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ABSTRACT 

Automating the Upgrade of IaaS Cloud Systems 

 

Mina Nabi, Ph.D.  

Concordia University, 2019 

 

The different resources providing an Infrastructure as a Service (IaaS) cloud service may need 

to be upgraded several times throughout their life-cycle for different reasons, for instance to 

fix discovered bugs, to add new features, or to fix a security threat. An IaaS cloud provider is 

committed to each tenant by a service level agreement (SLA) which indicates the terms of 

commitment, e.g. the level of availability, that have to be respected even during upgrades. 

However, the service delivered by the IaaS cloud provider may be affected during the upgrade. 

Subsequently, this may violate the SLA, which in turn will impact other services relying on the 

IaaS. Our goal in this thesis is to devise an approach and a framework for automating the up-

grade of IaaS cloud systems with minimal impact on the services and with respect to the SLAs.  

The upgrade of IaaS cloud systems under availability constraints inherits all the challenges of 

the upgrade of traditional clustered systems and faces other cloud specific challenges. Similar 

challenges as in clustered systems include the potential dependencies between resources, po-

tential incompatibilities along dependencies during the upgrade, potential system configuration 

inconsistencies due to the upgrade failures and the minimization of the amount of used re-

sources to complete the upgrade. Dependencies of the application layer on the IaaS layer is an 

added challenge that must be handled properly. In addition, the dynamic nature of the cloud 
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environment poses a new challenge. A cloud system evolves, even during the upgrade, accord-

ing to the workload changes by scaling in/out. This mechanism (referred to as autoscaling) may 

interfere with the upgrade process in different ways.  

In this thesis, we define an upgrade management framework for the upgrade of IaaS cloud 

systems under SLA constraints. This framework addresses all the aforementioned challenges 

in an integrated manner. The proposed framework automatically upgrades an IaaS cloud sys-

tem from a current configuration to a desired one, according to the upgrade requests specified 

by the administrator. It consists of two distinct components, one to coordinate the upgrade, and 

the other one to execute the necessary upgrade actions on the infrastructure resources. For the 

coordination of the upgrade process, we propose a new approach to automatically identify and 

schedule the appropriate upgrade methods and actions for implementing the upgrade requests 

in an iterative manner taking into account the vendors’ descriptions of the infrastructure com-

ponents, the SLAs with the tenants, and the status of the system. This approach is also capable 

of handling new upgrade requests even during ongoing upgrades, which makes it suitable for 

continuous delivery. In case of failures, the proposed approach automatically issues localized 

retry and undo recovery operations as appropriate for the failed upgrade actions to preserve the 

consistency of the system configuration. 

In this thesis, to demonstrate the feasibility of the proposed upgrade management framework 

we present a proof of concept (PoC) for the upgrade IaaS compute, and its application in an 

OpenStack cluster. In this PoC, we target the new challenge of upgrade of the IaaS cloud (i.e. 

unexpected interference between the autoscaling and the upgrade processes) compared to the 

clustered systems. In addition, the prototype of the proposed upgrade approach for coordinating 

the upgrade of all kinds of IaaS resources has been implemented and discussed in this thesis. 

We also provide an informal validation and a rigorous analysis of the main properties of our 
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approach. In addition, we conduct experiments to evaluate our approach with respect to SLA 

constraints of availability and elasticity. The results show that our approach avoids the outage 

at the application level and reduces SLA violations during the upgrade, compared to the tradi-

tional upgrade method used by cloud providers.  



vi 

 

Acknowledgments 

I would like to express my sincere thanks and gratitude to both Prof. Dr. Ferhat Khendek and 

Dr. Maria Toeroe, specifically for their supervision, encouragement, and continuous support. 

This thesis would not have been possible without their tireless guidance, knowledge, and 

mentorship along the way. 

This work has been conducted within the NSERC/Ericsson Industrial Research Chair in Model-

Based Software Management, which is supported by Natural Sciences and Engineering 

Research Council of Canada (NSERC), Ericsson and Concordia University.  

My sincere thank goes to my Ph.D. committee members for their advice, comments, and their 

efforts in the final evaluative process. 

I express my gratitude to my colleagues at MAGIC (past and present) for their support and 

friendship, which helped me during the challenging path throughout my Ph.D. program.  

My heartfelt gratitude to my family, especially my beloved parents (Ahad Nabi and Farideh 

Abdi), for their support, patience, and endless love throughout my life. My deepest thanks to 

my husband, Daniel Mastine, for his love, support, patience and his help during the past few 

years. I cannot thank them each enough for all the sacrifices they made throughout my journey.  

  



vii 

 

 

Table of Contents 

List of Figures ........................................................................................................................ x 

List of Tables ....................................................................................................................... xiv 

List of Flowcharts................................................................................................................. xv 

List of Acronyms .................................................................................................................. xv 

1 Introduction ..................................................................................................................... 1 

1.1 Thesis Motivation ........................................................................................................ 1 

1.2 Contribution of the Thesis ........................................................................................... 3 

1.3 Thesis Organization..................................................................................................... 6 

2 Background and Related Work ....................................................................................... 8 

2.1 Background ................................................................................................................. 8 

2.1.1 Cloud Computing .................................................................................................... 8 

2.1.2 Scaling ................................................................................................................... 10 

2.1.3 OpenStack .............................................................................................................. 11 

2.1.4 Availability ............................................................................................................ 11 

2.2 Related Work on Upgrade ......................................................................................... 15 

3 Infrastructure Resource Information Models and Dependencies.................................. 22 

3.1 IaaS Resource Information Domain Models ............................................................. 23 

3.2 Possible Changes in the IaaS layer ............................................................................ 28 

3.3 IaaS Dependency Characterization ........................................................................... 30 

3.4 Summary ................................................................................................................... 36 



viii 

 

4 Overview of the Framework for IaaS Cloud Upgrade and Principles .......................... 37 

4.1 Definitions ................................................................................................................. 38 

4.1.1 Infrastructure Components .................................................................................... 38 

4.1.2 Actions, Operations and Units ............................................................................... 38 

4.1.3 Upgrade Request.................................................................................................... 39 

4.2 Principles for Handling Upgrade Challenges ............................................................ 41 

4.3 Evaluation of Configuration Management Tools for Upgrade ................................. 49 

4.4 Upgrade Management Framework ............................................................................ 52 

4.5 Summary ................................................................................................................... 54 

5 Approach for IaaS Cloud Upgrade ............................................................................... 56 

5.1 Definitions ................................................................................................................. 57 

5.1.1 IaaS Cloud System................................................................................................. 57 

5.1.2 Resource Upgrade Catalog .................................................................................... 60 

5.1.3 Resource Graph ..................................................................................................... 60 

5.1.4 Upgrade Methods .................................................................................................. 65 

5.2 Detailed IaaS Upgrade Approach .............................................................................. 75 

5.2.1 Step 1 - Creating/Updating the Resource Graph ................................................... 79 

5.2.2 Step 2 - Grouping the IaaS Resources for Upgrade............................................... 83 

5.2.3 Step 3 - Selecting the Batch of IaaS Resources for Upgrade ................................ 85 

5.2.4 Step 4 - Selecting the Batch of VMs for Migration ............................................... 93 

5.3 Informal validation .................................................................................................... 97 



ix 

 

5.4 Summary ................................................................................................................. 106 

6 Proof of Concepts ....................................................................................................... 108 

6.1 Proof of Concept for Upgrade of IaaS Compute and its Application in Real 

Deployment ........................................................................................................................ 108 

6.1.1 Architecture of the PoC for Upgrade of IaaS Compute ....................................... 110 

6.1.2 Illustration Scenario for IaaS Compute Upgrade ................................................ 112 

6.1.3 Experimental Evaluation ..................................................................................... 121 

6.2 Prototype for the Upgrade Coordinator ................................................................... 130 

6.2.1 Prototype Architecture and Assumptions ............................................................ 130 

6.2.2 Case Study for Illustration ................................................................................... 132 

6.3 Summary ................................................................................................................. 168 

7 Conclusion and Future Work ...................................................................................... 171 

7.1 Conclusion ............................................................................................................... 171 

7.2 Future work ............................................................................................................. 174 

 Bibliography ............................................................................................................... 176 

 Appendix I .................................................................................................................. 181 

 Appendix II – Elimination Rules ................................................................................ 182 

 

 

 

  



x 

 

List of Figures 

Figure 3.1. Infrastructure resource domain model for the physical resources ......................... 24 

Figure 3.2. Infrastructure resource domain model for the virtualization facilities .................. 25 

Figure 3.3. Infrastructure resource domain model for the virtual resources ............................ 26 

Figure 3.4. Redundancy and placement information in infrastructure resource domain model

.................................................................................................................................................. 27 

Figure 3.5. Changes applicable for physical resources ............................................................ 29 

Figure 3.6. Changes applicable for virtualization facility resources ....................................... 30 

Figure 3.7. Changes applicable for virtual resources ............................................................... 30 

Figure 3.8. Classification of IaaS upgrade dependencies ........................................................ 31 

Figure 4.1. Upgrade process .................................................................................................... 47 

Figure 4.2. Upgrade management framework for IaaS cloud systems .................................... 53 

Figure 5.1. An illustrative example.......................................................................................... 59 

Figure 5.2. Partial resource graph for the illustrative example ................................................ 63 

Figure 5.3. Examples of resource partitioning for upgrade units with split mode ................... 67 

Figure 5.4. Examples of resource partitioning for upgrade units with modified split mode ... 70 

Figure 5.5. The iterative process of the IaaS upgrade approach .............................................. 76 

Figure 5.6. Upgrade control graph for the illustrative example ............................................... 84 

Figure 6.1. Virtualized OpenStack cloud platform in the PoC for IaaS compute ................. 109 

Figure 6.2. Overall architecture of the PoC for the upgrade of IaaS compute ...................... 110 

Figure 6.3. Main classes and the Ansible playbooks with related roles in the deployment 

package .................................................................................................................................. 111 

Figure 6.4. Front End and Upgrade Engine packages ........................................................... 112 

Figure 6.5. Legend and scaling parameters for the tenants of the example ........................... 114 



xi 

 

Figure 6.6. First iteration of the example scenario for IaaS compute .................................... 114 

Figure 6.7. Second iteration of the example scenario for IaaS compute ............................... 117 

Figure 6.8. Third iteration of the example scenario for IaaS compute .................................. 118 

Figure 6.9. Fourth iteration of the example scenario for IaaS compute ................................ 119 

Figure 6.10. Maximum scaling out of all tenants in the example scenario during paused upgrade 

process.................................................................................................................................... 120 

Figure 6.11. Fifth iteration of the example scenario for IaaS compute ................................. 120 

Figure 6.12. Sixth iteration of the example scenario for IaaS compute ................................. 121 

Figure 6.13. Two different cases for our evaluation scenario ................................................ 122 

Figure 6.14. Comparison of the total duration of upgrade using different upgrade methods for 

case study (a).......................................................................................................................... 123 

Figure 6.15. Comparison of the average outage at the application level for case study (a) .. 125 

Figure 6.16. Comparison of the average outage at the application level for case study (a) 

excluding tenant 4 .................................................................................................................. 125 

Figure 6.17. Comparison of the total duration of upgrade using different upgrade methods for 

case study (b) ......................................................................................................................... 126 

Figure 6.18. Comparison of the average outage at the application level for case study (b) .. 127 

Figure 6.19. Comparison of the outage for each VM during the upgrade ............................. 128 

Figure 6.20. Overall architecture of upgrade coordinator prototype ..................................... 131 

Figure 6.21. The illustrative example scenario for IaaS cloud upgrade approach ................. 133 

Figure 6.22. The RG of the illustrative scenario in the first iteration after step 1 ................. 136 

Figure 6.23. The RG and the identified undo units in the illustrative scenario ..................... 138 

Figure 6.24. The CG of the illustrative scenario in the first iteration after step 2 ................. 140 

Figure 6.25. The RG of the illustrative scenario after VM consolidation in step 3 of the first 

iteration .................................................................................................................................. 141 



xii 

 

Figure 6.26.  The CG of the illustrative scenario after VM consolidation in step 3 of the first 

iteration .................................................................................................................................. 141 

Figure 6.27.  The RG of the illustrative scenario after successful upgrade of the first iteration 

in step 3 .................................................................................................................................. 144 

Figure 6.28. The CG of the illustrative scenario after successful upgrade of the first iteration in 

step 3 ...................................................................................................................................... 144 

Figure 6.29.  The RG of the illustrative scenario after successful upgrade of the fourth iteration

................................................................................................................................................ 146 

Figure 6.30.  The CG of the illustrative scenario after successful upgrade of the fourth iteration

................................................................................................................................................ 147 

Figure 6.31.  The RG of the illustrative scenario after successful upgrade of the ninth iteration 

in step 3 .................................................................................................................................. 149 

Figure 6.32.  The CG of the illustrative scenario after successful upgrade of the ninth iteration 

in step 3 .................................................................................................................................. 149 

Figure 6.33.  The RG of the illustrative scenario after successful upgrade of the eleventh 

iteration in step 3 .................................................................................................................... 150 

Figure 6.34.  The CG of the illustrative scenario after successful upgrade of the eleventh 

iteration in step 3 .................................................................................................................... 151 

Figure 6.35. The RG of the illustrative scenario after successful upgrade of the eleventh 

iteration in step 4 .................................................................................................................... 153 

Figure 6.36. The CG of the illustrative scenario after successful upgrade of the eleventh 

iteration in step 4 .................................................................................................................... 154 

Figure 6.37. The RG of the illustrative scenario after successful upgrade of the twelfth iteration 

in step 4 .................................................................................................................................. 155 



xiii 

 

Figure 6.38. The CG of the illustrative scenario after successful upgrade of the twelfth iteration 

in step 4 .................................................................................................................................. 156 

Figure 6.39. The CG of the illustrative scenario after successful upgrade of the thirteenth 

iteration in step 4 .................................................................................................................... 157 

Figure 6.40. The RG of the illustrative scenario after successful upgrade of the fourteenth 

iteration in step 4 .................................................................................................................... 159 

Figure 6.41. The CG of the illustrative scenario after successful upgrade of the fourteenth 

iteration in step 4 .................................................................................................................... 159 

Figure 6.42. The RG of the illustrative scenario with failed upgrade action after third iteration 

in step 3 .................................................................................................................................. 161 

Figure 6.43. The CG of the illustrative scenario with failed upgrade action after the third 

iteration in step 3 .................................................................................................................... 161 

Figure 6.44. The RG of the illustrative scenario with failed upgrade action after fourth iteration 

in step 3 .................................................................................................................................. 162 

Figure 6.45. The CG of the illustrative scenario with failed upgrade action after the fourth 

iteration in step 3 .................................................................................................................... 163 

Figure 6.46. The RG of the illustrative scenario with failed upgrade action after fifth iteration 

in step 1 .................................................................................................................................. 164 

Figure 6.47. The CG of the illustrative scenario with failed upgrade action after fifth iteration 

in step 2 .................................................................................................................................. 165 

Figure 6.48. The RG of the illustrative scenario with new upgrade request in third iteration 

after step 1 .............................................................................................................................. 168 

Figure A.1. Elimination rule 4 - case 1 .................................................................................. 183 

Figure A.2. Elimination rule 4 - case 2 .................................................................................. 183 

Figure A.3. Elimination rule 4 - case 3 .................................................................................. 183 



xiv 

 

List of Tables  

Table 4.1 Evaluation of candidate upgrade engines ................................................................ 52 

Table 6.1. SLA violation related measurement results for all possible batch selections for case 

study (a) ................................................................................................................................. 129 

Table 6.2. SLA violation related measurement results for multiple possible batch selections for 

case study (b) ......................................................................................................................... 129 

Table 6.3. The change sets and their changes of the upgrade request for example scenario . 134 

Table 6.4. Additional information provided by the administrator for example scenario ...... 135 

Table 6.5. Change set of the new upgrade request ................................................................ 167 

Table 6.6. Additional information provided by the administrator for the change set 3 ......... 167 

Table A.1 Parameters used in the proposed approach ........................................................... 181 

  



xv 

 

List of Flowcharts  

Flowchart 5.1. Creating the RG in the initial iteration in Step 1 ............................................. 79 

Flowchart 5.2. Updating the RG in the subsequent iterations in Step 1 and grouping the IaaS 

resources in Step 2 ................................................................................................................... 80 

Flowchart 5.3. Selecting the batch of IaaS resources for upgrade ........................................... 86 

Flowchart 5.4. Selecting the batch of VMs for migration ....................................................... 94 

file:///G:/Upgrade/Thesis/Chapters/Feedback%20from%20Maria/Last%20version/Final%20version%20June%2019th%202019/last%20version%20to%20submit/Final%20submission%20September%209th/Without%20track%20change/Mina%20Nabi%20-%20PhD%20Thesis%20-%202019%20-%20Final%20Submission%20-%20without%20track%20change-v2.docx%23_Toc19026880
file:///G:/Upgrade/Thesis/Chapters/Feedback%20from%20Maria/Last%20version/Final%20version%20June%2019th%202019/last%20version%20to%20submit/Final%20submission%20September%209th/Without%20track%20change/Mina%20Nabi%20-%20PhD%20Thesis%20-%202019%20-%20Final%20Submission%20-%20without%20track%20change-v2.docx%23_Toc19026881
file:///G:/Upgrade/Thesis/Chapters/Feedback%20from%20Maria/Last%20version/Final%20version%20June%2019th%202019/last%20version%20to%20submit/Final%20submission%20September%209th/Without%20track%20change/Mina%20Nabi%20-%20PhD%20Thesis%20-%202019%20-%20Final%20Submission%20-%20without%20track%20change-v2.docx%23_Toc19026881
file:///G:/Upgrade/Thesis/Chapters/Feedback%20from%20Maria/Last%20version/Final%20version%20June%2019th%202019/last%20version%20to%20submit/Final%20submission%20September%209th/Without%20track%20change/Mina%20Nabi%20-%20PhD%20Thesis%20-%202019%20-%20Final%20Submission%20-%20without%20track%20change-v2.docx%23_Toc19026882
file:///G:/Upgrade/Thesis/Chapters/Feedback%20from%20Maria/Last%20version/Final%20version%20June%2019th%202019/last%20version%20to%20submit/Final%20submission%20September%209th/Without%20track%20change/Mina%20Nabi%20-%20PhD%20Thesis%20-%202019%20-%20Final%20Submission%20-%20without%20track%20change-v2.docx%23_Toc19026883


xvi 

 

List of Acronyms 

AMF Availability Management Framework  

AWS Amazon Web Services  

CAMP Cloud Application Management for Platforms 

CG Control Graph  

CIMI Cloud Infrastructure Management Interface  

CPU Central Processing Unit 

GUI Graphical User Interface 

HA Highly Available 

MTBF  Mean Time Between Failures 

MTTF  Mean Time To Failure 

MTTR  Mean Time To Repair 

NIC Network Interface Controller 

NIST National Institute of Standards and Technology  

NRG New Request Graph  

OCCI Open Cloud Computing Interface  

OS Operating System  

OVF Open Virtualization Format  

PoC Proof of Concept  

PPU Partial Parallel Universe  

RG 
SDK 

Resource Graph 
Software Development Kit 

SLA Service Level Agreement 

SMF Software Management Framework  

SR-IOV Single Root I/O Virtualization  

TOSCA Topology and Orchestration Specification for Cloud Applications  

VEPA Virtual Ethernet Port Aggregator  

VM Virtual Machine 

VNIC Virtual Network Interface Controller 

VSAN VMware Virtual Storage Area Network  

   



1 

 

 

Chapter 1  

1 Introduction 

1.1 Thesis Motivation 

Over time, systems need to be upgraded for different reasons, for instance to fix discovered 

bugs, to add new features, or to fix a security threat. Infrastructure as a Service (IaaS) cloud [1] 

system, is not exempt from the necessity of such upgrades. The resources of an IaaS cloud 

system may be upgraded multiple times during their lifecycle, which may impact the services 

provided by the IaaS (i.e. induce an outage), and the services relying on them. Some of the 

services, such as carrier grade services, have limited tolerance for service interruption as they 

are required to be highly available (HA), i.e. available 99.999% of the time. Availability re-

quirement specifies the percentage of the time a system or a service is accessible, thus the 

allowed outage time for HA services should not exceed five minutes and 26 seconds per year 

[2][3]. Indeed, a cloud provider is committed to a tenant by a service level agreement (SLA) 

which indicates the terms of commitment, e.g. the level of availability, that have to be respected 

even during upgrades [4] . Therefore, the upgrade of IaaS cloud system has to be carried out 

with minimal impact on the services with respect to their availability requirement indicated in 

the SLAs. 
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Many of the challenges of maintaining availability during the upgrade of IaaS cloud systems 

are similar to traditional clustered systems, while others are specific to the cloud. As in clus-

tered systems, handling the existing dependencies is important to prevent service outages dur-

ing the upgrade. In the cloud environment different service models (i.e. layers) like IaaS, Plat-

form as a Service (PaaS), and Software as a Service (SaaS) are potentially built on top of each 

other [5]. For example, a SaaS cloud can be built on an IaaS or PaaS cloud. As a result, the 

upgrade of IaaS layer can impact the other layers relying on the IaaS. Besides the dependencies 

between the layers, there are also dependencies between resources within the IaaS layer. The 

functionality and lifecycles of these resources are tied to each other and their upgrades have to 

be orchestrated properly to prevent service outage.  

Moreover, during the upgrade process incompatibilities that do not exist in the current or in the 

desired configuration may arise during the transition and break the dependencies. As in tradi-

tional clustered systems, this may induce service outage. Therefore, during the upgrade, special 

consideration should be given to the potential incompatibilities along the dependencies. The 

specific upgrade methods handling the potential incompatibilities may require additional re-

sources. Considering the scale of IaaS cloud system, minimizing the amount of additional re-

sources for the upgrade process purpose is a more significant challenge in comparison to clus-

tered systems. Moreover, the upgrade actions (e.g. installing software) may fail. In order to 

guarantee the consistency of the system configuration, these failures have to be carefully han-

dled during the upgrade.  

The dynamicity of cloud systems introduces additional challenges for the upgrade of IaaS. 

Cloud systems adapt to the workload changes by provisioning and de-provisioning resources 

automatically according to the workload variations. This mechanism is referred to as autoscal-

ing [6][7] or elasticity [8]. The autoscaling feature may interfere with the upgrade process in 
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different ways. The service capacity of the system decreases during the upgrade when resources 

are taken out of service for upgrade. In the meantime, the system may have to scale out in 

response to workload increase. Furthermore, the autoscaling may undo or hinder the process 

of the upgrade when scaling in releases newly upgraded resources (e.g. VMs), or when scaling 

out uses the old (i.e. not yet upgraded) version of the resources. To avoid these interferences, 

it is generally recommended to disable the autoscaling during upgrades as done in [9][10]. 

However, disabling this feature during the upgrade, deactivates one of the inherent character-

istics of the cloud instead of properly addressing the interferences. Moreover, due to the large 

scale of IaaS cloud systems, it may take an extended period of time to perform the upgrades. 

Thus, disabling the autoscaling is inappropriate. An upgrade approach must mitigate this inter-

ference.  

1.2 Contribution of the Thesis  

The main objective of this thesis is to devise an approach and a framework for automating the 

upgrade of IaaS cloud systems, according to the upgrade requests specified by the administra-

tor, and under SLA constraints for availability and elasticity. The proposed approach and 

framework address all the aforementioned challenges of IaaS cloud upgrade in an integrated 

manner and it is applicable to upgrade of all kinds of IaaS resources.  

The main contributions of this thesis are as follow: 

• An approach for the upgrade of IaaS cloud systems under SLA constraints for availa-

bility and elasticity. The proposed approach determines and schedules the necessary 

upgrade methods and actions appropriate for the upgrade requests in an iterative man-

ner, while handling all the challenges. To prevent service outage due to existing de-
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pendencies, at the runtime it identifies the resources that can be upgraded without vio-

lating dependency requirements according to the configuration of the system. The po-

tential incompatibilities along the dependencies are determined using information com-

ing from cloud vendors and handled using appropriate upgrade methods according to 

the types of dependencies. In addition, the amount of additional resources is minimized 

by identifying only the subsystems where additional resources are required for the up-

grade process. This approach avoids interferences between the upgrade and the au-

toscaling processes by regulating the pace of the upgrade according to the state of IaaS 

cloud system with respect to SLAs. Accordingly, the upgrade starts/resumes if and only 

if resources can be taken out of service and upgraded without jeopardizing the availa-

bility of the IaaS services. To maintain the consistency of the system configuration, in 

case of failures during the upgrade, the necessary retry and undo operations are identi-

fied and issued automatically, as appropriate for the failed upgrade actions. This ap-

proach is also capable of handling new upgrade requests even during ongoing upgrades, 

which makes it suitable for continuous delivery. So, by tackling all of the challenges in 

an integrated manner, it automates the entire upgrade process for IaaS cloud systems. 

This contribution has required several investigations and sub-contributions: 

a) Infrastructure resource information models for the IaaS cloud system, for the pur-

pose of upgrade: Since during the upgrade, the IaaS cloud system is transferred 

from a source configuration to the desired one (according to the upgrade re-

quests), it is important to identify the configuration information necessary to fa-

cilitate such an upgrade. We identified the necessary information by defining in-

frastructure resource domain models for the upgrade. 

b) Characterization of infrastructure resource dependencies: To carry out the up-

grade of IaaS cloud systems with minimal impact on the services with respect to 
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their availability, it is essential to identify the dependencies between IaaS re-

sources. We characterized the existing dependencies in the IaaS cloud layer.  

• An upgrade management framework for upgrading IaaS cloud systems. We propose a 

framework with two main components, an Upgrade Coordinator (realizing the pro-

posed upgrade approach) to coordinate the process of the upgrade, and an Upgrade 

Engine to execute the necessary upgrade actions on the resources of the IaaS cloud 

system. The upgrade coordinator automatically generates Runtime Upgrade Sched-

ule(s), each of which indicates upgrade actions and the set of resources on which to 

apply them. The upgrade engine executes the upgrade actions indicated in the sched-

ules, and provides feedback to the upgrade coordinator indicating the results of the ex-

ecution. The feedback is used by the upgrade coordinator, to coordinate the remaining 

upgrades, and generate additional schedules to bring back the system to a consistent 

configuration in case of failures.  

To demonstrate the feasibility of our proposed framework in a real deployment, we first devel-

oped a proof of concept (PoC) for upgrading IaaS compute and its application in a virtualized 

OpenStack cluster. In this PoC, we specifically tackle the additional challenge of upgrade of 

IaaS cloud system, i.e. dynamicity in the cloud, compared to clustered systems.  

We also implemented a prototype of our proposed approach for the coordination of IaaS cloud 

upgrade, which is applicable to all kinds of IaaS resources. In this implementation, in order to 

demonstrate the progress of the upgrade, we simulated the behavior of the upgrade engine, 

which is responsible for applying the schedules generated by the proposed approach in the real 

system.  
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To give more confidence on the correctness of our approach, we prove informally, but in a 

rigorous manner, four main properties of our approach:  

1) A given change set in an upgrade request will be applied successfully or will be un-

done, while keeping the system configuration consistent. Failed resources are isolated 

to keep the system configuration consistent, 

2) If there is no new upgrade request, all of the previously issued upgrade requests will 

be completed,  

3) If the tenants scale out with respect to SLAs, and if the probability function for failure 

estimation gives accurate results, our approach will respect the SLA constraints of 

elasticity and availability, and  

4) our approach uses minimum additional resources during the upgrade. 

Furthermore, we evaluate our approach by conducting experiments to demonstrate how our 

approach works to respect the SLA constraints of availability and elasticity during the upgrade, 

compared to the traditional  upgrade method used by cloud providers. 

1.3 Thesis Organization 

The rest of the thesis is organized as follow: In Chapter 2, we lay out the background for our 

work before reviewing the related work. In Chapter 3, we present the infrastructure resource 

models, the possible changes in the IaaS layer and the characterized IaaS dependencies. In 

Chapter 4, after providing definitions of related concepts, we elaborate on the principles used 

for tackling the aforementioned challenges and we provide an overview of our proposed up-

grade management framework. In Chapter 5, we provide definitions and the necessary nota-

tions for our proposed approach and we elaborate on the approach for the upgrade of IaaS cloud 
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systems. In Chapter 5 we provide an informal validation and a rigorous analysis of four afore-

mentioned properties of the proposed approach. In Chapter 6, we discuss the proof of concepts 

developed for demonstrating the feasibility of the proposed approach and the framework. In 

Chapter 6, we also present an experimental evaluation of our approach for the upgrade of IaaS 

compute. In Chapter 7, we conclude the thesis. 
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Chapter 2  

2 Background and Related Work 

In this Chapter, we first layout the background of our work by providing an introduction and 

overview for cloud computing, scaling, OpenStack cloud platform, and availability. Then, we 

review the work related to this thesis.  

2.1 Background 

2.1.1 Cloud Computing 

Cloud computing is defined, by U.S National Institute of Standards and Technology (NIST) 

[1], as a model for enabling on-demand access to a pool of configurable computing resources 

(e.g. network, servers, storage) which can be provisioned and de-provisioned rapidly. In the 

cloud, the costumers pay the cloud provider based on their consumption of services [11], which 

is referred to as pay-as-you-go pricing model [12].  

NIST [1] defined five essential characteristics of the cloud as follow:  

• On-demand self-service: The cloud computing services (e.g. VM, network, and storage) 

can be provisioned by consumers without human interaction with cloud service provid-

ers.  
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• Broad network access: All of the services are available and accessed through the net-

work. 

• Resource pooling: The resources of cloud providers (e.g. compute, storage, and net-

work) are pooled to provide services to multi tenants according to demand for each 

customer.  

• Rapid elasticity: The cloud system is capable of provisioning and de-provisioning ser-

vices according to the consumer’s workload requirements. 

• Measured service: The usage of cloud resources can be monitored and controlled using 

some metering capabilities. 

Cloud systems may be categorized under one of the following three main service models based 

on the type of services provided to the consumers [1]: 

• Infrastructure as a Service (IaaS): In this service model infrastructure resources (e.g. 

computing, storage, and network) are provided to the consumers as services. Here in 

this model, the consumer has limited access to the underlying infrastructure resources. 

However, the services provisioned by cloud consumers can be tailored by consumers’ 

requirements [1]. Amazon EC2  [13] is an example of IaaS cloud.   

• Platform as a Service (PaaS): In this service model, a predefined development platform 

and environment is provided to the consumer which allows them to deploy their appli-

cations on these platforms. Here, consumers only have control on their deployed appli-

cation [1]. Google AppEngine [14] is an example of this cloud service model. 

• Software as a Service (SaaS): In this service model, consumers are provided by the 

application running on the infrastructure. Here, the cloud consumers does not have any 

control on the application and underlying infrastructure layers [1]. SalesForce.com [15] 

and Google Doc are examples of the SaaS cloud service model. 
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2.1.2 Scaling 

The infrastructure underlying the cloud services is a component based distributed system. The 

different components may have capacity limits. Violating these limits may cause performance 

degradation in some circumstances; for example, in case of retransmissions. Other severe vio-

lations may cause different types of failures such as VM failure. Auto scaling, also referred to 

as elasticity, is a mechanism for provisioning and de-provisioning resources on demand, based 

on a schedule or the changes in the workload [6][8]. It optimizes resource utilization while 

providing protection against overload for any computational resource [16]. 

There are two different type of scaling: horizontal scaling can occur by adding or removing 

resources from the system, referred to as scaling out or scaling in, respectively. Vertical scaling 

accommodates the workload changes by increasing or decreasing properties of the resource 

(e.g. increasing/decreasing the size of VM); referred to as scaling up or down, respectively 

[16]. 

Most cloud providers use reactive policy-based mechanisms for autoscaling. They define au-

toscaling groups to control the scaling process, and a scaling policy is associated with each 

scaling group, which among others indicates the conditions which trigger scaling [17][7]. In a 

scaling policy, some parameters, such as the maximum size, the minimum size, the cooldown 

and the scaling adjustment are defined. The maximum and the minimum sizes indicate respec-

tively the maximum and the minimum number of instances in the autoscaling group. The 

cooldown period is the minimum amount of time between two subsequent autoscaling opera-

tions; and the scaling adjustment is the size of the adjustment in terms of instances in a scaling 

operation [7]. For example, for a system with a CPU threshold of 70% with a cooldown period 
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of 60 seconds and a scaling adjustment of one, if the CPU utilization goes beyond 70% for 60 

seconds, one new resource (herein VM) will be added.  

2.1.3 OpenStack 

OpenStack [18] is an open source cloud platform built up from different components. Different 

services given by these components are responsible for managing infrastructure resources and 

building IaaS cloud. Some of the main services of OpenStack are Nova responsible for man-

agement of compute instances, Keystone identity service responsible for authentication and 

authorization, Swift responsible for management of object storage by storing and retrieving 

unstructured data objects, Glance in charge of controlling VM images, Cinder for providing 

block storage, and Heat as the orchestration service [18]. 

Heat [19] is the orchestration service in OpenStack, which deploys VMs on the OpenStack 

platform based on the configuration described in the heat template. It also provides autocaling 

service in OpenStack which manages the VMs in the scaling group specified in the template. 

Heat can be integrated with the configuration management tools to manage the infrastructure 

resources [19]. 

