is presented in Figure 3.13.
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Figure 3.13 Optimal response speed, Mean risk, Load-dependent models, y = 97.5%.

The comparison of Figure 3.12 and Figure 3.13 reveals that considering the congestion leads to

the selection of faster speed levels for a mean-risk decision maker. The proper selection of the

optimal response speed would result in major improvements in the supply chain expected service

levels, as presented in Table 3.11.
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Table 3.11 Improvements in the expected service level of the supply chain with load-dependent
models (%), Mean-risk

Failure Probability (o)

Recovery A
Probability ( B)

0.01 0.05 0.1 0.15 0.2

25% 15.00* 13.30 13.90 14.10 14.00
0.2 50% 16.00* 17.00* 13.90 14.10 14.00
75% 1460 17.00* 19.00* 14.10 14.00
25% 1470 14.00 14.00 14.70 15.00
0.5 50% 1470 1400 1390 11.30 15.00
75% 1470 1400 13.90 11.30 23.00*

*A slower response speed is selected in load-independent model

The results show that if the relative importance of risk neutrality is low, the improvement in the
expected service level as a result of correct estimation of the response speed is low (e.g., 15% for
B=0.2, 1=25%). This is because the selection of response speed in both load-dependent and
load-independent approaches does not change for high probabilities of failure and/or low
probabilities of recovery. As the A increases, this improvement in service level would increase
considerably (e.g., 17%, 19% and 23% for A = 75%). This is due to the fact that as the attitude of
the decision maker increases toward risk neutrality, ignoring congestion effects results in the
selection of a slower response speed than it should. Accordingly, it is essential to incorporate

congestion effects for risk-neutral decision maker.
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3.2.3 Discussion of results

The first section of the numerical results shows the improvement in supply chain service level
upon considering the impact of congestion in the planning stage. This is achieved by triggering
the RMS supplier to provide higher capacity level to cover the shortages due to congestion.
Afterwards, the response speed of the RMS is determined with the purpose of improving the

supply chain responsiveness once the DMS is disrupted.

For a risk-neutral decision maker, the numerical results show the optimality of the slower
response speeds for the lower probability of DMS failure and higher probability of recovery.
However, as the failure probability of the DMS increases or the recovery probability decreases,
the tendency is toward the faster speeds. Considering the congestion effect leads to the selection
of the higher speed levels which increase the expected service level of the supply chain
significantly. A risk-aversive decision maker would select faster response speed levels compared
to the risk-neutral counterpart. However, we observe that the selection of response speed is
indifferent with respect to the congestion effects. This is due to the fact that risk-averse decision
maker is sensitive to even the slightest loss. In the mean-risk setting, as the attitude of the
decision maker increases toward risk neutrality, significant improvements are observed in the

supply chain performance upon considering the congestion.

If the failure and recovery probabilities of the main supplier are accurate, the proposed
methodology would give a precise perspective to the supply chain management regarding the
selection of the backup source’s response speed. The outcome of this selection could affect the

configuration of the backup source.

This chapter presents the supply chain design requirements in order to incorporate the contingent
sourcing as a risk mitigation strategy to cover supply major disruptions. However, in order to
design a robust supply network, the operational risks should also be considered in the design
stage. Therefore, in next chapter, we review the supply chain design requirements in order to
apply a combination of contingent sourcing and strategic stock to cover major disruptions and

operational risks. Furthermore, we consider the scenario in which the available capacity during
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the response time is random (Matta et al., 2007) and we present the methodology to consider this

randomness in decision making stage.
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Chapter 4

On the value of response time characteristics

In robust design of supply flow

In this Chapter, the objective is to design a robust supply network which could sustain the
flow of material supply under operational risks and major disruptions in future (Wieland 2013).
We incorporate contingent sourcing and strategic stock as cost-effective risk management
strategies to deal with supply interruptions. In this setting, the strategic supply chain design
decisions include identifying the optimal level of strategic stock and response speed of volume-
flexible back-up supplier. To this end, we develop a decision-making tool which considers the
randomness associated with available capacity in addition to congestion impacts during the
response time in order to improve the quality of solutions. Furthermore, we evaluate the value of

considering the response time characteristics in the strategic design stage of supply network.

We consider a supply chain network with similar configuration to the supply network presented
in Chapter 3. There is a single product supply chain that includes a manufacturing plant with
dual sourcing. The main supplier is cost-effective as a result of dedicated facilities though prone

to disruptions during which it may be partially or completely unavailable. There is a back-up
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supplier located in a low-risk region that is available when the main supplier is unavailable. The
back-up supplier has volume-flexible production facilities where it can scale up its capacity
according to a speed related to its configuration. However, this scalability increases the
production cost of the back-up supplier.

Demand in the normal periods can be met by the main supplier up to a maximum level of C,.

The raw material p¢, is released into the main supplier at the beginning of the period, which

results in the production throughput of x,. This throughput is less than the maximum capacity

due to queuing effects, resulting in work in process inventory, . In the case of minor

disruption occurrences, the strategic stock ¥ which is provided at the beginning of the planning
horizon can cover the losses. When the main supplier fails due to a major disruption, the back-up

supplier is used to supply the required flow of material (Tomlin 2006). If the demand is not met

within its period, it is considered as lost, represented by ;.

The back-up supplier increases its capacity to meet the plant demand once a major disruption

occurs. The target capacity ¢, is gradually achieved within the response time because of the

non-steady production during this period (Matta et al. 2007). Therefore a random fraction of the
target capacity is available during the response period. In addition to these, shifting the demand
to the back-up supplier when it is not fully capable of producing at the required rate during the
response time can create an overflow of material. This congestion would decrease the throughput
during the response time due to the increase in the lead time. Although there is a broad body of
literature about reducing the response time (Koren et al. 1999; Matta et al. 2007) including
reduction methodologies (Terwiesch and Bohn, 2001) there is no work which quantifies the
importance of considering the response time characteristics at the decision-making stage.

The available capacity of the back-up supplier within the response time is important, since the
supply chain incurs shortage costs if the available capacity level during this period is lower than
the required capacity. Furthermore, the amount of the available capacity during the response time

depends on the back-up supplier’s machine configuration (Wang and Koren, 2012). In addition

61



to this, the strategic stock could be used to cover the losses during minor disruptions as well as
the response time (Hopp and Yin, 2006; Schmitt 2011). Therefore, the strategic stock level and
the back-up supplier machine configuration should be determined at the design stage of the
supply chain with respect to the operational costs of holding, initial investment and shortage in
order to have a robust supply flow. Note that the selected configurations would remain fixed
during the planning horizon while the capacity might change upon the realization of the different

disruption scenarios.

4.1 Solution Methodology

In order to design the robust supply flow, a two-stage multi period robust optimization model
(RO) is presented. The set of first-stage decision variables includes the level of strategic stock
and the response speed level of the back-up supplier. The set of second-stage decision variables,
corresponding to scenario s are levels of back-up supplier production, inventory and lost

demand. The list of notations and decision variables are shown in Table 4.1 and

Table 4.2.
Table 4.1 List of notations
Indices
t Current time
d Main supplier
r Back-up supplier
] Speed level
Level of available capacity during response time
s Scenario
Input parameters
T={12..T] Planning horizon consisting of " periods
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A big number
Demand at time t

Production cost of back-up supplier
Shortage cost

Strategic stock investment cost
Holding cost

Maximum capacity of main supplier

Maximum capacity of back-up supplier

1 if major disruption at time t scenario s, 0 otherwise

1 if minor disruption at time t scenario s, 0 otherwise

Intensity of the minor disruption < (0,1)
Investment cost of speed level j

1 if available capacity level of i is realized during the
response time at time t scenario s, 0 otherwise

The fraction of the added capacity which is available for
speed level j and realized available capacity level i

Goal programming parameters 1>0

Probability of scenario s

Set of available capacity levels during response time
Set of speed levels

Set of plausible future scenarios

Table 4.2 List of decision variables
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Decision variables

Main supplier production at time t, scenario s

Back-up supplier production at time t, scenario s

The variation cost of the scenario s

Initial strategic stock

Strategic stock level at time t, scenario s

Strategic stock level at the end of a disruption period at
time t, scenario s

Main supplier work in process at time t, scenario s

Back-up supplier work in process at time t, scenario s

Amount of raw material released to main supplier at time
t, scenario s

Amount of raw material released to back-up supplier at
time t, scenario s

Back-up supplier actual capacity at time t, scenario s
Back-up supplier nominal capacity at time t, scenario s

Back-up supplier available capacity during the response
time at time t, scenario s

Lost demand at time t, scenario s
1 if speed level j is selected; O otherwise

1 if demand loss exists at time t, scenario s; 0 otherwise

1 if there is capacity addition at time t, scenario s; 0
otherwise
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1 if there is capacity deletion at time t, scenario s; O
otherwise

s,t

4.1.1 Robust Stochastic Optimization Model

The objective function z includes the investment cost of supply chain mitigation strategies, the
expected cost of recourse actions with respect to the plausible future scenarios and the expected

variation cost of worst case scenarios.

Minimize Z = C,y, + Av+ Y P (Hv,, +Wx(, + Ol J}+ 1D PA, (50)

jed seS teT seS

The decision variables to be identified at the design stage of supply chain are presented in the

first two terms in (50). It includes a binary variable y; representing different configurations of
the back-up supplier jeJ and the level of strategic stock v. The investment costs associated
with these decisions are represented by C; and A respectively. The decisions made in the first
stage result in recourse actions with corresponding costs expressed in the third term in (50).
These costs include the holding cost of strategic stock level v, in period t at the rate of 1 per

unit, production cost of satisfying x¢, units of the demand by back-up supplier at a production

cost of W per unit and shortage cost of I, units at the rate of O per unit. All these cost

parameters are expressed in $/unit/period. In order to achieve a robust supply chain design that
performs efficiently under the occurrence of worst case scenarios, the forth term in (50) is
incorporated in the objective function. This term identifies the expected difference between the
cost of the worst case scenarios and a predetermined threshold. List et al. (2003) incorporate a
preselected threshold in their variability measure approach called upper partial moment (UPM).

