
Absolutely Continuous Invariant Measures

for Piecewise Convex Maps of Interval with

Infinite Number of Branches

Md Hafizur Rahman

A Thesis

in The Department of

Mathematics and Statistics

Presented in Partial Fulfillment of the Requirements for the
degree of Master of Science (Mathematics) at

Concordia University
Montreal, Quebec, Canada

June, 2019

c©Md Hafizur Rahman, 2019



CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Md Hafizur Rahman

Entitled: Absolutely Continuous Invariant Measures for Piecewise Convex
Maps of Interval with Infinite Number of Branches

and submitted in partial fulfillment of the requirements for the degree of

Master of Sciences (Mathematics)

complies with the regulations of the University and meets the accepted stan-
dards with respect to originality and quality.

Signed by the final Examining Committee:

Chair
Dr. Harald W. Proppe

Examiner
Dr. Galia Dafni

Supervisor
Dr. Pawel Gora

Supervisor
Dr. Abraham Boyarsky

Approved by:
Chair of Department or Graduate Program Director

2019

Dean of Faculty



ABSTRACT

Absolutely Continuous Invariant Measures for Piecewise Convex Maps of
Interval with Infinite Number of Branches

Md Hafizur Rahman

The main result of this Master’s thesis is the generalization of the exis-
tence of absolutely continuous invariant measure for piecewise convex maps
of an interval from a case with the finite number of branches to one with in-
finitely many branches. We give a similar result for piecewise concave maps
as well. We also provide examples of piecewise convex maps with a finite and
infinite number of branches without ACIM.
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Chapter 1

Background

1.1 Review of Necessary Facts from Measure

Theory and Functional Analysis

In this section, we presented a review of some key concepts in measure the-
ory and functional analysis. For more details, we refer the readers to Rudin’s
introductory text [10].

Definition 1.1.1. Assume X is a topologcal space. Let B be a collection of
subsets of X with the following properties:

• ∅ ∈ B.

• B ∈ B =⇒ (X\B) ∈ B.

• {B}∞n=1 ⊂ B =⇒ ∪∞n=1Bn ∈ B.

Then we say B is a σ-algebra .

Definition 1.1.2. The smallest σ-algebra containing all open subsets ( or
equivalently by the closed sets ) of X is called the Borel σ-algebra of X.
Elements of this σ-algebra are called Borel sets.

Let’s now define a measure which is a fundamental tool used in the study
of dynamical systems. A measure can be thought of as a function assigning
a notion of size to the sets in a σ-algebra.

Definition 1.1.3. Let µ be a set-function defined on B such that

• µ(∅) = 0,
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• µ(B) ≥ 0 for all B ∈ B, and

• for every sequence of pairwise disjoint sets {Bn}∞n=1 ⊂ B,

µ(∪∞n=1Bn) =
∞∑
n=1

µ(Bn).

Then we say µ is a measure on B.

The last criterion is called countable additivity. For a given measure
µ, we call the collection (X,B, µ) is a measure space. Also, we call the col-
lection (X,B, µ) is a compact measure space when X is compact. This
definition is important as the spaces we consider in this text are exclusively
compact. When µ(X) = 1, we say that the measure µ has been normalized
or that µ is a probability measure. All probabilities on a space of events
must sum to 1 and so B can be thought of a set of events with µ providing
the probability of each event occurring. A probability space is a measure
space with total measure one.

We now wish to define a space of measures and establish a few results for
spaces of measures. First we start with a foundation of normed linear spaces
[4].

Definition 1.1.4. Let (X,B, µ) be a measurable space and p a real number,
1 ≤ p < ∞. The family of all possible real-valued measurable functions
f : X → R satisfying ∫

X

|f(x)|pµdx <∞

is the L p(X,B, µ) space. Note that if p = 1 then L 1 space consists of all
possible integrable functions.
The integral appearing above is very important for an element f ∈ L p. Thus
it is assigned the special notation

||f ||L p =

[∫
X

|f(x)|pµdx
] 1

p

and is called the L p norm of f.

Definition 1.1.5. Let L be a linear space over R. Then we define a norm
on L to be a function ‖ · ‖ satisfying

• ‖f‖ = 0⇐⇒ f ≡ 0,
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• ‖αf‖ = |α|‖f‖,

• ‖f + g‖ ≤ ‖f‖+ ‖g‖,

for all f, g ∈ L and any scalar α ∈ R. We say the pair (L , ‖ · ‖) is a
normed linear space.

Definition 1.1.6. Let L be a normed linear space. Then we call the space
of all continuous linear functionals on L the adjoint or dual space of L
and denote it as L ∗.

A normed linear space and its adjoint are connected in the sense of con-
vergence. The following definition establishes how this connection works.

Definition 1.1.7. We say a sequence {xn}∞n=1 ⊂ L converges weakly to
x ∈ L if and only if for any F ∈ L ∗ we have that

lim
n→∞

F (xn) = F (x).

In the other direction, we say that a sequence of functionals {Fn}∞n=1

converges in the weak* topology to a functional F ∈ L ∗ if and only if for all
x ∈ L

lim
n→∞

Fn(x) = F (x).

The important theorem we will use in the proof of the next proposition
is Banach-Alaoglu theorem ( see V.4.2. in [4]).

Theorem 1.1.1. If L is a Banach space, then any bounded subset of L ∗ is
precompact in weak* topology.

Proof. For the proof we refer to [4]. �

Theorem 1.1.2. (Th. IV.8.1 and Th. IV.8.8 of [4]) If 1 ≤ p < ∞ and
1
p

+ 1
q

= 1, then there is an isometric isomorphism between (L p)∗ and L q in

which the corresponding elements F ∈ (L p)∗ and g ∈ L q are related by the
identity

F (f) =

∫
X

fgdµ, f ∈ L p·

Proof. For the proof we refer to [4]. �

Proposition 1.1.1. Let (X,B, µ) be a finite measure space. Let A be a
subset of L 1 which is bounded in L∞. Then A is weakly precompact in L 1.
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Proof. Since A is bounded in L∞, it is also bounded subset of L 2. As
(L 2)∗ = L 2 by Banach-Alaoglu theorem, A is precompact in weak* topology
of L 2. It means that there exists a sequence {fn} ⊂ A and an f0 ∈ L 2 ⊂ L 1,
such that for any function g ∈ L 2 we have,∫

X

fngdµ→
∫
X

f0gdµ.

Since L∞ ⊂ L 2 this shows that A is weakly precompact in L 1. �

Theorem 1.1.3 (Monotone Convergence Theorem). [10] Suppose E ∈
R. Let {fn} be a sequence of measurable function such that for every x ∈ E

0 ≤ f1(x) ≤ f2(x) ≤ ...

Let f be defined by
fn(x)→ f(x)

as n→∞. Then ∫
E

fndµ→
∫
E

fdµ

as n→∞.

Theorem 1.1.4 (Hahn Decomposition Theorem). [4] Let µ be a signed
measure on (X,B). Then there is a positive set V ∈ B and a negative set
W ∈ B, so that X = V ∪W and V ∩W = φ.

Theorem 1.1.5 (Yosida-Kakutani Theorem). [14] Let T be a bounded
linear operation which maps a Banach space B into itself. Let us further
assume that

1. there exists a constant C such that ‖T n‖ 5 C for n = 1, 2, . . . , and
that

2. for any x ∈ B, the sequence {xn}, n = 1, 2, . . . , where xn = 1
n
(T +T 2+

· · · + T n)x, contains a subsequence which converges weakly to a point
x̄ ∈ B.

Under these assumptions,

3. the sequence {xn}, n = 1, 2, . . . converges strongly to a point x̄, and
if we denote by T1 the operation x → x̄, then T1 is a bounded linear
operation which maps B into itself and

4. TT1 = T1T = T 2
1 = T1, ‖T1‖ 5 C.
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Proof. For the proof we refer to the original paper [13]. �

We now formally define a space of measures and equip it with a norm, hence
creating a normed linear space of great interest for this text. For this defini-
tion we consider a more general definition of measure.