2.1.4 Availability 

Availability is a non-functional requirement specified in terms of the percentage of time a sys-

tem or a service is accessible. This percentage determines the allowed outage time for a given 

period [3]. More specifically in [2] availability is defined as “the degree to which a system is 

functioning and is accessible to deliver its services during a given time interval.” It is the per-

centage of time a system is ready to perform its functions and is calculated as follows:  

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑀𝑇𝑇𝐹/𝑀𝑇𝐵𝐹 = 𝑀𝑇𝑇𝐹/(𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅)                     (1) 
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where MTTF (Mean Time To Failure) is the mean time it takes for the system to fail; MTBF 

(Mean Time Between Failures) is the mean time between two failures and represents the sum 

of MTTF and  MTTR (Mean Time To Repair) [2].  

One can view the availability of a system through the availability of its services. Service avail-

ability can be defined as: 

 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑈𝑝𝑡𝑖𝑚𝑒/(𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑈𝑝𝑡𝑖𝑚𝑒 + 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑂𝑢𝑡𝑎𝑔𝑒) (2) 

where service uptime is the duration during which the system delivers the given service, while 

service outage (or also referred as downtime) is the period during which the service is not 

delivered [2].  

High availability (HA) is a strict requirement and refers to an availability of at least 99.999% 

of the time, which permits for approximately five minutes of downtime per year including 

scheduled and unscheduled maintenance [3]. Telecommunication services have this HA re-

quirement, which they should not experience a downtime of more than five minutes and 26 

seconds per year including downtime due to upgrade. 

In order to maintain the availability of the service, different mechanisms may be considered. 

Protective redundancy is one of the main mechanisms, in which redundant elements are used 

in the system to protect the system against failures. These redundant elements would not be 

necessary if the system functions correctly, however it is necessary to guarantee HA. The re-

dundant elements may be organized in different ways and collaborate following different rules. 

A redundancy model represents this logical organization and the related rules. The element 

providing the required service to the users plays the active role, while the redundant element, 
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which can be used to take over the active role, is referred to as standby [3]. The literature 

distinguishes different types of standbys: 

Hot Standby: is an instantiated standby that can take over the service of the failed active with 

no or little downtime. A hot standby can have different levels of state synchronization with the 

active element. Accordingly, it may be referred to as “updated” and “not updated” hot standby. 

In the case of an updated hot standby, the state is pushed from the active to the standby. How-

ever, in the case of a not updated hot standby, it may be an instantiated spare, which is idle in 

an initial state, or there may be state synchronization between the active and standby. The syn-

chronization in the not updated hot standby takes place periodically as it is pulled by the 

standby rather than continuously pushed by the active (or on behalf of the active) as state 

changes take place [4] [3]. Note that in some papers [20] [21] not updated hot standby is re-

ferred to as warm standby. A hot standby can be used for both stateless and stateful applications 

[3]. 

Standbys also can be dedicated or shared. A dedicated standby is associated with a single active 

element. While a shared standby is associated with a number of active elements and takes over 

the active role of any of them [3]. 

Spare: a redundant element which can be instantiated or uninstantiated. The uninstantiated 

spare element is also referred to as Cold Standby. Since a cold standby is unistantiated, it needs 

some time before it can take over the active role, and thus typically resulting in some downtime. 

With a cold standby, the state of the active element is stored by check pointing or other tech-

niques. After instantiation, the standby element is synchronized by pulling the state information 

at the moment it needs to take the active role [3].  
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By different combinations of roles, and associations, different levels of availability can be 

achieved. The most relevant combinations have been defined as redundancy models. The SA 

Forum Availability Management Framework (AMF) [2] defines the following redundancy 

models:  

• 2N: In the 2N redundancy model there are at least two redundant elements one of which 

provides actively all the protected services while the other element protects all these 

services as a hot standby.  

• N+M: The task of providing the protected services is distributed among multiple (N) 

active elements, which are protected by one or more (M, M<N) standby element(s). An 

element may only take either the active or the standby role for all the services it provides 

or protects. 

• N-way: In contrast to N+M, a redundant element may actively provide some services 

while it protects other services as a standby. Each service is provided by one element 

in the active role and may be protected by one or more standby elements.   

• N-way-Active: In this redundancy model there is no standby element assigned for any 

of the services. All elements provide the protected services in the active role in a load 

sharing manner. That is the same service may be provided by more than one element. 

• NoRedundancy: A single element is assigned the active role for a given service. An 

element can provide one service at most. The services are protected by spares. 

The proactive redundancy is being used for maintaining the availability in the cloud. Different 

cloud models have different responsibilities but do rely on each other on a top down manner. 

SaaS relies on PaaS, and SaaS and PaaS rely on IaaS.  The availability of each model depends 

on the availability of the model(s) it relies on. Note that the availability of the application de-

ployed in the VMs is out of scope for the IaaS layer [3]. However, Placement of the physical 
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nodes of the VMs hosting the application is also important to enhance the availability of a 

system. VM placement is one of the placement strategies in which VMs are placed on different 

nodes using specified availability constrains. This technique has been used in [22][23][24][25]. 

VM placement can increase the availability in case of host failure, however this technique can-

not guarantee high availability and protection against application failures. Hence it needs to be 

used as part of HA mechanism and in combination with a redundancy model to ensure the 

handling of application failures. 

In general, two types of VM placement policies can be used: affinity and anti-affinity. The 

affinity placement policy is used to enhance performance, while the anti-affinity placement 

policy is used to ensure availability. Note that the anti-affinity policy is referred to as availa-

bility placement policy in the Open Virtualization Format (OVF) [26]. For our purposes, the 

anti-affinity placement groups are important as they indicate the VMs that cannot be placed on 

the same host. Moreover, considering the application level redundancy, VMs of the same anti-

affinity group must not be upgraded at the same time, otherwise the availability of the applica-

tion layer may be impacted. 

2.2 Related Work on Upgrade 

There are different upgrade methods proposed for maintaining HA during the upgrade of clus-

ter-based systems. However, none of these methods alone is sufficient to overcome all the 

challenges faced in the upgrade of IaaS cloud systems. These methods were designed for clus-

ter-based HA systems and they address in isolation from one another the different challenges 

of upgrading such systems. To upgrade the IaaS cloud systems, these methods can be used in 

an upgrade orchestration framework which handles the cloud specific aspects of upgrade (e.g. 

dynamicity of the system). 
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In [27] three methods have been proposed for upgrading cluster based giant-scale systems, 

“fast reboot”, “rolling upgrade”, and “big flip”. Fast reboot is proposed as the simplest upgrade 

method by quickly rebooting the entire system simultaneously into the new versions, however 

it cannot satisfy service continuity and HA of the applications running on the system. To main-

tain HA during the upgrade when there is no incompatibility between the versions of the nodes 

rolling upgrade is recommended. The nodes are upgraded one at a time like a wave rolling 

through the cluster. Although rolling upgrade is also introduced in [28] as one of the industry 

best practice, it is also criticized in [29][30][28] as it may introduce incompatibilities (referred 

as mixed-version inconsistencies) during the upgrade. Moreover, applying the rolling upgrade 

to a large system may take very long time. In addition, the rolling upgrade has to be applied 

separately to upgrade of different kinds of IaaS resources. This adds to the duration of upgrade. 

In our approach, to minimize the duration of the upgrade, we identify the resources that can be 

upgraded simultaneously (while respecting dependencies and SLA constraints) and apply the 

rolling upgrade with dynamic batches. 

In the presence of incompatibilities, [27] recommends the use of the big flip method, which 

overcomes this challenge by upgrading one half of the system first and then flipping from the 

old version to the new one to prevent running two different versions at the same time [27]. 

Note that big flip is referred to as split mode in our and some other papers [31]. Although this 

method is powerful to avoid incompatibilities, it reduces the capacity of the system to its half 

during the upgrade, which is an issue if there is not enough redundancy in the system. In our 

approach we apply the split mode method to subsystems where the incompatibilities might be 

an issue, instead of applying it to the entire system. To improve this upgrade method, delayed 

switch is proposed in [32] for upgrading cloud systems, where first the nodes are upgraded one 

at a time and remain deactivated after the upgrade to avoid incompatibility. When half of the 
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system is upgraded, a switch is performed by deactivating the remaining old nodes and reac-

tivating all the upgraded ones. Then, the remaining old nodes are upgraded simultaneously 

[32]. Another solution proposed for avoiding backward incompatibilities during upgrades is to 

use explicit embedded versioning at the development time of the software [30]. However, in 

[30] this solution is applied to a limited set of resources, i.e. which modifies persistent data 

structures. It is not applicable to upgrade the different kinds of IaaS resources.  

To address backward incompatibility, other techniques similar to big flip have also been pro-

posed. In [29][33][34], the Imago system (also referred to as “parallel universe”) is presented 

to perform online upgrades. In this method, an entirely new system is created with the new 

version of the software, while the old system continues to run. Similar to split mode (or big 

flip) first, persistent data is transferred from the old system to the new one to be able to test the 

new system before switching over. Once the new system is sufficiently tested, the traffic is 

redirected to the new system [29]. Since an entire new IaaS cloud system has to be created with 

the new version of the resources, the used resources during the upgrade are doubled by this 

method. Thus, this solution is expensive and may not apply to the upgrade of all cloud system. 

To minimize the amount of additional resources used during the upgrade, in our approach, 

instead of bringing up a complete IaaS system as a parallel universe, we use this method locally 

to upgrade the infrastructure resources supporting VM operations.  

Despite the challenge of incompatibility associated with rolling upgrades, this method is still 

widely used by cloud providers. Windows Azure storage uses rolling upgrades to upgrade the 

storage system [35] by upgrading one upgrade domain (i.e. a set of evenly distributed servers 

and replicated storages) at a time in a rolling manner. To maintain the HA of the system during 

the upgrade, enough storage replicas are kept in the remaining upgrade domains [35]. Rolling 

upgrades are also used by Amazon Web Services (AWS) to update or replace Amazon Elastic 
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Beanstalk (PaaS) [36], or Amazon EC2 (IaaS) [9] instances. In Amazon EC2, the rolling up-

grade is applied to instances of autoscaling groups in which the batch size can be predefined. 

To avoid interference between upgrade and autoscaling, it is recommended to suspend au-

toscaling during the upgrade [9]. Disabling the autoscaling feature during upgrades, disables 

one of the most important features of the cloud and therefore does not appropriately address 

the challenge of interference between the upgrade and the autoscaling. In our work, instead of 

disabling the autoscaling feature, we make it regulate the upgrade process. 

Rolling upgrade is also used in [37] to upgrade the VM instances. In this work, the optimization 

problem of rolling upgrades with multi objectives of minimizing the completion time, the cost 

and the expected loss of service instances (i.e. VMs) is targeted. They formalized the rolling 

upgrade considering different iterations of upgrade with a fixed batch size (or granularity in 

their terms) defined by the operator. Considering potential failures during upgrades, the number 

of successful upgrades may be less than the predefined batch size, resulting in a longer com-

pletion time [37]. In contrast to our work, [37] does not consider changes in the number of VM 

instances during the upgrade due to autoscaling; so, it does not address the challenge of inter-

ferences between autoscaling and the upgrade process. 

In [38] a rolling upgrade is used for the reconfiguration of cluster membership using quorums. 

A subset of the servers, which have the same replicated information, are organized into a 

quorum. Any member of the quorum can become the candidate leader to initiate a configuration 

change. The proposed configuration with the largest ballot is selected as the target configura-

tion. In each iteration of the upgrade, a predefined batch of servers is upgraded simultaneously. 

This approach is suitable for upgrading distributed state-full services (e.g. database service) 

except for the distributed locking service [38]. Likewise, in this paper, the dynamicity of the 

system due to autoscaling is not considered. 
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In [39] state aware instances are suggested to address the incompatibility issues in the rolling 

upgrade. The instances are upgraded from the old version to the new one using rolling up-

grades. However, only instances with the old version are active until a point where the switch-

over is performed to the new version while deactivating the old version. This method is similar 

to the delayed switch method, with the difference in the switching point, which can happen at 

different points. According to this paper, the switch point has to be determined based on the 

availability and scalability requirements of the system and the impact of the switching point on 

the availability and the capacity of the system [39]. Although this paper quantifies the risk 

associated with the version switching during the rolling upgrade, it considers neither the pos-

sible interference of the upgrade process with the autoscaling feature, nor the upgrade of dif-

ferent kinds of IaaS resources. 

In [40], an approach is proposed for controlling the progress of the rolling upgrade based on 

failures, which is referred to as “robust rolling upgrade in the cloud (R2C)”. In this paper, which 

is an extension of [39], the rolling upgrade controller controls the progress of the upgrade based 

on inputs from an error detection mechanism. Based on the type of the failure during the up-

grade (e.g. platform/infrastructure failures and operation failures), the rolling upgrade control-

ler decides whether to replace the problematic instance or to suspend the upgrade process if the 

errors impacts the process of the upgrade. Similar to [39], since they replace the failed resource 

with the old version of the instance, in each iteration during the upgrade, the number of up-

graded resources can increase or decrease. This paper provides a prediction model for the ex-

pected completion time of the rolling upgrade based on the probability of the different failures 

and using the different batch sizes (or granularities in their terms) for different runs of the 

upgrade. Note that in [39], the batch size is fixed during the upgrade, and it is set by the ad-

ministrator. In addition, the administrator also selects the switching point to the new version. 
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Since the batch size is not adjusted at runtime to the current state of the system with respect to 

the SLAs of the tenants, autoscaling may interfere with the upgrade process. In contrast, our 

approach regulates the upgrade process based on considerations for potential scaling out re-

quests to minimize such interference. More importantly, both [40] and [39] target only the 

upgrade of VM instances, while our approach handles the upgrade of IaaS resources. 

In [41], the upgrade of software deployed on the VM and VMimage is targeted from the user 

perspective. The goal of this work is to automatically apply the upgrades according to a user 

request. The proposed software system, referred to as UaaS (Update as a Service), is designed 

for IaaS clouds. In order to upgrade the software, the user submits the update service request 

and then the provider applies the requested upgrades. On each VM, an agent is installed. The 

agent is responsible for collecting software package information on the VM. In order to have 

low overhead of data collection from the agents, instead of using a pull mechanism, they use a 

push mechanism where agents submit the software package status of the VM to the master 

whenever a change (install/uninstall) happens. This information includes the list of installed 

software packages, and the version of the installed packages. For the offline VMs, an agent 

outside the VM is considered which can access the VMimage to mount the image and parsing 

files to get the required information. A central controller (master) is used to collect all of this 

information and identify the target VMs that need to be upgraded. Subsequently, the master 

will notify the agents to perform the upgrade action on online or offline VMs [41]. While this 

work considers the automatic upgrade of the VMimages and software deployed on the VMs, it 

considers neither maintaining availability, nor the upgrade of different kinds of IaaS resources.  

Although all the above-mentioned upgrade methods address the problem of maintaining HA 

and in some cases the challenge of incompatibilities, they do not address all the challenges the 
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upgrade of cloud systems poses. In particular they do not address the different kinds of depend-

encies and the dynamicity of the cloud. In contrast, in our work we propose an upgrade man-

agement framework for handling all these aspects of upgrades of the cloud in an integrated 

manner. 
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Chapter 3  

3 Infrastructure Resource Information 

Models and Dependencies 

During the upgrade, the IaaS cloud system is transferred from a current configuration to a new 

configuration according to the upgrade requests specified by the administrator. To manage such 

an upgrade, the configuration information of the IaaS layer has to be identified.  

We investigated the existing cloud management standards to see if any of them has all the 

information necessary for this purpose. We examined the Cloud Infrastructure Management 

Interface (CIMI) [42], the Open Virtualization Format (OVF) [26], the Open Cloud Computing 

Interface (OCCI) [43], the Cloud Application Management for Platforms (CAMP) [44], and 

the Topology and Orchestration Specification for Cloud Applications (TOSCA) [45]. CIMI 

defines an API for the management of virtual resources within IaaS. OVF defines the format 

for packaging and distributing virtual appliances. OCCI is again a management API for IaaS 

which can also be extended to the PaaS and SaaS. CAMP is a management API for the PaaS. 

Finally, TOSCA is developed for the management of application layer services (SaaS). 

Through our investigations, we came to the conclusion that none of these cloud management 

standards today has all the information needed to facilitate upgrades. The main reason is that 
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cloud management standards are mainly developed for the users managing the resources pro-

vided by the cloud as services. They lack the information necessary to manage the system 

configuration as a provider, which is necessary for an upgrade. Therefore, we identified pro-

vider side infrastructure resource models for the upgrade. We also identified the possible 

changes that can be performed on the infrastructure resources.  

As mentioned in the introduction, breaking exiting dependencies during the upgrade is the main 

reason for service outage during the upgrade. To carry out the upgrade of IaaS cloud systems 

with minimal impact on the services with respect to their availability, it is essential to identify 

and characterize all the potential dependencies between IaaS resources.  

In this chapter, we present the infrastructure resource models and the possible changes appli-

cable in the IaaS layer before characterizing potential IaaS dependencies.  

The contents of this chapter have been published partially in [5]. 

3.1 IaaS Resource Information Domain Models 

At the infrastructure level, we identified three types of resources: physical resources, virtual-

ization facility resources and virtual resources. The physical resources are the hardware of the 

infrastructure on which the rest of this layer is running. Virtual resources are resources provided 

as services built on top of the physical resources by using the virtualization facilities. Thus, the 

virtualization facilities enable the creation of virtual environments on top of the physical re-

sources. Therefore, the virtual resources depend on the virtualization facilities, which in turn 

depend on the physical resources. 

We defined a domain model for each of these resource types. It is important to note that these 

resource domain models are defined for the purpose of upgrade, which determines the level of 

granularity to consider. Our infrastructure resource domain model for the physical resources, 
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the virtualization facility resources1 and the virtual resources2 are shown in, Figure 3.1, Figure 

3.2 and Figure 3.3, respectively. Note that the connecting elements of the different domain 

models are highlighted in these figures. The connecting elements of the domain models for 

physical resources (represented in Figure 3.1) and virtualization facilities (represented in Fig-

ure 3.2) are shown in pink, while the connecting element of domain models for virtualization 

facilities (represented in Figure 3.2) and virtual resources (represented in Figure 3.3) are shown 

in green.  

As shown in Figure 3.1, a cloud data center is composed of physical servers, storage, and net-

work. A physical server has CPU(s), memory(s), physical disk(s), and network interface cards 

 
1 It should be noted that in this domain model physical entity resources (physical server, NIC, switch, or 

router) are used for showing the relationship of the virtualization facility resources to the underlying 

physical resources. 
2 The virtual resources are connected to the underlying virtualization facility resource layer through the 

hypervisors, or other virtualization facilities (NIC, Switch and Router Firmware). 

 

Figure 3.1. Infrastructure resource domain model for the physical resources 
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(NICs). Several physical servers form a physical server cluster, in which physical servers can 

share a shared storage(s). In this case one or more physical servers may act as controller to 

manage the shared storage and enable the other physical servers in the cluster to access the 

shared storage(s). Also, the physical server clusters are connected to the network. The physical 

network is composed of switches and routers which are connected to other switches and routers 

through links. The endpoint of a link is a port belonging to a switch, a router or a NIC. In 

addition, the physical networks can be segmented to VLANs which allows several physical 

networks to work as a local area network.  

Virtualization facility resources, shown in Figure 3.2, enable the creation of virtual resources. 

The hypervisor is the essential resource in this category and based on its type it may be installed 

directly on the physical server or on a host operating system (OS). Virtualization is not specific 

to compute resources only, it can also be done for the network and storage resources. Some of 

the virtual resources are provided by hypervisors; however virtualization technologies may also 

be built into the firmware of the NIC, switch and router. Additionally, in some cases they can 

be provided as a virtual appliance running on a hypervisor. In these cases, they need specific 

technology support from the hypervisor. A vSwitch can be combined with a hypervisor as a 

single piece of software or provided as a standalone software package or virtual appliance run-

ning on top of the hypervisor. When the vSwitch comes as a virtual appliance, one of the 

 

Figure 3.2. Infrastructure resource domain model for the virtualization facilities 
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vSwitches will act as a vSwitch controller to control and manage the other vSwitches. A virtual 

switch can also be embedded into the NIC hardware [46] [47]  (in the NIC firmware) with the 

Single Root I/O Virtualization (SR-IOV) technology. Additionally, a vSwitch can be embed-

ded in a switch with the Virtual Ethernet Port Aggregator (VEPA) technology and VN-tag 

technology [48].  Similar to vSwitches, vRouters can be deployed in or on top of the hypervisor. 

The virtual resources, shown in Figure 3.3, are connected to the underlying virtualization fa-

cility resource layer through the hypervisors. Each hypervisor can run multiple virtual servers 

and allocate VCPUs, VRAMs, virtual disks, and virtual NICs (VNIC) to these virtual servers. 

Meanwhile, virtual servers can form a virtual cluster, share virtual shared storage(s) and so on 

as discussed for the physical resources. Accordingly we have virtual shared storage(s), virtual 

network(s) with virtual switches (vSwitches) and virtual routers (vRouters) connected through 

virtual links (vLink) with virtual ports (Vports). Note that when it comes to the interconnection 

 

Figure 3.3. Infrastructure resource domain model for the virtual resources 
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the isolation between the physical and virtual resources is primarily administrative and comes 

from the fact that the virtual resources represent the service offered by the IaaS, which are 

managed by their users. 

In addition, we identified necessary redundancy information for the IaaS provider resources 

and placement constraints information imposed by upper layer (application layer) for IaaS ser-

vice resources. We distinguished IaaS resources as Service and Provider resources. Service 

resources are the resources given by the IaaS layer as a service to the users of IaaS (e.g. virtual 

server/VM, virtual switch and virtual router). Provider resources are the resources that are used 

in the IaaS layer itself for providing the services (e.g. physical server, storage, network re-

sources). Note that virtual storage and virtual network resources can be categorized under ser-

vice or provider resource whether they are used as provider to give the service, or are provided 

as a service to the IaaS users.  

Figure 3.4 shows the redundancy and placement information in the infrastructure resource do-

main model. Most of the redundancy configuration in the cloud system is dynamic. So, we 

defined PotentialProtectionGroup and ProtectionGroup which consists of provider resources 

 

Figure 3.4. Redundancy and placement information in infrastructure resource domain model 
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which are eligible to get the assignment, and the provider resources within a PotentialProtec-

tionGroup which get the assignment, respectively. For example, set of hypervisors running on 

physical hosts which are eligible to host the virtual servers are in a PotentialProtectionGroup, 

and the hypervisors that get the virtual server assignment and host the virtual servers are in a 

ProtectionGroup. Service resources can belong to a PlacementGroup which specifies the group 

of services that have to follow specific placement constraints imposed by upper layer for IaaS. 

For instance, VM services which are requested to follow a placement policy belongs to a Place-

mentGroup. In general, two types of VM placement policies can be used: affinity and anti-

affinity. The affinity placement policy is usually used to enhance performance, while the anti-

affinity placement policy is used to ensure availability. Thus, we defined AntiAffinityGroup 

and AffinityGroup as subcategory for PlacementGroup. 

3.2 Possible Changes in the IaaS layer 

Depending on the type of the IaaS resource, different types of changes (i.e. add/remove/up-

grade) can be performed on a resource. Physical resources can be added, removed, or the firm-

ware of the existing ones can be upgraded (e.g., add/remove physical shared storage, upgrade 

shared storage firmware). Similarly, the change related to the virtual facility resources can be 

the addition, removal, or the upgrade of the resource or its firmware (e.g., add/remove/upgrade 

hypervisor, upgrade switch firmware). Whereas, considering the software nature of the virtual 

resources, the resource itself can be added, removed or upgraded (e.g., add/remove/upgrade 

virtual disk). 

We defined the list of changes applicable at the infrastructure level for each of the resource 

types, as shown in Figure 3.5 to Figure 3.7.  
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Figure 3.5 shows all the changes related to physical resources. Changing physical resources 

can be by the change of physical server cluster, physical server, storage resources and network 

resources. We can breakdown each of these changes into an atomic change, for example, 

changing the physical server can be done by adding/ removing of CPU, memory, NIC, and 

physical disk. Note that the same colors (orange, pink, and green) in Figure 3.5 are used for 

demonstrating the common atomic changes related to different resource types. For example, 

adding or removing a physical disk (shown with orange color) in Figure 3.5 can be considered 

as an upgrade of both physical server and storage. 

In Figure 3.6, changes related to virtualization facilities resources are illustrated. Change to 

virtualization facilities can be add/remove/upgrade of hypervisor and host OS, and upgrading 

firmware of NIC, switch, and router.  

Figure 3.7 shows all the possible changes to virtual resources. Add/remove/upgrade of virtual 

shared storage can be a change to both the virtual cluster and virtual server, which are high-

lighted in pink. 

 

Figure 3.5. Changes applicable for physical resources 
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Each of these changes can impact other resource(s) in the system, which may lead to service 

outage. This is due to the dependencies between the involved resources. Therefore, we have 

characterized the dependencies at the infrastructure level.  

3.3 IaaS Dependency Characterization  

With the help of our infrastructure resource domain models, we have characterized the potential 

dependencies present in the infrastructure layer. Figure 3.8 shows the characterized potential 

IaaS dependencies. These dependencies can be grouped into two main categories of Sponsor-

ship dependencies and Symmetrical dependencies. 

 

Figure 3.6. Changes applicable for virtualization facility resources 

 

Figure 3.7. Changes applicable for virtual resources 
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A sponsorship dependency is a directed dependency which captures the relation between a 

sponsor and a dependent, in which the dependent cannot function without the sponsor. We 

defined different subcategories of sponsorship dependency: container/contained, migration, 

storage, controller, VM supporting infrastructure (VM supporting controller or VM supporting 

storage), composition, aggregation, and communication dependencies. The second main cate-

gory of dependencies is referred to as symmetrical dependency. This dependency is a bi-direc-

tional dependency, which exists between two or more resources. We defined peer dependency 

as a subcategory of the symmetrical dependency. 

Subcategories of sponsorship dependencies are as follow: 

• The container/contained dependency exists between two resources, when the lifecycle 

of a resource (the contained) depends on the lifecycle of the other (the container). Dur-

ing the upgrade of the container, the contained resources are impacted and experience 

outage. As an example, this dependency exists between a physical server and its hosted 

 

Figure 3.8. Classification of IaaS upgrade dependencies 
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bare metal hypervisor, or between a hypervisor and the vSwitch/vRouter provided by 

that hypervisor. The upgrade of the physical server causes an outage for the hosted 

hypervisor, or the upgrade of the hypervisor causes outage of the vSwitch/vRouter it 

provides. 

• Migration dependency is a specialization of the container/contained dependency. In 

case of migration dependency, the sponsorship relation is dynamic and if not satisfied 

it triggers a migration. The dependency between virtual servers and a hypervisor is mi-

gration dependency. A hypervisor provides VCPU, VRAM, virtual disk and VNIC to 

its hosted virtual servers. There is a constraint in terms of capacity of CPU, memory, 

disk and NIC of the hypervisor to host virtual servers (VMs). Thus, only a hypervisor 

with enough capacity for running the virtual server can host the virtual server. If at any 

point in time the hypervisor does not have enough capacity, the virtual server will be 

migrated to another candidate hypervisor (provided there is one), which can provide 

enough resources for the virtual server. As a result, upgrading the hypervisor has an 

impact on the virtual server, but it does not necessarily result in an outage of the virtual 

server. 

• Composition dependency exists between multiple resources in which a resource is com-

posed of different resources. If any of the constituent resources goes down, the compo-

site resource will go down. As a result, during the upgrade of the constituent resources, 

the composite resource is impacted. This dependency exists, for example, between a 

physical server and its CPU, memory, physical disk and NIC resources, or between a 

virtual server and its VCPU, VRAM, virtual disk, and VNIC. 

• Aggregation dependency exists also between multiple resources in which a resource is 

composed of multiple resources, but they are of the same type. The difference from 

composition dependency is that, the dependent resource (the aggregate resource) can 
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function as long as a minimum number of constituent resources are still available, that 

is, constituent resources are peers. The aggregate resource will experience an outage 

whenever the number of available constituent resources drops below the minimum re-

quired number. For example, this dependency exists between a virtual shared storage 

and physical disks, when a virtual shared storage is built using a cluster of physical 

disks and the data is replicated on different physical disks to maintain the HA of the 

virtual shared storage.  

• Storage dependency exists between two resources, in which a dependent resource is 

using a storage resource. In this dependency the storage resource is the sponsor. When 

the storage resource goes down, the dependent resource(s) which is/are using the stor-

age resource may not go down, but their functionality might be impacted. The depend-

ency between the physical (or virtual) server(s) of a cluster and the physical (or virtual) 

shared storage is such a dependency. 

• Controller dependency exists between multiple resources, in which one of the resources 

controls other resources. If the controller resource goes down, it will lose the control 

over the controlled resources, which may cause outage. As an example, this dependency 

exists between vSwitch controller and the vSwitches managed by the vSwitch control-

ler. As mentioned earlier, when vSwitch comes as a virtual appliance, one of the 

vSwitches act as controller. 

• The VM supporting infrastructure dependency indicates a dependency of set of physical 

servers to an infrastructure resource, in which the infrastructure resource provides in-

frastructure services for supporting the VM operations running on the dependent phys-

ical hosts. If the VM supporting infrastructure resource goes down, all the services pro-

vided by the dependent physical servers will have an outage. Note that the physical 
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servers providing VM services are referred to as compute host resources as well. We 

identified two subcategories of VM supporting infrastructure as VM supporting storage 

and VM supporting controller dependency.  

o The VM supporting storage dependency is specialization of VM supporting in-

frastructure dependency. It indicates a dependency of a cluster of physical serv-

ers providing VM services (i.e. compute hosts) on a storage infrastructure re-

source. The storage infrastructure resource provides storage service for support-

ing the VM operations running on the dependent physical servers.  

o VM supporting controller dependency is another kind of VM supporting infra-

structure dependency and it is also specialization of controller dependency. It 

indicates dependency of a cluster of physical servers providing VM services 

(i.e. compute hosts) on a controller physical server controlling VM operations 

on the dependent physical servers. The dependency between OpenStack con-

troller host and OpenStack compute hosts is controller dependency.  

• Communication dependency exists between a network resource and other resources. In 

the system it is realized with physical or virtual link. In this dependency the dependent 

resource communicates with the external world using the sponsor network resource. If 

the sponsor network resource goes down, the dependent resource may lose the connec-

tion to the network and become isolated. An example of this dependency exists between 

a physical server and a switch, in which physical server depends on a switch for com-

munication. In this example, the dependency between physical server and the switch is 

realized with a physical link. If the switch goes down, the physical server is isolated.  
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Subcategories of symmetrical dependencies are as follow: 

• Peer dependency exists between redundant elements which are configured for main-

taining the availability of some service(s). To maintain service availability during an 

upgrade, peer dependent resources should not be upgraded all at the same time. The 

upgrade should follow their redundancy pattern/requirements, which may be expressed 

as a minimum required number of in-service peers, or as a maximum number of peer 

that can be taken out simultaneously. For example, peer dependency exists between 

redundant storage nodes. We identified three types of peer dependencies: 

o Stateless peer dependency: In this type of dependency, there is no state protec-

tion between redundant resources – hence it is stateless – and the peer resources 

do not exchange state information with each other. This type of peer depend-

ency exists between two NICs providing redundant network connection for a 

physical node. 

o Statefull peer dependency with direct communication: In this type of depend-

ency, the peer resources are communicating directly with each other to protect 

the state. This type of dependency exists between two redundant routers that use 

the virtual router redundancy protocol.  

o Statefull peer dependency with indirect communication: In this type of depend-

ency the peer resources are communicating indirectly through another resource 

(e.g. database on a host or storage) to keep their state. This type of dependency 

exists between two peer compute hosts which use a shared storage to keep the 

images/snapshots of VMs they host. 
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3.4 Summary 

In this chapter, we introduced the infrastructure resource information models for the purpose 

of upgrade, and the IaaS dependency characterization. In the process of defining the infrastruc-

ture resource information models, we have investigated and examined different cloud standards 

(i.e. CIMI [42], OVF [26], OCCI [43], CAMP [44], TOSCA [45]) to identify if any of them 

can fulfill the information requirements for the upgrade of IaaS cloud systems. Through our 

investigations, we came to the conclusion that none of the cloud management standards today 

has all the information we need in the configuration for the upgrade purpose. Therefore, we 

identified all the necessary information for upgrading the IaaS cloud system by defining infra-

structure resource models. In addition, we characterized all the potential resource dependencies 

at the infrastructure level to be able to handle in the next chapters the upgrade of different IaaS 

resources with minimal impact on the service availability.
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Chapter 4  

4 Overview of the Framework for IaaS 

Cloud Upgrade and Principles  

Due to the size of cloud deployments and for supporting zero-touch operations, automation of 

the entire process for the upgrade of IaaS cloud systems is crucial. We defined an upgrade 

management framework which automates the upgrade of IaaS cloud systems while avoiding or 

at least limiting service disruptions during the upgrade. This framework addresses in an inte-

grated manner different challenges related to the maintenance of availability during the up-

grade.  

