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Abstract 

Robust Design of Supply Network Subject to Disruptions by Considering 

Congestion Effects 

Alireza Ebrahim Nejad 

Concordia University, 2019 

 

 

        This thesis is focused on the supply chain disruptions and it reviews cost-efficient risk 

mitigation strategies to sustain supply chain functionality when disruptions occur. In particular, 

we study the robust design of supply flow subject to minor operational risks and major 

disruptions. The contingent sourcing along with strategic stock is incorporated as risk 

management strategies. We consider a firm with two suppliers where the main supplier is cost-

effective but prone to disruptions and the back-up supplier is reliable but expensive. The back-up 

supplier can scale up its capacity according to a speed related to its configuration in order to 

supply the required flow of material when the main supplier disrupts. When minor disruption 

occurs, the strategic stock can cover the losses. The design problem considered is to determine 

optimal strategic stock level and response speed of volume-flexible back-up supplier. 

The back-up supplier might not provide the required supply level instantaneously due to non-

steady production state and congestion during the response time. Therefore, there could be 

material shortages if the actual level of available capacity during the response time is ignored. 

The first chapter includes the incorporation of the clearing function into a contingency capacity 

planning model in order to represent the impact of congestion. The appropriate response speed is 

selected through a decision tree analysis considering different attitudes of the decision maker 

towards risk. The results show that considering congestion impact is especially critical for risk-

neutral decision makers. The second chapter considers the randomness associated with the 

available capacity through a two-stage robust optimization model. The results show 

improvement in the quality of optimal solution by considering the randomness. The objective in 

the third chapter is to find an equitable solution which has an efficient performance with respect 
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to all plausible scenarios. Therefore, the Ordered Weighted Averaging aggregation operator is 

incorporated in the objective function of a MIP robust model. In order to address the 

computational complexity associated with large set of scenarios, a novel clustering based 

scenario reduction model based on location covering model is proposed. The results show that 

the proposed methodology provide an accurate reduced scenario set within relatively short 

computational time.  
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Chapter 1  

Introduction 

1.1 Supply Disruptions 

        The number of natural and manmade catastrophes which disrupts the supply chain 

performance has increased dramatically in the last two decades. The strikes at two of General 

Motors parts plants in 1998 resulted in closure of 100 other plants, 26 assembly plants and 

shortage of cars in dealers for several months even after the strikes (Snyder et al. 2016). Ford 

stopped production in five plants because of the air traffic suspension after the terrorist attacks 

on September 11th 2001 (Tang 2007). The longshoremen strike at the LA docks in 2002 

significantly impacted the availability of raw materials and products which were supplied from 

China and sold or consumed in United States (Vakharia and Yenipazarli, 2009). The 

manufacturing plants in Northeastern of United States lost their production capacity for several 

days due to the Blackout in August 2003 (Gonge et al. 2013). Such incidences represent the 

vulnerability of supply chains to rare but high profile disruptions. 

The supply disruptions could have a drastic impact on supply chains missing protection against 

them. The Japan tsunami in 2011 interrupted Japanese automotive production, as well as 

automotive production companies all over the world dependent on Japanese suppliers; Toyota, 

Nissan and Honda closed their plants in Japan and General Motors suspended production in its 

assembly plant in USA due to the shortage of parts (Ghadge et al. 2011). Thailand’s floods in 

2011 lead to significant interruptions of the global computer hardware supply chain (Wai and 

Wongsurawat, 2012). Ericsson lost 400 million euros after a random lightning bolt struck its 
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semiconductors supplier firm in New Mexico in 2000 (Tang 2007). Land Rover Discovery 

model’s production line was shutdown for a period of nine months as a results of its exclusive 

chassis supplier’s bankruptcy which also leads to the loss of 1500 jobs (Revilla and Saenz, 

2017). Furthermore, the interruptions in supply flow may also occur by operational risks 

(Rezapour et al. 2018). The machine breakdowns in supplier’s firm, slow shipments, customs 

delays, and quality defects are common types of operational risks associated with supply flow 

which can interrupt the production at manufacturing/assembly plant (Lakovou et al. 2010). 

Therefore, the vulnerability of supply chains to supply major disruptions and operational risks 

motivates academicians and practitioners in identifying appropriate risk management strategies 

which sustain the supply chain performance when such events happen.  

Within the last two decades, there have been some examples where companies implement 

proactive or reactive risk management strategies in order to recover from disruptions. After the 

Hurricane Katrina in 2005, the Home Depot was able to satisfy the customers demand and kept 

its stores running thanks to emergency supplies which were stocked-up after lessons learned 

from past hurricanes. The Walmart started to stock-up its distribution centers and planned for 

alternate distribution network with Hurricane Katrina approaching. Therefore, after the hurricane 

struck, Walmart was able to quickly start delivering customers’ orders and recover from 

disruption (Schmitt and Snyder, 2012). The proactive planning which both of these companies 

implement enable them to recover from Hurricane Katrina quickly.                   

The Nokia, a cell-phone manufacturer executes a different strategy to deal with shortage of 

supply which occurs due to a fire at its semiconductor chip supplier plant, Philips in New 

Mexico in 2000. When Nokia realized that Philips could not quickly recover from disruption, it 

switched its sourcing strategy to alternate suppliers which replace Philips. This proactive back-

up supplier selection strategy enabled Nokia to recover from the loss of their primary supplier. 

However, Ericsson, the other customer of Philips who did not pre-plan for back-up supply 

options was impacted and it was exposed to market share losses for several months (Sheffi 

2005). 
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The examples mentioned above present the value of pre-planning which enable the supply chain 

to quickly recover from disruptions. However, in order to recover from both operational risks 

and disruptions, cost-efficient risk management strategies should be employed in the supply 

chain structure based on the expected intensity and length of disruptions. These include strategic 

decisions which have long-term implications on supply chain cost and performance and they 

should be considered in the design stage of supply chain network (Klibi and Martel 2012).                            

1.2 Robust Supply Chain Network Design 

The strategic decisions which are commonly considered in the supply chain network design 

include location and capacity levels of production and distribution facilities, selection of 

suppliers and third party contractors for logistic, warehousing, distribution and the location and 

level of strategic buffers such as safety stock (Klibi and Martel 2012). These strategic level 

design decisions are identified here and now but they impact the supply chain overall 

performance which includes operational costs, service level and revenue for several years.  

The supply chain network is exposed to day to day activities such as procurement, production, 

warehousing, distribution, transportation and demand management which create the material 

flow across the network. Today’s supply chains are globalized and dispersed across the world 

due to business requirement which also make them vulnerable to uncertainties as described in 

section 1.1 (Baghalian et al. 2013). Therefore, in order to ensure the efficiency of the supply 

chain network under all circumstances in future, the factor of uncertainty should be considered in 

design stage of the supply chain. 

The uncertainties in a supply chain network are characterized by price of material, labor, 

equipment, finished product and yield, lead time of suppliers, production, assembly plants and 

product demand, exchange rates and etc. In addition to these business-as-usual uncertainties, 

there are rare catastrophic events which might occur at any stage of supply chain. Such disasters 

will shut down the entire supply chain for generally a long period of time. Most recent examples 

of supply chain vulnerability to catastrophic events have been elaborated in section 1.1. Under 

uncertainty, there might be different levels and quality of information available (Klibi et al. 
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2010). The partial availability refers to the situation where there is sufficient data available to 

estimate the likelihood, length and/or intensity of a future event such as demand seasonality or 

the machine breakdown. On the other hand, there might be lack of any information available to 

estimate the attributes of a plausible event such as likelihood of an earthquake or a flood. This 

latter category is called deep uncertainty which has a drastic impact on supply chain performance 

since it is commonly not considered in the design stage of supply chain network.                   

The concept of robust supply chain network design has raised a lot of attention in decision 

making under uncertainty literature. The term robustness represents the efficient flexibility 

corresponding to a decision which provides many options for the selections to be made in the 

future (Wong and Rosenhead, 2000). Therefore, considering the flexibility in the strategic design 

of the supply chain network leads to the definition of a robust supply chain network design as 

follows. A supply chain network design can be stated as robust within the planning horizon if it 

has the capability to provide sustainable value creation under all plausible future scenarios which 

may include business as usual uncertainties with partial level of information available as well as 

catastrophic events with deep uncertainty (Klibi et al. 2010). 

In order to design a robust supply chain network, the responsiveness and resilience mitigation 

strategies could be incorporated into the supply chain structure. The responsiveness strategies 

provide resources to protect the supply chain operations against frequent and low impact 

variations in supply flow, customer demand and production or transportation capacity levels. 

These strategies are embedded into the supply chain network beforehand. The most common 

responsiveness strategies include capacity buffers, safety stock pooling, flexible sourcing and 

subcontracting, overtime, product substitution, shipment rerouting (Tomlin 2006, Klibi et al. 

2010, Chopra and Sodhi 2004, Sheffi 2005). The resilience strategies impact the supply chain 

structure by determining the level of resources in order to avoid disruptions and recover fast 

when disruptions occur. These strategic policies could also provide the capability for the efficient 

implementation of responsiveness strategies. The resilience strategies are provided as a result of 

investing in flexible and redundant network design. The flexibility based strategies are 

incorporated into the supply chain structure beforehand but they are deployed as needed. Some 
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examples of flexibility based mitigation strategies include production systems with functionality 

to produce multiple products, partially interchangeable and scalable suppliers. The redundancy 

based strategies include having extra resources in the supply chain network in order to 

compensate for the disrupted resource(s). The excess capacity and safety stock are examples of 

redundancy based strategies. The difference between flexibility and redundancy based strategies 

is that the flexibility based strategies are determined to have least cost impact since the supply 

chain only incurs cost upon the deployment of these strategies. However the challenge with 

flexibility based strategies is the time which is required for the solution strategy to become fully 

operational. Therefore, the redundancy based strategies are efficient to cover business as usual 

uncertainties due to their immediate availability. Furthermore, the flexibility based strategies are 

least costly and most efficient to protect against disruptions which have low likelihood of 

occurrence but significant impact (Tomlin 2006). The flexibility and redundancy based 

mitigation strategies which are known to be efficient to protect the supply chain against supply 

uncertainties are presented next.  

1.3 Supply Mitigation Strategies 

The impact of supply uncertainties is not limited to the subsequent downstream stage or facility. 

The interruptions in supply flow impact the order on-time availability as it moves downstream 

from the impacted stage or site. This behavior represents the existence of reverse bullwhip effect 

which could be created as result of supply interruptions (Rong et al. 2009). In order to hedge the 

supply chain’s performance against supply uncertainties, the most common mitigation strategies 

are as follows (Snyder et al. 2016). 

 Safety Stock: this is a redundancy based strategy which is deployed proactively. 

Furthermore, this extra inventory could be raw material kept in supplier site or finished 

good inventory piled in manufacturing firm. The safety stock mitigation is an efficient 

strategy to cover frequent and low impact operational risks. However, it is not sufficient 

to cover high impact and long disruptions. Furthermore, it is costly to hold inventory for 

a long time for disruptions that may never occur. 
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 Multiple Sourcing: this flexibility based strategy requires the firms to source raw 

materials from multiple suppliers. In case one supplier is disrupted, the firm only loses 

material flow from disrupted supplier and it still receives supply from non-disrupted 

suppliers. However, the order quantities received from non-disrupted suppliers do not 

change after disruption. 

 Contingent Sourcing: this strategy is considered as an extension of multiple sourcing 

where the firm has multiple suppliers. In case one supplier is disrupted, the non-disrupted 

suppliers ramp up production in order to cover for the disrupted supplier. This capability 

is raised from other supplier’s volume flexibility however the challenge is in making the 

substitute supply available within a short response time (Tomlin and Wang, 2010). 

 Acceptance: there are some cases where the cost of mitigation strategies exceeds the 

benefit associated with them. In such situations, the firm simply accepts the risk of 

disruptions and the resulting financial consequences. 

 Demand Substitution: it might be possible to shift the demand to another available 

product when one product is out of stock because of a disruption. However, this strategy 

significantly depends on product’s market such competitor’s status, the phase in product 

life cycle in which disruption occurs. 

In order to design a robust supply chain network with capability to sustain its functionality under 

operational risks and disruptions, the mix of strategic stock along with contingent sourcing is 

considered as an efficient strategy (Hopp and Yin 2006, Kouvelis and Li 2012). In this setting, 

the strategic stock can be utilized to cover operational risks and the contingent sourcing can be 

used as an effective reactive approach to cover major disruptions (Tomlin 2006, Schmitt 2011). 

However, the effectiveness of contingent sourcing depends on making the product available 

within a short response time (Tomlin and Wang, 2010). The response time is defined as the time 

when the firm responds to a supply disruption by placing an emergency capacity increase order 

with the backup supplier plus the time required for the backup supplier to provide the required 

capacity order (Tomlin 2006).  
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The response time is a crucial characteristic of contingent sourcing since only a fraction of the 

required capacity might be available within this period (Matta et al. 2007). In addition to this, 

shifting the demand to the back-up resource during the response time would create congestion 

that increases the lead time in that facility. This congestion is created as a result of randomness 

associated with parts arrival and back-up supplier production rate. Ignoring these facts in the 

supply chain planning stage leads to the overestimation of the available backup capacity, 

resulting in creating product shortage within the response time. This may also degrades the 

robustness of the supply chain. 

The reduction in the response time can be achieved by making investment in scalable equipment 

which can quickly ramp up their capacities in small increments, whereas a supplier that is relying 

on dedicated equipment to reduce production cost will have a long response time (Putnik et al. 

2013). While improving the response time can be similar to reducing the mean time to repair 

(MTTR) (Hopp and Iravani, 2012), it is also critical that the backup supplier provides an 

appropriate level of capacity during the response time. This is critical mainly due to the loss of 

market share during this period, creating significant long-term implications for the firm 

(Hendricks and Singhal, 2005). The amount of the available capacity during the response time 

depends on response speed defined as the speed of the backup supplier to reach the desired 

capacity level (Niroomand et al. 2012). The layout configuration of the backup supplier is one of 

the main factors identifying the response speed level. Therefore, a strategy to improve the 

available capacity within the response time can be achieved through the backup supplier’s 

investment in layout configuration.  

The strategic stock could also be used at the beginning of a major disruption and during the 

response time to keep the supply chain running until the back-up material can be received 

(Schmitt 2011). However, the required level of strategic stock depends on available capacity of 

the back-up supplier during the response time. Furthermore, the available capacity of back-up 

supplier during the response time depends on level of response speed. Therefore, the level of 

strategic stock and response speed of back-up supplier are key strategic level supply chain design 

decisions that may significantly impact the operation costs in the future. In order to design a 
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supply chain network with robustness against supply uncertainties, the optimal level of strategic 

stock and response speed of back-up supplier should be identified in the design stage. 

Furthermore, an accurate estimate of the backup supplier’s capacity during the response time and 

specifically the impact of congestion over capacity should be considered in design stage in order 

to prevent potential product shortages in future. These requirements shape the objectives of this 

thesis and they are summarized in following section. 
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1.4 Scope and Objectives  

The main scope of this thesis is to present the decision makers with a tool to design a robust 

supply chain subject to operational risks and disruptions of supply network. The list of the 

specific contributions is summarized as follows. 

 To present an approach to determine the available capacity of back-up supplier during 

the response time by considering the congestion impact.  

 To determine the response speed of back-up supplier and the level of strategic stock in 

order to achieve a robust supply chain network subject to supply uncertainties and 

random capacity levels during response time when partial information is available.  

 To determine the response speed of back-up supplier and the level of strategic stock in 

order to achieve a robust supply chain network subject to supply uncertainties and 

random capacity levels during response time when there is deep uncertainty about the 

future business environment.  
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1.5 Thesis Outline 

This manuscript is organized as follows. Chapter 2 reviews the relevant literature in Supply 

Chain Network Design (SCND), Risk Mitigation Strategies, Robustness, and Scenario 

Reduction. Chapter 3 presents the modeling assumptions and the mathematical formulation of a 

deterministic mixed-integer programming (MIP) based capacity planning model which also 

include the non-linear clearing function in order to represent the congestion impact.  

Chapter 4 provides a stochastic optimization MIP based capacity planning model in which the 

response speed level of back-up supplier and the level of strategic stock are first stage decision 

variables and the major and minor disruptions along with level of capacity available during the 

response time are considered as random parameters. The scenario tree approach to generate 

original scenario set is also presented.  

Chapter 5 considers the situation where there is a deep uncertainty about random parameters and 

it presents a robust optimization MIP based capacity planning model. Furthermore, the Ordered 

Weighted Averaging (OWA) Aggregator operator is incorporated in the objective function of the 

robust model in order to achieve a fair solution with respect to all plausible scenarios. The 

computational complexity of this problem is reduced by presenting a novel clustering based MIP 

scenario reduction model. This model also includes the gradual coverage function of facility 

location problems in order to improve the computational time. The thesis ends with conclusions 

and future research directions in Chapter 6.                     
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Chapter 2 

Literature Review 

        In this Chapter we review the relevant literature to this thesis. More specifically, in Section 

2.1 we review the concept and application of contingent sourcing as a risk mitigation strategy. 

Furthermore, we discuss the requirement to consider the operational characteristics of contingent 

sourcing in the design stage of supply chain. In Section 2.2, we explain the concept of robust 

supply chain design and the application of solution robustness as a benchmark to measure the 

robustness of a supply chain design. We also review the methodologies to compute solution 

robustness with respect to different levels of uncertainty. Since the supply chain design problems 

with deep level of uncertainty are computationally intractable, we review the literature on 

scenario reduction methodologies in Section 2.3. This chapter ends with a summary of gaps 

which exist in the reviewed literature.                 

2.1 Contingent Sourcing 

Sethi and Sethi (1990) define flexibility as the capability of changing in order to deal with a 

changing environment. They categorize flexibility into two groups called mix flexibility and 

volume flexibility. The mix flexibility is defined as the capability to produce multiple products. 

The mix flexibility has been incorporated into the design of manufacturing systems and it 
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inspires the development of Flexible Manufacturing Systems (FMS). The examples of FMS are 

computer numerically automated-CNC machines which can produce a variety of products with 

low change over time (Mehrabi et al. 2000). On the other hand, the volume flexibility is defined 

as the ability to alter the production capacity of a manufacturing process in order to meet the 

demand requirements (Hallgren and Olhager, 2009). The idea of volume flexibility leads to the 

development of Reconfigurable Manufacturing Systems (RMS) which has a modular 

configuration enabling them to change their production capacity by adding or removing modules 

(Koren et al. 1999). An industrial application of RMS is presented in Deif and ElMaraghy (2006) 

in electronics industry. Other examples in metal machining and assembly systems can be seen in 

Koren et al. (1999). 

The concept of volume flexibility could be part of supply chain risk mitigation strategies to deal 

with supply uncertainties. In this setting, the supply network includes multiple suppliers where 

the suppliers have volume flexibility as a built in technology. In the case of disruption in any of 

suppliers, the non-disrupted suppliers will act as back-up and they increase their production 

capacity to cover for the disrupted supplier(s). This strategy is also known as contingent sourcing 

(Snyder et al. 2016). 

There exists a growing body of literature which incorporates the contingent sourcing along with 

strategic stock in order to mitigate the impact of supply disruptions. Kouvelis and Li (2012) 

evaluate the value of safety stock, safety lead time and emergency back-up in managing 

uncertain supply lead-time. The emergency back-up is assumed to consist of price fluctuating 

suppliers in which the required capacity is available instantaneously. They conclude that the 

effectiveness of emergency back-up increases in randomness associated with original order lead-

time. Qi (2013) studies a supply chain with one retailer and two suppliers which include an 

unreliable primary and a reliable but more expensive back-up. The back-up supplier is assumed 

to be able to provide the requested capacity immediately, similar to Kouvelis and Li (2012). Qi 

(2013) identifies the optimal waiting time of the retailer before switching to the back-up supplier 

in the case of primary supplier breakdown. Although these papers assume the instant availability 
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of supply flow as the firm places the capacity increase order with back-up supplier, the Table 2.1 

presents other works which consider the back-up supply flow to become available after a delay. 

Table 2.1 Summary of the reviewed supply chain design problems with contingent sourcing 

Author(s) 
Strategic Design 

Decision(s) 
Objective(s) 

Back-up 

Availability 

Kouvelis and Li      

(2012) 

Safety stock, Safety lead 

time, Time and Size of 

back-up order 

Total cost minimization 
Immediate 

back-up 

    
Qi (2013) 

Cap waiting time, Safety 

stock 
Total cost minimization 

Immediate 

back-up 

    Bundschuh et al 

(2003) 
Suppliers selection Improving reliability and robustness 

After response 

time 

    
Bilsel and 

Ravindran (2011) 

Primary and back-up 

suppliers selection and 

order allocation 

Total cost and total lead-time 

minimization, Maximizing total 

quality of products 

After response 

time 

Fang et al (2012) Optimal sourcing strategy Total cost minimization 
After response 

time 

    Hopp and Yin 

(2006) 

Safety stock and back-up 

capacity locations 
Total Cost minimization 

After response 

time 

Schmitt and Singh 

(2012) 

Safety stock location, 

Back-up response type 

Total cost minimization, Target 

service level 

After response 

time 

2.1.1 Response Time 

Bundschuh et al. (2003) present different models for strategic design of robust and reliable 

supply chain. In the robust model, the supply chain could have contingency supply after a pre-

determined lead time when disruptions occur. This is provided through extra supply of remaining 

suppliers in addition to their regular contractual supply. Bilsel and Ravindran (2011) develop a 

multi-objective stochastic supplier selection and order allocation model with randomness in 

demand, supplier’s capacity and costs. They assume that the back-up supplier might require a 

positive lead time before supplying the required service level. Furthermore, Bilsel and Ravindran 

(2011) demonstrate the value of the solutions achieved by stochastic model compared to the 

deterministic counterpart in their problem. Fang et al. (2012) propose a dynamic programming 

formulation to select the optimal sourcing strategy for different risk profile settings. They assume 
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the back-up supplier to have unlimited capacity which would be available after response time. 

The authors present the companies optimal sourcing strategy between dual and contingent 

sourcing where the latter is promising if the back-up supplier has short lead-time.  

Hopp and Yin (2006) try to find the optimal placement of the inventory and/or back-up capacity 

to protect a multi-echelon supply network in the case of catastrophic failures. They conclude that 

the inventory or back-up capacity should be provided at most in one node along each path to the 

customer. The location of inventory is strongly affected by the response time since it can 

improve the product availability during this period. Schmitt and Singh (2012) determine the 

location of the safety stock and response type of the back-up resource in a multi-echelon supply 

chain where disruptions could occur at any stage. They assume the back-up supplier to have 

limited capacity and provide the disrupted capacity partially after a certain period called response 

time. The results show that finished goods inventory increase service level significantly. In 

addition to this, it is better to have quick and small response as the probability of the upstream 

disruptions increase. While, the cited papers above assume the supply capacity to be entirely 

available after the response time, there are a few papers in literature which study the strategies to 

reduce the response time. 