Definition 1.1.8. Let (X,B, µ) be a measurable space. Then µ is called a
σ-finite measure if there existes a sequence {Bn ∈ B : n ∈ N} such that
∪n∈NBn = X and µ(Bn) <∞ for all n ∈ N.

Definition 1.1.9. Let (X,B) be a measurable space. A signed measure
on (X,B) is a function µ : B → R ∪ {−∞,∞} such that
1) µ takes on at most one of the values −∞ or ∞
2) µ(φ) = 0
3) If {Bn}∞n=1 ⊂ B is a sequence of pairwise disjoint sets then µ(∪∞n=1Bn) =∑∞

n=1 µ(Bn)

Definition 1.1.10. Let µ be a signed measure on (X,B). Let V,W,M ∈ B.
Then we say that:
1) V is positive if µ(B ∩ V ) ≥ 0 for all B ∈ B.
2) W is negative if µ(B ∩W ) ≤ 0 for all B ∈ B.
3) M is null if µ(B ∩M) = 0 for all B ∈ B.

Definition 1.1.11. If P1, P2, . . . are pairwise disjoint and
⋃∞
i=1 Pi = P,

then the collection P1, P2, . . . forms a partition of P.

Definition 1.1.12. Let M denote the space of all measures on (X,B). Then
we define the norm of µ ∈M , as

‖µ‖ = sup
P∈P
{|µ(P1)|+ · · ·+ |µ(PN)|} ,

where P is the set of all finite partitions of X and P = {P1, P2, ......, PN} is
a partition of X. This norm is known as the total variation norm [4].

Definition 1.1.13. Let (X,B, µ) be a measure space. Let ν be a measure
defined on all sets in B. Then we say ν is absolutely continuous with
respect to µ if and only if for every set B ∈ B

µ(B) = 0 =⇒ ν(B) = 0.

We write ν � µ.
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Indeed, this is not the form of an absolutely continuous measure that we
will typically be working with. This definition forms a rudimentary basis
for a topic which we will expand upon in greater detail in section 1.4. In
particular, we note that the Radon-Nikodym theorem, Theorem 1.4.1, which
builds further upon the idea of an absolutely continuous measure, will play
a key role in the development of the Frobenius-Perron operator, an essential
tool in dynamical systems.

1.2 Measure-Preserving Transformations

In the study of dynamical systems, we are generally working with functions
which under iteration, transform the space X. We aptly call these functions
transformations. To expand upon this idea we now define what it means for
a transformation to be measurable and for a measure to be invariant under
iterations of a transformation.

Definition 1.2.1. Let (X,B, µ) be a measure space and τ : X → X be a
transformation of X. Then τ is said to be a measurable transformation
if and only if

B ∈ B =⇒ τ−1(B) ∈ B.

Definition 1.2.2. Let (X,B, µ) be a measure space and τ : X → X be a
measurable transformation. Then µ is said to be τ-invariant if and only if
for every B ∈ B,

µ(τ−1(B)) = µ(B). (1.1)

It is often difficult or sometimes impossible to verify equation (1.1) for
every set in the collection B. This is why in the following definition we
establish the notion of a π-system. Having established the π-system we will
be able to prove invariance of µ for a collection of simpler sets and then
through Theorem 1.2.1 which appears in [1], conclude that µ is invariant for
all sets in B.

Definition 1.2.3. We say that Ξ is a π-system generating the σ-algebra
B if and only if for every E1 and E2 in Ξ, E1 ∩ E2 is in Ξ and B is the
smallest σ algebra containing all sets of Ξ.

Theorem 1.2.1. [1] Let (X,B, µ) be a compact measure space and τ be a
measurable transformation. Let Ξ be a π-system generating B. If

µ(τ−1(E)) = µ(E)

for every E ∈ Ξ. Then τ preserves µ on B.
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Now define dynamical system, the central topic in this text.

Definition 1.2.4. Let (X,B, µ) be a measure space. Let τ be a transforma-
tion of X with µ being a τ -invariant measure. Then we call the collection
(X,B, µ, τ) a dynamical system .

Definition 1.2.5. We say a measurable transformation τ : X → X is non-
singular on a measure space (X,B, µ) if and only if for all B ∈ B

µ(B) = 0 =⇒ µ(τ−1(B)) = 0.

Finally, we conclude this section by defining an absolutely continuous
invariant measure or ACIM. Since many invariant measures are uninteresting
(point measures, zero measure, etc.), we often look for ACIMs of a dynamical
system.

Definition 1.2.6. Let (X,B, µ, τ) be a dynamical system. Let ν be a mea-
sure defined on all sets in B which is invariant under τ and absolutely con-
tinuous with respect to µ. Then we say ν is an absolutely continuous
invariant measure (ACIM) for τ .

1.3 Markov Operator

In this section we are introducing Markov operator which we shall use to
establish the result on Piecewise Concave Maps in Chapter 4. For more
details, we refer the reader to [8].

Definition 1.3.1. Let (X,B, µ) be a measure space. Any linear operator
P : L 1 → L 1 satisfying:

(a) Pf ≥ 0 for f ≥ 0, f ∈ L 1; and

(b) ‖Pf‖ = ‖f‖ for f ≥ 0, f ∈ L 1, (1.2)

is called a Markov Operator.

Definition 1.3.2. Let (X,B, µ) be a measure space and the set D(X,B, µ)
be defined by D(X,B, µ) = {f ∈ L 1 : f ≥ 0 and ||f || = 1}. Any function
f ∈ D(X,B, µ) is called a density.

Definition 1.3.3. Let (X,B, µ) be a measure space and P : L 1 → L 1 a
Markov Operator. Then {P n} is said to be asymptotically stable if there
exists a unique f ∗ ∈ D such that Pf ∗ = f ∗ and

lim
n→∞

‖P nf − f ∗‖ = 0 for every f ∈ D. (1.3)
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Definition 1.3.4. Let (X,B, µ) be a finite measure space. A Markov Oper-
ator P is called constrictive if there exists a δ > 0 and κ < 1 such that for
every f ∈ D there is an integer n0(f) for which∫

E

P nf(x)µ(dx) ≤ κ for n ≥ n0(f) and µ(E) ≤ δ. (1.4)

1.4 The Frobenius-Perron Operator

The Frobenius-Perron Operator is a linear operator which describes the prob-
abilistic behaviour of successive iterations of a dynamical system. The Op-
erator was first studied by Kuzmin in [6]. Developing the Frobenius-Perron
operator will provide us with an essential tool for uncovering the absolutely
continuous invariant measures of dynamical systems.

1.4.1 The Radon-Nikodym Theorem

The existence and uniqueness of the Frobenius-Perron operator follows as a
result of the Radon-Nikodym theorem, a theorem in measure theory which
establishes the existence of a function called the Radon-Nikodym derivative.
The Radon-Nikodym derivative can be interpreted as a density function.

Theorem 1.4.1 (The Radon-Nikodym Theorem). Let (X,B, µ) be a
measure space with µ being a σ-finite measure and ν be a finite measure
absolutely continuous with respect to µ. Then there exists a unique non-
negative measurable function f : X → [0,∞) such that for every A ∈ B

ν(A) =

∫
A

fdµ.

We call the function f the Radon-Nikodym derivative.

Proof. We assume that (X,B, µ) is a finite measure space and show the ex-
istence and uniqueness of the Radon-Nikodym derivative. Suppose µ and
ν are both finite-valued non-negative measures. The general case is proved
considering the partition of X into subsets of finite measure.