In this chapter, we first provide the definitions of the concepts used throughout this chapter and 

then we elaborate how we handle the different challenges of IaaS cloud system upgrade, i.e. 

the principles of our approach. In addition, we present our evaluation of several configuration 

management tools that can be potentially used to apply changes to the IaaS resources. At the 

end of this chapter, we present an overview of our upgrade management framework.  
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4.1 Definitions  

4.1.1 Infrastructure Components  

An infrastructure component is a piece of software, firmware, or hardware delivered by a ven-

dor as part of a product. The product itself can be a single component (e.g. ESXi [49] hypervi-

sor) or a compound product consisting of different components (e.g. Ceph [50] storage with 

different components). When a product is fully installed in the IaaS system, this installation 

becomes a resource (e.g. ESXi hypervisor, Ceph storage) and may consist of the installation of 

multiple components. Thus, multiple IaaS resources can be mapped to the same infrastructure 

component (e.g. ESXi hypervisor installed on different hosts) and multiple infrastructure com-

ponents can be mapped to a single IaaS resource (e.g. Ceph storage with components running 

on different hosts). We assume that each product delivered by a vendor and therefore each 

infrastructure component is accompanied with a file – the infrastructure component description 

– describing among others the component’s service capabilities, configuration constraints, 

hardware management capabilities, delivering software/firmware bundle with their installa-

tion/upgrade/removal scripts/commands, estimated time required for their installation/removal, 

and hardware/software dependencies. 

4.1.2 Actions, Operations and Units 

To deploy a change in the IaaS cloud system one or more upgrade actions may need to be 

executed. We define an upgrade action as an atomic action that can be executed by a configu-

ration management tool (e.g. Ansible [51]) on a resource (e.g. a command for installing ESXi 

on a host), or performed by an administrator on a resource (e.g. removing a host). An upgrade 

action is always associated with one or more undo actions. Undo actions revert the effect of 

the upgrade actions on the resource. We use the term upgrade operation to represent an ordered 

list of upgrade actions. We use similarly, the term undo operation; while a retry operation is 
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defined as a retry of an upgrade operation. A recovery operation is defined as undo and/or retry 

operations. 

We define an upgrade unit as a group of resources that have to be upgraded using an appropri-

ate upgrade method, for example, for handling the incompatibilities. The resources of an up-

grade unit are selected based on the possible incompatibilities along the dependencies of the 

resources. The upgrade of the resources in an upgrade unit are ordered based on the associated 

upgrade method, which prevents communication between incompatible versions during the 

upgrade. An undo unit consists of a group of resources on which an upgrade operation has to 

be applied on all together. Otherwise, the undo operation is triggered. The goal of this grouping 

is to preserve the consistency of the system configuration with respect to the changes to the 

IaaS cloud system.  

4.1.3 Upgrade Request 

The system administrator initiates an upgrade by specifying an upgrade request, which is a 

collection of change sets, i.e. a set of change sets. Each change set in the collection specifies a 

set of tightly coupled changes on the IaaS resources that should either succeed or fail together 

to maintain the consistency of the system configuration. Within each set each change indicates 

the addition, removal, or upgrade of an infrastructure component of some resources, some re-

sources themselves, or a dependency between two resources or their sets. Note that the change 

sets in an upgrade request are independent of each other, and a failure of a change set does not 

impact the consistency of the system with respect to other change sets.  

A system administrator may not be aware of all the dependencies and therefore may not specify 

all the necessary changes in a change set, i.e. a change set may be incomplete. To satisfy the 

hardware and/or software dependencies indicated in the infrastructure component description 
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by the vendor, an upgrade request initiated by a system administrator may require complemen-

tary changes. To address this issue, we check the completeness of each change set with respect 

to the infrastructure component description(s) provided by the vendor(s) and derive any miss-

ing changes, which then are added to the same change set as complementary changes. For each 

change, the necessary upgrade actions have to be derived from the infrastructure component 

description. It is expected that the description contains the scripts used to install and remove a 

software component, while for a hardware component the scripts is used for its management. 

The administrator can also specify four additional parameters in the upgrade request with re-

spect to retry and undo operations. To ensure the completion of the upgrade process, i.e. limit 

its time, for each change set a max-retry threshold and a max-completion-period can be speci-

fied. The max-retry threshold parameter controls the retry operations; it specifies the maximum 

allowed number of upgrade attempts on each resource to which a change in that change set is 

applied. The max-completion-period specifies the maximum time allotted to complete all the 

changes of the set. To ensure the consistency of the system for each change (in a change set), 

an undo-threshold parameter and an undo version can be specified. The undo-threshold speci-

fies the minimum required number of resources in the set of resources of the requested change 

that should be operational after applying the requested change. The undo version parameter 

specifies the desired version for the undo operation. By default, this version is the version at 

which a resource is at the moment the change is applied. This may not be deterministic for 

upgrade requests issued during an ongoing upgrade. Therefore the default undo version can be 

overridden by explicitly specifying the undo version in the change request. Note that for com-

plementary changes the undo-threshold and the undo version are derived from the changes 

requested in the upgrade request. 
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We keep track of upgrade requests using an upgrade request model. This model includes all 

the information necessary to track the process of applying the changes to the system including 

failure handling. The execution status of change sets and of changes within each set indicates 

whether they are new, scheduled, completed, or failed. Whenever a new upgrade request is 

issued, its change sets, including their respective complementary changes, are added to the 

upgrade request model. For each change in each change set, the target resources, their source, 

target and undo versions are reflected, and the execution status is maintained. The target re-

sources and their source versions are identified from the current configuration. 

4.2 Principles for Handling Upgrade Challenges  

As mentioned in the introduction, we consider several challenges for maintaining availability 

during IaaS cloud upgrade: (1) dependency of the application (SaaS) layer on the IaaS layer, 

(2) resource dependencies, (3) potential incompatibilities along the dependencies during the 

upgrade process, (4) upgrade failures, (5) the dynamicity of the cloud environment, and (6) 

keeping the amount of additional resources at minimum.  

The challenge of the dependency of the application layer on the IaaS layer 

As mentioned in the introduction, upgrading the IaaS cloud system can impact the other cloud 

layers –such as application layer – relying on the IaaS layer. Thus, handling the existing de-

pendency between layers is important to prevent service outages during upgrades. We distin-

guish between availability management responsibilities of IaaS layer versus application layer. 

IaaS is not responsible for  providing availability solution for protecting availability of the 

application deployed in the VMs [3]. We assume that the availability of the application de-

ployed in the VMs is maintained by an availability management solution such as the Availa-

bility Management Framework (AMF) [52], as proposed in [53] for instance. To handle the 
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dependency of the application layer on the IaaS layer, we assume that the requirements of the 

application level redundancy are expressed towards the IaaS cloud as VM placement con-

straints (i.e. as anti-affinity groups). To respect these requirements, during upgrade, VM mi-

gration or VM consolidation, the VMs of the same group will always be placed on different 

physical hosts and at most a specified number (typically one) of VMs of an anti-affinity group 

will be impacted at a time.  

The challenge of resource dependencies 

To be able to handle resource dependencies, we have identified the different kinds of IaaS 

resources and the dependencies between them (as described in Chapter 3). IaaS resource de-

pendencies fall into two main categories, Sponsorship and Symmetrical dependencies with dif-

ferent subcategories. During upgrade, to avoid breaking any resource dependencies the upgrade 

has to be performed in a specific order based on the nature of the dependencies. Moreover, to 

maintain availability we cannot upgrade all the resources at the same time. As a solution, we 

use an iterative upgrade process to select at the beginning of each iteration, the resources that 

can be upgraded without violating any dependency in that iteration. We re-evaluate the situa-

tion at the beginning of each subsequent iteration before continuing with the upgrade. For this 

selection, first we group together the resources that have to be upgraded at the same time, and 

then we identify the resource groups that can be upgraded in the current iteration using a set of 

rules, referred to as elimination rules. This results in an initial selection referred to as the initial 

batch, in which the resource groups are selected only based on their dependencies. 

The challenge of potential incompatibilities along resource dependencies during upgrade 

Even though the source and the target configurations on their own have no incompatibilities, 

during the transition from one to the other incompatibilities may occur as we need to maintain 

the availability of services. That is, during the upgrade version mismatch may happen along 
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some of the dependencies for some of the resources. To avoid such incompatibilities these 

resources have to be upgraded in a certain order using an appropriate upgrade method. Thus, 

we identify automatically the resources that might have incompatibilities along their depend-

encies and we group them into upgrade units. Note that the information regarding the possible 

version mismatch can be obtained from infrastructure component descriptions provided by the 

cloud vendor and considering the existing dependencies in the system configuration. Each up-

grade unit groups together the resources that have to be upgraded using an appropriate upgrade 

method, which avoids incompatibilities by preventing any communication between resources 

of the incompatible versions. Thus, within an upgrade unit the upgrade of resources is ordered 

according to the associated upgrade method and the elimination rules used for the batch selec-

tion ensure that the resources of the same upgrade unit are selected according to the associated 

upgrade method. For example, we use split mode [31] to avoid incompatibilities along certain 

dependencies. In this method, the resources of an upgrade unit are divided into two partitions 

which are upgraded one partition at a time similar to rolling upgrade. The elimination rules 

ensure that only one partition is selected at a time, and that the order of deactivation and acti-

vation of the partitions is such that it avoids any incompatibilities by having only one version 

active at any given time until both partitions are upgraded. 

Due to ordering constraints, the required upgrade actions on a resource may be required to be 

applied in different iteration. We defined execution-level as an ordered list of upgrade actions 

to be executed on a resource in a single iteration. Also, we defined actions-to-execute as an 

ordered list of execution-levels to be executed on the resource through different iterations. 

Thus, the execution-levels order the upgrade actions on a resource, among others, to handle 

incompatibilities. Each execution-level on a resource is associated with an upgrade unit. In 
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each iteration based on the upgrade unit the elimination rules may or may not remove the re-

source from the initial batch as appropriate for the order required by the associated upgrade 

method. Whenever a resource remains in the final batch of the iteration (i.e. the resource batch 

to be upgraded in this iteration), the upgrade actions of its first execution-level will be executed 

in that iteration. After a successful execution of all the upgrade actions of the first execution-

level, the execution-level (with all its upgrade actions) is removed from the list of execution-

levels of the actions-to-execute of the resource. Therefore, the next execution-level becomes 

the first one to be executed in a subsequent iteration whenever the resources is selected again 

for the final batch. 

Upgrade units are also used to handle, for instance, potential incompatibilities introduced by 

new upgrade requests. Even if the new upgrade requests target the same resources as previous 

upgrade requests, the new upgrade requests may introduce new incompatibilities. To prevent 

occurring incompatibilities, new upgrade units different from existing ones are created. The 

upgrade actions associated with the new upgrade request can only be executed on a resource 

after finalizing the upgrade actions of the ongoing upgrade requests. To achieve this, upgrade 

actions associated with a new upgrade unit are grouped into a new execution-level. 

The challenge of handling upgrade failures 

In case of upgrade failure, recovery operations are performed to bring the system to a consistent 

configuration. Since changes in a change set are dependent, there are two main criteria to guar-

antee a consistent configuration: First, all the upgrade actions deploying a change set on a 

resource must either be applied successfully, or none of them should be applied at all. Second, 

all the changes of a change set have to be successful without violating their undo thresholds; 

otherwise, they have to be undone all together. 
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According to the first criterion, in case an upgrade action of a change set fails on a resource, 

the effects of the already executed upgrade actions of that set need to be reverted. This is re-

ferred to as resource level undo, which take the resource to the version before applying the 

upgrade actions of the change set. If this is successful and the retry operation is permitted on 

the resource, i.e. max-retry threshold is not reached yet, another attempt can be made to re-

execute the upgrade actions of the set. Otherwise if reverting the upgrade actions was success-

ful (i.e. the previous stable configuration is reached), but the retry operation is not permitted, 

the resource will be isolated from the system. However, if reverting the upgrade actions fails, 

the resource needs to be isolated and marked as failed. Hereafter, we refer to a resource, which 

is isolated but not failed, as an isolated-only resource.  

If the number of isolated-only and failed resources in the set of resources to which a change is 

applied violates the undo-threshold value, all changes of the change set will be undone on all 

applicable resources to preserve the system consistency. Note that since this undo operation is 

performed in the system level with respect to the change set, we referred to it as system level 

undo. To account for this, we defined undo unit indicating a group of resources on which the 

undo recovery operation has to be applied together. Thus, an undo unit is assigned to each 

change set and its targeted resources to maintain the relation of changes applicable to those 

resources that either need to be deployed or undone all together. The undo operation could be 

triggered as discussed: if the undo-threshold for a set is violated; if all the upgrade actions of 

the set cannot be finalized within the indicated max-completion-period; or if the administrator 

explicitly issues an undo operation for a change set that has not been completed yet. Once a 

change is completed it cannot be undone, instead a new change can be requested. 

When undoing a change in the system level with respect to a change set, all the targeted re-

sources will be taken to the undo version of that change. Note that this undo version specified 
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by the administrator indicates the desired version for the undo operation of the change set and 

it may be different from the original version of the resource before applying the upgrade actions 

of the change set. The isolated-only resources may or may not be at the undo version. This is 

because the isolated-only resources which had a successful resource level undo operation, is 

taken to the version at the moment the change is applied (not the undo version). If isolated-

only resources are at the undo version, they are released from the isolation. Otherwise an at-

tempt is made to take them to the undo version. If this is unsuccessful, they are marked as failed 

resources.  

Note that, there may be several change sets impacting a single resource. Each resource may be 

associated with several undo units. In our approach when an undo operation is required (e.g. 

due to an upgrade failure) we perform it locally on the resources targeted by the originating 

change set instead of undoing all the changes made in the system by the other change sets. The 

undo operation itself is represented as a change set on the relevant resources and, thus, it can 

be performed while other change sets are being applied to other parts of the system. Note that 

the undo actions for the undo operation are organized into the first execution level of the re-

sources so that they will be executed first. 

The challenge of dynamicity of the cloud environment 

To handle the interferences between autoscaling and the upgrade process, we regulate the pace 

of the upgrade process. To respect the SLA commitments (scaling and availability), in each 

iteration the current configuration of the system is taken into consideration and only a certain 

number of resources is taken out of service for upgrade. Based on the current configuration we 

consider in each iteration the number of resources necessary for accommodating the current 

SLA commitments (with respect to scaling) , and we determine the number of resources nec-

essary for any potential scaling out requests and for recovering from potential failures for the 
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duration of that iteration. These resources cannot be upgraded without potential violation of 

availability. So, from the initial batch of resources selected with respect to their dependencies, 

these resources are eliminated from the final batch. Thus, the upgrade process starts/resumes 

(as shown in Figure 4.1) if and only if we can take out at least one resource (i.e. the final batch 

is not empty) and upgrade them without violating the availability and elasticity constraints due 

to resource failures or valid scaling requests. Otherwise, the upgrade process is suspended until 

there is enough resource freed up through the process of scaling in.  

The challenge of minimizing the amount of required additional resources 

Since upgrade takes out resources from the system, providing additional resources to the sys-

tem may become temporarily necessary for progressing with the upgrade. The amount may 

depend on the upgrade method, the number of resources the upgrade is applied to and the spare 

capacity in the system at the moment it is applied. It may be necessary to add resources to 

enable the use of certain techniques to maintain service continuity and service availability es-

pecially in the presence of incompatibilities. As discussed in the related work, some of the 

upgrade solutions [29][33][34] use the parallel universe method to avoid incompatibilities. Ap-

plying the parallel universe method at the system level is expensive in terms of resources. The 

goal is to use only the minimum necessary additional resources to keep the cost of the upgrade 

 

Figure 4.1. Upgrade process 
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as low as possible. As a solution to this challenge, we identify the subsystem where additional 

resources are required, and we only use the minimum amount necessary. 

To maintain the continuity of the infrastructure services supporting VM operations (e.g. stor-

age, controller), when their resources need to be upgraded and when the new and the old ver-

sions are incompatible, we propose to use a Partial Parallel Universe (PPU) method. This 

method applies the parallel universe method locally to a subsystem (e.g. VM supporting infra-

structure storage or controller subsystem) instead of creating a complete IaaS system as a par-

allel universe. With the PPU method we create a new configuration of the VM supporting 

infrastructure resources with their new version while (in parallel) we keep the old version of 

such infrastructure resources and their configuration until the new one can take over the support 

for all the VMs. To achieve the transfer, the physical hosts providing the VM service of the 

IaaS (i.e. the compute hosts) are also divided into two partitions. The old partition hosts VMs 

compatible with the old version of the VM supporting infrastructure resources and it hosts all 

the VMs initially. The new partition, which is empty initially, hosts the VMs compatible with 

the new version of the VM supporting infrastructure resources. As soon as the new version of 

the VM supporting infrastructure resources is ready, we migrate the VMs from the old to the 

new partition potentially in multiple iterations as appropriate for their SLAs. Once all the VMs 

have been migrated from the old partition to the new one, the configuration of the VM support-

ing infrastructure resources with the old version can be safely removed. This means that to 

guarantee the continuity of the VMs supporting services, the requirements for both versions of 

the configurations of VM supporting infrastructure resources have to be satisfied simultane-

ously during the upgrade and until the completion of the VM migrations. If these requirements 

cannot be satisfied using existing resources, additional resources may be required. So, we keep 

the number of required additional resources to a minimum by trying to use available resources 
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as much as possible during the upgrade and request for additional resources only if they are 

necessary. 

4.3  Evaluation of Configuration Management Tools for Upgrade  

Tackling different challenges for maintaining availability during the upgrade in isolation from 

one another does not assure minimizing the service disruption during the upgrade. All the men-

tioned principles have to be used in an integrated manner to handle the challenges effectively. 

For this purpose, we defined a framework which orchestrates the entire process of the upgrade 

using the principles. To apply the necessary upgrade actions on the infrastructure resources an 

upgrade engine is required. In this section before presenting our upgrade management frame-

work, we present our evaluation of several configuration management tools as potential up-

grade engines.  

Puppet [54] is a Ruby [55] based configuration management utility that has two different types 

of architectures: master/agent and standalone. The configurations of the system are stored in 

the Manifest and the Catalog. Manifests are the main files containing the Puppet code, and the 

catalog describes the desired state of each managed node. The agent nodes download the Cat-

alog (which is compiled from the Manifest) from the master node and apply the changes to get 

to the desired state as specified in the Catalog. In the standalone architecture, the Puppet master 

applies the changes itself. 

Chef [56] is another Ruby based configuration management tool. It is similar to Puppet, it also 

has the master/agent and standalone architectures. In the master/agent mode, Cookbook(s) and 

Recipe(s) are used to tell the Chef Client (agent) how each node has to be configured. Addi-

tionally, a Chef installation requires a workstation to control the master. The standalone version 
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of chef is referred to as Chef-solo and it allows for the use of Cookbooks without accessing the 

Chef Server. In this architecture the Cookbooks need to be located locally on the node. 

Salt [57] is based on Python [58]. It uses Python ZeroMQ messaging library for network com-

munication and as a result, it is faster than Puppet or Chef. Similar to Puppet and Chef, Salt 

can be used in the master/agent or in the standalone mode. In the master/agent architecture, 

agents (Minions) follow the desired configuration (referred to as States) as provided by the 

master. There is also a SaltCloud component that can be used to manage Salt Minions in the 

cloud environment and integrate Salt with cloud providers in a way that Minions can be provi-

sioned and configured. 

Ansible [51] is another Python based configuration management tool. Contrary to the other 

configuration management tools (Puppet, Chef, and Salt), it only uses the standalone architec-

ture and no node agent installation is required. The configurations are defined in Playbook(s), 

which represents the desired state of the managed instance(s). Ansible has a collection of mod-

ules that can be used for management of resources. 

The mentioned configuration management tools are all effective in their main goal of applying 

the configuration and the changes to multiple nodes of the system simply by issuing a single 

command. Although one can use these configuration management tools to upgrade a system, 

the coordination mechanism in some of them (especially Puppet and Chef) is limited. Coordi-

nation is necessary for maintaining availability during upgrades. 

We also examined Mistral [59] and TaskFlow [60] as potential candidates. Mistral is a task 

management service in OpenStack and it allows for scheduling of any number of tasks. It has 

a domain specific language based on YAML [61] which allows for the description of Work-

flows, Actions, and Cron-triggers. 
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TaskFlow [60] is a Python library for OpenStack and it is used for task execution. Although 

TaskFlow is not a tool or a service itself, it can be used as a basis for an upgrade engine. It 

includes an engine which is the core component to run the tasks and it has a mechanism for 

tracking the actions, tasks and their associated states to correctly track resource modifications. 

This facility makes possible to resume or revert a task, which can be useful to implement up-

grade rollback. 

Although Mistral and TaskFlow have many similarities, they are independent projects as they 

target different use cases. The difference between these two is in the way they decide the exe-

cution path of the tasks. Mistral relies on the name of the task, while TaskFlow relies on the 

dataflow.  

After examining each of the configuration management tools, we examined required features 

of candidate engine for the cloud to see which one of them suits our needs best. An engine 

needs to have coordination mechanism to control the upgrade by specifying steps and proce-

dures, as well as their order. In order to be able to perform the rolling upgrade, the candidate 

engine needs to have the capability to indicate the batch size of the upgrade. The other features 

that potential engine needs to have are: error handling features to indicate alternative proce-

dures, back-up capabilities to be able to roll-back to the old configuration, and tracking features 

to be able to do undo and redo the upgrade steps. Table 4.1 shows the summary of our evalua-

tion for candidate engines. Among the evaluated potential upgrade engines, Ansible and Salt 

are the most suitable candidates, since they have powerful orchestration support with a push 

mechanism, and the bases for designing an upgrade engine. In addition, they are not limited to 

OpenStack cloud platform, unlike Mistral and TaskFlow. Note that the push mechanism for 

managing the configuration of resources provides the advantage of taking immediate actions 
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on resources, rather than the scheduled-based pull mechanism used by chef and puppet. Note 

that any other engine capable of running upgrade action on the IaaS resources can be used. 

4.4 Upgrade Management Framework 

Figure 4.2 depicts our proposed upgrade management framework for IaaS cloud systems, 

which takes into account the SLA constraints of availability and elasticity. It includes two com-

ponents, the Upgrade Coordinator to coordinate the process of the upgrade, and the Upgrade 

Engine to execute the upgrade actions necessary to deploy in the system the requested upgrade. 

The upgrade coordinator keeps track of the upgrade requests and decides about the upgrade 

process in an iterative manner. For each iteration it generates one or more Runtime Upgrade 

Schedule(s), each of which is a collection of upgrade actions and the set of resources on which 

Table 4.1 Evaluation of candidate upgrade engines 

 Coordination Error handling Back-up 

capabilities 

Tracking 

Undo/Redo 
Architecture 

Puppet 

Orchestration fea-

tures available in 

Puppet Enterprise 

version 

Error logging, 

no built-in reactor 

Back up file and 

restore (puppet-

filebucket) 

Undo/redo code 

needs to be added 

Master/agent 

and 

standalone 

Chef No orchestration 

Exception (on failed 

run) and report (on 

successful run) han-

dlers 

Backup and restore 
Undo/Redo recipes 

can be added 

Master/agent 

and 

standalone 

Salt 
SaltStack orches-

tration runner 

Built in exceptions, 

event listeners, and 

reactors 

Backup and restore 
Undo/redo can be 

added 

Master/agent 

and 

standalone 

Ansible Orchestration 
Handlers based on 

file changes 

Backup and restore 

(Ansible tower) 

Undo/redo can be 

added 
Standalone 

Mistral Orchestration 
Error handling using 

on-error clause 
Can be added 

Keeps the state, 

and undo/redo can 

be added 

Standalone 

TaskFlow Orchestration Handles flow failures 
Backup and restore 

tasks can be added 

Rollback, retry, 

and check pointing 
Library 
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they need to be applied. The upgrade coordinator uses as input the current configuration of the 

system, the change sets indicated in the upgrade request(s), the infrastructure component de-

scriptions provided by the vendors, and SLAs of the existing tenants as input to generate the 

schedule. To keep track of the upgrade requests the upgrade coordinator creates an upgrade 

request model. This model includes the change sets including the complementary changes and 

their execution status for each upgrade request. Based on the infrastructure component descrip-

tions provided, it infers any complementary changes necessary to satisfy all the dependencies 

and it identifies all the upgrade actions needed to deploy the different change sets and generates 

the runtime upgrade schedule(s). 

The upgrade engine, an engine capable of running upgrade actions on IaaS resources (e.g. An-

sible [51] cloud configuration management tool), executes the upgrade actions specified in the 

runtime upgrade schedule received from the upgrade coordinator. In section 4.3, we provided 

our evaluation of different configuration management tools that can be used as upgrade engine 

in the upgrade management framework. Note that in case of hardware resources the upgrade 

 

Figure 4.2. Upgrade management framework for IaaS cloud systems 
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engine may be limited and may require administrative assistance for actions such as replace-

ment of a piece of hardware. However, it can bring the resources to the required state and signal 

when the assistance is necessary and on which piece of hardware. 

After the execution of an upgrade schedule, the upgrade engine provides a feedback to the 

upgrade coordinator indicating the results including any failed upgrade action. Based on this 

feedback, the upgrade coordinator may create a new runtime upgrade schedule to handle the 

failed upgrade actions at the resource level, i.e. to bring them into a stable configuration. Once 

all failures are handled for the iteration the upgrade coordinator creates an Upgrade Iteration 

Report as an additional (to those used for the first iteration) input for the next iteration of the 

runtime upgrade schedule(s) generation. The upgrade iteration report indicates the failed and/or 

isolated-only resources and failed undo units of the iteration. Based on these, in the subsequent 

iteration(s) the upgrade coordinator can issue the retry or undo operations as appropriate at the 

system level considering all the relevant dependencies including those defined by the grouping 

of requested changes in the upgrade request. 

Our proposed upgrade management framework also supports continuous delivery. That is, new 

upgrade requests may be requested at any time during an ongoing upgrade. The upgrade coor-

dinator takes into account these new upgrade requests, adds them to the upgrade request model, 

infers the complementary changes as necessary, and extracts the upgrade actions corresponding 

to the changes. The new requests will be applied to the system in subsequent iterations as ap-

plicable. 

4.5 Summary 

In this chapter, we elaborated how we handle different challenges posed by dependencies and 

possible incompatibilities along dependencies, by upgrade failures, by the dynamicity of the 
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IaaS cloud system, and by the amount of used extra resources. As a requirement to automate 

the upgrade process, we presented our evaluation of several configuration management tools 

that can be used to apply the upgrade actions in an IaaS cloud system.  We also presented an 

overview of our proposed framework, to manage the whole process of the IaaS cloud upgrade 

while considering SLA constraints of availability and elasticity. Since this framework auto-

mates the entire process of the upgrade, it handles all the aspects of upgrades of the IaaS cloud 

systems in an integrated manner. It generates the runtime upgrade schedules and executes the 

upgrade actions indicated in the upgrade schedule to carry out the upgrade requests specified 

by the administrator in an iterative manner.   

In the next chapter, we propose an approach for the coordination of the upgrade process.
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Chapter 5  

5 Approach for IaaS Cloud Upgrade 

The approach we propose for the upgrade of IaaS cloud systems is used by the upgrade coor-

dinator in our proposed upgrade management framework, to coordinate the upgrade of all kinds 

of IaaS resources under SLA constraints for availability and elasticity. In this approach, the 

upgrade requests of the system administrator are handled in accordance with the SLAs with the 

tenants, the current status of the system, and the infrastructure component descriptions accom-

panying the products delivered by vendors. The proposed approach identifies the necessary 

upgrade actions for each IaaS resource to be upgraded and the upgrade methods appropriate 

for applying those actions in an iterative manner. In case some upgrade actions fail during 

execution, the recovery operations (i.e. retry and undo) are handled automatically to bring the 

system to a consistent configuration. This approach is capable to handle new upgrade requests 

even during an ongoing upgrade, which makes it suitable for continuous delivery. 

Note that in our work, similarly to the Software Management Framework (SMF) [52], we clas-

sify the upgrade operations into two categories, online and offline. Online operations can be 

performed without taking the resources out of service and without any impact on availability 

of the system. In contrast the offline operations require the resources to be taken out of service, 

and this may impact the availability of the system. Hence, we assume online upgrade operations 
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can be done at any time without being scheduled through our approach, however offline up-

grade operations have to be coordinated through our proposed approach. 

Before devising our proposed approach applicable to all kinds of IaaS resources, we first de-

fined an initial method [62] for upgrading the IaaS compute (such as the hypervisor, the host 

OS, or the physical host) while maintaining its availability according to some SLA parameters. 

In this method we tackled the challenge of dynamicity of the cloud environment by regulating 

the pace of the upgrade process according to the state of the IaaS cloud system. This method 

uses the rolling upgrade method with dynamic batch sizes to eliminate the interferences be-

tween autoscaling and the upgrade process. The upgrade starts/resumes if and only if resources 

can be taken out of service and upgraded without jeopardizing their availability even in case of 

resource failures and requests to scale out within the limit of the SLAs. We generalize this 

method [62] to handle the upgrade of all kinds of IaaS resources with various dependencies 

and we defined our final proposed approach accordingly.  

In this chapter, we present our approach for the coordination of the upgrade process for all 

kinds of IaaS resources, after providing the definitions of related concepts. In addition, we 

prove informally, but in a rigorous manner, four main properties of the proposed approach.  

This is done through the analysis of the steps and the flowcharts defining the method. 

5.1 Definitions 

5.1.1 IaaS Cloud System 

We view an IaaS cloud system as: a set of physical hosts providing compute services (Mcompute), 

a set of physical hosts providing virtual storage (Mstorage), a set of physical hosts dedicated to 

network services (Mnetwork), another set dedicated to controller services (Mcontroller), and a set of 

other physical resources for networking (e.g. switch, router) and storage (physical storage). 
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Note that Mcompute and Mstorage may intersect. The size of any of these sets may change over time 

and during the upgrade due to failures and/or the upgrade itself. We assume that all the physical 

hosts in Mcompute have a capacity of K VMs. Table A.1 of the Appendix I lists the definitions of 

all the parameters used in our proposed approach. 

The number of tenants may also vary over time including during upgrade. As we apply the 

changes in an iterative manner, we denote by Ni the number of tenants served by the IaaS cloud 

at iteration i. A given tenant has a number of VMs which may vary between minn and maxn. 

They represent, respectively, the minimum and the maximum number of VMs of the nth tenant 

that the IaaS provider agreed to provide in the respective SLA. The SLA of each tenant also 

specifies a scaling adjustment sn value and a cooldown duration cn, which represent the maxi-

mum size of the adjustment in terms of VMs in one scaling operation to be satisfied by the IaaS 

provider and the minimum amount of time between two subsequent scaling operations, respec-

tively. These parameters define the SLA elasticity constraints. 

As mentioned earlier, we assume that the availability of the applications deployed in the VMs 

is managed by an availability management solution. The requirements of the application level 

redundancy are expressed towards the IaaS cloud as VM placement constraints (i.e. as anti-

affinity groups), which must be respected during the upgrade. Note that the VMs of each tenant 

may form several anti-affinity placement groups. 

In our work we assume that the IaaS cloud system is configured as highly available system and 

the availability of VMs is maintained by an orchestration service (e.g. heat service in Open-

Stack platform) or any VMM which has the capability of bringing up a new VM in its initial 

state to replace the old one using VM image whenever a VM goes down. Note that since the 

availability of the application is maintained by an application level HA management solution, 

the state of the VM is not our focus. More insight can be found in [3]. 
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Figure 5.1 shows an example of a system with 15 hosts. Nine of these hosts participate in the 

creation of a VMware Virtual Storage Area Network (VSAN) [63] – the storage infrastructure 

supporting VM operations in the system (|MStorage|=9) such as migration, while 10 of the hosts 

provide compute services (|Mcompute|=10). Thus, host 6 through host 9 belong to both sets. In 

addition to these resources, there are dedicated network resources: switches and routers shown 

at the bottom of the figure. The example assumes four tenants each with their scaling policy. 

Note that the controller hosts (VM supporting controllers) are not shown in Figure 5.1. 

As mentioned in Chapter 4, an upgrade request is specified as collection of change sets, i.e. a 

set of change sets, to be performed on the resources of the IaaS system. Considering our illus-

trative example of Figure 5.1, an administrator may want to make two changes: (1) upgrade 

the virtual shared storage from VSAN to Ceph [50]; and (2) upgrade the networking infrastruc-

ture from IPv4 to IPv6. These changes of the virtual shared storage and the networking infra-

structure are independent of each other, therefore the administrator separates them into two 

change sets that compose the upgrade request. For each set, the complementary changes will 

 

Figure 5.1. An illustrative example 
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be inferred automatically from the infrastructure component descriptions provided by the in-

frastructure vendors. For example, the second change implies the upgrade of all routers, 

switches and hosts to IPv6. These are added as complementary changes to the second change 

set. 

5.1.2 Resource Upgrade Catalog 

To collect all the information necessary for the upgrade of the IaaS cloud system, we define 

and use a Resource Upgrade Catalog. This catalog includes all the infrastructure component 

descriptions provided by the vendors for all the components already deployed in the system 

and the products (aka resources) to be added to the system. Whenever an upgrade request re-

ferring to a new product (as a target version of a change) is initiated by an administrator, the 

product and its accompanying infrastructure component descriptions are added to the resource 

upgrade catalog. 

In our illustrative example, the resource upgrade catalog includes the infrastructure component 

descriptions for VSAN, Ceph, IPv4, and IPv6. Using these infrastructure component descrip-

tions, the scripts for upgrading the virtual shared storage from VSAN to Ceph, as well as up-

grading the networking infrastructure from IPv4 to IPv6 can be derived. The same applies also 

for downgrading the virtual shared storage from Ceph to VSAN and the networking infrastruc-

ture from IPv6 to IPv4, should an undo become necessary. 

