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ABSTRACT

The advent of commercial inexpensive sensors and the advances in information and

communication technology (ICT) have brought forth the era of pervasive Quantified-

Self. Automatic diet monitoring is one of the most important aspects for Quantified-

Self because it is vital for ensuring the well-being of patients suffering from chronic

diseases as well as for providing a low cost means for maintaining the health for

everyone else. Automatic dietary monitoring consists of: a) Determining the type

and amount of food intake, and b) Monitoring eating behavior, i.e., time, frequency,

and speed of eating. Although there are some existing techniques towards these ends,

they suffer from issues of low accuracy and low adherence. To overcome these issues,

multiple sensors were utilized because the availability of affordable sensors that can

capture the different aspect information has the potential for increasing the available

knowledge for Quantified-Self. For a), I envision an intelligent dietary monitoring

system that automatically identifies food items by using the knowledge obtained

from visible spectrum camera and infrared spectrum camera. This system is able

to outperform the state-of-the-art systems for cooked food recognition by 25% while

also minimizing user intervention. For b), I propose a novel methodology, IDEA that

performs accurate eating action identification within eating episodes with an average

F1-score of 0.92. This is an improvement of 0.11 for precision and 0.15 for recall for

the worst-case users as compared to the state-of-the-art. IDEA uses only a single

wrist-band which includes four sensors and provides feedback on eating speed every

2 minutes without obtaining any manual input from the user.
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Chapter 1

INTRODUCTION

Machine learning, internet-of-things (IoT), and artificial intelligence (A.I.) promise

a new era for smart healthcare. Also, the advances in smart devices and the emergence

of inexpensive sensors have enabled to collect and analyze the health conditions from

anyone, anywhere, and anytime. These developments provide a pervasive healthcare

framework to allow users to manage and assess their own health conditions. This

is often called Quantified-Self or Life-logging. This trend in Quantified-Self is an

important research topic because it allows the prevention of illnesses by monitoring

individual health conditions such as diet, blood pressure, and activity in daily life.

Quantified-Self is specially important for patients of chronic diseases and elderly peo-

ple because sustained monitoring is critical to preserve their health. The analysis

of the data obtained from continuous monitoring can be utilized for automatic and

intelligent decisions such as a balanced diet recommendation using calorie estimation

and fast eating speed warning using eating action recognition. These decisions can

enhance the quality of healthcare service, which in-turn can lead to many beneficial

health impacts such as low cost illness prevention.

Knowledge discovery is important since quality and quantity of discovered knowl-

edge critically affect the performance of such decisions. Recent advances in feature

engineering techniques for sensor data have greatly contributed to the increase in the

quality of knowledge. However, the quantity of knowledge extracted also depends

on the amount of information present in the sensor data source. An intuitive way

to increase the quantity of knowledge would be to utilize multiple sensors. Theoret-

ically, utilizing sensors that capture information from multiple sensors can lead to
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increase in the quantity of discovered knowledge and also increase the overall quality

of knowledge leading to a synergy effect. However, there are many application-specific

challenges that need to be overcome. To explore these challenges, advanced dietary

monitoring techniques are required. It is an important aspect of treatment plans

for many common health problems [1, 2]. Diet monitoring has several components

including, dietary preference logging, maintenance of a diet plan, food allergy infor-

mation logging, and eating activity monitoring. On a broad level, for diet monitoring

system to have high usability, they should be able to accurately and automatically i)

identify food items and ii) monitor eating behavior.

For i) the food items identification, utilizing a color and thermal camera sensor

was presented to increase the quantity of knowledge because approaches based on only

color cameras are not accurate. However, in order to utilize sensors from different

spectra they must be properly caliberated. Multiple sources of visual information im-

plies multiple viewpoints since different camera pin-holes cannot be co-located. Before

the various sources can be utilized as inputs to an intelligent system, a pixel-by-pixel

correspondence between them is required as a preprocessing step. This preprocessing

step is called image registration which is typically achieved by utilizing a perspective

projective transformation called Homography. This technique requires at least four

matching feature points between two images and has only been shown to work for

images in the visible spectrum. Wang et al. [3] have proposed a image registration

method for satellite images using ASIFT [4]. ASIFT utilizes convolution of neigh-

borhood texture features to obtain a good matching between corresponding pixels

in color images from two fixed cameras. Then, a random selection of at least four

pixels from one of the images, using algorithms such as RANSAC [5] allows successful

image registration. However, this technique does not work properly for images in the

non-visible spectrum because it may not be feasible to match at least four feature
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points. Even if four candidate feature points are identified, it is usually not possible

to complete the registration because of the significant differences in textures between

images from different spectra.

For ii) the eating behavior monitoring, a wristband which includes four different

sensors was utilized. In order to increase the quantity of usuable knowledge by using

these multiple sensors, proper segmentation must be achieved which can be challeng-

ing. A valid segment for the purpose of this system is required to have the following

properties: P1) A segment should have continuous data from the start to the end

of only one eating action. P2) An eating action should be contained in only one

segment (i.e. no overlapping segments). To achieve such properties in the segments,

we need to specify exact time duration of eating actions in the sliding-window-based

algorithm. This is not possible in a User-Independent setting because the average

duration of eating action varies significantly from person to person. Hence, an al-

ternative segmentation method based on extrema points was performed. To obtain

accurate segmentation using extrema points, the most appropriate sensor(s) must be

selected.

In this dissertation, a computer vision based system was presented which fuses

color and thermal images of cooked food to obtain an accuracy of nearly 90% for

a variety of cooked food as discussed in Chapter 3. Several works have developed

self-monitoring techniques for diet monitoring such as manual paper-based records

(food diaries) and 24-hour dietary recalls. The purpose of these techniques has been

to assess the amount and type of food eaten. However, these techniques suffer from

three important drawbacks: a) adherence to self-monitoring for the prescribed period

of intervention is low (nearly 60%) [6], b) self-reporting is prone to underreporting

by amounts ranging from 20%-50%, especially in individuals with obesity [6, 7, 8, 9],

and c) recall error while reporting food intake [10]. These drawbacks have prevented
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a wide-scale adoption of these automatic dietary monitoring which would otherwise

benefit the users. Some state-of-the-art smartphone camera based monitoring sys-

tems [11, 12, 13, 14, 15, 16, 17] have been suggested to automate dietary monitoring

in order to solve the problems associated with self-reporting. In addition to making

the systems more usable, automatic food identification techniques based on computer

vision also mitigate underreporting and recall error to some extent. However, the

reported accuracy of such techniques are only about 70% for identification of cooked

food which forms a significant portion of every day diet for most people. One main

reason for the low performance of these systems for cooked food is their inability to

differentiate between food-items in a plate that are not well separated.

Also, we present a wristband based system to accurately estimate the eating speed

of users in real-time and in daily usage scenarios without restrictions on type of food.

This is discussed in Chapter 4. Successful diet monitoring systems also benefit from

automatic monitoring of eating behavior. This monitoring can provide several impor-

tant insights into an eating episode like picking times, eating times, types of utensils

used, the portion sizes for type of food consumed, and finally speed of eating. In-

formation like this can be utilized in various ways to analyze the eating behavior

and also to provide automatics feedback to the user. However, automatically and

accurately monitoring the different components of an eating activity with minimal

manual intervention is challenging. Recent survey [18] shows that lack of accurate es-

timate of food intake portions reduces the effectiveness of dietary monitoring systems

for fostering a healthy eating behavior. Eating speed recognition is one of the most

important analytics that can be derived from automatic eating activity monitoring.

This is because, real-time feedback can be given to users if the eating speed can be

accurately determined. Such feedback has been shown to positively impact the eating

behavior of users [19].
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Chapter 2

QUANTIFIED-SELF

The Quantified-Self (QS) is an approach for tracking and measuring individuals′

daily life activities and states. Information such as physical activity level, heartbeat,

blood pressure, blood glucose, and diet can be collected using wearable sensors for this

purpose. Many researchers have proposed the QS-based systems which allows users to

manage and assess their own health conditions. Oh et al. [20] have categorized track-

ing for QS system into five themes: 1) Body information, 2) Psychological State and

Traits, 3) Activity, 4) Social Interaction, and 5) Environmental & Property States.

Among these five categories, the activity category is a representative of QS research.

The tracking of physical activity level, eating, sleeping, taking pills, watching TV,

and studying are examples of the category. The advances in smartphones and the

emergence of inexpensive sensors have contributed to the pervasive data collection,

which leads to the intelligent and pervasive diet monitoring.

Researchers have developed several self-monitoring techniques for diet, such as

manual paper-based records (food diaries) and 24-hour dietary recalls that assess

the amount and type of food eaten. However, these techniques suffer from three

important drawbacks: a) adherence to self-monitoring for the prescribed period of

intervention is low (nearly 60%) [6], b) self-reporting is prone to underreporting (es-

pecially in individuals with obesity for whom the amounts range from 20% to 50%)

[6, 7], and c) recall error while reporting food intake [10]. Further, in self-reported

dietary assessment, where a 0.5 to 0.7 correlation with actual intake would be consid-

ered good [21]; many studies have found a 0.4 correlation with self-reported dietary

assessment and intake [9]. The misclassification of caloric intake and nutrient profiles
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Figure 2.1: Proposed Fundamental Dietary Monitoring Systems.

tends to be different based on weight status and/or overall energy intake [8]. More-

over, after a weight loss program involving self-monitoring of diet, there is a high

rate of relapse [22, 23]. Hence, we need objective, usable techniques to automatically

assess dietary intake which makes this a very compelling use-case for intelligent QS

systems.

Automatic diet monitoring can help in assessment of nutritional status, monitoring

of compliance with dietary regimes, evaluation of outcome of dietary recommenda-

tions, and self-monitoring by motivated individuals. The close relationship between

daily nutrient intakes and certain chronic diseases such as cardiovascular disease [24],

diabetes [25], cancer [26], and obesity [27] necessitates accurate measurement of di-

etary intakes. These diet related chronic diseases cost the US economy nearly $1

trillion a year [28]. Dietary intervention in conjunction with physical activity and

socio-economic environment changes is considered to be one of the significant factors

in prevention of such chronic diseases, especially problems related to overweight and

obesity [28]. Dietary interventions concentrate on two important aspects: a) the type
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and amount of food intake, and b) eating behavior, i.e., time, frequency, and speed

of eating [28]. There have been significant efforts in designing interventions that

consider various aspects of nutritional intake such as number and type of calories.

However, such interventions often have financial impacts, especially on low-income

populations [29, 30]. On the other hand, interventions that consider speed, time, du-

ration and frequency of eating are behavioral in nature and are thus more affordable.

In this dissertation, we present these two fundamental dietary monitoring systems as

seen in Fig. 2.1: a) MT-Diet which utilizes a long wavelength infrared camera inter-

faced with a smartphone and b) IDEA that can operate with a commodity wristband

sensor to instantly identify eating actions without any manual input from the user.
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Chapter 3

FOOD ITEM RECOGNITION

Increased usage of smartphones with high resolution cameras and powerful processers

provides the opportunity to employ intelligent systems for long-term, non-invasive,

and automatic diet monitoring. Indeed, a recent study on university students found

image based food recognition applications to be easier to use, more fun and were

more likely to have continued usage when compared with a text based food log [31].

Another study of 50 university student reported that nearly 83% stated that they

will not be too lazy to use an image based diet monitoring app for long terms and

50% intended to use them on a daily basis [32]. Practical deployment of image based

diet monitors such as Portal [33] or MyFitnessPal [34] demonstrated ease of use but

also highlighted concerns of low adherence, under-reporting and recall error. These

studies also report that subjects were interested in getting additional information

from the food monitoring app regarding type of food and calorie intake. In theory,

intelligent diet monitoring systems should be able to provide these types of addi-

tional information, however in practice, there are multiple challenges that need to be

addressed.

Cooked food tends to contribute to a significant proportion of calories in daily

diets [35]. Multiple items of cooked food tends to be served in the same plate which

makes it into a multi-object recognition challenge. The system has to not only identify

the various types of food in an image, but it also has to identify the location for these

food items (for eg. steak and mashed potatoes).

Most works on food identification consider food-items in isolation. The works that

do consider multiple-items of food together have additional requirement for users to
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Figure 3.1: Overview Of MT-DIET.

draw a bounding box which makes the system less user friendly. Most works in

this area report higher accuracy for fresh food (93%) as compared to cooked food

(63%) [36, 37, 38, 39]. However, a significant portion of daily calorie intake consists of

cooked food which makes their accurate recognition very important [35]. Additionally,

cooked food has multiple items served in the same plate (for e.g. steak and mashed

potatoes) which recognition using color images more challenging [40].

To solve this, in this dissertation, we present an intelligent and pervasive food

image recognition system, MT-Diet [41] 1 which utilizes a long wavelength infrared

camera interfaced with a smartphone. This system utilizes knowledge obtained from

two different cameras: 1) in the visible spectrum and 2) in the infrared spectrum as

shown in Fig. 3.1.

3.1 Overview

Before two spectra images can be utilized, an image registration between the ther-

mal and visible spectra needs to be performed. Successful image registration requires

1Published in PerCom2016
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high accuracy for feature matching between corresponding pixels of the two images.

However, the features from thermal and color images are quite disparate, making it

difficult to match corresponding features. To achieve high performance for feature

matching, Jarc et. al [42] and Istenic et. al [43] proposed image registration methods

that use texture and Hough transformation based features. These techniques assume

the availability of high resolution infrared images, however, most commercial infrared

cameras for smartphones typically have a very low resolution. In this dissertation,

we presented an image registration approach that is successful even for low resolution

images discussed in Sec. 3.5.1.

With cooked food, the food plate is much cooler than the food itself; as a result, the

thermal image gives a better opportunity to accurately segment different food portions

on a plate. Further, the same amount of heat will yield different temperature increases

for different food items. Thus, even if two food types are mixed, a thermal image

can distinguish between them. The segmented area is then applied to the color image

after the image registration processing between color and thermal image. The main

purpose of image registration is to find optimal spatial and intensity transformations

such that the images get aligned into the same coordinate frame [44]. Unwanted

portions of the food plate in segmentations are further removed using the GrabCut

method [45]. MT-Diet then uses color histogram based analysis of each segment to

determine the actual number of food items on the plate and the area covered by them.

The food segments from both the thermal and color images are used to extract five

features, a) relative temperature difference of each food item with respect to food

plate (thermal), b) bag of features [46] (color), c) histogram of oriented gradients [47]

(color), d) histogram of color map (color), and e) texture information (color) [48].

These features are then provided as input to a support vector machine (SVM) based

classifier to identify the type of food.
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If accurate and efficient, MT-Diet will be a significant improvement from the

current state-of-the-art in smartphone based diet monitoring.

There are significant challenges in creating an automated camera based caloric

intake measurement system:

(a) Inaccurate segmentation of food items: The average accuracy in automati-

cally segmenting the food plate from the food using a color image is very poor (nearly

60%) [39]. Further, when different food items are mixed it is nearly impossible to

distinguish them using just the visual image of the food plate. Use of thermal images

along with visual images improves segmentation accuracy. Preliminary results from

a database of 80 different types of frozen food warmed in a microwave for the recom-

mended time show that use of thermal images in addition to visual images increases

the segmentation accuracy to 92%.

(b) Inaccurate identification of food items: Existing food recognition has been

successful in identifying raw food such as fruits or vegetables with accuracy nearly

100%. However, the state-of-the-art cooked food identification techniques from visual

images have an accuracy of only 63% as shown in Table 3.1. MT-Diet augments

machine learning classifiers with a temperature map of the food items. Preliminary

data on identification of the food items from a frozen food plate warmed in a home-

grade microwave show that inclusion of a thermal map of the food plate increases

identification accuracy to 87%.