Let F = {f is measurable |ν(E) ≥
∫
E
fdµ, for all E ∈ B}. F is nonempty,

since it contains at least the zero function. Let s = sup
f∈F

∫
X

fdµ. Then there

is a sequence 〈hn〉 in F such that lim
n→∞

∫
X

fndµ = s <∞.
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Let f1, f2 ∈ F , then for any E ∈ B,∫
E

max{f1, f2} dµ =

∫
{x∈E|f1(x)≥f2(x)}

max{f1, f2} dµ+

∫
{x∈E|f1(x)<f2(x)}

max{f1, f2} dµ

=

∫
{x∈E|f1(x)≥f2(x)}

f1 dµ+

∫
{x∈E|f1(x)<f2(x)}

f2 dµ

≤ ν({x ∈ E|f1(x) ≥ f2(x)}) + ν({x ∈ E|f1(x) < f2(x)})
= ν(E).

Therefore, max{f1, f2} ∈ F .

Let fn be a sequence of functions in F . By replacing fn with the maxi-
mum of the first n functions hn, we can say 〈fn〉 is a nonnegative increasing
sequence in F and limn→∞

∫
X
fndµ = s. Define g by g(x) = limn→∞ fn for

x ∈ X. Then by the monotone convergence theorem, for any E ∈ B,∫
E

gdµ = lim
n→∞

∫
E

fndµ ≤ ν(E).

This shows g ∈ F and
∫
X
gdµ = limn→∞

∫
X
fndµ = s.

Therefore, the function ν0 defined on B by ν0(E) = ν(E) −
∫
E
gdµ is a

measure. We want to show that ν0 = 0 and then g is the desired function.
Suppose ν0 is not zero. Since ν0(X) > 0 and µ(X) <∞, there is ε > 0 such
that ν0(X)− εµ(X) > 0. Let {A,B} be a Hahn decomposition for the signed
measure ν0 − εµ. Then for every E ∈ B, ν0(A ∩ E)− εµ(A ∩ E) ≥ 0. So,

ν(E) = ν0(E) +

∫
E

gdµ ≥ ν0(E ∩ A) +

∫
E

gdµ

≥ εµ(E ∩ A) +

∫
E

gdµ =

∫
E

(g + εχA)dµ.

Therefore, g + εχA is also in F . However, if µ(A) > 0, then∫
X

(g + εχA)dµ =

∫
X

gdµ+ εµ(A) >

∫
X

gdµ = s,

which is a contradiction. In fact, if µ(A) = 0, since ν � µ, ν(A) = 0.
So ν0(A) = ν(A) −

∫
A
gdµ ≤ ν(A) = 0. Hence ν0(A) = 0. Consequently,

ν0(X)− εµ(X) = ν0(B)− εµ(B) ≤ 0, contradicting that ν0(X)− εµ(X) > 0.

9



Therefore, ν0 = 0, which means ν(E) =
∫
E
gdµ for every E ∈ B.

To show uniqueness, let ν(E) =
∫
E
fdµ =

∫
E
gdµ. Then

∫
E

(f − g)dµ = 0.
Since E is arbitrary,

∫
{f−g≥0}(f − g)dµ = 0. This shows f = g with re-

spect to µ, hence also ν on {x ∈ X|f(x) ≥ g(x)}. Similarly f = g a.e. on
{x ∈ X|f(x) < g(x)}. Hence f = g a.e. on X.

�

1.4.2 Motivation

We use the same motivation as given in [2].

Definition 1.4.1. A random variable Y is a measurable function from a
probability space to R, such that for every borel set B,

Y −1(B) = {Y ∈ B} ∈ B.

Suppose we are working with some random variable Y , on an interval
X = [a, b]. Suppose that the random variable has probability density function
f , i.e., for all measurable sets A ∈ X,

Prob{Y ∈ A} =

∫
A

fdλ,

where λ is the normalized Lebesque measure on X. Now suppose that we
have a measurable transformation τ : I → I, then τ(Y ) is also a random
variable, and thus we may inquire about its probability density function. To
obtain the density function for τ(Y ), we must be able to write

Prob{τ(Y ) ∈ A} =

∫
A

φdλ,

for some function φ. If such a φ exists, it would depend on τ and f .

We begin our derivation by assuming Y is a random variable having prob-
ability density function f ∈ L 1, τ is non-singular and we define for any
measurable set A,

µ(A) = Prob{τ(Y ) ∈ A} = Prob{Y ∈ τ−1(A)} =

∫
τ−1(A)

fdλ.

Since τ is non-singular, λ(A) = 0 =⇒ λ(τ−1(A)) = 0. Thus, µ(A) = 0
implies

µ(A) =

∫
τ−1(A)

fdλ = 0.

10



Therefore, µ is absolutely continuous with respect to λ. Now it follows
by Theorem 1.4.1 that there exists a φ ∈ L 1 such that,

µ(A) =

∫
A

φdλ

for any measurable set A. Furthermore, as a result of Theorem 1.4.1, φ is
unique up to sets of zero measure. Thus we set,

Pτf = φ

and call this function the Frobenius-Perron operator associated with the
transformation τ . As our motivating derivation implies, the Frobenius-
Perron operator transforms the probability density function of a random
variable Y into the density function for τ(Y ). As such, it can be used as
a tool in our analysis of dynamical systems to find absolutely continuous
invariant measures.

1.4.3 The Frobenius-Perron Operator

We now formally define the Frobenius-Perron operator.

Definition 1.4.2. Let (X,B, µ) be a measure space and let τ : X → X
be a non-singular transformation. Then the Frobenius-Perron operator Pτ :
L 1 → L 1, is defined to be the almost everywhere unique L 1 function satis-
fying: ∫

A

Pτfdµ =

∫
τ−1(A)

fdµ,

for any A ∈ B.

We continue by establishing several properties of the Frobenius-Perron
operator.

Proposition 1.4.1. Linearity : Pτ : L 1 → L 1 is a linear operator.

Proof. Let f, g ∈ L 1. Suppose α is a scalar and A ⊂ X is a measurable set.

11



Then, ∫
A

(Pτ (αf + g))dµ =

∫
τ−1(A)

(αf + g)dµ

= α

∫
τ−1(A)

fdµ+

∫
τ−1(A)

gdµ

=

∫
A

(αPτf + Pτg)dµ.

Thus it follows that
Pτ (αf + g) = αPτf + Pτg,

µ almost everywhere. �

Proposition 1.4.2. Positivity : Let f ∈ L 1 with f ≥ 0. Then, Pτf ≥ 0.

Proof. Let A ∈ B be arbitrary. Then,∫
A

Pτfdµ =

∫
τ−1(A)

fdµ ≥ 0,

since f ≥ 0. Therefore since A was arbitrary, Pτf ≥ 0. �

Proposition 1.4.3. Preservation of Integrals. Let f ∈ L 1(X). Then,∫
X

Pτfdµ =

∫
X

fdµ.

Proof. Let f ∈ L 1(X). Then,∫
X

Pτfdµ =

∫
τ−1(X)

fdµ =

∫
X

fdµ.

Since f was arbitrary, the proposition holds. �

Proposition 1.4.4. Contraction : Pτ : L 1 → L 1 is contraction, i.e. the
inequality

‖Pτf‖1 ≤ ‖f‖1
holds for all f ∈ L 1(X).

Proof. Let f ∈ L 1(X) be arbitrary. Then it is possible to decompose f into
two non-negative functions,

f− = max(0,−f),

f+ = max(0, f),

12



both of are also be in L 1(X). Then for f+, f− ∈ L 1,

f = f+ − f−,

and,
|f | = f+ + f−.

So applying Proposition 1.4.1, the property of linearity, we have that,

Pτf = Pτ (f+ − f−)

= Pτf+ − Pτf−.

Therefore,
|Pτf | ≤ |Pτf+|+ |Pτf−|,

which by the result of Proposition 1.4.2, positivity, is

= Pτf+ + Pτf−

= Pτ (f+ + f−)

= Pτ |f |.