5.1.3 Resource Graph 

To coordinate the upgrade process and to create the runtime upgrade schedule(s), one has to be 

aware of the configuration of the system as well as the status of the ongoing upgrades. For this 

purpose, we define the Resource Graph (RG) which maintains the state of the upgrade process 

with respect to IaaS resources and their dependencies. 
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A RG is a directed graph (R, D), where R is the set of vertices and D is the set of edges. The 

vertices represent the resources in the system (existing or to be added). A vertex (resource) is 

characterized by the following attributes: 

• Resource/id: the id of the resource. It is created when a new resource is added to the 

RG. For existing resources it is collected from the configuration. 

• Resource-kind: the kind of resource (e.g. compute host, switch, router, etc.) in the in-

frastructure resource models as described in Chapter 3 (section 3.1). 

• Modification-type: it indicates whether the resource is to be upgraded, added, or re-

moved by the requested change, or it remains unchanged. It can have one of the follow-

ing values: “Upgrade”, “Add”, “Remove”, or “No-change”. As the upgrade proceeds, 

the value of this parameter is updated to reflect the first one among the remaining 

changes to be applied to the resource. 

• Activation-status: the activation status of the resource may be active (i.e. in service) or 

deactivated (i.e. out of service).  

• Undo-unit-ids:  the set of undo units the resource belongs to. Since there may be several 

change sets impacting the same resource, each resource may be associated with several 

undo units. 

• Actions-to-execute: is an ordered list of execution-levels where each execution-level is 

an ordered list of upgrade actions to be executed on the resource. This allows to define 

two levels of ordering for upgrade actions, within an execution-level and between exe-

cution-levels. 

• Number-of-failed-upgrade-attempts: is the counter of the failed upgrade attempts for 

the resource per undo unit. 
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• Related-resource: indicates the relation between a new and a current resource, where 

the new resource is replacing the old one. Note that this parameter is only used to con-

trol the process of PPU, where we keep both configurations of a VM supporting infra-

structure resource for the time of its upgrade to maintain the continuity of its service. 

The related resource of the old resource will be the new resource, and vice versa. 

• Is-isolated: indicates whether the resource is isolated or not. 

• Is-failed: indicates whether the resource is failed or not. 

D is a set of edges, each representing a dependency between resources, either in the current or 

in the future configuration. The edges can be of different types to capture the different types of 

dependencies in an IaaS cloud system, as defined in Chapter 3: container/contained depend-

ency, migration dependency, composition dependency, aggregation dependency, communica-

tion dependency, controller dependency, storage dependency, VM supporting infrastructure 

(VM supporting controller or VM supporting storage), and peer dependency between re-

sources. 

An edge dij denotes a dependency of resource Ri on resource Rj, i.e. it is directed from the 

dependent to the sponsor resource. A symmetrical dependency (peer) is represented by a pair 

of edges between two resources, i.e. dij and dji. Each edge has two main parameters of: 

• Presence: it indicates whether a dependency exists in the current configuration, in the 

future configuration, or in both. It is used to properly handle the requirements of exist-

ing and future dependencies in the system. It can hold the values of “future”, “current”, 

or “current/future”. 

• IncompatibilityFactor: it indicates an incompatibility along the dependency, which 

needs to be resolved during the upgrade. Note that an incompatibility can only occur 
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along a dependency with a presence value of “current/future”. It is used to identify the 

upgrade units. It can hold the values “true” or “false”. 

Note that in general we do not upgrade the dependencies, except the ones that realize IaaS 

resources. The edges representing such dependencies will include additional parameters similar 

to vertices (e.g. modification-type, actions-to-execute) for managing their upgrade. Since com-

munication dependency realize a physical or virtual link, the edges representing a dependency 

from this type will have additional parameters representing the upgrade status of the link. 

Figure 5.2 shows an example RG reflecting our illustrative example given in Figure 5.1, after 

the upgrade request was received. In this RG, for example, vertices of R1 to R15 represent the 

hypervisors running on host1 to host15 represented by vertices R16 to R30. This hosting rela-

tion (i.e. container/contained dependency) is represented by the edges between the vertices e.g. 

 

Figure 5.2. Partial resource graph for the illustrative example 
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R1 and R16. For readability in this graph only part of the configuration of the system and the 

modification-types for the requested upgrade are represented. 

As we mentioned in Chapter 4, a product (e.g. Ceph) delivered by a vendor may be mapped to 

one or more IaaS resources. In this example, we aim to upgrade the existing VSAN virtual 

shared storage (represented by R46) to Ceph (represented by R45), which are both compound 

products delivered and described by their vendors. In the current configuration, storage hosts 

R16 to R24 are aggregated into the virtual shared storage of R46, while in the future configu-

ration R16 to R20 will be aggregated into R45. R46 serves as a VM supporting storage to the 

compute hosts R21 to R30 and needs to be replaced by R45. The resources for the current 

configuration are mapped to the VSAN product and its infrastructure components, while those 

for the future configuration are mapped to the Ceph product and its components. 

Since the virtual shared storage is an infrastructure resource supporting the VM operations, and 

the VSAN cannot be upgraded to Ceph in place due to incompatibilities, the upgrade coordi-

nator uses the PPU method for the upgrade. As mentioned in Chapter 4, this method applies 

the parallel universe method locally to a subsystem instead of creating a complete IaaS cloud 

system as a parallel universe.  We use two vertices for representing the resource, one for the 

old configuration with modification-type of remove (e.g. R46), and one for the new configura-

tion with modification-type of add (e.g. R45). To deploy the Ceph product in our IaaS system 

the mapping of the IaaS resources is identified based on the requested change, the RG and the 

requirements indicated in the Ceph component descriptions. The different components of the 

new Ceph product will be mapped to the storage hosts (represented by R16 to R20), the com-

pute hosts (represented by R21 to R30), and to the new shared storage (represented by R45). 

After a successful mapping any additional changes required for consistency will be derived and 

added to the change set. Otherwise, the change set cannot be applied and marked as failed. 
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5.1.4 Upgrade Methods  

As we defined in Chapter 4, an upgrade unit identifies a group of resources that have to be 

upgraded using an appropriate upgrade method to handle the potential incompatibilities during 

the transition between the current and future configuration (the process of identifying upgrade 

units will be elaborated in Section 5.2.1). Each upgrade unit may include several resources with 

different dependencies. According to the types of existing dependencies on which incompati-

bility issues may arise, a specific upgrade method has to be selected to prevent communication 

between resources of the incompatible versions. For this purpose, we defined upgrade method 

templates as follow: 

5.1.4.1 Upgrade Method Templates 

Split mode: we use split mode [31] to avoid incompatibilities along certain dependencies when 

the resources in an upgrade unit have possible incompatibilities along peer dependency and /or 

along sponsorship dependency (except communication dependency). In both situations follow-

ing two conditions have to be valid: 1) there must be no incompatibilities along communication 

dependency in the whole upgrade unit, and 2) there must be no more than two constituent 

resources participating in an aggregation dependency in the whole upgrade unit. Otherwise, 

other upgrade methods have to be used depending on the situations. 

As mentioned in Chapter 4, in split mode the resources of an upgrade unit are divided into two 

partitions which are upgraded one at a time. The order of deactivation and activation of the 

partitions is orchestrated to avoid introducing incompatibilities, by having only one of the par-

titions active at any given time until both partitions are upgraded.  
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Since in our work we aim to upgrade the system with least impact on the availability of the 

services given by the IaaS cloud system, we try to minimize the impact of the upgrade of re-

sources in an upgrade unit by keeping at least half of the resources of the upgrade unit in ser-

vice. To account for this, following rules have to be valid for each partition while considering 

the other partition out of service: 1) the number of in service resources in the partition has to 

be floor/ceiling of half of the total number of in service resources of the whole upgrade unit, 

and 2) at least one resource out of each peer resources (direct or indirect) remains in service in 

the partition. Note that since aggregate resources (i.e. constituents) are considered peer re-

sources, there must be only one aggregate resource in each partition. 

For more clarification, let us consider a few examples of resource partitioning for upgrade units 

with split mode, as shown in Figure 5.3: 

a) The upgrade unit includes four peer resources (R1, R2, R3, and R4) with possible in-

compatibilities along the peer dependencies, as shown in Figure 5.3.a. According to the 

aforementioned partitioning rules for split mode, each partition will include at least two 

out of four resources. One possible partitioning for this upgrade unit is to have R1 and 

R2 in partition 1, and R3 and R4 in partition 2.  

b) The upgrade unit includes two peer resources (R7 and R8), with six sponsorship de-

pendent resources (R1, R2, R3, R4, R5, and R6) with possible incompatibilities along 

all dependencies as shown in Figure 5.3.b. Note that, the sponsorship dependencies are 

any subcategories of sponsorship dependency except communication dependency. In 

this example, each partition has to include one of the peer resources of R7 and R8, and 

floor/ceiling of half of the number of dependent resources (i.e. three dependent re-

sources). Since there is no peer dependencies between dependent resources, different 
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combination of dependent resources can be in each partition, as long as including 

floor/ceiling of half of the number of dependent resources. 

c) The upgrade unit includes similar resources as of example b, with the difference of 

having peer dependencies between some of sponsorship dependent resources, as shown 

in Figure 5.3.c. Here, we have to avoid having the peer resources in the same partition. 

So, the same partitioning as example b is not valid for this example. One of the possible 

partitioning will be grouping R7, R1, R3, and R5 into partition 1, and grouping R8, R2, 

R4, and R6 into partition 2. 

 

Figure 5.3. Examples of resource partitioning for upgrade units with split mode 
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d) The upgrade unit includes two levels of sponsorship dependencies (any type except 

communication dependency) with possible incompatibilities along them, as shown in 

Figure 5.3.d. To keep at least half of the resources of the upgrade unit in service and to 

maintain the availability of the services provided by the peer resources, each partition 

will include one of the most relative sponsor resources (R13 and R14) and half of their 

direct or indirect dependent resources (R1 to R12), while considering the constraints of 

peer dependencies between resources.  

The steps of the split mode are as follow: 

1) Take the first partition out of service (i.e. deactivating) and upgrade it. 

2) Take the second partition out of service (i.e. deactivating the second partition) and put 

back the first partition in service (i.e. activating the first partition). Then, upgrade the 

second partition, and put them back in service. 

Modified split mode: We use this method, when there are resources with possible incompati-

bilities along communication dependencies in an upgrade unit, and there is no more than two 

constituent resources participating in an aggregation dependency in the whole upgrade unit. 

This method implements the split mode upgrade method with some modifications in the parti-

tioning of resources, and activation/deactivation of them.  

As mentioned earlier, split mode can be used for handling possible incompatibilities along most 

sponsorship dependencies, except communication dependencies. When there are incompatibil-

ities along communication dependencies, the application of split mode is problematic. In the 

partitioning of the split mode, communication dependent resources, as well as others, will be 

divided between two partitions to keep at least half of the resources of the upgrade unit in 

service. The problem arises in applying the second step of split mode, when the old version of 



69 

 

the communication dependent(s) resources have to be upgraded at the same time as remaining 

old version communication sponsor(s) in the second partition. The old version communication 

dependent(s) resources will not be reachable from the sponsor(s) of the new version (due to 

incompatibilities) and nor from the remaining sponsor(s) with the old versions (due to their 

presence in the same partition). Indeed, this is caused by the difference of communication de-

pendency and other subcategories of sponsorship dependencies; the communication depend-

ency realizes the physical or virtual link between resources and the dependent resources may 

lose the connectivity to the network without the sponsor resource. 

To resolve the problem while addressing the possible incompatibilities along this type of de-

pendency, we split the second partition (to be upgraded in step 2 of split mode) into two or 

more partitions depending on the existing levels of communication dependencies (with possi-

ble incompatibilities along) in that partition. When there are possible incompatibilities along 

communication dependency, the communication dependent and sponsor resources have to be 

in separate partitions. Similar to split mode, at least one resource out of each peer resources 

have to be in a separate partition. Note that first partition will be the same as first partition in 

split mode. We do not need to split the first partition, since the communication dependent re-

sources in the first partition are reachable from their communication sponsors of the old version 

residing in the other partitions during upgrade of the first partition. For more clarification, let 

us consider a few examples of resource partitioning for upgrade units with modified split mode, 

as shown in Figure 5.4. In the example upgrade units, we assume there are incompatibilities 

along the communication dependencies and there are no more than two constituent resources 

in each upgrade unit; thus the modified split mode have to be used. 
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a) The upgrade unit includes two peer resources (R7 and R8), with six communication 

dependent resources (R1, R2, R3, R4, R5, and R6) with possible incompatibilities along 

all dependencies, as shown in Figure 5.4.a. Since the upgrade unit includes one level of 

communication dependency, the resources will be divided into three partitions. One of 

the possible partitioning will be grouping R7, R1, R2, and R3 into partition 1, grouping 

R4, R5 and R6 into partition 2, and having R8 in partition 3. Note that in partition 1, 

the communication dependent resources (R1, R2, and R3) can be grouped and upgraded 

 

Figure 5.4. Examples of resource partitioning for upgrade units with modified split mode 
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in the same partition as one of their communication sponsors (R7), since they can be 

reached through their other communication sponsor (R8) at the time of upgrade. 

b) This example is similar to example a, with the difference of having peer dependencies 

between some of communication dependent resources, as shown in Figure 5.4.b. We 

have to avoid having the peer resources in the same partition. Thus, the same partition-

ing as example a will not be valid for this example. One of the possible partitioning will 

be grouping R7, R1, R3, and R5 into partition 1, grouping R2, R4, and R6 into partition 

2, and having R8 in partition 3. 

c) The upgrade unit includes two levels of communication dependencies with possible 

incompatibilities along them, as shown in Figure 5.4.c. Thus, the resources will be di-

vided into four partitions having the communication dependent and sponsor resources 

in separate partitions, expect for partition 1. Note that we have to take into account the 

partitioning constraints regarding peer resources. One of the possible partitioning will 

be as follow: partition 1 including one of the most relative sponsor resources (R13) and 

half of their direct or indirect dependent resources (R9, R11, R1, R3, R5 and R7), par-

tition 2 including the remaining most relevant communication dependent resources (R2, 

R4, R6 and R8), partition 3 including the remaining direct communication sponsors of 

partition 2 (R10 and R12), and partition 4 including the remaining direct communica-

tion sponsors of partition 3 (R14).  

d) In this example, upgrade unit includes several levels of sponsorship dependencies, as 

shown in Figure 5.4.d. In contrary to the example c, there is only one level of commu-

nication dependency in the upgrade unit, while the other level is any subcategory of 

sponsorship dependency except communication. Thus, the resources will be divided 

into three partitions. One of the possible partitioning will be grouping R13, R9, R11, 

R1, R3, R5 and R7 into partition 1, grouping R2, R4, R6, R10 and R12 into partition 2, 
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and having R14 in partition 3. Note that R2, R4, R6, and R8 can be in the same partition 

as R10 and R12, since there are no communication dependencies between these two 

sets of resources. However, R10 and R12 have to be in the separate partition from R14, 

since communication dependent resources cannot be in the same partition as their com-

munication sponsors, expect for partition 1.  

The partitions will be upgraded according to their numbers; the first partition (i.e. partition 1) 

will be upgraded first and then the partition with most relative communication dependent re-

sources of the old version (i.e. partition 2) will be upgraded next. The upgrade process will 

continue by upgrading the partition including the communication sponsors of the previous par-

tition, until reaching the last partition including the most relative communication sponsor re-

sources.  

In addition to the different resource partitioning in the modified split mode, the prerequisite 

actions for handling incompatibilities during the upgrade of each partition differs from the split 

mode. The modified split mode can be applied in two different ways based on the availability 

of remote link management in the system (i.e. enabling/disabling the link): 

• Modified split mode without remote link management: when remote management on 

the communication links is not available, we prevent introducing the incompatibilities 

by deactivating and activating of the resources of the incompatible versions. After up-

grading each partition, the resources of the partitions will remain deactivated, until up-

grading the last partition (which includes the remaining most relative communication 

sponsor resources of the old version). The last partition will be taken out of service 

while putting back all the previously upgraded partitions in service. However, the de-

activation of the last partition is prerequisite for activation of the other partitions. An 
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upgrade unit will have complete outage while applying the modified split mode without 

remote link management. Thus, additional resources have to be used to compensate the 

impact of such upgrade. 

• Modified split mode with remote link management: when remote management on the 

communication links is available, we prevent the possible incompatibilities during the 

upgrade of partitions by deactivating or activating the communication links between 

resources of the incompatible versions. Before upgrading each partition we disable the 

communication link between the resources being upgraded in the current partition with 

their communication dependent resources in the other partitions. After upgrading each 

partition and before putting them back in service, we disable the communication link 

between the upgraded resources (i.e. new version) of the partition with their communi-

cation sponsor resources (i.e. old version) in the other partitions. Subsequently, the 

communication link of the upgraded resources towards other upgraded partition will be 

enabled, before enabling the upgraded resources.  

Modified split mode with multiple constituent resources: This method is used when we have 

incompatibilities along peer or sponsorship dependencies, however we are unable to use split 

mode or modified split mode due to existence of more than two constituent resources partici-

pating in an aggregation dependency in the upgrade unit. Since there is restriction to take more 

than one constituent resource out of service at a time, no more than one constituent resource 

can stay in the same partition, hence the same partitioning cannot be applied. In modified split 

mode with multiple constituent resources, we group the resources into partitions similar to 

modified split mode, exception for the constituent resources. Each constituent resource will be 

in a separate partition. In other words several partitions in the presence of constituent resources, 
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will correspond to a single partition in modified split mode with similar number of resources 

without being constituents.  

The upgrade order of the partitions will be similar as the corresponding partitions in the modi-

fied split mode, while upgrading constituent resource partitions one at a time. Note that de-

pending on the availability of remote link management, the possible incompatibilities will be 

avoided by either enabling/disabling the resources itself or the communication link between 

them. 

Rolling upgrade: As mentioned in the background, in rolling upgrade the system is partitioned 

into subsystems and upgraded one at a time while the others provide the services [27]. In our 

approach we use this method when we do not have incompatibilities. Since we group the re-

sources into upgrade units when there are incompatibilities along dependencies, the resources 

without possible incompatibilities along their dependencies will be in separate upgrade units. 

In other words, such an upgrade unit will include a single resource, and have to be upgraded 

using rolling upgrade method. Note that in a given iteration, depending on the current state of 

the system and the SLA constraints for availability and elasticity, multiple upgrade units with 

rolling upgrade method can be selected for the upgrade at the same time. 

5.1.4.2 Required Additional Resources for Upgrade Methods  

All of the upgrade methods handling possible incompatibilities, except the modified split mode 

with remote link management, prevent the incompatibilities by keeping the resources of each 

partition deactivated after the upgrade. This result in service degradation or service outage for 

the upgrade units. The split mode will reduce the service capacity of the upgrade unit to its 

half, while modified split mode without link management (including modified split mode with 

multiple constituent resources) will result in the outage of upgrade unit for duration of the 
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upgrade. On one hand side additional resources are required as prerequisite for supporting the 

upgrade methods handling incompatibilities. On the other hand, the amount of required addi-

tional resources has to be minimized to reduce the cost of the upgrade. We assume there are 

minimum dedicated additional resources in the system to be used for handling incompatibili-

ties. We calculate this minimum number based on the existing upgrade units of the system and 

considering the amount of service degradation (in terms of compute hosts) while applying the 

appropriate upgrade methods. To account for this, we identify the upgrade unit with the maxi-

mum service degradation in terms of compute hosts, and we consider this amount of compute 

hosts as the minimum required additional resources dedicated for handling incompatibilities 

throughout all the upgrades in the system. Thus, the upgrade of some of the upgrade units may 

be delayed due to limitation of available extra resources.  

In the next section, we elaborate the detailed approach for upgrading IaaS cloud system. The 

flowcharts of our approach are given from Flowchart 5.1 to Flowchart 5.4. 

5.2 Detailed IaaS Upgrade Approach 

To maintain availability, the IaaS cloud system has to be upgraded using an iterative process.  

Figure 5.5 illustrates the iterative aspect of our IaaS upgrade approach used in the upgrade 

coordinator to coordinate the upgrade process. In each iteration, the upgrade coordinator goes 

through the following four steps to identify the resources to upgrade in the current iteration: 

• Step 1- create/update the resource graph, 

• Step 2- group the IaaS resources for upgrade, 

• Step 3- select the batch of IaaS resources for upgrade, and 

• Step 4- select the batch of VMs for migration. 
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In each iteration, Step 1 identifies the information necessary for the upgrade of the IaaS re-

sources by creating or updating the RG. This graph is created in the initial iteration and then 

updated in each subsequent one. The inputs for this step in the initial and in the subsequent 

iterations, while similar, are not the same. In the initial iteration, the RG is created according 

to the current configuration of the system, the upgrade request, and the infrastructure compo-

nent descriptions provided by vendors. In the subsequent iterations, the upgrade request model 

including the state of ongoing upgrade requests and the upgrade iteration report indicating the 

results of the previous iterations are used as additional inputs. Among others the upgrade iter-

ation report indicates the failure of upgrade actions of the previous iteration, as well as the 

failed and isolated-only resources, based on which undo/retry operations can be initiated as 

necessary. 

As mentioned earlier, the configuration of the system may also change between two subsequent 

iterations independent of the upgrade process due to live migrations, failures, and scaling op-

erations. Thus, in each iteration the RG is updated based on the current configuration of the 

 

Figure 5.5. The iterative process of the IaaS upgrade approach 
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system. The RG update also takes into account any new upgrade request and other updates to 

the upgrade request model. 

In Step 2, from the RG the resources that need to be upgraded at the same time are identified 

based on their dependencies. The vertices of these resources are merged to coarsen the RG into 

an upgrade Control Graph (CG), where each vertex represents a grouping of one or more re-

sources that need to be upgraded at the same time. The CG is created in the initial iteration and 

updated in the subsequent ones to reflect the updates of the RG. A vertex of the CG maintains 

all the information of the vertices of the RG from which it was formed. For example, for the 

resource groups the actions-to-execute attribute is formed by merging per execution level the 

actions-to-execute attributes of the resources forming the group. In the subsequent steps the 

resources that can be upgraded in the current iteration will be selected according to the resource 

groups of the CG and their dependencies. 

In Step 3, first the IaaS resource groups that can be upgraded without violating any of their 

dependency requirements are selected to form an initial batch. However, because of SLA con-

straints maybe only a subset of the initial batch can be upgraded resulting in a final batch. 

Accordingly, a runtime upgrade schedule is generated consisting of the upgrade actions for the 

final batch. This upgrade schedule is provided to the upgrade engine for execution. After the 

execution of the upgrade schedule, the upgrade engine provides feedback, including any failed 

upgrade action, to the upgrade coordinator. Based on this feedback, the upgrade coordinator 

may create a new runtime upgrade schedule to handle the failed upgrade actions at the resource 

level, i.e. to bring them into a stable configuration. Once resource level actions are not appro-

priate or necessary for the given iteration, the upgrade coordinator proceeds to Step 4.  

In Step 4 the VMs hosted by the infrastructure are considered. Whenever during upgrade the 

compute hosts have been partitioned, a batch of VMs may be selected in this step for migration 



78 

 

and possibly upgrade. Since the upgrade of both the VM supporting infrastructure resource and 

the hypervisor affect the compute hosts on which the VMs are hosted, while they are upgraded 

the IaaS compute hosts are partitioned into an old and a new partitions. If these upgrades do 

not necessitate VM upgrade, in this step a selected batch of VMs is migrated from the old 

partition to the new one as appropriate. If VM upgrade is also necessary due to incompatibilities 

between the versions, then the VMs are also upgraded in the process. The selection of the batch 

of VMs takes into account the results of Step 3. To respect application level redundancy, we 

can impact at a time only a limited number of VMs per anti-affinity group (one or as appropriate 

for the SLA). This means that the selected batch of VMs might need to be upgraded/migrated 

in sub-iterations. Thus, the upgrade coordinator generates an upgrade schedule for each sub-

iteration.  As in Step 3, the upgrade coordinator sends each schedule to the upgrade engine for 

execution and based on feedback received generates the next schedule. If an upgrade action 

fails, the new upgrade schedule also includes the actions reversing the effects of completed 

upgrade actions for the failed action. The process continues until all the VMs in the selected 

batch have been handled. If the compute hosts are not partitioned, this step is skipped all to-

gether.  

At the end of each iteration the upgrade coordinator updates the upgrade request model, the 

RG and the CG, and generates the upgrade iteration report to reflect the execution results of all 

schedules within that iteration. The upgrade iteration report indicates the failed and/or isolated-

only resources and failed undo units of the iteration. Based on this report, in the subsequent 

iteration(s) the upgrade coordinator can issue the retry or undo operations as appropriate at the 

system level considering all the relevant dependencies including those defined by the grouping 

of requested changes in the upgrade request. 
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If new upgrade requests are issued during the iteration, they will be taken into account in sub-

sequent iterations as applicable. The upgrade process terminates when all upgrade requests 

indicated in the upgrade request model have been handled and no new upgrade request has 

been received, i.e. all change sets of all the upgrade requests received have been applied suc-

cessfully or undone unless their target resources failed.  

Hereafter, we elaborate more on each of the steps. 

5.2.1 Step 1 - Creating/Updating the Resource Graph  

The tasks for creating/updating the RG in this step are indicated from task 1 to 12, within 

flowcharts given in Flowchart 5.1 and Flowchart 5.2. As we mentioned earlier, the upgrade 

 

Flowchart 5.1. Creating the RG in the initial iteration in Step 1 
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requests received from the administrator are processed and aggregated into the upgrade request 

model, which is used as input to create and update the RG.  

For creating the RG, all existing resources (i.e. vertices) and dependencies (i.e. edges) are ex-

tracted from the current configuration of the system. Their parameters are derived from the 

system configuration (e.g. resource-id) and the upgrade request model (e.g. modification-type). 

The resources to be added are determined from the change sets in the upgrade request model. 

 

Flowchart 5.2. Updating the RG in the subsequent iterations in Step 1 and grouping the IaaS resources in Step 2 
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For them the parameters and dependencies are derived from the upgrade request model and the 

infrastructure component descriptions provided by the vendor. 

For example, whenever the VM supporting infrastructure resources cannot be upgraded in 

place and we use PPU, in the RG two vertices are created to represent the old and the new 

configurations of the VM supporting infrastructure. Their modification-type is set respectively 

to remove and to add. Thus, the old configuration of the VM supporting infrastructure re-

source(s) will be replaced by the new one as a result of the upgrade. 

To satisfy the requirements indicated by the vendors, each change set is verified for complete-

ness and any missing changes are added to the upgrade request model. These are also reflected 

in the RG. In this process each change set is assigned to a unique undo unit. 

The actions-to-execute attribute of each resource is determined using the infrastructure com-

ponent descriptions kept in the resource upgrade catalog. If the required upgrade actions cannot 

be applied to a resource in a single iteration due to ordering constraints, the upgrade actions 

are split into different execution levels to enforce the ordering. 

To avoid the communication between resources of incompatible versions during their upgrade, 

the upgrade of dependent resources with incompatibilities need to be carried out using an up-

grade method, which handles appropriately these incompatibilities. For this, we first identify 

such resources by traversing the RG and then group them into an upgrade unit with which we 

associate an appropriate upgrade method. We start from several entry points in the RG. These 

entry points are the leaves that do not have sponsorship dependency towards other resources 

within RG, and their modification-type is not “No-change”. For each of these entry points, a 

unique upgrade unit id is assigned. Note that the resources with symmetrical dependencies 

(peer resources) will belong to the same upgrade unit (with the same upgrade unit id), if there 

are incompatibilities along symmetrical dependencies or there are incompatibilities along the 



82 

 

sponsorship dependencies of the peer resources. We traverse through the sponsorship depend-

encies to assign upgrade unit id to the remaining resources in the RG. If there is no incompat-

ibilities along sponsorship dependency (IncompatibilityFactor is false), the dependent resource 

will belong to a new upgrade unit. Otherwise, dependent resource will have the same upgrade 

unit of its sponsor. Note that, since we handle incompatibilities during the upgrade of VM 

supporting infrastructure resources (i.e. VM supporting storage and controller) in a global way 

throughout our approach using PPU method, we exclude VMs and VM supporting infrastruc-

ture resources from the upgrade unit assignment process. After identifying the upgrade units, 

the appropriate upgrade method for each upgrade unit will be selected according to the upgrade 

method templates describes in Section 5.1.4.1. 

To update the RG in a subsequent iteration, first the current configuration of the system is 

reflected in the RG for any changes that occurred in the system. The upgrade iteration report 

of the just completed iteration helps in identifying any retry and system level undo operations 

needed. The RG is updated to include upgrade actions necessary for a retry operation on a 

resource with a failed upgrade attempt, if the number of failed upgrade attempts is less than the 

retry thresholds of the related undo unit. Otherwise, the resource is isolated. Whenever, the 

number of isolated-only and failed resources for an undo unit reaches the undo threshold, all 

the changes already applied to the resources of the undo unit has to be undone. In addition, the 

RG is updated to include upgrade actions for an undo operation for any undo unit whose up-

grade did not complete within the time limit indicated as max-completion-time. This is meas-

ured from the time of the time stamp of the upgrade request with the corresponding change set. 

These undo units and the associated change sets are also marked as failed. 

While updating the RG with respect to an undo operation, the actions-to-execute attributes of 

all the affected resources (excluding the failed resources) in the failed undo unit are adjusted 
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so that they will be taken to the undo version indicated for the resources. These undo actions 

are organized into the first execution level of the resources so that they will be executed first. 

Since there might be upgrade actions associated with other change sets in the actions-to-exe-

cute attributes of these resources, which were not completed yet, they need to be adjusted as 

well. For this, the upgrade actions of other execution levels of the resources are re-evaluated 

with respect to the potentially new source and target versions as well as the upgrade actions are 

updated based on the component descriptions in the catalog. Isolated-only resources which are 

at the undo version are released from isolation, otherwise an attempt is made to take them to 

the undo version. If this attempt fails, they are marked as failed resources. 

As mentioned earlier, new upgrade requests are added to the upgrade request model and then 

to the RG. New upgrade requests may be targeting resources that are part of pending change 

requests. Such new upgrade request may also result in new incompatibilities. To identify these, 

we use a graph similar to the RG: The New Request Graph (NRG). It is created only from the 

new upgrade requests without considering any ongoing upgrades. We extract from the compo-

nent descriptions the upgrade actions for the new change sets and organize them into execution 

levels as required. Next, we identify any newly introduced incompatibility and create the cor-

responding new upgrade units in the NRG. We use this NRG to update the RG as follows: With 

respect to the actions-to-execute attributes of resources already in the RG, we create and append 

a new execution level for each execution level in the NRG. The newly added execution levels 

are associated with the upgrade units identified in the NRG. 

5.2.2 Step 2 - Grouping the IaaS Resources for Upgrade  

Some dependency requirements between resources necessitate that they are upgraded at the 

same time in a single iteration. To facilitate the coordination of the upgrade of these resources, 

we coarsen the RG, into the CG, as indicated in Flowchart 5.2. In the CG each vertex represents 
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a resource group, i.e. an individual resource or a group of resources of the RG to be upgraded 

at the same time. Here we provide more details on the creation/update of the CG:  

Dependency based edge contraction: During the upgrade of a container its contained re-

source(s) experience an outage in addition to the outage during their own upgrade. Likewise, 

during the upgrade of constituent resources, their composite resource experiences an outage. 

To reduce the outage time, resources with container/contained and resources with composition 

dependencies should be upgraded at the same time in a single iteration. Thus, we contract the 

edges representing such dependencies in the RG to merge the vertices representing these re-

sources into a single vertex of the CG. A vertex in the CG, representing a resource group of the 

RG, will have the same dependencies to other resources as the resources of the merged vertices 

of the RG except for the container/contained and the composition dependencies. Figure 5.6 

shows the CG corresponding to the RG given in Figure 5.2, for the illustrative example in 

 

Figure 5.6. Upgrade control graph for the illustrative example 
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Figure 5.1. An edge contraction of this type was applied to the vertices of the RG representing 

the resources R1, R16, R47, R48, R49, and R50 to coarsen them into vertex GR1 of the CG. 

Note that in Figure 5.6, the upgrade related parameters of the CG are not shown.  

Upgrade method based vertex contraction:  Some upgrade methods avoid incompatibilities by 

upgrading resources at the same time in a single iteration. We perform vertex contraction for 

such resources based on the associated upgrade methods of the first execution-level in their 

actions-to-execute attribute. In case of a vertex contraction, the resulting vertex of the CG will 

have the union of all dependencies that the resources of the group had in the RG. For example, 

the vertices representing the resources of an upgrade unit to be upgraded using the split mode 

upgrade method, will be contracted according to the sub-partitioning of the upgrade unit for 

the split mode. This allows the proper coordination of the upgrade of the resources without 

introducing incompatibilities.  

In subsequent iterations, the CG is also updated to maintain consistency with the RG. 