Schmitt (2011) studies the optimal selection of the response speed of the back-up resource in a 

multi-echelon supply chain where disruption might happen at any stage in order to protect a 

predetermined service level under all plausible future scenarios. Although Schmitt (2011) 

assumes that the firm can make investments in equipment to improve the response speed but she 

does not explain those investments explicitly.  

Wang and Koren (2012) identify machine configuration as a parameter which affects the 

response speed of manufacturing systems. In a serial configuration, the response speed is slow 

since the added capacity can only become available after completing the capacity installation and 

ramp-up phases of all stages. On the other hand, the pure parallel configuration provides faster 

response speed level because each machine could go under the aforementioned phases 

independently. However, this may come at the higher investment cost since each machine should 

be capable of performing all the steps in order to create a parallel configuration. The differences 
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in the manufacturing system configuration indicate that the configuration selection of the back-

up resource affects directly the response speed and it should be considered in the supply chain 

design stage where the trade-off is between cost and response speed. 

2.1.2 Response Time Characteristics 

The back-up resource may provide some portion of the supply order during the response time. 

Klibi and Martel (2012) consider the partial availability of the capacity of a depot during the 

recovery period. They propose a discrete stepwise function to represent the gradual capacity 

recovery of the disrupted depot based on the intensity of the disruption and the time to recovery. 

Niroomand et al. (2012) illustrate the partial availability of the capacity within the response time 

in a strategic capacity planning model. The authors consider a two-echelon supply chain where 

the production stage includes a dedicated manufacturing system (DMS) and a reconfigurable 

manufacturing system (RMS) as a volume-flexible backup resource achieved through 

reconfiguration. The reconfiguration process refers to capacity installation and ramp up/down 

phases. The model incorporates a partial availability of the RMS capacity during the ramp-up 

phase to better represent the modular structure of the RMS. However, these models ignore a 

critical aspect in the level of material flow which is originated in the back-up resource during the 

response time. 

2.1.3 The Impacts of Congestion on Throughput during the Response Time    

In a situation where the main resource is disrupted, its demand would be transferred to the 

backup resource under a contingency strategy. This may create an overload of demand at the 

backup resource due to the randomness in production capacity during the response time. This 

randomness is a result of frequent occurrences of the system breakdown, rework, scrap and low 

skill of the operator to work with new configuration during the response time (Matta et al. 2007). 

As a result of this overload, queues will build up, degrading performance due to the congestion. 

Ignoring this fact may result in creating products shortages during the response time along with 

negative financial impacts (Pahl et al. 2007).  
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In order to consider the impact of congestion on the system throughput, Kim and Uzsoy (2008) 

employ the clearing function in a multi-work center capacity expansion problem. The clearing 

function is initially introduced by Karmarkar (1989) and presents the expected throughput of a 

resource over a planning period as a function of the expected Work in Process (WIP). The 

majority of studies that use clearing functions are in the production planning field. There are a 

few studies in risk management which consider the impact of congestion. Vidyarthi et al. (2009) 

propose a stochastic capacity planning model for a two-echelon supply chain that includes 

distribution centers and customers under random demand arrivals. The model’s objective is to 

minimize the lead time and capacity expansion costs, while the relationship between the lead 

time and congestion is captured through queuing models. Even though Vidyarthi et al. (2009) 

represents the congestion effect in a capacity planning model under the common problems of 

matching supply and demand, this phenomenon so far is ignored in the literature that focuses on 

the management of major disruptions (Hopp and Yin 2006, Schmitt 2011). 

2.2 Robustness 

Recently, the concept of robustness has drawn a lot of attention in the literature with focus on 

decision making under uncertainty. The robustness concept could have different meanings based 

on the decision making context in which is it applied to (Roy 2010). While the model robustness 

measures the solution feasibility, the solution robustness measures the performance of solution 

with respect to the optimal solution of each scenario (Mulvey et al. 1995). This thesis is focused 

on solution robustness or more specifically supply chain network design robustness. In the 

supply chain management literature, the term robustness is defined as the extent to which the 

supply chain is able to carry its functions for a variety of plausible scenarios (Snyder and Daskin, 

2006). Furthermore, a supply chain design is identified as robust if it has capability to sustain 

value creation under operational risks and major disruptions in future (Klibi et al. 2010, Wieland, 

2013). 

2.2.1 Solution Robustness   

In order to evaluate the robustness of a supply chain design with respect to future disruption 

occurrences, the concept of solution robustness has been applied as a performance measure in 
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several papers. A solution is called robust if it remains close to optimal for any occurrence of 

scenarios (Sahebjamnia et al. 2018). Baghalian et al (2013) identify the optimal location of 

facilities subject to supply side disruptions by minimizing the trade-off between expected cost of 

supply chain and solution robustness. They compute the solution robustness based on the 

difference between the cost of each scenario and expected cost of all scenarios. This approach 

has been frequently applied in supply chain network design problems in order to compute the 

solution robustness (Sadghiani et al. 2015, Rouzhen and Wang 2016, Nooraie and Parast 2016, 

Joonrak et al. 2018).    

In the same context of problems, there have been other methodologies incorporated into the 

problem’s formulation in order to measure solution robustness. Snyder and Daskin (2006) p  -

robust formulation minimizes the expected cost of the supply chain while bounding the relative 

regret in each scenario to be lower than the constant p . They compute the regret of a solution in 

a given scenario as the difference between the cost of the solution in that scenario and the cost of 

the optimal solution for that scenario. Sawik (2014) develop a combinatorial stochastic 

optimization formulation in order to identify robust solutions in a supplier selection and demand 

allocation problem subject to supplier disruptions. He tries to minimize the ordered weighted 

averaging aggregation of the expected value and the expected worst-case value of the objective 

function in order to obtain an equitably efficient solution. Such a solution is expected to 

equitably optimize the performance of a supply chain with respect to all plausible scenarios as 

well as in the worst-case scenario. 

2.2.2 Solution Robustness under Deep Uncertainty   

All approaches cited above could be applied into the supply chain network design problems in 

order to achieve solution robustness when the probabilities of scenarios are available. However, 

there is an open challenge for the case in which the scenario probabilities are unavailable called 

deep uncertainty (Klibi et al. 2010). Terrorist attacks, epidemics, geo-political instability, 

extreme weather events due to the climate change and related natural catastrophes are typical 

examples which are typically rare and hard to predict (Heckmann et al.2015). The Minimization 

of maximum cost or regret (absolute or relative) is one of the most common approaches to 
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achieve solution robustness when scenario probabilities are not available (Kouvelis and Yu, 

2013). However it is known to be too pessimistic because of considering only the worst case 

scenario.  

In order to compute solutions with less level of conservatism, Roy (2010) presents a new 

robustness formulation called bw -robustness which not only provides a solution that guarantees 

an objective value of at least w  across all scenarios but also maximize the probability of 

reaching a target value of b  ( b w ). This approach holds great appeal for managers due to its 

simplicity however the results are limited to the range provided by two boundary values of w  

and b . Kalai et al. (2012) propose another robustness approach called lexicographic  -

robustness which minimizes not only the maximum cost but also the second largest cost, the 

third one and so on with respect to a given threshold called  . This methodology is considered 

as a combination of Minmax and p -robust formulation described earlier. Furthermore, the 

lexicographic  -robustness formulation compensates for the conservatism of Minmax 

formulation by reordering the performance vector e.g. cost from the worst to the best and 

identify the robust solution such that the reordered performance vector is close to a given 

threshold. Although the lexicographic  -robustness approach is known to provide fair solutions 

with respect to objectives considered, but it has equivalent computational complexity to Minmax 

formulation especially for problems with large number of scenarios (Kalai et al. 2012). 

2.3 Scenario Reduction  

In order to reduce the computational complexity in stochastic programming and robust 

optimization associated with large number of scenarios within the original scenario set, one 

solution is to develop a reduced scenario set of the original set by selecting a few representative 

scenarios. This approach is called scenario reduction in literature. There are different scenario 

reduction techniques in literature including backward reduction and forward selection heuristics 

developed by Dupacova et al (2003), k -means clustering algorithm (Sutiene et al. 2010) and the 

probabilistic distance based reduction methodologies (Zeballos et al. 2014, Li et al. 2014).  
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The forward selection heuristic determines scenarios that will not be eliminated in a recursive 

manner. The scenarios with the minimum sum of the distances to the unselected scenarios are 

preserved. The termination condition is a specified number of scenarios that has to be preserved. 

The backward reduction heuristics has an inverse mechanism with the objective set to identify 

scenarios that have to be deleted. Both of these approaches have been frequently applied in 

supply chain network design literature (Govindan and Fattahi 2017, Esmaeili et al. 2016, Hamta 

et al. 2017). Furthermore, Dupacova et al. (2003) states that the reduced scenario sets determined 

by forward selection heuristic are slightly better with respect to accuracy however the 

computation requires higher CPU time. 

Heitsch and Romisch (2003) propose new versions of forward selection and backward reduction 

algorithms presented by Dupacova et al. (2003). The major differences include considering all 

deleted scenarios into each backward step of backward reduction algorithm simultaneously and 

also assigning identical weights to each scenario in the objective function of optimization model 

in order to simplify the forward selection processes. The new algorithms are called fast forward 

selection and simultaneous backward reduction. When comparing accuracy, Heitsch and 

Romisch (2003) results show that fast forward selection algorithm has best performance. 

Furthermore, the simultaneous backward reduction algorithm also provides more accurate 

solutions compared to backward reduction algorithm of Dupacova et al. (2003) but at the 

expense of higher computational times.            

Sutiene et al. (2010) develop a new clustering approach called k -means clustering which group 

data points into clusters such that each data point is in the cluster whose mean is closest. Khatami 

et al. (2015) utilize this methodology to reduce the size of the scenario set prior to applying 

Benders’ decomposition to solve their closed-loop supply chain network design problem. Crainic 

et al. (2014) use k -means clustering to create multi-scenario sub-problems. Applying a 

progressive hedging-based meta-heuristic to solve sub-problems, the results show that the quality 

of solutions is improved compared to the case where heuristic is applied to single-scenario sub-

problem. Furthermore, the time complexity is proved to be linear with respect to the number of 

scenarios.  
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Zeballos et al. (2014) apply a reduction algorithm based on the probability distance metric to 

their multi-period, multi-product, closed-loop supply chain (CLSC) design problem which is 

subject to uncertain levels in the amount of raw material supplies and customer demand. The 

probability distance is a function of scenario probabilities and the distances between scenario 

values. Therefore, the reduction algorithm deletes scenarios when they are close or have small 

probabilities. Finally, a sub-set of the original scenario set is achieved which include preserved 

scenarios with new probabilities. The preserved scenarios represent the deleted scenarios and 

their new probabilities are the summation of their probabilities in the original scenario set plus 

the probabilities of scenarios which are represented by them. Furthermore, the reduction 

algorithm Zeballos et al. (2014) applied to their CLSC problem can be found in the library 

SCENRED of GAMS. Their results show the importance of using a reduction algorithm to 

decrease the size of the problem, considering several outcomes at each time period for each 

uncertain parameter.       

Li et al. (2014) propose a new scenario reduction approach which minimizes not only the 

probabilistic distance between the distributions of the original scenario set and the reduced 

distribution of selected scenarios but also the difference between the best, worst and expected 

performance. To the best of our knowledge, this approach is the only MIP optimization based 

scenario reduction methodology available in literature. Li et al. (2014) results show that their 

approach has a better performance compared to GAMS scenario reduction routine SCENRED2. 

However, this method is constrained by the size of the problem such that it cannot compute the 

reduced scenario set for problems with large number of scenarios in an efficient manner. In order 

to address this limitation, Li and Floudas (2016) develop a sequential scenario reduction 

framework for problems with multiple uncertain parameters. First, the scenario set is 

decomposed into multiple subsets where each subset is created based on a single uncertain 

parameter. Next, the single stage scenario reduction approach proposed by Li et al. (2014) is 

applied to each subset. Finally, the selected scenarios correspond to each subset are included in 

the reduced scenario set. Li and Floudas (2016) results verify the efficiency of the proposed 

decomposition based approach in solving large scale problems generated from multiple uncertain 
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parameters. However, this approach is not applicable to large scale scenario sets developed based 

on a single uncertain parameter since such problems are not decomposable.  

2.4 Conclusion 

In the first part of literature review, we focus on the works which apply contingent sourcing as 

part of their risk mitigation strategies to deal with supply disruptions. Considering the response 

time as a crucial parameter in the successful implementation of contingent sourcing, we review 

the literature on strategies to reduce the response time. The investment in the back-up supplier 

configuration helps to increase the response speed however the efficiency of this strategy 

depends on the consideration of available capacity levels during response time. There are works 

in the literature such as Klibi and Martel (2012), Niroomand et al. (2012) which focus on 

estimation of the partial capacity available during the response time but the impact of the 

congestion created as result of randomness in production rate of back-up supplier over system 

throughput is ignored so far. This may result in overestimating the back-up supplier capacity 

during the response time and therefore creating product shortages. We resolve this issue in 

Chapter 3 by incorporating the clearing functions into the contingency capacity planning model. 

The selections of the optimal level of back-up supplier’s response speed and strategic stock are 

our design problems; therefore we focus on the robust design of supply chain in the second part 

of our literature review. Furthermore, we model the randomness associated with available 

capacity during the response time in a robust optimization model in Chapter 4. Former studies 

such as Bundshuh et al. (2003), Bilsel and Ravindran (2011), Fang et al. (2012) and Schmitt and 

Singh (2012) ignore this fact in their analysis. This may result in an inaccurate representation of 

the production capacity during the response time.  

The concept of solution robustness could be applied to measure the robustness of a supply chain 

design solution. Therefore, our objective is to achieve solution robustness in identifying our 

design decisions. In order to achieve solution robustness, there are two streams of research which 

consider different levels of information that might be available about uncertain parameters. The 

first stream assumes there is enough information available to estimate the probabilities of 

disruptions. The common approaches to achieve solution robustness are minimization of the 
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trade-off between expected cost and solution robustness (Baghalian et al. 2013) and p  -robust 

formulation (Snyder and Daskin, 2006). In Chapter 4, we assume that scenario probabilities are 

available and we apply an approach similar to Baghalian et al. (2013) to achieve solution 

robustness.  

The second stream represents the situation where it is not possible to estimate the probabilities of 

disruptions. In this case, the lexicographic  -robustness formulation proposed by Kalai et al. 

(2012) could be applied in order to achieve fair solutions with respect to all plausible scenarios. 

However, there is computational complexity associated with this approach especially for 

problems with large number of scenarios. 

The scenario reduction is known as an efficient approach to reduce the computational complexity 

in stochastic programming and robust optimization when scenario sets are large. The review of 

literature on the most well-known scenario reduction techniques reveals that the MIP 

optimization models calculate the reduced sets with better solution quality compared to heuristic 

based techniques (Li et al. 2014) however they cannot compute the reduced set for problems with 

large number of scenarios in a reasonable time. Therefore, we propose a novel clustering based 

MIP optimization scenario reduction model which includes the gradual coverage function in 

order to improve the computational time in Chapter 5. The computed reduced sets are then used 

in a robust optimization model which includes an Ordered Weighted Averaging aggregator 

operator in its objective function in order to achieve fair solutions when scenarios probabilities 

are not available. 
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Chapter 3 

Responsive contingency planning in supply 

risk management by considering congestion 

effects 

 

        In this Chapter, we focus on contingent sourcing as a cost-effective risk management 

strategy to deal with major supply disruptions. In order to improve the supply chain 

responsiveness, our objective is to determine the appropriate response speed level of the volume-

flexible backup supplier. To this end, we develop a decision-making tool which considers the 

operational characteristics of contingent sourcing such as response time and congestion impacts 

in order to make an accurate decision. We evaluate the impact of the different failure and 

recovery probabilities over the selection process. Furthermore, we investigate whether it is 

important to consider the congestion effects in the supply chain strategic level design decisions.     

We consider a single product supply chain that includes a warehouse with dual sourcing as 

presented in Figure 3.1. The main supplier is cost-effective as a result of dedicated facilities 

(DMS) but prone to disruptions. It could be up or down completely for an integer number of 
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periods within the planning horizon. Similar to the Nokia and Chiquita’s suppliers (Tomlin 

2006), we assume that there is a backup supplier located in a low-risk region that is available 

when the main supplier is disrupted. The backup supplier has volume-flexible production 

facilities where it can scale up its capacity according to a speed related to its configuration. 

Furthermore, the production cost of the backup supplier rP  is higher than the main supplier’s 

production cost dP  due to its scalability.     

The supply chain is analyzed in a long-term planning horizon T  (multiple years). This 

assumption is made because of the fact that the planning horizon should be longer than the 

recovery period of any disruption scenario (Tomlin 2006, Schmitt 2011). Furthermore, each 

period t  represents a quarter. The product demand is deterministic and follows the classical 

lifecycle pattern which includes introduction, growth, maturity and decline phases (Rink and 

Swan, 1979). It is assumed that the product demand is not affected by the disruption since the 

main supplier is not located in the demand region. Demand in any period, tD , must be met by the 

main and backup supplier. If the demand is not met within its period, it is considered as lost, 

represented by ts .  

 

Figure 3.1 The supply chain network configuration 

As illustrated in Figure 3.2, the main supplier provides the required supply up to a maximum 

level of dC  during normal periods. The raw material ,d t  would be released into the DMS 
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facility at the beginning of the period, which results in the production throughput of ,d tx . Due to 

the queuing effects, there would exist a work in process inventory, ,d t . Furthermore, the 

inventory level at the end of the period is represented by ,d t . 

If the main supplier which is equipped with DMS fails due to a major disruption, the scalability of 

the back-up supplier with RMS is being used to supply the required flow of material. Therefore, 

the backup supplier increases its capacity to meet the warehouse demand. The time and the 

magnitude t
  of these changes are decided in a multi-period contingency capacity planning 

model with respect to the trade-off between shortage cost S , RMS reconfiguration cost R , RMS 

excess capacity cost rE  and RMS production cost rP  , as described in section 3.1.1. 

 

Figure 3.2 An example of a contingency plan execution.  

The RMS consists of machines having a base structure on which modules can be added to 

increase the capacity. Each module can increase the capacity with discrete steps C , where 

smaller increments mean better scalability. Furthermore, there is an upper limit f on the number 
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of modules that can be attached to a base due to machine or space limitations (Jordan and Grave, 

1995). The target capacity t  would be gradually achieved within the response time due to the 

reconfiguration process (Koren et al. 1999). Therefore a fraction of the target capacity 

represented by t  is available during the response period. Since the backup supplier is not fully 

capable of producing at the required rate during the response time, shifting the demand to the 

backup supplier creates an overflow of demand, resulting in congestion. This congestion would 

decrease the throughput during the response time due to the increase in the lead time.  

In order to implement a responsive contingency planning, operational characteristics such as 

response time should be considered in the design stage (Tomlin et al. 2010). Otherwise, the 

supply chain may incur shortages due to overestimation of the production capacity. For this 

purpose, we model the available capacity during the response time and the impact of the 

congestion over the system’s throughput, described in sections 3.1.1.1 and 3.1.1.2 respectively.  

As indicated in Figure 3.2, the backup facility reaches the desired level at the end of the response 

time. Furthermore, the backup supplier ramps down to its initial capacity at the end of the 

disruption, when the main supplier resumes supplying the product to the warehouse. The amount 

of the available capacity during the response time depends on the response speed such that a 

faster response speed provides more capacity within the response time. Furthermore, the 

response speed depends on the RMS layout configuration (Hale and Moberg, 2005).  

A parallel configuration leads to a faster response speed compared to a serial configuration. A 

configuration with mostly parallel machines will increase the available capacity during the 

response time at the expense of increased reconfiguration cost. On the other hand, the RMS 

capacity within the response time is important, since the supply chain incurs shortage costs if the 

available capacity level during this period is lower than the required capacity. As a result of these 

factors, RMS layout configuration should be determined at the design stage of the supply chain 

in order to minimize the expected costs. Note that the selected configurations would remain fixed 

during the planning horizon while the capacity might change upon the realization of the different 

disruption scenarios. 
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In this Chapter, we identify a scenario as the status of the main supplier within the planning 

horizon. It could be active or inactive due to the disruption occurrences. With respect to the 

frequency and the length of disruptions within a specified planning horizon, several scenarios 

can be identified. Since the focus is on the rare catastrophic events, we determine the scenarios 

where disruptions occur once within the planning horizon. Therefore, disruption scenarios are 

generated with respect to the time of occurrence m and the length of the disruption n.  

In the following section, we present a two-stage solution methodology to determine the 

appropriate response speed of the backup supplier. For a given response speed, the contingency 

plans corresponding to the disruption scenarios are generated in the first stage. This is repeated 

for various speed levels. In the second stage, the appropriate speed level is selected in a decision 

tree analysis.  

3.1 Solution methodology 

In order to find the optimal response speed of the backup supplier, a solution methodology based 

on mixed integer programming and decision tree analysis is proposed as illustrated in Figure 3.3. 

We first develop a mixed integer programming (MIP)-based multi-period capacity planning 

model for a deterministic demand within the planning horizon. Afterwards, the capacity plan is 

subjected to a set of possible DMS disruption scenarios, where each scenario’s probability of 

occurrence is calculated using discrete Markov chain distribution. 
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Figure 3.3 Solution methodology. 

Each disruption scenario is inserted to the MIP model to represent the capacity disruptions to the 

DMS facility, which in turn will trigger the need for the RMS to ramp up its supply capacity to 

meet the demand. We analyze three different response speed levels; each corresponds to a certain 

level of available capacity during the response time. For each speed level, the MIP model 

generates the contingency capacity plans and their resulting costs corresponding to different 

disruption scenarios. The costs of the contingency capacity plans as well as the probabilities of 

disruption scenarios are then incorporated in a decision tree. For a given failure and recovery 

probability, the optimal response speed under all plausible future scenarios is selected through 

this decision tree analysis. 

Since the selection of the response speed can depend on the attitude of the decision maker 

towards risk, we can determine the optimal policy under risk-neutral and risk-averse conditions. 

The risk-neutral decision maker selects the optimal response speed with the objective of 

minimizing the expected cost under all plausible scenarios, while the risk-averse decision maker 
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would like to minimize the expected cost of worst-case scenarios. The worst-case scenarios are 

identified as the scenarios which have the highest operational cost according to the objective 

function. 

We first introduce the MIP capacity planning model in section 3.1.1. More detailed explanations 

are provided for the constraints representing the available capacity during the response time and 

congestion effects in sections 3.1.1.1, and 3.1.1.2. The modifications required to generate the 

contingency plans are given in 3.1.2. Finally, the decision tree analysis is presented to provide 

details on the second phase of the proposed methodology.  

3.1.1 Capacity planning model 

The first step of the proposed methodology consists of the mixed integer programming model to 

determine the capacity, production, inventory and WIP levels of DMS and RMS suppliers for a 

predetermined planning horizon. The list of notations and decision variables is shown Table 3.1 

and  

Table 3.2. 

