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Abstract

Given a generic Cremonian space-time, its three spatial dimensions are shown to exhibit an intriguing,
“two-plus-one” partition with respect to standard observers. Such observers are found to form three
distinct, disjoint groups based on which one out of the three dimensions stands away from the other two.
These two subject-related properties have, to our knowledge, no analogue in any of the existing physical
theories of space-time.

When confronting a new theory, attention is always paid to those features that make the theory
both unrivalled and subject to unambiguous falsifiability. The theory of Cremonian space-time(s)
[1–4] can be no exception in this respect. As for the first aspect, this theory has already been able
to shed a remarkably fresh light on such pressing issues of contemporary physics as the macroscopic
dimensionality and signature of the Universe [1,2,4], its possible origin and/or evolution [5,7], as
well as on a puzzling discrepancy between the physical and psychological/mental concepts of time
[1,4,6]. The second aspect, its falsifiability, has so far been mentioned in passing only [8] and asks,
therefore, for a closer inspection.

At the current stage of its development, there are very few testable predictions of the theory
going beyond the above-mentioned three domains. Yet, one of them, although being of a rather
subtle nature, stands out as truly fascinating and enormously challenging, for, among other things,
it seems to undermine the status of two currently most favoured paradigms of natural sciences,
viz. reductionism and third-person perspective. The feature concerned is an unequal footing on
which three “Cremonian” space dimensions stand with respect to the observer/subject. Rephrased
in a more explicit way, introducing an observer into our Cremonian space-time breaks the original
symmetry by inducing/generating a delicate, 2+1 “splitting-up” in the status of its three spatial
dimensions. Mathematically, this fascinating property is intimately connected with the fact that
the intrinsic geometry of a proper conic is identical with that of a projective line and a projectively
invariant property of four distinct points of a projective line known as separation [see, e.g., Refs.
9,10].

To begin with, we shall recall that a generic Cremonian space-time [1,4] is an algebraic geo-
metrical configuration that sits in a real three-dimensional projective space and comprises three
pencils of lines (spatial dimensions) and a single pencil of conics (time). The pencils of lines, L̃α

(α = 1, 2, 3), are located separately in three distinct planes sharing a line, L̂, and their respective

vertices, B̂α, are assumed not to be collinear, none of them being incident with the line L̂. The
pencil of conics, Q̃, is situated in the plane defined by B̂α and its base points are the three vertices
and the point, L̂, at which the line L̂ meets the plane in question. In a suitably chosen system
of homogeneous coordinates, z̆i (i = 1, 2, 3, 4), this configuration can analytically be described as
follows:

L̃1(ϑ1) : z̆2 = 0 = z̆3 + ϑ1z̆4, (1)

L̃2(ϑ2) : z̆1 = 0 = z̆3 + ϑ2z̆4, (2)

L̃3(ϑ3) : z̆1 − z̆2 = 0 = 2z̆3 − z̆2 − z̆1 + ϑ3z̆4, (3)

and

Q̃(η) : z̆4 = 0 = z̆1(z̆3 − z̆2) + ηz̆2(z̆3 − z̆1), (4)
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where the parameters ϑα, η ∈ ℜ+ ≡ ℜ ∪ {∞}, ℜ being the field of real numbers. The equation of

the line L̂ obviously reads

L̂ : z̆1 = 0 = z̆2, (5)

the three vertices are given by

B̂1 : ̺z̆i = (1, 0, 0, 0), (6)

B̂2 : ̺z̆i = (0, 1, 0, 0), (7)

B̂3 : ̺z̆i = (1, 1, 1, 0), (8)

and the point L̂ as

L̂ : ̺z̆i = (0, 0, 1, 0), (9)

with ̺ being a non-zero proportionality factor.
Central objects of our subsequent reasoning will be proper (non-degenerate) conics of pencil (4).

As this pencil, being of the most general type [1,4,6], contains three distinct composite (degenerate)
conics, viz.

Q̃⊙

0 ≡ Q̃(η = 0) : z̆4 = 0 = z̆1(z̆3 − z̆2), (10)

Q̃⊙

−1 ≡ Q̃(η = −1) : z̆4 = 0 = z̆3(z̆1 − z̆2), (11)

and

Q̃⊙

∞ ≡ Q̃(η = ∞) : z̆4 = 0 = z̆2(z̆3 − z̆1), (12)

its proper conics form three distinct, disjoint families Q̃(α), viz.

Q̃(1)(η) : − 1 < η < 0, (13)

Q̃(2)(η) : −∞ < η < −1, (14)

and

Q̃(3)(η) : 0 < η < +∞. (15)

It is easy to verify that any proper conic of (13)–(15) can be parametrized as

Q̃(α)(η) : ̺z̆i(κ) = (1 + η(1− κ), κ, κ(1 + η(1 − κ)), 0), (16)

with the parameter κ ∈ ℜ+. Comparing the last equation with Eqs. (6)–(9), and remembering that
η 6= −1, 0,∞, we find the following correspondence

B̂1 : κ = 0, (17)

B̂2 : κ = 1 + 1/η, (18)

B̂3 : κ = 1, (19)

and

L̂ : κ = ∞. (20)

Now, let us have a closer look at the four base points of the pencil of conics. In a general con-
text/setting, three of them, B̂α, stand on a different footing than the remaining one, L̂; this is

fairly obvious from the fact that B̂α are vertices of the three space-generating pencils of lines, while
L̂ is not. What we aim at demonstrating next is that, given a particular proper conic of (4), there

even exists a subtle “splitting up” in the status of B̂α themselves.
To furnish this task, we have to introduce a function on a set of four ordered distinct points