5.2.3 Step 3 - Selecting the Batch of IaaS Resources for Upgrade 

In this step, the batch of IaaS resources to be upgraded in the current iteration is selected con-

sidering both the existing dependencies and the SLA constraints, and applied on the IaaS re-

sources. The tasks for selecting the batch of IaaS resources are indicated from task 14 to 21, 

within Flowchart 5.3. Since VMs represent the service the IaaS cloud system provides, they 

are handled separately in Step 4 by considering different criteria. 

In this step, first if applicable, the VMs are consolidated on the compute hosts as much as 

possible to free up some hosts. In particular, if VM supporting infrastructure resources need to 

be upgraded in an incompatible way, we try to evacuate the VMs from the physical hosts in 

common between the sets of Mstorage and Mcompute, to accommodate as much as possible the PPU 
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method. Note that during VM consolidation, we have to respect the availability constraint, in-

ferred from the anti-affinity grouping, by migrating only the allowed number (e.g. one) of VMs 

at a time from each anti-affinity group. After consolidation, the RG and the CG have to be 

updated accordingly. 

To handle the dependencies during the upgrade, using the CG we need to identify the resource 

groups that can be upgraded in the current iteration without violating any of their dependencies 

 
Flowchart 5.3. Selecting the batch of IaaS resources for upgrade 
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(Gbatch). To do so in a systematic way, we first initialize Gbatch as the union of the set of CG 

vertices with remaining changes (i.e. modification-type of “Upgrade”, “Add”, “Remove”) and 

the set of CG vertices with deactivated status (i.e. need to be activated). The Gbatch will also 

include the edges representing communication dependencies with remaining changes. Note 

that as mentioned earlier the communication dependency is realized by link (virtual or physi-

cal) resource, which can be upgraded as well.   

Next, we eliminate from Gbatch the vertices, which cannot be upgraded in the current iteration 

due to some dependencies. To do so we have defined a set of rules, referred to as elimination 

rules. The elimination rules identify the non-suitable candidates in Gbatch based on the modifi-

cation-type of the resources, the upgrade method associated with the upgrade unit of the first 

execution level in the actions-to-execute attribute of the resources, the characteristics of the 

dependencies of the resources (i.e. incompatibilityFactor and presence), the activation-status 

of the resources, and the availability of additional resources required as prerequisite for the 

related upgrades. Note that more than one elimination rule may be applicable to a resource in 

the Gbatch, however the resources will be eliminated according to the first applicable rule, as we 

are applying them sequentially according to their number. 

The detailed descriptions of the elimination rules are given in Appendix II. The goal of each 

elimination rule is as follow:  

Elimination rule 1 guarantees keeping the current VM service available by avoiding selection 

of in-use physical hosts (hosting VMs) and VMs for the upgrade.  

Elimination rule 2 guarantees the satisfaction of dependency requirements before removing a 

resource from the system.  
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Elimination rule 3 guarantees the satisfaction of dependency requirements before adding a 

resource to the system.  

Elimination rule 4 guarantees the enforcement of compatibility requirements of sponsorship 

dependencies between resources.  

Elimination rule 5 guarantees the correct order of upgrading resources with respect to the up-

grade method associated with the upgrade unit of the first execution level in the actions-to-

execute attribute of the resources.  

Elimination rule 6 guarantees the availability of services provided by peer resources.  

Elimination rule 7 guarantees the satisfaction of the resource requirements of the PPU method 

used for upgrading a VM supporting infrastructure resource when it cannot be upgraded in 

place without impacting its services.  

As mentioned earlier, the communication dependencies are realized by link resources in the 

system and they may need to be upgraded as well. Since upgrading a dependency impacts the 

dependent resource, we evaluate the dependency requirements for the upgrade of communica-

tion dependencies (i.e. link resource) as upgrade of its dependent resource. Thus, a communi-

cation dependency can stay in the Gbatch only if its dependent resource can potentially stay in 

the Gbatch according to our defined elimination rules, unless in case of having peer link re-

sources. 

After applying all of the elimination rules, the vertices remaining in the Gbatch represent the 

resource groups that can potentially be upgraded in this iteration (aka initial batch). However, 

this selection does not consider yet the dynamicity of the IaaS cloud; i.e. SLA violations may 

still occur if all these resource groups are upgraded in the current iteration. Namely, only a 
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certain number of compute hosts can be taken out of service considering potential failovers and 

scale-out requests during the iteration. Thus, with these considerations we select a final batch 

of resource groups from the initial batch. 

We estimate the potential scale-out requests in each iteration based on the time required to 

upgrade and recover from possible failures (by reverting the upgrade) for the initial batch, in 

which the resources are upgraded in parallel. In each iteration different resources may be up-

graded, hence in each iteration we need to consider the resources in the Gbatch and take the 

maximum of their required time to upgrade and recover from possible failures (Ti). Note that 

the required time to upgrade and recover from failures for each resource in the initial batch can 

be identified based on the estimated time required for installation/removal of the infrastructure 

component descriptions provided by the vendors and collected in the upgrade resource catalog. 

Using this the maximum scaling adjustment requests per tenant (Si) during the upgrade of Gbatch 

in iteration i is calculated according to (3). 

𝑆𝑖 = 𝑚𝑎𝑥( 𝑠𝑛 ∗ ⌈
𝑇𝑖

𝑐𝑛
⌉)                                                        (3) 

Where sn is the scaling adjustment per cooldown period cn of the nth tenant. Since tenants may 

have different scaling adjustment and cooldown time values, we take the maximum scaling 

adjustment among them as Si and by that we handle the worst case scenario. This calculation 

is valid for a single iteration only and it is recalculated for each iteration since in each iteration 

different resources may remain in the Gbatch, and also tenants may be added and/or removed. 

We calculate the maximum number of compute hosts that can be taken out of service (Zi) for 

the duration of Ti in each iteration using (4). 

𝑍𝑖 = |𝑀𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐹𝑜𝑟𝑂𝑙𝑑𝑉𝑀 − 𝑀𝑢𝑠𝑒𝑑𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐹𝑜𝑟𝑂𝑙𝑑𝑉𝑀| 

−𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝑅𝑒 𝑠 𝑣𝑓𝑜𝑟𝑂𝑙𝑑𝑉𝑀 − 𝐹𝑎𝑖𝑙𝑜𝑣𝑒𝑟 𝑅𝑒 𝑠 𝑒𝑣𝑓𝑜𝑟𝑂𝑙𝑑𝑉𝑀                 (4) 
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Where |McomputeForOldVM - MusedComputeForOldVM | is the number of compute hosts that are not in use 

and are eligible to provide compute services for tenants with VMs of the old version (i.e. com-

patible with the old configuration of VM supporting infrastructure resources or old hypervisor). 

FailoverResevforOldVM is the number of compute hosts reserved for failover for VMs of the old 

version. This number is equal to the number of host failures to be tolerated during an iteration 

(F), when there are VMs of the old version on hosts belonging to MComputeForOldVM (i.e. MusedCom-

puteForOldVM is not zero); otherwise F will be zero. F can be calculated based on the hosts’ failure 

rate and a probability function as in [64] which estimates the required failover reservations for 

period Ti.  ScalingResvforOldVM is the number of compute hosts for scaling reservation of tenants 

with VMs of the old version and it is calculated using (5). 

𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝑅𝑒 𝑠 𝑣𝑓𝑜𝑟𝑂𝑙𝑑𝑉𝑀 = 𝑆𝑖 ∗ ⌈
𝐴𝑖

𝐾
⌉                                         (5) 

Where Ai indicates the number of tenants with VMs of the old version only and who have not 

reached their maxn, the maximum number of VMs, therefore may scale out on hosts compatible 

with the old version of the VMs. 

Whenever MusedComputeForOldVM, the set of compute hosts in use with the old version is empty, 

the maximum number of compute hosts that can be taken out of service in the iteration becomes 

equal to the set of hosts belonging to McomputeForOldVM. 

Note that if there are no incompatibilities related to the upgrade of VM supporting infrastruc-

ture resources or hypervisors, the compute hosts of IaaS cloud system are not partitioned into 

old and new partitions. In this case the above calculations are applied to all compute hosts (as 

opposed to those hosting old VMs) and all VMs as there is no need to consider the compatibility 

of VMs and compute hosts. Without incompatible partitions there is no need for Step 4. 
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To select the final batch of resource groups from the initial batch Gbatch, we distinguish resource 

groups that can be returned to service after their upgrade, from those that have to be kept de-

activated due to potential incompatibilities. We select the resource groups from the initial batch 

that can be taken out of service and immediately be returned to the service after their upgrade 

such that their total number of affected compute hosts for the duration of Ti is not more than 

Zi. As mentioned in Section 5.1.4, the resource groups belonging to upgrade units with possible 

incompatibilities may require to remain deactivated after their upgrade, until they can be safely 

returned to service without causing incompatibilities. During their upgrade extra additional 

resources are required to prevent SLA violations. Since we aim to minimize the amount of 

required additional resources in our approach, we only upgrade limited amount of these re-

source groups in each iteration according to the minimum additional resources dedicated for 

handling incompatibilities. 

Note that based on the booking strategy of cloud providers, sometimes extra resources might 

be available in the system which can be taken out of service for longer than the duration of Ti, 

without impacting the SLA commitments. However, this is not the case when the cloud pro-

viders commit to provide more VMs than the actual capacity of the system, referred to as over-

booking [65][66]. In this thesis, we assume that the cloud provider’s booking strategy is such 

that the IaaS cloud system at least can carry out all the SLA commitments without considering 

the upgrade process. In addition, we assume the cloud provider dedicates minimum additional 

resources for the upgrade techniques handling incompatibilities. As mentioned in Section 

5.1.4.2, this minimum required additional resources is calculated according to the maximum 

degradation (in terms of compute hosts) per upgrade unit in the system. Note that in case of 

having incompatibilities during the upgrade of VM supporting infrastructure and hypervisors, 
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the failover reservation for tenants with VMs of the new version have to be considered in this 

calculation as well. 

The upgrade coordinator selects such a final batch and generates the corresponding upgrade 

schedule. This upgrade schedule includes the upgrade actions of the first execution-level of the 

actions-to-execute attribute of each resource group in Gbatch. The generated schedule is sent to 

the upgrade engine for execution. After execution, the upgrade engine sends back to the up-

grade coordinator the results. 

Note that applying some of the upgrade methods may require additional prerequisite actions. 

If a resource group in the final batch belongs to an upgrade unit with such an associated upgrade 

method, the upgrade coordinator includes in the upgrade schedule the prerequisite actions be-

fore the upgrade actions of that resource and wrap up actions after them. For example, as pre-

requisite actions for upgrading some physical hosts in an upgrade unit, the upgrade coordinator 

might need to include in the upgrade schedule before their upgrade actions to evacuate VMs 

from those physical hosts. As wrap-up actions it might need to include in the upgrade schedule 

the actions to bring the VMs back to the upgraded physical hosts. 

If the upgrade actions of a resource in the final batch were executed successfully, the first 

execution-level is removed from its actions-to-execute attribute. The modification-type of the 

resource is adjusted according to the upgrade actions of the new first execution-level of the 

actions-to-execute attribute. 

For a resource with a failed upgrade action, the counter of failed attempts is incremented, but 

the actions-to-execute attribute remains unchanged. As mentioned earlier, to bring the resource 

back to a stable configuration, a new upgrade schedule is created from the undo actions of the 

completed upgrade actions within the failed attempt to revert their effect. This upgrade sched-

ule is given to the upgrade engine right away for execution. If this operation fails as well, the 
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resource is isolated and marked as a failed. Note that the actions for isolating the resources are 

indicated as post condition in case of failures in the newly generated upgrade schedule.  

Finally, the upgrade request model, the RG and the CG are updated according to the results of 

this step. 

5.2.4 Step 4 - Selecting the Batch of VMs for Migration 

This step is only necessary when the compute hosts are separated into two incompatible parti-

tions due to the upgrade of the VM supporting infrastructure and/or the hypervisors hosting 

VMs and therefore the VMs need to be migrated (and potentially upgraded) between them. For 

example, when the PPU method is used to handle the incompatibilities of the VM supporting 

infrastructure resource. 

Before VMs of the old version can be upgraded and migrated to the hosts compatible with the 

new VM version, the new configuration of the VM supporting infrastructure resource has to be 

completed. If the new configuration is not ready the VM migration/upgrade is delayed to a 

subsequent iteration, when it is re-evaluated. In case of incompatibilities due to hypervisor 

upgrade, this step can be started after a successful upgrade of at least one hypervisor. The tasks 

for selecting the batch of VMs for migration/upgrade are indicated from task 22 to 28, within 

Flowchart 5.4. 

We calculate the number of VMs (Vi) that can be migrated and if necessary upgraded in the 

current iteration i using equation (6). 

 

𝑉𝑖 = (|𝑀𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐹𝑜𝑟𝑁𝑒𝑤𝑉𝑀 − 𝑀𝑢𝑠𝑒𝑑𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐹𝑜𝑟𝑁𝑒𝑤𝑉𝑀| 

−𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝑅𝑒 𝑠 𝑣𝑓𝑜𝑟𝑁𝑒𝑤𝑉𝑀 − 𝐹𝑎𝑖𝑙𝑜𝑣𝑒𝑟 𝑅𝑒 𝑠 𝑒𝑣𝑓𝑜𝑟𝑁𝑒𝑤𝑉𝑀) ∗ 𝐾 ′          (6) 
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Where McomputeForNewVM is the set of hosts that are eligible to provide compute services for ten-

ants with VMs of the new version, MusedComputeForNewVM is the set of in-use hosts that are eligible 

 

Flowchart 5.4. Selecting the batch of VMs for migration 
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to provide compute services for tenants with VMs of the new version, FailoverResevforNewVM is 

the number of hosts reserved for any failover for upgraded (new) VMs.  FailoverResevforNewVM 

is calculated similarly to the failover reservation for tenants with VMs of the old version, i.e. 

F as mentioned in Step 3, but for the period of time required for upgrading Vi number of VMs.  

Note that since this failover reservation for the new partition is only required for handling in-

compatibilities during the upgrade of VM supporting infrastructure and/or the hypervisors 

hosting VMs, it may not be considered by the cloud provider while selling SLAs to the cus-

tomer. Therefore, additional resources might be required temporarily for accommodating fail-

over reservation for tenants with VMs of the new version. ScalingResvforNewVM is the number 

of hosts reserved for scaling for the tenants with upgraded (new) VMs, and K’ is the new host 

capacity in terms of VMs after the upgrade. Here, ScalingResvforNewVM is calculated similar to 

(5) for the tenants with VMs of the new version who have not reached their maxn (their maxi-

mum number of VMs). They may only scale out on hosts compatible with VMs of the new 

version. Note that a new scaling adjustment per tenant have to be calculated similar to (3), 

while considering the time required to migrate/upgrade and if necessary to recover from pos-

sible failures for Vi number of VMs potentially through multiple sub-iterations as discussed 

below.  

Considering the application level redundancy, we can typically migrate (and upgrade) only one 

VM per anti-affinity group at a time. Therefore, we may need to upgrade the Vi VMs in several 

sub-iterations. Thus, the time required to migrate (and upgrade) and recover from possible fail-

ure for Vi number of VMs depends on the number of sub-iterations and the time required for a 

single VM. In each sub-iteration j, one VM is selected from each anti-affinity group with VMs 

of the old version. The batch of sub-iteration j will be Wij. In order to speed up the upgrade 

process, we use two criteria for selecting the anti-affinity groups and their VMs for the upgrade:  
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1) To free more hosts, anti-affinity groups from the tenants with the highest number of old 

version VMs are selected. 

2) To minimize the number of VM migrations for VM consolidation, VMs of the hosts that 

have more VMs from the selected anti-affinity groups are selected. 

Note that the VMs from selected anti-affinity groups can belong to tenants that did not have 

upgraded (new) version VMs yet. The number of such tenants were not considered in the scal-

ing reservation calculation, however after migrating (and upgrading) their VMs, they may be 

required to scale-out on hosts compatible with VMs of the new version. Thus, before perform-

ing the migration (and upgrade) of the selected VMs, ScalingResvforNewVM must be re-evaluated 

to determine if it is sufficient for scaling-out of such tenants as well. The batch of VMs for 

each sub-iteration may have to be re-adjusted accordingly. This re-adjustment is based on the 

number of not-in use hosts (compatible with VMs of the new version), the newly calculated 

scaling reservation, and failover reservation. 

After the upgrade coordinator selects the VMs for the migration/upgrade, a schedule is created 

per sub-iteration and it is provided to the upgrade engine for execution. After the execution of 

each sub-iteration, the upgrade engine returns the results to the upgrade coordinator. The ac-

tions-to-execute attribute of VMs successfully migrated/upgraded is updated by removing the 

first execution level. For VMs with failed attempts, the failed attempts counter is incremented 

and a new schedule is generated to bring them back to a stable configuration. If this operation 

also fails for a VM it is isolated and marked as failed. If the number of migrated/upgraded VMs 

is less than Vi VMs and there is possibility of migrating/upgrading more VMs, the upgrade 

proceeds to the next sub-iteration. Otherwise, the upgrade proceeds to the next iteration. 
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Whenever in Step 3 the final batch of resources (Gbatch) and in Step 4 the batch of VMs (Vi) are 

both empty for an iteration, the upgrade process stops until there are enough resources available 

to continue (e.g. freed up through scaling in). 

5.3 Informal validation 

In this section, we provide an informal validation of four main properties of our approach. In 

our reasoning, we will refer to the tasks and conditions of the flowcharts of our approach, given 

in Flowchart 5.1 to Flowchart 5.4.  

Property 1) A given change set in an upgrade request will be applied successfully or will be 

undone, while keeping the system configuration consistent. Failed resources are isolated to 

keep the system configuration consistent. 

1. If in an iteration, only some of the target resources for the change set get selected in the 

final batch in task 18 (or task 25 in case of VMs), one of the following cases may happen: 

1.1. If there are enough resources available for potential scaling out and failover reserva-

tion, the upgrade process will continue to the next iteration for applying the necessary 

upgrade actions on the remaining target resources, according to condition C.11, until 

handling all the changes of the change set.  

1.2. If there are not enough resources available for potential scaling out and failover reser-

vation (i.e. the upgrade process is paused), one of the following cases may happen: 

1.2.a. If the max-completion-time is reached, the change set will be undone.  

1.2.b.  If the max-completion-time is not reached yet, either: 

1.2.b.i. The system will eventually scale in and resources will be available to 

continue to the upgrade. The upgrade proceeds according to case 1.1. 
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1.2.b.ii. The system will not scale in for a long time and the max-completion-

time will reach. The change set will be undone according to case 1.2.a. 

2. For the target resource selected in the final batch in task 18 (or task 25 in case of VM). All 

the upgrade actions corresponding to the change in the change set for the resource will be 

included in the upgrade schedule and will be sent for execution in task 19 (or task 26 in 

case of VM). After execution one of the following cases may happen:  

2.1. If all the upgrade actions of the change set on the target resource succeed, the RG and 

the CG will be updated in task 21 (or task 28 in case of VM), to remove the successful 

upgrade actions from the vertex representing the resource. Thus, the change set on the 

target resource is applied successfully. 

2.2. If some of upgrade actions on the target resource fail, another upgrade schedule will 

be generated, in task 20 (or task 27 in case of VM), to bring back the resource to a 

consistent configuration.  

2.2.a. If all the upgrade actions for the resource in this new schedule succeed, the 

failed upgrade attempt will be recorded for the target resource in the upgrade 

iteration report in task 21 (or task 28 in case of VM). The upgrade will proceed 

to the next iteration.  

2.2.b. While executing this schedule, if these upgrade actions fail on the resources, the 

resources will be isolated and considered failed. In task 21 (or task 28 in case 

of VM), they will be recorded in the upgrade iteration report and reported to the 

administrator requiring manual repair. The upgrade proceeds to the next itera-

tion according to case 1. 

3. In task 6 of next iteration, one of the following cases may happen to a target resource: 

3.1. In task 6, if the number of failed attempts for the resource does not exceed the maxi-

mum retry attempt for the resource, the upgrade actions of the change set will remain 
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in the RG for retry operation on the resource. The upgrade process will proceed until 

selection of the resource in the final batch in task 18 (or task 25 in case of VM) for 

retry operation. 

3.2. In task 6, if the number of failed attempts for the resource exceed the maximum retry 

attempt for the resource, the resource will be isolated. If the number of isolated-only 

resources and failed resources for a change in the change set exceed the undo threshold 

for that change, all the changes of the change set will be undone. In task 6, for the 

target resources of the change set, the undo upgrade actions will be included in the RG 

to take the resources to indicated undo version. They will be executed similar to normal 

upgrade actions in the next iterations when the resource is selected in task 18 (or task 

25 in case of VM), until all are applied (i.e. until condition C.11 holds for the change 

set). Thus, the change set will be undone. 

3.3. In task 6, if the upgrade actions for deploying the change set could not be applied 

within the max-completion-period specified by the administrator, the change set will 

be undone. 

Therefore, a given change set will be applied successfully or will be undone. Failed resources 

will be isolated to keep the system configuration consistent. 

Property 2) If there is no new upgrade request, all the previously issued upgrade requests will 

be completed.  

Note that an upgrade request is considered completed, if its change sets have been either suc-

cessfully applied or undone. The failed resources will be isolated to keep the system consistent.  

1. As we discussed earlier in Property 1, a given change set in an upgrade request will be 

applied successfully or will be undone.  



100 

 

2. A given upgrade request is a collection of change sets. According to 1, some of the change 

sets in an upgrade request will be applied successfully and some of them will be undone. 

Thus, a given upgrade request will be completed, since its change sets have been either 

applied or undone. 

3. Since any upgrade request will eventually be completed according to 2, if there is no new 

upgrade requests, all the previously issued upgrade requests will be completed.  

Property 3) If the tenants scale out with respect to SLAs, and if the probability function for 

failure estimation gives accurate results, our approach will respect the SLA constraints of elas-

ticity and availability. Note that the SLA violations caused by VM live migration/consolidation 

is not considered. 

Precondition: 

1) The IaaS cloud system is configured such that it can carry out all the existing SLA 

commitments and can maintain the availability of the services, without considering the 

upgrade process. 

2) There are minimum additional resources in the system, dedicated for handling incom-

patibilities during the upgrade. This amount equals to the maximum possible service 

degradation (in terms of compute hosts) per upgrade unit and failover reservation re-

quired for tenants with VMs of the new version. 

1. In each iteration, the final batch for the upgrade is selected considering the SLA constraints 

of elasticity and availability in task 18. Only the resource groups that can be tolerated (i.e. 

while maintaining the availability and respecting SLAs) to be out of service are selected 

in the final batch. Different criteria is used for selection of resource groups that can be 

returned to service after their upgrade, than those that are required to remain deactivated 

for handling incompatibilities: 
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1.1. Final batch selection for resource groups that can immediately come back to service 

after getting upgraded in the same iteration: In task 17, the maximum number of com-

pute hosts that can be taken out of service (Zi), for the duration of maximum required 

time for upgrading the initial batch, is calculated. For this, the number of compute 

hosts required for accommodating the potential scaling-out and for potential failovers 

are considered. Accordingly in task 18, the resource groups are selected such that their 

total number of affected compute hosts is not more than Zi. Since the system can ac-

commodate the existing SLA commitments and maintain availability of services with-

out considering the upgrade process according to Pre-condition 1, and since scaling-

out reservation and failover reservation are taken into account (in task 17) during the 

upgrade of resource groups, the availability of the system is maintained and the SLAs 

are respected during the upgrade.  

1.1.a. In task 17, the number of compute hosts required for scaling-out reservation is 

calculated by multiplying the maximum scaling adjustment requests per tenant 

and the number of compute hosts to accommodate the scaling out of tenants 

with old version VMs only that who have not reached their maximum number 

of VMs yet. Note that scaling reservation for the tenants with new version VMs 

are considered to be on the compute hosts compatible with the new version VMs 

and is calculated in task 22. Since we calculate the scaling reservation using 

SLA parameters for the tenants with old version VMs, as long as these tenants 

scale out with respect to SLAs, we will not need extra compute hosts for their 

scaling out reservations.  

1.1.b. In task 17, the number of compute hosts required for failover reservation for 

tenants with old version VMs is calculated according to the number of host fail-

ures to be tolerated during an iteration. For this the hosts’ failure rate and a 
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probability function which estimates the required failover reservations for meet-

ing the requested level of availability is used. As long as this estimation for 

failover reservation gives accurate results, we will not need extra compute hosts 

for failover reservations during an iteration. 

1.2.  Final batch selection for resource groups that may not come back to service after get-

ting upgraded due to potential incompatibilities (i.e. belong to upgrade units with in-

compatibilities): According to Pre-condition 2, there are minimum additional re-

sources in the system dedicated for handling incompatibilities during the upgrade. In 

task 18, we select the resource groups belonging to upgrade units with incompatibili-

ties, if we can compensate their upgrade impact (i.e. affected compute hosts) using the 

dedicated available additional resources. Otherwise, their upgrade will be postponed 

to the next iterations. Since we only upgrade portion of these resource groups accord-

ing to the available additional compute hosts, the availability of service will be main-

tained and SLAs will be respected during their upgrade. 

2. In each iteration, if the compute hosts are separated into two incompatible partitions (due 

to the upgrade of the VM supporting infrastructure and/or the hypervisors hosting VMs), 

the batch of VMs for migration and if necessary upgrade, is selected considering the SLA 

constraints of elasticity and availability in task 23 and 25.  

2.1. In task 22, the maximum number of VMs that can be taken out of service (Vi) is cal-

culated, for the duration of the time required to migrate and if necessary upgrade Vi 

number of VMs. For this, the number of compute hosts required for accommodating 

the potential scaling-out and for potential failovers of upgraded (new) VMs are con-

sidered on the compute hosts compatible with the new version VMs. Accordingly in 

task 23, the Vi number of VMs are selected as potential batch of VMs. Condition C7 

evaluates if the scaling reservation (ScalingResvforNewVM) is enough for potential batch 
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of VMs. If not, the batch of VMs are readjusted in task 24. Since scaling-out reserva-

tion and failover reservation are taken into account (in task 22, 23, and 24) during the 

upgrade/migration of VMs, the availability of the system is maintained and the SLAs 

are respected. 

2.1.a. In task 22, the number of compute hosts required for scaling-out reservation for 

the tenants of new version VMs is calculated by multiplying the maximum scal-

ing adjustment requests per tenant and the number of compute hosts to accom-

modate the scaling out of tenants with new version VMs. Since we calculate the 

scaling reservation using SLA parameters for the tenants with new version 

VMs, as long as these tenants scale out with respect to their SLAs, we will not 

need extra compute hosts for their scaling out reservations.  

2.1.b. In task 22, the number of compute hosts required for failover reservation for 

tenants with new version VMs is calculated according to the number of host 

failures to be tolerated during upgrade of Vi number of VMs. For this the hosts’ 

failure rate and a probability function which estimates the required failover res-

ervations for meeting the requested level of availability is used. Since we as-

sume this failover reservation for the tenants of new version VMs is considered 

in the additional resources dedicated for handling incompatibilities, during the 

upgrade of VMs we will have enough failover reservations. 

2.1.c. The final batch of VMs will be selected and upgraded with respecting anti-af-

finity groups in task 25. Since anti-affinity groups indicate the availability con-

straints of applications running on the VMs, and since we migrate and upgrade 

the VMs in task 25 according to these constraints, the availability of application 

running on the VMs are respected.   



104 

 

3. In task 14, during the VM consolidation, we only take one VM from an anti-affinity group. 

Thus, we respect the availability of application running on the VMs. 

4. When the upgrade process is paused due to the lack of enough resources for potential 

scaling out and failover reservation, the tenants can scale out to their maximum number of 

VMs. Since the system can accommodate the existing SLA commitments without consid-

ering the upgrade process (according to Pre-condition 1), and in each iteration the SLAs 

are respected during the upgrade (according to case 1 and case 2), the SLAs will be re-

spected during the paused time as well.  

Therefore, since we consider scaling reservation, failover reservation, and available additional 

resources dedicated for handling incompatibilities for selecting the final batch of upgrade, if 

the tenants scale out with respect to their SLAs and if the probability function for failure esti-

mation gives accurate results, our approach will maintain the availability of the service. 

Property 4) We use minimum additional resources during the upgrade. 

1. Additional resources are required to handle incompatibilities while maintaining availabil-

ity. We identify subsystems where additional resources are required: 

1.1. In task 3, we identify the possible incompatibilities along the dependencies due to the 

upgrade requests using infrastructure component descriptions in the resource upgrade 

catalog. We capture this information on the RG as IncompatibilityFactor parameter of 

the edges representing dependencies between resources. In task 5, we identify the up-

grade units indicating group of resources that have to be upgraded using an appropriate 

upgrade method to handle the potential incompatibilities. Based on the appropriate 

upgrade method for the upgrade units, the additional resources may be required.  

1.2. Since there might be new incompatibilities as a result of new upgrade requests, we 

identify the incompatibilityFactors of the edges representing dependencies in task 9 
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and the upgrade units in task 11 for the new upgrade requests on a new graph (aka 

NRG). In task 12, these information is added to the RG. 

1.3. In case of having incompatibilities during the upgrade of VM supporting infrastructure 

and the hypervisors hosting VMs, we need additional resources for failover reservation 

of the tenants of new version VMs. We also may need additional resources for main-

taining in parallel both the old and the new configurations of the VM supporting infra-

structure resource during the application of PPU.  

2. We only use additional resources as necessary for supporting upgrade of identified sub-

systems, and we pace their upgrade process to minimize the amount of required additional 

resources, as follow: 

2.1. Upgrading the resources of upgrade units with incompatibilities, requires additional 

resources. In task 18, for the final batch the resources that belongs to upgrade units 

with incompatibilities are selected according to the minimum additional resources ded-

icated for handling incompatibilities. Since we only upgrade portion of these resources 

in each iteration, we use less additional resources than the amount required for upgrad-

ing all of them. 

2.2. In our approach for upgrading the infrastructure services supporting VM operations 

(e.g. storage, controller), we use PPU method, which applies the partial parallel uni-

verse locally to a subsystem (e.g. storage or controller subsystem) instead of creating 

a complete IaaS system as a parallel universe. For supporting this method while ap-

plying the elimination rules in task 16, we try to use available resources as much as 

possible and request for additional resources only if they are necessary. 
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5.4 Summary  

In this chapter, we presented our approach for the upgrade of IaaS cloud systems under SLA 

constraints such as availability and elasticity. The approach is used by the upgrade coordinator 

in our proposed upgrade management framework, introduced in Chapter 4.  

In this approach, an upgrade is initiated by an upgrade request which is composed of change 

sets requested by a system administrator indicating the desired changes in IaaS cloud system. 

In addition to the initial change sets, the proposed approach takes into consideration the new 

upgrade requests at the beginning of each iteration. The approach identifies the upgrade actions 

required to upgrade each IaaS resource, the upgrade method appropriate for each subset of 

resources, and the batch of resources to upgrade in each iteration. Since in each iteration, the 

batch of resources to upgrade is selected according to the current state of the system with re-

spect to the dependencies and the SLA constraints, the inference between autoscaling and the 

upgrade process is mitigated. This is the case as long as the tenants scale out with respect to 

SLAs and the probability function for failure estimation gives accurate results. In case of up-

grade failures, localized retry and undo operations are issued according to the failures and 

undo/retry thresholds indicated by administrator.  

The proposed approach is applicable to the upgrade of IaaS resources of any kind. However as 

mentioned earlier, it has some limitations when it comes to the upgrade of hardware resources 

and may require administrative assistance for actions such as replacement of a piece of hard-

ware. For example, the time required for such replacement and availability of administrative 

assistance have to be taken into account for selection of the batch for hardware resources. 

This approach verifies the completeness of the change sets within upgrade requests with respect 

to the dependencies indicated in the infrastructure component descriptions (provided by the 
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vendors). To infer all detailed/missing changes, we expect the infrastructure component de-

scriptions include all the software and hardware dependencies of the infrastructure compo-

nents. Otherwise, our approach cannot satisfy the dependency requirements and maintain avail-

ability during the upgrade. In addition, in this work we assume that the current and the desired 

configurations are consistent, meaning there are no incompatibilities between resources in the 

configurations.  

In this chapter, we also analysed and proved informally four important properties of our ap-

proach. Although this does not represent a formal proof, but the rigorous analysis give more 

confidence on the correctness of the proposed approach. In the next chapter, we discuss the 

proof of concepts developed for demonstrating the feasibility of our proposed approach and 

the framework.
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Chapter 6  

6 Proof of Concepts 

In this chapter, we present proof of concepts (PoCs) developed for demonstrating the feasibility 

of our proposed upgrade management framework and approach. The first PoC is an implemen-

tation of our proposed upgrade management framework for the upgrade of IaaS compute. The 

second PoC is the prototype implementation of the upgrade coordinator, shown in Figure 4.2, 

realizing our proposed approach for the upgrade of all kinds of IaaS resources. We use an 

upgrade scenario for each PoC for illustration purposes. We also conduct some experimental 

evaluation to demonstrate how our approach works to respect SLA constraints of availability 

and elasticity, compared to the traditional rolling upgrade method. 

6.1 Proof of Concept for Upgrade of IaaS Compute and its Application 

in Real Deployment 

This PoC has been implemented for the upgrade of IaaS compute and its application in an 

OpenStack [18] cluster. A virtualized OpenStack cloud platform is considered as the testbed 

for this PoC. This virtual cluster is deployed using Vagrant [67] and Ansible [51]. Vagrant is a 
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tool for creating a lightweight deployment environment and Ansible is a configuration man-

agement tool. In this implementation, Vagrant is used for creating virtual machines (VMs), and 

Ansible is used to install and configure OpenStack components on those VMs.  