Table 3.1 List of Notations 

Indices 

t  Current time 

d  DMS supplier 

r  RMS supplier 

i  Number of added or removed modules 

j  RMS nominal capacity level 

 

Input parameters 

 '1,2,...,T T  Planning horizon consisting of 'T  periods 

M  A big number 

tD  Demand at time t 

dP  Production cost of DMS 
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rP  Production cost of RMS 

R  Reconfiguration cost 

S  Shortage cost 

dE  Excess capacity cost of DMS 

rE  Excess capacity cost of RMS 

dH  Finished good holding cost of DMS 

rH  Finished good holding cost of RMS 

dW  Work in Process holding cost of DMS 

rW  Work in Process holding cost of RMS 

dM  Release material cost of DMS 

rM  Release material cost of RMS 

dC   Maximum DMS capacity 

C   RMS Module capacity 

iU  
The coefficient of the upper limit for actual RMS capacity 

change 

iL  
The coefficient of the lower limit for actual RMS capacity 

change 

 0,1,2,...,I f  Set of number of modules that could be added or removed 

with maximum of f   

 ,2 ,...,J C C fC  Set of RMS nominal capacity levels 

 

 

Table 3.2 List of decision variables 

Decision variables 

,d tx  DMS production at time t 

,r tx  RMS production at time t 
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t
  RMS added capacity at time t 

t
  RMS removed capacity at t 

ts  Lost demand at time t 

,d t  DMS satisfied demand at time t 

,r t  RMS satisfied demand at time t 

,d t  DMS excess capacity at time t 

,r t  RMS excess capacity at time t 

,d t  DMS finished good inventory at time t 

,r t  RMS finished good inventory at time t 

,d t  DMS Work in Process at time t 

,r t  RMS Work in Process at time t 

,d t  Amount of raw material released to DMS at time t 

,r t  Amount of raw material released to RMS at time t 

t  RMS actual capacity at time t 

t  RMS nominal capacity at time t 

tu  RMS actual capacity added at time t 

tl  RMS actual capacity removed at time t 

,i ty  1 if i  modules are added to RMS; 0 otherwise 

,j tk
 1 if nominal capacity j  is reached; 0 otherwise 

tb  1 if demand loss exists; 0 otherwise 

tq  1 if there is capacity addition; 0 otherwise 
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The objective function (1) includes the production cost, the system reconfiguration cost, the lost 

demand and the excess capacity costs, the holding cost of the finished good inventory, the work 

in process holding cost and the raw material purchasing cost.  





, , , , , ,

, , , ,

 ( )

                     

d d t r r t t t t d d t r r t d d t r r t

t T

d d t r r t d d t r r t

Minimize Z P x P x R Ss E E H H

W W M M

   

   

 



         

   



 

(1) 

After the demand is realized for a period, it could be satisfied through the inventory or the 

current RMS and DMS production (2), (3). The unsatisfied demand is lost and it is not carried 

over to the next period (4). We assume that it is not possible to have both demand loss and the 

inventory at the end of any period (5), (6). The work in process inventories consist of the jobs in 

the queue or under operation. Constraints (7) and (8) represent the balance equations between the 

raw material release, production quantity and WIP level for each period.  

Constraints:   

, , 1 , ,d t d t d t d tx         t T   (2) 

, , 1 , ,r t r t r t r tx         t T   (3) 

, r,d t t t ts D        t T   (4) 

(1 )t ts M b      t T   (5) 

, ,d t r t tMb       t T   (6) 

, , 1 , ,d t d t d t d tx         t T   (7) 

, , 1 , ,r t r t r t r tx         t T   (8) 

The production of the DMS and RMS are limited to the available capacity of each system, and 

any unutilized capacity is considered as excess capacity (9), (10). The maximum workload in any 

period is bounded by the available capacity during that period, since the utilization of a resource 

cannot exceed 100% (11), (12). 

, ,d t d t dx C 
 

   t T   (9) 
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, ,r t r t tx   
 

   t T   
(10) 

, 1 ,d t d t dC        t T   (11) 

, 1 ,r t r t t         t T   (12) 

Since RMS capacity can be changed to respond to DMS disruptions, the response time and the 

capacity changes should be represented in the MIP model. The following section describes how 

these two transitions are represented. 

3.1.1.1 The impact of response time on RMS capacity 

In order to have an appropriate estimation of the available capacity of the RMS during the 

reconfiguration process, we assume that only a portion of the added capacity is available during 

the response time. Therefore, during this period we deal with two characteristics of capacity: the 

nominal capacity and the actual capacity. The nominal capacity determines the amount of 

capacity that the system is set to reach for the following period (13).  

1 tt tt  

   
 

   t T   (13) 

1t t tt u l         t T   (14) 

t fC      t T   (15) 

The actual capacity will be less than the nominal capacity since some portion of the nominal 

capacity is lost during the ramp-up period. In a ramp-down period, the actual capacity will be 

slightly higher than the target level. Therefore, the system is not able to reach the nominal 

capacity instantly. The actual capacity represents the amount of capacity that is available during 

the response time (14). During the reconfiguration process, we assume that RMS capacity can be 

added or removed by changing the modules of the system. The maximum number of modules 

that could be added to a system determines the maximum RMS capacity (15). Since adding or 

removing of the modules requires a new setup, we assume that adding or removing each module 

incurs a reconfiguration cost.  
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Within the recovery period, Klibi and Martel (2012) represent the gradual capacity recovery of 

the disrupted depot. In contrast, we assume that there is no supply from the main supplier. 

Furthermore, we assume that the RMS provides the capacity gradually during the response time. 

The available capacity of the RMS is modeled as a fraction of nominal capacity through the 

constraint set (16) to (17). 

  ,Δ Δ (1 )t t i t t i tu l U M y     
 

   ,     i I t T     (16) 

  ,Δ Δ (1 )t t i t t i tu l L M y     
 

   ,     i I t T     (17) 

For each capacity change, we assume that iL  to iU  of the added capacity is available during the 

response time, where , [0,1]i iU L  . The impact of the RMS response speed is illustrated through 

the RMS’s available capacity during the response time, such that there is more capacity 

availability within the response time as the response speed increases. This is indicated through 

the coefficients of the upper bound iU  and lower bound iL  in constraints (16), (17). The value of 

these coefficients would be higher for faster speed levels. This can be explained by observing the 

evolution of the throughput curve TH(t) during the response time. As shown in Figure 3.4, the 

actual capacity during the ramp-up period is measured by the area under the throughput curve. 

Accordingly, the maximum capacity that can be added is equal to the area determined by

( )t tTH t     . The evolution of this throughput curve depends on the layout configuration 

type (Niroomand et al. 2012). A serial configuration will demonstrate a slower evolution in the 

beginning of the response time and will reach the desired throughput only at the end of a period 

when all the stages’ reconfiguration is complete. On the other hand, a parallel configuration’s 

throughput curve can improve faster thanks to better scalability (Wang and Koren, 2012). This 

will result in improved capacity availability for a parallel configuration. 
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Figure 3.4 The throughput curve during response time. 

We assume that the nominal capacity can be changed in predetermined module sizes, which are 

identified in constraint (18). In any period where there is a reconfiguration process, there could 

only be a capacity addition or removal (19), (20). These constraints prevent the selection of both 

capacity addition and removal simultaneously. The response time is also determined through a 

set of binary variables, in the case of no reconfiguration process; no capacity could be added or 

removed (21) - (23). 

,

1

f

t t i t

i

iCy 



       t T   (18) 

t t tu Mq       t T   (19) 

(1 )t t tl M q        t T   (20) 

,

0

1
f

i t

i

y


     t T   (21) 

,

1

Δ
f

t t i t

i

u M y



       t T   (22) 
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,

1

Δ
f

t t i t

i

l M y



       t T   (23) 

The consideration of supply disruptions at the main supplier can result in an overflow of the 

demand towards the backup supplier. This overflow results in an accumulation of WIP despite 

the ramp-up at the backup supplier. There are two drawbacks associated with this situation. First, 

the congestion created by this overflow will decrease the throughput. Second, the decreased 

throughput will then result in lost demand. Furthermore, the effects of congestion are also 

important in order to properly assess the actual capacity of the suppliers, especially in a 

contingency strategy.   

3.1.1.2 The impact of the congestion on throughput 

Under the contingent rerouting strategy, the disruption in the supply chain can lead to significant 

losses if the selected backup supplier is not responsive enough. These losses can have negative 

implications in the short term as well as in the long term. In the short term, there would be some 

lost sales if customers are not filled promptly. In the long term, the incurred losses may result in 

losing market share to competitors and end up being far more severe than short-term losses 

(Farahani et al. 2013). In our context, the amount of these losses depends on the scalability of the 

backup supplier. Despite the scalability level of the backup supplier, rerouting the total demand 

at the beginning of the response period will create an overflow when the backup capacity is not 

100% available. As a result of this overflow, the congestion effects such as queue build up and 

increased lead time will be observed. Therefore, the amount of the backup supply during the 

response time would be limited.  

The consideration of congestion effects can allow better representation of the available capacity 

during the response period. This representation will allow determining the appropriate response 

speed level of the backup supplier. In order to incorporate the effects of congestion, we present 

the suppliers as a single server system with Poisson arrivals and general service time distribution 

(M/G/1 system). The relationship developed using this model allows developing the clearing 

function, defining the relationship between the workload and throughput in steady state 
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(Missbauer 2002). Based on this clearing function, the expected system throughput ( )tE x  in any 

period is a function of the expected work load 1( )t tE    , available capacity   and the mean 

and the variance of the processing time: 

2 2 2

1 1 1 1

1
(x ) ( ) 2 2 ( ) 2 ( ) ( )

2
t t t t t t t t tE k E k k E kE E              

             
   

(24) 

Where k is defined based on the mean 
1


  and the variance 

2

1


  of the processing time as 

follows: 

2 1

2 2
k




 

 
(25) 

The clearing function in (24) is concave and nonlinear (Missbauer 2002). An outer 

approximation approach has been used to generate a set of lines in order to linearize the MIP 

model. In order to minimize the error between the actual curve and the approximated lines, the 

location and the number of tangent points are determined by the subtractive clustering method 

(Chiu 1994). This allows identifying the number of lines that will approximate the clearing 

function. The detailed explanation of the method is presented in Appendix A.  

Based on this linearization, the constraints generated for each supplier can be defined as follows. 

The production by the DMS supplier could not be more than the expected throughput, which is 

estimated by its clearing function (26). This estimation is based on a predetermined service rate. 

The set of lines N  represents the clearing function where A is the slope and B  is the constant 

value of the line   . 

, , 1 ,( )d t d t d tx A B         ,     N t T     (26) 

Since the RMS has varying capacity levels within the planning horizon, a set of binary variables 

are presented in (18), (27), (28) to activate the clearing function corresponding to each level.  
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,

fC

t j t

j C

jk


     t T   (27) 

, 1
fC

j t

j C

k


     t T   (28) 

Similar to (26), the production of the RMS supplier in the periods with fixed capacity level j  is 

limited by the expected throughput (29). In this constraint, the set of lines jN  is employed to 

replace the clearing function.  

, , 1 , 0, ,( ) (2 )r t r t r t t j tx A B M y k            ,     ,     jj J N t T       (29) 

If there is a change in the capacity level of the RMS supplier, the throughput during the 

reconfiguration period is a function of both the workload and actual capacity, as indicated in 

Figure 3.5.   

 

Figure 3.5 Clearing function. 
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In order to incorporate this clearing function in the MIP model, it should be converted into a set 

of hyper planes. Based on this conversion, the production quantity of the RMS supplier within 

the response time once it adds i  modules to reach to the capacity level of j  could not exceed the 

expected throughput (30).  

For any capacity increment scenario ,i j  , the expected throughput is approximated through the 

set of hyper planes ,i jV  . In this set, the parameters ,  A B 
are the slopes with respect to the 

workload and capacity respectively and  G
  is the constant value of the hyper plane  . 

, , 1 , , ,( ) (2 )r t r t r t t i t j tx A B G M y k          
 ,   ,     ,     ,    i ji I j J V t T        

 
(30)

 

The above constraint incorporates the set of hyper planes ,i jV 
  as an upper bound over the 

production quantity of the RMS when it increases its capacity level. In order to apply this 

constraint for capacity reduction case, the set of hyper planes ,i jV 
 is presented in (31). 

, , 1 , , ,( ) (2 )r t r t r t t i t j tx A B G M y k          
 ,   ,     ,     ,    i ji I j J V t T        

 
(31) 

The non-negativity constraints are presented as follows: 

   

, , , , , ,

, , , , , ,

0,  0,  0,  0,  0,  0,  0,  0,  0,  

0,  0,  0,  0,  0,  0,  0,  0,  0,  

0,  0,1 ,  0,1

  

d t r t t t t d t r t d t r t

d t r t d t r t d t r t t t t

t t t

x x s

u

l b q

   

       

           

        

  

 

   t T   (32) 

 , 0,1i ty      ,     i I t T     (33) 

 , 0,1j tk      ,     j I t T     (34) 

While the presented MIP model generates the capacity plan under the normal operational 

condition of the DMS, additional variables and constraints allow integrating the disruption 

scenarios and generating the performance information for each scenario. In the case of DMS 

failure, the contingency capacity plan is generated by modifying the MIP according to the steps 

explained in the following section.   
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3.1.2 Representation of disruptions in the MIP model 

In generating the contingency plan for each disruption scenario, the following sets of changes are 

incorporated in the MIP model. First, the binary variable 
tO  is incorporated to indicate the DMS 

supplier failure.  

Once the DMS supplier is disrupted, the demand could be satisfied through current inventory 

and/or RMS production (36). For a given disruption scenario there should be no production and 

material release to the DMS supplier when it is disrupted (37), (38). The DMS WIP level during 

the disrupted periods remains equal to the WIP level of the last period before the disruption (39).  

, , 1 , ,d t d t t d t d tO x    
 

   t T   (36) 

, , Cd t d t t dx O 
 

   t T   (37) 

,d t tMO 
 

   t T   (38) 

, , 1 , ,( )d t d t t d t d tO x    
 

   t T   (39) 

In order to avoid the MIP model building inventory in advance of the disruption period m , the 

inventory levels of the DMS and RMS and the capacity plan of the RMS for the periods before 

the disruption are set to the values obtained in the initial capacity planning model. These values 

are presented in constraints (40)-(42) by ,d tI , ,r tI , 
tC  accordingly. This allows generating a 

contingency plan, which requires the use of the backup supplier for the disrupted periods. 

, ,d t d tI 
 

   1,..., 1t m    (40) 

, ,r t r tI 
 

   1,..., 1t m    (41) 

,i t ty C
 

   1,..., 1t m    (42) 

1 If DMS is available

0 otherwise
tO


 
  

   t T   (35) 
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These changes allow generating the supply chain contingency plan under the failure of the DMS 

supplier. In the disruption periods, the MIP model should trigger a capacity change in the backup 

supplier according to a preselected response speed.  

3.1.3 Decision tree analysis 

Due to the stochastic nature of the disruptions, an optimal response speed can be identified based 

on the expected supply chain costs and the attitude of the decision maker towards risk. In 

identifying the optimal response speed for the backup supplier, a decision tree analysis is 

conducted. The decision tree is a well-known technique in the field of decision analysis under 

risk (Berger et al. 2004).  

As indicated in Figure 3.6, the square node is the decision options and the circle nodes represent 

the chance events. The decision options regarding the response speeds kRS include Fast speed

1RS , Medium speed 2RS  and Slow speed 3RS . For a disruption scenario ( , )m n  belonging to the 

set of all plausible future scenarios S   with the probability of ( , )m nP , each of these response 

speeds associated with the backup supplier corresponds to a total cost ( , , )kRS m nZ  as a result of 

the contingency plan generated in the MIP model. This allows computing the expected cost 

corresponding to each decision through the following formula:  

( , ) ( , , )
( , )

( )
kk m n RS m n

m n S

E RS P Z



    1,2,3k   (43) 
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Figure 3.6 The decision tree for the optimal selection of the response speed (e.g., 8T  ). 

In order to identify the probability of each disruption scenario, the Markov discrete time 

distribution is incorporated. The parameter  represents the probability of a disrupted period 

following a non-disrupted period (failure probability). The parameter   defines the probability 

of a non-disrupted period following a disrupted period (recovery probability). Based on these 

assumptions, the probability of a disruption at time m  with the length of n  is computed through 

the following formulas. 

 ( , ) (1 )T

No disruptionP m n     (44) 

1 1( , ) (1 ) (1 )m n

DisruptionP m n         1,..., ,n T m m T     (45) 



 
 

 

 
43 

 

1 1( , ) (1 ) (1 )m n

DisruptionP m n        1,n T m m T      (46) 

The details regarding the derivation of these formulas can be found in Appendix B. The expected 

cost criteria can be used to identify the optimal response speed where the decision maker is risk-

neutral. The response speed, which minimizes the expected cost of the supply chain under all 

plausible future scenarios, is the optimal speed. If the decision maker is risk-averse then the 

criteria of Conditional Value at Risk CVaR  can be utilized.         

Once the decision maker is risk-averse, the risk of high losses as a result of disruptions is 

controlled by the confidence level  . This means that there is a target cost of portfolio VaR  such 

that the costs for   percent of the scenarios would be less than or equal to VaR . The remaining 

1   percent of scenarios are the worst-case scenarios. A risk-aversive decision maker minimizes 

the expected cost of the worst-case scenarios defined as Conditional Value at Risk CVaR  (Sawik 

2012): 

1

( , ) ( , )

( . )

(1 )
k kRS RS u v u v

u v S

CVaR VaR P 



   
 

(47) 

Where ( , )u v  are the scenarios that cost more than VaR  and ( , )u v  are defined as follows:  

( , ) ( , , )k ku v RS u v RSZ VaR  
 

(48) 

The optimal response speed could also be identified with the objective of minimizing the 

expected supply chain costs under all plausible future scenarios as well as the expected supply 

chain costs when subjected to worst-case disruptions. In this case, a coefficient   represents the 

weight of these objectives in the decision-making stage. For that purpose, the following formula 

is employed.  

 ( ) (1 )
kk RSMin E RS CVaR    (49) 

The decision tree analysis allows identifying the appropriate response speed of the backup 

supplier with the objective of minimizing the expected supply chain costs with respect to the 
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attitude of the decision maker towards risk. The selection of the optimal policy depends heavily 

on the probability of failure and recovery of the main supplier. The value of these probabilities 

can depend on several parameters, such as the hazard exposure level of the geographical zone in 

which the facility is located, as well as the ability to return to the operational condition once it is 

disrupted (Klibi et al. 2010). Section 3.2 presents an example to investigate the optimal selection 

of the response speed with respect to different failures and recovery probabilities of the main 

supplier. 

3.2 Numerical Experiments 

This section presents an example in order to illustrate the proposed methodology. We consider 

the supply chain associated with a product whose lifecycle lasts for eight periods. The demand 

level follows a classical pattern over the lifecycle of the product, as indicated in Table 3.3. 

Table 3.3 Demand scenario 

t   1 2 3 4 5 6 7 8 

tD   406 530 580 629 629 486 384 303 

 

The MIP model is used to generate the capacity plan by determining the capacity, production, 

raw material, inventory and WIP levels within the planning horizon. In identifying the capacity 

plan, the following assumptions have been made regarding cost and capacity-related input data, 

as indicated in Table 3.4. 

While the raw material purchasing cost is the same for both suppliers, the production cost of the 

RMS is higher than that of the DMS (Tomlin 2006). Therefore the WIP and the finished good 

inventory holding cost of the RMS are higher than for the DMS. There are three different RMS 

reconfiguration costs corresponding to three different response speed levels. The reconfiguration 

costs increase as the response speed levels are improved. 

Table 3.4 Supplier’s costs parameters $/Unit 
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Cost 

parameter 
dM  rM

 
dP  rP  dW  rW  dH

 
rH  ( )R Slow  ( )R Medium  ( )R Fast  

Value 20 20 20 100 10 15 35 40 40 60 100 

The RMS excess capacity costs and the product’s shortage costs are presented in Table 3.5. The 

product shortage costs are defined with respect to the demand pattern, such that there is a higher 

shortage cost in the introduction and growth periods compared to the maturity periods of the 

lifecycle. On the other hand, the decline periods have a lower shortage cost compared to the 

maturity phase.  

Table 3.5 Excess and shortage costs $/Unit 

t   1 2 3 4 5 6 7 8 

rE   20 25 30 35 40 50 60 70 

S   460 430 410 390 370 350 330 310 

 

The supplier with the DMS facility has a fixed capacity of 500 while the RMS-equipped supplier 

can vary its capacity according to the steps indicated in Table 3.6. The initial configuration of the 

RMS is a base which provides 100 units of capacity. It can raise its capacity level by adding 

modules according to Table 3.6.  

Table 3.6 RMS capacity levels with respect to its structure pcs/Period 

i   0 1 Module 2 Modules 3 Modules 

j   100 200 300 400 

The coefficients of the upper and lower bounds in constraints (16), (17), which represent the 

amount of the available capacity during the response time, are identified in Table 3.7. According 

to scalability characteristics explained in 3.1.1.1, we consider higher values for faster response 

speed configurations. Since adding higher capacity would result in a longer reconfiguration 

process, the percentage of available capacity decreases as the number of added modules 

increases (Niroomand et al. 2012).  
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Table 3.7 The coefficients of capacity boundaries corresponding to different speeds 

Response speed Slow Medium Fast 

Number of added modules ( )i   1 2 3 1 2 3 1 2 3 

iU   0.75 0.5 0.4 0.85 0.65 0.5 0.95 0.85 0.7 

iL   0.5 0.4 0.2 0.65 0.5 0.3 0.85 0.7 0.55 

 

Based on the stated assumptions regarding the supply chain and input data, the following 

experiments are conducted. First, we present the benefit of considering the effects of congestion 

in evaluating the performance of a contingency strategy. Second, an optimal contingency 

strategy is assessed by identifying the response speed of the RMS within a range of failure and 

recovery probabilities. The selection of optimal response speeds are then evaluated based on the 

attitude of the decision maker towards risk. Specifically, we look at the value of considering 

congestion in the selection of response speed at various levels of tolerance to risk. We quantify 

this impact through the difference in service levels. 

The MIP model to generate the regular capacity plans as well as the contingency plans has been 

implemented in ILOG CPLEX version 12.5. By setting the desired optimality gap to 0.0001, the 

results of the contingency plans have been obtained with an average optimality gap of 0.0015 at 

an average computation time of 4.5 seconds. 

3.2.1 The impact of congestion on contingency strategy performance 

In this section, the impact of considering the congestion is evaluated by observing the supply 

chain service level under two conditions. First, the MIP model is used to determine the capacity 

plan, the production quantities, WIP and inventory levels corresponding to DMS and RMS 

suppliers without considering the impact of congestion (load-independent model). For this 

purpose, the constraints (26), (29), (30), (31) representing the clearing functions are removed. 