(c) Estimation of caloric intake: A nutrition expert charts the calorie value per

gram of consumed food. Based on the amount and the type of food eaten, standard

equations [49] can be used to compute caloric intake. The estimated cost of the

MT-Diet prototype is around $140 for the Seek thermal camera (excluding the cost

of smartphone). However, MT-Diet is not limited to the specific devices and it can

operate with any smartphones and infrared camera.
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Table 3.1: Camera-based Approaches That Use Images In The Visible Spectrum.
PPPPPPPPPPPPPPP
Parameter

Group
UEC [11, 12, 13, 50, 14] DCVER [36, 38, 37, 51] He, Y. et al. [16] Yang, S. et al. [17] U of Bern [52] GoCARB [53] Bolanos et al. [54] MT-Diet

Segmentation
Graph-cut Graph-cut Local variation

Manual Mean-shift Pyramidal
Fast R-CNN Proposed method

method segmentation with Thresholding mean-shift

Identification

Accuracy
Avg: 65.4% Avg: 99% 63% Avg: 78% Avg: 87% 88.5% Avg: 75.13% Avg: 88.93%

Multiple foods count
Auto Manual Auto Not Require Manual Auto Auto Auto

Auto-level

Segmentation
None Semi-Auto Auto Not Require Semi-Auto Auto Auto Auto

Auto-level

Food Type
100 types Japanese 39 raw food 96 American Fast food,

Six major foods 24 foods
multiple 33 types of

cooked foods 1 cooked vegetable food items fixed portions dataset cooked food

Plate Type
Various shape

White round dish White round dish Variable White round dish White round dish
Various shapes Various shapes

and color and colors and colors

3.2 Related Work

Several researchers have attempted to develop camera-based solutions for auto-

mated caloric intake estimation, but almost all of them have considered only images

in the visible spectrum. Table 3.1 compares the recent works in this area in terms

of several important parameters. In summary, the following characteristics are ob-

served: i) segmentation algorithms that are semi-automatic, i.e., have some form

of guidance from the user, have a better accuracy than fully automatic algorithms,

ii) automatic or semi-automatic identification algorithms have excellent accuracy for

identifying raw uncooked food but have poor accuracy (63%) for cooked food, and

iii) the number of food items on a plate may not be computed automatically with

high accuracy from an image in the visible spectrum and requires manual guidance.

MT-Diet has the following advantages:

MT-Diet works regardless of the food plate shape or color: There are

two different types of attempts at food plate separation: a) assumption of a circular

plate [36, 38, 37, 53] allows the usage of contour detection using Hough transform

to identify the plate boundary. However, this approach can only remove background

and does not separate food from the plate, and b) assumption that the plate is white,

and food is non-white [13]. However, under these assumptions, distinction between
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certain food items such as rice from the plate can be difficult. Typically, the above

two methods work well for raw food but they have very poor accuracy for cooked

food (Table 3.1). Bolanos et al. [54] present a food segmentation approach based

on Faster R-CNN [? ], however they provide results only for coarse level bounding

boxes. This kind of segmentation can be useful to identify the type of food, but

obtaining information about the quantity of food can be problematic for which a

pixel-based ’semantic’ segmentation is desirable. Segmentation is an important step

in food recognition and an inaccurate segmentation can lead to inaccuracies in food

identification. In addition to the image in the visible spectrum, MT-Diet also captures

the infrared image of the food plate. This results in more accurate separation of the

food and the plate irrespective of the color or the shape, since the plate can be

assumed to be much cooler than hot cooked food.

MT-Diet improves food identification by using thermal images: Image

identification is typically performed using machine learning algorithms, which are

trained to recognize certain identifying features of a given food item. Commonly

used features include statistical measures of color in different domains such as Red

Green Blue (RGB) or Hue Saturation Value (HSV), texture, and edges. When a new

food item is obtained the extracted features are used to classify it to the correct class

of food items. Our preliminary data suggest that existing machine learning methods

with features extracted in the visible spectrum have high accuracy for identifying raw

food (around 97%), as also observed in previous research [36]. However, with cooked

food, the accuracy reduces significantly mostly due to two reasons: a) cooked food

may not have uniform color and texture, and b) different food types may by similar

in color when cooked (e.g., brown rice and chicken). MT-Diet improves identification

accuracy by increasing the feature dimension with color histogram information from

the infrared images. Preliminary data shows that incorporation of infrared color
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histogram improves the identification accuracy to nearly 100% for different colored

food and 74% for food with the same color.

MT-Diet maintains privacy of user data: MT-Diet does not need crowd-

sourcing to train its machine learning approach for segmentation of the food plate

or identification of food items. Hence it does not need to share personal food intake

information with the community and supports user privacy.
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3.3 Problem Statement

The problem statement is defined as follows:

Inputs:

a) A plate full of hot food,

b) color image from smartphone camera, and

c) thermal image from infrared camera.

Platform:

a) A smartphone interfaced with thermal camera, and

b) Reliable connection of the smartphone with a cloud server.

Assumptions:

a) Food temperature � Plate temperature,

b) Plate temperature > Background temperature,

c) The plate is not overflowing with food,

d) Offline food database is available, and

e) Users wait at least 5 min for food items to cool down before eating.

Outputs:

a) Food type in plate, and

b) Calories estimation into USDA website.

Definition

15



3.4 System Architecture

LG G2 smartphone and Seek thermal camera [55] are used to capture the food

color images and thermal images. LG G2 is interfaced with the Seek thermal cam-

era [55] through micro-USB as seen in Fig. 3.1. The thermal image is the gray scale

image whose intensity is directly proportional to a temperature degree. Also, we

implemented MT-Diet android application to demonstrate the pervasive food item

recognition system as seen in Fig. 3.2. This application has two buttons for initiating

the color image camera and the thermal camera. A user is asked to take two pictures

of the food plate. These two images are transferred to the cloud server. This server

starts three core tasks sequentially: a) image registration, b) food segmentation, and

c) food identification. After competition in server-side, the MT-Diet application will

provide users the food types by a spinner button. The users can click on the but-

ton for each food, which accesses to the USDA website that shows the nutritional

information for the food.

Data collection: we collected 80 frozen foods. The food were heated using a mi-

crowave as recommended by the manufacturer. The 80 foods consists of overall 33

different types as seen in Tab. 3.2.

3.5 Methodology

The system follows a pipeline which consists of three core components: i) image

registration, ii) food segmentation, and iii) food type identification. In the section,

we will describe each component′ method in detail.
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Table 3.2: Food Database With 33 Different Food Types.
ID Name

1 Cheese and Macaroni

2 Turkey and Mashed potato

3 Vegetable

4 Chocolate pudding

5 Fish stick

6 Chicken nugget

7 Chicken nugget and Rice

8 French fries

9 Chicken nugget and French fries

10 Swedish meatball with egg noodle

11 Mashed Potato

12 Pork and Turkey patty with cheese sauce

13 Corn

14 Fried chicken with white source

15 Gravy meat Loaf

16 Fettucine alfredo

17 Turkey with bread

18 Pea

19 Spaghetti with meatballs

20 Meatballs

21 Tender chicken patty

22 Chocolate brownie

23 Chicken

24 Port lib patty with BBQ sauce

25 Apple crumble

26 Beef enchilada with chili and cheese sauce

27 Authentic refried bean

28 Cocada pudding

29 Chicken with BBQ sauce

30 Pork Rib and Mashed potato

31 Green bean

32 White meat chicken
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Figure 3.2: MT-Diet Android Application.

3.5.1 Image Registration

A perspective projective transformation (Homography), which requires at least

four matching feature pairs between two images, is the popular technique for the

image registration process. Since the Homography works under an assumption that

four corresponding feature point pairs between two images are correctly identified,

the feature matching process is very critical for successful image registration. Initial

research has presented a manual process for selecting and matching these four feature

point pairs but this requires a high user-intervention. An alternative is to extract

many feature point candidates and match these features using RANSAC [5], which

leads to an automatic image registration process. In this method, the various feature

points are matched by taking into account the texture of the neighbors for each of

these points. However, since the intensity of the various pixels in images of different

spectra are quite different, it is impossible to match the feature points based on the
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Figure 3.3: Image Registration Overview.

extracted texture information from these images. To circumvent this problem, several

researchers have presented alternative techniques that rely on finding objects in the

two images with a definite shape such as circles or lines [43] or a human body [56].

However, it is not feasible to apply such techniques in this project because food items

on a plate of cooked food may not have items of any definite shape. Thus, in this

section, we introduce my novel image registration approach between thermal food

plate image and color food plate image. Intuitively, this approach is to align Y-axis

using an existing image rectification technique at first and X-axis using a presented

translation as seen in Fig. 3.3.

Y-axis alignment (Image Rectification)

The color and thermal images are transformed such that: a) for both color and

thermal all epipolar lines are parallel to the horizontal axis, and b) corresponding

feature points in both the images have same y co-ordinate as seen in Fig. 3.5. Image

rectification consists of: a) camera calibration and b) planar rectification. Camera

calibration is a one-time pre-processing task since the relative locations of the thermal
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Algorithm 1 Image Registration Algorithm
Input: camera Parameters, Color, Thermal

Output: Registered color, Registered thermal, Registered contour color

#Y-axis alignment

1: Rectified color, Rectified thermal ← rectify(camera Parameters, Color, Thermal)

#Pre-processing for X-axis alignment

2: Color contour ← gPb-owt-ucm(color)

3: HE thermal ← Histogram Equalization(thermal)

4: Thermal contour ← gPb-owt-ucm(HE thermal)

5: Thin thermal contour ← Zhang Suen thin(Thermal contour)

6: Rectified color contour, Rectified thermal contour ← rectify(camera Parameters, thin color contour,

thin thermal contour)

#Thermal image process for X-axis alignment

7: FAST features candidate ← find FAST(Rectified thermal)

8: FAST features locations ← filtering(FAST features candidate, Rectified thermal contour)

9: FAST foods, FAST non foods ← Otsu(FAST features locations, Rectified thermal)

#Color image process for X-axis alignment

10: Plate candidates ← find Plate Candidate(Rectified color contour)

#Find for X-axis translate parameter

11: for i ← 1 to size(Plate Candidates) do

12: N FeatureMatching, X translateValue ← Overlap(Plate Candidates[i], FAST foods)

13: end for

14: Translate Para ← X translateValue[ max index(N FeatureMatching) ]

#Clarify output

15: Registered color ← Rectified color

16: Registered contour color ← Rectified color contour

17: Registered thermal ← translate(Rectified thermal, Translate Para)

camera and the embedded smartphone camera are not expected to change during

usage. In the other words, camera calibration is done in order to obtain the intrinsic

and extrinsic parameters of the camera. These parameters can then be fed to the

planar rectification algorithm. For the camera calibration process, the two cameras

are used to take images of the same setup. The setup is such that edge features can be

easily determined from the two images. Once the edge features are determined, the

calibration algorithm proposed by Zhang et al. [57] is used. However, the problem
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Figure 3.4: Top Two Images Are The Camera Calibration Tool By Taking Color
Camera (left) And Thermal Camera (right). Down Two Images Are The Circle
Detection Output Of Top Images.

is that the setup of a checkerboard typically used for camera calibration does not

apply for thermal cameras because the corner edges in the checkerboard are not

visible due to the lack of difference in temperatures. Hence, we use a setup that

emulates the checkerboard using coins. The centers of the coins are utilized as feature

points instead of the corner edge in the checkerboard. The setup is then cooled in a

refrigerator. The resulting thermal image as seen in Fig. 3.4, is used to obtain the

edges of the circle using Hough circle detection [58]. As seen in Fig. 3.5, intrinsic and

extrinsic parameters obtained from the camera calibration process were utilized for

rectification.
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Figure 3.5: Rectification Processing Using Intrinsic And Extrinsic Parameters Of
Camera.

Figure 3.6: FAST Feature Histogram.
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Figure 3.7: Food FAST Feature Identification Based On Thermal Image. Left Is All
FAST Features Obtaining From Rectified Thermal Image. Center Is FAST Features
On Rectified Contour Image. Right Is Classified FAST Features. Red Points In Right
Is Non-food FAST Features And Green Points Is Food FAST Features.

X-axis alignment (Translation)

A highly accurate contour detection for both color and thermal images is required

for X-axis alignment pre-processing task. To achieve the contour image, we use a

combination of three algorithms, Global Probability of Boundary (gPb), Oriented

Watershed Transform (OWT ), and Ultra-metric Contour Map (UCM) as suggested

by Arbelaez et al. [59]. After performing the watershed algorithm to the contour

image, food, plate and background segments in the image can be assigned different

labels. However, we found that the contour detection (gPb-owt-ucm [59]) is not able

to obtain accurate boundaries in thermal images specially between the plate and the

background. This is possibly because the temperature difference between the plate

and the background may not be considerable when compared to the temperature

difference with food portions which results in high pixel intensity for food segments

but not for the plate or background segments. However, this boundary information

is essential for proper X-axis alignment.

Thus, we first perform histogram equalization and then do contour detection (line

2-3 in Algorithm 1 ). Next, we find feature points in thermal image using FAST

algorithm [60]. The FAST feature is a neighbor pixel intensity based feature. In this
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step (line 7-9 in Algorithm 1), two processes were performed as seen in Fig. 3.7: 1)

Applying FAST feature detection to histogram equalized thermal image, 2) Checking

whether the detected FAST feature points are on the boundary of thermal contour

image or not. In order to perform this step in a time efficient manner, contour image

thinning is required. This is because the execution time increases with the number of

thermal feature points. Hence, Zhang-Suen thinning [61] was performed before this

step (line 4 in Algorithm 1). The pixels in the thermal image can be roughly clustered

as food or non-food features candidates. For this purpose, the Otsu′s method [62]

was utilized. First of all, we draw a histogram of the intensity for all feature locations

in the thermal image. Then, a line-graph based on the values of this histogram was

drawn as seen in Fig. 3.6. The minima values of this graph become the candidates for

the thresholding value (θ). Among these candidates, the value with the highest inter-

class variable is selected as the thresholding value. The formula for the inter-class

variable is given by the Equation 3.1. In the equation, Wp is the probability of plate,

Wp =
∑θ−1

i=0 H(i), where H is the histogram intensity, and Wf is the probability of

food, Wf =
∑255

i=θH(i). µp is the plate class mean, µp =
∑θ−1

i=0 i
H(i)
Wp

, and µf is the

food class mean, µp =
∑255

i=θ i
H(i)
Wf

.

V ariable = WpWf (µp − µf )2 (3.1)

Thus, by this procedure, we have identified the FAST features that cluster the food

pixels and plate pixels separately using the thermal image as seen in Fig. 3.7.

The next step in X-axis translation is to match the portion of the image that has

the food between thermal and color images. For the color image, the largest convex

hull (line 10 in Algorithm 1) obtained within the image based contour segmentation

results is selected as the plate portion as seen in Fig. 3.8. This is based on the justified

assumption that food does not overflow the plate.
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Figure 3.8: Plate Segmentation Identification From Rectified Contour Color Image.

Figure 3.9: Image Registration Output. Left Is Contour Image Based Output And
Right Is Color Image Based Output.

Finally, the plate portion obtained from the color image was overlapped to the

FAST features for food obtained from thermal image (line 11-14 in Algorithm 1). We

then compute the pixel by pixel overlap for the neighborhood of pixels related to the

plate from both the images. Hence, we obtain the pixel by pixel correspondence for

the color and thermal images as seen in Fig. 3.9.
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3.5.2 Food Segmentation

The process of food segmentation is defined as follows:

Food Segmentation is a process that takes the following inputs:

a) Registered color image of served hot food and food plate in a

background

b) Registered thermal image of served hot food and food plate in a

background.

It assumes that

a) Background temperature < Food plate temperature

b) Food plate temperature � Food temperature.

It outputs the following:

a) Number of different food items on plate

b) Cropped region of each unique food item.

Definition

The main goal for the food segmentation method is to enhance the segmentation

accuracy by extracting and merging knowledge obtained from cameras in different

spectra. To be specific, food items that have the same color as the plate cannot be

distinguished well using color images alone. Adding knowledge from thermal images

helps in these cases due to the difference in temperature between the food and the

plate. If, however, the food items are not sufficiently heated then the segmentation

done using thermal images can be enhanced using the information from color images.

The inputs for this method are the image registration output such as registered

color food image, registered contour image obtained from color food image, and reg-
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istered thermal food image. The outputs of this method is an image with only food

pixels, excluding the background and the plate. Also, the method consists of three

steps: i) Hierarchical Image Segmentation (HIS) for the color food image, ii) Dynamic

Thermal Thresholding (DTT) for the thermal food image, and iii) Region of Foods

(ROF) detection.

Hierarchical Image Segmentation (HIS)

Using the registered color contour image that was obtained from the image registra-

tion, the watershed algorithm segments the registered color image based on identified

contours and provides different labels to each segment as proposed by Arbelaez et

al. [59].

Dynamic Thermal Thresholding (DTT)

In practice all cooked food may not be heated to the same temperature. Hence, in the

gray scale thermal image, the intensity of food plate and background will vary from

image to image, but there is a consistent trend that the food temperature is higher

than food plate temperature and the plate temperature is higher than background

temperature. Therefore, the DTT algorithm was developed to utilize this observation

and segment food items from the plate and background.