Pi, i = 1, 2, 3, 4, of a real projective line that is a projective invariant, i.e. a function that does
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not change under collineation and change of a coordinate system. Taking x and y to be the
homogeneous coordinates of the projective line, such a function is of the following form [see, e.g.,
Refs. 9,10]

CR{P1, P2;P3, P4} ≡
(x1y3 − x3y1)(x2y4 − x4y2)

(x1y4 − x4y1)(x2y3 − x3y2)
, (21)

where xi, yi are the coordinates of the point Pi. If we switch to a more convenient affine parameter
κ ≡ x/y ∈ ℜ+, this equation can be rewritten as

CR{P1, P2;P3, P4} =
(κ1 − κ3)(κ2 − κ4)

(κ1 − κ4)(κ2 − κ3)
. (22)

The function CR{P1, P2;P3, P4} is called the cross ratio of the four points in question and, as easily
verified, satisfies the following symmetry relations:

CR{P1, P2;P3, P4} = CR{P2, P1;P4, P3} = CR{P3, P4;P1, P2}, (23)

CR{P2, P1;P3, P4} = 1/CR{P1, P2;P3, P4}, (24)

CR{P1, P3;P2, P4} = 1− CR{P1, P2;P3, P4}. (25)

Next, let us view the four points as forming two pairs, say P1, P2 and P3, P4. As the points
are assumed to be distinct, we can introduce a very important concept of separation. Namely,
the pair P1, P2 is said to separate, resp. not to separate, the pair P3, P4 (denoted P1, P2‖P3, P4,
resp. P1, P2♯P3, P4) according as CR{P1, P2;P3, P4} is negative resp. positive. It is clear that
separation is a projective invariant, endowed – as it easily follows from Eqs. (23)–(25) – with the
following properties: a) if P1, P2‖P3, P4, then P1, P2‖P4, P3 and P3, P4‖P1, P2; b) if P1, P2‖P3, P4,
then P1, P3♯P4, P2 and P1, P4♯P2, P3; and c) there is one and only one way the four points can be
divided into two mutually separating pairs.

We have already mentioned that a proper conic is intrinsically isomorphic to a projective line.
So, employing this cross-ratio machinery, we are now ready to analyze the separation properties
of the four base points of pencil (4) for each proper conic located in the latter. Thus, combining
Eqs. (17)–(20) and Eq. (22), and recalling that η 6= −1, 0,∞, we get 1

CR{B̂2, B̂3; B̂1, L̂} =
(1 + 1/η − 0)(1−∞)

(1 + 1/η −∞)(1 − 0)
=

η + 1

η
, (26)

CR{B̂1, B̂3; B̂2, L̂} =
(0− 1− 1/η)(1−∞)

(0−∞)(1 − 1− 1/η)
=

−1− 1/η

−1/η
= η + 1, (27)

CR{B̂1, B̂2; B̂3, L̂} =
(0− 1)(1 + 1/η −∞)

(0−∞)(1 + 1/η − 1)
=

−1

1/η
= −η. (28)

If one takes into account the above-listed properties of separation, then the first of these equations
tells us that B̂2, B̂3‖B̂1, L̂ only for proper conics of the first family (Eq. (13)), the second equation

implies that B̂1, B̂3‖B̂2, L̂ only for proper conics of the second family (Eq. (14)), and, finally, the

third equation says that B̂1, B̂2‖B̂3, L̂ only for proper conics of the third family (Eq. (15)). This
means that, given the separation property, whatever proper conic of pencil (4) is chosen, there is

always one of the three points B̂α, and, so, one of the three corresponding space dimensions, that
stands slightly aside from the other two; which this point (spatial dimension) is depends on the
family the conic in question belongs to.

The final step of our analysis is to show that there exists a natural way of selecting a par-
ticular conic of pencil (4). And, indeed, this can simply be done in terms of introducing an
observer/subject. For every observer in our Cremonian universe is represented by a projective
line and the latter, when in a “standard” position, cuts the carrier plane of the pencil of conics
in a single point that falls on a unique proper conic [1–4,6]. So for every “standard” observer,
i.e. the observer whose representing line hits the proper conic of pencil (4), space exhibits an

1To be completely rigorous, in Eqs (26)–(28) we should take the limits as κ → ∞ for L̂, but the results will be
the same.
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intriguing two-to-one partition among its dimensions; moreover, these observers obviously form
three different, disjoint groups according as which of the three spatial dimensions stands apart
from the other two, or, what amounts to the same, which of the three families of proper conics
(Eqs. (13)–(15)) hosts the conic selected. And as this unique conic represents nothing but the
moment of the present, the “now” for this particular observer [4,6], one can equally claim that the
observers sharing the same present moment, as well as all the observers whose “nows” belong to
the same family, will experience the same 2+1 space splitting algebra.

So, if the structure of the deeper levels of the Universe is Cremonian (as we firmly believe),
then every standard observer should face, or experience, a sort of “dissociation” of space, whose
character is conditioned by the very existence of the observer and shared by all the standard
observers in the corresponding group. At present, it is rather difficult to – even conceptually –
envisage a kind of an experiment that would be able to detect this subject-based, 2+1 breakup of
space, which, to the best of our knowledge, has no proper counterpart within the physical theories
of space-time. One should, however, not be surprised if first verifications come from psychology
and neurosciences rather than physics; after all, it is non-ordinary forms of mental space-time(s)
[6] where our Cremonian approach has been found to perform so well.
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