This implies that any amount of release to a production system will be exactly produced which is 

an overestimation of capacity. 
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Afterwards, the clearing functions present the actual production quantity of the DMS and RMS 

based on the capacity and WIP levels which have been determined in the load-independent 

model. The actual demand losses are then computed by the difference between demand and 

production quantities obtained using the clearing function. This will give the actual service level 

which is determined as a fraction of satisfied demand over the total demand within the planning 

horizon. 

Second, in order to compute the supply chain service level once the congestion impact is 

considered (load-dependent model), the proposed MIP model including clearing functions is 

executed. To illustrate the results, we present the case for a DMS disruption scenario at time 3 

with a length of 3 periods, in Table 3.8. 

The production quantities ,d tx , ,r tx  in the load-independent model are overestimated as a result 

of ignoring the congestion (e.g., ,2 500dx   while the actual production value is 432). Once the 

impact of congestion is considered (load-dependent model), the MIP model would increase the 

RMS capacity t  to a higher level compared to the load-independent model to cover the 

shortages (e.g., 
2 100  in the load-independent model versus 

2 200   in the load-dependent 

model). As a result of this, the service level of the load-dependent model would be higher than 

its load-independent counterpart. This behavior is observed in all plausible scenarios.  

Table 3.8 Capacity planning in load-independent versus load-dependent models 

Decision Variables 1 2 3 4 5 6 7 8 

 

MIP results in load-independent capacity plan (no congestion 

effects) 

,d tx  474 500 0 0 0 486 384 303 

t  100 100 400 400 400 100 100 100 

t  100 100 250 400 400 250 100 100 

,r tx  0 0 250 400 400 0 0 0 

 

Actual production levels due to congestion effects 
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ACT ,d tx   419 432 0 0 0 424 358 290 

ACT ,r tx  0 0 186 333 333 0 0 0 

ts  55 68 356 296 296 62 26 13 

Service Level 0.70               

 

MIP results with load-dependent capacity plan (with congestion 

effects) 

,d tx  431 405 0 0 0 425 379 302 

t  100 200 400 400 400 100 100 100 

t  100 184 330 400 400 250 100 100 

,r tx  0 100 262 333 333 61 5 1 

ts  0 0 318 296 296 0 0 0 

Service Level 0.77 

       
Figure 3.7 represents the service level of the load-independent model and load-dependent model 

for disruptions which might occur at time 3 at varying lengths, with an RMS at medium response 

speed. 
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Figure 3.7 The impact of considering congestion effects on service level. 

The results show that considering the congestion effects in developing a contingency plan for a 

supply chain improves the service level. This is due to the fact that the backup supplier capacity 

can be planned accordingly. As indicated in Figure 3.7, the service level decreases in both cases 

as the length of the disruption increases. This happens due to losing the main supplier, which has 

a higher capacity level compared to the backup supplier. As the disruption length increases we 

observe that the service level difference between two cases decreases. This is due to the fact that 

the backup supplier can’t replace the main supplier over long periods of disruption.  

The results presented so far show improvement in the service level of the supply chain by 

considering congestion. Furthermore, the supply chain responsiveness to major disruptions 

improves once the appropriate response speed of the RMS is determined at the design stage of 

the supply chain configuration. While considering congestion improves the accuracy of the 

decision-making process, it also increases the complexity of the solution methodology. So the 

questions are what is the impact of not considering congestion? Under which risk tolerance 

levels is it worth considering the impacts of congestion? The following section answers these 

questions through the use of the proposed methodology. 

3.2.2 The value of incorporating congestion in the selection of response speed  

In identifying an appropriate response speed in a contingency strategy, the trade-off between the 

investment cost of responsiveness and lost sales can be considered as main determinants. The 

outcome from this trade-off can be different depending on the attitude of the decision maker 

towards risk.  

For the given example, the response speed of the RMS is determined through the decision tree 

analysis which is explained in section 3.1.3. This selection is based on the outcomes of the MIP 

model which excludes the clearing functions. Moreover, it is done with respect to three different 

attitudes of the decision maker toward risk. The impact of the different failure and recovery 

probabilities on the decision-making process is evaluated by a sensitivity analysis. The failure 

probabilities range between 0 and 0.2 with increments of 0.05, while the recovery probabilities 
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are within 0 and 0.5 with increments of 0.1. With the objective of evaluating the benefit of 

considering congestion, the aforementioned process is repeated by adding the constraints related 

to the clearing function to the MIP model. 

3.2.2.1 Risk-neutral decision maker 

In a risk-neutral behavior, the optimal response speed is selected by comparing the expected cost 

of the supply chain under all plausible future scenarios. The probability of occurrence for each 

scenario is determined by the failure and recovery probabilities of the DMS supplier. As 

illustrated in Figure 3.8, the expected cost of the supply chain grows as the failure probability 

increases and/or the recovery probability decreases. 

 

Figure 3.8 Sensitivity analysis of the expected costs of the supply chain. 



 
 

 

 
51 

 

The probability of the scenarios with disruption increases as the failure probability increases. 

Since these scenarios have higher cost compared to the scenario without disruption, the expected 

cost of the supply chain increases. On the other hand, the probability of the scenarios with long 

disruptions increases when the recovery probability decreases. These scenarios have higher cost 

compared to the scenarios with short disruptions. Therefore the expected cost of the supply chain 

increases. 

      

 

Figure 3.9 Optimal response speed, Risk-neutral. 

Figure 3.9 represents the optimal selection of response speed for various failure and recovery 

probabilities in two conditions. Figure 3.9.A indicates the results once the congestion effects are 

ignored in the decision-making stage. The slow speed is optimal in most of the failure and 

recovery probability combinations except the region corresponding to high failure and a long 

recovery period. Since a higher amount of the capacity is required within the response time for 

those situations, the medium speed is selected. 

The results presented in Figure 3.9.B are achieved by considering the congestion impact. The 

selected response speeds are at higher levels compared to Figure 3.9.A. These differences result 

from the need to have higher speed levels to cover the losses that would be created as a result of 

congestion. In such cases, there are significant improvements in the expected service level of the 

supply chain, as presented in Table 3.9. For a selected subset of failure and recovery 

probabilities, the expected service level of the supply chain is presented in Table 3.9. 
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Table 3.9 The expected service level of the supply chain (%) 

    

Recovery 

Probability ( β ) 

Failure Probability ( α ) 

  0.01 0.05 0.1 0.15 0.2 

Load-Dependent Models 

0.2 

95.9 90.9 91.4 88.6 85.1 

Load-Independent Models 81.3 77.5 73.8 69.8 73.1 

Improvement in Service Level 14.6 13.4 17.5* 18.9* 12.0 

Load-Dependent Models 

0.5 

96.2 92.5 88.8 91.1 87.1 

Load-Independent Models 81.5 78.6 75.8 72.5 74.4 

Improvement in Service Level 14.7 13.9 13.0 18.7* 12.7 

*A slower response speed is selected in load-independent model 

As shown in Table 3.9, the expected service level of the supply chain is higher when congestion 

effects are incorporated. In addition, the improvement in service level is significant if an 

incorrect response speed level is selected when congestion effects are ignored (e.g., β = 0.2, α = 

0.1 and α = 0.15).  

3.2.2.2 Risk-averse decision maker 

In the case where the decision maker is risk-averse, the response speed is selected to minimize 

the expected cost of the worst-case scenarios according to the level of risk aversion. Figure 3.10 

presents the selection of the response speed when the congestion is ignored for a risk-averse 

decision maker at various tolerance levels.  
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Figure 3.10 Optimal response speed, Risk-averse, Load-independent models. 

For the low level of the risk aversion e.g., γ = 82.5%, the slow speed is not optimal since it 

provides a low capacity within the response time. The medium speed is selected as the optimal 

speed in all combinations of the failure and recovery probability since there are 17.5% of the 

worst-case scenarios in the decision-making stage which require a higher amount of the capacity 

within the response time. 

As the decision maker becomes more risk-averse, the focus would be on the smaller portion of 

the worst-case scenarios, albeit those with higher impacts. Therefore, more capacity within 

response time is required to minimize the impact of such disruptions. As a result, the need for 

medium speed is reduced and the tendency to select fast speed increases. The optimal selection 

of the response speed when we consider the congestion effects is indicated in Figure 3.11.  
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Figure 3.11 Optimal response speed, Risk-averse, Load-dependent models 

Incorporating congestion provides the same trend in the selection of response speed: as the 

decision maker is more risk-averse, faster speeds are selected. However, higher speed levels are 

selected for various levels of the risk aversion compared to Figure 3.10. These would lead to 

significant improvements in the expected service level of the supply chain, as illustrated in Table 

3.10. 
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Table 3.10 Improvements in the expected service level of the supply chain with load-dependent 

models (%), Risk-averse 

  

γ 

Failure Probability ( α ) 

Recovery 

Probability ( β ) 
0.01 0.05 0.1 0.15 0.2 

0.2 

82.5% 14.60 13.30 13.00 21.00* 22.00* 

87.5% 14.60 17.00* 19.00* 14.10 14.00 

92.5% 14.60 16.00* 13.90 14.10 14.00 

97.5% 15.00* 13.30 14.00 14.10 14.00 

0.5 

82.5% 14.70 14.00 13.90 11.30 12.70 

87.5% 14.70 14.00 13.90 11.30 12.70 

92.5% 14.70 14.00 13.90 14.00 15.00 

97.5% 14.70 14.00 14.00 14.70 15.00 

*A slower response speed is selected in load-independent model 

For a decision maker with the risk aversion level of 82.5%, the correct selection of response 

speed by considering the congestion impacts increases the expected service level of the supply 

chain by 21% and 22%. However, these improvements decrease as the level of the risk aversion 

increases (e.g., 16% for γ = 92.5%). This is due to the fact that as the decision maker becomes 

more risk-averse, faster speed levels would be selected for high probability of failure and/or low 

probability of recovery in both load-dependent and load-independent models.  

3.2.2.3 Mean-risk approach 

The optimal response speed could also be determined by considering the risk neutrality and risk 

aversion simultaneously. In this case, the weight of the risk neutrality and risk aversion in the 

decision-making process are determined through λ and 1-λ respectively in (49). Figure 3.12 

indicates the optimal selections of response speed by ignoring the congestion impact for γ = 

97.5% with different values of λ. 
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Figure 3.12 Optimal response speed, Mean risk, Load-independent models, γ = 97.5%. 

For the low value of λ, the fast response speed has been selected as the optimal speed for the 

majority of the failure and recovery probability combinations. This is due to relatively high 

importance of worst-case scenarios and the need for more capacity within the response time. 

However as the weight of the risk neutrality increases, the lower levels of the response speed are 

selected. The effect of incorporating the congestion in the decision process of a mean-risk 

decision maker is presented in Figure 3.13. 

 

Figure 3.13 Optimal response speed, Mean risk, Load-dependent models, γ = 97.5%. 

The comparison of Figure 3.12 and Figure 3.13 reveals that considering the congestion leads to 

the selection of faster speed levels for a mean-risk decision maker. The proper selection of the 

optimal response speed would result in major improvements in the supply chain expected service 

levels, as presented in Table 3.11. 
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Table 3.11 Improvements in the expected service level of the supply chain with load-dependent 

models (%), Mean-risk 

  

λ 

Failure Probability ( α ) 

Recovery 

Probability ( β ) 
0.01 0.05 0.1 0.15 0.2 

0.2 

25% 15.00* 13.30 13.90 14.10 14.00 

50% 16.00* 17.00* 13.90 14.10 14.00 

75% 14.60 17.00* 19.00* 14.10 14.00 

0.5 

25% 14.70 14.00 14.00 14.70 15.00 

50% 14.70 14.00 13.90 11.30 15.00 

75% 14.70 14.00 13.90 11.30 23.00* 

*A slower response speed is selected in load-independent model 

 

The results show that if the relative importance of risk neutrality is low, the improvement in the 

expected service level as a result of correct estimation of the response speed is low (e.g., 15% for 

0.2,  25%   ). This is because the selection of response speed in both load-dependent and 

load-independent approaches does not change for high probabilities of failure and/or low 

probabilities of recovery. As the λ increases, this improvement in service level would increase 

considerably (e.g., 17%, 19% and 23% for λ = 75%). This is due to the fact that as the attitude of 

the decision maker increases toward risk neutrality, ignoring congestion effects results in the 

selection of a slower response speed than it should. Accordingly, it is essential to incorporate 

congestion effects for risk-neutral decision maker. 
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3.2.3 Discussion of results 

The first section of the numerical results shows the improvement in supply chain service level 

upon considering the impact of congestion in the planning stage. This is achieved by triggering 

the RMS supplier to provide higher capacity level to cover the shortages due to congestion. 

Afterwards, the response speed of the RMS is determined with the purpose of improving the 

supply chain responsiveness once the DMS is disrupted.  

For a risk-neutral decision maker, the numerical results show the optimality of the slower 

response speeds for the lower probability of DMS failure and higher probability of recovery. 

However, as the failure probability of the DMS increases or the recovery probability decreases, 

the tendency is toward the faster speeds. Considering the congestion effect leads to the selection 

of the higher speed levels which increase the expected service level of the supply chain 

significantly. A risk-aversive decision maker would select faster response speed levels compared 

to the risk-neutral counterpart. However, we observe that the selection of response speed is 

indifferent with respect to the congestion effects. This is due to the fact that risk-averse decision 

maker is sensitive to even the slightest loss. In the mean-risk setting, as the attitude of the 

decision maker increases toward risk neutrality, significant improvements are observed in the 

supply chain performance upon considering the congestion.  

If the failure and recovery probabilities of the main supplier are accurate, the proposed 

methodology would give a precise perspective to the supply chain management regarding the 

selection of the backup source’s response speed. The outcome of this selection could affect the 

configuration of the backup source. 

This chapter presents the supply chain design requirements in order to incorporate the contingent 

sourcing as a risk mitigation strategy to cover supply major disruptions. However, in order to 

design a robust supply network, the operational risks should also be considered in the design 

stage. Therefore, in next chapter, we review the supply chain design requirements in order to 

apply a combination of contingent sourcing and strategic stock to cover major disruptions and 

operational risks. Furthermore, we consider the scenario in which the available capacity during 
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the response time is random (Matta et al., 2007) and we present the methodology to consider this 

randomness in decision making stage.     
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Chapter 4 

 

On the value of response time characteristics 

in robust design of supply flow 

  

        In this Chapter, the objective is to design a robust supply network which could sustain the 

flow of material supply under operational risks and major disruptions in future (Wieland 2013). 

We incorporate contingent sourcing and strategic stock as cost-effective risk management 

strategies to deal with supply interruptions. In this setting, the strategic supply chain design 

decisions include identifying the optimal level of strategic stock and response speed of volume-

flexible back-up supplier. To this end, we develop a decision-making tool which considers the 

randomness associated with available capacity in addition to congestion impacts during the 

response time in order to improve the quality of solutions. Furthermore, we evaluate the value of 

considering the response time characteristics in the strategic design stage of supply network.   

We consider a supply chain network with similar configuration to the supply network presented 

in Chapter 3. There is a single product supply chain that includes a manufacturing plant with 

dual sourcing. The main supplier is cost-effective as a result of dedicated facilities though prone 

to disruptions during which it may be partially or completely unavailable. There is a back-up 
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supplier located in a low-risk region that is available when the main supplier is unavailable. The 

back-up supplier has volume-flexible production facilities where it can scale up its capacity 

according to a speed related to its configuration. However, this scalability increases the 

production cost of the back-up supplier.  

Demand in the normal periods can be met by the main supplier up to a maximum level of dC . 

The raw material ,
d
s t  is released into the main supplier at the beginning of the period, which 

results in the production throughput of ,
d
s tx . This throughput is less than the maximum capacity 

due to queuing effects, resulting in work in process inventory, ,
d
s t . In the case of minor 

disruption occurrences, the strategic stock     which is provided at the beginning of the planning 

horizon can cover the losses. When the main supplier fails due to a major disruption, the back-up 

supplier is used to supply the required flow of material (Tomlin 2006). If the demand is not met 

within its period, it is considered as lost, represented by ,s tl .  

The back-up supplier increases its capacity to meet the plant demand once a major disruption 

occurs. The target capacity ,s t  is gradually achieved within the response time because of the 

non-steady production during this period (Matta et al. 2007). Therefore a random fraction of the 

target capacity is available during the response period. In addition to these, shifting the demand 

to the back-up supplier when it is not fully capable of producing at the required rate during the 

response time can create an overflow of material. This congestion would decrease the throughput 

during the response time due to the increase in the lead time. Although there is a broad body of 

literature about reducing the response time (Koren et al. 1999; Matta et al. 2007) including 

reduction methodologies (Terwiesch and Bohn, 2001) there is no work which quantifies the 

importance of considering the response time characteristics at the decision-making stage.  

The available capacity of the back-up supplier within the response time is important, since the 

supply chain incurs shortage costs if the available capacity level during this period is lower than 

the required capacity. Furthermore, the amount of the available capacity during the response time 

depends on the back-up supplier’s machine configuration (Wang and Koren, 2012). In addition 
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to this, the strategic stock could be used to cover the losses during minor disruptions as well as 

the response time (Hopp and Yin, 2006; Schmitt 2011). Therefore, the strategic stock level and 

the back-up supplier machine configuration should be determined at the design stage of the 

supply chain with respect to the operational costs of holding, initial investment and shortage in 

order to have a robust supply flow. Note that the selected configurations would remain fixed 

during the planning horizon while the capacity might change upon the realization of the different 

disruption scenarios. 

4.1 Solution Methodology 

In order to design the robust supply flow, a two-stage multi period robust optimization model 

(RO) is presented. The set of first-stage decision variables includes the level of strategic stock 

and the response speed level of the back-up supplier. The set of second-stage decision variables, 

corresponding to scenario s  are levels of back-up supplier production, inventory and lost 

demand. The list of notations and decision variables are shown in Table 4.1 and  

Table 4.2.   

Table 4.1 List of notations 

Indices 

t  Current time 

d  Main supplier 

r  Back-up supplier 

j  Speed level 

i  Level of available capacity during response time  

s  Scenario 

Input parameters 

 '1,2,...,T T  Planning horizon consisting of 'T  periods 
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M  A big number 

tD  Demand at time t 

W  Production cost of back-up supplier 

O  Shortage cost 

A  Strategic stock investment cost 

H  Holding cost 

dC   Maximum capacity of main supplier 

rC  Maximum capacity of back-up supplier 

,s tG   1 if major disruption at time t scenario s, 0 otherwise 

,s tF  1 if minor disruption at time t scenario s, 0 otherwise 

B  Intensity of the minor disruption  (0,1) 

jC   Investment cost of speed level j 

,

i

s tK  1 if available capacity level of i is realized during the 

response time at time t scenario s, 0 otherwise 

,j iU  The fraction of the added capacity which is available for 

speed level j and realized available capacity level i 

   Goal programming parameters 0   

sP  Probability of scenario s 

I  Set of available capacity levels during response time 

J  Set of speed levels 

S  Set of plausible future scenarios 

 

 

Table 4.2 List of decision variables 
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Decision variables 

,
d
s tx

 
Main supplier production at time t, scenario s 

,
r
s tx

 
Back-up supplier production at time t, scenario s 

s  The variation cost of the scenario s 

  Initial strategic stock 

,s t
 

Strategic stock level at time t, scenario s 

,s ti
  

Strategic stock level at the end of a disruption period at 

time t, scenario s 

,
d
s t

 
Main supplier work in process at time t, scenario s 

,
r
s t

 
Back-up supplier work in process at time t, scenario s 

,
d
s t

 
Amount of raw material released to main supplier at time 

t, scenario s 

,
r
s t

 
Amount of raw material released to back-up supplier at 

time t, scenario s 

,s t
 Back-up supplier actual capacity at time t, scenario s 

,s t
 Back-up supplier nominal capacity at time t, scenario s 

,s tu
 

Back-up supplier available capacity during the response 

time at time t, scenario s 

,s tl
 Lost demand at time t, scenario s 

jy
 

1 if speed level j is selected; 0 otherwise 

,s tb
 1 if demand loss exists at time t, scenario s; 0 otherwise 

,s tq
 

1 if there is capacity addition at time t, scenario s; 0 

otherwise 
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,s tz

 

1 if there is capacity deletion at time t, scenario s; 0 

otherwise 
 

4.1.1 Robust Stochastic Optimization Model 

The objective function Z  includes the investment cost of supply chain mitigation strategies, the 

expected cost of recourse actions with respect to the plausible future scenarios and the expected 

variation cost of worst case scenarios.    

, , , { ( )}                      r

j j s s t s t s t s s

j J s S t T s S

Minimize Z C y A P H Wx Ol P  
   

           (50) 

The decision variables to be identified at the design stage of supply chain are presented in the 

first two terms in (50). It includes a binary variable jy  representing different configurations of 

the back-up supplier j J  and the level of strategic stock v . The investment costs associated 

with these decisions are represented by jC  and A  respectively. The decisions made in the first 

stage result in recourse actions with corresponding costs expressed in the third term in (50). 

These costs include the holding cost of strategic stock level ,s tv  in period t at the rate of H  per 

unit, production cost of satisfying ,

r

s tx  units of the demand by back-up supplier at a production 

cost of W  per unit and shortage cost of ,s tl  units at the rate of O  per unit. All these cost 

parameters are expressed in $/unit/period. In order to achieve a robust supply chain design that 

performs efficiently under the occurrence of worst case scenarios, the forth term in (50) is 

incorporated in the objective function. This term identifies the expected difference between the 

cost of the worst case scenarios and a predetermined threshold. List et al. (2003) incorporate a 

preselected threshold in their variability measure approach called upper partial moment (UPM).  

In this Chapter, we use the expected cost as the threshold to avoid the efforts required to select 

the threshold in advance (Kazemi Zanjani et al. 2010). The relative importance of the expectation 

and variation costs is controlled by the parameter  . For   = 0, the model would be reduced to a 
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two-stage stochastic optimization model. As   increases, it reflects the decision maker’s risk 

aversion level (List et al., 2003). The worst case scenarios are identified in (51) as the scenarios 

in which the total cost of the recourse actions is higher than the expected cost of the recourse 

actions. This difference is measured by s where any scenario with a variation above the 

expected costs is penalized in the objective function.  

, , , , , ,( ) { ( )}r r

s t s t s t s s t s t s t s

t T s S t T

H Wx Ol P H Wx Ol 
  

             s S   (51) 

In addition to robustness related constraints, the system constraints should be introduced.   

Among the possible speed levels in set J , only one should be selected for the back-up supplier 

(52). The inventory flow balance equation is represented in constraint (53): The demand at any 

period could be satisfied by the main supplier and/or back-up supplier and through strategic 

stock in case of a disruption at the main supplier. Unmet demand is assumed to be lost. The 

disruption scenarios are identified in the model through the random parameters ,s tG  and ,s tF  

representing major and minor disruptions respectively. The strategic stock level at the end of 

current period is equal to the previous period if there is no disruption in the current period as 

indicated in (54). The strategic stock level is selected at the beginning of the planning horizon as 

part of the first stage decision variables (55). At the end of any period, there could be either 

strategic stock left or product shortage which is ensured by constraints (56) and (57). The 

product shortage occurs only in the period with disruption (58). 

