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ABSTRACT 

Silicon photonic technology continues to dominate the solar industry driven by steady 

improvement in device and module efficiencies. Currently, the world record conversion 

efficiency (~26.6%) for single junction silicon solar cell technologies is held by silicon 

heterojunction (SHJ) solar cells based on hydrogenated amorphous silicon (a-Si:H) and 

crystalline silicon (c-Si). These solar cells utilize the concept of carrier selective contacts 

to improve device efficiencies. A carrier selective contact is designed to optimize the 

collection of majority carriers while blocking the collection of minority carriers. In the case 

of SHJ cells, a thin intrinsic a-Si:H layer provides crucial passivation between doped a-

Si:H and the c-Si absorber that is required to create a high efficiency cell. There has been 

much debate regarding the role of the intrinsic a-Si:H passivation layer on the transport of 

photogenerated carriers, and its role in optimizing device performance. In this work, a 

multiscale model is presented which utilizes different simulation methodologies to study 

interfacial transport across the intrinsic a-Si:H/c-Si heterointerface and through the a-Si:H 

passivation layer. In particular, an ensemble Monte Carlo simulator was developed to study 

high field behavior of photogenerated carriers at the intrinsic a-Si:H/c-Si heterointerface, 

a kinetic Monte Carlo program was used to study transport of photogenerated carriers 

across the intrinsic a-Si:H passivation layer, and a drift-diffusion model was developed to 

model the behavior in the quasi-neutral regions of the solar cell. This work reports de-

coupled and self-consistent simulations to fully understand the role and effect of transport 

across the a-Si:H passivation layer in silicon heterojunction solar cells, and relates this to 

overall solar cell device performance. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction to Solar Energy 

With the continuous increase in population and growth in industry, the world's energy 

needs continue to rise. This rise puts an enormous strain on all primary sources of energy 

such as petroleum, natural gas, coal, nuclear, and renewable energy to meet the world's 

energy demands. In 2017, the total energy produced in the United States was ~ 87.5 

quadrillion British thermal units (btu); of which 77.6% was produced by fossil fuels, and 

12.7% was produced by renewable energy (shown in Fig 1.1). 

 

Figure 1.1. Energy consumption in the United States (taken from www.eia.gov). 

 

 

http://www.eia.gov/
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The extensive use of conventional sources such as petroleum, natural gas and coal, and 

its effect on the environment has created a global conversation about alternative sources of 

energy. In recent times there has been a conscious effort by the world at large to create and 

consume a cleaner form of energy. In 2017, consumption of energy from renewable sources 

was 11% of the total energy consumed (see Fig. 1.2), of which the energy consumed from 

solar resources was only 6% of the total energy consumed from renewable sources. 

 

Figure 1.2. Renewable energy consumption in the United States (taken from 

www.eia.gov). 

 

Solar energy is predominantly produced by utilizing the concept of photovoltaic cells. 

A photovoltaic cell, more commonly known as a solar cell, utilizes the photoelectric effect 

to generate current. The photoelectric effect, proposed by Albert Einstein in 1905, 

theorized that the absorption of light (photons) by a material leads to the emission of 

photogenerated electrons [1]. If harvested correctly, these photogenerated electrons can be 

converted into current. Historically, the first practical silicon solar cell was demonstrated 
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by Bell Labs in 1954 [2]. These solar cells used were based on silicon (Si) pn junctions. 

Most first-generation designs of solar cells are based on semiconductor pn junctions. 

Briefly, when light shines upon a semiconducting material, the photons which have an 

energy larger than the bandgap are absorbed. These photons can then dislodge electrons 

from the lattice to create free carriers (electrons and holes). Traditionally, a built-in electric 

field is used to collect the photogenerated carriers. The built-in electric field is created by 

introducing impurities (doping) into the material. 

 

 

 

 

 

 

 

 

 

Figure 1.3. Efficiency chart for various technologies (taken from www.nrel.gov). 

 

Over the past decade, there has been tremendous effort to not only develop new solar 

technologies but also to maximize the efficiency of existing technologies. Figure 1.3 

(NREL efficiency chart) shows the increase in efficiencies for various solar cell 

technologies. It is evident that many different material systems have been explored in order 

to obtain high efficiency solar cells. 

http://www.nrel.gov/
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1.2 Silicon Solar Cell Technologies 

Solar cells based on crystalline silicon currently hold a very strong presence in the 

photovoltaic industry with global market share over 90%. The use of crystalline silicon as 

a photo-absorber has some inherent advantages, i.e. it is stable, abundant and very well 

understood. Previously, the microelectronics industry spent decades after the invention of 

the transistor to understand the properties of silicon. Consequently, solar cells based on 

silicon can reap the benefits of the lessons learnt by the microelectronics industry. In 

general, crystalline silicon solar cells generate power by absorbing sunlight, generating 

electron hole pairs, and collecting the photogenerated carriers. According to the Shockley-

Queisser limit based on the detail-balanced theory, a single junction solar cell limited by 

radiative recombination can achieve a maximum conversion efficiency ~ 33 % for the 

AM1.5 spectrum [3]. However, since crystalline silicon is an indirect bandgap material, it 

is limited by Auger recombination and theoretical predictions suggest that it can achieve a 

maximum conversion efficiency ~ 29.43% [4]. Therefore, the goal of creating novel device 

structures using crystalline silicon is to obtain or exceed the theoretical efficiency. There 

are several unique device structures that have led to high efficiency silicon solar cell 

technologies, such as the passivated rear emitter cell (PERC), which was developed by 

Green et al. at UNSW [5]. This structure optimizes the passivation of the rear contact, 

which improves the electrical properties and thus the overall conversion efficiency. PERC 

technology is highly compatible with existing PV production lines, and thus is a staple high 

efficiency silicon solar cell technology. Currently in 2019, LONGi solar holds the world 

record device conversion efficiency for PERC technology with an efficiency ~ 24.06% 
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with a bifacial monocrystalline silicon solar cell. The passivated emitter, rear locally 

diffused (PERL) structure is another high efficiency silicon technology which purportedly 

offers benefits over the PERC structure by using boron diffusions under the contact areas 

[6].  

To further maximize photogenerated carrier collection and improve device efficiencies, 

passivating and carriers selective contact structures are being utilized. These structures 

generally tend to use heterostructures to optimize collection of photogenerated electrons 

and holes, and utilize passivation layers in order to reduce recombination at 

heterointerfaces. One such technology is the tunnel oxide passivated contact (TOPCon) 

technology which  uses ultrathin SiOx layers on top of highly doped silicon to achieve 

passivation and selectivity; these cells consistently achieve high efficiencies [7]. Another 

relevant technology that utilizes the carrier selectivity and passivation concept is the silicon 

heterojunction solar cell technology, which is also the primary focus of this thesis. This 

technology was pioneered by Sanyo in the early 1990’s as the heterojunction with intrinsic 

thin layer (HIT) [8] cell, which used amorphous silicon layers on a crystalline silicon 

photo-absorbers. Since the early days, this technology has consistently delivered high 

efficiency single junction cells (>20%). In 2014, Panasonic reported world record 

efficiencies for their HIT technology with 24.7% and 25.6%  [9,10]. Currently, the world 

record efficiency for this technology is held by Kaneka with an efficiency of 26.7% [11]. 