Thus, taking the norm of the operator, we get that,

‖Pτf‖1 =

∫
X

|Pτf |dµ

≤
∫
X

Pτ |f |dµ.

Finally, applying Proposition 1.4.3, the preservation of integrals, we get,

‖Pτf‖1 ≤
∫
X

|f |dµ

= ‖f‖1, (1.5)

which proves the result. �

A direct consequence of Proposition 1.4.4 is that the Frobenius-Perron
operator is continuous.

Corollary 1.4.1.1. Continuity in the norm topology : Pτf : L 1 → L 1

is a continuous operator with respect to the norm topology.

Proof. Let f, g ∈ L 1. Then,

‖Pτf − Pτg‖1 ≤ ‖f − g‖1,

which implies ‖Pτf − Pτg‖1 → 0 as ‖f − g‖1 → 0. �
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We now present the property of composition for the Frobenius-Perron
operator:

Proposition 1.4.5. Composition : Let (X,B, µ) be a measure space and
τ : X → X and σ : X → X be a non-singular transformations. Then
Pτ◦σf = Pτ ◦ Pσf (µ almost everywhere), and in particular, Pτnf = P n

τ f .

Proof. Let τ and σ be non-singular transformations. Then, τ ◦ σ is non-
singular as, for every A ∈ B such that µ(A) = 0, µ(τ−1(A)) = 0 since τ is
non-singular. Then

µ((τ ◦ σ)−1(A)) = µ(σ−1(τ−1(A)))

= 0,

as σ is also non-singular. Now let f ∈ L 1 and A ∈ B, then∫
A

Pτ◦σfdµ =

∫
(τ◦σ)−1A

fdµ =

∫
σ−1(τ−1A)

fdµ

=

∫
τ−1A

Pσfdµ =

∫
A

Pτ (Pσf)dµ.

Therefore, Pτ◦σf = PτPσf , µ almost everywhere. It then follows by induction
that Pτnf = P n

τ f , µ almost everywhere. �

Proposition 1.4.6. Adjoint : If f ∈ L 1, g ∈ L∞, then 〈Pτf, g〉 =
〈f, Uτg〉, i.e. ∫

X

(Pτf)gdµ =

∫
X

fUτ (g)dµ, (1.6)

where Uτ (g) is the Koopman Operator, defined as Uτ (g) = g ◦ τ .

Proof. Let A ∈ B and set g = χA. Then,∫
X

(Pτf)gdµ =

∫
A

Pτfdµ

=

∫
τ−1(A)

fdµ =

∫
X

fχτ−1(A)dµ =

∫
X

f · (χA ◦ τ)dµ.

This verifies equation (1.6) for characteristic functions. Since linear com-
binations are dense in L∞, we can conclude that the result holds for any
g ∈ L∞. �

The following proposition is particularly useful in our research on ab-
solutely continuous invariant measures. It states that a measure ν = f ∗µ,

14



absolutely continuous with respect to µ is τ -invariant if and only if it is a
fixed point of the Frobenius-Perron operator, i.e. Pτf

∗ = f ∗. In other words,
it provides an equivalent definition for an ACIM in terms of the Frobenius-
Perron operator.

Proposition 1.4.7. Let τ : X → X be non-singular. Let the measure ν be
defined by,

ν(A) =

∫
A

f ∗dµ,

where f ∗ ∈ L 1, f ∗ ≥ 0, and ‖f‖1 = 1. Then ν is τ -invariant (Defini-
tion 1.2.2) if and only if,

Pτf
∗ = f ∗.

Note: the definition of ν makes it absolutely continuous with respect to µ.

Proof. =⇒
Assume ν is τ -invariant. Then,

ν(A) = ν(τ−1(A)),

for every measurable set A. Therefore, on an arbitrary measurable set A, we
have,

ν(τ−1(A)) =

∫
τ−1(A)

f ∗dµ

=

∫
A

Pτf
∗dµ,

and

ν(A) =

∫
A

f ∗dµ.

Thus, by assumption ∫
A

Pτf
∗dµ =

∫
A

f ∗dµ.

Since A was arbitrary, Pτf
∗ = f ∗, µ almost everywhere.

⇐=
Assume Pτf

∗ = f ∗, µ almost everywhere. Then∫
A

Pτf
∗dµ =

∫
τ−1(A)

f ∗dµ

= ν(τ−1(A)),
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which by assumption,

=

∫
A

f ∗dµ

= ν(A).

Thus,
ν(A) = ν(τ−1(A)).

And since A was arbitrary, we conclude ν is τ -invariant. �

Proposition 1.4.8. Continuity : Let (X,B, µ) be a normalized measure
space and let τ : X → X be non-singular. Then Pτ : L 1 → L 1 is continuous
in the weak topology on L 1.

Proof. In order for Pτ to be continuous in the weak topology of L 1, we must
have the following condition:

fn → f weakly =⇒ Pτfn → Pτf weakly,

where we say fn → f weakly in L 1 if and only if∫
X

fngdµ→
∫
X

fgdµ

for all g ∈ L∞. Thus, we assume that fn → f weakly and use Proposi-
tion 1.4.6, giving ∫

X

(Pτfn)gdµ =

∫
X

fn(g ◦ τ)dµ.

Now the composition g ◦ τ ∈ L∞ and by assumption, fn → f weakly. Thus,

∫
X

fn(g ◦ τ)dµ→
∫
X

f(g ◦ τ)dµ

=

∫
X

(Pτf)gdµ.

Therefore, ∫
X

(Pτfn)gdµ→
∫
X

(Pτf)gdµ,

as n→∞. Hence, Pτfn → Pτf weakly in L 1. �
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1.5 Piecewise Monotonic Maps and Repre-

sentation of Frobenius-Perron Operator

For a special class of piecewise monotonic transformations, the Frobenius-
Perron operator has a convenient representation, which will be of great use
in the sequel.

Definition 1.5.1. The function τ is said to be of class Cr if the derivatives
τ ′, τ ′′, ..., τ r exist and are continuous.

Let I = [a, b] and let λ denotes the normalized Lebesgue measure on I.
The transformation τ : I → I is called piecewise monotonic if there exists a
partition of I, a = a0 < a1 · · · < an = b and a number r ≥ 1 such that,

(1) τ is a Cr function on (ai−1, ai); i = 1, . . . , n, which can be extended to
a Cr function on [ai−1, ai]; i = 1, . . . , n and

(2) |τ ′(x)| > 0 on (ai−1, ai), i = 1, . . . , n.

If the condition (2) is replaced by |τ ′(x)| ≥ α > 1, then τ is called
piecewise monotonic and expanding. Let the transformation τ be piecewise
monotonic on the partition P = {a0, a1, . . . , an}. Denote τ|[ai−1,ai) by τi and
Bi = τ([ai−1, ai]), i = 1, . . . , n. Then for any measurable set A ⊂ I,

τ−1(A) =
n⋃
i=1

τ−1i (A ∩Bi).

It is obvious that the sets
{
τ−1i (A ∩Bi)

}n
i=1

are mutually disjoint and de-
pending on A, may even be empty. We can separate the integral and change
the variable:∫

A

Pτf(x)dλ =

∫
τ−1(A)

f(x)dλ

=
n∑
i=1

∫
τ−1
i (A∩Bi)

f(x)dλ

=
n∑
i=1

∫
A∩Bi

f(τ−1i (x))
∣∣∣(τ−1i (x)

)′∣∣∣ dλ
=

n∑
i=1

∫
A

f(τ−1i (x))
∣∣∣(τ−1i (x)

)′∣∣∣χBi
(x)dλ

=

∫
A

n∑
i=1

f(τ−1i (x))∣∣τ ′ (τ−1i (x)
)∣∣χBi

(x)dλ.