1                    j

j J

y


    (52) 

, , , , , , 1 ,( )( )d r

t s t s t s t s t s t s t s tD x x l G F i           s S      t T   (53) 

, , , , 1 , , ,(1 ) ( )s t s t s t s t s t s t s tG F G F i      
 

   s S      t T   (54) 

,0s      s S    (55) 

, ,s t s tl Mb     s S      t T   (56) 

, ,(1 )s t s tM b       s S      t T   (57) 
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, , ,( )s t s t s tl M G F      s S      t T   (58) 

In order to demonstrate the response time characteristics, we represent two notations for the 

capacity level defined as the nominal capacity and the actual capacity. The nominal capacity 

determines the amount of capacity that the system is set to reach for the following period, 

expressed by constraint (59). The actual capacity represents the amount of capacity that is 

available (60). This will be less than the nominal capacity during the response time since some 

portion of the added capacity is lost. The available capacity during the response time ,s tu  is 

bounded by the random fraction  ,j iU  of the added capacity where ,j iU  depends on the back-up 

supplier configuration jy and the level of the capacity availability realized during response time

,

i

s tK , indicated in (61). Constraint (62) states that either capacity addition or removal is allowed 

at any period with capacity change. The back-up supplier removes its capacity once the main 

supplier recovers from a major disruption (63). The back-up supplier production at any period is 

less than the actual capacity (64). 

, , 1 , ,( )s t s t s t s t rq z C         s S      t T   (59) 

, , 1 , ,s t s t s t s t ru z C         s S      t T   (60) 

, , , ,( ) (1 )i

s t s t j i r s t j

i I

u K U C q M y


         j J      s S        t T   (61) 

, , 1s t s tq z      s S        t T   (62) 

, ,s t s t rG C      s S        t T   (63) 

, ,

r

s t s tx      s S        t T   (64) 

Constraints (65) and (66) represent the workload balance equations. The work in process 

inventory (WIP) consists of the jobs in the queue or under operation. The maximum workload in 

any period is bounded by the available capacity during that period, since the utilization of a 

resource cannot exceed 100% as indicated in (67) and (68). Furthermore, the impact of minor 
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disruptions over the main supplier’s capacity is represented in (67). There will be no material 

release in the main supplier when it is down due to a major disruption (69). 

, , 1 , ,
d d d d
s t s t s t s tx         s S      t T   (65) 

, , 1 , ,
r r r r
s t s t s t s tx         s S      t T   (66) 

, 1 , ,(1 )d d
s t s t s t dF B C         s S      t T   (67) 

, 1 , , ,( )r r
s t s t s t s tG         s S      t T   (68) 

, ,(1 )d
s t s tM G       s S      t T   (69) 

At the beginning of a major disruption, shifting the total demand to the back-up supplier when it 

is not 100% available will create an overflow. The resulting queue built up will increase the lead 

time. This congestion would limit the amount of the back-up supply during the response time. In 

order to determine the appropriate strategic stock and the response speed level of the back-up 

supplier, the impact of congestion, especially during the response period should, be considered.  

To this end, we present the suppliers as a single server system with Poisson arrivals and general 

service time distribution (M/G/1 system). The relationship developed using this model allows 

developing the clearing function (Missbauer 2002). Based on the clearing function in (70), the 

expected system throughput ( )tE x  in any period is a function of the expected workload

1( )t tE    , available capacity   and parameter k . This parameter is defined in (71) based on 

the mean 
1


 and the variance 

2

1


 of the processing time.  

2 2 2

1 1 1 1

1
(x ) ( ) 2 2 ( ) 2 ( ) ( )

2
t t t t t t t t tE k E k k E kE E              

             
   

(70) 

2 1

2 2
k




 

 
(71) 

The clearing function in (70) is concave and nonlinear (Missbauer 2002). An outer 

approximation approach has been implemented to generate a set of lines in order to linearize the 
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robust model. Based on this linearization approach, the throughput of each supplier can be 

represented depending on their states.  

There exist three states for the main supplier. The production of the main supplier in the normal 

periods could not be more than the expected throughput, which is estimated by its clearing 

function (72). The set of lines dN  represents the clearing function where A  is the slope and B  

is the constant value of the line  . In the periods with minor disruption, the set of lines 
d

FN  in 

(73) represents the main supplier’s throughput due to the reduction in the service rate of the main 

supplier. In the case of a major disruption occurrence, there is no production at the main supplier 

incorporated by the term ,s tG  in (72). 

In cases of major disruptions, the backup supplier must ramp up its capacity. In order to show the 

congestion effect over the back-up supplier production during the response time, the clearing 

function is represented through a set of planes ,

r

j iN  in (74). This is due to the fact that the change 

in capacity requires defining the throughput during the response time as a function of both 

workload and actual capacity which result in a three dimensional clearing function (Ebrahim 

Nejad et al., 2014). Note that the binary variables jy  and ,

i

s tK  in (74), activate the clearing 

function associated with selected speed level of j  and realized available capacity level of i .   

After the response time, the back-up supplier can operate at its predetermined capacity level. The 

impact of congestion over the production of back-up supplier in these periods is illustrated by set 

of lines rN  in (75).  The non-negativity constraints are stated in (76) to (78). The non-

anticipativity constraints are in (79).  

, s, 1 , , ,( ( ) )(1 )d d d

s t t s t s t s tx A B MF G           ,     ,     dN s S t T       (72) 

, , 1 , ,( ) (1 )d d d

s t s t s t s tx A B M F           ,     ,     d

FN s S t T       (73) 

, , 1 , , , ,( ) (3 )r r r i

s t s t s t s t j s t s tx A B G M y K q           

 

,   ,     ,     ,     r

j ij J N s S t T       

 

(74) 

, , 1 , ,( )r r r

s t s t s t s tx A B Mq          ,     ,     rN s S t T       (75) 
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     

, , , , , , ,

, , , , , , , ,

0,  0,  0,  0,  0,  0,  0,

0,  0,  0,  0,  0,  0,1 ,  0,1 ,  0,1

  

d r d r

s t s t s t s t s t s t s t

d r

s t s t s t s t s t s t s t s t

x x l i

u b q z

  

   

      

            s S      t T   (76) 

 0s      s S    (77) 

 0,1 ,  0jy     (78) 
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d d r r d d r r

s t s t s t s t s t s t s ts t s t s t s t s t s t s t

d d r r

s t s t s t s t s t s t s t s ts t s t s t s t s t s t s t s t

x x x x l l i i

u u b b q q z z

     

       

      

       

 

 ' ,   
T

s s S   (79) 

 

4.1.2 Scenario generation 

In this section, we explain how the scenarios resulting from disruptions and the random available 

capacity during the response time can be generated. In order to identify the scenarios within the 

planning horizon, we incorporate a scenario tree. We define a scenario as the states of the supply 

flow within the planning horizon. The flow can be provided from the main supplier or back up 

supplier. The main supplier may be completely or partially available due to a minor disruption. 

Once the main supplier becomes unavailable due to a major disruption, the back-up supplier 

would resume the supply flow. Different levels of the available capacity can be realized in the 

first period of back-up supply due to inherent randomness. We categorize the available capacity 

during the response time to three different levels: high, normal and low. Furthermore, we assume 

that the back-up supply is completely available after the response time. 

 Figure 4.1 represents a snapshot of the scenario tree at the first two periods of the planning 

horizon. Each node represents a possible status of the supply flow at a given period. The set of 

supply status includes main supplier fully operational, main supply partially operational, back-up 

supplier during response time - high capacity availability, back-up supplier during the response 

time – normal capacity availability, back-up supplier during response time – low capacity 

availability and back-up supplier fully operational after the response time. Based on the stated 

assumptions, the following steps are conducted in order to generate scenarios.  
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 Since the problem considered is a strategic supply chain network design, each period is 

long enough for the main supplier to recover from a minor disruption or the back-up 

supplier to reach the full required capacity level. 

 The length of a minor disruption is one period. 

 The length of a major disruption is not limited and it may last for the whole planning 

horizon. 

 The length of the response time is one period. 

 After a major disruption, the first period represents the response time. 

 After the response time, the back-up supplier is fully utilized for at least one period.  

 After a minor disruption, the main supplier could be fully operational or it may get 

disrupted as a result of a major disruption. 

 Once the major disruption ends, the main supplier becomes fully operational and it 

provides the required supply for at least one period.     
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Figure 4.1 A snapshot of the scenario tree 

The scenario tree that includes all the possible realizations for major and minor disruptions for 

multiple periods can significantly increase the required number of constraints in the robust 

optimization model, resulting in difficulties in solving the problem in a reasonable amount of 

time. In order to reduce this complexity, we make the following assumptions regarding the 

realizations of disruptions and recovery strategies without the loss of generality as indicated in 

Figure 4.1: Once a major disruption occurs, it lasts for at least three consecutive periods and the 

maximum length of the minor disruption could be one period. Moreover, the probability of each 



 
 

 

 
73 

 

scenario is computed through the product of the transition probabilities of the states. These 

transition probabilities can be found in Appendix C, Table C.1. 

In order to investigate the impact of considering the response time characteristics in the optimal 

selection of the strategic stock level and the response speed level of the back-up supplier, an 

illustrative example is presented in section 4.2. Furthermore, a sensitivity analysis is conducted 

on   in order to evaluate the impact of different tolerance level of the decision maker towards 

risk.   

4.2 Numerical Experiments 

We consider the supply chain associated with a product whose lifecycle lasts for six periods 

where each period represents two months. Based on this assumption and with respect to the 

minor and major disruptions and three levels of available capacity during the response time, we 

identify 162 scenarios over the planning horizon. Furthermore, the demand is assumed to be 

deterministic and 1800 units per period. Three different speed levels are presented as decision 

variables: fast, medium and slow which represents manufacturing system configurations of 

parallel, parallel-serial and serial configurations accordingly. While faster response configuration 

will perform better, there are investment costs corresponding to the selected response speed and 

the level of initial strategic stock. The cost parameters which are included in the objective 

function are defined in Table 4.3. 

Table 4.3 Cost parameters 

Cost Parameters Value Unit 

Investment cost of fast speed 135,000 $ 

Investment cost of medium speed 90,000 $ 

Investment cost of slow speed 45,000 $ 

Strategic stock investment cost 180 $/unit 

Holding cost 40 $/unit/period 
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Production cost of backup supplier 125 $/unit/period 

Shortage cost 300 $/unit/period 

 

The main supplier has a capacity of 2200 units while the backup supplier provides 2000 units 

when the main supplier is breakdown. The fractions of the added capacity which are available 

during the response time with respect to different scenarios are presented in Table 4.4.  

Table 4.4 Fractions of the added capacity available in different scenarios 

Level of available capacity 

during response time 

Response speed level 

Fast Medium Slow 

High 0.933 0.867 0.8 

Normal 0.833 0.667 0.5 

Low 0.733 0.467 0.2 

 

The fraction of added capacity available during response time increases as higher speed level is 

selected or a higher level of available capacity is realized during response time. Furthermore, we 

assume the intensity of the minor disruptions over the main supplier results in 30% loss in the 

maximum capacity (Wagner and Bode, 2008). Based on the stated assumptions and inputs, the 

following experiments are conducted. First we evaluate the impact of considering the random 

capacity availability during the response time in the design of the robust supply flow. We 

implement this evaluation for different values of the parameter  . We measure the value of this 

consideration through the difference in the objective functions. Second, we assess the importance 

of considering the congestion in the decision process. The results show whether there is any 

benefit for decision makers to incorporate the response time characteristics in the design of the 

robust supply flow. The proposed robust optimization model has been implemented in ILOG 
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CPLEX 12.5. By setting the desired optimality gap to 0.0001, the results have been obtained 

with an average computation time of 94 seconds. 

4.2.1 The impact of considering the available capacity randomness  

In order to observe the impact of considering the randomness related to the available capacity 

during the response time in the design of a robust supply flow, we first execute the robust model 

(RO) presented in section 4.1.1. Second, we remove the random parameters ,

i

s tK  which represent 

the realized level of the available capacity during response time in constraint (61). In addition to 

this, we replace the random parameters  ,j iU  by its expected value jU . We run the modified 

robust model (MRO). Note that by removing the randomness associated with the available 

capacity, the number of the scenarios is reduced to the 68 scenarios. We conduct four different 

experiments representing different probability distributions for the available capacity levels 

during response time as presented in Table 4.5. The probabilities of the minor disruption, major 

disruptions and the recovery from major disruptions are set to 0.1, 0.01 and 0.2 respectively in all 

experiments. 

Table 4.5 Experiments based on the probabilities of available capacity levels during response 

time 

Experiment HP  
NP  LP  

1 0.6 0.2 0.2 

2 0.333 0.333 0.333 

3 0.2 0.6 0.2 

4 0.2 0.2 0.6 

 

The first experiment represents the situation where it is more probable to observe high level of 

the available capacity during response time. This can represent a flexible supplier with better 

responsiveness capabilities which enable a smooth transition. On the other hand, experiment 4 

identifies a supplier that is inexperienced; susceptible to increased problems during ramp up. In 
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order to have a robust supply flow, the required strategic stock level and the response speed of 

the back-up supplier in experiment 1 are presented in Figure 4.2. The slow response speed is 

identified as the optimal response speed for different values of  . However; higher strategic 

stock levels are required as   increases. This is because of the fact that as   increases, the 

model would give more emphasis on minimizing the cost of the worst case scenarios. The results 

of RO and MRO model are identical in selecting the response speed, although RO model 

requires lower strategic stock level compared to the MRO model. The reason is due to the fact 

that MRO solutions are based on a fixed value of the available capacity during the response time. 

On the other hand, the RO solutions consider all plausible scenarios of available capacity levels 

during response time. Since the scenarios with high level of added capacity available during 

response time are more probable in experiment 1, the RO model selects lower strategic stock 

level. 

 

Figure 4.2 Robust design of the supply flow, Experiment 1 

The assignment of equal probabilities to the different levels of available capacity during response 

time provides the results of experiment 2 as shown in Figure 4.3. As illustrated, the higher levels 

of the response speed and strategic stock are selected compared to the experiment 1. This is due 

to the reduction in the probability of high level of available capacity during the response time 

and the increase in the probabilities of normal and low levels. Furthermore, the selection of 

strategic stock and response speed levels in the RO model become close to MRO model unlike 
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experiment 1. This is a result of having equal probabilities of available capacity during the 

response time. Therefore, the solution of the RO model is not influenced by any level of the 

available capacity significantly.  The RO model selects lower level of strategic stock in   =10, 

15, 25 and slower speed in   = 20.  

 

Figure 4.3 Robust design of the supply flow, Experiment 2 

The designs of robust supply flow with more chance of having normal level of available capacity 

during response time are presented in Figure 4.4. More strategic stock level is required compared 

to the experiment 2 due to the reduction in the probability of having high level of available 

capacity during response time. On the other hand there is almost no change in the selection of the 

response speed (except RO model in  = 20) due to the reduction in the probability of having 

low level of available capacity during response time. In addition to these, the results of the RO 

and MRO model are almost identical. This is because of the fact that; MRO solutions are 

achieved with respect to the expected level of available capacity during response time and RO 

solutions in this experiment are obtained by assigning more probability to normal level of 

available capacity during the response time. Since the normal level of capacity availability is 

equivalent to the expected level of capacity availability, identical solutions are observed.  
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Figure 4.4 Robust design of the supply flow, Experiment 3 

As presented in Figure 4.5, more strategic stock and faster speed level are required to achieve a 

robust supply flow as the probability of having low level of available capacity during the 

response time increases. In addition to this, the RO model selects higher strategic stock level for 

  less than 15 and faster speed level for   more than 10 compared to the MRO model. This is 

due to increased chance of having low level of available capacity during the response time. 

 

Figure 4.5 Robust design of supply flow, Experiment 4 

In order to evaluate the value of incorporating the randomness associated with the available 

capacity during the response time in the decision making stage, we compare the objective 
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function of the RO model versus the case when the solution of the MRO model is used to 

compute its performance in RO model. The savings which would be achieved by considering the 

randomness related to the available capacity during the response time are presented in Table 4.6. 

Table 4.6 % Reduction in the objective function by RO solution 

    

Experiment  0 5 10 15 20 25 

1 0% 0.40% 1.10% 1.60% 2.90% 4.10% 

2 0% 0% 0.35% 0.44% 3.90% 0.66% 

3 0% 0% 0.03% 0.03% 0.12% 0.05% 

4 2.30% 3.30% 4.60% 6.30% 8.50% 11.30% 

 

The results show that the improvement in the objective function is higher in experiments1 and 4 

by considering the randomness of the available capacity during the response time. In experiment 

1, the reduction is achieved as a result of lower strategic stock level in RO model compared to 

the MRO, reducing the strategic stock investment and holding costs. On the other hand, the 

savings in experiment 4 are due to the significant reduction in shortage cost since the RO model 

select higher strategic stock level and/or response speed compared to the MRO model. The 

reductions are low in experiments 2 and 3 since the results of the RO and MRO model are close 

to each other. 
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4.2.2 The importance of incorporating congestion  

In order to assess the effect of considering the congestion impact in the robust design of the 

supply flow, we remove the constraints (72) to (75) which represent the clearing functions in the 

RO model. Through these changes, the model would ignore the impact of workload 

accumulation on production capability. We call the modified model as load independent robust 

model (LIRO). Figure 4.6 represents the results of RO and LIRO model with respect to the 

experiment 2.  

 

Figure 4.6 Robust design of the supply flow, RO VS LIRO, Experiment 2 

Ignoring the impact of congestion leads to the underestimation of the required strategic stock 

level with no changes in the response speed. This would result in degraded performance of the 

robust solution. We measure the benefit of incorporating congestion as follows: For each 

scenario, the clearing functions present the actual production quantity of the main and backup 

suppliers based on the capacity and WIP levels which have been determined in the LIRO model. 

The actual demand losses are then computed by the difference between demand and actual 

production quantities obtained using the clearing function. This will give the actual performance 

of the supply chain if the solution generated from LIRO is implemented. Table 4.7 indicates the 

reductions achieved in the objective function. This reduction is mainly the result of increased 

strategic stock levels obtained from RO to cover the impact of congestion. 
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Table 4.7 Improvement in total costs by considering congestion effects 

 

   

  0 5 10 15 20 25 

LIRO  $118,003 $386,595 $573,948 $736,407 $890,307 $1,024,103 

RO  $114,226 $367,677 $543,939 $693,298 $834,834 $960,652 

% Reduction 3.20% 4.89% 5.23% 5.85% 6.23% 6.20% 

 

The results in Table 4.7 show that incorporating the congestion impact in the decision making 

process reduces the costs. However, this improvement is decreased for   greater than 20. This is 

due to the fact that as the decision maker becomes more risk averse, the differences between 

strategic stock level of LIRO and RO model decreases as result of focusing on the smaller 

portion of the worst case scenarios albeit with higher impacts. 
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4.2.3 Discussion of results 

The first section of the numerical experiments evaluates the impact of considering the 

randomness associated with available capacity during the response time in the design of the 

supply flow. Two options to represent the available capacity during the response time are 

investigated. The first option presents the random available capacity by considering different 

scenarios while the second one considers only the expected available capacity. 

For the situation where it is more probable to observe high level of the available capacity during 

response time, the approach based on considering the random available capacity selects lower 

level of strategic safety stock. This reduces the supply chain investment cost in strategic safety 

stock and inventory holding cost albeit with no products shortages since the supply chain is 

prone to the high level of capacity availability during the response time. On the other hand, there 

are higher level of strategic safety stock and faster response speed selected as the chance of 

exposure to the low level of available capacity during the response time increases. This results in 

lower shortage cost since there are sufficient buffers incorporated in the supply chain structure in 

order to cover the low level of capacity availability during the response time. Therefore, there is 

reduction in the total cost of supply chain by considering the randomness associated with the 

available capacity during the response time in the design of the robust supply flow. 

The second part of the numerical experiments investigates the value of considering the 

congestion impact during the response time when a combination of strategic safety stock and 

contingent sourcing is applied as supply chain risk mitigation strategies. The results show that 

the supply chain performance would benefit by considering the congestion impact. This is due to 

increase in the strategic stock level to cover the shortages which are created as a result of 

congestion.  

The supply chain network design problems considered in Chapter 3 and 4 are assumed to have 

sufficient data to estimate the probabilities of plausible future scenarios. However, there might 

problems with limitation of no data availability to estimate the likelihood of future scenarios. 
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The next chapter proposes a novel approach to design a robust supply flow subject to deep 

uncertainty associated with operational risks and disruptions.      
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Chapter 5 

A Clustering based Scenario Reduction 

Approach to Design Robust Supply Network 

under Operational Risks and Disruptions 

 

        In this Chapter, the former supply network design problem (Ebrahim Nejad and 

Kuzgunkaya, 2015) is considered under the condition in which it might be difficult to estimate 

the probability of operational risks and disruptions. Therefore, we aim to find an equitable 

solution by achieving an efficient performance with respect to all plausible future scenarios. For 

this purpose, we develop a decision making tool which focuses on solution robustness in 

identifying the supply chain design decisions. In order to address the computational complexity 

which may result from large scenario set, we propose a novel scenario reduction technique. 

Finally, we compare the performance of the proposed scenario reduction methodology both with 

respect to the quality of solutions and the computational time against other approaches available 

in literature.           

We consider a single product supply chain that includes a manufacturing plant with dual 

sourcing. The main supplier of the manufacturing plant is cost-effective as a result of dedicated 

facilities though prone to disruptions during which it may be partially or completely unavailable. 

There is a back-up supplier located in a low-risk region that is available when the main supplier 

is unavailable. The back-up supplier has volume-flexible production facilities where it can scale 

up its capacity, however this scalability increases the production cost. Demand in the normal 

periods can be met by the main supplier. In the case of minor disruption occurrences, the 

strategic stock which is provided at the beginning of the planning horizon can cover the losses. 

When the main supplier fails due to a major disruption, the back-up supplier increases its 
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capacity to meet the plant demand. However, the target capacity is gradually achieved within the 

recovery time because of the non-steady production during this period (Matta et al. 2007). 

Therefore a random fraction of the target capacity is available during the recovery time. In 

addition to these, shifting the demand to the back-up supplier when it is not fully capable of 

producing at the required rate during the recovery time can create an overflow of material. This 

congestion would decrease the throughput during the recovery time due to the increase in the 

lead time. The available capacity of the back-up supplier within the recovery time is important 

and it should be considered in the design stage, since the supply chain incurs shortage costs if the 

available capacity level during this period is lower than the required capacity. The amount of the 

available capacity during the recovery time depends on the back-up supplier’s machine 

configuration (Wang and Koren, 2012). In addition to this, the strategic stock could also be used 

to cover the losses during the recovery time (Schmitt 2011). Therefore, the appropriate strategic 

stock level and machine configuration of the back-up supplier are important parameters in the 

proposed supply chain settings which should be considered in the strategic design stage of the 

supply chain network. 