Liu et al. provides a good overview of the various silicon solar cell technologies [12].  
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1.3 Introduction to Carrier-Selective Contacts 

It is imperative to minimize all sources of recombination to achieve a high efficiency 

solar cell. Considering that the bulk lifetime of crystalline silicon wafers has improved 

continuously over the last few years, a limiting loss mechanism that degrades solar cell 

performance is recombination at the contacts and surfaces. Popular silicon homojunction 

cell technologies such as PERC, PERL etc. minimize the losses due to recombination at 

the contact by reducing direct contact between the crystalline silicon and the metal, while 

the non-contacted area is passivated with a dielectric layer. However, such a strategy 

increases the process complexity; also, lateral transport becomes crucial in determining the 

overall performance. Glunz et al. have previously shown that there is a trade-off between 

open-circuit voltage (Voc) and fill factor (FF) due to resistive losses that are induced by 

lateral transport [13].  

Figure 1.4 shows a schematic diagram of a solar cell interacting with light. The incident 

light on the solar cell creates electron-hole pairs in the absorber layer. In a traditional solar 

cell architecture, the built-in electric field of the solar cell separates the photogenerated 

electrons and holes, which are then collected by the contacts. The photogenerated carriers 

can be lost due to recombination in the absorber layer or at the contacts. As mentioned 

earlier, the high lifetime (~ ms) crystalline silicon wafers facilitate a large diffusion length, 

which ensures that photogenerated carriers can reach the contact. However, recombination 

at the contacts can be a major factor in the degradation of solar cell performance. The 

reduction of recombination at the contacts enables the solar cell to support a higher 

photogenerated carrier population, and thereby a higher quasi-fermi level separation. The 
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quasi-fermi level separation is an indication of the open-circuit voltage of the solar cell. 

Kerr et al. have previously shown that, assuming all the photons can be trapped in a thin 

silicon wafer, thinning a silicon wafer from 200 μm to 20 μm can lead to an increase in 

open-circuit voltage from 750 mV to 790 mV [14].  

 

Figure 1.4. Schematic diagram of a solar cell. This diagram depicts the collection of 

photogenerated electrons and holes by specialized contacts. 

 

Modern solar cell architectures utilize passivating contacts to reduce recombination 

losses at the contact [15]. Passivating contacts are material structures that are placed on top 

of crystalline silicon (or any other absorber layer) which effectively suppresses carrier 

recombination. Ideally, a passivating contact not only suppresses recombination, but also 

facilitates efficient extraction of photogenerated carriers. Contacts to silicon solar cells can 

be quantitatively characterized by considering two parameters. Firstly, the recombination 
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current density ‘J0’, which is a measure of the current in the solar cell due to recombination 

processes. Cuevas et al. have previously studied the true meaning of the J0 parameter under 

equilibrium and under non-equilibrium condition (i.e. illumination) [16]. Secondly, the 

contact resistivity ‘ρc’ describes the resistive losses associated with the contact to the solar 

cell. In crystalline silicon solar cell technology, trade-offs between J0 and ρc are often made 

in order to obtain high efficiency solar cell designs. A pertinent example of this type of 

trade-off is the contact structure used in PERC cells, where the contact area is reduced to 

compensate for a relatively high J0 [17]. 

As mentioned above, reducing losses due to recombination is an effective strategy to 

enhance the performance of solar cells. In particular, passivation schemes aim to suppress 

minority carrier recombination. It is important to note that solar cells generate power by 

collecting majority carriers. The recombination current density (J0) is a measure of minority 

carrier recombination which not only depends on the defect state densities, but also on the 

conductivity of minority carriers. On the other hand, ρc is directly related to conductivity, 

i.e. a higher conductivity of carriers will lead to lower ρc’s. Therefore, to create an efficient 

charge collecting contact with low J0 and ρc, it is imperative to improve passivation while 

also creating asymmetry in the conductivities of the majority and the minority carriers. The 

asymmetry in conductivities or charge transport conditions of majority and minority 

carriers defines the selectivity of the contact. Electron selective contacts are contacts that 

collect electrons as majority carriers; they have a high electron conductivity and low hole 

conductivity. Hole contacts are vice versa. Therefore, carrier selective contacts are also 

specifically referred to as electron and hole contacts. Cuevas et al. have previously 
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explained the necessity and considerations required to create specialized contacts for solar 

cells [18]. 

There are several strategies that have been implemented to achieve selectivity. For 

homojunction technologies, selectivity is achieved by heavily doping the contact layers. 

Heavy doping reduces the minority carrier concentration and consequently reduces the 

conductivity, as σ (conductivity) = q (charge) × μ (mobility) × n (carrier concentration). 

The J0 is reduced due to the low minority carrier concentration and ρc is reduced due to 

high majority carrier conductivity (and concentration). Another approach to induce 

selectivity is by using a high or low workfunction metal (oxide) on the absorber layer to 

modulate surface carrier concentrations.  

The formation of a heterojunction between the crystalline silicon absorber and a wide 

bandgap material can be used to from carrier-selective contact that offers multiple levels 

of selectivity. The wide bandgap layer is very effective in reducing minority carrier 

conductivity as it strongly suppresses minority carrier concentration. In theory, the 

formation of a heterojunction can also offer another level of selectivity by creating 

favorable band offsets, i.e. a potential barrier for minority carriers and no potential barrier 

for majority carriers. For the purposes of silicon heterojunction solar cells (which is the 

main focus of this dissertation), layers of doped and intrinsic hydrogenated amorphous 

silicon are placed on the crystalline silicon absorber to form the carrier selective contact 

[19]. The hydrogenated amorphous silicon has a wider bandgap (~1.7 eV) than the 

crystalline silicon (~1.12 eV) and therefore can reduce minority carrier conductivity. The 

formation of the heterojunction between p-type doped amorphous silicon and n-type 
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crystalline silicon leads to sharp band bending in the n-type crystalline silicon. This band 

bending leads to the heterointerface to be strongly inverted, i.e. the concentration of 

minority carrier holes ≫ the concentration of the majority carrier electrons. The strongly 

inverted nature of this heterointerface and its effect on the performance of the silicon 

heterojunction solar cell will be discussed at various points in this dissertation. Finally, 

selectivity can also be achieved by introducing a thin dielectric layer (like SiOx) which 

presents asymmetrical tunneling probabilities for the carriers [20]. 

The use of carrier-selective contact structures can be used to further optimize solar cell 

designs for maximizing device performance. As mentioned earlier in this section, the 

reduction of J0 can lead to a gain in Voc, and a reduction in ρc can maximize the FF of the 

solar cell. However, the design of solar cells must also consider optical constraints. 

Therefore, the design of the carrier-selective contacts will involve tradeoffs in terms of 

doping and thickness of layers to ensure that the contact is optically transparent while 

ensuring efficient carrier extraction. 

1.4 This Work 

In this work, silicon heterojunction (SHJ) solar cell structures consisting of 

hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si) are considered. 

These cells use specialized structures known as carrier-selective contacts to maximize the 

collection of photogenerated carriers. In the case of SHJ solar cells, the carrier-selective 

contact consists of doped (p or n type) hydrogenated amorphous silicon [a-Si:H(p/n)] and 

intrinsic hydrogenated amorphous silicon [a-Si:H(i)] on a c-Si absorber. This structure is 

designed to selectively collect electrons or holes; hence the carrier-selective contact is often 



11 

 

also known as an electron or hole contact. The a-Si:H(i) layer is a crucial component in 

this structure as it passivates defect states at the a-Si:H/c-Si heterointerface, which also 

improves the selectivity of the contact and is instrumental in achieving high open circuit 

voltages (VOC's) [21]. Thus far, there have not been many detailed studies that rigorously 

study the effect of the a-Si:H(i) passivation layer on the transport of photogenerated 

carriers. In this work, the transport and collection of photogenerated holes through the hole 

contact in a SHJ solar cell structure is studied. In particular, the effect of the a-Si:H(i)/c-Si 

heterointerface and the a-Si:H(i) passivation layer on transport of photogenerated holes is 

analyzed. 