In this Chapter, we use the expected cost as the threshold to avoid the efforts required to select
the threshold in advance (Kazemi Zanjani et al. 2010). The relative importance of the expectation

and variation costs is controlled by the parameter 1. For 4 =0, the model would be reduced to a
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two-stage stochastic optimization model. As A increases, it reflects the decision maker’s risk
aversion level (List et al., 2003). The worst case scenarios are identified in (51) as the scenarios

in which the total cost of the recourse actions is higher than the expected cost of the recourse
actions. This difference is measured by A where any scenario with a variation above the

expected costs is penalized in the objective function.

Z(Hvs,t +Wxsr,t +O|s,t) _ZPS{Z(H Vst +WX;,t +O|s,t)}S A, Vs eS (51)
teT seS teT
In addition to robustness related constraints, the system constraints should be introduced.
Among the possible speed levels in set J, only one should be selected for the back-up supplier
(52). The inventory flow balance equation is represented in constraint (53): The demand at any
period could be satisfied by the main supplier and/or back-up supplier and through strategic

stock in case of a disruption at the main supplier. Unmet demand is assumed to be lost. The

disruption scenarios are identified in the model through the random parameters G,, and K,

representing major and minor disruptions respectively. The strategic stock level at the end of
current period is equal to the previous period if there is no disruption in the current period as
indicated in (54). The strategic stock level is selected at the beginning of the planning horizon as
part of the first stage decision variables (55). At the end of any period, there could be either
strategic stock left or product shortage which is ensured by constraints (56) and (57). The

product shortage occurs only in the period with disruption (58).

2.y =1 (52)
D, =Xsd,t + Xl (G +F )V —igy) vseS vteT (53
Vet = (1—Gs,t - Fs,t)Vs,t_l +(Gs,t + Fs,t)is,t vses vteT (54)
Vso =V Vs eS (55)
I, <Mb,, vseS vteT (56)
Vg SM(1-hy) vses vteT (57)
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Is,t <M (Gs,t + Fs,t) Vs eS vVteT (58)

In order to demonstrate the response time characteristics, we represent two notations for the
capacity level defined as the nominal capacity and the actual capacity. The nominal capacity
determines the amount of capacity that the system is set to reach for the following period,
expressed by constraint (59). The actual capacity represents the amount of capacity that is

available (60). This will be less than the nominal capacity during the response time since some

portion of the added capacity is lost. The available capacity during the response time U, is
bounded by the random fraction U, of the added capacity where U, ; depends on the back-up
supplier configuration Y;and the level of the capacity availability realized during response time

Ksi,t, indicated in (61). Constraint (62) states that either capacity addition or removal is allowed

at any period with capacity change. The back-up supplier removes its capacity once the main
supplier recovers from a major disruption (63). The back-up supplier production at any period is

less than the actual capacity (64).

St =S (0, —Z,)C, vses vteT (59)
Top = Gspa T Usy —Zs,Cy vses vteT (60)
U< QK U;0C 8, +M A=) Vied vses wvieT (61)
O, +2, <1 vses vteT (62
&1 <G, C vses vteT (63)
Xo S Toy vses vteT (64)

Constraints (65) and (66) represent the workload balance equations. The work in process
inventory (WIP) consists of the jobs in the queue or under operation. The maximum workload in
any period is bounded by the available capacity during that period, since the utilization of a

resource cannot exceed 100% as indicated in (67) and (68). Furthermore, the impact of minor

67



disruptions over the main supplier’s capacity is represented in (67). There will be no material

release in the main supplier when it is down due to a major disruption (69).

a)sd,t = sd,t—l +psd,t _Xsd,t vseS vteT (65
Wiy = Oy + Pog =Xy vseS vteT (66)
a)sd,t—l "‘Psd,t <(-F,B)Cq vseS vteT (67)
(04 + P )Gsy <74y vseS vteT (68)
pS <M(@1-G;,) vsesS vteT (69)

At the beginning of a major disruption, shifting the total demand to the back-up supplier when it
is not 100% available will create an overflow. The resulting queue built up will increase the lead
time. This congestion would limit the amount of the back-up supply during the response time. In
order to determine the appropriate strategic stock and the response speed level of the back-up

supplier, the impact of congestion, especially during the response period should, be considered.

To this end, we present the suppliers as a single server system with Poisson arrivals and general
service time distribution (M/G/1 system). The relationship developed using this model allows
developing the clearing function (Missbauer 2002). Based on the clearing function in (70), the

expected system throughput E(X) in any period is a function of the expected workload

E(w,_,+p,), available capacity 7 and parameter k . This parameter is defined in (71) based on

the mean . and the variance iz of the processing time.
i o

E(x,)= %[Z‘-ﬂ- k+E(w_+p) —\/rz +2tk +k* = 27E(@,_, + p,) + 2KE(@_, + p) + E(@_, + p,)? } (70)

2
k= ”‘2’ +2i (71)
7

The clearing function in (70) is concave and nonlinear (Missbauer 2002). An outer

approximation approach has been implemented to generate a set of lines in order to linearize the
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robust model. Based on this linearization approach, the throughput of each supplier can be

represented depending on their states.

There exist three states for the main supplier. The production of the main supplier in the normal
periods could not be more than the expected throughput, which is estimated by its clearing

function (72). The set of lines N° represents the clearing function where A, is the slope and B,i

is the constant value of the line ,,. In the periods with minor disruption, the set of lines N¢ in

(73) represents the main supplier’s throughput due to the reduction in the service rate of the main

supplier. In the case of a major disruption occurrence, there is no production at the main supplier

incorporated by the term G in (72).

In cases of major disruptions, the backup supplier must ramp up its capacity. In order to show the
congestion effect over the back-up supplier production during the response time, the clearing

function is represented through a set of planes N, in (74). This is due to the fact that the change

in capacity requires defining the throughput during the response time as a function of both
workload and actual capacity which result in a three dimensional clearing function (Ebrahim

Nejad et al., 2014). Note that the binary variables y; and KS‘,t in (74), activate the clearing
function associated with selected speed level of j and realized available capacity level of i.

After the response time, the back-up supplier can operate at its predetermined capacity level. The
impact of congestion over the production of back-up supplier in these periods is illustrated by set
of lines N" in (75). The non-negativity constraints are stated in (76) to (78). The non-

anticipativity constraints are in (79).

xS, s(&(wgtﬁp;{t)wq+MFS¢)(1—GSJ) VneN', VseS, VteT (72

X <A (@ +p8)+B, +MA-F,,) VneN,VseS VteT (73)

Xsryt SA](a)Sryt71+p;'t)+Bnrsyt—G,]+M(3—yj —Ksi‘t—qsvt) Vjiel,VneN VseS VteT (74)

jii?

Xoo < A (@, + o)+ B, +Md, VneN,VseS VteT (75
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4.1.2 Scenario generation

In this section, we explain how the scenarios resulting from disruptions and the random available
capacity during the response time can be generated. In order to identify the scenarios within the
planning horizon, we incorporate a scenario tree. We define a scenario as the states of the supply
flow within the planning horizon. The flow can be provided from the main supplier or back up
supplier. The main supplier may be completely or partially available due to a minor disruption.
Once the main supplier becomes unavailable due to a major disruption, the back-up supplier
would resume the supply flow. Different levels of the available capacity can be realized in the
first period of back-up supply due to inherent randomness. We categorize the available capacity
during the response time to three different levels: high, normal and low. Furthermore, we assume

that the back-up supply is completely available after the response time.

Figure 4.1 represents a snhapshot of the scenario tree at the first two periods of the planning
horizon. Each node represents a possible status of the supply flow at a given period. The set of
supply status includes main supplier fully operational, main supply partially operational, back-up
supplier during response time - high capacity availability, back-up supplier during the response
time — normal capacity availability, back-up supplier during response time — low capacity
availability and back-up supplier fully operational after the response time. Based on the stated

assumptions, the following steps are conducted in order to generate scenarios.
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Since the problem considered is a strategic supply chain network design, each period is
long enough for the main supplier to recover from a minor disruption or the back-up

supplier to reach the full required capacity level.
The length of a minor disruption is one period.

The length of a major disruption is not limited and it may last for the whole planning
horizon.

The length of the response time is one period.
After a major disruption, the first period represents the response time.

After the response time, the back-up supplier is fully utilized for at least one period.

After a minor disruption, the main supplier could be fully operational or it may get

disrupted as a result of a major disruption.

Once the major disruption ends, the main supplier becomes fully operational and it
provides the required supply for at least one period.
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Main supplier available, Completely ':}

Main supplier available, Partially {:}

Back up supplier, High capacity availability 0
Back up supplier, Normal capacity availability @

Back up supplier, Low capacity availability
Back up supplier, Completely @)

t=1 t=2

Figure 4.1 A snapshot of the scenario tree

The scenario tree that includes all the possible realizations for major and minor disruptions for
multiple periods can significantly increase the required number of constraints in the robust
optimization model, resulting in difficulties in solving the problem in a reasonable amount of
time. In order to reduce this complexity, we make the following assumptions regarding the
realizations of disruptions and recovery strategies without the loss of generality as indicated in
Figure 4.1: Once a major disruption occurs, it lasts for at least three consecutive periods and the

maximum length of the minor disruption could be one period. Moreover, the probability of each
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scenario is computed through the product of the transition probabilities of the states. These

transition probabilities can be found in Appendix C, Table C.1.

In order to investigate the impact of considering the response time characteristics in the optimal
selection of the strategic stock level and the response speed level of the back-up supplier, an
illustrative example is presented in section 4.2. Furthermore, a sensitivity analysis is conducted
on A in order to evaluate the impact of different tolerance level of the decision maker towards

risk.

4.2 Numerical Experiments

We consider the supply chain associated with a product whose lifecycle lasts for six periods
where each period represents two months. Based on this assumption and with respect to the
minor and major disruptions and three levels of available capacity during the response time, we
identify 162 scenarios over the planning horizon. Furthermore, the demand is assumed to be
deterministic and 1800 units per period. Three different speed levels are presented as decision
variables: fast, medium and slow which represents manufacturing system configurations of
parallel, parallel-serial and serial configurations accordingly. While faster response configuration
will perform better, there are investment costs corresponding to the selected response speed and
the level of initial strategic stock. The cost parameters which are included in the objective

function are defined in Table 4.3.