In order to achieve a robust supply chain network, the operational risks and disruptions should be 

considered in the strategic design stage of the supply chain network (Klibi et al. 2010). An 

instance of operational risks in the considered supply chain network is machine/equipment 

breakdown which decrease the production capacity of main supplier during normal periods and 

backup supplier within the recovery time. As opposed to operational risks, the disruptions 

significantly reduce the production capacity of main supplier when they occur. In addition to 

this, the information about disruptions occurrences and their corresponding magnitudes are 

typically hard to predict or maybe unavailable since they are rare. Therefore, the solution 

robustness is proposed as our supply chain network design performance measure. The solution 

robustness could be calculated independent of disruptions probabilities and it measures the 

difference in performance between the optimal solution and the solution provided by the robust 

optimization (Govindan et al. 2017). There are different approaches proposed in supply chain 

network design literature to achieve solution robustness (Kouvelis and Yu 1997, Roy 2010 and 

Kalai et al. 2012). In this Chapter, a lexicographic aggregator based approach will be applied to 
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achieve solution robustness. This operator reorders the performance vector (e.g. regret) from the 

worst to the best. Next, it first minimizes the worst regret, then the second worst regret is 

minimized (provided that the first worst one is as small as possible), then the third worst regret is 

minimized (provided that the first two worst regrets remain as small as possible) and so on 

(Sawik 2014). This approach is known to be less conservative than traditional Minmax 

formulation since it evaluates all plausible future scenarios as opposed to only the worst case 

one. However, there is computational complexity challenge associated with lexicographic 

aggregator formulation as the size of the scenario set increases. 

The supply chain network design problem considered in this Chapter includes a large scenario 

set. At one hand considering multiple random parameters including the occurrence of minor and 

major disruptions in the main supplier and the portion of the added capacity to the back-up 

supplier which is available during the recovery time and at the other hand, investigating the 

supply chain performance in a multi period planning horizon increases the size of the scenario 

set. Therefore, one solution is to decrease the size of the scenario set by selecting a few 

representative scenarios. The following section describes our solution methodology to identify 

the optimal strategic stock level and machine configuration of the backup supplier by 

incorporating a lexicographic aggregator approach to achieve solution robustness while reducing 

the size of the scenario set by applying a novel scenario reduction technique.    

5.1 Solution Methodology 

In order to find the optimal back-up supplier machine configuration and the level of strategic 

stock, a two-step solution methodology is proposed as illustrated in Figure 5.1. The first step is a 

Mixed Integer Programming (MIP) based scenario clustering model which reduces the set of 

plausible future scenarios into a smaller set by selecting the most representative scenarios. The 

second step is a MIP robust SCND model which is developed to achieve solution robustness 

when scenario probabilities are not available. This model identifies the machine configuration of 

the back-up supplier and the level of strategic stock by considering the representative scenarios 

which are achieved in step one. The selections of back-up supplier machine configuration and 
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the level of strategic stock are based on the trade-off which exists between investment cost and 

operational cost of supply chain with respect to representative scenarios.  

 

Figure 5.1 Solution Methodology 

The MIP robust SCND model in step two is the stochastic version of an MIP deterministic 

capacity planning model. The contingency capacity plan of supply flow when the main supplier 

becomes disrupted is generated through MIP capacity planning model. In order to have an 

estimation of the available production capacity during the recovery time, the impact of work load 

accumulation over the system throughput is represented in the MIP capacity planning model. The 

following section presents the first step of the solution methodology which is the MIP clustering 

based scenario reduction model.         

5.1.1 Clustering based MIP Scenario Reduction (CBSR) Model 

The MIP robust SCND model may include a large number of random scenarios that makes it 

very hard to solve. To overcome this difficulty in such problems, some approximation methods 

have been presented in literature which reduces the dimension of the problem by determining a 

subset of the scenario set. Li and Floudas (2014) present an MIP scenario reduction model which 

minimizes the probabilistic distance between the original and reduced input scenario distribution. 

The probabilistic distance depends on scenario probabilities and distances between scenario 

values. The distance 
,s sd   between any two scenarios ,  s s  is measured based on the following 

metric: 
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s q s q
s s t t

q Q t T

d  




 

   (80) 

Where t T  represents time, q Q  is the set of random parameters and ,s q
t  is a binary variable 

which becomes 1 if random parameter q occurs at time t  in the scenario s  and 0 otherwise. 

Eventually, scenarios are deleted when they are close or have small probabilities. In order to 

reduce the number of scenarios in this Chapter, an MIP model is proposed which group scenarios 

into different clusters. This model applies the gradual coverage function of facility location 

problems in order to calculate the degree of membership of each scenario to the proposed 

clusters. The covering models in facility location problems follow a similar rationale to the 

clustering based scenario reduction methodologies (Farahani et al. 2012). For a given set of 

customer locations, these models identify locations of facilities such that the customer can 

receive service from each facility whose distance from customer is equal or less than a given 

critical distance. Among set covering models, there are formulations which allow customers to 

receive either full and/or partial coverage from single and/or multiple facilities. The gradual 

coverage formulation fully covers a demand point if its distance from closest facility is less than 

1R  . If the distance is between 1R   and 2R  , the demand point will be partially covered and the 

coverage level provided by facility acts as a decreasing function of the distance from the facility 

to the customer’s location. Finally, if the distance is more than 2R  , the demand point will never 

be covered (Berman and Krass, 2002). Gendreau et al. (1997) develop a double coverage model 

based on two coverage radius 1R   and 2R   ( 1R  < 2R  ). All demand points must be covered within 

1R  and a portion of demands, say α must be covered within 2R . The benefit of partial coverage 

and/or coverage with multiple facilities is in the lower number of facilities required to cover the 

set of customers compared to the case where only full and/or single coverage is allowed.  

The proposed clustering based MIP scenario reduction model in this Chapter incorporates the 

partial and multiple coverage techniques. This model groups scenarios into clusters. Next, it 

identifies cluster center associated with each cluster. A cluster center is a scenario which 

represents scenarios within that cluster. Finally, cluster centers would represent the reduced 

scenario set and the remaining scenarios would be eliminated. The objective of this model is to 
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minimize the distance of cluster centers from eliminated scenarios while reducing the size of 

original scenario set to a desirable level. This model applies the following three steps to group 

scenarios which are based on the gradual coverage formulation. The distance between scenarios 

is measured by the metric proposed by Li and Floudas (2014).        

I. The scenario s  will be fully covered by scenario s  if the distance between scenario s  

and s  is less than a primary admissible tolerance. 

II. The scenario s  will be partially covered by scenario s  if the distance between scenario 

s  and s  is more than primary admissible tolerance and less than a secondary admissible 

tolerance. The amount of partial coverage is a decreasing function of the distance from 

the scenario s  to the scenario s . 

III. The scenario s  will not covered by scenario s  if the distance between them is more than 

the secondary admissible tolerance. 

The following tables represent the parameters and variables incorporated into the model. 

Table 5.1 List of Decision Variables in Clustering based MIP Scenario Reduction Model 

Decision Variables Definition 

sX    1 if scenario s  is a cluster center, else 0 

ssY    1 if scenario s  is covered by scenario s , else 0 

 

Table 5.2 List of Input Parameters in Clustering based MIP Scenario Reduction Model 

Input Parameters Definition 

S  The set of all scenarios 

,  s s  Index of scenarios ,  s s S    
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ssw    

Coverage level of scenario s  by scenario s   

1           

            

0           

ss s

ss s ss s

ss s

if d l

f if l d u

if d u



 



 
 

  
  

  

ssd    distance between scenario s  and s   

sl   the primary admissible tolerance for scenario s   

su   the secondary admissible tolerance for scenario s    

ss s
ss

s s

d l
f

u l








  the coverage decay function which represent the amount of partial 

coverage that scenario s  provides for scenario s  

UB   
upper bound on level of coverage per scenario across all cluster 

centers  

LB   
lower bound on level of coverage per scenario across all cluster 

centers 

 

The objective function of the model minimizes the total distance between cluster centers and 

other members of clusters which are covered by cluster centers. The decision variable ssY   

determines whether scenario s  is covered by scenario s  and the input parameter ssw   represents 

the portion of scenario s  which could be covered by scenario s . 

 ss ss ss

s S s S

Minimize w d Y  

 

  
(81) 

The constraint (82) limits the size of reduced scenario set to the desirable level of N . The 

decision variable sX   determines whether scenario s  is a cluster center. The total number of 

cluster centers should be equal to N . The constraint (83) guarantees that scenario s  will be 

assigned to scenario s  if scenario s  is identified as a cluster center.   

 :Subject to     

s
s S

X N


   
(82) 
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 ss sY X   ,  s s S   (83) 

     ss ss
s S

w Y UB 


  s S   
(84) 

     ss ss
s S

LB w Y 


   s S   
(85) 

ss ssY w M   ,s s S   (86) 

The constraint (84) sets an upper bound on the overall level of coverage provided to a scenario 

through all cluster centers. The constraint (85) states that the summation of coverage given to 

any scenario should be more than LB . These two constraints control the trade-off between the 

accuracy of clustering and the computational time of model. For a given N , the higher values of 

UB  and LB  would result in reduced scenario set with closer profile to original scenario set 

however this will increase the processing time of the model. The constraint (86) guarantees that 

scenario s  will be covered by scenario s  only if the distance between these two scenarios is 

lower than the secondary admissible tolerance 
su . The cluster centers are representative 

scenarios.  

The MIP robust SCND model identifies the strategic design decisions by considering 

representative scenarios. It computes the operational cost of a design decision by generating the 

contingency capacity plans of representative scenarios. The following section describes the MIP 

contingency capacity planning model. 

5.1.2 Capacity Planning Model 

The production quantity and capacity levels of main and back-up suppliers, the levels of lost 

demand and strategic stock within the planning horizon are determined by MIP contingency 

capacity planning model. In addition to these, the model determines the optimal machine 

configuration of back-up supplier and the initial level of strategic stock for a given disruption 

scenario. The list of input parameters and decision variables is presented as follows. 

Table 5.3 List of Notations and Decision Variables 
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Input Parameters Definition 

 '1,2,...,T T  Planning horizon consisting of  T  periods 

J   The set of available backup supplier machine configuration 

I  The set of plausible capacity loss during recovery time 

t  The current time, t T   

j   The machine configuration of backup supplier, j J  

i  Level of capacity loss during recovery time, i I  

jC  The investment cost of machine configuration j  

A  The purchasing/manufacturing cost of initial strategic stock 

R  The production cost of main supplier 

W  The production cost of back-up supplier 

O  The shortage cost 

E  The capacity addition cost 

H  The inventory holding cost 

tG  1 if a major disruption occurs at time t , else 0 

tF  1 if a minor disruption occurs at time t , else 0 

dC  The maximum capacity level of main supplier 

B  The intensity of minor disruption 

i

tK  1 if capacity loss level of i  realized during recovery time t   

,j iU  

The fraction of added capacity which is available based on back-up 

supplier machine configuration of j  and realized capacity loss level 

of i   

Decision Variables  

 d
tx  The production quantity of main supplier at time t   

 r
tx  The production quantity of back-up supplier at time t  
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t
  The amount of added capacity to back-up supplier at time t   

t
  The amount of removed capacity from back-up supplier at time t  

tl  The lost demand at time t    

t  The level of strategic stock at time t     

 
jy  1 if backup supplier machine configuration level j  is selected, 0 else  

  The initial level of strategic stock 

d
t  The WIP level of main supplier at the end of time t   

d
t  The level of raw material released into main supplier at time t    

r
t  The WIP level of back-up supplier at the end of time t  

r
t  The level of raw material released into back-up supplier at time t    

t  The nominal capacity level of back-up supplier at time t     

t  The actual capacity of back-up supplier at time t      

tu  The amount of added capacity available during recovery time t   

The objective of the model is to minimize the investment cost plus the total operational costs 

(87). The cost parameters include the investment cost associated with backup supplier machine 

configuration, the purchasing/manufacturing cost of initial strategic stock, the production cost of 

main and back-up suppliers, the shortage cost, the capacity addition and strategic stock holding 

cost. 

        d r
j j t t t t t

j J t T

Min C y A Rx Wx E Ol H 

 

         
(87) 

The flow of material is represented through constraints (88) to (90). The demand at any period is 

satisfied by production of the main and the back-up supplier and strategic stock. The unsatisfied 
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demand is assumed to be lost (88). The level of strategic stock at any period does not change if 

there is no disruption (89). The level of strategic stock at the beginning of the planning horizon 

equals to (90). The constraint (91) guarantees that only one configuration would be selected out 

of possible back-up supplier machine configurations in set J . The impact of disruptions over the 

main supplier capacity is represented by (92). The level of work in process in the main supplier 

and the back-up supplier are identified through constraints (93) and (94) respectively. The WIP 

level at the beginning of each period is the WIP level of the previous period 
1t 
 plus the amount 

of raw material released 
t . The WIP level at the end of each period 

t is the difference between 

the level of WIP at the beginning of that period and the production level 
tx .                

 :Subject to    

( )( )        d r
t t t t t t tD x x l G F i t T        (88) 

1 ( )         t t t t tG F i t T        (89) 

0   (90) 

1j j

j J

C y


  
(91) 

(1 )         d
t t t dx F B G C t T      (92) 

1         d d d d
t t t tx t T        (93) 

1         r r r r
t t t tx t T        (94) 

The capacity balance equations of the back-up supplier are represented in constraints (95) and 

(96). The constraint (95) indicated that the nominal capacity t  determines the amount of 

capacity that the system is set to reach. It is equal to the nominal capacity of the previous period 

plus the amount of added capacity 
t
  or minus the amount of removed capacity 

t
 . In the 

periods where capacity is added, the actual capacity t  is the nominal capacity of the previous 
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period plus the amount of added capacity that is available during recovery time tu . In constraint 

(96), the actual capacity is equal to the nominal capacity in periods with capacity decrease. The 

amount of added capacity available during the recovery time is bounded by a fraction 
,j iU  of the 

added capacity where 
,j iU  depends on the back-up supplier machine configuration 

jy and the 

level of the capacity loss realized during recovery time i

tK as presented in constraint (97). Note 

that i

tK  is a binary input parameter and 1i
t

i I

K


 . The constraint (98) states that the back-up 

supplier production at any period is less than the actual capacity. The effect of congestion 

observed at the back-up supplier during the recovery time is represented with an M/G/1 queueing 

based nonlinear clearing function which is proposed by (Missbauer, 2002). In order to solve the 

complexity associated with the nonlinearity of clearing function, we apply an outer 

approximation. Thus the clearing function is represented through a set of M  planes in (99).              

1         t t t t t T   
      (95) 

1         t t t tu t T  
      (96) 

,( ) (1 )        i
t t j i t j

i I

u K U y t T



       
(97) 

        r
t tx t T    (98) 

1( )              r r r
t m t t m t mx A B G t T m M           (99) 

 0,1 ,   0,   0,   0,   0,   0,   0,   0,   0 d r d r
j t t t t t t ty x x l i             

 0,   0,   0,   0,   0,   0,   0d r
t t t t t t tu               

(100) 

The MIP capacity planning model presented in this section provides the contingency capacity 

plan of supply network, optimal machine configuration of back-up supplier and initial level of 

strategic stock for a given disruption scenario. Next section present the last step of the solution 

methodology presented in Figure 5.1 which is to develop a robust SCND model based on the 

proposed capacity planning model. This robust SCND model identifies the optimal machine 



 
 

 

 
96 

 

configuration of back-up supplier and initial level of strategic stock by considering all 

representative disruption scenarios which are selected in step 1.     

5.1.3 Robust SCND Model 

In this Chapter, we treat each scenario as an objective. Since the scenario probabilities are not 

available, all objectives can be treated as equally important. Our goal is to achieve solution 

robustness defined as a solution which remains close to optimal for any occurrence of scenarios. 

Therefore, we will find a fair solution, in which the relative regrets of all scenarios are as much 

close to each other as possible. The relative regret of a solution in a given scenario is defined as 

the difference between the cost of the solution in that scenario and the cost of the optimal 

solution for that scenario (Snyder and Daskin, 2006). 

In multi objective decision making problems where all objectives are equally important to the 

decision maker, the ordered weighted averaging (OWA) aggregation operator could be applied to 

achieve a fair solution (Sawik 2014). In such a problem context, the objective is to generate a fair 

solution, in which all normalized objective function values are as close to each other as possible. 

The OWA aggregation operator provides the sum of weighted objective function values which 

have been sorted in the order of the largest value, the two largest values and so on. Liu and 

Papageorgiou (2013) provide a formulation in order to transform the OWA aggregation operator 

to the objective function of a linear minimization problem. Later on, Liu et al (2014) prove that 

assignment of equal weights to the optimization problem in Liu and Papageorgiou (2013) 

provides a fair as well as a Pareto optimal solution. We apply the formulation proposed in Liu 

and Papageorgiou (2013) in order to represent the OWA aggregation operator in the objective 

function. Since all scenarios are equally important, we assign identical weights to all objectives. 

The formulation of OWA aggregation operator in the robust model according to Liu and 

Papageorgiou (2013) approach is represented in (101) and (102).        

    

    l sl

l in S s in S

Min l 
 

 
 
 

   (101) 

 :Subject to    
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     ,   l sl sf l s S       (102) 

The above formulation provides minimizing the summation of largest value, the two largest 

values, the three largest values and so on of outcome values sf  which represents the relative 

regret of scenario s . The variable l  is unrestricted and the non-negative variable sl  represents 

the upside deviation of sf  from the value of l . The constraint (103) determines the relative 

regret of each scenario based on the difference between the cost of the solution in that scenario 

sZ (104) and the cost of the optimal solution for that scenario *
sZ . Note that *

sZ  is an input 

parameter which is defined as the total cost of MIP contingency capacity planning model for 

scenario s .           

*

*
=       s s

s

s

Z Z
f s S

Z


   (103) 

, , , , ,           d r
s j j s t s t s t s t s t

j J t T

Z C y A Rx Wx E Ol H s S 

 

            
(104) 

(88)  (99)      to s S   (105) 

The proposed MIP robust SCND model applies the ordered weighted averaging (OWA) 

aggregation operator to achieve solution robustness when probabilities of representative 

scenarios selected in step 1 are unavailable. In the next section, we present an illustrative case 

study and experiments to compare the proposed methodology with other approaches from the 

literature.   

5.2 Numerical Experiments 

We consider the supply chain associated with a product whose demand is assumed to be 

deterministic and 6,500 units per period. Three different layout configurations are presented as 

decision variables: parallel, parallel-serial and serial. The parallel configuration provides higher 

level of capacity during the recovery time however the better scalability increases the investment 

cost of parallel configuration (Wang and Koren, 2012) as indicated in Table 5.4. 
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Table 5.4 List of Cost Parameters 

Cost Parameter Value ($) Cost Parameter Value ($) 

jC : The investment cost of 

machine layout where j  is 

parallel configuration 

135,000 H : Holding cost ($/unit) 40 

jC : The investment cost of 

machine layout where j  is 

parallel-serial configuration 

90,000 W : Back-up supplier 

production ($/unit) 
125 

jC : The investment cost of 

machine layout where j  is 

serial configuration 

45,000 R : Main supplier production 

($/unit) 
25 

A : Strategic stock investment 

($/unit) 
180 O : Shortage ($/unit) 300 

  E : Capacity addition ($/unit) 20 

The maximum capacity of the main supplier is higher than back-up supplier. These values are set 

to 10,000 and 7,500 units respectively. The fractions of the added capacity which are available 

during the recovery time 
,j iU  with respect to the back-up supplier machine configuration and the 

level of capacity loss are presented in Table 5.5. Furthermore, we assume the intensity of the 

minor disruptions on the main supplier results in 30% loss in its maximum capacity. 

Table 5.5 Fraction of the added available capacity available during recovery time - 
,j iU  
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Level of capacity loss during recovery Back-up supplier machine configuration 

 

Parallel Parallel-serial Serial 

High 0.933 0.867 0.8 

Normal 0.833 0.667 0.5 

Low 0.733 0.467 0.2 

Based on the stated assumptions and inputs, the following experiments are conducted. First, the 

performance of the clustering based MIP scenario reduction model presented in section 5.1.1 is 

compared against the MIP scenario reduction model proposed by Li and Floudas (2014) both 

with respect to the quality of selected representative scenarios and the computational time. Next, 

the solution robustness of back-up supplier machine configuration and initial level of strategic 

stock determined by robust SCND model proposed in section 5.1.3 is compared against other 

formulation approaches such as minimizing the average and worst case cost performance, 

minimizing the average and the standard deviation of the cost and minimizing the worst case cost 

performance (Diaz et al. 2017).        

5.2.1 Investigating the performance of CBSR model  

The performance of the proposed clustering based scenario reduction methodology is compared 

to the MIP formulation proposed by Li et al. (2014) through the following illustrative example. 

Three cases with different length of product lifecycle are considered (

Small Set Medium Set Large SetT = 6, T = 8, T = 10  periods). For each case, the original scenario set is 

developed using the scenario tree approach. The random parameters considered in generating the 

original scenario set are levels of disruptions and capacity losses during the recovery time. The 

sizes of the original scenario set associated with small set ( 6T  ), Medium set ( 8T  ) and large 

set ( 10T  ) are 162, 556 and 1571 scenarios respectively. The objective is to generate different 

subsets of the original scenario set to test the effectiveness of the proposed scenario reduction 

algorithm.  
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The maximum and minimum levels of coverage per scenario represented by UB  and LB  in the 

clustering based scenario reduction model are set to 1 and 0.8 accordingly. Therefore, the overall 

of coverage      ss ss
s S

w Y 


 provided to scenario s  from cluster center scenarios s S  should be at 

least 0.8 and at most 1. The primary admissible tolerance 
sl  and the secondary admissible 

tolerance 
su  are calculated based on 

max  sf  which is the maximum distance of scenario s  from 

other scenarios. For each scenario, the primary admissible tolerance is set to 25% of 
max  sf  and 

the secondary tolerance is set to 75% of 
max  sf . For these settings, the proposed clustering based 

scenario reduction methodology (CBSR) and the OSCAR scenario reduction algorithm proposed 

by Li and Floudas (2014) are both applied to perform a comparison. The cumulative probability 

distributions of the cost of scenarios optimal solution ( *
sZ ) associated with small, medium and 

large original scenario sets and the reduced sets generated by CBSR and OSCAR for different 

levels of reduction are presented in Figure 5.2, 5.3 and 5.4 accordingly. 
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Figure 5.2 Cumulative distribution of cost of optimal solutions, small scenario set (162 

scenarios) 

 

 

 

Figure 5.3 Cumulative distribution of cost of optimal solutions, medium scenario set (556 

scenarios) 
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Figure 5.4 Cumulative distribution of cost of optimal solutions, large scenario set (1571 

scenarios) 

The results in graphs above show that both methods have close performance in identifying 

reduced scenario sets with cumulative probability distributions of scenarios optimal cost close to 

original scenario set. In order to further compare the quality of the reduced scenario sets 

developed by CBSR against OSCAR, statistical measures are computed for the original and 

reduced distributions. The statistical parameters considered are maximum, minimum, expected 

value, standard deviation, skewness and kurtosis of the optimal objective function values ( *
sZ ). 