In this PoC, Openstack-ansible-galaxy (vagrant-ansible-openstack) [68] repository is reused3, 

which contains the code for the deployment of VMs using Vagrant, and Ansible roles for the 

deployment of the main OpenStack [18] services (Nova, Glance, Horizon, Keystone, and Neu-

tron). In addition to the existing roles in the Openstack-ansible-galaxy, playbooks and roles for 

deploying other OpenStack services (e.g. Heat, Ceilometer, and Cinder) are added by an intern 

from Ericsson (Gabriel Hardy) to this PoC. The upgrade management framework is imple-

mented using Go language [69].  

Figure 6.1 shows the virtualized OpenStack cloud platform used in this PoC consisting of one 

controller, one network, and multiple compute nodes. OpenStack components are installed on 

 
3  The Ansible playbooks of this repository [68] are modified to be compatible with the newer version of Ansible 

2.3. 

 

Figure 6.1. Virtualized OpenStack cloud platform in the PoC for IaaS compute 
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each node. Note that our proposed upgrade management framework is deployed as an upgrade 

service on the OpenStack controller node in addition to the OpenStack components. 

The scope of this PoC is limited to the upgrade of IaaS compute. The orchestrating upgrade of 

different kinds of resources using upgrade graphs (i.e. RG and CG), and failure cases for IaaS 

compute upgrades were not considered. However, the required semantics for coordinating the 

upgrade of IaaS compute (e.g. grouping the upgrade of resources or upgrading not in-use hosts) 

are considered implicitly in this PoC, without using the graphs. 

6.1.1 Architecture of the PoC for Upgrade of IaaS Compute  

The overall architecture of this PoC is given in Figure 6.2. The functions in the deployment 

package is responsible to create the virtual OpenStack cluster, which includes Vagrant Config-

uration and the Ansible playbooks as shown in Figure 6.3. In this package, Makefile file in-

cludes commands to provision the VMs using the configuration indicated in the Vagrantfile 

file, and to execute the Ansible playbooks for configuring the OpenStack services on those 

VMs, creating tenants in the OpenStack cluster and deploying the upgrade management frame-

work (upgrade service) code on the controller node.  

 

Figure 6.2. Overall architecture of the PoC for the upgrade of IaaS compute 
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In this architecture, the FrontEnd package is responsible to create and to start the upgrade ser-

vice . The UpgradeService package is the implementation of subset of our proposed upgrade 

management framework for the upgrade of IaaS compute. Figure 6.4 shows the main classes 

and files in the FrontEnd and the UpgradeService packages. Command design pattern is used 

for implementation of the upgrade service. For the calculation of the maximum scaling adjust-

ment requests per tenant, the batch size for host upgrade, and the batch size for VM upgrade 

concrete commands are created. Helper class includes all in common operations between the 

concrete commands.  

UpgradeService uses gophercloud [70] Library to have Go binding to OpenStack cloud API. 

Gophercloud library is an open source Software Development Kit (SDK) which enables Go 

developer to connect their application written in Go language with OpenStack clouds. In this 

 

Figure 6.3. Main classes and the Ansible playbooks with related roles in the deployment package 
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PoC, this library is extended to get information about the hypervisor running on the compute 

nodes. Upgrade service performs most of the operations using this extended gophercloud li-

brary. In addition to this library, the upgrade service uses some scripts to perform the upgrades 

and the VM migrations in the virtual OpenStack cluster. 

6.1.2 Illustration Scenario for IaaS Compute Upgrade 

As a case study, we aim to upgrade the version of hypervisor (QEMU [71]) and we consider 

potential incompatibilities during this upgrade. We assume the worst case scenario where the 

old VMs are incompatible with the new hypervisor and the new VMs are incompatible with 

the old hypervisor. Thus, live migration of VMs of the old version to upgraded hypervisors is 

 

Figure 6.4. Front End and Upgrade Engine packages 
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not possible, similarly for VMs of the new version and old version hypervisors. Since the com-

pute hosts will be separated into two incompatible partitions due to the upgrade of the hyper-

visors hosting VMs, the VMs need to be upgraded between these two partitions. The upgrade 

of VMs will be by converting their base image before bringing them up on the new version 

hypervisors.  

In our deployment scenario we consider 10 compute nodes (|Mcompute|=10) hosting VMs for 

four tenants (Ni =4). Each node has capacity for K=3 VMs. For simplicity, we assume that these 

numbers remain constant throughout the scenario. We also assume that all the VMs of a tenant 

form a single anti-affinity placement group. In this PoC we are using virtualized OpenStack 

cluster, thus the compute nodes (i.e. hosts) are virtual servers. Note that due to the limitation 

of the deployment environment in our lab, we were only able to deploy six compute nodes for 

our PoC. However, for more clarification we use 10 compute nodes in our deployment scenario.  

In the figures used to illustrate the example we use different patterns to show the VMs of dif-

ferent tenants as shown in Figure 6.5. Each of the tenants has an initial, a maxn and a minn 

number of VMs. Again for simplicity, we assume that all tenants have the same scaling adjust-

ment and cooldown period configured. The tenants can scale in/out with a scaling adjustment 

of sn=1 VM. We consider the time of the upgrade and recover from possible failures of one 

batch size of host upgrade is equal to cooldown period, which means that Si is also equal to 1 

according to equation (3) in Chapter 5 at Step 3. For simplicity we also assume, the time re-

quired to upgrade and recover from possible failures for a selected number of VMs through 

multiple sub-iterations is equal to cooldown period as well, which means scaling adjustment 

per tenant is equal to 1 in Step 4 according to Chapter 5. 
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We assume the scaling adjustment and cooldown period remain unchanged for all tenants dur-

ing the upgrade, thus Si is constant in all the iterations. To indicate the scaling in/out operations 

in the figures, we use down/up arrows at the top of the removed/added VMs, respectively. Note 

that scaling can happen in both, the old and the upgraded partitions. However, to prevent hin-

dering the upgrade process we consider scaling out reservation for the tenants with VMs of the 

new version on new version compute nodes, and for the tenants with VMs of the old version 

only on the old compute nodes. 

First Iteration 

Figure 6.6 shows the first iteration in the illustration scenario for the upgrade of IaaS 

compute. The initial number of in-use compute hosts (i.e. nodes) with VMs of the old version 

 

Figure 6.5. Legend and scaling parameters for the tenants of the example 

 

Tenant ID Tenant Initial Number of VMs Min-size Max-size New Version

1 2 2 6

2 3 3 7

3 3 2 5

4 1 1 4

 

Figure 6.6. First iteration of the example scenario for IaaS compute 
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(MusedComputeForOldVM) is 3. Since none of the tenants have upgraded VMs, for scaling we need 

to reserve space for all tenants on the old version of the compute nodes (the only partition we 

have at this point). As shown in Figure 6.6.a, the maximum number of compute hosts that can 

be taken out of service Z1 is 4 according to equation (4) in Chapter 5 at Step 3. So, as shown in 

Figure 6.6.b, we select 4 nodes which are not in use and upgrade their hypervisors. Note that 

the upgraded nodes are shown with dotted pattern in the figures for the illustration example. 

Since the compute nodes are separated into two incompatible partitions due to the upgrade of 

hypervisors hosting VMs, therefore the VMs need to be migrated and potentially upgraded 

between them, according to Chapter 5 at Step 4. The number of nodes eligible to provide com-

pute services for tenants with VMs of the new version is now 4 (McomputeForNewVM =4). However, 

the number of in-use nodes that are eligible to provide compute services for tenants with VMs 

of the new version is still 0 (MusedComputeForNewVM = 0). In this iteration there is no tenant with 

upgraded VMs yet, therefore the scaling reservation is zero in the initial calculation for the 

tenants with upgraded (new) VMs. The number of VMs that can be potentially upgraded V1 is 

9. We select all 9 VMs (running on node 1, 2, and 3) as potential batch of VMs for this iteration. 

At a time we cannot upgrade more than one VM from a single anti-affinity group (i.e. here 

tenant), hence in the first sub-iteration we select one VM from each anti-affinity group (i.e. 

here tenant). In the first sub-iteration, initially W11 is 4; all the VMs running on “node 1” and 

one VM from tenant 4 running on “node 3” are selected considering our selection criteria men-

tioned in Chapter 5. We re-evaluate the selected batch for this sub-iteration, to determine if the 

previously calculated scaling reservation is enough for scaling-out of four selected tenants. 

Two compute nodes are required to accommodate the potential scaling out of four tenants, 

which is more than previously calculated scaling reservation based on current state of the sys-

tem. Upgrading the selected four VMs in the first sub-iteration is not possible, considering 
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required nodes for potential scaling-out (two nodes), failover (one node) reservations, and the 

total not in-use nodes (four nodes) eligible to provide compute services for tenants with VMs 

of the new version. Thus, we re-adjust the batch of sub-iteration by removing the VM of one 

of the tenants. The batch size for VM upgrade W11, after re-adjustment will be 3   and consid-

ering our selection criteria the VM from tenant 4 running on “node 3” will be removed from 

selected batch. Remaining will be the VMs running on “node 1”. All the VMs of “node 1” will 

be upgraded and placed on one of the empty upgraded nodes (herein “node 10” as shown in 

Figure 6.6.c). 

Since V1 is 9, and we only upgraded 3 out of 9 VMs, the possibility of upgrading more VMs 

will be re-evaluated. Note that after the adjustment of batch for the first sub-iteration, only 

three VMs from three tenants get upgraded. The number of tenants with upgraded VMs is 

changed to three. Therefore, the required nodes for potential scaling-out will change to one 

node. So, the upgrade proceeds to second sub-iteration. In the second sub-iteration the batch 

size W12 is 3 and we select three more VMs each from different anti-affinity groups. Based on 

our criteria three VMs of “node 2” are selected, as shown in Figure 6.6.c. Again, we have to 

re-evaluate if we can accommodate their upgrade. Since we have enough nodes to accommo-

date their upgrade, all the VMs of “node 2” can be upgraded and placed on one of the empty 

upgraded nodes (herein “node 9” as shown in Figure 6.6.d). 

In the third sub-iteration although the batch size of W13 is 3, the upgrade of the remaining VMs 

of “node 3” , shown in Figure 6.6.e, cannot be carried out due to a lack of sufficient nodes for 

scaling and failover reservation on the upgraded compute nodes during their upgrade. Thus, 

the step 4 of iteration 1 is completed and the upgrade proceeds to the next iteration. 
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Second Iteration 

In the second iteration, the maximum number of compute hosts that can be taken out of service 

Z2 is calculated 3, as shown in Figure 6.7.a. Notice that at this point three out of four tenants 

have upgraded VMs, therefore we have to consider scaling reservation only for the remaining 

tenant with no new version VM (i.e. tenant 4) in the old partition. So, 3 not used compute nodes 

are selected and upgraded in this iteration, as shown in Figure 6.7.b. This changes the number 

of nodes eligible to provide compute services for tenants with VMs of the new version Mcom-

puteForNewVM to 7. Assume that at this point we have scaling out request for each of the tenants. 

The tenants with new version VMs are scaled with new versions on nodes running the new 

version of the hypervisor, and the tenant with only old version VMs (i.e. tenant 4) is scaled 

with old version on nodes running the old version of hypervisor. This changes the number of 

in-use nodes that are eligible to provide compute services for tenants with VMs of the new 

version MusedComputeForNewVM to 3. Accordingly, the number of VMs that can be potentially up-

graded V2 is 6. Since there are only 4 VMs with old version, all of them are selected as potential 

batch of VMs. These VMs have to be upgraded in several iterations to respect the anti-affinity 

 

Figure 6.7. Second iteration of the example scenario for IaaS compute 
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group constraints. Similar to the previous iteration, the batch for sub-iterations have to be re-

evaluated according to the required scaling reservations.   

In the first sub-iteration the batch size for VM upgrade W21 is 3, and based on our two selection 

criteria, “node 3” is selected. All the VMs of “node 3” can be upgraded and placed on one of 

the empty upgraded nodes (herein “node 7” as shown in Figure 6.7.c). In the second sub-itera-

tion although the batch size for VM upgrade W22 is 1, the upgrade of the remaining VM of 

“node2”, shown in Figure 6.7.d, cannot be carried out. This is because, two nodes are required 

for potential scaling-out reservation and one node is required for failover reservation for tenants 

with VMs of the new version. Since there are only three not in-use nodes eligible to provide 

compute services for tenants with VMs of the new version, there are not enough upgraded 

compute nodes to support the upgrade of remaining VM. Thus, the upgrade proceeds to the 

next iteration.  

Third Iteration 

In the next iteration as it is shown in Figure 6.8, the maximum number of compute hosts that 

can be taken out of service Z3 is calculated 1. So, 1 not in use compute node (i.e. “node 3”) is 

selected and upgraded in this iteration. This changes the number of nodes eligible to provide 

compute services for tenants with VMs of the new version McomputeForNewVM to 8. Let us assume 

 

Figure 6.8. Third iteration of the example scenario for IaaS compute 
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at this point we have scaling out request for each of the tenants. Since, all the tenants have new 

versions of VMs, this time they are scaled with new versions on nodes running the new version 

of the hypervisor. This changes the number of in-use nodes that are eligible to provide compute 

services for tenants with VMs of the new version MusedComputeForNewVM to 6. Accordingly, the 

number of VMs that can be potentially upgraded V3 is zero, as shown in Figure 6.8.b. Notice 

that the number of tenants with VMs of the new version who have not reached their maximum 

number of VMs and can potentially scale out on upgraded compute nodes is 3. The tenant 3 

(with green pattern VMs) is already reached its maximum number of VMs, which is 5. Thus, 

we do not need to consider scaling reservation for this tenant (i.e. tenant 3).  

Fourth Iteration 

In the Fourth iteration as it is shown in Figure 6.9, the calculations of the maximum number of 

compute hosts that can be taken out of service Z4 and the number of VMs that can be potentially 

upgraded V4 are both zero. The upgrade process stops here until scaling in requests free up 

enough hosts (physical resources) to continue. 

Note that the tenants may scale out to their maximum number of VMs while the upgrade pro-

cess is paused, as shown in Figure 6.10. Since we assume the IaaS cloud system is configured 

such that it can carry out all the existing SLA commitments and can maintain the availability 

of the services without considering the upgrade process, all the tenants can safely scale out 

 

Figure 6.9. Fourth iteration of the example scenario for IaaS compute 
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during this pause time. Note that in this example, we assumed one out of ten compute nodes is 

considered for the failover reservation required for tenants with VMs of the new version.  

Fifth Iteration 

Now assume that scaling in requests arrive from three tenants (i.e. tenant 1, tenant 2, and tenant 

3). Thus, in the fifth iteration we examine to determine if the upgrade process can resume 

(Figure 6.11.a). Since the tenants requesting a scaling in operation do not have any old version 

VMs, the scaling in will remove VMs of the new version for each of the requesting tenants, as 

shown in Figure 6.11.a. Note that if a tenant requesting a scaling in operation has any old 

version VM, for that specific tenant the scaling in removes an old version VM. As a result 

of this scaling in operation, “node 4” will be freed up after VM consolidation. The calculations 

for determining the batch sizes are recalculated. However, both result in zero again and the 

upgrade process cannot continue. Notice that this is due to required scaling out reservation for 

those tenants which scaled in, so they may need to scale out to their maximum number of VMs. 

 

Figure 6.10. Maximum scaling out of all tenants in the example scenario during paused upgrade process 

 

Figure 6.11. Fifth iteration of the example scenario for IaaS compute 
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Sixth Iteration 

Assume we get one more scaling in request from one of the tenants (i.e. tenant 4) and this frees 

up one of the hosts remaining with the old version as shown in Figure 6.12. This triggers the 

sixth iteration and since number of in-use compute nodes with VMs of the old version becomes 

zero, the maximum number of compute hosts that can be taken out of service Z6 becomes equal 

to the set of compute nodes with the old version (McomputeForOldVM), which is 2. Therefore, the 

upgrade process resumes and all remaining hosts are upgraded and finally the upgrade process 

completes, as shown in Figure 6.12.  

6.1.3 Experimental Evaluation  

We performed experiments to demonstrate how our approach works to respect SLA constraints 

of availability and elasticity, compared to the traditional rolling upgrade method with different 

fixed batch sizes. In our evaluation scenario we considered 10 compute hosts hosting VMs for 

four tenants, as presented in Section 6.1.2. We evaluated two different case studies when the 

tenants; a) have their initial number of VMs as shown in Figure 6.13.a, and b) after some scal-

ing in/out as shown in Figure 6.13.b. The scaling parameters for both cases are indicated in 

Figure 6.5. In both cases we are assuming the VMs are consolidated. As there is a challenge of 

incompatibilities associated with the rolling upgrade method, we assumed there are no possible 

incompatibilities during the upgrade of hypervisors in our evaluation scenario, to have a fair 

 

Figure 6.12. Sixth iteration of the example scenario for IaaS compute 
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comparison of our approach and the rolling upgrade method. Thus, the VMs can be migrated 

between old and new version of the hypervisors, with no need to be upgraded.  

As mentioned earlier, due to the limitation of the deployment environment in our lab, we were 

only able to deploy six compute nodes for our PoC. The required measurements for our evalu-

ation have been obtained from real deployment considering six compute nodes. The upgrade 

scenario for the six nodes was executed ten times, and for each measurement the average was 

considered. According to our measurements, upgrading the version of QEMU hypervisor (i.e. 

executing the compiled binaries of the new version) takes on average 41 seconds. Live migrat-

ing a VM between old and new versions of hypervisors takes on average 23 seconds. The in-

troduced outage during live migration of a VM (with the tiny flavor) in OpenStack takes less 

than 0.6 seconds according to [72]. Performing the necessary calculations of each iteration of 

upgrade in our approach takes on average 0.23 seconds. These measurements have been used 

in our calculations for the evaluation scenario with 10 compute nodes.  

To evaluate the availability at the application and the VM level, we calculated and compared: 

the total duration of the upgrade, the average outage time at the application level for each ten-

 

Figure 6.13. Two different cases for our evaluation scenario 
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ant, and the average outage time of each VM during the upgrade. With respect to SLA viola-

tions, we calculated and compared: the number of SLA violations per tenant, the duration of 

SLA violations in each breach, the total duration of SLA violation per tenant, and the applicable 

penalties. Note that the selection of the nodes in each batch of upgrade, the distribution of the 

VMs running on the selected nodes, and the order of their upgrade can result in different outage 

and SLA violations. Therefore, we performed our assessments considering different batch se-

lections and considered the average result.  

Figure 6.14 shows the comparison of the total duration of the upgrade when the tenants have 

their initial number of VMs, i.e. case study (a) as shown in Figure 6.13.a. The results show that 

the duration of the upgrade using our approach is shorter than using the rolling upgrade method 

with fixed batch size of 1, 2, and 3, while it is comparable with the duration of upgrade using 

batch size of 4. Note that we assume in the rolling upgrade method with a fixed batch size, the 

VMs of the selected nodes in the batch are migrated to other nodes, prior to their upgrade. 

Depending on the selection of in-use or not in-use nodes in the batch and the upgrade order of 

batches, the VMs may have to be migrated once, twice, or thrice during applying the rolling 

 

Figure 6.14. Comparison of the total duration of upgrade using different upgrade methods for case study (a) 
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upgrade method for this case study. For example, when the in-use nodes are upgraded prior to 

the upgrade of not in-use nodes and their VMs are live migrated to the old version nodes, the 

VMs will be migrated three times. This impacts the total duration of upgrade, as well as the 

outage time at the application and the VM level.  

Considering the application level redundancy, upgrading more than one node hosting VMs 

from a single anti-affinity group (i.e. tenant in this example scenario) introduces outage at the 

application level. This is because of the outage experienced by the VMs of the same anti-affin-

ity group. Since the VMs are evacuated (using live migration) from the nodes that are being 

upgraded, the duration of introduced outage at the application level will depend on the duration 

of the outage of the VMs during live migration (i.e. 0.6 seconds). This is valid as long as there 

are enough available nodes to host the evacuated VMs. Note that this is not the case for the 

tenants that are not configured HA at the application level or have only one VM (e.g. tenant 4).  

Figure 6.15 shows the comparison of the average outage at the application level for case study 

(a), for impacted tenants and per tenant. Note that by the average outage time per tenant we 

mean the average outage time considering all tenants, whether they are impacted or not im-

pacted. In the rolling upgrade method with a batch size of one, similar to our approach, the 

tenants do not experience any outage at the application level, except for tenant 4. This is be-

cause tenant 4 has initially one VM, meaning it is not configured HA at the application level. 

Since we assume in the rolling upgrade method, the nodes are selected according to the size of 

the batch (regardless of their usage state), each VM may have to be migrated between one and 

three times. Accordingly, the outage at the application level experienced by tenant 4 may be 

0.6, 1.2, or 1.8 seconds using rolling upgrade method with batch size of one. Since in our ap-

proach we upgrade not in-use nodes before in-use nodes, tenant 4 will only experience an out-

age of 0.6 seconds at the application level. Note that if a similar rule is followed while applying 
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the rolling upgrade method with batch size one, the resulting outage at the application level 

will also be 0.6 seconds, similar to our approach. Note that if tenant 4 had more than one VM, 

it will not experience any outage for either using our approach or the rolling upgrade method 

with batch size one. For this reason, we calculated the average outage at the application level 

for case study (a) excluding tenant 4, as shown in Figure 6.16. As it was expected, the intro-

duced outage at the application level for our approach and the rolling upgrade method with 

batch size of one is equal to zero (excluding tenant 4).  

 

Figure 6.15. Comparison of the average outage at the application level for case study (a) 

 

Figure 6.16. Comparison of the average outage at the application level for case study (a) excluding tenant 4 
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According to our results, as the batch size in the rolling upgrade method increases as shown in 

Figure 6.15 and Figure 6.16, the number of impacted tenants and the average outage time at 

the application level increases as well. This is due to increasing the probability of the selection 

of the VMs from the same anti-affinity in a single batch. Note that although in our approach 

the batch size can be more than one node, however we upgrade only one VM from a single 

anti-affinity group at a time, which prevents introducing the outage at the application level. 

Therefore, for the tenants that are configured HA in the application level, our approach does 

not introduce any outage at the application level.  

Figure 6.17 shows the comparison of the total duration of upgrade for case study (b), after the 

tenants have some scaling in/out as shown in Figure 6.13.b. The results indicate that the dura-

tion of the upgrade using our approach is less than the rolling upgrade method with fixed batch 

size of one. However, it is more than the duration of the upgrade using rolling upgrade with 

batch size of two or three. The comparison of the average outage time at the application level 

for case study (b) for impacted tenants and per tenant, are shown in Figure 6.18. Our approach 

and the rolling upgrade method with batch size of one demonstrate similar results, with no 

 

Figure 6.17. Comparison of the total duration of upgrade using different upgrade methods for case study (b) 
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outage at the application level. While the rolling upgrade method with batch size two or three, 

introduce outage at the application level. Again in our calculations we considered multiple 

possible batch selections, as well as different upgrade ordering of the batches, and we used the 

average results.    

While using the rolling upgrade method or using our approach, for both cases of (a) and (b), 

each VM experiences an outage during its migration. Figure 6.19 presents the average outage 

time of each VM during the upgrade for case study (a) and (b). As the results indicate each VM 

experiences less outage using our approach, compared to the rolling upgrade method. Based 

on the upgrade order of in-use or not in-use nodes, each VM may be migrated more than once 

during the upgrade, which will impact the total outage time that the VM experiences.  

During the upgrade whenever VMs of the tenants experience an outage (during live migration), 

SLA violations will occur. This is because the current number of VMs for the tenants drops 

below the required number of VMs to accommodate their current workload. Table 6.1 and 

Table 6.2 demonstrate the comparison of SLA violations during the upgrade for case (a) and 

case (b), respectively. In our evaluation we calculated the number of times SLA violations 

 

Figure 6.18. Comparison of the average outage at the application level for case study (b) 
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occur for each tenant and we considered the average as the number of SLA violations per ten-

ant. The number of impacted VMs per tenant in each SLA violation indicates how many VMs 

are impacted. For the average total duration of SLA violations per tenant, we calculated the 

total time of SLA violations for each tenant and considered their average.  

For each SLA violations, penalties are applied. The penalties can be formulated in different 

ways by different cloud providers. In our evaluation, we measured two different types of ap-

plicable penalties of delay-dependent penalty and proportional penalty as described in [73]. In 

delay-dependent penalty, the penalty is only proportional to the occurred delay in providing 

the required capacity and it is calculated by multiplying the SLA violation duration to an agreed 

 

a) For case study (a) 

 

b) For case study (b) 

Figure 6.19. Comparison of the outage for each VM during the upgrade 
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penalty rate of q (per unit time). Proportional penalty is a form of delay-dependent penalty, 

where the penalty is additionally proportional to the difference between a user’s provisioned 

capacity and the current allocation. It is calculated by multiplying an agreed penalty rate of q’ 

(per unit capacity per unit time), the duration of SLA violations, and the difference in the ex-

pected and provisioned capacity.  

As it was expected, the results reported in Table 6.1 and Table 6.2 show that by increasing the 

batch size in the rolling upgrade method, the duration of SLA violations per tenant decreases, 

as well as the duration of the upgrade. However, the number of impacted VMs, per SLA vio-

lation, increases. The applicable proportional penalties for our approach are less than the rolling 

Table 6.1. SLA violation related measurement results for all possible batch selections for case study (a) 

 

 

Method 

/Approach 

 

Total 

Duration 

of 

Upgrade  

(Seconds) 

Number of SLA 

Violations per 

Tenant 

Number of  

Impacted VMs 

per Tenant in 

each SLA  

Violation 

Average  

Total Duration 

of SLA viola-

tion per tenant 

(seconds) 

Applicable  

delay  

dependent 

penalty per 

tenant 

Applicable 

proportional 

penalty  

per tenant 

Min Max Min Max 

Batch Size 1 548.00 2 6 1 1 2.25 2.25 q 2.25 q’ 

Batch Size 2 287.14 2 4 1 2 1.69 1.69 q 2.26 q’ 

Batch Size 3 226.43 1 3 1 2 1.35 1.35 q 1.99 q’ 

Batch Size 4 175.57 1 2 1 2 1.24 1.24 q 1.93 q’ 

Our 

Approach 

192.69 1 3 1 1 1.35 1.35 q 1.35 q’ 

 

Table 6.2. SLA violation related measurement results for multiple possible batch selections for case study (b) 

 

 

Method 

/Approach 

 

Total 

Duration 

of 

Upgrade  

(Seconds) 

Number of SLA 

Violations per 

Tenant 

Number of  

Impacted VMs 

per Tenant in 

each SLA  

Violation 

Average  

Total Duration 

of SLA viola-

tion per tenant 

(seconds) 

Applicable  

delay  

dependent 

penalty per 

tenant 

Applicable 

proportional 

penalty  

per tenant 

Min Max Min Max 

Batch Size 1 
582.50 5 8 1 1 3.38 3.38 q 3.38 q’ 

Batch Size 2 
300.29 3 4 1 2 2.20 2.20 q 3.11 q’ 

Batch Size 3 
226.43 2 3 1 3 1.53 1.53 q 2.96 q’ 

Our 

Approach 

361.92 3 5 1 1 2.25 2.25 q 2.25 q’ 
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upgrade method, as our approach prioritizes the upgrade of not in-use nodes which reduces the 

number of VM migrations during the upgrade.  

Note that when the tenants are scaled out to their maximum number of the VMs, the upgrade 

process will be paused in our approach until scaling in happens. Whereas the rolling upgrade 

method will continue regardless of the state of the system. This will causes more SLA viola-

tions and increase in the applicable penalties, compared to the case studies in our evaluation 

(as presented in Table 6.1 and Table 6.2). 

Overall consideration of our evaluation demonstrates that our approach works better to respect 

the SLA constraints of availability and elasticity, compared to the rolling upgrade method with 

fixed batch sizes.  

6.2 Prototype for the Upgrade Coordinator 

6.2.1 Prototype Architecture and Assumptions 

We implemented a prototype for the upgrade coordinator based on our proposed approach, 

presented in Chapter 5, for the upgrade of all kinds of IaaS resources. It is implemented in Java 

and it uses JGraphT [74] java library for implementing and manipulating RG and CG graphs 

used throughout our approach. In this implementation, to demonstrate the progress of the up-

grade, we simulated the behaviour of the upgrade engine, which is responsible for applying the 

schedules generated by the upgrade coordinator in a real system. 

Figure 6.20 shows the overall architecture of our prototype for the upgrade coordinator and the 

interaction between its modules. The two main modules in this prototype are as follow: 
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Graphical User Interfaces (GUIs): They are used by the system administrator to 1) create the 

initial system configuration, 2) add new tenants with their SLAs, 3) add new upgrade requests, 

and 4) submit the simulation input as feedback for the execution of the upgrade actions of the 

schedule generated by the upgrade coordinator. The upgrade actions for the upgrade schedule 

generated by the upgrade coordinator is also shown to the administrator using GUI. The ad-

ministrator may choose to use XML file to import the current configuration instead of using a 

GUI, and later modify the resources and dependencies using the GUI before starting the up-

grade process. Once the upgrade process starts, all of the changes in the configuration (except 

the failures, scaling in/out, and live migration) have to be requested as upgrade requests. Note 

that in the real system, the initial configuration will be collected automatically from the system.  

Upgrade Coordinator: This module represents the implementation of our proposed upgrade 

approach presented in Chapter 5. This module uses JGraphT library to create, update, and trav-

erse the graphs (e.g. the RG and the CG). The upgrade actions for the upgrade schedules are 

generated by this module and passed to the GUI module for display to the administrator. To 

demonstrate the progress of the upgrade, this module is additionally responsible to apply the 

 
Figure 6.20. Overall architecture of upgrade coordinator prototype 
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simulated input received from the administrator as the feedback for the execution of identified 

upgrade actions. After starting the upgrade process, the current configuration will be kept up-

dated according to the progress results of the upgrade process. As mentioned in Chapter 4 and 

Chapter 5, in the real system the upgrade engine is responsible for applying the upgrade actions 

to the system. To track the process of applying the upgrade actions, the upgrade request model 

is stored as XML document and is kept updated by the upgrade coordinator during the upgrade.  

In this prototype, for simplicity, we assume the administrator indicates all the required changes 

(including complementary changes) for a change set when specifying an upgrade request. We 

also assume that each change indicates the addition, removal, or upgrade of some resources, 

each requiring a single upgrade action on a resource. We also assume that the administrator 

provides the estimated time required for upgrade and recovering from possible failures for each 

change. In the real deployment this information is extracted from the infrastructure component 

descriptors. 

6.2.2 Case Study for Illustration 

As a case study, we use similar example scenario presented in Section 5.1.1. As mentioned 

earlier, there are 15 hosts in this example as shown in Figure 6.21. Nine of these hosts partici-

pate in creation of a VMware Virtual Storage Area Network (VSAN) [63] in the system (|MStor-

age|=9), while 10 of the hosts provide compute services (|Mcompute|=10). Each host has at least 

one CPU, memory and NIC. In this example we assume that each host in Mcompute has a capacity 

to serve two VMs (K=2) and this capacity remains unchanged after upgrade. In addition to 

these resources, there are dedicated network resources: switches and routers shown at the bot-

tom of the figure. The example assumes four tenants (Ni =4) each with their scaling policy. 

Each of the tenants has an initial, a maxn and a minn number of VMs. Again for simplicity, we 

assume that all the tenants have the same scaling adjustment and cooldown period. The VMs 
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of each tenant can scale in/out with a scaling adjustment of sn=1 VM. Similar to the example 

scenario in Section 6.1.2 different patterns are used to show the VMs of different tenants as 

shown in Figure 6.5. In this example, we also assume that all the VMs of a tenant form a single 

anti-affinity placement group. 

The administrator issues an upgrade request with two change sets: (1) upgrade the virtual 

shared storage from VSAN to Ceph [50]; and (2) upgrade the networking infrastructure from 

IPv4 to IPv6 considering dual stack. Note that the VSAN and Ceph are incompatible with each 

other, thus the upgrade process have to prevent introducing possible incompatibilities while 

applying change set 1.  

As mentioned earlier in this prototype we assume the administrator indicates all the required 

changes for a change set as an input. Upgrading VSAN to Ceph requires detaching hosts from 

VSAN cluster, upgrading hypervisors on the hosts from ESXi to hypervisors supported by 

Ceph (e.g. QEMU or Xen), and configuring Ceph components (e.g. OSD, monitoring, and cli-

 

Figure 6.21. The illustrative example scenario for IaaS cloud upgrade approach 
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ent daemons) on hosts. Upgrading network infrastructure from IPv4 to IPv6, requires upgrad-

ing all switches and routers to IPv6 and upgrading all hosts by configuring to IPv6. We assume 

the minimum required number of storage hosts for configuring Ceph is five, while it is three 

for VSAN. In addition, for simplicity we assume these number of storage hosts can handle the 

data of VMs for existing tenants. Note that the detailed requirements of VSAN, Ceph, IPv4, 

and IPv6 products are out of the scope of this example, and the aforementioned change sets 

may require additional changes to those that are presented in this example scenario. Thus, the 

change sets will be indicated as presented in Table 6.3. Here for simplicity, we use V1 and V2 

as two different versions of the resources, and we consider Ceph monitor and Ceph OSD as 

Ceph-storage component to be configured on storage hosts. Note that in the real deployment, 

based on the requirements of Ceph [50] it is recommended to have Ceph OSD and Ceph mon-

itors installed on separate nodes. 