17



Since A is arbitrary, we can write

Pτf(x) =
n∑
i=1

f(τ−1i (x))∣∣τ ′ (τ−1i (x)
)∣∣χτ([ai−1,ai])(x). (1.7)

Example. Let τ be the tent map as shown in Figure 1.1. τ is a piecewise
function on [0, 1]:

τ(x) =

{
2x, 0 ≤ x < 1

2
,

−2x+ 2, 1
2
≤ x < 1.

Figure 1.1: The tent map

We denote the left branch as τ1 and τ2 for the right one. Then,

τ ′1(x) = 2, τ ′2(x) = −2,

τ−11 (x) =
1

2
x, τ−12 (x) = −1

2
(x− 2),

Pτf =
1

2
f
(x

2

)
+

1

2
f
(

1− x

2

)
.

We can see that ρ(x) = 1 is the invariant density for the tent map since
Pτρ = ρ.
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Chapter 2

Piecewise Convex Maps

In this section we consider transformations that are not necessarily expand-
ing, i.e., their derivatives may be smaller than 1, but they possess another
property which makes them very special, namely piecewise convexity. The
proof that such transformations possess absolutely continuous invariant mea-
sures follows from the ideas of [7] and [2].

Figure 2.1: Piecewise Convex Map

Let I = [0, 1]. We say that τ ∈ Tpc(I) if it satisfies the following condi-
tions:

(i) There exists a partition 0 = a0 < · · · < aq = 1 such that τ|[ai−1,ai) is
continuous and convex, i = 1, . . . , q;

(ii) τ(ai−1) = 0, τ ′(ai−1) > 0, i = 1, . . . , q;
(iii) τ ′(0) = α > 1.
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Let us recall that τ : J → R is convex if and only if for any points
x, y ∈ J and for any 0 ≤ η ≤ 1,

τ(ηx+ (1− η)y) ≤ ητ(x) + (1− η)τ(y).

It can be proved that a convex function is differentiable except at a countable
set of points and that its derivative τ ′ is nondecreasing. In particular, this
means that (ii) implies

τ ′(x) > τ ′(ai−1) > 0 , x ∈ [ai−1, a0),

and τ|[ai−1,ai) is increasing for i = 1, . . . , q. An example of τ ∈ Tpc(I) is shown
in Figure 2.1.

First we prove the following useful property of transformations in Tpc(I):

Proposition 2.0.1. Let τ ∈ Tpc(I) and let f be a nonincreasing function.
Then Pτ (f) is also nonincreasing.

Proof. We have

Pτ (f)(x) =

q∑
i=1

f(τ−1i (x))
1

τ ′(τ−1i (x))
χτ([ai−1,ai))(x).

Let 0 ≤ x < y ≤ 1. We will show that, for any i = 1, . . . , q,

f(τ−1i (x))
1

τ ′(τ−1i (x))
χτ([ai−1,ai))(x)

≥ f(τ−1i (y))
1

τ ′(τ−1i (y))
χτ([ai−1,ai))(y). (2.1)

Let us fix 1 ≤ i ≤ q. Since τ|[ai−1,ai) is increasing and τ(ai−1) = 0, if
χτ([ai−1,ai))(x) = 0 then χτ([ai−1,ai))(y) = 0. Thus,

χτ([ai−1,ai))(x) ≥ χτ([ai−1,ai))(y).

If they are both nonzero, we have

f(τ−1i (x)) ≥ f(τ−1i (y)),

since f is nonincreasing and τ−1i (x) < τ−1i (y). Also

1

τ ′(τ−1i (x))
≥ 1

τ ′(τ−1i (y))
,

since τ ′ is nondecreasing and τ−1i (x) < τ−1i (y). Hence (2.1) is proved. Sum-
ming up (2.1) completes the proof. �
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We now make the following observation:

Lemma 2.0.1. If f ≥ 0 and f is nonincreasing, then f(x) ≤ 1
x
λ(f), for

x ∈ [0, 1], where

λ(f) =

∫
I

fdλ.

Proof. For any 0 < x ≤ 1 and assume f(0) = 1. We have,

Figure 2.2: Inequality of Lemma 3.0.1

λ(f) ≥
∫ x

0

f(y)dλ(y) ≥ x · f(x).

�

Now, we will prove an inequality that closely resembles the Lasota-Yorke
inequality [9]

Proposition 2.0.2. Let τ ∈ Tpc(I). If f : [0, 1]→ R+ is nonincreasing, then

||Pτf ||∞ ≤
1

α
||f ||∞ + C||f ||1, (2.2)
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where C =
∑q

i=2(ai−1 · τ ′(ai−1))−1.

Proof. Since f is nonincreasing, we have f(0) ≥ ||f ||∞, and by Proposi-
tion 2.0.1, Pτf(0) ≥ ||Pτf ||∞. Recall that α = τ ′(0) ≥ 1. Hence, by condi-
tion (ii) and Lemma 2.0.1, we have

Pτf(0) =
1

τ ′(0)
f(0) +

q∑
i=2

f(τ−1i (0))

τ ′(τ−1i (0))
=

1

α
f(0) +

q∑
i=2

f(ai−1)

τ ′(ai−1)

≤ 1

α
f(0) +

q∑
i=1

λ(f)

ai−1

1

τ ′(ai−1)
≤ 1

α
||f ||∞ + C||f ||1.

�

We are now ready to prove the main result of this section

Theorem 2.0.2. Let τ ∈ Tpc(I). Then τ admits an absolutely continuous
invariant measure, µ = f ∗λ, and the density f ∗ is nonincreasing.

Proof. Let f ≡ 1. f is nonincreasing. Then by Proposition 2.0.2, we can
apply inequality (2.2) iteratively. We obtain

||P n
τ f ||∞ ≤

1

αn
||f ||∞ + C(1 +

1

α
+ · · ·+ 1

αn−1
)||f ||1 ≤ 1 + C

1

1− 1
α

.

Thus, the sequence {P n
τ f}∞n=1 is uniformly bounded and thus weakly com-

pact in L1 (Proposition 1.1.1) . By the Yosida-Kakutani Theorem (Theorem
1.1.5), the sequence 1

n

∑n−1
i=1 P

i
τf converges in L1 to a Pτ -invariant function

f ∗. It is nonincreasing since it is the limit of nonincreasing functions. �

There are cases where it is possible to allow zero-derivatives at certain end-
points ai−1. In that case the invariant density will not be bounded but still
absolutely continuous with respect to Lebesgue measure.

Example: In this example we will discuss more about the cases men-
tioned above.

Let τ : [0, 1]→ [0, 1] be a piecewise function as follows:

τ1(x) = 2x,

τ2(x) = 4

(
x− 1

2

)2

.
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1

10 1/2

Figure 2.3: Graph of τ

We obtain that:

(Pτf)(x) =
f
(
x
2

)
2

+
f
(

1
2

+
√
x
4

)
4
√
x

·

We will show that τ has a finite acim, using conjugation (see the definition
and the proposition below) by the diffeomorphism

σ(x) = x2.

Let τ̃ = σ−1 ◦ τ ◦ σ. So,

τ̃1(x) =
√

2x2 =
√

2x.

τ̃2(x) =

√
4

(
x2 − 1

2

)2

= 2

(
x2 − 1

2

)
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Figure 2.4: Graph of τ̃

with τ̃1 defined on [0,
√

1
2
] and τ̃2 defined on [

√
1
2
, 1]. We note that τ̃1, τ̃2

are convex and satisfy the hypotheses of Theorem 2.0.2. So for τ̃ we can find
an acim of the form f̃(x), f̃ ≥ 0, bounded and decreasing.

Then f(x) = f̃(
√
x)

2
√
x

is an invariant density for τ and it is integrable so
the measure fdx is finite.

In the above example we have used the following proposition.