The first step of DTT is to seek the temperature of the background pixels. In the

experiments, we assume that the background is cooler than the cooked food and the

food plate. This assumption is reasonable since no restaurant table will be as hot as

the plate or the food. This enables a simple threshold based elimination. Based on

the properties of the thermal camera, intensity value less than 150 was considered

as background. In Equation (3.2), the thermal image with background cancellation
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(rBP ) given by Equation 3.2.

rBP (i, j) =


0, if ThImg(i, j) < 150

ThImg(i, j), else

(3.2)

The next step in DTT is to find the plate temperature. In the background elim-

inated image, we search for pixels with the highest difference in gray scale intensity

from its neighbors. Hence for each pixel rBP (i, j), 3 × 3 window (W (i, j)) is utilized

as shown in Equation 3.3 to generate a differential matrix (diff mat(i, j)) as shown

in Equation 3.3. The members of the diff mat means the difference between maxi-

mum and minimum element in each W . In diff mat(i, j) if at least one member of

the W (i, j) window is a background pixel, then this difference is assigned to zero.

W (i, j) =

 rBP (i-1 , j-1) rBP (i-1 , j) rBP (i-1 , j+1)

rBP (i , j-1) rBP (i , j) rBP (i , j+1)

rBP (i+1 , j-1) rBP (i+1 , j) rBP (i+1 , j+1)


diff mat(i, j) =


0, if Min(W (i, j)) = 0

Max(W (i, j)) −Min(W (i, j)), else

(3.3)

The (x, y) position with the maximum value in diff mat represents a window

W (x, y) that has both food portions and plate. This window W (x, y) was utilized to

compute a threshold gray scale intensity value. Any pixel with greater intensity than

this threshold can be classified as food, while any other pixel as plate. The threshold

(Tp) is considered to be the median in W (x, y) as seen in Equation 3.4.

Tp = median(W (x, y) ) (3.4)

Although DTT successfully removes the plate and background pixels, it does not

segment individual food items. Further, the result of DTT thresholding has salt-

and-pepper noises and may also remove certain food pixels, which are not heated

28



Calibration 
+ HIS + DTT 

DTT HIS 

1 
2 

3 

ROF Input Case 1 

4 

Food_Plate[] BG[] 

Match food pixels 
from DTT in HIS 

3, 4 1, 2 

Case 2 Plate 
Segmentation 

Food[] BG[] 
3 1, 2 

Plate[] 
4 

Case 3 Include all BG[i] ∈ 
Plate[] in Food[] 

Food[] BG[] 
2, 3 1 

Plate[] 
4 

8-connected 
labelling of DTT 

DTT HIS 

1 
2 

3 

4 5  6 

7 

Case 4 

Include all D[i] in 
Food[] if  

0.75*D[i] ∈ Plate[] 

D[] 

5,6,7 

Food[] BG[] 
2, 3, 6 1 

Plate[] 
4 

2 

3 

6 

Food 
Segmentation 

Output 

Food plate 
Food item 
lost in DTT 

Food item 
lost in HIS 

Figure 3.10: The ROF Algorithm Showing Four Cases That Might Cause Errors
And Their Corresponding Solutions.

to sufficiently high temperatures. Morphology techniques such as opening and clos-

ing [63] was performed to remove the salt-and-pepper noises, but it is hard to recover

removed food pixels. Using the Region of Foods (ROF ), we combine the color and

thermal images to reduce noise and also accurately identify regions of food in the

image.

Region of Foods (ROF)

Although the DTT method is successful in removing background and majority of food

plate, four problems exist which are solved using the presented region of food (ROF)

detection as shown in Fig. 3.10.
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Case 1: Missing labels - The HIS generates only segments, does not specify

whether it is a food portion or not.

Solution: We combine the HIS with the DTT, which has already separated the food

portions from the plate and the background based on thermal threshold. The HIS

and the DTT segmentation portions are compared with respect to pixel indexes. If

the indexes of each HIS segmentation portion match with indexes of food portion as

identified in DTT, the HIS segmentation portion becomes candidates of ROF. This

step outputs background segments and those that are either food or plate (Case 1 in

Fig. 3.10).

Case 2 Wrong labeling - Plate portions near food items get heated enough to

be included in food segment outputs of the DTT algorithm. In such a scenario, in

the solution for Case 1, the entire HIS segmentation, which corresponds to the plate

area, may be wrongly classified as food (Fig. 3.11).

Solution: Case 1 has isolated the background portion. We scan the edge image

starting from the four corner faces of the image to identify four corner pixels of plate.

If three or more pixels amongst these have the same label numbers as assigned by the

HIS algorithm, the corresponding HIS segment is considered as plate. The assumption

is that the plate is not overflowing with food. The output of this case is segments

which are only food items, segments which have majority of plate, and background

segment (Case 2 in Fig. 3.10).

Case 3: Missing food items in Thermal image - Food portions which are not

sufficiently heated may be removed in the thermal image after the execution of the

DTT algorithm and hence may not be detected by the solution of Case 1 as shown

in Fig. 3.12.

Solution: To solve this problem, we utilize the assumption that all food portions are

contained within the plate. For each segmented portion of the HIS algorithm, we
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Figure 3.11: Case 2: Elimination Of Plate Portions That Are Heated To Nearly
Similar Temperatures As Food.

Figure 3.12: Case 3: Recovery Of Food Portions That Are Not Sufficiently Heated.

compute the median pixel. If the median pixel is within the plate but not included in

the candidate ROF regions as derived from Case 1, then we consider the segmented

portion as a candidate ROF.

Case 4: Missing food items in color image - Food items, which have the same

color as the plate are eliminated in the HIS image segmentation method as shown in

Fig. 3.13.

Solution: This problem can be solved using the thermal image, because the even if

the food color is the same as the plate, in the thermal image, the food temperature

will be higher than the plate. To retrieve such food portions, each segmented portion
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Figure 3.13: Case 4: Recovery Of Food Portions With The Same Color As The
Plate.

Figure 3.14: Example Of ROF Output With A Red Bounding Box: There Are Four
Types Of Foods Such As Vegetable, Pork Lib Patty With BBQ Sauce, Chocolate
Brownie, And Mashed Potato In The Rectangle.

from DTT output is labeled using connected component labeling[64]. If over 75% of

the connected component from DTT output is considered as plate portion in HIS,

the DTT labeled portion is considered as the candidates of ROF. As a result of the

four above-mentioned solutions, we obtain the candidates of ROF, however these

candidates still have noises because HIS is an approximate segmentation method. To

get accurate food portions, we use the Grabcut algorithm [45]. Given a selection of

potential object and background, Grabcut provides more accurate object boundary

based on the color distributions of the object and background. Typically, Grabcut

is used in visual image based food segmentation in a semi-automatic setting, where
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the user is asked to select potential food portions also noted as region of interest.

MT-Diet considers ROFs as region of interest in Grabcut and hence eliminates the

need for user intervention.

3.5.3 Food Identification

The process of food identification is defined as follows:

Food identification is a process that takes the following an input:

- A food portion image obtained from food segmentation.

It performs

a) feature extraction from the food image with features such as RGB

color image, Gabor texture data, and histogram of oriented gradients,

b) reduce the number of features if needed using principal component

analysis (PCA) and kernel principal component analysis (KPCA), and

b) Support Vector Machines based food classification.

It outputs:

- type of food items on the plate.

Definition

The food identification process takes the ROF output from the food segmentation

process and outputs the food type by matching the image with a food image database.

The first step in the food identification process is feature extraction.

Feature Extraction

For feature extraction, three features extraction methods are performed: color, tex-

ture and histogram of oriented gradients [47] from color and thermal images.
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First of all, RGB histogram is applied to extract color feature. In RGB image,

each color channel (Red, Blue, Green) has an intensity within a range from 0 to 255.

We generate 32 histogram bins of each color channel so that the dimension of the

color feature vector is 32768 (32× 32× 32).

The Gabor filter method is employed to extract the texture feature. The seg-

mented ROF portions should be resized to a standard size, since different image sizes

affect the texture feature vector size. Therefore, the ROF s were resized to a 400×400

image.

As shown in [65], we extract the variations in different frequencies and orientations

in the images. The size of the texture feature vector is the size of each food image

(400 × 400) multiplied by the number of scales and orientations (5 × 8) divided by

the row and column down-sampling factors (4 × 4). Therefore, the dimension of a

texture feature vector is 400× 400× 5× 8 / (4× 4) = 400000.

Finally, we extract the histogram of oriented gradients (HOG) feature [47]. The

cropped and resized images were utilized again to decrease an impact of the black

background feature. Then, each food image is divided into 16 windows and oriented

gradients for each of the windows are calculated using the histogram of the 36 bins.

Therefore, the size of HOG feature vector is 16× 36 = 576.

Feature Fusion

The identification process requires a database of features of different types of food.

The SVM is used to learn how to differentiate between different foods types in the

database. After the learning phase, the SVM is provided with the feature vector of an

unregistered (not in the training database) food image. The SVM then attempts to

classify the given input feature vector into a particular class using different distance

functions known as the kernel. Feature selection is an important trade-off between
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identification accuracy and response time of the dietary feedback.

Usage of a single feature such as either RGB or Gabor texture or HOG, may be

computationally efficient, however, it has a drawback that the accuracy is greatly

influenced by the nature of the database. For example, when the color feature is em-

ployed to classify, it is hard to classify foods with the same color like corn and cheese

macaroni. To overcome such inaccuracies, one can fuse several features as shown in

Fig. 3.15. However, feature size drastically increases resulting in higher computational

time, and increasing response time of MT-Diet. Further a simple concatenation of

the color, texture and the HOG feature vector results in high feature size (433344)

hence increases the SVM execution time (Fig. 3.15). Therefore, we employ the di-

mensionality reduction techniques such as Principal Component Analysis (PCA) [66]

and PCA with Gaussian Kernel Principal Component Analysis (KPCA) [67]. In our

first feature reduction attempt, we consider the concatenated feature vector and per-

form PCA and KPCA, and select the top 200 Eigen vectors from the feature matrix

(Fig. 3.15). Using this Eigen vector, we recreate the feature vector. Therefore, the

feature dimension reduces to 200. The accuracy of the method, however, actually

does not increase compared to the accuracy by using single feature vector because

the color feature vector dominates the other feature vectors. In the second method,

PCA and KPCA are applied separately to each feature before concatenating the fea-

ture vectors. This not only decreases feature vector size but also increase accuracy.

The size of each feature is reduced to 100 and the whole feature vector size is 300

(Fig. 3.15).

3.6 Evaluations

We evaluate MT-Diet food segmentation and identification method using experi-

ments on cooked meals. Each food plate can have either single or multiple food items.
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Figure 3.15: Three Feature Fusion Methods.

The shape of the plates can be different based on the number of food items available.

Table 3.2 shows the food database with type of food and quantity of each food item

in the plate type is shown. The database consists of ROF images from all 80 food

plates. The total size of the database is 244 different images and Mashed potato has

the largest number of appearances since it is the most popular in frozen food plates.

To implement the SVM classifier, the libsvm[68] API was utilized. The software

supports not only kernels such as Polynomial (Poly), Radial Basis Function (RBF),

and Sigmoid but also k-fold cross validation which helps to ensure the statistical

reliability of the results. In our experiments, all kernels were evaluated with 5-fold

cross validation with the three types of individual features and three feature fusion

methods.

There are three important metrics for evaluating MT-Diet: a) accuracy for food

segmentation with respect to food portions identified by human judgment, b) accuracy

of food identification with respect to known items on the food plate, c) execution time

of food segmentation and food identification process.
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Figure 3.16: Segmented Food Images: 20 Different Type Of The Integrated Version.
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3.6.1 Food Segmentation

To evaluate, the segmentation method, we focused on two issues: how well the

background and plate pixels were removed and the accuracy of the food item count.

An accurate output from food segmentation is critical for food identification because

noises in segmented portions can lead to corrupted food features and hence reduce

food identification accuracy. Fig. 3.16 displays the segmentation method output for

20 different frozen foods. A mathematical evaluation of accuracy is difficult since the

ground truth itself is subjective in that it relies on the segmentation skills of a human.

However, visual inspection of the images show that there are only a minimal number

of pixels which belong to plate or background.

We also evaluated how well multiple foods were separated by counting the number

of foods in an image and matching it with the number of food items counted by a

human observer. In Fig. 3.17, X axis is the food image ID number and Y axis is

the number of foods in the ID image. The bold line is for human counting and the

dashed line is the total number of food items for the presented method. 8-connected

labeling[64] was performed after the food segmentation processing. As a result, each

food portion as well as the background have the different label numbers. Therefore,

the total number of foods in the image is the number of the different label numbers

without background label number (the number of the different labels - 1).

According to Fig. 3.17, the total number of food items identified by a human

observer in all 80 food plates was 244, however the total number of food items distin-

guished by the method is 210. In 14 out of the 80 food plates at least one item was

miscounted.
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Figure 3.17: Compare The Number Of Foods Between Human Visual And Pre-
sented Method.

3.6.2 Food Identification

In the section, the food identification result will be discussed. In Table 3.3, we

provide accuracy results using three features and three different ways to fuse them.

The features used were: Gabor (texture), Histogram of Oriented Gradients (HOG),

and RGB histogram. The first column (Feature) lists the type and the combination of

the features used. The second column (Fusion Method) defines the method of fusion

utilized. If only one feature was used, the fusion method is labeled as NTH since

no fusion takes place. For methods that use multiple features, a separation is made

on whether the features were concatenated or used separately. The next column (D
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· R Method) defines the dimensionality reduction technique utilized which is either

NTH, PCA or KPCA. The next four columns list the accuracies for the various

SVM kernels. The next two columns list the statistical results of average and max

accuracies. The execution times for all of the kernel types are in the next four columns

followed by the average execution time. The last column (Feature Size) lists the total

size of the features.

As seen from Table 3.3, the color feature (RGB) with KPCA was the best accuracy

(88.11%) among the single features: HOG, Gabor, and RGB. And the accuracy of

the two features fusion (88.93%) is better than the accuracy using single or all three

feature fusion. Also, the Separate method is the best among the three fusion methods

and KPCA has higher accuracy than PCA. Therefore, the fusion of color and texture

or the fusion of color and HOG with Separate, KPCA, and RBF kernel has the

highest accuracy (88.93%) in Table 3.3.

3.6.3 Execution Time

In our food segmentation approach, there are four main tasks: DTT, HIS, ROF,

and Grabcut. To analyze the execution time of these tasks, made a statistical execu-

tion time table, Table 3.4. According to the table, the execution time of HIS (83.08%)

and Grabcut (12.78%) occupied 95.86% of the whole execution time. Also, since the

Grabcut was performed to all segmented food images in a raw image, the Grabcut

execution time was variable depending on the number of segmented image.

To evaluate the food identification execution time, there are two main tasks: Di-

mensionality reduction and SVM training depending on the kernel types. In Table 3.3,

a sum of the execution time for these two tasks by the kernel types was displayed.

According to the table, the average execution time of the RBF kernel is the highest

and the average execution time for a linear SVM is the lowest.
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Table 3.3: Accuracy And Execution Time Of Food Identification.