The novel structure of the SHJ solar cell introduces several complications in terms of 

understanding the transport of photogenerated carriers. The presence of high electric fields 

at the a-Si:H(i)/c-Si heterointerface affects the energy distribution function (EDF) of 

photogenerated carriers which leads to deviations from equilibrium assumptions. Also, 

there has been considerable debate on the role of defect assisted transport of 

photogenerated holes across the a-Si:H(i) passivation layer. There have been some studies 

in the literature that have attempted to investigate this issue, however, thus far no rigorous 

analysis has been undertaken to understand the role of microscopic physical mechanisms 

that assist photogenerated carrier collection in the SHJ structure. Simulation studies often 

employ the drift-diffusion model to study the electrical characteristics of solar cells. This 

is an efficient and accurate approach if the transport is near equilibrium; thus, quantum and 

non-semi-classical effects may be neglected. However, modern solar cells utilize novel 

device structures and new materials that lead to scenarios where the physics of transport is 
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no longer truly near-equilibrium. In the case of SHJ solar cells there are two crucial regions 

that require a detailed analysis. Firstly, the high field region at the a-Si:H(i)/c-Si 

heterointerface which is ~ 100 nm's and can affect the energy distribution function of the 

photogenerated carriers at the interface. Traditionally, high field transport is described by 

scattering properties of the bulk material which is of the order of 10-15 → 10-12 seconds. 

Secondly, the a-Si:H(i) passivation layer, carrier transport through this layer involves 

defect assisted transport. This layer is only a few nm's thick, where the transport is limited 

by defect capture and emission, which is of the order of 10-9 → 10-3 seconds. A single 

theoretical framework is unable to provide resolution on the physics of transport due to the 

vast variation in length and times scales of the limiting physical mechanisms.  

In this work, a multiscale simulation methodology is presented that rigorously studies 

transport and device behavior of the solar cell. The multiscale solver operates on three 

primary domains: 1) The drift-diffusion domain in the low field regions of the device. The 

drift-diffusion model is coupled to a global Poisson solver which calculates the electric 

fields and potentials in the device, 2) The ensemble Monte Carlo (EMC) domain, which 

describes transport in the high electric field region at the a-Si:H(i)/c-Si heterointerface. 

Theoretical models used by commercial simulators usually ignore the non-Maxwellian 

behavior of carriers under high fields, and lastly, 3) a KMC domain which describes defect 

assisted transport carriers through the a-Si:H(i) layer. Simulations conducted using 

commercial TCAD tools (Silvaco) are also used to supplement work presented in this 

thesis. The research work presented in this thesis offers a unique perspective and 

understanding of transport in a SHJ solar cell.  
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In Chapter 2, the drift-diffusion model is introduced. In particular, the derivation and 

the numerical implementation of the drift-diffusion method using finite difference methods 

is discussed. Also, the limitations of this approach are highlighted to set the stage for the 

need of advanced modeling approaches discussed in subsequent chapters.  

In Chapter 3, drift-diffusion modeling (using Silvaco) is used to study the contact 

resistivity behavior in hole contacts of SHJ solar cells. This is done by simulating the 

transmission line measurement experiment. The simulations and experimental results 

presented in this chapter help in the understanding of the considerations that must be made 

to optimize the various layers of the hole contact of a SHJ solar cell to maximize device 

performance. 

In Chapter 4, the ensemble Monte Carlo method is applied to study the energy 

distribution function of photogenerated carriers at the a-Si:H(i)/c-Si heterointerface. The 

results presented in this chapter illustrate that high field behavior leads to conditions that 

cannot be described by low-field semi-classical physics. 

In Chapter 5, the kinetic Monte Carlo method is applied to study defect assisted 

transport of photogenerated carriers through the a-Si:H(i) passivation layer. Also described 

here are the various physical mechanisms that are involved in the transport of 

photogenerated carrier across the a-Si:H(i)/c-Si heterointerface. The results presented in 

this chapter describe the conditions that are required for efficient transport of 

photogenerated holes across the a-Si:H(i)/c-Si heterointerface and the a-Si:H(i) passivation 

layer. 
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In Chapter 6, a strategy to self-consistently couple the drift-diffusion and ensemble 

Monte Carlo solvers is outlined. The results presented in this chapter depict the various 

challenges and strategies involved in coupling a drift-diffusion and an ensemble Monte 

Carlo solver for a bipolar device, i.e. a solar cell. 

In Chapter 7, a summary of conclusions is presented pertaining to the various 

methodologies that were used to analyze transport in a silicon heterojunction solar cell. 

Also, several strategies are suggested to improve and extend the capabilities of the 

numerical simulators that have been developed as part of this dissertation. 
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CHAPTER 2 

DRIFT-DIFFUSION MODEL 

A cornerstone of semi-classical transport theory is the Boltzmann transport equation 

(BTE), which for parabolic bands is given by 

                 
( ) ( ) ( )

( ) ( ) ( )'
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. .

, ' , , 1 , ',
r k

k

S k k f r k t f r k tdf qE
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− −    
                    (2.1) 

where f is the distribution function which gives the probability of occupancy of a state 

(r,k,t), v is the group velocity, and E is the electric field. The LHS of Eq. 2.1 describes the 

evolution of the distribution function. The first term describes the time-dependent change 

of the distribution function, the second term describes the change in the distribution 

function due to spatial variation, and the third term describes the change in the distribution 

function due to internal and external electric fields. The right hand side of the equation tells 

us how collision terms that describes scattering events change the distribution function; 

S(k,k') describes the transition probability from state k → k' and [1-f(k',t)] is the probability 

of the state k' being unoccupied. 

Even with continuous improvement in computational platforms and mathematical 

methods, the direct numerical solution of the full 3D BTE can be computationally 

extremely expensive, as it is a 7-dimensional (3 in momentum, 3 in space and 1 in time) 

equation in nature. Therefore, it is not uncommon for many device simulators to use 

approximate solutions that are then coupled to Poisson's equation for self-consistency. 

For simplicity, the 1D BTE is considered in Eq. 2.2, which can be simplified to a certain 

extent by utilizing the relaxation time approximation [22]. In steady state it leads to 
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where q is the elementary charge, m* is the effective mass and f0 is the equilibrium 

distribution function. Equation 2.2 assumes a parabolic bandstructure (m*v=ħk).  

Various transport models that can be derived from the BTE utilize "moments" of the 

BTE. Let us consider the first moment of the BTE by multiplying Eq. 2.2 with v (velocity) 

and integrating 

 2 0
*

f fqE df df
v dv v dv v dv

dv dxm 

− 
+ =  

 
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The current density can be given by 

 ( ) ( ),J x q v f v x dv=     (2.4) 

The RHS of Eq. 2.3 can also be written as 
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By using Eq. 2.5 into Eq. 2.3 we get 

 ( ) 2
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J x q E v dv q v dv
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
= − −    (2.6) 

 We evaluate the integral for the first term on the RHS by using integration by parts to get 

 ( ),
df

v dv v f f v x dv
dv



−
=  −    (2.7) 

As the distribution function is zero for v going to plus or minus infinity, the first term is 

zero and the second term gives us electron density n(x). 