Table 4.3 Cost parameters

Cost Parameters Value Unit
Investment cost of fast speed 135,000 $
Investment cost of medium speed 90,000 $
Investment cost of slow speed 45,000 $
Strategic stock investment cost 180 $/unit
Holding cost 40 $/unit/period
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Production cost of backup supplier 125 $/unit/period

Shortage cost 300 $/unit/period

The main supplier has a capacity of 2200 units while the backup supplier provides 2000 units
when the main supplier is breakdown. The fractions of the added capacity which are available

during the response time with respect to different scenarios are presented in Table 4.4.

Table 4.4 Fractions of the added capacity available in different scenarios

Response speed level

Level of available capacity

during response time Fast Medium Slow
High 0.933 0.867 0.8
Normal 0.833 0.667 0.5
Low 0.733 0.467 0.2

The fraction of added capacity available during response time increases as higher speed level is
selected or a higher level of available capacity is realized during response time. Furthermore, we
assume the intensity of the minor disruptions over the main supplier results in 30% loss in the
maximum capacity (Wagner and Bode, 2008). Based on the stated assumptions and inputs, the
following experiments are conducted. First we evaluate the impact of considering the random
capacity availability during the response time in the design of the robust supply flow. We
implement this evaluation for different values of the parameter 4. We measure the value of this
consideration through the difference in the objective functions. Second, we assess the importance
of considering the congestion in the decision process. The results show whether there is any
benefit for decision makers to incorporate the response time characteristics in the design of the
robust supply flow. The proposed robust optimization model has been implemented in ILOG
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CPLEX 12.5. By setting the desired optimality gap to 0.0001, the results have been obtained

with an average computation time of 94 seconds.

4.2.1 The impact of considering the available capacity randomness

In order to observe the impact of considering the randomness related to the available capacity
during the response time in the design of a robust supply flow, we first execute the robust model

(RO) presented in section 4.1.1. Second, we remove the random parameters K!, which represent

the realized level of the available capacity during response time in constraint (61). In addition to

this, we replace the random parameters U ; by its expected value U;. We run the modified

robust model (MRO). Note that by removing the randomness associated with the available
capacity, the number of the scenarios is reduced to the 68 scenarios. We conduct four different
experiments representing different probability distributions for the available capacity levels
during response time as presented in Table 4.5. The probabilities of the minor disruption, major
disruptions and the recovery from major disruptions are set to 0.1, 0.01 and 0.2 respectively in all

experiments.

Table 4.5 Experiments based on the probabilities of available capacity levels during response

time
Experiment P, Py R
1 0.6 0.2 0.2
2 0.333 0.333 0.333
3 0.2 0.6 0.2
4 0.2 0.2 0.6

The first experiment represents the situation where it is more probable to observe high level of
the available capacity during response time. This can represent a flexible supplier with better
responsiveness capabilities which enable a smooth transition. On the other hand, experiment 4

identifies a supplier that is inexperienced; susceptible to increased problems during ramp up. In
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order to have a robust supply flow, the required strategic stock level and the response speed of
the back-up supplier in experiment 1 are presented in Figure 4.2. The slow response speed is
identified as the optimal response speed for different values of 4. However; higher strategic
stock levels are required as A increases. This is because of the fact that as A increases, the
model would give more emphasis on minimizing the cost of the worst case scenarios. The results
of RO and MRO model are identical in selecting the response speed, although RO model
requires lower strategic stock level compared to the MRO model. The reason is due to the fact
that MRO solutions are based on a fixed value of the available capacity during the response time.
On the other hand, the RO solutions consider all plausible scenarios of available capacity levels
during response time. Since the scenarios with high level of added capacity available during

response time are more probable in experiment 1, the RO model selects lower strategic stock

level.
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700 -
@
L 600 1
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+= 500 g
# 5
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Q 4
& 300 ©
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200 - |
2 Response speed Level, MRO
100 - —
Response speed Level,RO
U -

= . =Strategic Stock Level, MRO

A = Strategic Stock Level,RO

Figure 4.2 Robust design of the supply flow, Experiment 1

The assignment of equal probabilities to the different levels of available capacity during response
time provides the results of experiment 2 as shown in Figure 4.3. As illustrated, the higher levels
of the response speed and strategic stock are selected compared to the experiment 1. This is due
to the reduction in the probability of high level of available capacity during the response time
and the increase in the probabilities of normal and low levels. Furthermore, the selection of
strategic stock and response speed levels in the RO model become close to MRO model unlike
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experiment 1. This is a result of having equal probabilities of available capacity during the

response time. Therefore, the solution of the RO model is not influenced by any level of the
available capacity significantly. The RO model selects lower level of strategic stock in 4 =10,

15, 25 and slower speed in 4 = 20.
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Figure 4.3 Robust design of the supply flow, Experiment 2

The designs of robust supply flow with more chance of having normal level of available capacity
during response time are presented in Figure 4.4. More strategic stock level is required compared
to the experiment 2 due to the reduction in the probability of having high level of available
capacity during response time. On the other hand there is almost no change in the selection of the
response speed (except RO model in4 = 20) due to the reduction in the probability of having
low level of available capacity during response time. In addition to these, the results of the RO
and MRO model are almost identical. This is because of the fact that; MRO solutions are
achieved with respect to the expected level of available capacity during response time and RO
solutions in this experiment are obtained by assigning more probability to normal level of
available capacity during the response time. Since the normal level of capacity availability is

equivalent to the expected level of capacity availability, identical solutions are observed.
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Figure 4.4 Robust design of the supply flow, Experiment 3

As presented in Figure 4.5, more strategic stock and faster speed level are required to achieve a
robust supply flow as the probability of having low level of available capacity during the
response time increases. In addition to this, the RO model selects higher strategic stock level for
A less than 15 and faster speed level for 4 more than 10 compared to the MRO model. This is

due to increased chance of having low level of available capacity during the response time.
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Figure 4.5 Robust design of supply flow, Experiment 4

In order to evaluate the value of incorporating the randomness associated with the available

capacity during the response time in the decision making stage, we compare the objective
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function of the RO model versus the case when the solution of the MRO model is used to
compute its performance in RO model. The savings which would be achieved by considering the

randomness related to the available capacity during the response time are presented in Table 4.6.

Table 4.6 % Reduction in the objective function by RO solution

A
Experiment 0 5 10 15 20 25
1 0% 0.40% 1.10% 1.60% 2.90% 4.10%
2 0% 0% 0.35% 0.44% 3.90% 0.66%
3 0% 0% 0.03% 0.03% 0.12% 0.05%
4 2.30% 3.30% 4.60% 6.30% 8.50% 11.30%

The results show that the improvement in the objective function is higher in experimentsl and 4
by considering the randomness of the available capacity during the response time. In experiment
1, the reduction is achieved as a result of lower strategic stock level in RO model compared to
the MRO, reducing the strategic stock investment and holding costs. On the other hand, the
savings in experiment 4 are due to the significant reduction in shortage cost since the RO model
select higher strategic stock level and/or response speed compared to the MRO model. The
reductions are low in experiments 2 and 3 since the results of the RO and MRO model are close

to each other.
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4.2.2 The importance of incorporating congestion

In order to assess the effect of considering the congestion impact in the robust design of the
supply flow, we remove the constraints (72) to (75) which represent the clearing functions in the
RO model. Through these changes, the model would ignore the impact of workload
accumulation on production capability. We call the modified model as load independent robust
model (LIRO). Figure 4.6 represents the results of RO and LIRO model with respect to the

experiment 2.
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= . =Strategic Stock Level,LIRO

A = Strategic stock level,RO

Figure 4.6 Robust design of the supply flow, RO VS LIRO, Experiment 2

Ignoring the impact of congestion leads to the underestimation of the required strategic stock
level with no changes in the response speed. This would result in degraded performance of the
robust solution. We measure the benefit of incorporating congestion as follows: For each
scenario, the clearing functions present the actual production quantity of the main and backup
suppliers based on the capacity and WIP levels which have been determined in the LIRO model.
The actual demand losses are then computed by the difference between demand and actual
production quantities obtained using the clearing function. This will give the actual performance
of the supply chain if the solution generated from LIRO is implemented. Table 4.7 indicates the
reductions achieved in the objective function. This reduction is mainly the result of increased
strategic stock levels obtained from RO to cover the impact of congestion.
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Table 4.7 Improvement in total costs by considering congestion effects

A
0 5 10 15 20 25
LIRO $118,003 $386,595 $573,948 $736,407 $890,307 $1,024,103
RO $114,226 $367,677 $543,939 $693,298 $834,834 $960,652
% Reduction 3.20% 4.89% 5.23% 5.85% 6.23% 6.20%

The results in Table 4.7 show that incorporating the congestion impact in the decision making
process reduces the costs. However, this improvement is decreased for A greater than 20. This is
due to the fact that as the decision maker becomes more risk averse, the differences between
strategic stock level of LIRO and RO model decreases as result of focusing on the smaller

portion of the worst case scenarios albeit with higher impacts.
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4.2.3 Discussion of results

The first section of the numerical experiments evaluates the impact of considering the
randomness associated with available capacity during the response time in the design of the
supply flow. Two options to represent the available capacity during the response time are
investigated. The first option presents the random available capacity by considering different

scenarios while the second one considers only the expected available capacity.

For the situation where it is more probable to observe high level of the available capacity during
response time, the approach based on considering the random available capacity selects lower
level of strategic safety stock. This reduces the supply chain investment cost in strategic safety
stock and inventory holding cost albeit with no products shortages since the supply chain is
prone to the high level of capacity availability during the response time. On the other hand, there
are higher level of strategic safety stock and faster response speed selected as the chance of
exposure to the low level of available capacity during the response time increases. This results in
lower shortage cost since there are sufficient buffers incorporated in the supply chain structure in
order to cover the low level of capacity availability during the response time. Therefore, there is
reduction in the total cost of supply chain by considering the randomness associated with the
available capacity during the response time in the design of the robust supply flow.