Definition 2.0.1. Two transformations τ : I → I and τ̃ : J → J on
intervals I and J are called conjugate if there exists a homeomorphism σ,
such that

τ(x) = σ−1(τ̃ [σ(x)]).

Then the map σ is called the conjugation.

Proposition 2.0.3. Let, τ : I → I be non singular and σ : I → I be a
diffeomorphism. Then Pτf = f implies Pτ̃g = g, where τ̃ = σ ◦ τ ◦ σ−1 and
g = (f ◦ σ−1) · |(σ−1)′|.

Proof. The fact that σ is a diffeomorphic, implies σ is monotonic. By equa-
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tion 1.7,

Pσf =
n∑
i=1

(f ◦ σ−1i )|(σ−1i )
′ |χ[ai−1,ai]

= (f ◦ σ−1)|(σ−1)′|
= g.

Now, using the composite relation we obtain,

Pτ̃g = Pτ̃ (Pσf)

= Pσ◦τ◦σ−1(Pσf)

= Pσ ◦ Pτ ◦ Pσ−1(Pσf)

= Pσ ◦ Pτ (f)

= Pσ(f)

= g.

�
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Chapter 3

Piecewise Concave Maps

In this section, we prove the existence of ACIM theorem for a class of mapping
that are piecewise concave. We also prove that they are exact. For more
details, we refer the readers to [3] and [8]

Definition 3.0.1. Let (X,B, µ) be a normalized measure space and let τ :
X → X be measure preserving such that τ(A) ∈ B for each A ∈ B. If

lim
n→∞

µ(τnA) = 1

for every A ∈ B, µ(A) > 0, then τ is exact .

Theorem 3.0.1. [2] Let (X,B, µ) be a normalized measure space and let
τ : (X,B, µ) → (X,B, µ) be measure preserving. Then τ is exact if and
only if

BT =
∞⋂
n=0

τ−n(B)

is trivial, that is , the tail σ-algebra consists of the sets of µ-measure 0 or 1.

Proof. Let us assume that A ∈ BT , 0 < µ(A) < 1 and let Bn ∈ B be
such that A = τ−nBn, n = 1, 2, . . . . ( τ−n(B) be the σ-algebra consisting
for the set of the form τ−nBn). Since τ preserves µ, we have µ(Bn) = µ(A),
n = 1, 2, . . . . We also have τn(A) = τn(τ−nBn) ⊂ Bn. Hence, µ(τn(A)) ≤
µ(A) < 1 for n = 1, 2, . . . , which contradicts the exactness of τ . Let A ∈ B
and µ(A) > 0. If limn→+∞ µ(τnA) < 1, we may assume that for some a < 1,
µ(τn(A)) ≤ a < 1, n = 1, 2, . . . . For any n ≥ 0 we have τ−(n+1)(τn+1A) ⊃
τ−n(τnA). Thus, the set B =

⋃∞
n=0 τ

−n(τnA) belongs to BT . Since B ⊃ A
and µ(B) ≥ µ(A) > 0, µ(B) = 1. On the other hand,

µ(B) = lim
n→+∞

µ(τ−n(τnA)) = lim
n→+∞

µ(τn(A)) ≤ a < 1.

�
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Theorem 3.0.2. [8]
Let P be a constrictive Markov operator. Assume there is a set A ⊂ X

of nonzero measure, µ(A) > 0, with the property that for every f ∈ D there
is an integer n0(f) such that

P nf(x) > 0 (3.1)

for almost all x ∈ A and all n > n0(f). Then {P n} is asymptotically stable.

Theorem 3.0.3. Let τ : [0, 1]→ [0, 1] satisfy the following:

(I) there is a partition 0 = a0 < a1 < · · · < am = 1 of [0, 1] such that
τ |(ai−1,ai

] is of C2 for each i = 1, . . .m

(II) τ ′(x) > 0 and τ ′′(x) ≤ 0 for all x ∈ [0, 1], where τ ′(ai) and τ ′′(ai) are
left derivatives.

(III) τ(ai) = 1 for each integer, i = 1, . . . ,m.

(IV) τ ′(1) = α > 1.

Then the corresponding Frobenius-Perron operator P maps increasing func-
tions to increasing ones and τ has a normalized ACIM. Its density f ∗ is
increasing.

Proof. From the definition of the Frobenius-Perron operator P ,

Pf(x) = − d

dx

∫
τ−1([x,1])

fdµ (3.2)

Let τi be the restriction of τ to the interval (ai−1, ai] and let

gi(x) =

{
ai−1, x ∈ [0, τ(ai−1 + 0)]

τ−1i (x), x ∈ [τ(ai−1 + 0), 1]

for i = 1, . . . ,m, where τ(ai−1 + 0) is the right limit. Then for any x ∈ [0, 1],

τ−1([0, x]) =
m⋃
i=1

[gi(x), ai],

from which the F-P operatior is thus,

Pf(x) = − d

dx

m∑
i=1

∫ ai

gi(x)

fdµ =
m∑
i=1

g′i(x)f(gi(x)).

27



Since τi is increasing, so is gi. And g′i is increasing since g′′i = −τ ′′/(τ ′)2 ≥
0. Thus, Pf is a non-negative increasing function if f is non-negative and
increasing, and

Pf(x) =
m∑
i=1

g′i(x)f(gi(x)) ≤
m∑
i=1

g′i(1)f(gi(1))

=
m−1∑
i=1

[g′i(1)f(ai) + g′m(1)f(1)] .

Now let f ∈ L 1(0, 1) be an increasing density. Then

1 ≥
∫ 1

x

f(t)dt ≥
∫ 1

x

f(x)dt = f(x)(1− x) (3.3)

which implies f(x) ≤ 1
1−x .

Figure 3.1: Inequality 3.3

Hence for 1 ≤ i ≤ m− 1,

g′i(1)f(ai) ≤
g′i(1)

1− ai
·
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Noting that g′m(1) = 1/τ ′(1) = 1/α < 1, we have

Pf(x) ≤
m−1∑
i=1

g′i(1)

1− ai
+

1

α
f(1)− 1

α
f(1) +M, (3.4)

where

M =
m−1∑
i=1

g′i(1)

1− ai
·

It follow that

P nf(x) ≤ 1

αn
f(1) +

αM

α− 1
≤ f(1) +K, (3.5)

where K = αM/(α− 1) is independent of f . Since ‖P‖ = 1 and the set

{h ≥ 0|h(x) ≤ f(1) +K, x ∈ [0, 1]}

is weakly compact in L 1(0, 1), by a standard compactness argument for
L 1-spaces and by Yosida-Kakutani Theorem (Theorem 1.1.5), we have

lim
n→∞

1

n

n−1∑
k−0

P kf = f ∗

in L 1 norm, where f ∗ is invariant density of P . It is obvious that f ∗ is
increasing since f is increasing. �

Theorem 3.0.4. [3] Under the conditions of theorem 3.0.3, the invariant
density f ∗ is unique. Furthermore, the iterative sequence {P n} is asymptot-
ically stable, that is limn→∞ P

nf = f ∗ for every density f ∈ L 1(0, 1).

Proof. Integrating both sides of (3.5) over measurable set E ⊂ [0, 1] for any
increasing density f , we have∫

E

P nfdµ ≤ 1

αn

∫
E

f(1)dµ+

∫
E

kdµ =

[
1

αn
f(1) + k

]
µ(E).