Feature
Fusion D · R Accuracy (%) Execution Time (Second) Feature

Method Method Linear Poly RBF Sigmoid Ave Max Linear Poly RBF Sigmoid Avg Size

Gabor

NTH

NTH 37.30 17.62 17.62 22.54 23.77 37.30 355.47 368.66 382.51 368.70 368.83 400000

PCA 39.75 28.28 17.62 20.90 26.64 39.75 29.94 30.04 30.13 30.16 30.07 100

KPCA 16.80 36.89 45.08 42.62 35.35 45.08 4.87 5.00 5.13 5.09 5.02 100

Average 31.28 27.60 26.77 28.67 28.585 40.71 130.09 134.56 139.26 134.65 13.64

Best (KPCA, RBF) 39.75 36.89 45.08 42.62 35.35 45.08 4.87 5.00 5.13 5.09 5.02

HOG

NTH

NTH 50.41 61.48 62.30 58.61 58.20 62.30 0.27 0.38 0.47 0.64 0.44 576

PCA 49.18 60.66 63.11 59.84 58.20 63.11 0.10 0.28 0.35 0.31 0.26 100

KPCA 32.79 57.38 56.97 55.33 50.62 57.38 0.08 0.26 0.33 0.31 0.24 100

Average 44.13 59.84 60.79 57.93 55.67 60.93 0.15 0.31 0.38 0.42 0.32

Best (PCA, RBF) 50.41 61.48 63.11 59.84 58.2 63.11 0.08 0.26 0.33 0.31 0.24

RGB

NTH

NTH 77.46 77.87 86.89 87.70 82.48 87.70 1.74 2.14 2.21 2.14 2.06 32768

PCA 77.46 80.33 86.46 87.30 83.89 87.30 1.45 1.85 1.67 1.68 1.66 100

KPCA 56.15 81.15 87.70 88.11 78.28 88.11 0.33 0.52 0.56 0.57 0.49 100

Average 70.36 79.78 87.02 87.70 81.22 87.70 1.17 1.51 1.48 1.46 1.40

Best (KPCA, Sigmoid) 77.46 81.15 87.70 88.11 82.89 88.11 0.33 0.52 0.56 0.57 0.49

HOG

&

Gabor

Concatenate

NTH 37.30 17.62 17.62 22.54 23.77 37.30 354.79 368.31 382.24 368.29 368.41 400576

PCA 38.11 20.90 17.62 22.95 24.90 38.11 30.60 30.67 30.75 30.74 30.69 200

KPCA 16.80 36.48 43.85 43.44 35.14 43.85 5.99 6.05 6.19 6.18 6.10 200

Separate
PCA 39.75 28.28 17.62 20.90 26.64 39.75 30.02 30.14 30.21 30.26 30.16 200

KPCA 33.61 59.02 59.43 58.20 52.57 59.43 4.91 5.10 5.13 5.16 5.07 200

Average 33.11 32.46 31.23 33.61 32.60 43.69 85.26 88.05 90.90 88.13 88.09

Best (KPCA, RBF, Separate) 39.75 59.02 59.43 58.20 52.57 59.43 4.91 5.10 5.13 5.16 5.07

HOG

&

RGB

Concatenate

NTH 83.20 83.61 84.02 84.02 83.71 84.02 2.10 2.26 2.66 2.26 2.32 33344

PCA 84.02 83.20 84.43 84.02 83.92 84.43 1.49 1.64 1.71 1.73 1.65 200

KPCA 35.25 75.82 79.92 80.33 67.83 80.33 0.51 0.64 0.74 0.74 0.66 200

Separate
PCA 82.38 82.79 84.02 83.20 83.10 84.02 1.53 1.66 1.78 1.71 1.67 200

KPCA 77.46 85.25 88.93 87.30 84.74 88.93 0.38 0.50 0.70 0.58 0.54 200

Average 72.46 82.13 84.26 83.77 80.66 84.35 1.20 1.34 1.52 1.40 1.37

Best (KPCA, RBF, Separate) 84.02 85.25 88.93 87.30 84.74 88.93 0.38 0.50 0.70 0.58 0.54

RGB

&

Gabor

Concatenate

NTH 37.30 17.62 17.62 22.54 23.77 37.30 357.22 370.56 384.53 370.62 370.73 432768

PCA 38.11 20.90 17.62 22.95 24.90 38.11 32.35 32.48 32.62 32.51 32.49 200

KPCA 16.80 36.48 43.85 43.44 35.14 43.85 6.23 6.36 6.38 6.40 6.34 200

Separate
PCA 9.75 28.28 17.62 20.90 19.14 28.28 31.37 31.52 31.56 31.56 31.50 200

KPCA 56.97 78.69 88.93 88.52 78.28 88.93 5.17 5.25 5.62 5.39 5.36 200

Average 31.79 36.39 37.13 39.67 36.24 47.29 86.47 89.23 92.14 89.29 89.28

Best (KPCA, RBF, Separate) 56.97 78.69 88.93 88.52 78.28 88.93 5.17 5.25 5.62 5.39 5.36

All

Concatenate

NTH 37.30 17.62 17.62 22.54 23.77 37.30 359.56 375.32 387.10 373.19 373.79 433344

PCA 38.11 20.90 17.62 22.95 24.90 38.11 32.39 32.46 32.57 32.55 32.49 200

KPCA 16.80 36.48 43.85 43.44 35.14 43.85 6.31 6.34 6.56 6.61 6.45 200

Separate
PCA 39.75 28.28 17.62 20.90 26.64 39.75 31.45 31.55 31.59 31.59 31.54 300

KPCA 78.28 85.25 87.70 87.30 84.63 87.70 5.22 5.30 5.43 5.37 5.33 300

Average 42.05 37.71 36.88 39.43 39.02 49.34 86.99 90.19 92.65 89.86 89.92

Best (KPCA, RBF, Separate) 78.28 85.25 87.70 87.30 84.63 87.70 5.22 5.30 5.43 5.37 5.33
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Table 3.4: Execution Time Of Food Segmentation Based On 80 Frozen Foods.
Min Median Max Sum Avg STD

HIS 89.08 s 92.89 s 97.50 s 7403.90 s 92.55 s 1.66

DTT 2.83 s 3.13 s 3.90 s 256.12 s 3.20 s 0.24

ROF 0.39 s 0.78 s 1.01 s 62.77 s 0.78 s 0.09

Grabcut 2.40 s 14.24 s 41.15 s 1138.97 s 13.48 s 7.63

Other 0.41 s 0.55 s 1.44 s 50.03 s 0.63 s 0.22

Total 95.51 s 111.59 s 145.00 s 8911.79 s 111.64 s 7.71

Performing KPCA was better than PCA with respect to the dimensionality re-

duction execution time. Also, the execution time of PCA and KPCA increases with

respect to the feature vector size. For example, when all features were used as the

input to the Dimensionality Reduction task, the execution time was the highest com-

pared to the single features or two fusion features. Also, when HOG & RGB features

were used, the execution time was lowest among two fusion features because the

feature size of HOG & RGB feature was the smallest.

The dimensionality reduction, however, was not critical in whole food identifica-

tion execution time. In the other words, the SVM execution time dominated the

execution time for food identification. When we looked at any execution time in

which Dimensionality Reduction is NTH compared to PCA and KPCA, the exe-

cution time was much more. Therefore, Dimensionality Reduction helps to not only

improve accuracy but also to reduce the execution time.

The MT-Diet mobile application requires the user to take two pictures of the food

plate: a) color and b) thermal. Upon clicking these two pictures, three operations

are required to be performed: i) transferring of image data to the cloud server (which

has Intel i7 processor), ii) computation of food segmentation, and iii) computation of

food identification. The most computationally expensive operation in MT-Diet is the

food segmentation operation taking almost 100s. The data transfer takes 5s while

the food identification method takes around 5s as shown in Table 3.3. Hence, the
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Figure 3.18: Segmentation, Identification, And Diet Recommendation.

overall response time of the MT-Diet application or the time between a user taking

a picture and getting back the food type information is 110s.

3.7 Discussion and Future Works

3.7.1 Usability of MT-Diet for diet monitoring

MT-Diet requires images of food plate in the thermal and visual spectrum. Smart

watches in the pervasive computing domain already interface cameras in wristbands.

Thermal cameras can be interfaced easily through micro-usb ports as shown in Fig. 3.2

or even embedded in the hardware. Image capture can be invoked by recognizing

sequence of hand gestures.

Once the images are captured, the smartphone can be used as a hub for data

communication and computation. The smartphone may choose to implement food

segmentation and identification or may choose to offload the implementation to the

cloud server. To implement in the cloud server, the smartphone has to send both the

thermal and visual image to the server. On the other hand, for offline implementation

in the smartphone, it has to download a learned classification machine, trained using

a sample database.

43



The result of the identification procedure is a set of labeled image areas each

corresponding to a specific food item on the plate. The output can be used for several

purposes including calorie intake estimation, balanced diet evaluation, or checking

conformity to a specific type of diet. One of the several possible outputs is discussed

next.

3.7.2 Balanced diet recommendation

The output of the food identification process is a set of image areas with identified

food items. We assume that the plate has uniform depth and hence a ratio of the

surface area multiplied by the density of the food items (obtained from USDA website)

gives the ratio of weight of different food items. We then normalize the amount of

each food item on the plate by considering the total food weight to be 100 grams. For

each food item, we derive the amount of carbohydrates, lipids, fibers, and cholesterol

content for the normalized weight using the statistics per 100 gram of each food item

from USDA. For a balanced diet the carbohydrates, lipids, fibers, and cholesterol must

have equal weights in the food plate. A balanced diet should have each component

at 25%. Given a food plate MT-Diet shows how far it is from a balanced diet in the

form of a spider chart (Fig. 3.18) and what component of the diet should be changed

in order to make it a balanced diet. These assumption although intuitive need to be

experimentally verified in the future.

3.7.3 Limitations

In this section the limitations will be described with respect to: a) usage and b)

approach.

In practical usage, MT-Diet depends on the assumption that there is a discernible

temperature difference between the food and non-food portions in the images cap-

44



tured. In most cases this is a reasonable assumption, however, if MT-Diet were to

be used with non-hot food items then no performance guarantees can be provided.

Another assumption made is that the plate is not overflowing with food. This as-

sumption was necessary since overflowing food interferes with the ability to capture

the surrounding portions of the plate which is required for automatic segmentation.

The approach limitation is regarding food segmentation which will be discussed

in terms of three factors: i) color information, ii) thermal information, and iii) fusion.

Color: The contour detection method (gPb-owt-ucm [59]) may not identify the

boundary between plate and background if the factors for deciding the boundary

such as color and texture are very similar. Since the presented registration utilizes

the plate location for X-axis translation, the successful contour detection between

plate and background has to be guaranteed.

Thermal: MT-Diet improves the performance of cooked food item recognition using

thermal information. The underlying assumption is that the food temperature is

higher as compared to the temperature of plate and background. However, if the food

temperature is the similar to the plate or background, it can result in low performance.

Since only cooked foods were considered for our experiments, this possibility was not

explored.

Fusion: We present a fusion method for thermal and color to improve the perfor-

mance of food segmentation by exploring four possible cases for ROF. We assumed

that each of these cases occurs independently. In other words, if two cases occur

simultaneously, the successful performance for the food segmentation cannot be guar-

anteed.
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Chapter 4

EATING ACTIVITY RECOGNITION

Dietary intervention in conjunction with physical activity and socio-economic envi-

ronment changes is considered to be one of the significant factors in prevention of such

chronic diseases, especially problems related to overweight and obesity [28]. Dietary

interventions concentrate on two important aspects: a) the type and amount of food

intake, and b) eating behavior, i.e., time, frequency, and speed of eating [28]. There

have been significant efforts in designing interventions that consider various aspects

of nutritional intake such as number and type of calories. However, such interventions

often have financial impacts, especially on low-income populations [29, 30]. On the

other hand, interventions that consider speed, time, duration and frequency of eating

are behavioral in nature and are thus more affordable.

The presence of various chronic diseases such as type 2 diabetes, eating disorders

such as binge eating or night eating syndrome, or other metabolic syndromes has been

shown to be associated with the speed, duration, frequency and times of meals [69].

Faster speed of eating by itself has been identified as a cardiovascular risk factor.

Individuals with type 2 diabetes who engaged in faster eating were found to have

higher glycated hemoglobin levels (HbA1c) [70] and weight gain [71]. Moreover,

interventions that attempted to reduce speed of eating resulted in improvement of

postprandial hormonal responses in adults and adolescents [72].

The administration of such interventions can be facilitated by continuous mon-

itoring of eating actions. Eating is a complex action consisting of three different

operations: a) picking food using a utensil or free hand, b) movement from picking to

eating, and c) eating that is frequently interleaved by other unrelated hand actions
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Figure 4.1: Accelerometer Data From A User For Multiple Eating Actions Show
No Trend To Identify Pauses Or Arm Movement From Plate To Mouth.

such as gestures while speaking, resting the arm while chewing and other random

movements. This makes recognition of eating actions very challenging.

Recently, researchers have used various devices such as wristbands, smartwatches,

finger movement sensors, ear-based sensors, glasses or cameras to automatically detect

eating action [73, 74, 75, 76, 77]. Due to privacy or environmental constraints, the

usage of cameras is often not feasible in many scenarios thus we focus on the challenges

associated with using non-visual sensors which typically include Inertial Movement

Unit (IMU) and Electromyography (EMG).

There have been several recent works that use non-visual sensors to detect eating

actions. The following characteristics of such works make them unusable in a practical

scenario: i) usage of customized sensors such as finger motion detectors, wearable

cameras, data gloves or multiple accelerometers typically reduces the usability

and adherence, ii) to the best of our knowledge, all current techniques use some

form of machine learning that requires an initial training phase where the user

has to manually provide labeled data during an eating episode. In addition, the

data collection, manual labeling and training may have to be repeated to account for

variations in the utensils, food items and/or plates. This requirement of manual input

from every user makes the system not User-Independent and thus cannot be used

in a plug-and-play manner. In addition, providing manual input is typically annoying
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to the user and causes low adherence, iii) Instant feedback is critical to bring about

behavioral changes to eating patterns, however, most research works do not perform

instant detection of eating action. Most recent works with accelerometer data

propose detection after complete data collection [74, 73, 75], and the works which do

propose instant eating action detection use other sensors such as video, data gloves,

or finger movement sensors [78, 79] which are not easy to utilize.

Even though accelerometers were found to be the most widely used non-visual sen-

sor for eating action identification they do not show very high performance. To under-

stand the challenges that exist for the usage of accelerometers for eating action iden-

tification, we performed a randomized controlled study (IRB 1: STUDY00004571).

For this study, we collected wristband IMU data from 10 individuals (2 females and

8 males between 20 and 35 years of age) during a controlled eating episode. The data

was collected from food that was served in a circular plate with three sections from

Panda Express. Ground truths were determined by referring to video-recordings of

the entire eating episodes. Individuals were asked to use either a spoon or a fork to

pick food from each section on the plate. Each session included at least 30 (15 with

spoon and 15 with fork) different eating actions for every individual. Fig. 4.1, shows

the accelerometer data for all eating actions using a spoon from the same section

in the plate. The experimental results point to the following challenges for using

accelerometer for eating action identification:

1. Accelerometer signatures are not unique for eating actions: Accelerom-

eter sensors in a wristband give movement data of the arm. However, it only gives

acceleration and does not give any information regarding the direction of the arm

movement. For example, during an eating episode, when an individual puts food in

their mouth, the arm is stationary but there can still be acceleration because the

person may have already started to move the arm away from the mouth. Further,
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Figure 4.2: Velocity derived from accelerometer with pick points as zero velocity
shows no consistent pattern.

when an arm is moving towards the mouth, the acceleration may not be in the posi-

tive z direction. Rather, a smooth arm movement from the food plate to the mouth

will result in an acceleration pattern that is first positive in the z direction and then

negative in the z direction. However, such a signature is common for other actions

such as pointing towards the ceiling. Further, such signatures are often different for

individuals as evidenced in Fig. 4.1, and 4.2. Thus, any technique that relies solely

on accelerometer signatures requires User-Dependent training data.

2. Absence of initial conditions makes it impossible to derive velocity and

locations: The start and end position of the arm also cannot be extracted from

the wristband accelerometer data. This is because to derive positions the velocity

and subsequently distance has to be computed by integrating the accelerometer data.

However, such computations are not feasible because there is no way to know when

the arm is stationary. As an evidence to this claim, in our data, we have seen there

can be acceleration in Z-axis even if the arm is stationary.

3. Lack of consistency in User-Independent tests: Problem of eating action

identification is a specific example of larger problem that is an action understanding.

Recent works on action understanding can be classified into two broad categories:

i) User-Dependent, where training data is collected from every individual, and ii)

User-Independent, where training data is only collected from a subset of users,

49



called donors, that does not include the test users. Accelerometer signals lack visu-

ally discernible patterns and hence identifying types of features that are fundamental

to understanding of eating actions is difficult. Based on our performance metrics,

we observed that User-Dependent accelerometer models are far more consistent w.r.t

accuracy than User-Independent ones. However, the User-Dependent model needs

calibration which requires significant input from the user.

4.1 Overview

In this dissertation, we present Instant Detection of Eating Action (IDEA) 1

[80] that can operate with a commodity wristband sensor to instantly identify eat-

ing actions without any manual input from the user. During testing, IDEA uses a

novel unsupervised data processing technique that automatically identifies the very

discernible actions within the test data and adds them to training data. These ac-

tions, called ‘Definite segments’, are the ones that can be correctly recognized with

very high confidence. Thus, IDEA generates a User-Specific model where training

data comes from two different sources: i) User-Independent train data and ii) ‘Defi-

nite segments’ which serve as User-Dependent data but are collected during real-time

testing. Therefore, IDEA builds a potential User-Dependent model in a plug-n-play

manner and provides eating speed feedback instantly as seen in Fig. 4.3.

The core hypothesis of IDEA is that despite variations in arm movements, loca-

tions of the mouth, food plate, type of food, and utensils used, an eating action, which

consists of the arm movement to lift food up from table to mouth, is assumed to be

fairly common across all individuals. In addition, the eating action of an individual

test user will be more similar to a subset of other users than to the entire population.

To exploit this, IDEA uses a Two-tier Hierarchical Action Detection (THAD): a)

1Accepted paper as UMAP2018 Extended Abstract.
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Figure 4.3: IDEA overview.