 ( ) ( ),f v x dv n x=   (2.8) 
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The second term in Eq. 2.6 can be given by 

 ( )2 2, ( )
d

v f v x dv n x v
dx

=   (2.9) 

Now Eq. 2.6 can be written as 
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  (2.10) 

The drift diffusion equation is obtained by introducing a mobility 'μ', a diffusion 

coefficient 'D' (Eq. 2.11), assuming low-field transport conditions and using the Einstein's 

relation (Eq. 2.12). 

 2

* *
;       Bk Tq

v
m m
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 Bk TD

q
=   (2.12) 

Thus, we obtain the current density equation for electrons 

 ( ) ( )
( )

n n

dn x
J x q En x qD

dx
= +   (2.13) 

Similarly, the current equation for holes is given by 

 ( ) ( )
( )

p p

dp x
J x q Ep x qD

dx
= −   (2.14) 

Thus far we have been able to derive the current equations using the first moment of 

the BTE. Similarly, we can obtain the continuity equations from the BTE by using the 

zeroth moment. In this case we consider a time dependent BTE within the relaxation time 

approximation (Eq. 2.15) and then integrate it with respect to dv (Eq. 2.16). 
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The first integral term on the left-hand side gives us the change of concentration w.r.t time. 
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dv fdv
dt dt dt
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The second integral goes to zero as the distribution function is zero for v integrated 

between plus or minus infinity. The third integral gives the time dependent continuity 

equation for electrons and holes to be of the form 
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  (2.18) 

where, G - R are the generation recombination mechanisms such as Shockley-Read-Hall 

(SRH), Auger, radiative etc. The continuity equations and current density equations 

combined with Poisson's equation form the backbone of the drift-diffusion model.  

2.1 Poisson's Equation 

Poisson's equation describes the relation between the electrostatic potential and the 

charge density in the device for quasi-static conditions. In general, for spatially varying 

permittivity, it equals to 

 ( )      = −   (2.19) 

where, ε is the permittivity of the material and ρ is the charge density. For homogeneous 

systems, Eq. 2.20 can be written as 
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The term ρ represents all sources of charge in the system. In most devices, the charge 

is significantly affected by the presence defects. Thus, a more complete version of the 

Poisson's equation in 1D is of the form 
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where ρ represents the charge contribution due to acceptors, donors and dangling bonds. 

The expression for dangling the bond (mid gap) defects is given by Eq. 2.22 and the 

donor/acceptor type defects are given by Eq. 2.23 
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where N(E,x) is the density of states of the defects, f+/-(E,x) is the probability of occupation 

for positively/negatively charged amphoteric dangling bond (DB) states, and f(E,x) is the 

probability of occupation. In the context of SHJ solar cells which uses a-Si:H, the trap 

density function is used to describe the band-tail states (Eq. 2.24) which exist below the 

band edge, and the mid gap states (Eq. 2.27) [23] 
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where NVBT is the density of states of the localized defects, EV is band edge and E0 is the 

characteristic decay/Urbach energy. The probability of occupation for the localized states 

in equilibrium can be calculated by using the Fermi-Dirac distribution function 

 ( )1
1

1

E EF

kT

f E

e

−
=

+

  (2.25) 

Thus, the probability of a defect being unoccupied (f0) can be given by the relation 

 ( ) ( )1 0 1f E f E+ =   (2.26) 

The midgap states, which are caused due the dangling bonds, are defined by a Gaussian 

distribution 
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The midgap states are amphoteric in nature and their occupational probability is given 

by 
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where EF is the Fermi energy and U is the correlation energy. The nature of the defect 

states, their distribution, and their effect are discussed in greater detail in 0. 
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To accurately calculate carrier densities for general degenerate semiconductors, we use 
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where NC,V is the effective conduction/valence band density of states, EC,V is the 

conduction/valence band edge and EF is the Fermi level. The f1/2 function is the Fermi 

integral of order ½ that can easily be calculated using analytical approximations. 

2.2 Band Offsets 

To compute the electrostatic potential in homojunctions, one can use the simplified 

version of the Poisson's equation (Eq. 2.20) which assumes constant spatial permittivity 

and electron affinity levels. However, for the case of heterojunctions, these assumptions 

are no longer valid. Due to the spatial variation of various parameters, the energy band 

diagram (shown in Fig. 2.1) of heterostructure devices will exhibit discontinuities.  

 

Figure 2.1. Schematic diagram of a heterostructure. 
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The origin and exact determination of the band offset is still a matter of debate; however 

most simulation methods follow Anderson's model [24] 
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In order to include the effect of the spatial variation of parameters while calculating the 

potential, a ‘band parameter’ approach [16,17] was adopted, which takes into consideration 

the discontinuity in the intrinsic Fermi level of the device 
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where χ is the electron affinity and Eg is the band gap of the material. The subscript '1' 

denotes the reference material. 

2.3 Normalization and Scaling 

The variables in the drift diffusion model are usually implemented in a normalized 

form. Normalized variables make the algorithm more efficient and prevents issues like 

numerical overflow. The length is scaled by the Debye length (lDebye), the carrier density 

by the intrinsic carrier concentration (ni), and potential by the thermal voltage (Vt) 
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2.4 Finite Difference Approach 

The drift-diffusion model is a decoupled solution to a set of differential equations. 

These equations are solved over a spatial domain as boundary value problems. In this 

thesis, the finite difference method was used to approximate and solve the partial difference 
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equations. Poisson's equation, which is a 2nd order partial differential equation can be 

approximated using the central difference scheme, which in 1D can be given by 
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where dx is the spacing between node points, and ‘i’ is the node point index. 

2.5 Continuity Equation 

Earlier in this chapter, a time dependent continuity equation (Eq. 2.18) was briefly 

derived from the BTE. Equation 2.18 can also be utilized to derive a steady state continuity 

equation, which is given by 
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These steady-state continuity equations can discretized using finite differences. 

Equations 2.35 and 2.36 show the discretized forms of the electron and hole continuity 

equations 
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where B is the Bernoulli function that arises due to the Scharfetter-Gummel discretization 

scheme, ∆ is the distance between nodepoints, and ‘i’ is the nodepoint index. To include 

the effect of varying parameters across different materials, a band-parameter approach is 

used where θn and θp are band parameters for electron and holes respectively 
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where χ(x) is the spatially varying electron affinity, Nc,v is the effective conduction/valence 

band density of states, and the subscript ‘r’ denotes the reference material. The band-

parameters are included as in the continuity equation solution to account for varying 

material parameters. For electrons, φ=φ+θn, and for holes, φ=φ-θp 

2.6 Generation and Recombination Mechanisms 

The term on the right-hand side of Eq.’s 2.35 and 2.36 represents all the generation and 

recombination in the system. These mechanisms play a pivotal role in determining how the 

charge density varies within a device. For a solar cell, these mechanisms have great 

significance, as the recombination mechanism affects the dark current. The generation term 

determines the charge generated due to illumination which has a direct impact on the short 

circuit current calculations. The generation rate in 1D can be calculated by  
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where α is the wavelength dependent absorption, R is the reflectivity, P is power density 

of incident light, A is the cross-sectional area of the device, and hυ is the energy of the 

incident light. 