The skewness measures the degree of symmetry of a distribution and the kurtosis measures the 

height and level of sharpness of the central peak of distribution compared to a standard normal 

distribution. For each parameter, the relative percentage difference between the values obtained 

from the original scenario set and the reduced scenario sets generated by CBSR and OSCAR are 

presented in Table 5.6. The lower the relative difference, the closer the reduced scenario set to 

the original scenario set with respect to the statistical parameter considered. The computation 

time of each instance used by CPLEX is indicated in the last row.   

Table 5.6 Statistics on scenario reduction results 

 Level of Reduction 80% 85% 90% 95% 

Measure Scenario Set \ Method CBSR OSCAR CBSR OSCAR CBSR OSCAR CBSR OSCAR 

# of 

Scenarios 

Small 32 24 16 8 

Medium 111 83 56 28 

Large 314 236 157 79 

Maximum 
Small 1.54% 1.54% 5.00% 1.54% 5.21% 5.21% 1.54% 7.57% 

Medium 1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 1.23% 
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Large 0.37% 10.23% 7.74% 10.23% 0.37% 7.74% 20.17% 16.00% 

Minimum 

Small 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Medium 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Large 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Expected 

Value 

Small 5.08% 5.26% 3.01% 3.01% 1.64% 1.64% 3.43% 5.41% 

Medium 2.11% 2.74% 0.57% 1.41% 2.28% 2.58% 3.34% 3.34% 

Large 1.03% 2.26% 0.74% 1.23% 3.43% 3.86% 0.49% 2.68% 

Standard 

Deviation 

Small 4.17% 2.14% 3.88% 3.24% 14.53% 14.53% 0.39% 5.07% 

Medium 4.62% 8.07% 8.47% 9.65% 3.44% 0.84% 1.32% 1.32% 

Large 3.54% 8.87% 1.78% 8.36% 5.15% 4.19% 5.79% 5.19% 

Skewness 

Small 246.46% 253.83% 256.54% 225.10% 101.04% 101.04% 209.53% 685.14% 

Medium 107.25% 105.65% 65.47% 124.84% 128.27% 104.42% 70.93% 70.93% 

Large 0.40% 12.83% 7.50% 3.57% 9.95% 16.55% 26.38% 15.15% 

Kurtosis 

Small 38.54% 39.57% 41.70% 45.45% 53.33% 53.33% 61.38% 150.61% 

Medium 0.69% 11.81% 11.10% 12.11% 8.80% 8.94% 22.41% 22.41% 

Large 13.28% 107.59% 138.41% 14.91% 83.66% 94.15% 187.61% 178.72% 

Time (s) 

Small 12 14 15 23 24 28 30 35 

Medium 161 2,000 153 1,822 307 7,440 330 2,040 

Large 6,060 16,380 7,500 22,920 9,300 36,240 10,800 41,640 

The results show that the relative difference between the minimum value of original scenario set 

and the minimum values of reduced set generated by CBSR and OSCAR is zero across different 

sizes of original scenario set and levels of reduction. Therefore, both scenario reduction methods 

cover the minimum performance. For the maximum value, the relative difference in both 

methods increases as the level of reduction increases. This is a result of limiting the number of 

representative scenarios being used as we increase the level of reduction leading to the maximum 

value of reduced scenario set to be significantly different than original scenario set. On the other 

hand, the relative difference of maximum value of reduced scenario set generated by CBSR is 

lower. 

For the expected value, the relative differences of reduced scenario sets developed by CBSR are 

consistently smaller than their counterparts achieved by OSCAR. Thus, the expected values of 

reduced scenario sets developed by CBSR are closer to original values especially for larger sizes 

of original scenario set. However, OSCAR provides the standard deviation of scenario values in 

the reduced set closer to original set for small size of original set. Both methods have similar 
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performance for medium and large size of original scenario set. The skewness of reduced 

scenario set distributions is closer to original distribution for large size of scenario set and both 

methods have similar performance across different levels of reduction. This is because of higher 

number of scenarios which provide a similar degree of symmetry compared to the original one. 

For kurtosis, the relative differences of reduced scenario set distributions achieved by CBSR and 

OSCAR are close across different sizes of original scenario set and levels of reduction. 

The computational time which is required to achieve reduced scenario sets increases as the level 

of reduction and the size of original scenario set increases. The higher level of reduction requires 

more scenarios to be eliminated which increase the computational efforts. On the other hand, the 

size of the problem increases with the size of original scenario set which results in long 

computational time. Furthermore, CBSR provides the reduced scenario set in significantly 

shorter amount of time compared to OSCAR. This is due to partial and multiple coverage 

capabilities embedded in CBSR formulation which allows a scenario to be fully or partially 

covered by multiple representative scenarios. Therefore, this technique requires less 

computational efforts compared to other approaches where a given scenario is limited to be fully 

covered by only one representative scenario. According to results discussed earlier, the quality of 

reduced scenario sets achieved by CBSR is close to OSCAR. Therefore, the short computational 

time performance of CBSR has least impact on the quality of the reduced scenario set developed.                    

5.2.2 Robust Formulation Assessment 

In this section, the performance of the proposed ordered weighted averaging (OWA) aggregation 

operator in the objective function of the robust model is compared with respect to other 

formulation options. The set of alternative robust objective function formulation options 

considered in this study includes minimizing the average cost and worst case cost performance 

(AVG-WC), minimizing the average cost and the standard deviation of the cost of the solution 

across different scenarios (AVG-STD) and minimizing the worst case cost performance of the 

solution (Diaz et al. 2017). The minimization of the standard deviation aims to reduce the 

variation in cost, whereas the minimization of the maximum cost tries to minimize the worst case 

scenario cost derived from design decisions. First we execute the MIP robust SCND model 
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presented in section 5.1.3. Next, the following models are executed for the formulation options 

elaborated above. This comparison analysis is conducted over large size original scenario set 

which includes 1571 scenarios.   

5.2.2.1 Minimizing the Average and Worst Case Cost (AVG-WC) 

The input parameter   in this model represents the number of scenarios in the scenario set. 

   

s

s in S

Z

Min W



 (106) 

Subject To:  

      sW Z s S    (107) 

(88)  (99),  (104)to   (108) 

5.2.2.2 Minimizing the Average and Standard Deviation of the Cost (AVG-STD) 

The decision variable 0s
   represents the deviation of each scenario cost from the average cost. 
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5.2.2.3 Minimizing the Worst Case Cost (MinMax) 

 Min W  (112) 
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Subject to:  

       sW Z s S    (113) 

(88)  (99),  (104)to  (114) 

In order to investigate the performance of the ordered weighted averaging (OWA) aggregation 

operator based formulation against proposed robust formulation options, we benchmark the 

solutions returned by each model with respect to three robustness measures called precision to 

regret, precision to average (Cunha and Covas, 2008) and relative deviation (Bernard 2010). The 

precision to regret represents the difference between the cost of the solution obtained to the cost 

of the optimal solution of each scenario and it is given by: 

*

*
  

1

Precision to Regret (%)  

s s

ss in S

Z Z

Z

 
 
 
 





 

(115) 

where sZ represents the cost of scenario s  achieved by solving robust model and it is calculated 

by constraint (104) and 
*
sZ is the optimal cost of scenario s  calculated by solving the capacity 

planning model presented in section 4.2 for scenario s . The precision to average represents the 

deviation of the cost of the solution obtained to the average of cost of optimal solutions across all 

scenarios and it is computed as follows. 

average

average  

1

Precision to Average (%)  
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Z Z
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 
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The relative deviation is the value of maximum relative regret across the scenarios where the 

relative regret is the difference between the costs of the solution obtained to the cost of the 

optimal solution of each scenario. The relative deviation is calculated by: 

*

  *
Relative Deviation (%)  

s s

s in S

s

Z Z
Max

Z


  (118) 

Next, the three robust models elaborated above and the robust formulation with ordered weighted 

averaging (OWA) aggregation operator in the objective function of the model are executed in 

order to determine the optimal machine configuration of back-up supplier and the initial level of 

safety stock. The set of input parameters considered are operational and investment costs 

presented in Table 5.4 and the fraction of the added capacity which is available during recovery 

time based on the machine configuration of back-up supplier (Table 5.5). The results show that 

the optimal back-up supplier machine configuration across all robust formulations considered is 

the parallel configuration. The selection of the initial strategic stock levels with respect to 

different levels of scenario reduction is presented in Figure 5.5.  
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Figure 5.5 Safety Stock Selections of Robust Formulations 

The safety stock level increases in all four robust formulations as the level of scenario reduction 

decreases. This happens since the number of scenarios with major disruption impacts increases in 

the reduced scenario set as the size of reduced set increases. Therefore, higher level of safety 

stock is required to cover these high impact disruption scenarios. The MinMax robust 

formulation represents the highest level of safety stock selection across different levels of 

scenario reduction. The reason is in MinMax formulation’s inherent characteristic which focuses 

only on worst case scenarios. Therefore, it selects the highest level of safety stock to minimize 

the impact of extremely disruptive scenarios. The AVG-WC robust model represents the second 

highest levels of safety stock selection across different levels of scenario reduction. The selected 

safety stock levels are lower than MinMax since AVG-WC model is formulated to minimize 

average cost in addition to worst case cost. However, the level of safety stock selected by AVG-

WC formulation is higher compared to OWA based robust formulation. Furthermore, the 

difference in selected level of safety stock between these two approaches increases as the level of 
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scenario reduction decreases. The OWA operator based robust formulation minimizes scenarios 

costs in the decreasing order of scenario impact (e.g. first the worst case cost, second the 

summation of two worst case costs and so on). Therefore, as the number of scenarios increases 

due to decrease in the level of scenario reduction, the performance of OWA based formulation 

becomes closer to minimization of average cost. This behavior results in safety stock levels 

selected by OWA based model to become closer to AVG-STD formulation safety stock 

selections and further away from AVG-WC and MinMax selections as the level of scenario 

reduction decreases. The lowest level of safety stock is selected by AVG-STD robust model. 

This is due to AVG-STD objective function formulation which aims to minimize the average 

cost and the positive deviation of each scenario cost from average. The minimization of this 

formulation requires less safety stock since the objective is to minimize the deviation of each 

scenario cost from average rather than worst case scenarios’ costs.  

The quality of solutions provided by each formulation is measured with respect to three 

robustness benchmarks; precision to regret, precision to average and relative deviation. The 

results are represented in Table 5.7.              

Table 5.7 Performance of Robust Formulations with Respect to Robustness Measures 

Robust 

Formulation 

Level of Scenario 

Reduction 
Precision to Regret 

Precision to 

AVG 
Relative Deviation 

AVG-WC 

95% 76.15% 66.94% 18.24% 

90% 75.44% 65.88% 17.69% 

85% 73.60% 65.01% 15.66% 

80% 71.10% 63.13% 12.07% 

AVG-STD 

95% 75.83% 70.13% 28.71% 

90% 77.02% 72.56% 24.79% 

85% 79.01% 75.81% 21.49% 

80% 82.13% 80.20% 18.98% 

MinMax 

95% 72.13% 65.12% 16.05% 

90% 70.03% 63.17% 14.41% 

85% 68.29% 60.57% 11.09% 

80% 63.49% 57.38% 8.68% 
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OWA 

95% 79.74% 68.43% 20.11% 

90% 81.33% 70.88% 19.66% 

85% 82.51% 74.10% 18.84% 

80% 84.90% 79.16% 17.50% 

As the level of reduction decreases, the results show that the precision to regret and precision to 

average performance of MinMax and AVG-WC formulations degrades however the relative 

deviation improves. The reason is in the objective of these two approaches which aims to 

minimize the worst case scenario cost. As the size of reduced scenario set increases, the number 

of scenarios with major disruption impact increases. Therefore, the solution achieved by 

MinMax and AVG-WC would alleviate worst case scenario impact and has a low performance 

with respect to average performance (precision to average) and optimal performance of each 

scenario (precision to regret). Furthermore, the magnitude of improvement in relative deviation 

and decline in precision to regret and average of MinMax is higher than AVG-WC. The reason 

lies in MinMax formulation which focuses only on worst case scenarios.  

The precision to regret and the precision to average of both OWA based formulation and AVG-

STD model increases as the level of reduction decreases. The pace of improvement in precision 

to regret is higher in OWA based formulation compared to AVG-STD model. This behavior is 

observed since OWA based formulation identifies solutions such that the distance to optimal 

solution of each scenario is targeted to be minimized. Therefore, it has the highest precision to 

regret at different levels of scenario reduction and among all robust formulations considered. On 

the other hand, AVG-STD model represents the highest precision to average across all levels of 

scenario reduction. This is due to the fact that in this approach the objective aims to minimize the 

positive deviation of each scenario cost from average cost. Furthermore, OWA based 

formulation has the second highest precision to average at different levels of reduction. The 

relative deviation of OWA and AVG-STD model improves as the size of reduced scenario set 

increases. However, the magnitude of improvement in both approaches is lower compared to 

MinMax and AVG-WC. Furthermore, the OWA based formulation levels of improvement are 

higher compared to AVG-STD model since this approach minimize the impact of worst case 

scenarios in the decreasing order of impact. 
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5.2.3 Discussion of Results          

The first section of the numerical experiments investigate the performance of the proposed 

clustering based scenario reduction (CBSR) methodology against the MIP based approach 

presented by Li et al. (2014) called OSCAR. The results show that CBSR provides the reduced 

scenario set in significantly shorter amount of time compared to OSCAR. This is due to partial 

and multiple coverage capabilities embedded in CBSR formulation. Furthermore, the quality of 

reduced scenario sets achieved by CBSR is close to OSCAR. For the minimum value, both 

scenario reduction methods cover the minimum value of the original set. However, the maximum 

and expected values of reduced scenario sets developed by CBSR are closer to original values 

especially for larger sizes of original scenario set. On the other hand, OSCAR provides the 

standard deviation of scenario values in the reduced set closer to original set for small size of 

original set. Furthermore, both methods have similar performance across different levels of 

reduction for skewness and kurtosis. Therefore, the short computational time performance of 

CBSR has least impact on the quality of the reduced scenario set developed. 

The second part of the numerical experiments compares the performance of the proposed ordered 

weighted averaging (OWA) aggregation operator in the objective function of the robust model 

against other robust formulations such as minimization of the average cost and worst case cost 

performance (AVG-WC), minimization of the average cost and the standard deviation of the cost 

of the solution across different scenarios (AVG-STD) and minimization of the worst case cost 

performance of the solution (MinMax).  

The results show that the OWA based formulation could provide solutions with a fair level of 

solution robustness compared to other formulations considered in this Chapter. This is based on 

highest level of precision to regret which is presented by OWA based formulation across 
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different sizes of reduced scenario set in addition to second highest level of precision to average 

provided by OWA based model. Finally, the OWA based formulation has a fair performance 

with respect to relative deviation. 
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Chapter 6     

Conclusion 

 

        In an era of globalization where supply chains are dispersed across the world in order to 

benefit from lower manufacturing and supply costs as well as better access to the global markets, 

it is important to consider the risk of disruptions in the design of supply chain. The focus of this 

thesis is on disruptions which impact the supply network. We incorporate two well-known risk 

mitigation strategies, the strategic safety stock and contingent sourcing in the supply network in 

order to mitigate the impact of operational risks and disruptions. Our design problem includes 

the challenge to identify the optimal levels of strategic safety stock and the response speed of the 

back-up supplier in order to create a robust supply flow. Furthermore, we assume that the back-

up supplier could invest in its layout configuration in order to improve the response speed. Our 

first contribution is in Chapter 3 where we consider the impact of congestion over production 

capacity of back-up supplier during the response time. To this end, the clearing functions are 

incorporated into the supply chain contingency capacity planning model. The results in Chapter 3 

show that considering congestion is especially critical for risk-neutral decision makers in 

mitigating against disruptions. Furthermore, there is significant improvement in supply chain 

service level as the congestion effects are taken into account 

We solve our design problem under two plausible scenarios which represent the quality of 

information that might be available to estimate the probabilities of disruptions. The first scenario 
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considers the situation where there is enough information available to estimate the probability of 

disruptions. This situation could for instance represent a supply network which source from 

suppliers located in Far East. For this case, we propose a two-stage robust optimization model in 

Chapter 4 where the first stage decision variables are levels of back-up supplier’s response speed 

and strategic safety stock.  Our contribution is to represent the randomness associated with 

disruptions and available capacity during the response time into the robust optimization model. 

This model minimizes the summation of expected cost and the variation from expected cost in 

order to provide solution robustness. The results in Chapter 4 show the optimality of the faster 

response speed as the failure probability increases or recovery probability decreases. 

Furthermore, higher level of strategic stock and faster response speed level are required as the 

probability of the lower level of capacity availability during the response time increases. Finally, 

we demonstrate that it is worthwhile to consider the complexity associated with modelling of the 

randomness associated with the response time characteristics due to the improvements in the 

supply chain performance.    

The second scenario represents the situation where there is no level of information available to 

estimate the probability of disruptions. This situation could represent a newly established supply 

network. In this situation, we achieve design decisions with solution robustness such that the 

optimal solution would be close to the optimal solution of any scenario as much as possible. To 

this end, we employ the Ordered Weighted Averaging (OWA) aggregation operator in the 

objective function of our two-stage robust optimization model in Chapter 5. The implementation 

of the robust optimization models with lexicographic based formulation is known to be difficult 

for large problems. Since we consider a strategic supply chain network design problem which 

includes a large scenario set, there is computational complexity in solving the two-stage robust 

optimization model. To overcome this challenge, we propose a novel clustering based MIP 

scenario reduction model called CBSR in Chapter 5. This proposed scenario reduction model 

groups scenarios into clusters based on a probabilistic distance metric and it identifies the cluster 

center associated with each cluster. Finally, the cluster centers will represent the reduced 

scenario set and the remaining scenarios will be removed. Our contribution is in incorporating 

the gradual coverage function which is used frequently in location covering models into the 
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scenario reduction formulation. In this context, the gradual coverage function determines the 

degree of coverage provided by a cluster center to a given scenario. This functionality provides 

partial coverage and/or coverage with multiple cluster centers capabilities. The performance of 

the proposed scenario reduction methodology is compared to other approaches available in 

literature with respect to the quality of solutions and computational time. First, the clustering 

based MIP scenario reduction model (CBSR) is benchmarked against a MIP based scenario 

reduction formulation (OSCAR) developed by Li and Floudas (2014). The results indicate that 

CBSR model has significantly shorter computational time to generate the reduced scenario set 

compared to OSCAR. Furthermore, the quality of reduced sets achieved by CBSR is at least as 

good as the reduced sets developed by OSCAR. Next, the performance of the proposed OWA 

based robust formulation is compared against other formulations with objective of minimizing 

the average and worst case performance (AVG-WC), minimizing average performance and 

standard deviation (AVG-STD) and minimizing the worst case performance (MinMax). Three 

benchmarks are considered to conduct the comparison analysis including: precision to regret, 

precision to average and relative deviation. The results show that the OWA based robust 

formulation provides solution with highest precision to regret (solution robustness) and it has the 

second best performance with respect to precision to average and a fair performance with respect 

to relative deviation. 

The tools developed in this thesis could support the supply chain practitioners in order to design 

robust supply networks under all plausible future scenarios and with respect to the different 

levels of data availability. 

Future Research Directions 

The future research could be conducted in the following directions.  

 The proposed supply chain design decisions could be determined for the case when there 

is information available about the possibilities of operational risks occurrences such as 

machine breakdown however the probabilities of major disruption occurrences such as 

earthquake are unavailable. This situation is called partial data availability.  
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 A scenario reduction approach can be developed for the case where there is correlation 

between scenarios within the original scenario set. This could represent a situation where 

there is positive correlation between the higher frequency of machine breakdown and 

getting closer to the end of product life cycle.  

 In this thesis, we assume a single product supply chain to assess volume flexibility. 

Within the same disruption management strategies, considering the interplay between the 

demands of multiple products to assess process flexibility could be a future research 

direction. 

     

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 
117 

 

 

 

References 

 

Baghalian, A., Rezapour, S., and Zanjirani Farahani, R. (2013), "Robust supply chain network 

design with service level against disruptions and demand uncertainties: A real-life case", 

European Journal of Operational Research, Vol. 227 No.1, pp. 199-215. 

Berger PD, Gerstenfeld A, Zeng AZ (2004), "How many suppliers are best? A decision-analysis 

approach". Omega, Vol. 32, pp. 9-15. 

Bernard, R. (2010), "Robustness in operational research and decision aiding: A multi-faceted 

issue." European Journal of Operational Research, Vol. 200 No. 3, pp. 629-638. 

Bilsel, R.U., Ravindran, A. (2011), "A multiobjective chance constrained programming model 

for supplier selection under uncertainty", Transportation Research Part B: Methodological, Vol. 

45, pp. 1284-300. 

Bundschuh, M., Klabjan, D., Thurston, D.L. (2003), "Modeling robust and reliable supply 

chains". Working paper, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. 

Chiu, SL. (1994), "Fuzzy model identification based on cluster estimation". Journal of Intelligent 

and Fuzzy System, Vol. 2, pp. 267-278. 

Chopra, S., Sodhi, M.S., (2004), "Managing risk to avoid supply-chain breakdown". MIT Sloan 

Management Review, Vol. 46, pp. 52–61. 



 
 

 

 
118 

 

Crainic, T.G., Hewitt, M., and Rei, W. (2014), "Scenario grouping in a progressive hedging-

based meta-heuristic for stochastic network design." Computers & Operations Research, Vol. 

43: pp. 90-99. 

Deif, A.M., ElMaraghy, W.H. (2006), "A Systematic Design Approach for Reconfigurable 

Manufacturing Systems". In: Anonymous Advances in Design : Springer, p. 219-228. 

Diaz, J.E., Handl, J., and Xu, D.L. (2017), "Evolutionary robust optimization in production 

planning–interactions between number of objectives, sample size and choice of robustness 

measure." Computers & Operations Research, Vol. 79: pp. 266-278. 

Dupačová, J., Gröwe-Kuska, N., and Römisch, W. (2003), "Scenario reduction in stochastic 

programming", Mathematical programming, Vol. 95 No.3, pp. 493-511. 

Ebrahim Nejad, A., Niroomand, I. and Kuzgunkaya, O. (2014), "Responsive contingency 

planning in supply risk management by considering congestion effects", Omega, Vol.48, pp. 19-

35. 

Ebrahim Nejad, A. and Kuzgunkaya, O. (2015), "On the value of response time characteristics in 

robust design of supply flow", Journal of Manufacturing Technology Management, vol.26 No.2, 

pp. 213-230. 

Fang, J., Zhao, L., Fransoo, J.C., Van Woensel, T. (2012), "Sourcing strategies in supply risk 

management: An approximate dynamic programming approach", Computers & Operations 

Research, Vol. 40, No. 5, pp. 1371-1382. 