The second part of the numerical experiments investigates the value of considering the
congestion impact during the response time when a combination of strategic safety stock and
contingent sourcing is applied as supply chain risk mitigation strategies. The results show that
the supply chain performance would benefit by considering the congestion impact. This is due to
increase in the strategic stock level to cover the shortages which are created as a result of

congestion.

The supply chain network design problems considered in Chapter 3 and 4 are assumed to have
sufficient data to estimate the probabilities of plausible future scenarios. However, there might

problems with limitation of no data availability to estimate the likelihood of future scenarios.
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The next chapter proposes a novel approach to design a robust supply flow subject to deep

uncertainty associated with operational risks and disruptions.
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Chapter 5

A Clustering based Scenario Reduction
Approach to Design Robust Supply Network
under Operational Risks and Disruptions

In this Chapter, the former supply network design problem (Ebrahim Nejad and
Kuzgunkaya, 2015) is considered under the condition in which it might be difficult to estimate
the probability of operational risks and disruptions. Therefore, we aim to find an equitable
solution by achieving an efficient performance with respect to all plausible future scenarios. For
this purpose, we develop a decision making tool which focuses on solution robustness in
identifying the supply chain design decisions. In order to address the computational complexity
which may result from large scenario set, we propose a novel scenario reduction technique.
Finally, we compare the performance of the proposed scenario reduction methodology both with
respect to the quality of solutions and the computational time against other approaches available

in literature.

We consider a single product supply chain that includes a manufacturing plant with dual
sourcing. The main supplier of the manufacturing plant is cost-effective as a result of dedicated
facilities though prone to disruptions during which it may be partially or completely unavailable.
There is a back-up supplier located in a low-risk region that is available when the main supplier
is unavailable. The back-up supplier has volume-flexible production facilities where it can scale
up its capacity, however this scalability increases the production cost. Demand in the normal
periods can be met by the main supplier. In the case of minor disruption occurrences, the
strategic stock which is provided at the beginning of the planning horizon can cover the losses.

When the main supplier fails due to a major disruption, the back-up supplier increases its
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capacity to meet the plant demand. However, the target capacity is gradually achieved within the
recovery time because of the non-steady production during this period (Matta et al. 2007).
Therefore a random fraction of the target capacity is available during the recovery time. In
addition to these, shifting the demand to the back-up supplier when it is not fully capable of
producing at the required rate during the recovery time can create an overflow of material. This
congestion would decrease the throughput during the recovery time due to the increase in the
lead time. The available capacity of the back-up supplier within the recovery time is important
and it should be considered in the design stage, since the supply chain incurs shortage costs if the
available capacity level during this period is lower than the required capacity. The amount of the
available capacity during the recovery time depends on the back-up supplier’s machine
configuration (Wang and Koren, 2012). In addition to this, the strategic stock could also be used
to cover the losses during the recovery time (Schmitt 2011). Therefore, the appropriate strategic
stock level and machine configuration of the back-up supplier are important parameters in the
proposed supply chain settings which should be considered in the strategic design stage of the

supply chain network.

In order to achieve a robust supply chain network, the operational risks and disruptions should be
considered in the strategic design stage of the supply chain network (Klibi et al. 2010). An
instance of operational risks in the considered supply chain network is machine/equipment
breakdown which decrease the production capacity of main supplier during normal periods and
backup supplier within the recovery time. As opposed to operational risks, the disruptions
significantly reduce the production capacity of main supplier when they occur. In addition to
this, the information about disruptions occurrences and their corresponding magnitudes are
typically hard to predict or maybe unavailable since they are rare. Therefore, the solution
robustness is proposed as our supply chain network design performance measure. The solution
robustness could be calculated independent of disruptions probabilities and it measures the
difference in performance between the optimal solution and the solution provided by the robust
optimization (Govindan et al. 2017). There are different approaches proposed in supply chain
network design literature to achieve solution robustness (Kouvelis and Yu 1997, Roy 2010 and

Kalai et al. 2012). In this Chapter, a lexicographic aggregator based approach will be applied to
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achieve solution robustness. This operator reorders the performance vector (e.g. regret) from the
worst to the best. Next, it first minimizes the worst regret, then the second worst regret is
minimized (provided that the first worst one is as small as possible), then the third worst regret is
minimized (provided that the first two worst regrets remain as small as possible) and so on
(Sawik 2014). This approach is known to be less conservative than traditional Minmax
formulation since it evaluates all plausible future scenarios as opposed to only the worst case
one. However, there is computational complexity challenge associated with lexicographic
aggregator formulation as the size of the scenario set increases.

The supply chain network design problem considered in this Chapter includes a large scenario
set. At one hand considering multiple random parameters including the occurrence of minor and
major disruptions in the main supplier and the portion of the added capacity to the back-up
supplier which is available during the recovery time and at the other hand, investigating the
supply chain performance in a multi period planning horizon increases the size of the scenario
set. Therefore, one solution is to decrease the size of the scenario set by selecting a few
representative scenarios. The following section describes our solution methodology to identify
the optimal strategic stock level and machine configuration of the backup supplier by
incorporating a lexicographic aggregator approach to achieve solution robustness while reducing

the size of the scenario set by applying a novel scenario reduction technique.

5.1 Solution Methodology

In order to find the optimal back-up supplier machine configuration and the level of strategic
stock, a two-step solution methodology is proposed as illustrated in Figure 5.1. The first step is a
Mixed Integer Programming (MIP) based scenario clustering model which reduces the set of
plausible future scenarios into a smaller set by selecting the most representative scenarios. The
second step is a MIP robust SCND model which is developed to achieve solution robustness
when scenario probabilities are not available. This model identifies the machine configuration of
the back-up supplier and the level of strategic stock by considering the representative scenarios
which are achieved in step one. The selections of back-up supplier machine configuration and
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the level of strategic stock are based on the trade-off which exists between investment cost and

operational cost of supply chain with respect to representative scenarios.

Step 1: MIP Clustering based Step 2: MIP Robust Model
Scenario Reduction Model

Demand =»||  MIP Capacity Planning Model

Machine

) . Averace Back-u Configuration

Futur Gradual Coverage . g p

Sunue_ N Function Representative Production Capacity
Cenanos Scenarios during Recovery Time

Strategic
Stock

Cost
Parameters

Figure 5.1 Solution Methodology

The MIP robust SCND model in step two is the stochastic version of an MIP deterministic
capacity planning model. The contingency capacity plan of supply flow when the main supplier
becomes disrupted is generated through MIP capacity planning model. In order to have an
estimation of the available production capacity during the recovery time, the impact of work load
accumulation over the system throughput is represented in the MIP capacity planning model. The
following section presents the first step of the solution methodology which is the MIP clustering
based scenario reduction model.

5.1.1 Clustering based MIP Scenario Reduction (CBSR) Model

The MIP robust SCND model may include a large number of random scenarios that makes it
very hard to solve. To overcome this difficulty in such problems, some approximation methods
have been presented in literature which reduces the dimension of the problem by determining a
subset of the scenario set. Li and Floudas (2014) present an MIP scenario reduction model which
minimizes the probabilistic distance between the original and reduced input scenario distribution.

The probabilistic distance depends on scenario probabilities and distances between scenario

values. The distance d,, between any two scenarios S, ' is measured based on the following

metric:
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Ay = Z Z

geQ teT

-6 (80)

Where teT represents time, qeQ is the set of random parameters and ¢3¢ is a binary variable
which becomes 1 if random parameter goccurs at time t in the scenario s and O otherwise.

Eventually, scenarios are deleted when they are close or have small probabilities. In order to
reduce the number of scenarios in this Chapter, an MIP model is proposed which group scenarios
into different clusters. This model applies the gradual coverage function of facility location
problems in order to calculate the degree of membership of each scenario to the proposed
clusters. The covering models in facility location problems follow a similar rationale to the
clustering based scenario reduction methodologies (Farahani et al. 2012). For a given set of
customer locations, these models identify locations of facilities such that the customer can
receive service from each facility whose distance from customer is equal or less than a given
critical distance. Among set covering models, there are formulations which allow customers to
receive either full and/or partial coverage from single and/or multiple facilities. The gradual
coverage formulation fully covers a demand point if its distance from closest facility is less than
R' . If the distance is between R' and R? , the demand point will be partially covered and the
coverage level provided by facility acts as a decreasing function of the distance from the facility
to the customer’s location. Finally, if the distance is more than R? , the demand point will never
be covered (Berman and Krass, 2002). Gendreau et al. (1997) develop a double coverage model
based on two coverage radius R' and R? (R' <R? ). All demand points must be covered within
R' and a portion of demands, say o must be covered within R?. The benefit of partial coverage
and/or coverage with multiple facilities is in the lower number of facilities required to cover the

set of customers compared to the case where only full and/or single coverage is allowed.

The proposed clustering based MIP scenario reduction model in this Chapter incorporates the
partial and multiple coverage techniques. This model groups scenarios into clusters. Next, it
identifies cluster center associated with each cluster. A cluster center is a scenario which
represents scenarios within that cluster. Finally, cluster centers would represent the reduced

scenario set and the remaining scenarios would be eliminated. The objective of this model is to
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minimize the distance of cluster centers from eliminated scenarios while reducing the size of
original scenario set to a desirable level. This model applies the following three steps to group
scenarios which are based on the gradual coverage formulation. The distance between scenarios

is measured by the metric proposed by Li and Floudas (2014).

I.  The scenario s will be fully covered by scenario s’ if the distance between scenario s
and s’ is less than a primary admissible tolerance.

Il.  The scenario s will be partially covered by scenario s' if the distance between scenario
s and s’ is more than primary admissible tolerance and less than a secondary admissible
tolerance. The amount of partial coverage is a decreasing function of the distance from
the scenario s to the scenarios'.

I1l.  The scenario s will not covered by scenario s' if the distance between them is more than

the secondary admissible tolerance.

The following tables represent the parameters and variables incorporated into the model.