The main recombination methods that are considered are Shockley-Read-Hall (SRH) 

recombination, radiative recombination and auger recombination 
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where p and n are carrier densities, ni is the intrinsic carrier density, and τ is the lifetime 

 ( )2
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where B is the radiative coefficient 

 ( ) ( )2 2
Auger n i p iR C n np n C p np n= − − −   (2.42) 

where Cn,p are the Auger coefficients. 

2.7 Gummel Iteration Scheme 

Gummel's method solves the electron and continuity equations along with Poisson's 

equation in a decoupled manner (shown in Fig. 2.2). At first, the nonlinear Poisson equation 

is solved to provide an initial guess (potential, carrier densities) for the continuity 

equations. The solution of the continuity equations provides values of the carrier densities 

which are used by the linear Poisson equation to calculate new potentials. The new 
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potentials are then fed back into the continuity equations. This process is repeated until the 

solution for the potential using the linear Poisson equation converges.  

 

Figure 2.2. Gummel loop flowchart for the drift diffusion model. 

 

The partial differential equations used to form the drift diffusion model represent an 

Ax=b problem. The successive over relaxation (SOR) method has been used to solve this 

matrix problem. Each set of equations in the drift diffusion model must be solved iteratively 

until convergence to obtain stable charge densities and current density profiles. 

2.8 Technology Computer Aided Design (TCAD) tools 

Some of the work presented in this dissertation (most notably in Chapter 3) uses the 

Atlas device simulator of the commercially available TCAD tool Silvaco. The drift-

diffusion model in Atlas solves Poisson’s equation along with the continuity equations to 

determine device level properties. Atlas uses the finite-element method (FEM) to solve the 
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partial differential equations (PDE’s) as opposed to the finite-difference method that was 

implemented to solve the PDE’s for the in-house drift-diffusion solver described earlier in 

this chapter.  

The recombination mechanisms taken into account by using Atlas are the same as 

described in Section 2.6. Due to the nature of the heterointerfaces in the SHJ solar cell, 

thermionic emission and band to band tunneling (local and non-local) models were used to 

describe transport. The in-house drift-diffusion solver was calibrated with Atlas to ensure 

consistency of results. 

2.9 Conclusion 

The drift-diffusion model is an ideal method to study low-field, semi-classical 

transport. However, many modern devices have novel structures and materials due to 

which the physics of transport cannot be captured completely with low-field semi-classical 

transport theory. The drift-diffusion model has many underlying assumptions. In general, 

the model does not take into consideration the non-idealities and non-local behavior that 

arises due to high fields. It assumes that the charge carriers are always in thermal 

equilibrium. Extensions to the model have been made for high-field behavior by the ad-

hoc introduction of a field-dependent mobility and diffusion coefficient. In SHJ solar cells, 

relatively high electric fields exist at the a-Si:H(i)/c-Si heterointerface. To understand the 

behavior of photogenerated carriers at the heterointerface, a theoretical formulation is 

required that can treat the non-local behavior of the energy distribution function that arises 

due to high fields. The ensemble Monte Carlo method is an ideal tool to study such 

behavior, as discussed in Chapter 4.Equation Chapter (Next) Section 1 
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CHAPTER 3 

CONTACT RESISTIVITY MODELING 

Silicon heterojunction (SHJ) solar cell architectures consisting of hydrogenated 

amorphous silicon [a-Si:H] and crystalline silicon [c-Si] have emerged as commercially 

viable solar cell technologies due to their high cell efficiencies [19]. In part, high 

efficiencies are achieved by using device structures that use carrier selective and 

passivating contacts in order to efficiently collect photogenerated carriers, which in the 

case of SHJ solar cells are heterojunction stacks placed on the c-Si absorber (see Fig. 3.1). 

Simply put, carrier selective contacts are designed to collect majority carriers while 

blocking minority carriers. The principle of creating selective transport in contacts has 

previously been described by Würfel et al. and Cuevas et al. [19,20]. Selectivity is 

established by creating a large asymmetry in the conductivities of majority vs. minority 

carriers, i.e. high conductivity of holes and low conductivity of electrons for a hole contact 

and vice versa for an electron contact. In addition, a reduction in the surface recombination 

velocity of minority carriers also contributes to the increase in selectivity of a contact, as it 

reduces minority carrier recombination current. It would be ideal if a single material could 

offer multiple levels of selectivity; however, in reality this is difficult to achieve with just 

a single material on top of an absorber layer. In the SHJ solar cell structure investigated in 

this thesis, selectivity is achieved by depositing a combination of doped (n or p type) 

hydrogenated amorphous silicon [a-Si:H(n/p)] and intrinsic hydrogenated amorphous 

silicon [a-Si:H(i)] on an n-type c-Si absorber layer (see Fig. 3.1). In this structure, the doped 

a-Si:H creates the large asymmetry in the carrier conductivity between electrons and holes, 
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whereas the a-Si:H(i) provides crucial passivation at the a-Si:H(i)/c-Si heterointerface. It 

is also important to note that the contact structure includes an n-type indium tin oxide 

[ITO(n+)] layer that is placed over the doped a-Si:H. Even though this layer does not affect 

the selectivity of the contact, it does add another layer of complexity to the transport of 

photogenerated carriers through the contact structure.  

 

 

 

 

 

 

 

 

Figure 3.1. Schematic diagram of a SHJ solar cell. 

 

Previously, Brendel and Peibst described a parameter S (selectivity) (Eqn. 3.1) as a 

quantitative metric to evaluate the effectiveness of a contact [28] 

 log th

c c

V
S

J 

 
=  

 
 (3.1) 

where, Vth is the thermal voltage, Jc is the recombination current due to minority carriers, 

and ρc is the contact resistivity. The transfer length method (TLM) can be used to measure 

the contact resistivity and other resistive loss parameters in contact structures for solar cells 

[29]. In this chapter we consider a hole contact for a SHJ solar cell which consists of an a-



30 

 

Si:H(i)/a-Si:H(p)/ITO(n+)/Ag stack on a c-Si absorber. This method allows the analysis of 

a simpler device structure while capturing all the representative physics of the contact 

stack. Previously, several authors have attempted to characterize the behavior of hole 

contacts for SHJ solar cells. Lachenal et al. reported a contact resistivity as low as 0.24 Ω-

cm2 for an a-Si:H(i)/a-Si:H(p)/ITO(n+) stack for a SHJ cell with an efficiency of 22.4% 

[30]. Lee et al. obtained a contact resistivity as low as 0.38 Ω-cm2 for c-Si(p)/a-Si:H(i)/a-

Si:H(p)/ITO/Ag contact stack for a SHJ cell with an efficiency of 20.5% [31]. While these 

studies quantify resistive losses in various layers of the hole contact stack, they do not 

provide an insight on the transport mechanisms that contribute to these resistive losses. 

The hole contact structure being investigated in this chapter consists of two hetero-

interfaces, namely ITO(n+)/a-Si:H(p) and a-Si:H(i)/c-Si, that act as barriers and impede 

carrier transport, thus contributing to the overall increase in resistance of the contact stack. 