Now let f be a density bounded variation. Then f = f1 − f2, where f1 and
f2 are nonnegative and increasing. Hence∫

E

P nfdµ =

∫
E

P nf1dµ−
∫
E

P nf2dµ ≤
∫
E

P nf1dµ

= ‖f1‖
∫
E

P n f1
‖f1‖

dµ ≤ ‖f1‖
[

1

αn
f1(1)

‖f1‖
+ k

]
µ(E).
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Therefore, there exists 0 < k < 1 and δ > 0 such that, for any density f of
bounded variation, there is an integer N(f) for which∫

E

P nfdµ ≤ k

for n ≥ N(f) and µ(E) < δ. Since any density function is a limit of a
sequence of densities of bounded variation, P is constrictive. Since each g′i
in (3.3) is positive, if f is a density such that suppf ⊃ [am−1, 1], then

Pf(x) =
m−1∑
i=1

g′i(x)f(gi(x)) + g′m(x)f(gm(x)) ≥ g′m(x)f(gm(x)) > 0

on [am−1, 1] since τ ′(1) > 1 and τ ′ is decreasing on [am−1, 1] which means
that suppPf ⊃ suppf .

Given any density f , there is an integer k such that suppP ∗f ⊃ [am−1, 1]
since τ ′(1) > 1 and τ ′ > 0 is decreasing on each [ai−1, ai].

Hence for every density f , there is an integer N(f) such that

P nf(x) > 0 ∀x ∈ [am−1, 1], n ≥ N(f). (3.6)

By the theorem 3.0.2, limn→∞ ‖P nf − f ∗‖ = 0 for all densities f . �

3.1 Exactness of a Piecewise Concave Dynam-

ical Systems

In this section we prove exactness of Piecewise Concave Map τ . We shall
prove that the strong convergence of P n

τ f to f ∗ implies exactness of τ .

Let, ||P n
τ f − f ∗||1 → 0. Assume µ(A) > 0. Define the sequence αn by

αn = ||P n
τ f − f ∗||1. Then

µ(τn(A)) =

∫
τn(A)

f ∗dµ =

∫
τn(A)

[P n
τ fA − (P n

τ fA − f ∗)]dµ

≥
∫
τn(A)

P n
τ fAdµ−

∫
τn(A)

|P n
τ fA − f ∗|dµ

≥
∫
τn(A)

P n
τ fAdµ− αn =

∫
τ−n(τn(A))

fAdµ− αn

≥
∫
A

fAdµ− αn = 1− αn·
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Since αn → 0, we obtain

lim
n→∞

µ(τn(A)) = 1.

Which implies exactness of τ.
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Chapter 4

ACIM for Piecewise Maps
With Infinite Number of
Branches

In this section we will generalize the main result of Section 3 to the case
where τ has infinite number of branches.

We say τ ∈ T ∞pc (I), I = [0, 1] if there exists a countable partition of I:

0 = a0 < a1 < a2 < . . .

lim
j→∞

aj = 1.

So that:
1) for i = 1, 2, . . . τi = τ|[ai−1,ai) is continuous and convex.
2) τ(0) = 0, τ ′(0) = α > 1,
3) If i > 1: τ(ai−1) = 0, τ ′(ai−1) > 0,
4)
∑∞

i=2
1

τ ′(ai−1)
<∞·

In this version we allow infinitely many branches, but require that the
derivatives at the endpoints increases rather rapidly.

For τ ∈ T ∞pc (I), f ∈ L1(I), f ≥ 0, define:

Pτ (f)(x) =
∞∑
i=1

f(τ−1i (x))

τ ′(τ−1i (x))
χτ [ai−1,ai)(x). (4.1)

Under the assumption that τ ∈ T ∞pc (I) none of the denominators are equal
to 0. We have the following proposition analogous to Proposition 2.0.1.
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Proposition 4.0.1. Let τ ∈ T ∞pc (I), f ∈ L1(I), f ≥ 0, f non-increasing.
Then:

1) Pτ (f) ∈ L1(I),
2) Pτ (f) ≥ 0,
3) Pτ (f) is non-increasing,
4) ||Pτ (f)||∞ ≤ C||f ||∞.

Proof. As in the proof of proposition 2.0.1 note that each of the branches

f(τ−1i (x))

τ ′(τ−1i (x))
χτ [ai−1,ai)(x)

is non-negative and non-increasing, establishing (2) and (3).
To establish (1) ∫

I

Pτ (f)dx =

∫
τ−1(I)

fdx =

∫
I

fdx.

Therefore, Pτ (f) ∈ L1(I).

(4). We have

Pτf(x) ≤
∞∑
i=1

||f ||∞
τ ′(τ−1i (x))

≤
∞∑
i=1

||f ||∞
τ ′(ai−1)

=

(
1

α
+
∞∑
i=2

1

τ ′(ai−1)

)
||f ||∞.

Therefore with

C =
1

α
+
∞∑
i=2

1

τ ′(ai−1)
;

||Pτf ||∞ ≤ C||f ||∞.

�

Lemma 4.0.1. If f ≥ 0 and f is non-increasing, f finite for all x. Then:

f(x) ≤ 1

x
λ(f) =

1

x

∫
I

fdx.

The following is analogue to Lemma 2.0.1
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Proposition 4.0.2. If f : [0, 1] → R+ is non-increasing and τ ∈ T ∞pc (I)
then:

||Pτf ||∞ ≤
1

α
||f ||∞ + C||f ||1,

where:

C =
∞∑
i=2

1

ai−1τ ′(ai−1)
.

Note:

C <
1

a1

∞∑
i=2

1

τ ′(ai−1)
<∞.

Proof. The proof of proposition 2.0.2 verbatim. �

Theorem 4.0.2. Let τ ∈ Tpc(I). Then τ admits an absolutely continuous
invariant measure:

µ = f ∗λ

with f ∗ is non-increasing.

Proof. Let f ≡ 1 and consider the sequence P n
τ f . As in Theorem 2.0.2 :

||P n
τ f ||∞ ≤ 1 +

C

1− 1
α

·

So again the sequence {P n
τ f} is uniformly bounded and weakly compact

(Proposition 1.1.1). By Yosida-Kakutani Theorem (Theorem 1.1.5), 1
n

∑n
i=1 P

i
τf

converges in L1 to a Pτ invariant function f ∗. It is non-increasing since it is
the limit of non-increasing functions.

�

4.0.1 Examples

Example-1: Let,

an =
1

2n
, n = 0, 1, 2, . . . .

Let τ : [an, an+1) → [0, 1] be linear. It is easy to see that Lebesgue
measure is τ -invariant.
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1

1a1=1/2 a2 a3 ...0

Figure 4.1: Piecewise linear map with infinite number of branches.

Proof. The slope of τ on the segment [an, an+1] is equal to 1
(an+1−an) · So the

inverse of τ has slope (an+1 − an). Then with density f = 1,

Pτ (f) =
∞∑
n=1

{an+1 − an} · 1 = 1,

using telescopic sum so,
Pτ (f) = f.

�

Example-2: Let us consider the transformation

τ(x) =
x

1− x
(mod 1)

with countably many branches. We will show that it preserves the density
f = 1

x
.
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Figure 4.2: Example 2

Proof. Let n ∈ N, then

x

1− x
= n⇔ x = n− nx⇔ x =

n

1 + n
·

Now, let

ak =
k

1 + k
,

and
τk = τ |[ak,ak+1).

If
y ∈ [0, 1], and y = τk(x).

Then,
x

1− x
= y + k.

So,
x = y + k − x(y + k).
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Therefore,

x =
y + k

1 + y + k
= τ−1k (y).

Furthermore,

(τ−1k )
′
(y) =

(1 + y + k) · 1− (y + k)

(1 + y + k)2
=

1

(1 + y + k)2
·

Then,

Pτ

(
1

x

)
=
∞∑
k=0

1 + x+ k

x+ k
· 1

(1 + x+ k)2
=
∞∑
k=0

(
1

x+ k
− 1

1 + x+ k

)
=

1

x
·

�

The series
∑∞

k=0
1

τ ′ (ak)
=
∑∞

k=0
1

(1+k)2
<
∑∞

k=0
1
k2
<∞ is convergent using

integral test.The invariant measure is infinite since τ
′
(0) = 1 and condition

2 fails.