The administrator also specifies additional parameters with respect to retry and undo operations 

for the change sets and the changes as presented in Table 6.4. In this example we assume the 

estimated time required for upgrade and recovering from possible failures for each change and 

the estimated required time to upgrade and to recover from possible failures for the selected 

Table 6.3. The change sets and their changes of the upgrade request for example scenario 

Change sets Changes 

 

Change set 1 

Change 1: Upgrade Hypervisors (on Host1 to Host15) from V1-H to V2-H 

Change 2: Add Ceph-client component to Compute Hosts (Host6 to Host15)  

Change 3: Add Ceph-storage component to Storage Hosts (Host1 to Host5)  

Change set 2 

Change 1: Upgrade Switches (SW1 to SW6) from V1-SW to V2- SW 

Change 2: Upgrade Routers (R1 and R2) from V1-R to V2-R 

Change 3: Upgrade hosts (Host1 to Host15) from V1-H to V2-H 
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number of VMs through multiple sub-iterations are each equal to cooldown period for the ten-

ants. However, in the implementation estimated required time for the upgrade and the 

cooldown periods may be different. Note that the max-completion-time(s) presented in Table 

6.4 for the change sets are only given for the sake of example, and they do not reflect the time 

required for changes in the real deployment. In the real deployment the complementary 

changes, the configuration requirements and the time required for the upgrade and recovery 

from possible failures will be inferred from infrastructure components of the products provided 

by the vendor. 

In this illustrative example, we present the three following scenarios: 1) Successful changes for 

both change sets, 2) failed upgrade actions for change set 2 which triggers retry and undo op-

erations, and 3) new upgrade requests while there are ongoing upgrades.  

 

 

Table 6.4. Additional information provided by the administrator for example scenario 

Change sets Changes 

max-retry 

threshold  

(for set) 

max-completion-

period 

(for set) 

undo-threshold 

 

(for change) 

undo version 

 

(for change) 

Change set 1 

Change 1  

3 

 

3600 seconds 

15 V1-H 

Change 2 10 - 

Change 3 5 - 

Change set 2 

Change 1  

2 

 

3600 seconds 

 

6 V1-SW 

Change 2 2 V1-R 

Change 3 15 V1-H 
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6.2.2.1 Successful changes for both change sets 

First Iteration 

As the first step of the first iteration, the RG is created as shown in Figure 6.22. Note that 

different colors are used for demonstrating different modification-types and dependency types. 

In this graph, vertices of R1 to R15 represent the hypervisors running on host1 to host15 rep-

resented by vertices R16 to R30. This hosting relation (i.e. container/contained dependency) is 

represented by the edges between the vertices e.g. R1 and R16. VMs are represented by R39 

to R44 running on hypervisors represented by R7 to R9, and the migration dependency between 

VMs and hypervisors are represented with edges between the vertices e.g. R39 and R7. For 

readability of this graph, the constitute resources (i.e. CPU, memory, NIC) of only two of the 

hosts are represented, e.g. vertices R47 to R50 represent the constitute resources of host1 rep-

resented by R16. The composition dependencies represented by the edges between vertices e.g. 

 

Figure 6.22. The RG of the illustrative scenario in the first iteration after step 1 
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R47 and R16. In this RG, vertices of R31 to R36 represent the switch SW1 to SW6, and vertices 

of R37 and R38 represent the routers R1 and R2, respectively. The existing communication 

links which are realization of communication dependencies in the system, are represented by 

edges with this dependency type between vertices e.g. R16 and R31. 

Since existing virtual shared storage (i.e. VSAN) is a storage infrastructure resource supporting 

the VM operations, and cannot be upgraded to Ceph in place due to incompatibilities between 

these two products, PPU method has to be used for its upgrade. In the RG two vertices of R46 

and R45 are created to represent the old (i.e. VSAN) and the new (i.e. Ceph) configuration of 

the VM supporting infrastructure, respectively. Note that in the current configuration, storage 

hosts R16 to R24 are aggregated into the virtual shared storage of R46, while in the future 

configuration R16 to R20 will be aggregated into R45 based on change set 1. Accordingly, the 

presence attribute of edges representing aggregation dependencies between virtual shared stor-

ages and their constituent resources is “Current” for VSAN, while it is “Future” for Ceph. Note 

that the VM supporting storage dependencies are represented by edges between vertex repre-

senting storage infrastructure resources (e.g. R45 for VSAN) and vertices representing the 

compute hosts (e.g. R21 to R30). In addition, the current VMs are using VSAN as the storage, 

thus they have storage dependencies towards VSAN. This storage dependencies are repre-

sented with edges between vertices representing VMs (i.e. R39 to R44) and VSAN (i.e. R46) 

with presence attribute of “Current”. The similar dependencies are depicted between VMs and 

Ceph in the future configuration by edges with presence attribute of “Future”.  

Modification-type of vertices are set based on whether the resources are to be upgraded, added, 

or removed according to the requested change sets. For example, the modification-type for 

compute hosts represented by R21 to R30 will be “Upgrade”, since the addition of the Ceph-

client component and the configuring of the host to IPv6 is upgrading the compute hosts in the 
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system. Since PPU has to be used for the upgrade of storage infrastructure resource (i.e.VSAN 

to Ceph), the modification-type of vertices representing them, R46 and R465, is set respectively 

to remove and to add, while setting their related-resource attribute indicating this relation be-

tween them. 

Since we assumed the administrator indicates all the required changes for a change set, thus 

there are no additional complementary changes for these changes. Each change set is assigned 

to a unique undo unit which includes all target resources of the change set. The undo units for 

our illustrative scenario are shown in Figure 6.23. Note that hosts represented by R16 to R30 

are in common between two undo units. 

The actions-to-execute attribute of each vertex representing a resource will be set according to 

the upgrade actions required for changes requested on that resource. For example, the actions-

to-execute attribute of vertex R30 representing Host15 includes upgrade actions for both 

change 2 in change set 1 (i.e. adding Ceph-client component) and change 3 in change set 2 (i.e. 

 

Figure 6.23. The RG and the identified undo units in the illustrative scenario  
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upgrading to V2-H for IPv6 configuration). Since the upgrade actions of both of these changes 

can be applied in a single iteration, they can be organized in a single execution level. For sim-

plicity, in this implementation we assume that each change has one corresponding upgrade 

action.  

In this example the only possible incompatibility may be introduced during the upgrade of the 

storage infrastructure supporting VM operations. This incompatibility is handled in a global 

way throughout our approach using the PPU method. Thus, we exclude VMs and VM support-

ing infrastructure resources while identifying the upgrade units. Since in this scenario there are 

no other possible incompatibilities, the resources without incompatibilities along their depend-

encies are in separate upgrade units; and the rolling upgrade method is selected as their appro-

priate upgrade method.  

According to the step 2 as described in Chapter 5, we perform dependency based contraction 

for hosts (represented by R16 to R30) and hypervisors (represented by R1 to R15) with con-

tainer/contained dependencies, and for hosts and constitute resources (i.e. CPU, Memory, and 

NIC) of hosts (e.g. represented by R47 to R54) with composition dependencies. Since the roll-

ing upgrade method is the associated upgrade method with the identified upgrade units, here 

we do not need to perform the upgrade method based vertex contraction. Note that the PPU 

method is applied globally, and there is no need for applying vertex contraction for resources 

being upgraded with the PPU method. The resulting CG graph is shown in Figure 6.24. 

At the step 3, first the VMs from physical hosts in common between the sets of MStorage and 

MCompute, i.e. host6 to host9, are evacuated and consolidated while respecting the availability 

constraint inferred from the anti-affinity grouping. The RG and CG are updated accordingly as 

shown in Figure 6.25 and Figure 6.26, respectively. Next, the Gbatch is initialized. Subsequently, 

the elimination rules is applied to eliminate the non-suitable candidates from the Gbatch: 
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• Elimination rule 1 removes CG vertices representing in-use physical hosts (i.e. GR13, 

GR14, and GR15) and VMs (i.e. R39, R40, R41, R42, R43, and R44) involved in mi-

gration dependency.  

• Elimination rule 2 removes CG vertex of R46 representing the old configuration of the 

shared storage (VSAN), as there are other resources depend on this resource other than 

VM supporting infrastructure dependency and its related resource (R45) has modifica-

tion-type of “Add”.  

• Elimination rule 3 removes the CG vertex of R45 representing the new configuration 

of shared storage (Ceph), as this resource is an aggregate resource and its required num-

ber of constituent resources (i.e. five storage hosts) are not ready yet to satisfy the re-

quirements of Ceph configuration.  

 

Figure 6.24. The CG of the illustrative scenario in the first iteration after step 2 
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• Elimination rule 4 removes dependent CG vertices of GR1 to GR12, and R31 to R36 

from the Gbatch according to case 1.a. of this rule, as explained in Appendix II.  

 

Figure 6.25. The RG of the illustrative scenario after VM consolidation in step 3 of the first iteration 

 

Figure 6.26.  The CG of the illustrative scenario after VM consolidation in step 3 of the first iteration 
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• Elimination rule 5 does not remove any CG vertices from the Gbatch, as the associated 

upgrade method of the identified upgrade units is the rolling upgrade method and there 

is no upgrade unit with possible incompatibilities in this example which needs ordering. 

• Elimination rule 6 removes one of the peer CG vertex of R37 and R38 to guarantee the 

availability of services provided by peer resources. Let us assume R38 is removed from 

the Gbatch. 

• According to elimination rule 7 there are enough resources for upgrading virtual shared 

storage. We assumed the minimum number of storage hosts required for VSAN con-

figuration (MinHostReqConfoldStorage) is three and the minimum number of storage hosts 

required for Ceph configuration (MinHostReqConfnewStorage) is five. We also assumed 

that these storage hosts provide minimum number of required storage hosts for storing 

data of all VMs. Hence, MinHostReqCapacityoldStorage is three and MinHostReqCapac-

itynewStorage is five. The number of storage hosts that are not in use as compute hosts 

(|MStorage-MusedCompute|) is 9. According to Equation (7) in Appendix II, we have: 

9 ≥ 3 + 5 

This means the current system has enough storage hosts to support the upgrade of vir-

tual shared storage, thus this elimination rule will not remove the resources related to 

the upgrade of virtual shared storage from the Gbatch. Since in this scenario, we assume 

there are no resource failures, the result of this evaluation will be the same for all the 

iterations.   

After applying the elimination rules, the remaining CG vertex in the Gbatch is R37. In this ex-

ample we assume the estimated required time to upgrade and to recover from possible failures 

for each change is equal to the cooldown period for the tenants,  and scaling adjustment of each 

tenant is equal to one (sn=1). Thus, Si is also equal to 1 according to equation (3) in Chapter 5 
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in Section 5.2.3. Since none of the tenants have upgraded VMs yet, the number of tenants who 

may scale out on hosts compatible with the old version of the VMs (A1) is 4. The number of 

compute hosts for scaling reservation of tenants with VMs of the old version for this iteration 

is calculated based on equation (5) in Chapter 5 in Section 5.2.3, as follow: 

𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝑅𝑒 𝑠 𝑣𝑓𝑜𝑟𝑂𝑙𝑑𝑉𝑀 = 1 ∗ ⌈
4

2
⌉ = 2 

Accordingly, the maximum number of compute hosts that can be taken out of service in the 

first iteration (Z1) is calculated based on equation (4) in Chapter 5 in Section 5.2.3, as follow: 

𝑍1 = 7 − 2 − 1 = 4 

The number of affected compute hosts during the upgrade of initial batch (i.e. R37) is zero and 

less than 4, thus the final batch will include R37 as well. The upgrade action of the first execu-

tion-level of the actions-to-execute attribute of R37 will be presented as the schedule of this 

iteration. Assuming the upgrade action for the change is executed successfully (i.e. simulated 

input as feedback is true) on the R37, the first execution-level is removed from its actions-to-

execute attribute of this resource. Since there is no further remaining change on R37, the mod-

ification-type of the resource changes to “No-change”. The upgrade request model, RG and 

CG are updated according to the results of this step. The updated RG and CG are shown in 

Figure 6.27 and Figure 6.28, respectively. The step 4 in the first iteration is not necessary since 

the compute hosts are not separated into two incompatible partitions yet. 

Second Iteration 

Note that in this scenario we assume that all of the changes for both change sets are successful 

and there is no new upgrade requests issued by the administrator. Thus, the RG and CG will be 
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remained unchanged through step 1 and step 2 after their last update in each previous iteration. 

Thus, in the following iterations we explain only the step 3 and step 4.  

 

Figure 6.27.  The RG of the illustrative scenario after successful upgrade of the first iteration in step 3 

 

Figure 6.28. The CG of the illustrative scenario after successful upgrade of the first iteration in step 3 
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The Gbatch is initialized including all the CG vertices shown in Figure 6.28 except R37 which 

is already upgraded. The CG vertices representing hosts, VMs, virtual share storages, and 

switches are eliminated from the Gbatch by elimination rule 1, 2, 3, and 4. However, elimination 

rule 6 will not eliminate R38 from the initial batch since its peer resource R37 is in service after 

its upgrade. The maximum number of compute hosts that can be taken out of service in the 

second iteration will be 4 similar to the first iteration. The number of affected compute hosts 

during the upgrade of R38 is zero, therefore this resource can be upgraded in this iteration while 

respecting the dependencies and the SLA constraints. The upgrade request model, RG and CG 

are updated according to the results of this step. Again, the step 4 is skipped as the compute 

hosts are not upgraded yet.  

Third Iteration 

Similar to previous iterations the CG vertices representing hosts, VMs, and virtual share stor-

ages are eliminated from the Gbatch by elimination rule 1, 2, 3, and 4. Note that in this iteration, 

elimination rule 4 does not remove CG vertices representing switches (R31 to R36) from the 

Gbatch since their sponsors (R37 and R38) have been upgraded already. However, one switch 

out of each peer switches will be eliminated according to elimination rule 6 to protect the avail-

ability of services provided by peer switches. Let us assume R31, R33, and R35 remains in the 

initial batch. Similar to the first iteration, the maximum number of compute hosts that can be 

taken out of service in the third iteration (Z3) is 4. The number of affected compute hosts during 

the upgrade of the initial batch is zero, so the final batch includes all the same resources as 

initial batch. After their upgrade, the upgrade request model, RG and CG are updated.  
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Fourth Iteration 

Similar to the third iteration, in the fourth iteration the R32, R34 and R36 are upgraded. The 

updated RG and CG at the end of this iteration are shown in Figure 6.29 and Figure 6.30, 

respectively.  

Fifth Iteration 

Elimination rule 1 removes in-use physical hosts (i.e. GR13, GR14, and GR15) and VMs (i.e. 

R39, R40, R41, R42, R43, and R44) from the Gbatch. Elimination rule 2 removes R46 as there 

are dependent resources on this resource, with dependencies other than VM supporting infra-

structure dependency. Elimination rule 3 removes R45 since the required number of constituent 

resources (i.e. five storage hosts) for the resource represented by R45 (Ceph) are not ready yet. 

According to elimination rule 4, all the remaining compute hosts (GR6 to GR12) in the Gbatch 

are eliminated, since their sponsor virtual shared storage (R45) in the new configuration is not 

 

Figure 6.29.  The RG of the illustrative scenario after successful upgrade of the fourth iteration  
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added yet (according to case 3.b in elimination rule 4 described in Appendix II). According to 

elimination rule 6 maximum of one constituent resource of aggregation dependency can stay 

in the Gbatch to guarantee the availability of services given by peer resources, since this does 

not violate the minimum resource requirement of the aggregate resource with respect to its 

configuration and possibly the data stored. Note that the exception case for elimination rule 6 

is not valid either, as the two conditions for the exception are not true, e.g. there are dependen-

cies towards the aggregate resource with modification-type of “Remove” (R46) with are not 

from VM supporting infrastructure dependency type. Thus, only one of CG vertices of GR1 to 

GR5 can stay in the batch according to elimination rule 6. Let us assume GR1 remains in the 

batch, and GR2 to GR5 are eliminated. According to elimination rule 7 we still have enough 

resources to satisfy the PPU method, so the resources related to upgrade of VM supporting 

infrastructure resource can remain in the Gbatch. Similar to previous iterations, the maximum 

number of compute hosts that can be taken out of service in fifth iteration (Z5) is 4. The number 

 

Figure 6.30.  The CG of the illustrative scenario after successful upgrade of the fourth iteration  
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of affected compute hosts during the upgrade of the remaining resource group (GR1) in the 

initial batch is zero and it can be selected for the final batch.  The upgrade request model, RG 

and CG are updated upon providing the successful simulated feedback. Note that as a result of 

this upgrade, the aggregation dependency between R46 (old configuration of virtual shared 

storage, i.e. VSAN) and GR1 is going to be removed and the aggregation dependency between 

R45 (i.e. new configuration of the virtual shared storage, i.e. Ceph) and GR1 will be stablished 

in the current configuration. This means the presence attribute of the edge representing this 

dependency will in the RG changes from the “future” to “current/future”. Again step 4 is not 

applicable since none of the compute hosts are upgraded yet. 

Sixth, Seventh, Eighth, and Ninth Iterations 

Similar to fifth iteration in the sixth, seventh, eighth, and ninth iterations only one of CG ver-

tices of GR2 to GR5 is going to be upgraded due to elimination rule 6 and the constraint for 

keeping maximum one constituent resource of aggregation dependency in the initial batch. The 

RG and CG after ninth iteration are presented in Figure 6.31 and Figure 6.32, respectively. 

Tenth Iteration  

Similar to previous iterations GR13 to GR15 and R39 to R44, are eliminated from the Gbatch 

according to elimination rule 1, while R46 is eliminated according to elimination rule 2. How-

ever, since the required number of constituent resources (five storage hosts) for the Ceph con-

figuration (represented by R45) is ready, the elimination rule 3 will not remove R45 from the 

initial batch. Elimination rule 4 eliminates GR6 to GR12 according to elimination rule 4 since 

their sponsor virtual shared storage (R45) is not added yet. Considering the calculated 4 com-

pute hosts as the maximum number of compute hosts that can be taken out of service in tenth 

iteration (Z10), R45 will remain in the final batch. Thus, the configuration of the Ceph virtual 
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shared storage will be completed in this iteration. This means the modification-type of R45 in 

the updated RG and CG changes to “No-change”. 

 

Figure 6.31.  The RG of the illustrative scenario after successful upgrade of the ninth iteration in step 3 

 

Figure 6.32.  The CG of the illustrative scenario after successful upgrade of the ninth iteration in step 3 
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Eleventh Iteration 

According to elimination rule 1 and 2, GR13 to GR15, R39 to R44, and R46 are removed. 

However, as R45 representing Ceph configuration is ready the elimination rule 4 does not re-

move GR6 to GR12 from Gbatch. According to Elimination rule 6 only one of CG vertices of 

GR6 to GR9 can stay in the batch. Let us assume GR6 will remain in the Gbatch. Therefore, the 

initial batch will include GR6, GR10, GR11, and GR12. The maximum number of compute 

hosts that can be taken out of service in eleventh iteration (Z11) is 4, which is equal to the 

number of affected compute hosts during the upgrade of initial batch. Thus, the final batch can 

include GR6, GR10, GR11, and GR12. Considering the successful simulated feedback, the RG 

and the CG are updates as shown in Figure 6.33 and Figure 6.34. Note that as a consequence 

of the upgrades in this iteration, the edges representing the VM supporting storage dependency 

of the upgraded compute hosts towards the VSAN virtual shared storage represented by R46 

 

Figure 6.33.  The RG of the illustrative scenario after successful upgrade of the eleventh iteration in step 3 

z 
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is removed, and the presence of edge representing the VM supporting storage dependency of 

these compute hosts towards R45 are changed to “current/future”.  

In this iteration after completing step 3, the compute hosts are separated into two incompatible 

partitions due to upgrade of virtual shared storage, therefore step 4 is performed. Note that the 

new configuration of the virtual shared storage (Ceph) is already completed. The set of compute 

hosts eligible to provide compute services for tenants with VMs of the new version (McomputeFor-

NewVM) is 4, and none of them are in-use (MusedComputeForNewVM = 0). Considering single host fail-

ure at a time and ability to recover before the next host failure, we reserve one compute hosts 

for any failover for upgraded VMs (FailoverResevforNewVM =1). Since in this iteration there is 

no tenant with upgraded VMs yet, therefore the scaling reservation for the tenants with up-

graded (new) VMs (ScalingResvforNewVM) is zero in the initial calculation. As mentioned earlier 

we assumed the host capacity in terms of VMs remains unchanged after the upgrade (K’=2). 

 

Figure 6.34.  The CG of the illustrative scenario after successful upgrade of the eleventh iteration in step 3 
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The number of VMs that can potentially be migrated and if necessary upgraded in the current 

iteration V11 is calculated according to equation (6) in Chapter 5 in Section 5.2.4, as follow: 

𝑉11 = (4 − 0 − 1) ∗ 2 = 6  

We select all 6 VMs (represented by R39 to R44) as potential batch of VMs for this iteration. 

Considering the application level redundancy and anti-affinity group constraint, the number of 

VMs in the first sub-iteration W11, 1 is 4. We select one VM from each anti-affinity group (here 

tenant). Let us assume VMs represented by R39, R40, R41 and R42 are selected for the first 

sub-iteration. Before performing the VM migration/upgrade, we re-evaluate the scaling reser-

vation to determine whether it is sufficient for scaling-out of selected tenants in this sub-itera-

tion on the upgraded compute hosts. In one hand, two compute hosts are required for scaling 

reservation of all the selected tenants and one compute host is reserved for possible failover for 

upgraded VMs. In the other hand, two compute hosts are required for hosting the VMs of the 

selected tenants and in total there is only four compute hosts eligible to provide compute ser-

vices for tenants with VMs of the new version. Thus, the upgrade of VMs from the selected 

four tenants cannot be carried out. The batch of VMs for this sub-iteration have to be re-ad-

justed to 2 VMs. Let us assume VMs represented by R39 and R40 are selected in this sub-

iteration. Considering the successful simulated feedback, the RG and the CG will be updated 

after step 4 as shown in Figure 6.35 and Figure 6.36. Note that as a consequence of upgrading 

and migrating VMs to the upgraded compute hosts compatible with the new shared storage, 

the storage dependency of the upgraded VMs towards the VSAN represented by R46 is re-

moved and the presence of the edge representing the storage dependency of these VMs towards 

R45 are changed to “current/future”.  
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Twelfth Iteration 

Elimination rule 1 removes in-use compute hosts (GR14 and GR15) and VMs (R41 to R44) 

from the Gbatch. Elimination rule 2 eliminates R46 as there are other dependencies (i.e. storage 

dependencies) than VM supporting infrastructure dependency towards it. Elimination rule 6 

removes all group resources constituent (GR7 to GR9) of the old version of virtual shared 

storage (R46), as taking out any of them will result in violating the minimum resource require-

ment of the aggregate resource (R46), which is 3. Thus, the initial batch will only include 

GR13. Since two of the tenants have upgraded VMs, the number of tenants who may scale out 

on hosts compatible with the old version of the VMs (A12) is 2. S12 is still equal to 1. The 

number of compute hosts for scaling reservation of tenants with VMs of the old version for this 

iteration is 1 based on equation (5) in Chapter 5 in Section 5.2.3, as follow: 

𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝑅𝑒 𝑠 𝑣𝑓𝑜𝑟𝑂𝑙𝑑𝑉𝑀 = 1 ∗ ⌈
2

2
⌉ = 1 

 

Figure 6.35. The RG of the illustrative scenario after successful upgrade of the eleventh iteration in step 4 
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Now |MComputeForOldVM - MusedComputeForOldVM | the number of compute hosts that are not in use and 

are eligible to provide compute services for tenants with VMs of the old version is 4. The 

maximum number of compute hosts that can be taken out of service in the twelfth iteration 

(Z12) is calculated based on equation (4) in Chapter 5 in Section 5.2.3, as follow: 

𝑍12 = 4 − 1 − 1 = 2 

The number of affected compute hosts during the upgrade of initial batch is 1, which is less 

than Z12. Thus, the GR13 will be selected in the final batch. Considering the successful simu-

lated feedback, the modification-type of the GR13 in the CG and its corresponding resources 

in the RG will be updated as “No-change”. The upgrade will proceed to step 4.  

The set of compute hosts eligible to provide compute services for tenants with VMs of the new 

version is 5, and one of them is in-use (|McomputeForNewVM -MusedComputeForNewVM | = 4). Since in this 

iteration there is two tenants with upgraded VMs, the scaling reservation for the tenants with 

 

Figure 6.36. The CG of the illustrative scenario after successful upgrade of the eleventh iteration in step 4 

 



155 

 

upgraded VMs (ScalingResvforNewVM) is 1. Accordingly, the number of VMs that can potentially 

be migrated and if necessary upgraded in twelfth iteration V12 is calculated 4, as follow: 

𝑉12 = (4 − 1 − 1) ∗ 2 = 4  

We initially select 4 VMs represented by R41 to R44 as potential batch of VMs. Since each of 

the selected VMs are from different tenants, we can potentially upgrade them in one sub-itera-

tion while respecting anti-affinity constraint. We need two compute hosts for scaling-out res-

ervation of the selected tenants and one compute host for possible failover for upgraded VMs. 

Considering the capacity of compute hosts, the remaining one compute host (out of four not 

in-use ones) is not enough to accommodate the upgrade of 4 VMs. The batch of VMs for this 

iteration is re-adjusted to 2 VMs. Let us assume VMs represented by R41 and R42 are selected 

in this iteration for the migration and upgrade. Considering the successful simulated feedback, 

the RG and the CG are updated after step 4 as shown in Figure 6.37 and Figure 6.38. 

 

Figure 6.37. The RG of the illustrative scenario after successful upgrade of the twelfth iteration in step 4 
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Thirteenth Iteration 

After applying the elimination rules, GR14 stays in the initial batch. Since all the tenants have 

upgraded VMs, therefore we do not need any compute hosts for scaling reservation on the old 

version compute hosts (ScalingResvforOldVM =0). However, still the failover reservation has to 

be considered for old version VMs. The maximum number of compute hosts that can be taken 

out of service in the thirteenth iteration (Z13) is 3 based on equation (4) in Chapter 5 in Section 

5.2.3, as follow: 

𝑍13 = 4 − 0 − 1 = 3 

The number of affected compute hosts during the upgrade of the initial batch (GR14) is 1, 

which is less than Z13. Thus, the GR14 will be selected and upgraded as the final batch. The 

upgrade proceeds to step 4.  

 

Figure 6.38. The CG of the illustrative scenario after successful upgrade of the twelfth iteration in step 4 
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Considering the newly upgraded compute host, |McomputeForNewVM -MusedComputeForNewVM | is 4. All 

four tenants have upgraded VMs, thus the scaling reservation for the tenants with upgraded 

VMs (ScalingResvforNewVM) is 2 and the number of hosts reserved for failover for upgraded VMs 

(FailoverResevforNewVM) is 1. Accordingly V13 is 2, as follow: 

𝑉13 = (4 − 2 − 1) ∗ 2 = 2 

The remaining two VMs represented by R43 and R44 are selected as potential batch of VMs. 

Since the scaling-out reservation is considered for all the VMs in the upgraded VMs, the up-

grade of potential batch can be carried out safely with respect to possible future scaling-out 

requests. After feeding the successful simulated feedback for VM upgrades, the RG and the 

CG are updated. The updated CG after thirteenth iteration is shown in Figure 6.39. 

 

 

 

Figure 6.39. The CG of the illustrative scenario after successful upgrade of the thirteenth iteration in step 4 
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Fourteenth Iteration 

In the fourteenth iteration, after applying the elimination rules GR15, GR7, GR8, GR9 and R46 

will stay in the initial batch. In this iteration, elimination rule 2 does not remove R46 from the 

Gbatch, since the only dependency towards R46 is the VM supporting storage dependency and 

its related resource (R45) has modification-type of “No-change”. Note that all the VMs are 

already migrated to the compute hosts compatible with the new version of virtual shared stor-

age (R45), so there is no storage dependency towards the old version of virtual shared storage 

(R46). This means R46 can be safely removed. Elimination rule 6 does not remove the constit-

uent resource of R46 as well, since the two conditions for the exception case are true; there is 

no dependency except VM supporting storage towards R46 and the upgrade of the related re-

source of R46 is already completed. Thus, the constituent resources of the old version of virtual 

shared storage (R46) can be upgraded all at the same time. At this point, all the tenants have 

upgraded VMs and there is no old version VMs running on the compute hosts compatible with 

the old version virtual shared storage. Hence, there is no need to have compute hosts for scaling 

reservation or failover reservation for the old VMs (ScalingResvforOldVM =0 and Failover-

ResevforOldVM = 0). The maximum number of compute hosts that can be taken out of service in 

the fourteenth iteration (Z14) is 4. The number of affected compute hosts during the upgrade of 

initial batch is 4, which is equal to Z14. Thus, the final batch includes GR15, GR7, GR8, GR9 

and R46. Assuming successful upgrade actions of the final batch, R46 will be removed from 

the system, while the compute hosts are upgraded. The updated RG and CG are presented in 

Figure 6.40 and Figure 6.41, respectively. Since all the changes in the upgrade request have 

been completed and there is no new upgrade request, the upgrade process terminates.  
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Figure 6.40. The RG of the illustrative scenario after successful upgrade of the fourteenth iteration in step 4 

 

Figure 6.41. The CG of the illustrative scenario after successful upgrade of the fourteenth iteration in step 4 
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6.2.2.2 Failed upgrade actions for change set 2 triggering retry and undo operation 

In this scenario we consider failed upgrade actions for the change set 2 which triggers recovery 

operations of retry and undo for this change set. 

Third Iteration 

Let us assume the upgrade actions for change set 2 fails in the third iteration on one of the 

switches represented by R31. This means the failed upgrade action feedback for resource rep-

resented by R31 will be provided to the upgrade coordinator. Note that in the real system, the 

upgrade coordinator will generate an upgrade schedule to bring back the resource to a stable 

configuration. For simplicity in this prototype implementation, we assume the resource with 

the failed upgrade actions is still in a stable configuration, thus it is not required to generate a 

new schedule for resource level undo. Upon receiving the feedback, the upgrade resource 

model, the RG and the CG will be updated. The first execution-level from the actions-to-exe-

cute attribute of resources with successful upgrade actions (R33 and R35) is removed, while it 

remains unchanged for the resource with failed upgrade action (R31). The counter of failed 

attempt on R31 is incremented. Note that the information regarding the failed upgrade action 

will be recorded in the upgrade iteration report. The updated RG and CG after completing third 

iteration with failed upgrade action on R31 are presented in Figure 6.42 and Figure 6.43, re-

spectively. The step 4 will not be applicable as the compute hosts are not separated into two 

incompatible partitions yet. 

Fourth Iteration 

In the fourth iteration in step 1, the RG is updated to identify the necessary retry or undo oper-

ations for change set with failed upgrade actions. For this, the upgrade iteration report of the 

previous iteration is used. The number of failed upgrade attempt on R31 is 1 and the maximum 
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allowed number of upgrade attempts on each resource for change set 2 is 2 (max-retry threshold 

= 2), as indicated in Table 6.3. Thus, a retry operations is allowed on R31. In step 2, the CG 

 

Figure 6.42. The RG of the illustrative scenario with failed upgrade action after third iteration in step 3 

 

Figure 6.43. The CG of the illustrative scenario with failed upgrade action after the third iteration in step 3 
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will be updated accordingly as well.  

After applying the elimination rules R31, R34, and R36 remains in the initial batch. The max-

imum number of compute hosts that can be taken out of service in the fourth iteration (Z4) will 

be 4. Since the number of affected compute hosts during the upgrade of initial batch is zero 

(less than Z4), the final batch includes R31, R34, and R36 as well. Let us assume in this itera-

tion, the upgrade actions on R31 fails once more time, while the upgrade actions on R34 and 

R36 completes successfully. Similar to previous iteration, while updating the RG and the CG, 

the first execution-level from the actions-to-execute attribute of resources with successful up-

grade actions (R34 and R36) is removed, while it remains unchanged for the resource with 

failed upgrade action (R31). The counter of failed attempt on R31 is incremented, which means 

the number of failed upgrade attempt on R31 reaches 2. Step 4 is not applicable in this iteration. 

The updated RG and CG after this iteration will be as shown in Figure 6.44 and Figure 6.45. 

 

Figure 6.44. The RG of the illustrative scenario with failed upgrade action after fourth iteration in step 3 
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Fifth Iteration  

Similar to the previous iteration the RG have to be updated to evaluate the necessity of retry or 

undo operations. Since the number of failed attempts on R31 is reached to the max-retry thresh-

old for the change set 2, the retry operation cannot be initiated on R31. 

Thus, the switch represented by R31 is isolated. As a result of isolating this resource, the num-

ber of operational switches will change to 5, which is less than 6 minimum required number of 

operational switches indicated as undo-threshold for the change 1 of the change set 2. This 

means the undo operation for change set 2 is triggered. All the changes which are already ap-

plied to the resources of undo unit 2 (associated with change set 2) have to be undone. The 

undo unit 2 and its associated change set 2 is marked as failed.  