These resistive losses are detrimental to the overall fill factor (FF) and performance of the 

solar cell [32]. Several studies have been previously conducted to understand carrier 

transport at the a-Si:H(i)/c-Si heterointerface. Crandall et al. characterized hole collection 

through the a-Si:H(i) layer by transient capacitive experiments [33]. These studies 

concluded that photogenerated holes are collected via a 'hopping' mechanism rather than 

direct tunneling. Muralidharan et al. also concluded that holes are collected via 'hopping' 

by conducting simulations using the kinetic Monte Carlo method [34]. Taguchi et al. 

conducted temperature dependent dark J-V experiments on HIT cells and concluded that 

multi-step tunneling is the dominant mechanism for transport across the a-Si:H(i) at low 

voltages  [35]. Even though there are several studies that focus on the transport across the 
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a-Si:H(i)/c-Si interface, the ITO(n+)/a-Si:H(p) hetero-interface has not been explored in 

any great detail. Simulations conducted by Kanevce et al. concluded that tunneling through 

the ITO(n+)/a-Si:H(p) junction has a significant effect on the J-V curves of a SHJ solar cell 

[36]. However, most simulation studies have thus far treated the ITO as a Schottky contact 

whilst studying cell level properties [37]–[39].  

The simulations presented in this chapter complement experiments that were 

previously conducted by Leilaeiloun et al. who used the TLM technique to measure the 

contact resistivity of an a-Si:H(i)/a-Si:H(p)/ITO(n+) stack on a p-type c-Si wafer, and 

measured a contact resistivity as low as 0.1 Ω-cm2. Corresponding simulations calculated 

the contact resistivity (while treating the ITO as a semiconductor) by varying the a-Si:H(i) 

layer thickness and obtained agreement with experimental values [40]. This chapter 

describes a thorough analysis of transport through a hole contact stack [a-Si:H(i)/a-

Si:H(p)/ITO(n+)] on p-type c-Si. This is done by varying parameters such as the a-Si:H(i) 

layer thickness, a-Si:H(p) layer doping, ITO(n+) layer doping, temperature and defect 

densities at the a-Si:H(i)/c-Si interface. By considering a hole contact placed on a p-type 

c-Si wafer, the resistance of the contact structure can be accurately measured without 

having any losses due to minority carrier (electron) recombination. 

3.1 Theoretical Model 

A TLM structure (shown in Fig. 3.2) of the SHJ hole contact on p-type c-Si was 

recreated using the Silvaco (Atlas). The simulations are based on the drift-diffusion model 

shown in Chapter 2. However, instead of simulating the entire structure with all the contact 

pads, the simulation domain only consists of the pair of contacts that need to be probed to 
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determine resistance. This is done in order to reduce the size of the simulation domain and 

reduce simulation time. This reduction is a valid assumption as long as the effective transfer 

length (LT) is much lesser than the length of the contact pad. The simulations swept the I-

V for a pair of contacts while increasing the pad spacing to create the total resistance (RT) 

vs. contact pad spacing (L) plot (see Fig. 3.5). The contact resistivity can be obtained from 

this plot using Eq.’s 3.5, 3.6 and 3.7. The simulations assume the length of the contact pads 

to be 2 mm, and the contact pad spacing is varied from 250 to 2000 μm. All simulations 

and experiments were conducted in the dark, and the simulations assume the ITO/Ag 

interface to be perfectly ohmic. Experiments have shown that the resistive loss form the 

ITO/Ag interface is negligible. 

 

 

 

 

 

 

 

 

Figure 3.2. Schematic diagram of a TLM pattern for a SHJ solar cell. 
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3.1.1 Interface Physics 

The heterojunction contact stack we are analyzing consists of an a-Si:H(i)/a-

Si:H(p)/ITO(n+) stack on a p-type c-Si wafer. In this structure, carriers encounter potential 

barriers at the a-Si:H(i)/c-Si(p) heterointerface and the ITO(n+)/a-Si:H(p) heterointerface. 

The simulated equilibrium band diagram in Fig. 3.3 shows the potential barrier that 

impedes carrier transport at the a-Si:H(i)/c-Si(p) heterointerface. We include direct 

tunneling to model transport through the barrier and, thermionic emission to model 

transport over the barrier. The aforementioned models are built in the Silvaco software. 

The ITO(n+)/a-Si:H(p) junction (shown in Fig. 3.4) requires careful consideration as it 

forms the final barrier between the photogenerated carriers and the metal contact. In most 

simulation studies, the ITO has been considered to be a metallic contact with a 

workfunction, ϕITO. Kanevce et al. have previously shown that tunneling through the 

ITO(n+)/a-Si:(p) junction has a significant effect on the J-V characteristics of solar cells 

[18], and that the consideration of the ITO layer as a n-type semiconductor places stringent 

restrictions on parameters that can be used to conduct simulations to replicate realistic 

scenarios. It has already been established that the ITO is a semiconductor with a well-

defined optical bandgap [41]. For the purposes of a SHJ solar cell, the ITO is heavily n 

doped. The inclusion of the ITO as an n-type semiconductor forms a pn junction with the 

a-Si:H(p) emitter. Therefore, when positive bias is applied on the SHJ cell, the ITO(n+)/a-

Si:H(p) junction is reverse biased. The consequences of including the ITO as a 

semiconductor is discussed in greater detail in the results and discussion section. 
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Figure 3.3. Simulated equilibrium band diagram of the a-Si:H(i)/c-Si interface. 

 

The defect states in the a-Si:H are considered by including exponentially decaying 

states below the band edges [5] and mid gap states which are included by using the defect 

pool model [42]. The effect of chemical passivation is also considered by including defects 

at the a-Si:H(i)/c-Si heterointerface. This is done by adding a defect density at a single 

energy (midgap) at the heterointerface. All simulations consider an interface defect density 

~ 1010 cm-2 unless mentioned otherwise. A complete list of the base parameter set used for 

the simulations can be found in Table I. 
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Figure 3.4 Simulated equilibrium band diagram of the ITO(n+)/a-Si:H(p) heterointerface. 

(Inset) A zoomed in look at the hetero-interface where band to band tunneling occurs. 

 

3.1.2 TLM Theory 

The current transport in the TLM structure (shown in Fig. 3.2) is two dimensional. The 

current travels vertically across the ITO(n+)/a-Si:H(p) and a-Si:H(i)/c-Si(p) 

heterointerfaces, and laterally through the accumulation layer that is formed at the a-

Si:H(i)/c-Si(p) interface. Since, the hole contact is placed on p-type c-Si, the current path 

approximates a resistor which is modulated by the ITO(n+)/a-Si:H(p) and a-Si:H(i)/c-Si(p) 

heterointerfaces. The I-V characteristics for different contact pad spacings are calculated 

by conducting a voltage sweep. Total resistance (RT) for various contact pad spacings is 

obtained from Fig. 3.5a by calculating the slope from the I-V curve at 0 V. Several useful 

parameters can be extracted from Fig. 3.5b. The sheet resistance (Rs) can be extracted by 

calculating the slope and multiplying it with the contact width (W) (see Eq. 3.5).  The y-
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intercept in Eq. 5 is used to calculate the contact resistance (RC). The x-intercept is used to 

calculate the effective transfer length, as shown in Eq. 3.6. The contact resistivity (ρc) can 

then be calculated by using RC, LT and W (see Eq.’s 3.5, 3.6 and 3.7). By following this 

procedure, the simulations closely mimic the experimental extraction of parameters as done 

by the TLM method 

 2S
T C

R
R L R

W
= +  (3.2)

 
2 Slope

C
T

R
L =


 (3.3) 

 C C TR L W =    (3.4) 

3.1.3 Recombination 

The defect recombination in the bulk is modeled using traditional forms of the 

Shockley-Read-Hall (SRH), the radiative, and the Auger mechanisms (see Chapter 2). 