Example-3:
In this example we will show the preservation of measure with density 1

x

by Lasota-Yorke example

τ1(x) =
x

1− x
,

τ2(x) = 2x− 1.
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Figure 4.3: Example 3

We will also present the construction of the induced map of τ along with
the definition of induced transformation and prove that the induced map is
piecewise convex.

Proof. We have the derivatives of the piecewise functions,

τ
′
(x) =

{
1

(1−x)2 ,

2.

Also, the inverses of the piecewise funtions,

τ−1(x) =

{
x

(x+1)
,

(x+1)
2
·

Pτf(x) = Pτ

(
1

x

)
=

(x+1)
x

|(x+ 1)2|
+

2
(x+1)

|2|
=

1

x
·

So τ(x) preserves measure with density 1
x
·

�
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Definition 4.0.1. Let τ : X → X be a measurable transformation preserving
a normalized measure µ. Let A ∈ B and µ(A) > 0. According to Kac’s
Lemma [2], the first return-time function n = NA is integrable and we define
a transformation

τA(x) = τn(x)(x), x ∈ A.
The transformation τA : A → A is called an induced transformation or
the first return transformation.

Now we will construct the induced map of τ(x) on interval [0, 1
2
], also

known as first return map, i.e., τinduced(x) = τn(x)(x), where n(x) is smallest
integers such that, τn(x)(x) ∈ [0, 1

2
]. We show the induced map in the Figure

4.4.

Figure 4.4: Induced Map

We have τ−11 (1
2
) =

1
2

1+ 1
2

= 1
3
· So, on [0, 1

3
), τinduced(x) = τ1(x), while [1

3
, 1
2
]

is mapped to [1
2
, 1].

Also, τ2 maps [1
2
, 1) to [0, 1), i.e., τ−12 (1

2
) =

1
2
+1

2
= 3

4
. So, if x ∈ [1

3
, 1
2
) is so

that, τ1(x) ∈ [1
2
, 3
4
)· Then n(x) = 2 and τinduced(x) = τ2 ◦ τ1(x).

Now τ−11 (3
4
) =

3
4

1+ 3
4

= 3
7
· Therefore, on [1

3
, 3
7
), τinduced(x) = τ2 ◦ τ1(x)·

Next, τ−12 (3
4
) =

3
4
+1

2
= 7

8
and τ−11 (7

8
) =

7
8

1+ 7
8

= 7
15
·
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Therefore, on [3
7
, 3
15

), τinduced(x) = τ3 ◦ τ2 ◦ τ1(x). We see that the points

generated 1
2
, 3
4
, 7
8
, . . . are of the form (1− 1

2n
) and τ−11 (1− 1

2n
) =

1− 1
2n

1+1− 1
2n
·

Hence, on interval of the form [ 2n−1
2.2n−1 ,

2n+1−1
2.2n+1−1), τinduced(x) = τn2 ◦ τ1(x).

Since,

τ2 is linear,

τ
′

2 > 0, τ
′′

2 = 0,

τ
′

1 > 0,

τ
′′

1 > 0.

We see d2

dx2
τinduced(x) > 0. Hence, τinduced(x) is piecewise convex.

Also, using Proposition 3.6.1 from [2] we conclude that measure with density
1
x

is τinduced-invariant on [0, 1
2
].
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Chapter 5

Examples without ACIM

In this section, we have shown some examples where omission of some con-
ditions in Theorem 2.0.2 results in non-existence of absolutely continuous
invariant measure conditions fails.

5.1 No ACIM examples with finite number

of branches

Example 1.
In this example Condition-3 fails: (3) If i > 1: τ(ai−1) = 0. This allows

the right-most branch to be a uniform contraction with an attracting fixed
point at 1 and there is no ACIM.
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1

10 1/2

τ1

τ2

Figure 5.1: Example 1

Let’s define τ : [0, 1]→ [0, 1] as follows:

τ1(x) = 2x, 0 ≤ x <
1

2
,

τ2(x) =
1

2
(x− 1) + 1,

1

2
≤ x ≤ 1.

For any point x ∈ [1
2
, 1], τn(x) → 1, since x = 1 is the attracting fixed

point in [1
2
, 1].

τ2(1) = 1, τ ′2(1) =
1

2
·

So [1
2
, 1] is a trapping region.

Let 0 < x < 1
2
·

Claim: For n large enough

τn(x) ∈ [
1

2
, 1].

Since 0 < x < 1
2
, we can find n so that:

1

2n
≤ x <

1

2n−1
.
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Then, 1
2

= τn−1
(

1
2n

)
≤ τn−1(x) ≤ 1· We conclude that τn+m(x) → 1 as

m → ∞. Hence for all x > 0, τn(x) → 1 and as a result there can be no
ACIM.

Example 2.
In this example one of the branches fails to be convex which allows the

fixed point 1 to be attractive, and there is again no ACIM. Here condition-1
fails: (1) for i = 1, 2, . . . τi = τ|[ai−1,ai) is continuous and convex.

Figure 5.2: Example 2(1)

We define τ : [0, 1]→ [0, 1] as follows:

τ1(x) = 2x,

τ2(x) concave as shown,

τ ′2(
1

2
) > 1.

Then τ has an attracting fixed point at 1, and a repelling fixed point at x1,
see Figure 5.2. For any x ∈ (x1, 1], τn(x)→ 1.

Now consider τ on the interval [0, x1].
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Figure 5.3: Example 2(2)

Any point in [x1
2
, 1
2
) is mapped into (x1, 1) and so for such x, τn(x)→ 1.

Now the set of points x ∈ [0, x1], which never land in (x1
2
, 1
2
) is a cantor set of

measure 0, because the set is non-empty, compact and consist of 2n intervals.

Therefore, for almost all x ∈ [0, x1), τ
n(x) ∈ (x1

2
, 1
2
) for some n. So,

τn+m(x)→ 1 as m→∞ for almost all x. Hence, the non-wandering set has
measure 0 and there is then no ACIM.

Example 3.
In this example we have a failure of condition-4: (4)

∑∞
i=2

1
τ ′(ai−1)

< ∞.

This allows almost every point to tend to the fixed point at 0, and there is
again no ACIM.
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1

10 1/2

τ1

τ2

Figure 5.4: Example 3

We obtain τ : [0, 1]→ [0, 1] as follows:

τ1(x) = 2x, 0 ≤ x <
1

2

τ2(x) = 0,
1

2
< x ≤ 1

2
·

For any x ∈ [1
2
, 1], τ(x) = 0. Since 0 is a fixed point of τ , for all n ≥ 1,

τn(x) = 0. Now if 0 < x ≤ 1
2

then there exists n so that(
1

2

)n
< x ≤

(
1

2

)n−1
·

So, τn−1(x) ∈ [1
2
, 1]. Then, τn(x) = 0 for all n large enough. This implies

then that there is no ACIM.
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5.2 No ACIM example with infinite number

of branches

Example: In this example we have a failure of condition-4: (4)
∑∞

i=2
1

τ ′(ai−1)
<

∞ with infinite number of branches. This allows almost every point to tend
to the fixed point at 0 and there is again no ACIM.

Let,

an = 1− 1

2n
, a0 = 0, a1 =

1

2
, τ |[a0,a1] = 4x2,

and τ linear on [an−1, an]→ [0, 1].

1

1

4x
2

a1=1/2 a2 a3 ...0

Figure 5.5: Map with infinite number of branches

τ

(
1

4

)
=

1

4
·

Let J0 =
[
0, 1

4

)
. If x ∈ J0: τn(x)→ 0.

Now let (as before) Cn = {x : x /∈ J0, τ(x) /∈ J0, . . . , τn(x) /∈ J0}. C∞ =⋂
nCn. C∞ cantor set. If x /∈ C∞ then τn(x) → 0 as n → ∞ and C∞ is

cantor set of measure 0. So τ has no ACIM.
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