TIER-1: Generalized Model based Detection where data from an individual A

is compared with the data from the set of donors to derive strong and weak candi-

dates for eating action of A. This is done by Deep Neural Networks (DNN) that use

Dynamic Time Warping (DTW) [81] based feature matrices. The output of this stage

is twofold: i) a set of confirmed eating actions and a set of unconfirmed actions, and

ii) a set of users who have “similar eating pattern” to the given user′s eating pattern.

b) TIER-2: Personalized Model based Identification where the eating actions

obtained from the set of users who have “similar eating pattern” given by TIER 1 is

used as training set to classify the unconfirmed actions sets as either ‘Indefinite’ or

‘Definite’ segments. Then the ‘Definite segments’ are added to the training set, after

which IDEA is able to automatically builds a User-Specific machine learning model

without any user-intervention.

THAD is inspired from collaborative filtering techniques applied in recommenda-

tion systems. The central assumption in user-based collaborative filtering is that if

two users A and B agree on the ratings of a given set of items P , then for an item
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Y , unrated by A, A is more likely to agree with the rating of B. This assumption

can then be used to decide the recommendation of the item Y to A. For this de-

cision, k-nearest neighbor algorithm (k-NN) is commonly used to identify the users

who have similar patterns as those of a test user. The input data is a 2-Dimensional

rating data matrix whose X-axis is the item name and Y-axis is the user ID. However,

we cannot apply k-NN or other existing techniques directly to our system because

the nature of input data is different. For instance, most wristband dataset would

have to be represented by a 4-Dimensional matrix consisting of user ID, sensor ID,

time, and action types. Although THAD is conceptually the same with user-based

collaborative filtering, the differences in nature of data makes it difficult to utilize

existing techniques. Therefore, we present a signal processing based novel technique

(THAD) which maintains collaborative filtering concepts but works on wearable sen-

sor dataset. To the best of our knowledge, this is the first time this concept has been

tried for eating action identification.

Summary of results: We tested the performance of IDEA on 36 subjects. Each

subject participated as a volunteer for an eating episode that lasted for at least 15

mins with an average of 30 eating actions. With a training set of eight donors and a

test set of 28, the precision of eating action identification was 0.93 while the recall was

0.89. For the worst-case users on an average, IDEA improves precision by 0.11 and

recall by 0.15 with when compared to the best state-of-the-art technique as seen in

Fig. 4.32. In addition, THAD can also be used for automated labeling of eating action

since the mislabeling rate for THAD is 11 out of nearly 10,000 eating or non-eating

actions while that for humans is 18.
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4.1.1 Intuition

Conventional machine learning models when used for eating detection have signif-

icant variance as described in Sec. 4.6.3 and 4.6.4. This happens due to the presence

of variables during an eating episode that are not related to the core eating action. To

better understand the issues caused by these variables and how IDEA tackles them,

we categorize them as follows:

(a) external environment: The pattern of eating changes when external environ-

mental variables such as the food type, utensil used, or the portion of the plate varies,

and it is impossible to control these conditions in the real world. For example, the

eating activity for soup using the spoon is dissimilar to the eating activity for a steak

using a fork and a knife. Thus, changes in external environment causes many different

types of eating activities. Despite these differences, we found that all eating activities

have three common components: 1) Picking up food 2) Carrying food, and 3) putting

the food in the mouth as seen in Fig. 4.4. However, we used only the middle compo-

nent (carrying food to mouth) as the key eating action in this dissertation. This was

done to overcome the issue of inconsistent external environment because the middle

component is usually more regular as compared to other two components.

(b) discrete time-series sensor data purity: After defining the key components

of eating action, conventional machine learning models was used to identify the middle

component as seen in Fig. 4.18. Most models showed reasonable average F1-scores

but still had high variance. Ideally, using only the middle component, carrying food

to mouth, should help mitigate some of these irregularities, however in practice, we

found that this is not the case. We hypothesize that imperfections in the segmentation

process of the time-series sensor data and differences in speeds of eating for the various

eating actions causes the high variance.
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Automatic segmentation leaves snippets of data before and after a desired segment

which results in imperfect segments as seen in Fig. 4.6. The data contained in these

segments may also contain noise due to the discrete nature of sensors. Moreover,

the sensors used were configured for a fixed sampling rate across eating episodes

and across users. This can lead to differences in the resulting segmented data, as

the speed of eating varies greatly between users and even between various eating

actions of the same user which can cause under-sampled or noisy segments. To

solve these problems that are specific to eating action detection, we applied scale-

space theory to the input data as well as extracted Difference of Gaussian (DoG)

features. The issue of noise present in the segmented data is solved to some extent

because the scale-space representations are smoother than the raw time series data

and can thus contribute to better segments. Using scale-space representations also

helps mitigate issues caused by differences in eating speeds since the various octaves

represent different sampling rates. In addition to this, DoG provides latent features

which are beneficial for eating action detection. However, most models applied scale-

space & DoG did not show better performance compared to models with raw data

as seen in Fig. 4.19 and 4.20 because scale-space & DoG greatly inflates the feature

size which can lead to a potential curse of dimensionality. We were able to avoid this

issue by using a Deep Neural Network (DNN). DNN models extract optimal features

automatically, so the overall performance is not as adversely affected by these extra

features when compared to other machine learning models.

(c) personal innate patterns: For an eating action detection technique to work

out-of-the-box and in real-world scenarios, it should have reasonable User-Independent

performance. We found that using conventional machine learning models for User-

Independent eating action detection did not give us reasonable performance as seen

in Fig. 4.21. Even the usage of a DNN with scale-space & DoG features could not give
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acceptable performance in User-Independent scenarios. We hypothesized that this is

because of the huge variations in eating patterns across various users. To test this, we

did an experiment to see how number of donors affects the worst-case performances

for user independent scenarios. We found that, the performance of the model does

not increase by increasing the number of donors and counter-intuitively sometimes

actually decreases as seen in Fig. 4.24.

Thus, for User-Independent scenarios, it becomes much more important to con-

sider similarities between a test user and the donors. Tier 1 of THAD clusters similar

users using DTW based features as a similarity measure. This ensures acceptable

out-of-the-box performance. However, we found that (1) any particular user‘s eat-

ing actions are most similar to their own eating actions and (2) they are even more

similar during the duration of the same meal. Tier 2 of THAD considers this and in-

cludes previous eating actions detected with high confidence into the model to create

a User-Specific model. This helps to fine-tune the model and decreases both variance

and bias with continued usage as seen in Fig. 4.25 and 4.32. It can be seen that the

THAD architecture significantly improves performance for the worst-cases while still

increasing the overall performance.

4.1.2 Integration with Nutrition Estimation Systems

Recent works [14, 37, 16, 82, 79, 83] that provide nutrition information from a meal

generally focus on the entire served food and not on the amount and type of food that

was actually consumed. To be able to access nutrition information from the actual

food consumed, before and after images of the food plate have been used. However,

these techniques require more manual user input which can lead to low adherence. My

previous work [84] solves this problem by estimating nutrition information only from

the food that was actually consumed by tracking eating actions and inferring portion
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Table 4.1: Existing Works For Eating Identification. UD Is User-Dependent, UI
Is User-Independent, And US Is User-Specific. Performance Metric Are F1-score Or
Accuracy. Accuracy Unit Is %.

Works
Wearable Sensor Model Performance

Location Origin Type Channel Method Class Subject UD UI

Smart-Table [85]

N/A
Customized

FSR 130 AdaBoost 8 5 0.92 0.76

Sensing-Fork [86, 87] IMU 6 Threshold 4 6 95.4% N/A

Cadavid et al. [88] Commercial Camera 1 SVM 5 37 N/A 91.8%

eButton [83] Chest

Customized

Multi 11 SVM 11 N/A

GlasSense [76] Eye Load-Cell 4 SVM 6 10 0.89 N/A

EarBit [77]
Ear

IMU 9 RF 6 10 N/A 0.8

Liu et al. [79] Audio 1 ELM 4 6 0.72 N/A

BodyBeat [89]

Neck

Audio 1 LDC 9 14 0.74 0.57

Slowee [78] EMG, Piezo 2 Threshold 2 10 93.8% N/A

Olubanjo et al. [90]

Commercial

Audio 1 Threshold 9 6 0.76 N/A

Thomaz et al. [91]

Wrist

IMU 3 RF 10 27 N/A 0.76

Sen et al. [92, 93] IMU 6 RF 2 21 N/A 98.2%

IDEA IMU, EMG 18 Proposed 2 36 US: 0.93

of the plate for each eating action in real-time. However, the eating action detection

utilized by this work was not user-independent and thus, required training for each

user. IDEA can be directly integrated with such works to provide fine-grained eating

action information with high usability. Thus, it will be very beneficial to incorporate

IDEA into existing nutrition estimation systems to increase their performance in

terms of actual intake in a User-Independent plug-n-play manner.

4.2 Related Work

a) Eating action detection with a single wearable wristband - In the state-of-

the-art works, researchers used two different sensors to detect eating actions: wearable

and external. The external sensor-based works such as Smart-Table [85] embedded

130 force sensitive resistors under the table, Sensing Fork [86] embedded IMU sensor
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in the utensil, and Cadavid et al. [88] used front facial video for chewing detection. In

these works, it is difficult to keep the eating action detection pervasive, which results

in low adherence. To solve this issue, many researchers proposed works based on

wearable sensors. These works can be categorized by the wearable locations: chest,

eyes, ear, neck, or wrist. For chest, Sun et al. [83] proposed the badge based wearable

sensor, eButton involving camera, accelerometer, gyroscope, audio, and proximity

sensors. For eyes, GlasSense [76] proposed the glass embedded with load-cell sensors

to measure the temporalis muscle for the chewing action detection. For ear, Liu et

al. [79] and EarBit [77] proposed the use of headphones embedded with microphone

or IMU sensor. BodyBeat [89], Slowee [78], and Olubanjo et al. [90] proposed the

neck-wearable based eating action detection system. These works need extra hard-

ware dedicated for eating action monitoring and have limitations such as inability

to distinguish between gulping saliva, talking, and eating, or poor performance in

noisy environments. The Increase in popularity of wristbands such as Fitbit, how-

ever, makes a wristband-based diet monitoring solution desirable. According to our

survey (IRB 1) discussed in Sec. 4.4, the most favorable wearable location is wrist.

IDEA does not need any dedicated hardware and can provide reasonable performance

using any commercially available wristband or smartwatch.

b) IDEA can accurately detect distracted eating patterns - As discussed in

Sec. 4.1.1, identification of eating actions within an eating episode which may contain

other unrelated actions is a much more difficult problem than the identification of

eating episodes during daily life. Users can be involved in other activities like talking,

swallowing saliva, shifting in their seats, picking multiple times before eating, or

taking multiple bites of a food item that was picked during any eating episode which

comprises distracted eating. Thomaz et al. [91] proposed the smartwatch-based eating

activity recognition, but they did not consider the distracted eating situations. Also,
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most works [83, 76, 89, 78, 90] focused on the eating detection among the daily

activities but could not account for distracted eating situations. However, since IDEA

identifies the three basic actions: a) picking up food, b) carrying food, and c) putting

in mouth, separately, it can correctly detect eating actions in the presence other

unrelated actions.

c) Plug-n-play operation for User-Specific modeling - According to Tab. 4.1,

User-Dependent models are usually more accurate than User-Independent models

because User-Dependent models can account for the personal eating pattern of a

particular user. Building a User-Dependent model requires an initial training phase

where the test user must provide labeled data related to an eating action. This ini-

tiation task is time consuming and often annoying. Moreover, such training must be

redone if the food item, plate, and utensil changes. On the other hands, although the

User-Independent model does not need to collect the labeled data from test user, the

reliability in terms of the accuracy has not been guaranteed, which means that the ac-

curacy gap between test users is huge such as in Smart-Table [85] and BodyBeat [89].

Also, Sen et al. [92, 93] showed almost perfect accuracy with User-Independent model,

but their segmentation is manually done, which requires extremely high user inter-

vention for preprocessing. IDEA is plug-n-play and automates the segmentation and

training process by first using THAD to detect some high-confidence actions and us-

ing these as training data to automatically create a User-Specific model with a better

performance than a User-Independent model.

4.3 Problem Statement

In this section, we define the eating action detection problem. The input of IDEA

is a set of time-series signals, qi(t) from user i. IDEA predicts j number of tuples

corresponding to j actions, mj = (ts, tf , a) where ts is the start time , tf is the finish
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Figure 4.4: Left Is Our System Prototype (LG G2 And Myo Wristband). Center Is
Our Android Application For The Data Collection. Right Is Three Components Of
Eating Action.

time, and a is the label for the action. The preliminary knowledge are: 1) given a set

Un of n users we know the tuples, mj(ts, tf , a)∀j ∈ Un and 2) user i /∈ Un.

4.4 System Architecture

User Study: We take a user-driven approach towards developing IDEA and per-

formed an initial user study to guide our design choices. A diet monitoring system

can potentially collect eating activity data from various modalities including wrist-

bands, smartwatches, smartphones, or custom wearables. To determine the most

usable alternative for designing the system architecture, we conducted a user study.

In this study after receiving required IRB approval (IRB 1), a total of 102 partic-

ipants were enrolled with 52 females and 50 males with a median age of 33.3. The

participants were initially asked whether they would want to use any mobile applica-

tion to track their diet. While it was found that the majority of participants (nearly

80%) are favorable towards usage of mobile technology for diet monitoring nearly 19%

said they are not at all likely to use a mobile app. Some of the common concerns
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for not using a mobile app were cumbersome operations, forgetting to use, inaccurate

outputs, as well as a general apathy towards diet monitoring.

They were then asked how likely they are to wear a single wearable device that

measures their eating behavior. 83% of participants responded favorably to wearing a

single wearable device that monitors their eating behavior. When asked whether they

would like to wear any item near their head or face or neck, almost 95% of participants

responded negatively. A wristband was the choice for nearly 70% of the participants.

Amongst rest of the participants, a significantly common suggestion was that if the

functionalities realized using a wristband can be done using a smartwatch instead,

then they will also use the system even if the smartwatch has to be worn in their

dominant hand. When a smartwatch usage is suggested, nearly 91% of participants

responded that they see themselves using the system for nearly a month at a stretch.

The conclusions from the user study were: a) customized hardware that are worn

on the head or near the face are not preferred, b) a smartwatch is the most preferred

wearable for diet monitoring followed by the wristband, and c) no manual intervention

is preferable.

System Setup: Fig. 4.4 displays our system architecture. The user wears the Myo

wristband which collects accelerometer, orientation, gyroscope data at a rate of 50

Hz. It also measures Electromyogram (EMG) data at 200 Hz. LG G2 (smartphone)

is connected to the Myo wristband [94] through Bluetooth to receive the orientation,

gyroscope, accelerometer, and EMG data. For each user, we also recorded video data

simultaneously using LG G2 camera. The video data is used to build the ground

truth.

Myo device provides 18 data streams from four sensors including three data

streams for accelerometer, four data streams for orientation, three data streams for

gyroscope sensors, and the rest eight data streams from the EMG sensors. The reason
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behind orientation having four streams is the well-known problem of Gimbal locking

which can happen if two axes align in such a way that we lose the degree of freedom

in one direction for that moment [95]. The ground truth videos are recorded at 30

frames per second (fps).

4.5 Methodology

For this work, we assume a prior knowledge about the start times for eating

episodes. This is a reasonable assumption since identifying eating among other coarse

activities such as running, walking, eating, and sitting is feasible as demonstrated by

Thomaz et al [91]. The overall signatures of these activities were found to be clustered

in the feature space even if there existed individual variations for each activity type.

However, gestures related to eating action, are poly-componential in nature, where

multiple gestures are combined in a definite sequence [52]. Thus, in the dissertation,

we focus on detecting eating actions from eating episodes in a User-Independent

manner, which is a much more difficult problem than determining the presence of an

eating episode.

To achieve this, IDEA was designed with five processes as seen in Fig. 4.3: 1)

data gathering, 2) extrema segmentation, 3) Two-tier Hierarchical Action Detection

(THAD), 4) User-Specific modeling, and 5) interval calculation and feedback. The

data gathering is discussed in Sec. 4.5.1 and in this section we will describe other four

processes in detail.

4.5.1 Data Collection

Thirty-six subjects were recruited following IRB approvals (IRB 2: STUDY00004155)

for data collection. Subjects were between the ages of 20 and 39, 15 of them were

female and 21 of them were male. Paired T-test is a method that is applied to deter-
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Figure 4.5: Graphic User Interface-based Video Annotation Application For The
Labeling Task With Sensor Data Visualization.

mine the number of subjects requited to validate medical studies. To obtain an effect

size of 0.5, α of 0.5, and power of 0.80, which is considered as minimum acceptable

parameters thirty-four subjects were required. Our study had thirty-six subjects,

which meets this expectation.

Subjects were instructed to wear a Myo wristband and eat a meal as they would

normally do and process was video-recorded for ground truth determination. They

were instructed to eat either with a spoon or a fork and have at least 20 eating actions

during the meal. There were no other restrictions on type or origin of food (homemade

or restaurant), type of plate, duration of meal, or actions they could perform during

the meal. At the end of the experiments, there were a total of 1246 eating actions

with an average of almost 35 eating actions per meal per subject.