However, since the a-Si:H and c-Si layers are both p-type doped, bulk recombination plays 

a minimal role in affecting transport in the unipolar TLM structure. 

3.1.4 Temperature 

Contact resistivity variation was analyzed w.r.t to temperature in order to understand 

the limiting behavior of various transport mechanisms. For this purpose, a thermionic 

emission model [43] is included to describe the transport of carriers over the energy 

barriers. The effect of temperature on contact resistivity is further discussed in Section 3.2. 
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Figure 3.5. a) Simulated I-V curve obtained by conducting a voltage sweep for a pair of 

contacts. b) Simulated total resistance (slope of I-V curve in Fig. 4a) vs. contact pad 

spacing. 

 

3.2 Results and Discussion 

3.2.1 Variation of a-Si:H(i) Layer Thickness 

Figure 3.6a shows the simulated contact resistivity vs. the a-Si:H(i) layer thickness, 

where the green lines treat the ITO as a metallic contact with a workfunction. To treat the 

metallic contact, a Schottky barrier tunneling model [26,27] is included to describe 

transport through the barrier at the ITO/a-Si:H(p) interface. As can be seen in Fig. 3.6a, 

when ϕITO > 5.0 eV, contact resistivities as low 10-2 Ω-cm2 (for a 4 nm thick a-Si:H(i) layer) 

are obtained. However, when ϕITO is reduced to 4.8 eV, the contact resistivity increases by 

almost an order of magnitude. This increase in contact resistivity can be attributed to the 

increase in the barrier offset at the ITO/a-Si:H(p) interface. Simulations indicate that when 

ϕITO < 4.8 eV, a large barrier is created at the ITO/a-Si:H(p) interface which completely 

suppresses the current unless we resort to unrealistic doping levels (>1021 cm-3) in the a-

a) b) 
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Si:H(p) layer. Experimental measurements have shown ϕITO to be ~ 4.7 eV [Refs. 

28,22,23]. In the case of the a-Si:H(p) layer, Bivour et al. [49] and Psych et al. [50] 

demonstrated through experiment and simulation that a diborane (B2H6) gas phase doping 

~ 2100 ppm (~1019 cm-3) was required to achieve high fill factors. Thus, a low workfunction 

ITO on top of a high workfunction a-Si:H(p) layer will lead to a barrier offset resulting in 

photocurrent suppression at the ITO/a-Si:H(p) heterointerface.  

In Fig. 3.6a, the blue line represents the ITO being treated as an n-type semiconductor. 

The heavily doped ITO(n+) layer forms a np junction with the a-Si:H(p) layer. The electron 

affinity (χITO) for the ITO(n+) is equal to 4.5 eV, and as the ITO(n+) is doped ≈ 1020 cm-3, 

the Fermi-level lies ~ 0.12 eV above the conduction band which results in ϕITO < 4.5 eV. 

As discussed before, a low workfunction ITO is detrimental for carrier transport across the 

ITO(n+)/a-Si:H(p) heterointerface. However, high doping in the ITO(n+) layer is crucial as 

it causes steep band bending at the ITO(n+)/a-Si:H(p) interface, which facilitates band to 

band tunneling (see Fig. 3.4). This approach gives a better match with experiments while 

using realistic parameters. Table I shows the base parameters that were used in the 

simulation.  

Figure 3.6b shows the simulated (blues lines) and experimental (red) contact resistivity 

vs. a-Si:H(i) layer thickness for various a-Si:H(p) layer dopings. In Fig. 3.6b, the 

simulations (blue lines) treat the ITO as a semiconductor. As can be seen, the experimental 

results are best matched by a a-Si:H(p) doping = 1.8 × 1019 cm-3. Figure 3.6b also shows 

that increasing the a-Si:H(p) layer doping leads to lower contact resistivities. This can be 

attributed to increased tunneling current due to steeper band bending at the ITO(n+)/a-
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Si:H(p) heterointerface caused by the increase in doping. The simulated ρc increases from 

0.50 Ω-cm2 → 2.1 Ω-cm2 for an increasing a-Si:H(i) layer thickness from 4 nm → 16 nm. 

In comparison, the experimental ρc showed an increase from 0.48 Ω-cm2 → 1.9 Ω-cm2. 

The corresponding experimental series resistance increased from 1.2 Ω-cm2 → 2.7 Ω-cm2 

as a result of increasing the a-Si:H(i) layer thickness [22]. The experiments also observed 

that the difference between the series resistance and ρc remained constant (within statistical 

error) with increasing a-Si:H(i) layer thickness. This indicates that all other contributions 

to series resistance remain the same as the a-Si:H(i) layer thickness increases, and the 

increase in series resistance is mainly due to the increase in ρc. Increasing a-Si:H(i) layer 

thickness increases contact resistivity for a combination of reasons. Firstly, the increase in 

the a-Si:H(i) layer thickness increases the transport distance for the carriers across the a-

Si:H(i) layer. Secondly, the carrier density in the accumulation at the a-Si:H(i)/c-Si(p) 

heterointerface reduces by almost an order of magnitude as the a-Si:H(i) layer is increased 

from 4 nm to 16 nm. This causes the lateral transport through the accumulation layer to 

become more resistive. 
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Figure 3.6. a) Simulated contact resistivity vs. a-Si:H(i) layer thickness where the ITO is 

treated as a Schottky contact (dashed green lines) and as a semiconductor (solid blue line)  

b) Simulated (blue) and experimental (red) contact resistivity vs. a-Si:H(i) thickness. 

 

Figure 3.7 shows the same data plotted as a function of the a-Si:H(p) layer doping. It 

is observed that the contact resistivity decreases sharply as doping in the a-Si:H(p) layer 

increases. However, the decrease in contact resistivity is negligible at higher doping (>1020 

cm-3). The decrease in contact resistivity can be attributed to increased tunneling current at 

the ITO(n+)/a-Si:H(p) interface. However, after a certain point, an increase in doping does 

not effectively contribute to making the transport across the heterointerface less resistive. 

To further understand the limiting transport mechanisms across the ITO(n+)/a-Si:H(p) 

and the a-Si:H(i)/c-Si, we conducted TLM simulations w.r.t temperature. Figure 3.8a 

shows that contact resistivity increases with increasing a-Si:H(i) thickness (see section 

3.2.1), however the contact resistivity appears to decrease with increasing temperature. 

This result can be explained by the results in Fig. 3.8b, which shows the simulated contact 

resistivity (blue) vs. temperature for an 8 nm thick a-Si:H(i) layer, where the a-Si:H(p) 

a) b) 
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doping is 1.8 × 1019 cm-3. At a first order, the decrease in contact resistivity with increasing 

temperature can be attributed to an increase in the diode reverse saturation current (J0). J0 

is directly proportion to the square of the intrinsic carrier concentration, which increases 

with temperature. Also, the diffusivity of carriers increases with temperature. It can also 

be observed in Fig. 3.8b that the simulated contact resistivity decreases by almost an order 

of magnitude when the thermionic emission model is added. Our simulations indicate that 

there is a significant contribution of thermionic emission at the a-Si:H(i)/c-Si(p) 

heterointerface, whereas there is no contribution of thermionic emission at the ITO(n+)/a-

Si:H(p) interface. The simulations also indicate that the sheet resistance increases with 

temperature while the transfer length decreases. 