Table 5.1 List of Decision Variables in Clustering based MIP Scenario Reduction Model

Decision Variables Definition
Xy 1 if scenario s’ is a cluster center, else 0
Yy 1 if scenario s is covered by scenario s', else 0

Table 5.2 List of Input Parameters in Clustering based MIP Scenario Reduction Model

Input Parameters Definition
S The set of all scenarios
s, s Index of scenarios s, s’ s
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Coverage level of scenario s by scenario s’

1 ifdg <l
W, .
® fo ifly <dg < ug
0 if dy> u,
dey distance between scenario s and s’
I the primary admissible tolerance for scenario s
Ug the secondary admissible tolerance for scenario s
_dy - the coverage decay function which represent the amount of partial
=y -l coverage that scenario s’ provides for scenario s
UB upper bound on level of coverage per scenario across all cluster
centers
lower bound on level of coverage per scenario across all cluster
LB centers

The objective function of the model minimizes the total distance between cluster centers and

other members of clusters which are covered by cluster centers. The decision variable Y
determines whether scenario s is covered by scenario s’ and the input parameter w, represents
the portion of scenario s which could be covered by scenarios’.

Minimize Zzwss'dss'Yss' (81)

s'eS seS

The constraint (82) limits the size of reduced scenario set to the desirable level of n. The
decision variable X, determines whether scenario s’ is a cluster center. The total number of
cluster centers should be equal to n. The constraint (83) guarantees that scenario s will be

assigned to scenario s" if scenario s is identified as a cluster center.

Subject to:

2 Xy =N (82)

s'eS
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Yo <X, Vs, s'eS (83)
> WY <UB Vses (84)
s'eS
LB< Eé Wyo Voo VseS (85)
Yo SWM Vs,s'eS (86)

The constraint (84) sets an upper bound on the overall level of coverage provided to a scenario
through all cluster centers. The constraint (85) states that the summation of coverage given to
any scenario should be more than LB. These two constraints control the trade-off between the
accuracy of clustering and the computational time of model. For a given n, the higher values of
us and LB would result in reduced scenario set with closer profile to original scenario set
however this will increase the processing time of the model. The constraint (86) guarantees that
scenario s will be covered by scenario s only if the distance between these two scenarios is

lower than the secondary admissible tolerance u,. The cluster centers are representative

scenarios.

The MIP robust SCND model identifies the strategic design decisions by considering
representative scenarios. It computes the operational cost of a design decision by generating the
contingency capacity plans of representative scenarios. The following section describes the MIP

contingency capacity planning model.

5.1.2 Capacity Planning Model

The production quantity and capacity levels of main and back-up suppliers, the levels of lost
demand and strategic stock within the planning horizon are determined by MIP contingency
capacity planning model. In addition to these, the model determines the optimal machine
configuration of back-up supplier and the initial level of strategic stock for a given disruption

scenario. The list of input parameters and decision variables is presented as follows.

Table 5.3 List of Notations and Decision Variables
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Input Parameters

Definition

T={12..T]

J

|
t

Decision Variables
Xy

Xt

Planning horizon consisting of T periods

The set of available backup supplier machine configuration
The set of plausible capacity loss during recovery time
The current time, teT
The machine configuration of backup supplier, jeJ
Level of capacity loss during recovery time, i<
The investment cost of machine configuration j
The purchasing/manufacturing cost of initial strategic stock
The production cost of main supplier
The production cost of back-up supplier
The shortage cost
The capacity addition cost
The inventory holding cost
1 if a major disruption occurs at timet , else O
1 if a minor disruption occurs at timet, else 0
The maximum capacity level of main supplier
The intensity of minor disruption
1 if capacity loss level of i realized during recovery time t
The fraction of added capacity which is available based on back-up
supplier machine configuration of ; and realized capacity loss level

of i

The production quantity of main supplier at time t

The production quantity of back-up supplier at time t



AL The amount of added capacity to back-up supplier at time t
A7 The amount of removed capacity from back-up supplier at time t

I The lost demand at time t

Vi The level of strategic stock at time t
Yi 1 if backup supplier machine configuration level ; is selected, O else
v The initial level of strategic stock
g The WIP level of main supplier at the end of time t
P The level of raw material released into main supplier at time t
of The WIP level of back-up supplier at the end of time t
o The level of raw material released into back-up supplier at time t
St The nominal capacity level of back-up supplier at time t
Ty The actual capacity of back-up supplier at time t
Uy The amount of added capacity available during recovery time t

The objective of the model is to minimize the investment cost plus the total operational costs
(87). The cost parameters include the investment cost associated with backup supplier machine
configuration, the purchasing/manufacturing cost of initial strategic stock, the production cost of
main and back-up suppliers, the shortage cost, the capacity addition and strategic stock holding

cost.

Min Z;ijj +AV+ZT: Rx! + Wx! + EAS + Ol, + Hy, 87)
je te

The flow of material is represented through constraints (88) to (90). The demand at any period is

satisfied by production of the main and the back-up supplier and strategic stock. The unsatisfied
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demand is assumed to be lost (88). The level of strategic stock at any period does not change if
there is no disruption (89). The level of strategic stock at the beginning of the planning horizon

equals tov (90). The constraint (91) guarantees that only one configuration would be selected out

of possible back-up supplier machine configurations in set J . The impact of disruptions over the
main supplier capacity is represented by (92). The level of work in process in the main supplier
and the back-up supplier are identified through constraints (93) and (94) respectively. The WIP
level at the beginning of each period is the WIP level of the previous period «,_, plus the amount

of raw material released ,, . The WIP level at the end of each period «, is the difference between

the level of WIP at the beginning of that period and the production level x, .

Subject to:
D, =xd+x +L+(G +FR)G) VteT (88)
vi=v4—(G+R), VteT (89)
Vo =V (90)
%ijj =1 (91)
x' <Ql-FB-G)Cy VteT (92)
A = +pd ¢ vteT (93)
o =4 +p—% VteT (94)

The capacity balance equations of the back-up supplier are represented in constraints (95) and

(96). The constraint (95) indicated that the nominal capacity & determines the amount of

capacity that the system is set to reach. It is equal to the nominal capacity of the previous period

plus the amount of added capacity a; or minus the amount of removed capacity a;. In the

periods where capacity is added, the actual capacity «, is the nominal capacity of the previous
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period plus the amount of added capacity that is available during recovery time u, . In constraint

(96), the actual capacity is equal to the nominal capacity in periods with capacity decrease. The

amount of added capacity available during the recovery time is bounded by a fraction u,; of the
added capacity where U, depends on the back-up supplier machine configuration y and the
level of the capacity loss realized during recovery time K, as presented in constraint (97). Note

that K/ is a binary input parameter and >k =1. The constraint (98) states that the back-up

it
supplier production at any period is less than the actual capacity. The effect of congestion
observed at the back-up supplier during the recovery time is represented with an M/G/1 queueing
based nonlinear clearing function which is proposed by (Missbauer, 2002). In order to solve the
complexity associated with the nonlinearity of clearing function, we apply an outer

approximation. Thus the clearing function is represented through a set of m planes in (99).

E =& +A —A] ViteT (95)
n=&a+u—A] VteT (96)
uts(gKtin'i)At*+‘P(l—yj) VteT (97)
X<z, VteT (98)

X <A (@4 +p)+Byry -G, VteT VmeM (99)

Vel v 2042020120 %20i204¢204a20

(100)
Pl=0p 2020 7,20, A =0 A, >0, u =0

The MIP capacity planning model presented in this section provides the contingency capacity
plan of supply network, optimal machine configuration of back-up supplier and initial level of
strategic stock for a given disruption scenario. Next section present the last step of the solution
methodology presented in Figure 5.1 which is to develop a robust SCND model based on the

proposed capacity planning model. This robust SCND model identifies the optimal machine
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configuration of back-up supplier and initial level of strategic stock by considering all

representative disruption scenarios which are selected in step 1.

5.1.3 Robust SCND Model

In this Chapter, we treat each scenario as an objective. Since the scenario probabilities are not
available, all objectives can be treated as equally important. Our goal is to achieve solution
robustness defined as a solution which remains close to optimal for any occurrence of scenarios.
Therefore, we will find a fair solution, in which the relative regrets of all scenarios are as much
close to each other as possible. The relative regret of a solution in a given scenario is defined as
the difference between the cost of the solution in that scenario and the cost of the optimal

solution for that scenario (Snyder and Daskin, 2006).

In multi objective decision making problems where all objectives are equally important to the
decision maker, the ordered weighted averaging (OWA) aggregation operator could be applied to
achieve a fair solution (Sawik 2014). In such a problem context, the objective is to generate a fair
solution, in which all normalized objective function values are as close to each other as possible.
The OWA aggregation operator provides the sum of weighted objective function values which
have been sorted in the order of the largest value, the two largest values and so on. Liu and
Papageorgiou (2013) provide a formulation in order to transform the OWA aggregation operator
to the objective function of a linear minimization problem. Later on, Liu et al (2014) prove that
assignment of equal weights to the optimization problem in Liu and Papageorgiou (2013)
provides a fair as well as a Pareto optimal solution. We apply the formulation proposed in Liu
and Papageorgiou (2013) in order to represent the OWA aggregation operator in the objective
function. Since all scenarios are equally important, we assign identical weights to all objectives.
The formulation of OWA aggregation operator in the robust model according to Liu and

Papageorgiou (2013) approach is represented in (101) and (102).

Min >’ (u, + o;,J (101)

linS sinsS

Subject to:

96



A+6y=f, VI VseS (102)

The above formulation provides minimizing the summation of largest value, the two largest

values, the three largest values and so on of outcome values f, which represents the relative
regret of scenario s. The variable 4, is unrestricted and the non-negative variable s, represents
the upside deviation of f, from the value of 2 . The constraint (103) determines the relative
regret of each scenario based on the difference between the cost of the solution in that scenario
Z,(104) and the cost of the optimal solution for that scenario z;. Note that z; is an input
parameter which is defined as the total cost of MIP contingency capacity planning model for

scenario S.

=55 yses (103)

d
Z, :ZJ:ijJ +AV+ZT Rxd, + Wx{, + EAL, + Olg + Hyg, VseS
je te

(104)

(88)t0 (99) VseS (105)

The proposed MIP robust SCND model applies the ordered weighted averaging (OWA)
aggregation operator to achieve solution robustness when probabilities of representative
scenarios selected in step 1 are unavailable. In the next section, we present an illustrative case
study and experiments to compare the proposed methodology with other approaches from the

literature.