Labeling: Although the same Android application was used to collect all the data,

it was observed that the video and Myo timestamps were sometimes not perfectly

synchronized due to underlying Operating System lags. To mitigate this, every sub-

ject was asked to make a sharp jerk movement with the arm where the Myo was
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worn. This movement is easily discernible in video as well as accelerometer graphs,

so it could be used for synchronization. Note that the jerk is only needed for the

purpose of synchronization and is not required in a practical deployment. Also, the

default frequency of data collected using the Myo device varies slightly from the mean

frequency and such variation is different for different sensors. Inertial Measurement

Unit (IMU) sensors such as accelerometer, gyroscope, and orientation have a default

frequency of 50Hz while that of the EMG sensor was 200Hz. The EMG data from the

Myo is re-sampled to the default frequency of IMU sensor (50Hz). After completing

these two tasks, we annotated the meal video manually through visual inspection.

The ground-truth annotations were performed across four sessions spread over

a month. The ground truth labels determined in the first session was verified and

corrected in the subsequent sessions. In the second session 18 number of corrections

were made. However, there were no further changes that were made during the

fourth annotation session. The annotated videos are labeled as one of the following:

(1) picking up food, (2) carrying food, and (3) putting in mouth. Fig. 4.4 displays

three components for one eating action. Then, the sensor data streams are labeled

based on the annotated videos. For the labeling task, we created a MATLAB graphic

user interface-based application as seen in Fig. 4.5, which significantly decreases the

time spent in labeling.

4.5.2 Extrema Segmentation

Although, food consumption in humans is considered to be one continuous activity

by Thomaz et al [91], it can be split into specific and meaningful sub-activities. This

step is crucial for the functioning of IDEA and it is one of the reasons that IDEA is

able to achieve high performance by identifying relevant sub-activities directly. For

segmentation, a sliding-window-based algorithm was utilized which resulted in four
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Figure 4.6: Extrema Segmentation.

types of segments: i) segments with only onset of an eating action, ii) segments that

fall in the middle of an eating action, iii) segments with the culmination of an eating

action, or iv) segments partially spanning multiple eating actions. A valid segment

for the purpose of this application is required to have the following properties: P1:

A segment should have continuous data from the start to the end of only one eating

action. P2: An eating action should be contained in only one segment (i.e. no

overlapping segments). To achieve such properties in the segments, it is required to

specify exact time duration of eating actions in the sliding-window-based algorithm.

This is not possible in a User-Independent setting, because the average duration

of eating action varies significantly from person to person. Hence, an alternative

segmentation method based on extrema points was performed.

From our observation of over 1200 eating actions from 36 different users, we con-

clude that when the user starts and finishes any eating action component, their hand

is paused momentarily or there is a sharp change in the orientation of their wrist.
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Table 4.2: Extrema Segmentation Average Accuracy By IMU-sensors And Scale-
space For All Users. O-# Is Octave Number. S-# Is Scale-space Number. (Unit:%)

Scale-Space Ori W Ori X Ori Y Ori Z Acc X Acc Y Acc Z Gyr X Gyr Y Gyr Z

O-1

S-1 44.83 67.84 72.16 45.75 0.06 2.6 0 9.31 0 1.12

S-2 47.73 70.89 73.32 47.91 3.41 31.83 6.42 27.44 0.66 6.7

S-3 48.65 71.86 73.53 48.95 4.89 41.07 10.09 30.66 1.38 8.69

S-4 49.56 73.35 74.44 50.48 9.29 50.26 15.64 34.93 2.85 10.42

S-5 51.4 73.96 75.25 52.44 15.31 56.18 22.16 38.93 3.99 11.84

O-2

S-1 53.36 74.53 75.14 55.78 17.28 57.71 25.42 42.03 6.38 14.31

S-2 63.14 82.16 82.01 66.03 50.95 76.73 49.28 58.65 26.98 27.76

S-3 65.08 82.71 84.25 67.83 56 79.45 53.83 60.95 31.79 31.84

S-4 67.85 84.53 86.28 69.68 61.05 82.98 57.92 63.27 36.54 37.29

S-5 71.33 85.94 88.1 70.89 66.71 85.62 61.9 65.46 41.88 43.71

O-3

S-1 75.59 87.21 88.89 75.68 67.92 85.79 68.45 72.13 47.11 51.79

S-2 86.16 92.63 96.05 87.85 91.45 96.34 84.32 73.86 77.87 72.9

S-3 86.78 94.21 96.64 89.84 94.1 97.55 86.15 74.4 81.76 74.97

S-4 88.76 94.63 96.21 91.15 95.9 98.26 88.73 77.49 85.53 79.63

S-5 90.33 95.35 97.98 91.53 97.34 98.06 89.91 81.87 87.75 81.91

The most significant arm movement is related to carrying of food item from the plate

to mouth, i.e., the second eating action component. Based on this observation, we

utilized the extrema to segment the continuous movement of hand gesture into two

types of segments: a) second component of eating action and b) all other eating action

components or unrelated gestures.

Each extrema point becomes the start and end moment for the second eating

action component as seen in Fig. 4.6. However, in order to obtain accurate segmen-

tation, two factors should be considered: a) selection of the appropriate sensor as an

input for segmentation and b) data smoothing. In our experiments, we studied the
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Table 4.3: Extrema Segmentation Accuracy By EMG-sensors And Scale-space
(Unit:%). O-1 Is Octave1, O-2 Is Octave2, And O-3 Is Octave3.

Scale-Space EMG 1 EMG 2 EMG 3 EMG 4 EMG 5 EMG 6 EMG 7 EMG 8

O-1

Scale 1 0 0 0 0 0 0 0 0

Scale 2 0 0 0 0 0 0 0 0.07

Scale 3 0 0 0 0 0 0 0 0.07

Scale 4 0 0 0 0.07 0 0 0 0.07

Scale 5 0.06 0 0 0.07 0 0 0 0.07

O-2

Scale 1 0.26 0.06 0.06 0.2 0.45 0.06 0.33 0.2

Scale 2 5.41 5.58 7.19 7.13 6.44 7.36 6.81 5.94

Scale 3 10.31 8.47 11.16 9.92 9.94 11.06 10.45 10.55

Scale 4 14.46 14.02 15.25 14.73 15.25 15.09 16.72 15.49

Scale 5 21.94 20.3 21.54 21.5 22.18 22.21 24.31 21.81

O-3

Scale 1 27.18 25.67 26.67 26.31 27.31 25.71 27.09 28.79

Scale 2 74.28 71.22 71.85 74.2 72.05 73.59 72.41 75.15

Scale 3 79.6 77.47 76.84 80.3 76.96 78.07 77.68 78.09

Scale 4 83.52 82.36 81.11 83.47 82.73 83.82 82.78 82.53

Scale 5 86.07 85.61 84.52 86.61 86.79 87.84 87.42 86.39

entire set of 18 sensors to derive the sensor data that best segments eating action

on an average for all users (Tab. 4.2, 4.3). Further, the raw data obtained at a high

sampling frequency using Myo device has significant noise resulting in large number

of potentially insignificant extrema. Hence, the extrema segmentation will result in

large number of segments that are small and hence an eating action can span over

multiple segments. Smoothing can remove extrema from the raw data and can result

in a reduction of number of segments and increase in the average length of the seg-

ments. However, too much smoothing will result in segments that are too large and

incorporate multiple eating actions. Thus, finding the optimal smoothing parameter

is a crucial task for accurate segmentation. Smoothing can be parameterized using

the well-known scale-space theory [96], where raw data is convolved with Gaussian
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Figure 4.7: Extrema Segmentation Accuracy For Individual User Using Accelerom-
eter Y.

filters with varying standard deviation (known as scale-spaces) and subsequently sub-

sampling the convolution results (also known as octaves). The Difference of Gaussian

(DoG) features was utilized to perform segmentation. The usage of scale-space theory

is discussed in Sec. 4.5.3 in detail. When the second eating action component i.e.,

carrying food from plate to mouth, appears in a segment generated from extrema

points as seen in Fig. 4.6, the segment was labeled as ‘Eat’. If not, the segment was

labeled as ‘Non-Eat’.

Tab. 4.2, 4.3 show the accuracy of segmentation by sensor and scale-space. For

each sensor data, we evaluated three octaves and five scale-spaces. Since the aim of

eating activity detection is to identify only ‘Eat’ segments, we measured the accu-

racy of our segmentation by computing the percentage of the second eating action

component in the ground truth that falls in one segment.

If an ‘Eat’ segment identified by human eye is not contained in the one segment,

we consider it as wrong segment. According to the table, the accelerometer Y axis
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with third octave and fourth scale has the best average accuracy (98.06%) for all users.

Therefore, the accelerometer Y axis with third octave and fourth scale was selected

as an input for extrema segmentation. Fig. 4.7 displays the individual accuracy of

extrema segmentation. The maximum number of wrong segment in the worst-case

individual was 4 out of 40.

The main reason for such a result is that during an eating action, there is a sharp

reorientation of the arm to align the food item with the mouth. This is why we see

that orientation Y is also a good indicator of segments for eating action. Orientation

Y was seen to have a positive correlation with accelerometer Y, hence we could

potentially use either one. Intuitively though accelerometer Z should have been the

better identifier of eating action segments, given that there is a sharp movement of

the hand from the plate to the mouth. But from our results we see that it can only

achieve an accuracy of 89%. Often, this is because the users while moving their hand

towards their mouth, also move their head towards the food item. This dampens the

change in accelerometer Z during an eating action.

4.5.3 Two Hierarchical Action Detection (THAD)

According to the evaluation of User-Independent modeling discussed in Sec. 4.6.4,

a possible reason why the User-Independent performance is much poorer than the

performance of user dependent is that the DNN is potentially over-fitting to the

donors. This may be due to the fact that the amount of training data segments for

the DNN model is relatively smaller than what is expected for a machine with the

complexity of DNN. To increase DNN accuracy, we not only have to increase the

duration of monitoring of the donors or the number of donor but also potentially

include labeled training data from the user itself, which we are trying to avoid.

To solve this issue, IDEA uses THAD which differs from the traditional usage of

68



Figure 4.8: The Number Of Feature Instances Comparison Between THAD And
Traditional Model.

machine learning systems in two key factors:

K1: Instead of using raw data or scale-space & DoG segment as training samples,

THAD uses the comparison between eating actions and non-eating actions of differ-

ent users as training samples. THAD in fact uses Dynamic Time Warping (DTW)

based comparison, which considers similarity between two eating actions of different

individuals at various time and magnitude scales. This serves three purposes: a) it

increases the number of feature instances by orders of magnitude as shown in Fig. 4.8

and hence reduces the potential for over-fitting by the DNN, b) it allows fine-tune

training with the small number of donors, and c) it guides the DNN to derive a

reduced set of donors that are most similar to the given test user.

K2: Utilizing the observation that User-Dependent models are far more consistent

the accuracy than User-Independent models, THAD uses two-tier hierarchical steps.

In the first step, the THAD provides a set of most similar users though clustering,

which are then used in the second step to derive a personalized model for the test
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user.

THAD consists of one step of preprocessing and two steps of a two-tier hierarchi-

cal modeling: a) Scale-space & DoG creation (preprocessing), b) generalized model

encoding and personalized model extraction, and c) personalized model-based eating

action classification. The aim is to create the training set for User-Specific model

by defining ‘Definite’ segments amongst test user‘s segments generated by extrema

segmentation.

Scale space & DoG creation

In this phase, IDEA requires labeled data collection from a training population. Each

member of the population is called a donor. Note that this step is one time and does

not involve data collection from the user. The data streams from the different sen-

sor modalities are analyzed through space scaling using Gaussian filters and their

differences. As seen in Fig. 4.9, a sensor stream qi(t) is first convolved with a Gaus-

sian signal with zero mean and standard deviation σ = 1, G(0, σ) to form the first

scale-space. The second scale-space is formed by convolving, qi(t) with a zero mean

Gaussian signal having standard deviation σ = 2
1
4 . The nth scale-space is thus given

by, ss1(qi(t), n) = qi(t) ∗G(0, 2
n−1
4 ). The first five scale-spaces for each sensor stream

is denoted as the first octave also denoted as ss1.

The fifth scale-space of the first octave is then under-sampled at half the rate,

also represented by the function sub(ss1,
1
2
). Five subsequent scale-spaces of this sub-

sampled signal are then computed to derive the second octave. Hence the nth scale-

space of the second octave can be represented as, ss2(qi(t), n) = sub(ss1(qi(t), 5), 2) ∗

G(0, 2
n−1
4 ). In this manner five octaves are generated from each sensor stream.

Hence, the nth scale-space of the jth octave can be represented as, ssj(qi(t), n) =

(sub(ssj−1(qi(t), 5), 2) ∗G(0, 2
n−1
4 ).
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Figure 4.9: Scale-space & DoG Creation.

This operation generates different scale-spaces of the signal, such that each scale-

space can capture some hidden patterns in the signal. We then compute the difference

in successive scale-spaces also called Difference of Gaussians or DoG signal. For

example, the first DoG is computed as, ss1(qi(t), 1) − ss1(qi(t), 2). This is done for

every sensor stream and for every donor. Thus, for each donor we obtain a feature

set, Fk, that consists of 15 scale-spaces (3 octaves × 5 scale-spaces) of each sensor

data stream and 12 DoGs (3 octaves × 4 DoGs), since 3 octaves was considered.

For each sensor data stream, the extrema segmentation algorithm then was applied

discussed in Sec. 4.5.2. The output of this step is a set of scale-space & DoG for each

sensor data stream labeled as ‘Eat’ and ‘Non-Eat’ for the set of donors. Hence,

corresponding to each eating or non-eating action, there are 486 data streams (18

sensors × 3 octaves × (5 scale-spaces + 4 DoGs)) and one label.
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Figure 4.10: DTW Feature Extraction Methodology.

Generalized Model Encoding

As shown in Fig. 4.11, the entire donor population set is first divided into two groups:

a) a subject member T , and b) reference subgroup with all other members. For a

subject member, the segments corresponding to the second component of eating action

labeled as ‘Eat’ are compared with all segments of the reference subgroups using a

distance metric. The matrix obtained as a result of such comparison is termed as

DTW feature matrix due to the distance metric used in this dissertation. Fig. 4.10

shows the DTW feature matrix extraction methodology. Given two segments (one

‘Eat’ signal from subject and one ‘Eat’ signal from a member of reference subgroup),

there are 18 sensors signals that represent each segment. For each sensor signal

segment, there are 15 scale-spaces and 12 DoGs. The methodology chooses a specific
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Figure 4.11: Generalized Model Encoding.

scale-space or DoG of a given sensor for subject segment and compares it with the

corresponding scale-space or DoG of the same sensor for the member of the reference

subgroup using DTW distance metric. Given two-signal snippets, DTW provides a

distance matrix by using all possible alignments of the two snippets. The last value

of warping path is called the DTW score. The DTW score between the two segments

with the specific scale-space or DoG of the chosen sensor becomes an element of

the DTW feature matrix. Hence, for each combination of two segments obtained by

taking one segment from subject and another from a user in the reference subgroup,

there can be a total of 486 DTW scores. This forms one row of the DTW feature

matrix. Thus, the DTW feature matrix for a given subject has number of segments

of subject (N) × number of segments of all other users in reference subgroup (M +

P ) rows and 486 columns as seen in Fig. 4.11.

Since every segment is either ‘Eat’ or ‘Non-Eat’, there are two kinds of comparisons

between, a) subject member ‘Eat’ and reference member ‘Eat’, and b) subject member

gesture ‘Eat’ and reference member ‘Non-Eat’. Corresponding to the DTW matrix

there is a label matrix MT for a subject member. The matrix entries of the first

type are given the label True while the other types are given the label False. This

73



Figure 4.12: DNN Structure For Generalized Model.

operation is done for every possible subject member selected from the group of donors.

The resulting set Uh =
⋃
∀T DT and the set of matrix labels Mh =

⋃
∀T MT are used

to train a deep learning network N(Uh,Mh, h) to recognize the second component of

eating action. This deep learning model is the generalized model to recognize eating

action.

The DNN model used for this step is shown in Fig. 4.12, it has four hidden

layers with nodes starting from 512 and exponentially reducing to 64. The activation

function is ReLU, the output layer is sigmoid for binary classification, and the gradient

descent optimization is ADAptive Moment estimation (ADAM) [97]. Note that the

general model will not be used to identify all the instances of eating action. It will

only be used to extract example gesture instances so that they can used as training

examples for the specific user.
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Figure 4.13: Generalized Model Prediction And Outputs.