 

Figure 6.45. The CG of the illustrative scenario with failed upgrade action after the fourth iteration in step 3 
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As shown in Figure 6.23, the undo unit 2 includes the routers, switches and all the hosts. The 

actions-to-execute attributes of the resources belonging to undo unit 2 will be adjusted. For the 

resources that the changes of the change set 2 is already applied (i.e. R33 to R38), this adjust-

ment is including the undo actions in the first execution-level of the actions-to-execute attribute 

of the resources to take them to the undo version. For the others that the changes of change set 

2 is not applied yet (i.e. R16 to R32), the upgrade actions for the change set 2 will be removed 

from their actions-to-execute attribute. The modification-type of the resources will be updated 

according to the remaining changes to be applied to the resources. Note that R31 and R32 are 

already at the undo version, thus after removing the upgrade actions for the change set 2, there 

is no more remaining change to be applied on them (modification-type is ”No-change”). R31 

will be released from isolation. The updated RG after this step is presented in Figure 6.46. In 

step 2, the CG will be updated as well. The updated CG after this step is presented in Figure 

6.47.  

 

Figure 6.46. The RG of the illustrative scenario with failed upgrade action after fifth iteration in step 1 
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The initial batch includes one of the routers represented with R37 and R38, similar to the first 

iteration in the successful scenario described in Section 6.2.1.1. Note that due to the initiated 

undo operation for change set 2, there are changes (e.g. for undoing the change 2 of the change 

set 2) to be applied on previously upgraded resources. Elimination rule 4 enforces to upgrade 

R37 and R38 before other resources. While elimination rule 6 eliminates one of these peer 

resources to protect the availability of services provided by peers. We assume R37 remains in 

the initial batch. After calculation of the maximum number of compute hosts that can be taken 

out of service in fifth iteration (Z5) and considering zero number of affected compute hosts 

during the upgrade of the initial batch, R37 is selected for the final batch. Thus, the change set 

2 is undone on R37. 

Sixth, Seventh, and Eighth Iterations 

Similarly, in the sixth iteration R38 will be undone. In the seventh iteration, not only one out 

of peer switches with modification-type of “Upgrade” is going to be selected in the final batch, 

 

Figure 6.47. The CG of the illustrative scenario with failed upgrade action after fifth iteration in step 2 
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but also similar to the fifth iteration in the successful scenario described in Section 6.2.1.1, one 

of the constituent resource (GR1 to GR5) of R46 remains in the final batch as there is no change 

to be applied on their sponsor switches (R31 and R32). Let us assume the selected resources in 

this iteration are R33, R35, and GR1. In the eighth iteration R34, R36 and GR2 are upgraded.  

Remaining Iterations  

From here after, the selection of resources for the upgrade will continue similar to sixth itera-

tion of the successful scenario (described in Section 6.2.1.1) until the end of the upgrade pro-

cess. 

6.2.2.3 New upgrade requests during ongoing upgrades 

In this scenario we consider receiving a new upgrade request while the previously issued one 

is still in progress. Let us assume the administrator issues a new upgrade request consisting a 

change set to upgrade the routers to a new version (V3-R) while the second iteration of the 

successful scenario (described in Section 6.2.1.1) is in progress. Since the administrator aims 

to only upgrade the routers, the new change set (change set 3) has one change as presented in 

Table 6.5. We assume the administrator also specifies max-retry, max-completion-period, 

undo-threshold and undo version for the change set and its change as presented in Table 6.6. 

For simplicity, we assume the estimated time required for upgrade and recovering from possi-

ble failures for the change is equal to cooldown period for the tenants. Note that the max-

completion-time for the change set is given for the sake of example and it does not reflect the 

time required for upgrading a router in the real deployment. 

The upgrade coordinator takes them into account the new upgrade requests at the beginning of 

the next iteration. Hence, the change set 3 will be taken into account at the begging of the third 

iteration.  
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Third Iteration 

The new upgrade request is first added to the upgrade request model and a new undo unit (undo 

unit 3) is assigned for its change set. A new request graph (NRG) is created for the new upgrade 

request without considering any ongoing upgrades for capturing the new incompatibilities that 

may arise due to the new upgrade request. In this example, we assume the change set 3 will not 

introduce any additional incompatibilities to the system. Therefore, the upgrade units identified 

on the NRG will be similar as the ones in the RG. The actions-to-execute attributes of the 

routers represented by R37 and R38 include the upgrade actions for the change 1 in change set 

3. The RG will be updated for these resources. Note that since the upgrade of R37 and R38 for 

the change set 2 was already completed, the actions-to-execute attributes of them were empty 

at the beginning of step 1. Now, after updating the RG, the actions-to-execute attributes of R37 

and R38 will have one execution-level including the upgrade actions for the change set 3. The 

modification-type of these resources will be updated to “Upgrade”. The updated RG after this 

step is presented in Figure 6.48. In the step 2, the CG will be updated accordingly.  

Table 6.5. Change set of the new upgrade request  

Change sets Changes 

Change set 3 Change 1: Upgrade Routers (R1 and R2) from V2-R to V3-R 

Table 6.6. Additional information provided by the administrator for the change set 3 

Change sets Changes 

max-retry 

threshold  

(for set) 

max-completion-

period 

(for set) 

undo-threshold 

 

(for change) 

undo version 

 

(for change) 

Change set 3 Change 1 3 1800 seconds 2 V2-R 
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In step 3 similar to the first iteration of this scenario, R37 will be upgraded. However, contrary 

to the first iteration which upgrades R37 to V2-R, in this iteration R37 will be upgraded from 

V2-R to V3-R.   

Remaining Iterations 

Hereafter, the selection of resources in the final batch in the remaining iterations will continue 

similar to the second iteration of the successful scenario (described in Section 6.2.1.1) until the 

end, till completion of all upgrade requests. 

6.3 Summary 

In this chapter, we presented the proof of concept developed for upgrading the IaaS compute 

and its application in a virtualized OpenStack cluster. This PoC is designed and partially de-

veloped within Ericsson to demonstrate the feasibility of our proposed framework in a real 

 

Figure 6.48. The RG of the illustrative scenario with new upgrade request in third iteration after step 1 

 



169 

 

deployment. This PoC implementation is able to upgrade the IaaS compute nodes in a real 

system under SLA constraints for availability and elasticity. 

 In addition, in this chapter we presented the prototype implementation of our proposed upgrade 

approach applicable to upgrade of different kinds of IaaS resources. In this implementation the 

behaviour of the upgrade engine, responsible for applying the generated runtime upgrade 

schedules in the real system, is simulated to show the progress of the upgrade. Using this pro-

totype implementation in each iteration, the upgrade actions for the runtime upgrade schedule 

are determined while considering SLA constraints of elasticity and availability. An illustrative 

example with different scenarios was used to demonstrate the handling of different challenges 

of upgrade in the cloud (e.g. dependencies, dynamicity and failure handling) and also the con-

tinuous delivery feature of our proposed approach.  

Using the proof of concepts and the case studies presented as illustrative examples, we demon-

strated that our upgrade management framework can upgrade the IaaS cloud system under SLA 

constraints of availability and elasticity while addressing the identified challenges. We also 

performed some experiments that show our approach does not introduce any outage at the ap-

plication level for the tenants that are configured HA (i.e. have more than one VM), and it 

causes less SLA violations, compared to the rolling upgrade method with fixed batch sizes. 

Although the introduced outage at the application level for the rolling upgrade with batch size 

of one is similar to our approach, however the duration of upgrade using our approach is less 

than duration of upgrade with fixed batch size of one.  

In order to realize the prototype implementation in a real deployment, the configuration infor-

mation of different kinds of IaaS resources has to be gathered from the real system automati-

cally. In addition, the identified upgrade actions for the schedule in each iteration have to be 
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organized into a specific format (e.g. playbooks, recipes) based on the configuration manage-

ment tool chosen as the upgrade engine.
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Chapter 7  

7 Conclusion and Future Work 

7.1 Conclusion 

In this thesis, we presented an upgrade management framework for automating the upgrade of 

IaaS cloud systems, under SLA constraints of availability and elasticity. Our upgrade manage-

ment framework has two components, the upgrade coordinator to coordinate the upgrade pro-

cess, and the upgrade engine to execute the necessary upgrade actions on the infrastructure 

resources. For the coordination of the upgrade process, we proposed an upgrade approach, 

which determines and schedules the necessary upgrade methods and actions appropriate for the 

upgrade requests in an iterative manner. In this approach, applicable to all kind of IaaS re-

sources, the entire process is orchestrated to minimize the service disruption of the IaaS cloud 

system during the upgrade. We also evaluated several configuration management tools (e.g. 

Ansible, Salt, and Chef) as potential upgrade engines. As mentioned in Chapter 4, the upgrade 

engine can be any other engine capable of running upgrade actions on the IaaS resources.  

An upgrade is initiated by an upgrade request which is composed of change sets requested by 

a system administrator indicating the desired changes in the IaaS cloud system. In addition to 

the initial change sets, our approach allows for new upgrade requests to be issued and taken 
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into account during the upgrade process, which makes it suitable for continuous delivery. The 

upgrade actions required to upgrade each IaaS resource, the upgrade method appropriate for 

each subset of resources, and the batch of resources to upgrade in each iteration are determined 

automatically and applied in an iterative upgrade process.  

The approach tackles in an integrated manner the challenges posed by the dependencies and 

the possible incompatibilities along dependencies, by the dynamicity of IaaS cloud systems, by 

potential upgrade failures, and by the amount of used extra resources.  

To minimize the service disruption during the upgrade of different kinds of IaaS resources, 

existing dependencies must be respected. In this thesis, we have defined infrastructure resource 

information models for the purpose of the upgrade, and we have characterised infrastructure 

resource dependencies. A set of rules – called elimination rules – have been used to order the 

upgrade of different resources with respect to their dependency requirements. In addition, the 

upgrade method templates have been defined to specify the appropriate upgrade methods to 

subsystems for handling the potential incompatibilities along the resource dependencies. To 

minimize the duration of the upgrade, the resources that can be upgraded simultaneously (i.e. 

the batch of resources) are identified, and the appropriate upgrade methods are selected to up-

grade the selected resources. 

Since in each iteration, the batch of resources for the upgrade is selected according to the cur-

rent state of the system with respect to the dependencies and the SLA constraints, the interfer-

ences between autoscaling and the upgrade process is mitigated. Furthermore, since the up-

grade process is regulated based on the current state of the system, cloud providers can perform 

the upgrades gradually according to the state of the system, and they do not need to designate 

a maintenance window for performing the upgrades. In case of upgrade failures, localized retry 
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and undo operations are issued automatically according to the failures and undo/retry thresh-

olds indicated by the administrator. This feature provides the capability to undo a failed change 

set, while the upgrade proceeds with other change sets. 

In our approach, to minimize the amount of additional resources used during the upgrade, we 

identify the subsystem where additional resources are required, and we only use the minimum 

amount as necessary. For example, instead of bringing up a complete IaaS system as a parallel 

universe, we use this method locally to upgrade the infrastructure resources supporting VM 

operations. 

To have more confidence on the correctness of our approach, we provided an informal valida-

tion and a rigorous analysis of four important properties of our approach. The feasibility of our 

upgrade management framework in a real deployment is demonstrated by developing a proof 

of concept for upgrading the IaaS compute and its application in a virtualized OpenStack clus-

ter. Furthermore, we presented the prototype implementation of our upgrade approach for all 

kinds of IaaS resources. We used an illustrative example with different upgrade scenarios to 

show that the upgrade of IaaS resources proceeds as expected in our prototype implementation, 

under SLA constraints of availability and elasticity.    

We conducted some experiments to show how our approach works to respect the SLA con-

strains of availability and elasticity. The measurement results demonstrate that our approach 

does not introduce any outage at the application level for the tenants that are configure HA in 

the application level. Also, the results indicate that our approach avoids the outage at the ap-

plication level and reduces SLA violations during the upgrade, compared to the rolling upgrade 

with fixed batch sizes.   
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7.2 Future work 

In this section, we briefly discuss potential future research.  

In the proposed approach, the upgrade of IaaS resources for the requested change sets are car-

ried out in an iterative process according the current state of the system with respect to the 

dependencies and the SLA constraints. In our approach, we do not prioritize change sets based 

on the urgency of the upgrades and their required completion time. The final batch for the 

upgrade is selected in each iteration, regardless of the urgencies of the change sets. We assumed 

any subset of IaaS resources can be chosen from the initial batch, as long as their number of 

affected compute hosts are less than the maximum number of compute hosts that can be taken 

out of service in an iteration. In addition, if a change set requested by the administrator cannot 

be finalized within the maximum time allotted to complete all the changes of change sets, the 

undo operation is triggered for that change set. As a future work, heuristics can be considered 

to prioritize the selection of IaaS resources for the upgrade according to the maximum comple-

tion time of change sets. Urgent upgrades may impact the whole system if not addressed within 

a fixed time window. For such upgrades, the upgrade process may need to proceed even when 

there is a shortage of resources to guarantee scaling. Thus, SLA violation penalties may apply. 

A future work can target the optimization problem of such upgrades with multi objectives of 

minimizing the penalties of an IaaS provider for not meeting scaling requests according to the 

SLAs and the costs associated with delaying the urgent upgrades.  

As mentioned in Chapter 5, the potential scaling-out requests are calculated based on the scal-

ing policies indicated in the SLAs. Some cloud providers may not use a reactive rule-based 

autoscaling mechanism based on scaling policy parameters as presented in this thesis (e.g. 

cooldown time, scaling adjustment).  
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Although the approach presented in this thesis targets the upgrade of IaaS cloud systems, the 

principles of our approach can be reused for Software as a Service (SaaS) and Platform as a 

Service (PaaS) cloud as well, which can minimize the service disruption and SLA violation of 

these systems during the upgrade.  

As mentioned in Chapter 6, a proof of concept has been developed for upgrading the IaaS 

compute and its application in a virtualized OpenStack cluster. In addition, a prototype imple-

mentation of our proposed approach is presented for the upgrade of all kinds of IaaS resources. 

From the realization perspective, a future work can involve putting our upgrade management 

framework and approach at work for the upgrade of all kind of IaaS resources and validating 

them in practice. This will require automatic collection of configuration information from an 

IaaS cloud system according to the infrastructure resource information models presented in 

Chapter 3. For example, in case of OpenStack cloud system this information has to be collected 

from metadata of different OpenStack services (e.g. Nova, Cinder, and Controller). 
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1 Appendix I  
Table A.1 Parameters used in the proposed approach 

Symbols Description Symbols Description 

K, K’ 
Host capacity in terms of VMs (before 

and after a hypervisor upgrade) 
Mnetwork 

Set of hosts dedicated to networking 

services 

Ni Number of tenants in iteration i  Mcontroller 
Set of hosts dedicated to controller 

services 

minn 
Minimum number of VMs for tenant 

n  
McomputeForOldVM 

Set of compute hosts capable of hosting 

VMs of the old version 

maxn  
Maximum number of VMs for tenant 

n  
McomputeForNewVM 

Set of compute hosts capable of hosting 

VMs of the new version 

cn Cooldown time for tenant n MusedCompute Set of in-use compute hosts 

sn  
Scaling adjustment in terms of VMs 

per cooldown time for tenant n  
MusedComputeForOldVM 

Set of in-use compute hosts with VMs 

of the old version 

Si  

Maximum scaling adjustement 

requests per tenant that may occur 

during iteration i 

MusedComputeForNewVM 
Set of in-use compute hosts with VMs 

of the new version 

Ti  

The time required to upgrade and to 

recover from potential failures of the 

batch of iteration i 

ScalingResvforOldVM 
Number of compute hosts reserved for 

scaling of VMs of the old version 

F 
The number of compute host failures 

to be tolerated during an iteration  
ScalingResvforNewVM 

Number of compute hosts reserved for 

scaling of VMs of the new version 

Ai  

Number of tenants who might scale 

out on hosts compatible with the old 

VM version in iteration i 

FailoverResevforOldVM 
Number of compute hosts reserved for 

failover of VMs of the old version 

Zi 

The maximum number of compute 

hosts that can be taken out of service 

in iteration i 

FailoverResevforNewVM  
Number of compute hosts reserved for 

failover of VMs of the new version 

Vi 
The total number of VMs to be 

upgraded in iteration i 
MinHostReqConfoldStorage 

Minimum required number of storage 

hosts for the old configuration of the 

virtual storage 

Wij  

The batch size in terms of VMs where 

each VM belongs to a different anti-

affinity group in the main iteration i 

and sub-iteration j  

MinHostReqConfnewStorage 

Minimum required number of storage 

hosts for the new configuration of the 

virtual storage 

MStorage 

Set of hosts eligible to participate in 

the creation of virtual storage (storage 

hosts) 

MinHostReqCapoldStorage 
Minimum required number of storage 

hosts for data of VMs of the old version 

Mcompute 
Set of hosts eligible to provide 

compute services (compute hosts) 
MinHostReqCapnewStorage 

Minimum required number of storage 

hosts for data of VMs of the new 

version 
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Appendix II – Elimination Rules 

Elimination rule 1: this elimination rule guarantees keeping the current VM service available 

by avoiding selection of in-use physical hosts (hosting VMs) and VMs for the upgrade. As 

mentioned earlier, since VMs represent the service the IaaS cloud system provides, they are 

upgraded separately in Step 4, as described in Chapter 5, by considering different criteria. This 

rule removes from Gbatch all the resources involved in migration dependency.  

Elimination rule 2: This elimination rule guarantees the satisfaction of dependency require-

ments before removing a resource from the system. It applies to the resources in the Gbatch with 

modification-type of “Remove”, which means they will be removed from the configuration 

after completion of the upgrade process.  

• If the resource is not a VM supporting infrastructure resource: the resource can stay in 

the Gbatch only if there isn’t any resource with any modification-type dependent on this 

resource. This means there isn’t any sponsorship dependency towards the resource 

which is going to be removed. 

• If the resource is a VM supporting infrastructure resource: the resource can remain in 

Gbatch only if following conditions are valid: 1) there are only VM supporting infra-

structure dependencies towards the resource which is going to be removed, and 2) its 

related resource (if any) has modification-type of “No-change”, which means it is al-

ready added to the system.  
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Elimination rule 3: This elimination rule guarantees the satisfaction of dependency require-

ments before adding a resource to the system. It applies to the resources in the Gbatch with mod-

ification-type of “Add”, which means they are going to be added to the configuration after 

completion of the upgrade process. 

• A resource with “Add” modification-type can stay in Gbatch, if at least one sponsor of 

the resource from each sponsorship dependency (except aggregation dependency) is got 

modified or added in previous iterations. This can be determined based on the modifi-

cation-type of the sponsor resources, meaning if the modification-type of at least one 

sponsor is “No-change”. This will guarantee the existence of at least one ready sponsor 

to satisfy the requirements of the dependent resource before adding to the system. 

• An aggregate resource with “Add” modification-type can stay in Gbatch, if at least re-

quired number of its sponsors (constituent resources) is ready to satisfy the require-

ments of the aggregated resource. This information is extracted from the infrastructure 

component descriptions of the product to be installed as aggregate resource in the sys-

tem. If the number of constituent resources with the modification-type of “No-change” 

is equal to the minimum number of constituent resources for an aggregate resource, the 

aggregate resource can stay in the Gbatch; otherwise, it will be eliminated.  

Elimination rule 4: This elimination rule guarantees the enforcement of compatibility require-

ments of sponsorship dependencies between resources. It will be applied if either the dependent 

resource or the sponsor resource in a sponsorship dependency is in the Gbatch. Note that the 

incompatibilityFactor of the dependency between the resources is “false”, which means they 

belong to different upgrade units. In the description of  this elimination rule, the activation-

status of the resource is “true”, unless it is specified otherwise. Based on the presence parameter 

of the dependencies following cases have to be considered: 
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• Case 1- if the presence of the sponsorship dependency is “current/ future”:  the order 

of the upgrade will be dependent on the modification-type and activation-status of the 

resources. Figure A.1 shows different possible situations of this case and the order of 

the upgrade of resources. Note that the resource indicated with number 2 in Figure A.1 

will be eliminated from Gbatch. 

a) If both dependent and sponsor resources have modification-type of “Upgrade”, the 

sponsor has to be upgraded before the dependent, as shown in Figure A.1-a. So, 

elimination rule 4 will remove R1 (dependent resource) from Gbatch.  

b) If the sponsor resource has modification-type of “Upgrade”, and the dependent re-

source has modification-type of “No-Change” and activation-status of “false”, the 

elimination rule 4 will remove R1 (dependent resource) from Gbatch, as shown in 

Figure A.1-b. This guarantees having a compatible sponsor before activating the 

dependent resource. 

 

Figure A.1. Elimination rule 4 - case 1 
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c) If the sponsor resource has modification-type of “No-change” and activation-status 

of “false”, and the dependent resource has modification-type of “Upgrade”, the up-

grade order of them has to be decided with respect to other dependencies of the 

resources. This case is shown in Figure A.1-c.  

d) If both dependent and sponsor resources have modification-type of “No-change” 

and activation-status of “false”, elimination rule 4 will eliminate the dependent re-

source (R1), as shown in Figure A.1-d. This will guarantee existence of a compati-

ble sponsor before activating the dependent resource.  

• Case 2- if the presence of the sponsorship dependency is “current”: the order of the 

upgrade will depend on the modification-type of resources. Figure A.2 shows different 

possible situations of this case and the order of the upgrade of the resources. The re-

source with the second order will be eliminated from Gbatch.    

a) If both dependent and sponsor resources have modification-type “Upgrade”, the 

dependent has to be upgraded before sponsor, as shown in Figure A.2-a. Note that 

due to upgrade of R1 the dependency of R1 towards R2 will be removed, thus the 

 

Figure A.2. Elimination rule 4 - case 2 
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dependent has to be upgraded before sponsor resource. The elimination rule 4 will 

remove R2 (sponsor resource) from Gbatch. 

b) If the sponsor resource has modification-type “Remove” and the dependent re-

source have modification-type “Upgrade”, the dependent resource (R1) has to be 

upgraded before removing the sponsor resource (R2), as shown in Figure A.2-b. As 

a result of upgrading the dependent resource (R1), the dependency will be removed.  

c) If the sponsor resource has modification-type “Upgrade” and the dependent re-

source has modification-type “Remove”, except in case of aggregation dependency, 

the dependent resource (R1) has to be removed before upgrading the sponsor one 

(R2), as shown in Figure A.2-c. Note that in case of aggregation dependency, if the 

aggregate resource is a VM supporting infrastructure resource which is getting up-

graded using PPU method, the old configuration of the aggregate resource can only 

be removed once all the VMs have been migrated from the old hosts compatible 

with the old configuration to the new one.   

d) If both dependent and sponsor resources have modification-type “Remove”, the de-

pendent resource (R1) has to be removed before sponsor (R2), as shown in Figure 

A.2-d. 

• Case 3- if the presence of the sponsorship dependency is “future”: the order of the 

upgrade will be dependent on the modification-type of the resources. Figure A.3 shows 

different possible situations of this case and the order of the upgrade of the resources. 

The resource indicated with number 2 in Figure A.3  will be eliminated from Gbatch. 

a) If both dependent and sponsor resources have modification-type of “Upgrade”, the 

sponsor resource (R2) has to be upgraded before the dependent resource (R1), as 

shown in Figure A.3-a. This ensures having compatible version of sponsor ready, 

before upgrading the dependent one. 
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b) If the sponsor resource has modification-type of “Add” and the dependent resource 

has modification-type “Upgrade”, the sponsor resource (R2) has to be added be-

fore upgrading the dependent resource (R1) due to sponsorship dependency re-

quirements, as shown in Figure A.3-b.  

c) If the sponsor resource has modification-type “Upgrade” and the dependent re-

source has modification-type “Add”, except in case of aggregation dependency, 

the sponsor resource (R2) has to be upgraded before adding the dependent one 

(R1), as shown in Figure A.3-c. Note that in case of aggregation dependency, if 

the minimum requirement of dependent resource (the aggregate) in terms of con-

stituent resources is satisfied, the dependent resource can be added before finishing 

upgrade of all sponsor resources (constituent resources). 

d) If both dependent and sponsor resources have modification-type “Add”, again the 

sponsor resource has to be added before the dependent one to ensure compatibility 

requirements of the dependency, as shown in Figure A.3-d. 

 

Figure A.3. Elimination rule 4 - case 3 
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e) If the sponsor resource has modification-type “No-Change” with activation-status 

of “false”, and the dependent resource has modification-type “Upgrade”, the up-

grade order of them has to be decided with respect to other dependencies of the 

resources. This case is shown in Figure A.3-e. 

Elimination rule 5: This elimination rule guarantees the correct order of upgrading resources 

with respect to the upgrade method associated with the upgrade unit of the first execution level 

in the actions-to-execute attribute of the resources. It applies to the resources of upgrade units 

which their associated upgrade method is split mode, modified split mode, or modified split 

mode with multiple constituent resources. In another terms, there are potential incompatibilities 

during the upgrade of resources of the upgrade unit.  

• Based on the associated upgrade method and the upgrade status of the resources in an 

upgrade unit, the resources that cannot be upgraded or activated yet will be removed 

from Gbatch. For example, let us assume the upgrade method of an upgrade unit is split 

mode method and none of the resources of the upgrade unit has been upgraded yet. As 

mentioned in Section 5.1.4, the resources of such an upgrade unit will be divided into 

two partitions, to be upgraded one at a time. This elimination rule will remove the re-

sources of the second partition of the upgrade unit as non-suitable candidates. Thus, the 

resources of the first partition will remain as candidate resources in Gbatch. However, if 

the resources of the first partition are already upgraded and deactivated, this elimination 

rule will allow resources of both partitions to remain in Gbatch. The resources of the first 

partition will potentially be activated, and the resources of the second partition will 

potentially be upgraded in this iteration. Note that as we mentioned earlier, the deacti-

vation of the second partition is a prerequisite for activation of first partition. This will 
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be indicated during the generation of the upgrade schedule, according to the associated 

upgrade method of the upgrade unit. 

• The resources with new upgrades will be removed from Gbatch, if the upgrades of their 

previously associated upgrade units still in progress on other resources of the upgrade 

unit. This will ensure completing the upgrade of all the resources of an upgrade unit 

with the associated upgrade method, before applying upgrade actions of the new up-

grade units on the resources. As mentioned in Chapter 4, after a successful execution 

of all the upgrade actions of the first execution-level for a resource, the execution-level 

(with all its upgrade actions) is removed from the list of execution-levels of the actions-

to-execute of the resource. Thus, first execution level in the actions-to-execute attribute 

of a resource may be associated with a new upgrade unit due to new upgrade request. 

This elimination rule ensures that all the resources of an upgrade unit are upgraded with 

respect to previously issued upgrade requests, before applying the new ones.  

Elimination rule 6: This elimination rule guarantees the availability of services provided by 

peer resources (with modification-type of “Remove” or “Upgrade”). It applies to resources in 

the Gbatch that are peers or their dependent (direct or indirect) resources are peers. Note that the 

presence of the edges representing peer dependencies and symmetrical dependencies are “cur-

rent/ future” or “current”, meaning the peer dependency exist in the current configuration be-

tween resources and their dependents. Note that there isn’t any limitation for peer resources 

with modification-type of “Add”. 

• Only one active resource out of peer paths (i.e. peer resource and its dependent re-

sources) can stay in the Gbatch. Note that the resources with deactivated status (i.e. need 

to be activated) will be evaluated according to elimination rule 5, which considers the 

upgrade method associated with the upgrade unit the resource belongs. 
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• Only maximum of one constituent resource of aggregation dependency with aggregate 

resource can stay in the Gbatch, as long as the minimum resource requirement of the 

aggregate resource with respect to its configuration and possibly the data stored will 

not be violated, otherwise all of constituent resource of the aggregation dependency 

will be eliminated. The exception is when the aggregate resource is a VM supporting  

infrastructure resource (with modification-type of “Remove”) and following conditions 

are valid: 1) there is no dependency towards the aggregate resource except VM sup-

porting infrastructure dependency and 2) the related resource (if any) of the aggregate 

resource has modification-type of “No-change”. In this case, if the aggregate resource 

with modification-type of “Remove” is in the Gbatch, all its constituent resources can 

stay in the batch as well. This happens when removing the old version of infrastructure 

supporting resource while using the PPU method. Note that as mentioned in Chapter 3, 

constituent resources are peers, so this elimination rule will guarantee the availability 

of services (i.e. aggregate resource) provided by constitute resources.  

Elimination rule 7: This elimination rule guarantees the satisfaction of the resource require-

ments of the PPU method used for upgrading a VM supporting infrastructure resource when it 

cannot be upgraded in place without impacting its services. As mentioned in Chapter 4, to 

maintain in parallel both the old and the new configurations of the VM supporting infrastruc-

ture resource additional resources may be required. If these cannot be provided using available 

resources, the administrator is asked to provide additional resources. Until these resource re-

quirements are not satisfied, all the resources with changes related to the upgrade of the VM 

supporting infrastructure resource are eliminated from Gbatch. Note that the resources contrib-

uting to the old configurations of the VM supporting infrastructure can remain in the Gbatch only 
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if they can be taken out of service without impacting the requirements of old configuration, 

otherwise additional resources will be required for their upgrade.  

In our illustrative example given in Figure 5.1, the PPU method is used to upgrade the VM 

supporting virtual shared storage from VSAN to Ceph as the new and the old versions of the 

virtual shared storage are incompatible. To keep the continuity of the VM supporting service 

(e.g. VM live migration and failover) during the upgrade, the old configuration of the virtual 

shared storage (i.e. VSAN) has to remain operational until the new configuration (i.e Ceph) is 

ready for use. In addition, the compute hosts hosting the VMs need to be partitioned into those 

compute hosts compatible with the old version of the virtual shared storage (old partition) and 

those compute hosts compatible with the new version of the shared storage (new partition). To 

complete this upgrade, data conversion is also necessary and it is performed as the VMs are 

migrated from the old partition to the new. Once all the VMs have been migrated as well as 

completing the related data migration, the old configuration of the virtual shared storage can 

be safely removed. 

To guarantee the continuity of VM services during the upgrade of the shared storage, we need 

to meet the minimum resource requirements for both the old and the new virtual shared storages 

with respect to their configurations and the data stored. For this reason, we need to have enough 

physical storage hosts to keep the old configuration of the storage alive while bringing up the 

configuration of the new. We evaluate whether the current system has enough storage hosts 

using equation (7).  

|𝑀𝑠𝑡𝑜𝑟𝑎𝑔𝑒 − 𝑀𝑢𝑠𝑒𝑑𝐶𝑜𝑚𝑝𝑢𝑡𝑒| ≥ 𝑚𝑎𝑥( 𝑀𝑖𝑛𝐻𝑜𝑠𝑡 𝑅𝑒 𝑞 𝐶𝑜𝑛𝑓𝑜𝑙𝑑𝑆𝑡𝑜𝑟𝑎𝑔𝑒 , 𝑀𝑖𝑛𝐻𝑜𝑠𝑡 𝑅𝑒 𝑞 𝐶𝑎𝑝𝑜𝑙𝑑𝑆𝑡𝑜𝑟𝑎𝑔𝑒) + 

            + 𝑚𝑎𝑥( 𝑀𝑖𝑛𝐻𝑜𝑠𝑡 𝑅𝑒 𝑞 𝐶𝑜𝑛𝑓𝑛𝑒𝑤𝑆𝑡𝑜𝑟𝑎𝑔𝑒 , 𝑀𝑖𝑛𝐻𝑜𝑠𝑡 𝑅𝑒 𝑞 𝐶𝑎𝑝𝑛𝑒𝑤𝑆𝑡𝑜𝑟𝑎𝑔𝑒)     (7) 
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|MStorage-MusedCompute| represents the number of storage hosts that are not in use as compute 

hosts. This number should be equal to or greater than the minimum number of hosts required 

to support both the old and the new storage configurations during the upgrade. If equation (7) 

is satisfied, the resources with upgrade actions related to the undo unit associated with virtual 

storage upgrade remain in Gbatch. Otherwise, applying the elimination rule will remove these 

resources from Gbatch as non-suitable candidates. Since the same check is performed in each 

subsequent iteration, whenever the additional number of storage hosts becomes available to 

fulfill this requirement, these resources will remain in the Gbatch as suitable candidates. Note 

that as the upgrade proceeds the number of available resources may change due to failures or 

scaling operations on compute hosts, but also if additional hosts are provided. Thus, in any 

iteration when equation (7) is not satisfied, this elimination rule will remove from Gbatch the 

resources related to the upgrade of VM supporting infrastructure resource (i.e. their upgrade 

will be paused) until the required resources will become available (again).  

As mentioned earlier, the communication dependencies are realized by link resources in the 

system and they may need to be upgraded as well. Since upgrading a dependency impacts the 

dependent resource, we evaluate the dependency requirements for the upgrade of communica-

tion dependencies (i.e. link resource) as upgrade of its dependent resource. Thus, a communi-

cation dependency can stay in the Gbatch only if its dependent resource can potentially stay in 

the Gbatch according to our defined elimination rules. Note that the exception is in case of having 

peer link resources (i.e. more than one communication dependencies between two resources). 

In this case, even though the dependent resource cannot stay in the batch, one out of the peer 

links can stay in the Gbatch at a time, regardless of upgrade limitation of their dependent re-

sources. 