5.2 Numerical Experiments

We consider the supply chain associated with a product whose demand is assumed to be
deterministic and 6,500 units per period. Three different layout configurations are presented as
decision variables: parallel, parallel-serial and serial. The parallel configuration provides higher
level of capacity during the recovery time however the better scalability increases the investment

cost of parallel configuration (Wang and Koren, 2012) as indicated in Table 5.4.
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Table 5.4 List of Cost Parameters

Cost Parameter Value (%) Cost Parameter Value (%)

C;: The investment cost of

machine layout where j is 135,000 H : Holding cost ($/unit) 40
parallel configuration
C; : The investment cost of )
90,000 w : Back-up supplier 125

machine layout where j is

roduction ($/unit
parallel-serial configuration P ( )

C;: The investment cost of

machine layout where j is ~ 4°:000 R+ Main snzgylie_:)production 25
uni
serial configuration
A : Strategic stock investment )
(S/unit) 180 o : Shortage ($/unit) 300
uni
E : Capacity addition ($/unit) 20

The maximum capacity of the main supplier is higher than back-up supplier. These values are set
to 10,000 and 7,500 units respectively. The fractions of the added capacity which are available

during the recovery time u,, with respect to the back-up supplier machine configuration and the

level of capacity loss are presented in Table 5.5. Furthermore, we assume the intensity of the

minor disruptions on the main supplier results in 30% loss in its maximum capacity.

Table 5.5 Fraction of the added available capacity available during recovery time - U,
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Level of capacity loss during recovery  Back-up supplier machine configuration

Parallel  Parallel-serial Serial
High 0.933 0.867 0.8
Normal 0.833 0.667 0.5
Low 0.733 0.467 0.2

Based on the stated assumptions and inputs, the following experiments are conducted. First, the
performance of the clustering based MIP scenario reduction model presented in section 5.1.1 is
compared against the MIP scenario reduction model proposed by Li and Floudas (2014) both
with respect to the quality of selected representative scenarios and the computational time. Next,
the solution robustness of back-up supplier machine configuration and initial level of strategic
stock determined by robust SCND model proposed in section 5.1.3 is compared against other
formulation approaches such as minimizing the average and worst case cost performance,
minimizing the average and the standard deviation of the cost and minimizing the worst case cost

performance (Diaz et al. 2017).

5.2.1 Investigating the performance of CBSR model

The performance of the proposed clustering based scenario reduction methodology is compared
to the MIP formulation proposed by Li et al. (2014) through the following illustrative example.

Three cases with different length of product lifecycle are considered (
Tsman set = 6 Titedivmset = 8, Tiagesee = 10 periods). For each case, the original scenario set is
developed using the scenario tree approach. The random parameters considered in generating the

original scenario set are levels of disruptions and capacity losses during the recovery time. The

sizes of the original scenario set associated with small set (T =6), Medium set (T =8) and large
set (T =10) are 162, 556 and 1571 scenarios respectively. The objective is to generate different

subsets of the original scenario set to test the effectiveness of the proposed scenario reduction
algorithm.
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The maximum and minimum levels of coverage per scenario represented by us and LB in the
clustering based scenario reduction model are set to 1 and 0.8 accordingly. Therefore, the overall

of coverage > w.Y,  provided to scenario s from cluster center scenarios s’ S should be at

s'eS
least 0.8 and at most 1. The primary admissible tolerance I, and the secondary admissible
tolerance u, are calculated based on f,,, . Which is the maximum distance of scenario s from
other scenarios. For each scenario, the primary admissible tolerance is set to 25% of f_, . and

the secondary tolerance is set to 75% of f For these settings, the proposed clustering based

max s *

scenario reduction methodology (CBSR) and the OSCAR scenario reduction algorithm proposed
by Li and Floudas (2014) are both applied to perform a comparison. The cumulative probability
distributions of the cost of scenarios optimal solution (z;) associated with small, medium and
large original scenario sets and the reduced sets generated by CBSR and OSCAR for different

levels of reduction are presented in Figure 5.2, 5.3 and 5.4 accordingly.
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Cumulative Probability

Cumulative Probability

Figure 5.3 Cumulative distribution of cost of optimal solutions, medium scenario set (556

Cumulative Probability

Figure 5.2 Cumulative distribution of cost of optimal solutions, small scenario set (162
scenarios)
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Figure 5.4 Cumulative distribution of cost of optimal solutions, large scenario set (1571
scenarios)

The results in graphs above show that both methods have close performance in identifying
reduced scenario sets with cumulative probability distributions of scenarios optimal cost close to
original scenario set. In order to further compare the quality of the reduced scenario sets
developed by CBSR against OSCAR, statistical measures are computed for the original and
reduced distributions. The statistical parameters considered are maximum, minimum, expected

value, standard deviation, skewness and kurtosis of the optimal objective function values (z?).

The skewness measures the degree of symmetry of a distribution and the kurtosis measures the
height and level of sharpness of the central peak of distribution compared to a standard normal
distribution. For each parameter, the relative percentage difference between the values obtained
from the original scenario set and the reduced scenario sets generated by CBSR and OSCAR are
presented in Table 5.6. The lower the relative difference, the closer the reduced scenario set to
the original scenario set with respect to the statistical parameter considered. The computation

time of each instance used by CPLEX is indicated in the last row.

Table 5.6 Statistics on scenario reduction results

Level of Reduction 80% 85% 90% 95%
Measure Scenario Set \ Method CBSR OSCAR CBSR OSCAR CBSR OSCAR CBSR OSCAR
Small 32 24 16 8
# of )
. Medium 111 83 56 28
Scenarios
Large 314 236 157 79
Small 1.54% 1.54% 5.00% 1.54% 5.21% 5.21% 1.54% 7.57%
Maximum )
Medium 1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 1.23%
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Large 0.37% 10.23% 7.74% 10.23% 0.37% 7.74% 20.17% 16.00%

Small 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Minimum Medium 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Large 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Small 5.08% 5.26% 3.01% 3.01% 1.64% 1.64% 3.43% 5.41%
Expected .
Val Medium 2.11% 2.74% 0.57% 1.41% 2.28% 2.58% 3.34% 3.34%
alue
Large 1.03% 2.26% 0.74% 1.23% 3.43% 3.86% 0.49% 2.68%
Small 4.17% 2.14% 3.88% 3.24% 14.53% 14.53% 0.39% 5.07%
Standard .
o Medium 4.62% 8.07% 8.47% 9.65% 3.44% 0.84% 1.32% 1.32%
Deviation
Large 3.54% 8.87% 1.78% 8.36% 5.15% 4.19% 5.79% 5.19%
Small 246.46% 253.83%  256.54%  225.10%  101.04%  101.04%  209.53%  685.14%
Skewness Medium 107.25% 105.65% 65.47% 124.84%  128.27%  104.42% 70.93% 70.93%
Large 0.40% 12.83% 7.50% 3.57% 9.95% 16.55% 26.38% 15.15%
Small 38.54% 39.57% 41.70% 45.45% 53.33% 53.33% 61.38% 150.61%
Kurtosis Medium 0.69% 11.81% 11.10% 12.11% 8.80% 8.94% 22.41% 22.41%
Large 13.28% 107.59% 138.41% 14.91% 83.66% 94.15% 187.61% 178.72%
Small 12 14 15 23 24 28 30 35
Time (s) Medium 161 2,000 153 1,822 307 7,440 330 2,040
Large 6,060 16,380 7,500 22,920 9,300 36,240 10,800 41,640

The results show that the relative difference between the minimum value of original scenario set
and the minimum values of reduced set generated by CBSR and OSCAR is zero across different
sizes of original scenario set and levels of reduction. Therefore, both scenario reduction methods
cover the minimum performance. For the maximum value, the relative difference in both
methods increases as the level of reduction increases. This is a result of limiting the number of
representative scenarios being used as we increase the level of reduction leading to the maximum
value of reduced scenario set to be significantly different than original scenario set. On the other
hand, the relative difference of maximum value of reduced scenario set generated by CBSR is

lower.

For the expected value, the relative differences of reduced scenario sets developed by CBSR are
consistently smaller than their counterparts achieved by OSCAR. Thus, the expected values of
reduced scenario sets developed by CBSR are closer to original values especially for larger sizes
of original scenario set. However, OSCAR provides the standard deviation of scenario values in
the reduced set closer to original set for small size of original set. Both methods have similar
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performance for medium and large size of original scenario set. The skewness of reduced
scenario set distributions is closer to original distribution for large size of scenario set and both
methods have similar performance across different levels of reduction. This is because of higher
number of scenarios which provide a similar degree of symmetry compared to the original one.
For kurtosis, the relative differences of reduced scenario set distributions achieved by CBSR and

OSCAR are close across different sizes of original scenario set and levels of reduction.

The computational time which is required to achieve reduced scenario sets increases as the level
of reduction and the size of original scenario set increases. The higher level of reduction requires
more scenarios to be eliminated which increase the computational efforts. On the other hand, the
size of the problem increases with the size of original scenario set which results in long
computational time. Furthermore, CBSR provides the reduced scenario set in significantly
shorter amount of time compared to OSCAR. This is due to partial and multiple coverage
capabilities embedded in CBSR formulation which allows a scenario to be fully or partially
covered by multiple representative scenarios. Therefore, this technique requires less
computational efforts compared to other approaches where a given scenario is limited to be fully
covered by only one representative scenario. According to results discussed earlier, the quality of
reduced scenario sets achieved by CBSR is close to OSCAR. Therefore, the short computational

time performance of CBSR has least impact on the quality of the reduced scenario set developed.
5.2.2 Robust Formulation Assessment

In this section, the performance of the proposed ordered weighted averaging (OWA) aggregation
operator in the objective function of the robust model is compared with respect to other
formulation options. The set of alternative robust objective function formulation options
considered in this study includes minimizing the average cost and worst case cost performance
(AVG-WC), minimizing the average cost and the standard deviation of the cost of the solution
across different scenarios (AVG-STD) and minimizing the worst case cost performance of the
solution (Diaz et al. 2017). The minimization of the standard deviation aims to reduce the
variation in cost, whereas the minimization of the maximum cost tries to minimize the worst case

scenario cost derived from design decisions. First we execute the MIP robust SCND model
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presented in section 5.1.3. Next, the following models are executed for the formulation options
elaborated above. This comparison analysis is conducted over large size original scenario set

which includes 1571 scenarios.