Figure 4.14: Personalized Model Encoding For ‘User A’.

Personalized model extraction

Given a test user, IDEA first extracts the scale-space & DoG features from all 18

sensor data streams. It then applies the extrema segmentation method discussed

in Sec. 4.5.2 to derive potential eating action segments. As shown in Fig. 4.13,

IDEA then uses the DTW feature matrix extraction algorithm discussed in Fig. 4.10,

to compare every segment of the test user with ‘Eat’ segments of all donors. The

resultant DTW feature matrix is used as test data in the generalized DNN model of

Fig. 4.12.

The test execution of the generalized model results in class assignment True or

75



Figure 4.15: Personalized Model Prediction And Outputs.

False for each row in the DTW feature matrix. If a row is labeled as True, it

means that the corresponding segment of the test user matched with a segment of

the corresponding member of the reference subgroup. Hence analyzing the output of

the generalized model, we can identify how many segments of a given member

of the reference subgroup matches with a segment of the test user, in the

post processing phase. we can use this information in three ways: a) determine a set

of users in the reference subgroup that are most similar (users who have the most

number of matching ‘Eat’ segments with the test user′s segments) to the given test

user, b) use a threshold such that if a segment has high number of matches with ‘Eat’

action segments of reference subgroup it can be classified as ‘Eat’ segment, and c) use

the number of matches as a weight feature of the segments to be used in subsequent

personalized model-based classification.

In the next step for each user in the most similar set, a DNN based personalized

model is developed as shown in Fig. 4.14. For each similar user in the donor set,

there are two sets of segments: ‘Eat’ or ‘Non-Eat’. IDEA computes the DTW feature
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matrix for segments that are labeled ‘Eat’. The rows of this ‘Eat’ vs. ‘Eat’ DTW

feature matrix is labeled as True. IDEA also computes the DTW feature matrix

between a segment labeled ‘Eat’ and all other segments labeled ‘Non-Eat’. The rows

of this ‘Eat’ vs. ‘Non-Eat’ matrix is labeled as False. The combined DTW feature

matrix is used to train a User-Specific DNN model for each user in the similar user

set. The configuration of this DNN is similar to Fig. 4.12 but each hidden layer has

the same number of nodes (256). If a given test user has three similar users in the

train set, then it has three personalized DNN models. Note that the personalized

DNN model does not use any data generated from the test user for train, it is rather

developed based on donors that are similar to the test user.

Personalized Model based Classification

The aim of this step is to classify the ‘Other’ class as ‘Definite’ or ‘Indefinite’. As

shown in Fig. 4.15, IDEA first computes the DTW feature matrix between segments

of test user labeled as ‘Eat’ and those labeled in the ‘Other’ class following the

methodology in Fig. 4.10. This feature matrix is then used as test data for each of

the personalized models for the similar user set. The output of each User-Dependent

DNN model is again a segment weight, which is the number of eating actions of user

K that are similar to one segment labeled as ‘Other’. Hence for each segment in

the ‘Other’ set, this step provides a vector with the segment weight corresponding

to every member in the similar user set. In the post processing step IDEA sets a

threshold such that of the similarity score exceeds this threshold for all similar users

then the segment is classified as ‘Eat’, if the segment weight is 0 for all user then it

is classified as ‘Non-Eat’, and if the threshold is not exceeded for at least one similar

user it is classified as ‘Indefinite’. The segments classified as ‘Eat’ and ‘Non-Eat’ will

be henceforth referred to as ‘Definite’.
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Figure 4.16: Examples For Interpolation Feature Extraction. Left Is Up-sampling
And Right Is Down-sampling.

4.5.4 User-Specific Modeling

The aim of User-Specific model is to classify the ‘Indefinite’ segments as ‘Eat’ or

‘Non-Eat’. To build the User-Specific model, there are three steps: i) training data

renewal, ii) feature extraction, and iii) machine learning training. For the training

data renewal step, we simply added the ‘Definite’ segments to the training set of User-

Specific model. The training data renewal makes the User-Specific model update from

the User-Independent to User-Dependent manner without any user intervention.

For the feature extraction, we used the combination of scale-space & DoG and

interpolation. The scale-space & DoG set of each segment is already obtained for

THAD discussed in Sec. 4.5.3. We then applied the interpolation to all 486 scale-

space & DoG set (18 sensors × 3 octaves × (5 scale-spaces + 4 DoGs)). The aim of

interpolation technique is to make the uniform size for each segment. The segment

size should be uniform to use it as an input for supervised-learning. However, the

extrema segmentation method generates irregular size segments, so we used cubic

interpolation to obtain uniform size segments. The segment size for scale-space &

DoG set corresponding of the first octave was fixed to 20 samples. Among twenty

78



Figure 4.17: Queue Based Warning System.δ Is One Eating Interval And θ Is The
Interval Threshold Value.

samples, the first and last sample always set as the first and last raw data. Then,

eighteen features are obtained by down-sampling or up-sampling through the cubic

interpolation method as seen in Fig. 4.16. For second octave set, the size was fixed to

10 samples and for third octave set, it was fixed to 5 samples with the same manner.

We selected Deep Neural Network (DNN) model for the machine learning training.

The DNN model has four hidden layers with 256 nodes for each layer. The activation

function is ReLU, the output layer is sigmoid for binary classification, and the gradient

descent optimization is ADAM [97]. The feature extraction method and machine

learning algorithm are selected based on our User-Independent experiment evaluation

discussed in Sec. 4.6.4.

4.5.5 Interval Calculation and Warning System

In the phase, we obtained the eating interval by simply calculating the time-stamp

difference between previous ‘Eat’ and current ’Eat’. The eating interval provides
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eating speed feedback using queue-based eating speed feedback [84] 2 as seen in

Fig. 4.17. First, the eating interval (δ) is continuously stored in Q which is N size

queue data structure until the user completes the meal. When the Q is full, the

average of the interval data in Q called Q̄ is computed. Then, it is compared with a

predefined threshold time θ. If the Q̄ is greater than θ, the user receives a warning

related to her high eating speed and the next eating interval is stored in Q after the

front item in Q is removed.

4.6 Experimental Results

In this section, we discuss the performance results of IDEA on the data collected

from 36 users. First, we talk about the performance metrics, then we discuss the fea-

ture extraction techniques necessary for pre-processing data before the application of

the various modeling techniques. Then, we show the performances of various state-of-

the-art machine learning techniques for both User-Dependent and User-Independent

scenarios. We considered Naive Bayes (NB), Random Forest (RF), Support Vector

Machine (SVM) with linear, polynomial, Radial Basis Function (RBF), and Sigmoid

(Tanh) kernels, and Deep Neural Network (DNN) for comparison.

4.6.1 Metrics

For our experiment, F1-Score (2 · Precision·Recall
Precision+Recall

) was utilized as a performance

indicator because both precision ( TP
TP+FP

) and recall ( TP
TP+FN

) in terms of identifying

‘Eat’ segments are crucial evaluation factors. Here, TP is True Positive, FP is False

Positive, FN is False Negative, and TN is True Negative. When recall is low, the

eating action detection system would miss many eating actions. When precision

is low, the system will consider non-eating actions as eating actions. Both results

2Published in ICMLA 2018
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in unreliable output of the system. Note that the accuracy ( TP+TN
TP+TN+FP+FN

) is an

improper performance indicator because of the data imbalance for ‘Eat’ and ‘Non-

Eat’ segments in any eating episode. An example from our dataset shows that one

eating episode consists of 359 ‘Non-Eat’ as compared to only 41 ‘Eat’ segments. Due

to the data imbalance, if the system were to predict all segments as ‘Non-Eat’, the

accuracy would be 89.75%. However, this would not be a good performance since the

system did not detect any ‘Eat’ so it couldn’t provide the number of correct eating

actions or feedback based on eating speed.

4.6.2 Feature Extraction

Two different feature set are considered as an input to the models. The first feature

set is interpolation features discussed in Sec. 4.5.4. The second feature set is sta-

tistical features. The statistical feature set is benchmarked features from Thomaz

et al. [91] experiment. Although they used only five features: mean, variable, skew-

Figure 4.18: Raw Data-based User-Dependent Model Comparison Between Statis-
tical Features And Interpolation Features. (S) Is The Statistical Feature And (I) Is
The Interpolation Features. CI Is Confidence Interval (95%).
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Figure 4.19: Interpolation Feature-based User-Dependent Model Comparison Be-
tween Raw Data And Scale-space & DoG Data. (SS) Is The Scale-space & DoG Data.
CI Is Confidence Interval (95%).

ness (
∑N

n=1(xn−x)3
(N−1)s3 ), kurtosis (

∑N
n=1(xn−x)4
(N−1)s4 ), and Root-Mean-Square ( 1

N

∑N−1
n=0 |Xn|2),

three more features were added: min, max, median. Therefore, the statistical feature

set consists of eight features: min, median, mean, max, variable, skewness, kurtosis,

and Root-Mean-Square.

In our experiments, there are four different input combinations with: (1) statistical

features and raw sensor data, (2) statistical features and scale-space & DoG data, (3)

interpolation features and & raw sensor data, and (4) interpolation features and scale-

space & DoG data. The feature size per segment for (1) is 144 (8 feature × 18 sensor),

for (2) is 3888 (8 feature × 18 sensor × 9 scale-space & DoG × 3 octaves), and for

(3) is 360 (20 feature × 18 sensor). When interpolation features from scale-space &

DoG data were extracted, each octave has different sampling ratio and hence segment

sizes vary. To have uniform feature size, the interpolation feature size of the three

octaves was fixed to 20, 10, and 5. Hence, for (4), the feature size is 5670 (35 feature

for all octaves × 18 sensor × 9 scale-space & DoG).
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Figure 4.20: Statistical Feature-based User-Dependent Model Comparison Between
Raw Data And Scale-space & DoG Data. CI Is Confidence Interval (95%).

Figure 4.21: User-Independent Scenario Comparison. (S+R) Is Statistical Features
And Raw Data, (I+R) Is Interpolation Features And Raw Data, (S+SS) Is Statistical
Features And Scale-space & DoG Data, (I+SS) Is Interpolation Features And Scale-
space & DoG Data. CI Is Confidence Interval (95%).
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4.6.3 User-Dependent

To evaluate the user dependent model, K-Cross (where K=5) validation method

was used with five repetitions. The Fig. 4.18 shows that the DNN model with statis-

tical features is the most reliable model. It can be seen that the F1-scores of (i) the

worst user (0.7) and (ii) average for all users (0.93) in this model are the highest.

Fig. 4.19, 4.20 show the F1-score comparison between raw data and scale-space

& DoG data for interpolation features and statistical features respectively. It can

be seen that in general, scale-space & DoG data-based models have better F1-scores

than raw data-based models. Also, DNN models have the least variation in F1-

score between the worst and average case user as compared to other machine learning

models. Overall for the User-Dependent scenarios, the DNN model with interpolation

features and scale-space & DoG data is the most reliable (the worst F1 is 0.78 and

average F1 is 0.93).

4.6.4 User-Independent

In this scenario, we use labeled data from a set donors that does not include the

test user to train the machine learning systems. For evaluation, we built different ma-

chine learning models by varying the number of donors from 2 to 25. The donors are

selected randomly and all experiments were repeated five times. As seen in Fig. 4.21,

the average performance of the DNN models is better than that of other machine

learning models.

Fig. 4.22 displays DNN model F1-score with respect to number of donors. It can

be observed that increasing the number of donors increases the overall F1-score. The

DNN model with interpolation features and scale-space & DoG data shows the best

F1-score among all DNN models (0.93 F1-score with 21 donors).

84



Figure 4.22: Performance Of DNN Model With User-Independent Scenario.

For both User-Dependent and User-Independent evaluations, the DNN model with

interpolation features and scale-space & DoG data is the most reliable. Thus, we

compared the User-Dependent and User-Independent with 21 donors for this setting.

As seen in Fig. 4.23, average F1 in both of them are similar, but the User-

Independent scenario has a much higher range between the average and

the worst user. For the worst user group comparison, the average F1 for

User-Dependent is 0.87 and the average F1 for User-Independent is 0.58.

Fig. 4.24 shows the User-Independent F1-score using DNN model with interpola-

tion features and scale-space & DoG data for the worst three users. Unlike Fig. 4.22,

the performance of the model for the worst users does not increase as the

number of donors increases.

By comparing the performances of User-Dependent and User-Independent scenar-

ios, we derived three significant facts:

a) The best model in this study for both User-Independent and User-Dependent sce-

narios is the DNN model with interpolation features and scale-space & DoG data.
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Figure 4.23: F1-score Comparison Between User-Independent And User-Dependent
By Different Test User Set Based On DNN Model With Interpolation Features And
Scale-space & DoG Data. US Is The User-Dependent And UI Is User-Independent.
(All) Is All Test User Set, (Best) Is The Best 10% Test User Set, And (Worst) Is The
Worst 10% Test User Set.

b) The User-Independent is less reliable than the User-Dependent scenario. This is

especially true for the worst case users. c) The average performance in the User-

Independent scenario increases with an increase in the number of donors. However,

the random fluctuation in F-1 scores for the worst case users shows that the perfor-

mance is more dependent on the set of donors included rather than the total number

of donors.

4.6.5 IDEA

In this section, we first illustrate the overall eating action identification perfor-

mance of IDEA for: a) all users and b) worst case users. Then we analyze the

effectiveness of the two tier approach by individually discussing generalized and per-

sonalized model results.
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Figure 4.24: Worst User F1-score, User-Independent Scenario.

Overall Performance

Fig. 4.25 shows that on an average IDEA improves the F1-score by 0.05 for 8 donors

with respect to the DNN model with interpolation features and scale-space & DoG

data which showed the best result in User-Independent discussed in Sec. 4.6.4. When

compared with the random-forest model with statistical features and raw data which

is a benchmarked from Thomaz et al. [91], IDEA has 0.18 F1-score improvement.

IDEA has an F1-score of more than 0.9 if at least 7 users are included in the training

set. The figure also shows the performance for the worst-case user set (determined in

Sec. 4.6.4). For the worst-case users, on an average IDEA improves F1-score by 0.15

with respect to the best DNN User-Independent model and by 0.12 with respect to

the state-of-the-art benchmark.

Fig. 4.32 shows the performance of IDEA for the worst-case users. The best

improvement in F1-score achieved by IDEA over the best User-Independent DNN

model is 0.27. When we look at the precision and recall for the worst user, we
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Figure 4.25: F1-score Comparison Between IDEA (User-Specific), User-Independent
DNN (interpolation Features And Scale-space & DoG Data), And User-Independent
Random Forest (statistical With Raw). (ALL) Is The Average F1 For All Users And
(Worst) Is The Average F1 For Worst User Groups

observed that IDEA has nearly the same precision as the User-Independent DNN

model but it improves the recall by 0.25. This means that IDEA detects nearly 25%

more eating actions. This can result in huge improvements in eating speed accuracy

or other applications such as calorie estimation.

THAD-Generalized Model

For the generalized model, Fig. 4.26 shows the area under the curve (AUC) for the

receiver operation characteristic (ROC) curve. The ROC curve plots the true positive

rate ( TP
TP+FN

) with respect to the false positive rate ( FP
FP+TN

) with varying thresholds

on the confidence level of eating actions, which is the output of the generalized model.

A value of AUC close to 1 indicates that the classifier maximizes true positive rate

while minimizing false positives. From the figure, we establish that with only 8 donors

are needed for the worst-case AUC to be above 0.9, and the average AUC to be 0.98.
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Figure 4.26: Average AUC (Area Under The ROC Curves) For Generalized Model.

The output of the generalized model is ’Similar Users’ and ’Dissimilar Users’.

IDEA utilizes this information in the personalized model to improve the final perfor-

mance. However, in this stage there is no ground truth for which of the donors are

indeed similar to a given test user. Thus, to evaluate how well THAD identifies sim-

ilar users, we evaluated the performance of THAD-Personalized Model when trained

separately on a) similar users b) dissimilar users and c) all users. It can be seen

from Fig. 4.27 that the F-1 Scores for Similar User Model is higher than both of the

other models when the number of donors is 3 or higher. This shows that the usage

of ’Similar Users’ for modeling in fact improves the performance of the personalized

model.

THAD-Personalized Model

The final aim of Tier-2 of THAD is the correct identification of ‘Definite’ segments

which are the subset of segments from the test user that can be identified as “eating”

or “non-eating” with high confidence levels. It can be seen from Fig. 4.28 that if the
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Figure 4.27: Performance Comparison Between Similar, Dissimilar And All Users
For Personalized Model.