Farahani, R. Z., Asgari, N., Heidari, N., Hosseininia, M., and Goh, M. (2012), "Covering 

problems in facility location: A review", Computers & Industrial Engineering, Vol. 62 No. 1, pp. 

368-407. 

Farahani, R.Z., Rezapour, S., Drezner, T., Fallah, S. (2013), "Competitive supply chain network 

design: An overview of classifications, models, solution techniques and applications". Omega, 

Vol. 45, pp.92-118. 



 
 

 

 
119 

 

Gaspar-Cunha, A., and Covas, J.A. (2008), "Robustness in multi-objective optimization using 

evolutionary algorithms", Computational Optimization and Applications, Vol. 39 No. 1, pp. 75-

96. 

Ghadge, A., Dani, S., and Kalawsky, R. (2011), "Systems Thinking for Modeling Risk 

Propagation in Supply Networks", 5th International Conference on Industrial Engineering and 

Engineering Management, IEEE, Singapore, pp. 1685-1689. 

Gong, J., Mitchell, J.E., Krishnamurthy, A., Wallace, W.A. (2014), "An interdependent layered 

network model for a resilient supply chain", Omega, Vol.46, pp. 104-116. 

Govindan, K., and Fattahi, M. (2017), "Investigating risk and robustness measures for supply 

chain network design under demand uncertainty: A case study of glass supply chain", 

International Journal of Production Economics, Vol. 183, pp. 680-699. 

Govindan, K., Fattahi, M., and Keyvanshokooh, E. (2017), "Supply chain network design under 

uncertainty: A comprehensive review and future research directions." European Journal of 

Operational Research, Vol. 263, No. 1, pp. 108-141. 

Hale, T., Moberg, C.R. (2005), "Improving supply  chain disaster preparedness: A decision 

process for secure site location". International Journal of Physical Distribution & Logistics 

Management, Vol. 35, pp. 195-207. 

Hallgren, M., and Olhager, J. (2009), "Flexibility configurations: Empirical analysis of volume 

and product mix flexibility." Omega, Vol. 37, No.4, pp. 746-756. 

Hamta, N., Akbarpour Shirazi, M., Behdad, S. and Ehsanifar, M. (2017), "A novel bi-level 

stochastic programming model for supply chain network design with assembly line balancing 

under demand uncertainty", Journal of Industrial and Systems Engineering, Vol. 10 No. 2, pp. 

87-112. 

Heckmann, I., Comes, T., and Nickel, S. (2015), "A critical review on supply chain risk–

Definition, measure and modeling", Omega, Vol. 52, pp. 119-132. 



 
 

 

 
120 

 

Heitsch, H., and Werner, R. (2003), "Scenario reduction algorithms in stochastic programming." 

Computational optimization and applications Vol. 24, No. 2, pp. 187-206. 

Hendricks, K.B., Singhal, V.R. (2005), "An Empirical Analysis of the Effect of Supply Chain 

Disruptions on Long‐Run Stock Price Performance and Equity Risk of the Firm". Production 

and Operations Management, Vol.14, pp. 35-52. 

Hohenstein, N.O., Feisel, E., Hartmann, E., and Giunipero, L. (2015), "Research on the 

phenomenon of supply chain resilience: a systematic review and paths for further investigation", 

International Journal of Physical Distribution & Logistics Management, Vol. 45, pp.  90-117. 

Hopp, W.J. and Yin, Z. (2006), "Protecting supply chain networks against catastrophic failures", 

Working Paper, Dept. of Industrial Engineering and Management Science, Northwestern 

University, Evanston, IL. 

Hopp, W.J., Iravani, S.M. and Liu, Z. (2012), "Mitigating the Impact of Disruptions in Supply 

Chains" in Gurnani, H., Mehrotra, A. and Ray, S. (Eds.), Supply Chain Disruptions; Theory and 

Practice of Managing Risk, Springer, New York, pp. 21-49. 

Hosseini, S., Morshedlou, N., Ivanov, D., Sarder, M. D., Barker, Kash., Abdullah Al Khaled, A. 

(2019), "Resilient Supplier Selection and Optimal Order Allocation Under Disruption Risks",  

International Journal of Production Economics, In Press. 

Iakovou., E., Dimitrios., V., and Anastasios., X. (2010), "A stochastic inventory management 

model for a dual sourcing supply chain with disruptions." International Journal of Systems 

Science, Vol. 41, No.3, pp. 315-324. 

Iris, H., Comes, T., and Nickel, S. (2015), "A critical review on supply chain risk–Definition, 

measure and modeling", Omega, Vol. 52, pp. 119-132. 

Jeihoonian, M., Kazemi Zanjani, M., and Gendreau, M. (2017), "Closed-loop supply chain 

network design under uncertain quality status: Case of durable products",  International Journal 

of Production Economics, Vol. 183, pp. 470-486. 



 
 

 

 
121 

 

Jordan, W.C., Graves, S.C. (1995), "Principles on the benefits of manufacturing process 

flexibility". Management Science, Vol.41, pp. 577-94. 

Kalai, R., Lamboray, C., and Vanderpooten, D. (2012), "Lexicographic α-robustness: An 

alternative to min–max criteria", European Journal of Operational Research, Vol.  220 No. 3, 

pp. 722-728. 

Kamalahmadi, M., Parast, M.M. (2017), "An assessment of supply chain disruption mitigation 

strategies", International Journal of Production Economics, vol. 184, pp.  210-230. 

Karmarkar, U.S. (1989), "Capacity loading and release planning with work-in-progress (WIP) 

and leadtimes". Journal of Manufacturing and Operations Management, Vol.2, pp. 105-123. 

Kazemi Zanjani, M., Ait-Kadi, D. and Nourelfath, M. (2010), "Robust production planning in a 

manufacturing environment with random yield: A case in sawmill production planning", 

European Journal of Operational Research, Vol. 201 No. 3, pp. 882-891. 

Keyvanshokooh, E., Ryan, S.M., and Kabir, E. (2016), "Hybrid robust and stochastic 

optimization for closed-loop supply chain network design using accelerated Benders 

decomposition." European Journal of Operational Research, Vol. 249 No.1, pp. 76-92. 

Khatami, M., Mahootchi, M., and Zanjirani Farahani, R. (2015), "Benders’ decomposition for 

concurrent redesign of forward and closed-loop supply chain network with demand and return 

uncertainties", Transportation Research Part E: Logistics and Transportation Review, Vol. 79, 

pp. 1-21. 

Kim, J., Byung Do, C., Yuncheol, K., Bongju, J. "Robust optimization model for closed-loop 

supply chain planning under reverse logistics flow and demand uncertainty." Journal of cleaner 

production, Vol.196, pp. 1314-1328. 

Kim, S., Uzsoy, R., (2008), "Exact and heuristic procedures for capacity expansion problems 

with congestion". IIE Transactions, Vol. 40, pp. 1185-1197. 



 
 

 

 
122 

 

Klibi, W., and Martel, A. (2012), "Modeling approaches for the design of resilient supply 

networks under disruptions",  International Journal of Production Economics, Vol. 135, pp. 882-

98. 

Klibi, W., Martel, A. and Guitouni, A. (2010), "The design of robust value-creating supply chain 

networks: a critical review", European Journal of Operational Research, Vol. 203 No. 2, pp. 

283-293. 

Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G. and Van Brussel, H. 

(1999), "Reconfigurable manufacturing systems", CIRP Annals-Manufacturing Technology, Vol. 

48 No. 2, pp. 527-540. 

Kouvelis, P. and Li, J. (2012), "Contingency Strategies in Managing Supply Systems with 

Uncertain Lead‐Times", Production and Operations Management, Vol. 21 No. 1, pp. 161-176. 

Kouvelis, P., and Yu, G. (2013), "Robust Discrete Optimization and its Applications", Springer 

Science and Business Media, Vol. 14. 

Li, S., He, Y., Chen, L. (2017), "Dynamic strategies for supply disruptions in production-

inventory systems", International Journal of Production Economics, Vol. 194, pp. 88-101. 

Li, Z., Floudas, C.A. (2016), "Optimal scenario reduction framework based on distance of 

uncertainty distribution and output performance: II. Sequential reduction", Computers & 

Chemical Engineering, Vol. 84, pp. 599-610. 

Li, Z., Floudas, C.A. (2014), "Optimal scenario reduction framework based on distance of 

uncertainty distribution and output performance: I. Single reduction via mixed integer linear 

optimization", Computers & Chemical Engineering, Vol. 70, pp. 50-66. 

List, G.F., Wood, B., Nozick, L.K., Turnquist, M.A., Jones, D.A., Kjeldgaard, E.A. and Lawton, 

C.R. (2003), "Robust optimization for fleet planning under uncertainty", Transportation 

Research Part E: Logistics and Transportation Review, Vol. 39 No. 3, pp. 209-227. 



 
 

 

 
123 

 

Liu, S., and Papageorgiou, L.G. (2013), "Multiobjective optimisation of production, Distribution 

and Capacity Planning of Global Supply Chains in the Process Industry", Omega: The 

International Journal of Management Science, Vol. 41, pp. 369–382. 

Liu, S., Sawik, T., and Papageorgiou, L.G. (2014), "Corrigendum to Multiobjective optimisation 

of production, distribution and capacity planning of global supply chains in the process 

industry",  Omega: The International Journal of Management Science, Vol. 44 No. 1, pp. 149-

153. 

Lodree, J.r., Emmett, J., Selda, T. (2009), "Supply chain planning for hurricane response with 

wind speed information updates." Computers & Operations Research, Vol. 36, No.1, pp. 2-15. 

Matta, A., Tomasella, M. and Valente, A. (2007), "Impact of ramp-up on the optimal capacity-

related reconfiguration policy", International Journal of Flexible Manufacturing Systems, Vol. 

19 No. 3, pp. 173-194. 

Matta, A., Tomasella, M. and Valente, A. (2007), "Impact of ramp-up on the optimal capacity-

related reconfiguration policy", International Journal of Flexible Manufacturing Systems, Vol. 

19 No.3, pp. 173-194. 

Mehrabi, M.G, Ulsoy, A.G., Koren,Y. (2000b), “Reconfigurable manufacturing systems and 

their enabling technologies”, International Journal of Manufacturing Technology and 

Management, Vol. 1, pp. 114–131. 

Missbauer, H. (2002), "Aggregate order release planning for time-varying demand", 

International Journal of Production Research, Vol. 40 No. 3, pp. 699-718. 

Mulvey, John M., Robert J. Vanderbei, and Stavros A. Zenios. (1995), "Robust optimization of 

large-scale systems", Operations research, Vol. 43 No.2, pp. 264-281. 

Niroomand I, Kuzgunkaya O, Bulgak AA. (2012), "Effect of System  Configuration and Ramp 

up Time on Manufacturing System Acquisition under  Uncertain Demand", In: Proceedings-



 
 

 

 
124 

 

IOEM: International Conference on Industrial Engineering and Operation Management, pp. 

1578-87. 

Pahl, J., Voß, S., Woodruff, D.L. (2007), "Production planning with load dependent lead times: 

an update of research". Annals of Operations Research, Vol. 153, pp. 297-345. 

Qi, L. (2013), "A continuous-review inventory model with random disruptions at the primary 

supplier",  European Journal of Operational Research, Vol. 225 No. 1, pp. 59-74. 

Qiu, R., and Yizhi, W. (2016), "Supply chain network design under demand uncertainty and 

supply disruptions." Scientific Programming, Vol. 5. 

Revilla, E., and Maria Jesus, S. "The impact of risk management on the frequency of supply 

chain disruptions: A configurational approach." International Journal of Operations & 

Production Management, Vol. 37, No. 5, pp. 557-576. 

Rezapour, S., Srinivasan, R., Tew, J., Allen, J. K., Mistree, F. (2018). "Correlation between 

strategic and operational risk mitigation strategies in supply networks", International Journal of 

Production Economics, Vol. 201, pp. 225-248. 

Rink, D.R., Swan, J.E. (1979) "Product life cycle research: A literature review". Journal of 

business Research, Vol. 7, pp. 219-242. 

Rong, Y., L. V. Snyder, Z.-J. M. Shen. (2009c). "Bullwhip and reverse bullwhip e®ects under 

rationing game". Working paper, Lehigh University, Bethlehem, PA. 

Bernard, R. (2010), "Robustness in operational research and decision aiding: A multi-faceted 

issue." European Journal of Operational Research, Vol. 200, No. 3, pp. 629-638. 

Sadghiani, N., Torabi, S.A, Sahebjamnia, S. "Retail supply chain network design under 

operational and disruption risks." Transportation Research Part E: Logistics and Transportation 

Review, Vol. 75, pp. 95-114. 



 
 

 

 
125 

 

Sahebjamnia, N., Torabi, S.A., Mansouri, S.A. (2018), "Building organizational resilience in the 

face of multiple disruptions", International Journal of Production Economics, Vol. 197, pp. 63-

83. 

Sawik, T. (2012), "Selection of  resilient supply portfolio under disruption risks". , Vol. 41, pp. 

259-269. 

Sawik, T. (2014), "On the robust decision-making in a supply chain under disruption risks", 

International Journal of Production Research, Vol. 52 No.22, pp. 6760-6781. 

Schmitt, A.J. (2011), "Strategies for customer service level protection under multi-echelon 

supply chain disruption risk", Transportation Research Part B: Methodological, Vol. 45 No. 8, 

pp. 1266-1283. 

Schmitt, A.J., Singh, M. (2012), "A quantitative analysis of disruption risk in a multi-echelon 

supply chain", International Journal of Production Economics, Vol. 139 No. 1, pp. 22-32. 

Schmitt, A.J., Tomlin, B. (2012), "Sourcing strategies to manage supply disruptions" in Gurnani, 

H., Mehrotra, A. and Ray, S. (Eds.), Supply Chain Disruptions; Theory and Practice of 

Managing Risk, Springer, New York, pp. 51-72. 

Schmitt, A.J., Lawrence, V.S. (2012), "Infinite-horizon models for inventory control under yield 

uncertainty and disruptions." Computers & Operations Research Vol.39, No.4, pp. 850-862. 

Sethi,.A.K, Sethi, S.P. (1990), “Flexibility in Manufacturing, A Survey”, International Journal of 

Flexible Manufacturing System, Vol. 2, pp. 289-328. 

Sheffi, Y., (2005) "The Resilient Enterprise: Overcoming Vulnerability for Competitive 

Advantage". MIT Press, Cambridge, MA, first edition. 

Snyder, L.V., Daskin, M.S. (2006), "Stochastic p-robust location problems", IIE Transactions, 

Vol. 38 No. 11, pp. 971-985. 

Snyder, L.V., Zümbül, A., Peng, P., Ying, R., Schmitt, A.J., Sinsoysal, B. "OR/MS models for 

supply chain disruptions: A review." IIE Transactions, Vol. 48, No. 2, pp. 89-109. 



 
 

 

 
126 

 

Šutienė, K., Makackas, D., Pranevičius, H. (2010), "Multistage K-means clustering for scenario 

tree construction." Informatica, Vol.  21 No. 1, pp. 123-138. 

Tang, C.S. (2007), "Robust strategies for mitigating supply chain disruptions", International 

Journal of Logistics: Research and Applications, Vol. 9 No. 1, pp. 33-45. 

Terwiesch, C., E Bohn, R. (2001), "Learning and process improvement during production ramp-

up", International Journal of Production Economics, Vol. 70 No. 1, pp. 1-19. 

Tomlin, B. (2006), "On the value of mitigation and contingency strategies for managing supply 

chain disruption risks", Management Science, Vol. 52 No. 5, pp. 639-657. 

Tomlin, B., Wang, Y. (2010), "Operational strategies for managing supply chain disruption risk" 

in Kouvelis, P., Boyabatli, O., Lingxiu, D. and Li, R. (Eds.), Handbook of Integrated Risk 

Management in Global Supply Chains, John Wiley and Sons, New York, pp. 79-101. 

Torabi, S.A., Baghersad, M., and Mansouri, S.A. (2015), "Resilient supplier selection and order 

allocation under operational and disruption risks", Transportation Research Part E: Logistics 

and Transportation Review, Vol. 79, pp. 22-48. 

Vidyarthi, N., Elhedhli, S., Jewkes, E. (2009), "Response time reduction in make-to-order and 

assemble-to-order supply chain design". IIE Transactions, Vol. 41, pp. 448-466. 

Wagner, S.M., Christoph, B. "An empirical examination of supply chain performance along 

several dimensions of risk." Journal of business logistics 29.1 (2008): 307-325. 

Wai, L.C. and Wongsurawat, W. (2012), "Crisis management: Western Digital's 46-day recovery 

from the 2011 flood disaster in Thailand", Strategy & Leadership, Vol. 41 No. 1, pp. 34-38. 

Wang, W. and Koren, Y. (2012), "Scalability planning for reconfigurable manufacturing 

systems", Journal of Manufacturing Systems, Vol. 31 No. 2, pp. 83-91. 

Wieland, A. (2013), "Selecting the right supply chain based on risks", Journal of Manufacturing 

Technology Management, Vol. 24 No. 5, pp. 652-668. 



 
 

 

 
127 

 

Wong, H-Y. and Rosenhead J., (2000). "A rigorous definition of robustness analysis." Journal of 

the operational research society, Vol.51, pp. 176-182. 

Zeballos, L.J., Carlos A.M., Barbosa-Povoa, A.P., Augusto, Q. (2014) "Multi-period design and 

planning of closed-loop supply chains with uncertain supply and demand." Computers & 

Chemical Engineering Vol. 66, pp. 151-164. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 
128 

 

Appendix A 

This section describes the outer approximation approach which has been used to replace the 

clearing function in the MIP model by a set of lines. As shown in Figure A.1, the approximated 

throughput for a given work load 1( )t t    is  

1 1( ) min ( )  t t t tf A B     
     

  1,2,...,   (A.1) 

 

Figure A.1 The clearing function approximated by lines, N=3. 

Each line is tangent to the curve at a certain point. Since this is an outer approximation, the 

tangent points should be selected to minimize the estimation error. For that purpose, the 

subtractive clustering introduced by Chiu (1994) is employed. 

For each capacity scenario, the clearing function (24) is represented as a set of points. The 

subtractive clustering separates these points into clusters based on a predetermined radius. Each 

cluster has a cluster center which represents the tangent point of a line to the clearing function.  

In the case where the supplier has a fixed capacity, the clearing function depends only on the 

workload. The cluster centers 
' ' '

1( , ( ))t t tE x    are then used to determine parameters of the 

approximation lines as follows:   
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' ' '

1( ) ( )t t tB E x A      (A.3) 

The clearing function depends on workload and capacity during the response time. In this case, 

the clearing function is estimated through a set of planes as it is indicated in Figure A.2.  

 

Figure A.2 The clearing function approximated by planes, V =3. 

Therefore, the approximated throughput for the given work load , 1 ,( )r t r t   , capacity level t  

and capacity scenario ( ,i j  ) is computed as follows:   

, 1 , , 1 ,( , ) min ( )t tr t r t r t r tf A B G        
      

  ,1,2,..., i jV
 

(A.4) 

The subtractive clustering is employed to determine the points where the planes are tangent to 

the clearing function. These points are the cluster centers ' ' ' '

, 1 ,( , , ( ))r t r t t tE x   
 
which are used to 

specify the parameters of planes. 
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In this method, the estimation error is controlled by changing the cluster radius. As the cluster 

radius decreases, the estimation error improves as a result of the increase in the number of 

clusters. On the other hand, this leads to an increase in the number of approximation lines.  In 

this thesis, the subclust function in MATLAB is employed to find the cluster centers. The 

parameters of this function are cluster radius, quash factor, accept ratio and reject ratio which are 

set to 0.5, 1.25, 0.5 and 0.15 accordingly. As a result of these settings, the average of the 

maximum error for all the clearing functions used in the numerical study is equal to 3.86. 
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Appendix B 

In this section, the disruption scenarios are generated based on the assumption that there could be 

a maximum of one disruption within the planning horizon ( )T . The probability of each 

disruption scenario is computed through the Markov discrete time geometric distribution. Based 

on the Markov chain states, the DMS supplier has two states: Failure and operational. The 

transition probabilities from one state to another are as follows: 

   1P Operational Operational   
 

;    P Operational Failure  
 

 

   1P Failure Failure   
 

;    P Failure Operational  
 

(B.1) 

The parameter   represents the probability of a failure state following an operational state and 

the parameter   represents the probability of an operational state following a failure state.  

As illustrated in Figure B.1, the scenario with no disruption occurrence is created as a result of 

transition from one operational state to another consecutively.  

 

 

Figure B.1 The no-disruption scenario. 

Therefore, the probability of the scenario with no disruption is: 

 

Operational Operational Operational Operational

1 2 3 T-1

Operational

T

1-α 1-α 1-α 1-α 1-α 1-α 
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( , ) (1 )(1 ).....(1 ) (1 )T

No disruption

T times

P m n           
(B.2) 

The scenario corresponding to a disruption which occurs at time m, lasting n periods, is 

presented in Figure B.2.  

 

 

Figure B.2 A disruption scenario with time of occurrence = m , length = n . 

This scenario is generated through the following transitions: 

I. 1m  time(s) transition among operational states. 

II. a transition from the last operational state to failure state. 

III. 1n  time(s) transition among the failure states. 

IV. a transition from the last failure state to operational state.     

Hence, the probability of occurrence for the scenario with a disruption at time m  lasting 

{1,..., }n T m   is: 

1 1(  ,  ) (1 ) (1 )m n

DisruptionP m n         n T m    (B.3) 

Since we have assumed that the disruption frequency within the planning horizon equals one, the 

DMS stays operational once it recovers from the failure state. Therefore, the transition 

probabilities after the end of disruption are equal to one. 

For the scenarios where the DMS is in the failure state at period 'T (Figure B.3), it could transit to 

the next period in either failure or operational status when an infinite number of periods are 

considered. Since we limit the evaluation of the catastrophic disruptions within the planning 
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horizon T, the probability of such scenarios would be computed until the transition into the 

period T.   

 

Figure B. 3 A disruption scenario with time of occurrence = m, n+m=T+1. 

1 1(  ,  ) (1 ) (1 )m n

DisruptionP m n        1n m T     (B.4) 
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Appendix C 

Table C.1 Transition probabilities 

State 1f    State f   Probability 

Main supplier available, Completely Main supplier available, Partially    

- Main supplier unavailable    

- Low capacity availability during response time LP   

- Normal capacity availability during response time NP   

- High capacity availability during response time HP   

Main supplier available, Completely or Partially 
  

Back up supplier, low capacity availability during response 
time LP   

Main supplier available, Completely or Partially 
  

Back up supplier, normal capacity availability during 
response time NP   

Main supplier available, Completely or Partially 
  

Back up supplier, high capacity availability during 
response time HP   

Main supplier available, Completely Main supplier available, Completely 1      

Main supplier unavailable Main supplier available, Completely    

Main supplier unavailable Main supplier unavailable 1    

 

 