5.2.2.1 Minimizing the Average and Worst Case Cost (AVG-WC)
The input parameter Q in this model represents the number of scenarios in the scenario set.

" (106)
Q
Subject To:
W=7, Vse$S (107)
(88) to (99), (104) (108)

5.2.2.2 Minimizing the Average and Standard Deviation of the Cost (AVG-STD)

The decision variable A; >0 represents the deviation of each scenario cost from the average cost.

2%

Min % + 5;3 Al (109)
Subject To:
2%
(110)

Af>Z7, -85S yses
Q
(88) to (99), (104) (111)
5.2.2.3 Minimizing the Worst Case Cost (MinMax)

Min W (112)
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Subject to:

W>Z, VseS (113)

(88) to (99), (104) (114)

In order to investigate the performance of the ordered weighted averaging (OWA) aggregation
operator based formulation against proposed robust formulation options, we benchmark the
solutions returned by each model with respect to three robustness measures called precision to
regret, precision to average (Cunha and Covas, 2008) and relative deviation (Bernard 2010). The
precision to regret represents the difference between the cost of the solution obtained to the cost
of the optimal solution of each scenario and it is given by:

*

Z,-Z

> [PZ_J (115)

sinS

Precision to Regret (%) =

Q

where Z, represents the cost of scenario § achieved by solving robust model and it is calculated

by constraint (104) and Z: is the optimal cost of scenario S calculated by solving the capacity

planning model presented in section 4.2 for scenario S. The precision to average represents the
deviation of the cost of the solution obtained to the average of cost of optimal solutions across all

scenarios and it is computed as follows.

Z,-Z

Z [1_ sZ_ average] (116)

. s average
Precision to Average (%) =

Q

7 sin$S (117)

average 0

106



The relative deviation is the value of maximum relative regret across the scenarios where the
relative regret is the difference between the costs of the solution obtained to the cost of the
optimal solution of each scenario. The relative deviation is calculated by:

z.-7.

Relative Deviation (%) = Max; i, s %

S

(118)

Next, the three robust models elaborated above and the robust formulation with ordered weighted
averaging (OWA) aggregation operator in the objective function of the model are executed in
order to determine the optimal machine configuration of back-up supplier and the initial level of
safety stock. The set of input parameters considered are operational and investment costs
presented in Table 5.4 and the fraction of the added capacity which is available during recovery
time based on the machine configuration of back-up supplier (Table 5.5). The results show that
the optimal back-up supplier machine configuration across all robust formulations considered is
the parallel configuration. The selection of the initial strategic stock levels with respect to

different levels of scenario reduction is presented in Figure 5.5.
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Selection of Initial Safety Stock Level
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Figure 5.5 Safety Stock Selections of Robust Formulations

The safety stock level increases in all four robust formulations as the level of scenario reduction
decreases. This happens since the number of scenarios with major disruption impacts increases in
the reduced scenario set as the size of reduced set increases. Therefore, higher level of safety
stock is required to cover these high impact disruption scenarios. The MinMax robust
formulation represents the highest level of safety stock selection across different levels of
scenario reduction. The reason is in MinMax formulation’s inherent characteristic which focuses
only on worst case scenarios. Therefore, it selects the highest level of safety stock to minimize
the impact of extremely disruptive scenarios. The AVG-WC robust model represents the second
highest levels of safety stock selection across different levels of scenario reduction. The selected
safety stock levels are lower than MinMax since AVG-WC model is formulated to minimize
average cost in addition to worst case cost. However, the level of safety stock selected by AVG-
WC formulation is higher compared to OWA based robust formulation. Furthermore, the

difference in selected level of safety stock between these two approaches increases as the level of
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scenario reduction decreases. The OWA operator based robust formulation minimizes scenarios
costs in the decreasing order of scenario impact (e.g. first the worst case cost, second the
summation of two worst case costs and so on). Therefore, as the number of scenarios increases
due to decrease in the level of scenario reduction, the performance of OWA based formulation
becomes closer to minimization of average cost. This behavior results in safety stock levels
selected by OWA based model to become closer to AVG-STD formulation safety stock
selections and further away from AVG-WC and MinMax selections as the level of scenario
reduction decreases. The lowest level of safety stock is selected by AVG-STD robust model.
This is due to AVG-STD objective function formulation which aims to minimize the average
cost and the positive deviation of each scenario cost from average. The minimization of this
formulation requires less safety stock since the objective is to minimize the deviation of each

scenario cost from average rather than worst case scenarios’ costs.

The quality of solutions provided by each formulation is measured with respect to three
robustness benchmarks; precision to regret, precision to average and relative deviation. The

results are represented in Table 5.7.

Table 5.7 Performance of Robust Formulations with Respect to Robustness Measures

Robust Level of Scenario . Precision to ] o
. . Precision to Regret Relative Deviation
Formulation Reduction AVG
95% 76.15% 66.94% 18.24%
90% 75.44% 65.88% 17.69%
AVG-WC
85% 73.60% 65.01% 15.66%
80% 71.10% 63.13% 12.07%
95% 75.83% 70.13% 28.71%
90% 77.02% 72.56% 24.79%
AVG-STD
85% 79.01% 75.81% 21.49%
80% 82.13% 80.20% 18.98%
95% 72.13% 65.12% 16.05%
) 90% 70.03% 63.17% 14.41%
MinMax
85% 68.29% 60.57% 11.09%
80% 63.49% 57.38% 8.68%
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95% 79.74% 68.43% 20.11%

90% 81.33% 70.88% 19.66%
OWA

85% 82.51% 74.10% 18.84%

80% 84.90% 79.16% 17.50%

As the level of reduction decreases, the results show that the precision to regret and precision to
average performance of MinMax and AVG-WC formulations degrades however the relative
deviation improves. The reason is in the objective of these two approaches which aims to
minimize the worst case scenario cost. As the size of reduced scenario set increases, the number
of scenarios with major disruption impact increases. Therefore, the solution achieved by
MinMax and AVG-WC would alleviate worst case scenario impact and has a low performance
with respect to average performance (precision to average) and optimal performance of each
scenario (precision to regret). Furthermore, the magnitude of improvement in relative deviation
and decline in precision to regret and average of MinMax is higher than AVG-WC. The reason

lies in MinMax formulation which focuses only on worst case scenarios.

The precision to regret and the precision to average of both OWA based formulation and AVG-
STD model increases as the level of reduction decreases. The pace of improvement in precision
to regret is higher in OWA based formulation compared to AVG-STD model. This behavior is
observed since OWA based formulation identifies solutions such that the distance to optimal
solution of each scenario is targeted to be minimized. Therefore, it has the highest precision to
regret at different levels of scenario reduction and among all robust formulations considered. On
the other hand, AVG-STD model represents the highest precision to average across all levels of
scenario reduction. This is due to the fact that in this approach the objective aims to minimize the
positive deviation of each scenario cost from average cost. Furthermore, OWA based
formulation has the second highest precision to average at different levels of reduction. The
relative deviation of OWA and AVG-STD model improves as the size of reduced scenario set
increases. However, the magnitude of improvement in both approaches is lower compared to
MinMax and AVG-WC. Furthermore, the OWA based formulation levels of improvement are
higher compared to AVG-STD model since this approach minimize the impact of worst case

scenarios in the decreasing order of impact.
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5.2.3 Discussion of Results

The first section of the numerical experiments investigate the performance of the proposed
clustering based scenario reduction (CBSR) methodology against the MIP based approach
presented by Li et al. (2014) called OSCAR. The results show that CBSR provides the reduced
scenario set in significantly shorter amount of time compared to OSCAR. This is due to partial
and multiple coverage capabilities embedded in CBSR formulation. Furthermore, the quality of
reduced scenario sets achieved by CBSR is close to OSCAR. For the minimum value, both
scenario reduction methods cover the minimum value of the original set. However, the maximum
and expected values of reduced scenario sets developed by CBSR are closer to original values
especially for larger sizes of original scenario set. On the other hand, OSCAR provides the
standard deviation of scenario values in the reduced set closer to original set for small size of
original set. Furthermore, both methods have similar performance across different levels of
reduction for skewness and kurtosis. Therefore, the short computational time performance of

CBSR has least impact on the quality of the reduced scenario set developed.

The second part of the numerical experiments compares the performance of the proposed ordered
weighted averaging (OWA) aggregation operator in the objective function of the robust model
against other robust formulations such as minimization of the average cost and worst case cost
performance (AVG-WC), minimization of the average cost and the standard deviation of the cost
of the solution across different scenarios (AVG-STD) and minimization of the worst case cost

performance of the solution (MinMax).