Figure 4.28: Performance Comparison Between Definite Class And Overall.

number of donors is five or higher than we can guarantee a precision of 0.99 or higher

for ‘Definite’ segments. However, this is not true for the ‘Overall’ segments which

consist of both ‘Definite’ and ‘Indefinite’ segments. This is the reasoning behind usage

of only the ’Definite’ segments from the test user for constructing the User-Specific

model. It can also be seen that the recall of ‘Definite’ classes is higher than overall

which further supports the usage of ’Definite’ classes.

Fig. 4.31 Left shows the variation of relative size of the ‘Definite’ class with re-
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spect to overall test data as the number of donors increase and Right illustrates the

misclassification error for segments corresponding to eating or non-eating actions that

are identified as ‘Definite’. It can be observed that although the number of segments

identified as ‘Definite’ goes down as the number of donors increase, the misclassifica-

tion rate decreases. The personalized model with eight donors has a misclassification

error of 11 out of 10,000, while manual labeling (by human) has 18 errors. The human

error is computed by a three-fold cross validation by asking random users to browse

through one eating action video once and annotate the eating actions start and end

times. This shows that THAD can also be utilized for auto-labeling or assistance for

manual labeling.

The above mentioned results show that usage of ‘Definite’ class in personalized

model increases accuracy. However, presence of any false negatives or false positives

in ‘Definite’ class can significantly affect overall performance. The initial hypothesis

of THAD was that usage of similar users can improve the quality of ‘Definite’ class

i.e. have reduced false positive and negative examples. In Fig. 4.29 by using similar

users instead of all-users the size of the definite class increases without sacrificing

accuracy. On the other hand, usage of dissimilar users also increases the size of the

definite class, but the results in Fig. 4.30 show that it significantly reduces accuracy.

4.6.6 IDEA Time Complexity

The time complexity with respect to number of multiplications of the steps in-

volved in IDEA is as follows:

a) Scale-space & DoG creation: This involves a convolution operation with Gaus-

sian filters which is quadratic with respect to sample size. The complexity isO(cn(τf)2+

kτf), where c is the number of scale-space, n is the number of sensors, τ is the total

duration of monitoring, f is the sampling frequency, and k is the total number of
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Figure 4.29: Performance Comparison Between Similar-users And All-users In The
Definite Class

Figure 4.30: Performance Comparison Between Similar-users And Dissimilar-users
In The Definite Class

92



Figure 4.31: THAD Performance For Personalized Model. Left Is Definite Segment
Rate And Right Is Definite Segment Accuracy.

Figure 4.32: F1-score Comparison Between IDEA, User-Independent DNN (inter-
polation Features And Scale-space & DoG Data), And User-Independent Random
Forest (statistical Features And Raw Data) For Worst Users.

DoGs.

b) Segmentation and Cubic spline interpolation to create uniform sample seg-

ments: It is linear with respect to sample size, O((cn+ 1)τf).

c) DTW feature matrix creation: It is quadratic with respect to segment size, and

it is required to compute a significantly large number of DTW computations. The

complexity is O(sl2avgxdenc), where slavg is the average segment length, x is the total
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number of segments of the test user, d is the total number of donors, and e is the

total number of segments labeled ‘Eat’ for all the donors.

d) The generalized model DNN execution time is only dependent on the segment

size and number of segments.

e) Personalized model DTW feature matrix generation: The complexity isO(K(x−

K)sl2avgcn), where K is the total number of segments labeled ‘Eat’ by the generalized

model.

f) Personalized model execution time.

We implemented the backend on Intel(R) Xeon(R) CPU E5-2660 with 8 cores,

16 threads, 64 GB RAM. The DTW computations were offloaded to NVidia GeForce

GPU. Overall for a snippet of 2 mins of eating episode, the execution times for a

set of 7 donors are {a = 0.043s, b = 6.65s, c = 25.06, d = 10.18s, e = 9.58s and

f = 0.22s}. Overall it takes 51.76 seconds to provide eating speed feedback for a 2

min eating episode. Hence, 3 min after the start of an eating episode the user gets

feedback on eating speed every 2 mins. To the best of our knowledge, IDEA is the

fastest in providing eating speed feedback without any manual input.

4.7 Discussion

4.7.1 Size of donor set

The number of donors utilized by IDEA has a big impact on its performance. As

seen in the Fig 4.25, when the number of donors was small, the performance of IDEA

was found to be worse than the performance of existing techniques (DNN). This is

because a small number of donors might not have made a strong ‘Generalized model’.

Although one of aims of the ‘Generalized model’ is to extract ‘similar donors’ as seen

in Fig. 4.13, a weak ‘Generalized model’ cannot match correct ‘similar donors’ with
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Figure 4.33: F1 Comparison For Single Sensor-sets Using User-Independent DNN
Model (interpolation Features And Scale-scale & DoG Data).

a user, which impacts the personalization model negatively. Hence, to build a strong

‘Generalized model’, enough donors are required. On the other hand, if the number

of donors becomes too large, IDEA cannot guarantee real-time performance. Thus,

determining the optimal number of donors for the system is of prime importance but

it is very challenging. One way to solve this problem would be to start with a high

number of donors at first and then gradually make the system more personalized.

After IDEA collects data on a user for many meals, data from other donors will

become less meaningful because we expect that the ‘Generalized model’ will pick the

same person as a similar donor since the ‘definite segments’ are reused for next meal′s

eating action identification. This can easily be achieved with IDEA, since THAD

continuously extracts ‘definite segments’ and stacks it into the donor set. However,

this is left for future work.
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Figure 4.34: F1 Comparison For Combination Of Two Sensor-sets Using User-
Independent DNN Model (interpolation Features And Scale-scale & DoG Data). ORI
Is Orientation, ACCEL Is Accelerometer, And GYRO Is Gyroscope.

4.7.2 Sensor Selection

The IDEA prototype uses two devices: a smartphone and a wristband as seen

in Fig. 4.4. IDEA utilizes Myo as a wristband, which includes four sensor-sets: (1)

accelerometer (X, Y, and Z axis), (2) gyroscope (X, Y, and Z axis), (3) orientation

(W, X, Y, and Z axis), and (4) electromyogram (eight pods). However, not all

commercial wristbands include these four sensor-sets. To verify the feasibility of

IDEA using other commercial wristbands, we performed DNN for all combinations

of available sensors. Since we have four sensor-sets in our collected dataset, fifteen

combinations can be applied. When we apply the various combinations, we fixed

the same experimental conditions such as DNN architecture, segmentation, feature

extraction, etc. we hypothesize that the lack of good final performance using only

accelerometer or gyroscope sensors as seen in Fig. 4.33 is strongly related to the

challenges of using accelerometers that are discussed in above. As seen in Fig. 4.33,
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Figure 4.35: F1 Comparison For Combination Of Over Three Sensor-sets Using
User-Independent DNN Model (interpolation Features And Scale-scale & DoG Data).
ORI Is Orientation, ACCEL Is Accelerometer, And GYRO Is Gyroscope.

4.34, and 4.35, the most significant sensor-set is the EMG set because the combination

involving EMG sensors had a better performance compared to other combinations.

However, usage of devices with only EMG sensors would not be feasible due to the

poor segmentation performance of the EMG sensors as seen in Tab. 4.3. Although,

most of the commercially available smartwatches or wristbands do not yet include

the EMG sensors, they do include accelerometer, gyroscope or orientation sensors.

Fig. 4.33, 4.34 show that the orientation sensor is the second most significant sensor

and has reasonable performance even in the absence of EMG sensors. Moreover,

orientation values can be computed for devices that do natively include them by

using a combination of accelerometer and gyroscope sensors thus the usage of IDEA

with commercially available sensors is feasible.
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Figure 4.36: Different DNN Architecture Comparison. L-# Is The Number Of
Layers And N-# Is The Number Of Nodes For Each Layer.

4.7.3 DNN Architecture Selection

Theoretically, performance of a deep neural network (DNN) should improve as

the number of layers and nodes increases. However, in many practical scenarios, the

performance of a DNN architecture with a higher number of layers and/or nodes can

be poorer compared to the one with a smaller number of layers and/or nodes. This

is because having higher number of layers and/or nodes can result in over-fitting.

Therefore, determining the optimal number of layers and nodes is an important issue

for DNN architectures to be robust in real-world scenarios.

As discussed in Sec. 4.6.3 and 4.6.4, a DNN model, which has four layers and

256 nodes for each layer, showed the best performance. In these sections, we showed

that this DNN model overwhelms other machine learning models, but only one DNN
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architecture was experimented with. However, there may exist many other DNN

architectures that might have similar or comparable performances. Hence, in the

section, we explore other DNN architectures. There can be infinite possibilities for

combining the two parameters: (1) number of layer and (2) number of nodes for

each layer. Experimenting over all these possibilities would be impossible, so we

considered a few convenient numbers for these two parameters to obtain 20 different

DNN architectures. The number of layers were fixed to be either two, four, six, or

eight and the number of nodes for each layer were fixed to be one of 64, 128, 256, 512,

or 1024. The results for using these 20 different architectures for the same dataset is

seen in Fig. 4.36. A different number of donors (from 4 to 30) was used for training

each architecture resulting in 27 different trained models for each architecture. Donors

were selected randomly from a pool of 36 users and all tests were User-Independent.

As seen in Fig. 4.36, each of the 20 architectures has 27 ‘×’ markers. Each

marker is the average performance corresponding to training with a different number

of donors. Also, there are three line-graphs which display the minimum, average,

and the maximum F-1 scores. The highest F1-score of 0.97 was achieved by the

architecture with four layers and 256 nodes when trained with 27 donors. The lowest

F1-score of 0.83 trained with six donors for this architecture was similar to the best

lowest score across all architectures.

We found that architectures that had more than four layers often showed over-

fitting. Although loss values during training converged close zero, the performance

testing suffered. To solve this issue, we applied Batch Normalization after each hidden

layer. Batch Normalization [98] is a popular regularization technique to prevent over-

fitting.

Most architectures with more than six layers had high variance. It can be seen

in the Fig. 4.36 that a few architectures between ‘L-2 with N-64’ and ‘L-6 with N-
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256’ have similar performances with respect to average F-1 score as well as overall

variance. Any of these architectures could be selected and it would make intuitive

sense to select the one with the least parameters which is ‘L-2 with N-64’. However,

when we performed the same experiments without strong regularization we found

that the variance for ‘L-4 with N-256’ was lower than that for ‘L-2 with N-64’, thus

we selected the former architecture.

4.7.4 Distracted Actions

In the section, we experiment the eating action detection with five additional users

using IDEA (Instant Detection of Eating Actions) and Deep Neural Network (DNN).

To measure the IDEA‘s performance in noisy environment, these five users have made

the distracted activities with eating action during meal: 1) play with a smartphone,

2) touch their head and hair, 3) read a magazine, 4) free talking, and 5) play a laptop

game. As seen in Fig. 4.37, the average of F1 score for IDEA showed 0.79 when the

number of donors is eight. Also, IDEA showed the better performance as compared to

DNN based approach for all different number of donors. We performed an experiment

to further evaluate IDEA (Instant Detection of Eating Actions) with five additional

users in the presence of distracted eating conditions during the meals. The distracted

eating conditions were: 1) play with a smartphone, 2) touch their head and hair,

3) read a magazine, 4) free talking, and 5) play a laptop game. The purpose for

choosing these distracted conditions was to replicate noisy conditions that may occur

during extreme cases in real world usage. For the experiment, new five subjects were

recruited and followed the same data collection approach as discussed in Sec. 4.5.1.

Additional, each subject was instructed to replicate a particular distracted pattern

randomly throughout the meal. Although, most of the eating episodes in the real

world will have far less distracted eating conditions than the ones in this experiment,
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Figure 4.37: F1 Comparison For Five Addition Users With Distracted Actions

we hypothesize that by demonstrating the performance of IDEA in these conditions,

we can effectively demonstrate its robustness. The experimental results as seen in

Fig. 4.37, show a F1 score comparison between IDEA and a Deep Neural Network

(DNN). The DNN architecture that was selected for comparison was the one with

the best performance in our experiments as discussed in Sec. 4.6.4. IDEA has overall

better performance than the DNN, and achieves an F1 score of 0.79 with only eight

donors.

4.7.5 Limitations

According to our usability study discussed in Sec 4.4, we found that in general,

participants preferred the usage of smartwatch for monitoring food intake. However,

when it comes to other specialized wearables such as wristbands, subjects have their

own diverse preferences. For instance, any head mounted sensor was rejected outright

by the users. In summary, users prefer a system that can operate on wearables that

are already in use. A dedicated system only for food intake estimation may not be
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acceptable.

IDEA primarily operates with a wristband that can measure accelerometer, gyro-

scope, orientation, and EMG activity of the wrist. If the user does not want to use

a wristband, IDEA can also operate with a smartwatch. Although current commer-

cial smartwatches do not support EMG sensing, IDEA has reasonable performance

in the absence of EMG sensors as seen in Fig. 4.33, 4.34. An argument against the

usage of smartwatch is that users tend to wear smartwatches their left arm but eat

with their right arm. In such cases, eating action monitoring becomes infeasible.

Hence, actual users in real-world should be instructed to wear the smartwatch on

their dominant-hand.
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Chapter 5

CONCLUSIONS

In this dissertation, a pervasive diet monitoring system using multiple sensors was

presented to monitor: i) the intake food using the thermal map which provides crucial

information for fully automatic and accurate food recognition and ii) eating actions

using only a wristband sensor and without the need for collecting training data from

the user. For i) monitoring food, the contributions are three novel techniques for a)

image registration between thermal and color images, b) food segmentation, and c)

food identification.

Existing image registration techniques could not be used because of the differ-

ences in the nature of images taken from a thermal camera and color camera. Thus a

novel technique had to be developed to facilitate the image registration between the

thermal and color images. This enabled the fusion of knowledges obtained from the

visible spectrum and infrared spectrum which greatly enhanced the performance of

the food segmentation process. Critically, with this methodology, the food segmen-

tation could be performed without any user intervention which is a big step towards

high adherence. The high performance of food segmentation also directly contributes

to improve the food identification accuracy. Specifically, a combination of these tech-

niques helped me improve the state-of-art for food item recognition to 88.93% (an

improvement of nearly 25%). This was achieved using dimensionality reduction, fea-

tures fusion, and automatic and high quality food segmentation.

Then, for ii) automatic monitoring of eating actions, the results for various exper-

iments and comparisons with traditional machine learning techniques was presented.

It was demonstrated that automatic monitoring can be achieved in a plug-n-play
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manner without the need for any initialization from the user. We also showed de-

tailed experimental results demonstrating the efficacy of such a techniques for User-

Independent Scenarios which is very important for user acceptance. This was achieved

by using a novel automatic segmentation method for continuous activity recognition.

Although the segmentation method for monitoring of eating activity was utilized, it

can be used for automatic segmentation of any activity that uses wristbands. This will

greatly benefit future researches in this domain. Finally, summary is that the results

of three surveys to ascertain user needs and evaluate the usability of my approach

which can also provide insight to future researchers.
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[95] M. Šenk and L. Cheze, “Rotation sequence as an important factor in shoulder
kinematics,” Clinical biomechanics, vol. 21, pp. S3–S8, 2006.

[96] P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffu-
sion,” IEEE Transactions on pattern analysis and machine intelligence, vol. 12,
no. 7, pp. 629–639, 1990.

[97] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[98] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

112

https://www.myo.com/.

	LIST OF TABLES
	LIST OF FIGURES
	1 
	2 
	3 
	3.1 Overview
	3.2 Related Work
	3.3 Problem Statement
	3.4 System Architecture
	3.5 Methodology
	3.5.1 Image Registration
	3.5.2 Food Segmentation
	3.5.3 Food Identification

	3.6 Evaluations
	3.6.1 Food Segmentation
	3.6.2 Food Identification
	3.6.3 Execution Time

	3.7 Discussion and Future Works
	3.7.1 Usability of MT-Diet for diet monitoring
	3.7.2 Balanced diet recommendation
	3.7.3 Limitations


	4 
	4.1 Overview
	4.1.1 Intuition
	4.1.2 Integration with Nutrition Estimation Systems

	4.2 Related Work
	4.3 Problem Statement
	4.4 System Architecture
	4.5 Methodology
	4.5.1 Data Collection
	4.5.2 Extrema Segmentation
	4.5.3 Two Hierarchical Action Detection (THAD)
	4.5.4 User-Specific Modeling
	4.5.5 Interval Calculation and Warning System

	4.6 Experimental Results
	4.6.1 Metrics
	4.6.2 Feature Extraction 
	4.6.3 User-Dependent
	4.6.4 User-Independent
	4.6.5 IDEA
	4.6.6 IDEA Time Complexity

	4.7 Discussion
	4.7.1 Size of donor set
	4.7.2 Sensor Selection
	4.7.3 DNN Architecture Selection
	4.7.4 Distracted Actions
	4.7.5 Limitations


	5 
	REFERENCES