The results show that the OWA based formulation could provide solutions with a fair level of
solution robustness compared to other formulations considered in this Chapter. This is based on

highest level of precision to regret which is presented by OWA based formulation across
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different sizes of reduced scenario set in addition to second highest level of precision to average
provided by OWA based model. Finally, the OWA based formulation has a fair performance
with respect to relative deviation.
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Chapter 6

Conclusion

In an era of globalization where supply chains are dispersed across the world in order to
benefit from lower manufacturing and supply costs as well as better access to the global markets,
it is important to consider the risk of disruptions in the design of supply chain. The focus of this
thesis is on disruptions which impact the supply network. We incorporate two well-known risk
mitigation strategies, the strategic safety stock and contingent sourcing in the supply network in
order to mitigate the impact of operational risks and disruptions. Our design problem includes
the challenge to identify the optimal levels of strategic safety stock and the response speed of the
back-up supplier in order to create a robust supply flow. Furthermore, we assume that the back-
up supplier could invest in its layout configuration in order to improve the response speed. Our
first contribution is in Chapter 3 where we consider the impact of congestion over production
capacity of back-up supplier during the response time. To this end, the clearing functions are
incorporated into the supply chain contingency capacity planning model. The results in Chapter 3
show that considering congestion is especially critical for risk-neutral decision makers in
mitigating against disruptions. Furthermore, there is significant improvement in supply chain

service level as the congestion effects are taken into account

We solve our design problem under two plausible scenarios which represent the quality of

information that might be available to estimate the probabilities of disruptions. The first scenario
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considers the situation where there is enough information available to estimate the probability of
disruptions. This situation could for instance represent a supply network which source from
suppliers located in Far East. For this case, we propose a two-stage robust optimization model in
Chapter 4 where the first stage decision variables are levels of back-up supplier’s response speed
and strategic safety stock. Our contribution is to represent the randomness associated with
disruptions and available capacity during the response time into the robust optimization model.
This model minimizes the summation of expected cost and the variation from expected cost in
order to provide solution robustness. The results in Chapter 4 show the optimality of the faster
response speed as the failure probability increases or recovery probability decreases.
Furthermore, higher level of strategic stock and faster response speed level are required as the
probability of the lower level of capacity availability during the response time increases. Finally,
we demonstrate that it is worthwhile to consider the complexity associated with modelling of the
randomness associated with the response time characteristics due to the improvements in the

supply chain performance.

The second scenario represents the situation where there is no level of information available to
estimate the probability of disruptions. This situation could represent a newly established supply
network. In this situation, we achieve design decisions with solution robustness such that the
optimal solution would be close to the optimal solution of any scenario as much as possible. To
this end, we employ the Ordered Weighted Averaging (OWA) aggregation operator in the
objective function of our two-stage robust optimization model in Chapter 5. The implementation
of the robust optimization models with lexicographic based formulation is known to be difficult
for large problems. Since we consider a strategic supply chain network design problem which
includes a large scenario set, there is computational complexity in solving the two-stage robust
optimization model. To overcome this challenge, we propose a novel clustering based MIP
scenario reduction model called CBSR in Chapter 5. This proposed scenario reduction model
groups scenarios into clusters based on a probabilistic distance metric and it identifies the cluster
center associated with each cluster. Finally, the cluster centers will represent the reduced
scenario set and the remaining scenarios will be removed. Our contribution is in incorporating

the gradual coverage function which is used frequently in location covering models into the
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scenario reduction formulation. In this context, the gradual coverage function determines the
degree of coverage provided by a cluster center to a given scenario. This functionality provides
partial coverage and/or coverage with multiple cluster centers capabilities. The performance of
the proposed scenario reduction methodology is compared to other approaches available in
literature with respect to the quality of solutions and computational time. First, the clustering
based MIP scenario reduction model (CBSR) is benchmarked against a MIP based scenario
reduction formulation (OSCAR) developed by Li and Floudas (2014). The results indicate that
CBSR model has significantly shorter computational time to generate the reduced scenario set
compared to OSCAR. Furthermore, the quality of reduced sets achieved by CBSR is at least as
good as the reduced sets developed by OSCAR. Next, the performance of the proposed OWA
based robust formulation is compared against other formulations with objective of minimizing
the average and worst case performance (AVG-WC), minimizing average performance and
standard deviation (AVG-STD) and minimizing the worst case performance (MinMax). Three
benchmarks are considered to conduct the comparison analysis including: precision to regret,
precision to average and relative deviation. The results show that the OWA based robust
formulation provides solution with highest precision to regret (solution robustness) and it has the
second best performance with respect to precision to average and a fair performance with respect

to relative deviation.

The tools developed in this thesis could support the supply chain practitioners in order to design
robust supply networks under all plausible future scenarios and with respect to the different
levels of data availability.

Future Research Directions

The future research could be conducted in the following directions.

e The proposed supply chain design decisions could be determined for the case when there
is information available about the possibilities of operational risks occurrences such as
machine breakdown however the probabilities of major disruption occurrences such as

earthquake are unavailable. This situation is called partial data availability.
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A scenario reduction approach can be developed for the case where there is correlation
between scenarios within the original scenario set. This could represent a situation where
there is positive correlation between the higher frequency of machine breakdown and
getting closer to the end of product life cycle.

In this thesis, we assume a single product supply chain to assess volume flexibility.
Within the same disruption management strategies, considering the interplay between the
demands of multiple products to assess process flexibility could be a future research
direction.
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Appendix A

This section describes the outer approximation approach which has been used to replace the
clearing function in the MIP model by a set of lines. As shown in Figure A.1, the approximated

throughput for a given work load (@, , + p,) is

f(@y+p)=min| A (9 +p)+B, | ne{l2,...N} (A1)

5
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Figure A.1 The clearing function approximated by lines, N=3.

Each line is tangent to the curve at a certain point. Since this is an outer approximation, the
tangent points should be selected to minimize the estimation error. For that purpose, the
subtractive clustering introduced by Chiu (1994) is employed.

For each capacity scenario, the clearing function (24) is represented as a set of points. The
subtractive clustering separates these points into clusters based on a predetermined radius. Each

cluster has a cluster center which represents the tangent point of a line to the clearing function.

In the case where the supplier has a fixed capacity, the clearing function depends only on the
workload. The cluster centers (@,_, +p,E(X)) are then used to determine parameters of the

approximation lines as follows:
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OE(X)

= By ) A “2

B=E(X)-A@,+p) (A3)

The clearing function depends on workload and capacity during the response time. In this case,

the clearing function is estimated through a set of planes as it is indicated in Figure A.2.

Throughput

170 o

180 400

- 300
190 g 100 20

Capacity Workload

Figure A.2 The clearing function approximated by planes, V =3.

Therefore, the approximated throughput for the given work load (@, , + p, ), capacity level 7z,

and capacity scenario (i, j ) is computed as follows:
(o i+ p07) = min[A)(a)r,t—l+pr,t)+BuTt _Gu] UE{L 2""’Vi,j} (A.4)

The subtractive clustering is employed to determine the points where the planes are tangent to
the clearing function. These points are the cluster centers (@, , + p,,,7,, E(x)) Which are used to

specify the parameters of planes.

OE(X,)

= m (@41 +Pry) (A.5)
_OE(x)
B = ) () (A.6)
G = A(a);‘t_l + p;’t) + Brtl — E(X[) (A7)
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In this method, the estimation error is controlled by changing the cluster radius. As the cluster
radius decreases, the estimation error improves as a result of the increase in the number of
clusters. On the other hand, this leads to an increase in the number of approximation lines. In
this thesis, the subclust function in MATLAB is employed to find the cluster centers. The
parameters of this function are cluster radius, quash factor, accept ratio and reject ratio which are
set to 0.5, 1.25, 0.5 and 0.15 accordingly. As a result of these settings, the average of the

maximum error for all the clearing functions used in the numerical study is equal to 3.86.
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Appendix B

In this section, the disruption scenarios are generated based on the assumption that there could be
a maximum of one disruption within the planning horizon(T). The probability of each

disruption scenario is computed through the Markov discrete time geometric distribution. Based
on the Markov chain states, the DMS supplier has two states: Failure and operational. The

transition probabilities from one state to another are as follows:

P{Operational — Operational} =1-« : P{Operational — Failure} =«

P{Failure — Failure}=1-4 . P{Failure — Operational} =3 (B.1)

The parameter « represents the probability of a failure state following an operational state and
the parameter S represents the probability of an operational state following a failure state.

As illustrated in Figure B.1, the scenario with no disruption occurrence is created as a result of

transition from one operational state to another consecutively.

/\/\/\/\

N @ @ @ @

1 2 3 T-1

Figure B.1 The no-disruption scenario.

Therefore, the probability of the scenario with no disruption is:
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P

No disruption

(mn)=1-a)l-a)...l-a)=1-a)’

T times

(B.2)

The scenario corresponding to a disruption which occurs at time m, lasting n periods, is
presented in Figure B.2.

1 1-0 1-0 1:[3 1_[5 1 1 ]
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Figure B.2 A disruption scenario with time of occurrence =m, length=n .

This scenario is generated through the following transitions:
I.  m-1 time(s) transition among operational states.
Il.  atransition from the last operational state to failure state.
I1l.  n-1 time(s) transition among the failure states.

IV. atransition from the last failure state to operational state.
Hence, the probability of occurrence for the scenario with a disruption at time m lasting
nefl.., T—-m}is:

I:)Disruption (m ' n) = (1_a)mila(1_ﬂ)nilﬁ Vn < T —-Mm (83)

Since we have assumed that the disruption frequency within the planning horizon equals one, the
DMS stays operational once it recovers from the failure state. Therefore, the transition

probabilities after the end of disruption are equal to one.

For the scenarios where the DMS is in the failure state at period T (Figure B.3), it could transit to
the next period in either failure or operational status when an infinite number of periods are

considered. Since we limit the evaluation of the catastrophic disruptions within the planning
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horizon T, the probability of such scenarios would be computed until the transition into the

period T.
-0 l-a l-a o 1-p 1-p 1-f
//,r \i/ ‘\\!/’ \ I//f m\\f \f/f_ \ / \I.. *
) (o (o) (e (e
Operaticnal Operational ® & & & @& @ ( Failure ':I Failure ® & & & & @ Failure
1 2 m m+l1 T
s,
v
n=T-m+1
Figure B. 3 A disruption scenario with time of occurrence = m, n+m=T+1.
I:)Disruption (m ! n) = (1_a)m71a(1_ﬂ)n71 \V/n +m :T +l (84)
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Appendix C

Table C.1 Transition probabilities

State f —1

State f

Probability

Main supplier available, Completely

Main supplier available, Completely or Partially
Main supplier available, Completely or Partially
Main supplier available, Completely or Partially

Main supplier available, Completely
Main supplier unavailable
Main supplier unavailable

Main supplier available, Partially
Main supplier unavailable

Low capacity availability during response time
Normal capacity availability during response time

High capacity availability during response time
Back up supplier, low capacity availability during response
time
Back up supplier, normal capacity availability during
response time
Back up supplier, high capacity availability during

response time

Main supplier available, Completely

Main supplier available, Completely

Main supplier unavailable
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