 

 

 

 

 

 

 

 

Figure 3.7. Simulated contact resistivity for different a-Si:H(i) layer thicknesses vs. a-

Si:H(p) layer doping. 

 

While there is some discrepancy at lower temperature, the simulations match the 

experimental (red) values almost exactly for high temperatures. The discrepancy in contact 
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resistivities at low temperatures can be due to the lack of a sophisticated mobility model in 

the simulation model at lower temperature. Also, our simulations did not consider changes 

in bandgap that can occur due to temperature variations. 

 

 

 

 

 

 

 

 

Figure 3.8. a) Simulated contact resistivity (red lines) vs. a-Si:H(i) layer thickness at 

different temperatures. b) Simulated contact resistivity (blue lines) and experimental 

contact resistivity (red line) vs. temperature for a a-Si:H(i) layer thickness = 8 nm. 

Simulated results treat the ITO as a semiconductor. 

 

3.2.2 Variation of Interface State Defect Density at the a-Si:H(i)/c-Si(p) Interface 

Figure 3.9 shows that the simulated contact resistivity (blue) vs. interface state defect 

densities at the a-Si:H(i)/c-Si(p) hetero-interface for a Si:H(i) layer thickness of 8 nm. An 

increase in the interface state defect density at the a-Si:H(i)/c-Si(p) heterointerface leads to 

a reduction in the accumulation layer density which makes lateral transport more resistive. 

It should be noted that even though there is a decrease in the carrier density at the a-

Si:H(i)/c-Si(p) heterointerface with increasing interface state defect density, the 

heterointerface still remains accumulated, i.e. the surface density of holes at the a-Si:H(i)/c-

a) b) 
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Si(p) >> acceptor density in the c-Si(p), even for interface state defect densities as high as 

1013 cm-2. The a-Si:H(i)/c-Si(p) heterointerface only starts to go out of accumulation when 

the interface state defect density becomes unphysical (~1014 cm-2). 

 

 

 

 

 

 

 

 

Figure 3.9. Simulated contact resistivities for different interface state defect densities at 

the a-Si:H(i)/c-Si(p) hetero-interface vs. a-Si:H(i) layer thickness. 

 

3.2.3 Variation of ITO Doping 

The decrease in contact resistivity shown in Figure 3.10 occurs due to the steeper band 

bending in the ITO(n+)/a-Si:H(p) junction caused by increasing the doping in the ITO(n+) 

layer; which in turn leads to increased tunneling current. It must also be noted that low ITO 

doping (< 1019 cm-3) can result in non-linear I-V curves from the TLM structure; which 

complicates the extraction of the total resistance and makes the process unreliable. We use 

a slightly higher doping for the a-Si:H(p) (~ 5 × 1019 cm-3) layer than presented in previous 

sections so that we could simulate a lower ITO doping. It is also important to note that a 

computational issue associated with using low doped layers in the ITO(n+)/a-Si:H(p) 
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junction is that the non-local band to band tunneling model being used suffers from 

convergence issues when the layers are completely depleted. 

 

 

 

 

 

 

 

 

 

Figure 3.10. Simulated contact resistivity vs. ITO doping. The simulated results treat the 

ITO as a semiconductor. 

 

Previous simulation studies conducted by Kanevce et al. [44,18] and Kirner et al. [52]  

showed the importance of the tunneling mechanism at the ITO(n+)/a-Si:H(p) junction. 

Kanevce et al. argued that as a n-type SHJ is forward biased, the ITO(n+)/a-Si:H(p) junction 

gets reverse biased resulting in the depletion of the a-Si:H(p) layer, thus, pushing photo-

carriers away from the ITO(n+)/a-Si:H(p) heterointerface. Their PSpice circuit model 

showed that the only way to reproduce experimental J-V curves was to have a tunneling 

mechanism that allows current transport across the ITO(n+)/a-Si:H(p) junction.  

Experiments conducted by Leilaeioun et al. [22] observed a drop in FF from 77.7% → 

65% by increasing the oxygen partial pressure from 0.14 → 0.85 mTorr. Increasing the 
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oxygen partial pressure leads to reduced doping as the oxygen vacancies that act as n-type 

dopants are removed. This drop in FF can be correlated to an increased ρc, which as shown 

by the simulations, increases from 0.50 Ω-cm2 → 1.33 Ω-cm2 when the doping is reduced 

from 1020 cm-3 → 6 × 1018 cm-3. 

As mentioned previously, experiments indicated that an increase in oxygen partial 

pressure led to a reduction of FF. A first order analysis might indicate that the increase in 

ρc is due to a reduction in ϕITO. However, if we assume that change in oxygen pressure does 

not affect the electron affinity, a decrease in doping would result in an increase of ϕITO as 

the Fermi-level would move close to the conduction band (see Figs. 3.11a and 3.11b). It is 

worth noting that for semiconductors, the absolute value of the workfunction is the 

difference between the vacuum level and the Fermi level. Figure 3.10 shows that ρc 

decreases as ϕITO decreases from 4.45 eV → 4.38 eV. In this case, a workfunction decrease 

is accompanied by a misalignment of the bands at the ITO(n+)/a-Si:H(p) (shown in Fig. 

3.11) which leads to reduced tunneling current, which in turn leads to an increase in ρc. 

Thus, we arrive at the conclusion that; 1) a high workfunction achieved by low doping in 

the ITO(n+) layer will lead to reduced tunneling at the ITO(n+)/a-Si:H(p) interface which 

will result in an increased ρc, and 2) a low workfunction achieved by  high doping in the 

ITO(n+) layer will lead to increased tunneling current and thus a lower ρc . 

3.2.4 Fill Factor Variation with Contact Resistivity 

In this section, the effect of contact resistivity on the FF of a SHJ solar cell is analyzed. 

These simulations were performed on an entire SHJ cell (see Fig. 3.1) where the a-Si:H(p) 

layer thickness = 7 nm, the a-Si:H(i) layer thickness is varied and the c-Si absorber is 180 
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μm. The doping in the a-Si:H(p) layer is = 1.8 × 1019 cm-3. To consider the effect of ρc on 

device performance, we added ρc (calculated by the TLM simulations) as an external 

resistance on the contact. 

 

 

 

 

 

 

 

 

 

Figure 3.11. a) Equilibrium energy band diagram at the ITO(n+)/a-Si:H(p) junction for an 

ITO(n+) doping = 1018 cm-3, ϕITO = 4.5 eV. b) Equilibrium energy band diagram at the 

ITO(n+)/a-Si:H(p) junction for a ITO(n+) doping = 1021 cm-3, ϕITO = 4.32 eV. (Inset) A 

close up of the ITO(n+)/a-Si:H(p) heterointerface. 

 

Similar to Section 3.2.2, Fig. 3.12a shows the contact resistivity vs. a-Si:H(i) layer 

thickness for an interface defect density of 1010 cm-2 and 1012 cm-2 at the a-Si:H(i)/c-Si(p) 

heterointerface. Figure 3.12b shows the corresponding simulated FF vs. a-Si:H(i) layer 

thickness for a full SHJ cell. The simulated contact resistivities (from Fig. 3.12a) for an 

interface defect density equal to 1012 cm-2 are shown next to their corresponding FF's. As 

can be seen, the FF's reduce as the a-Si:H(i) layer thickness increases (for both cases). 

However, the FF degrades sharply for a case of interface state defect density = 1012 cm-2 

a) b) 
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after 8 nm. Simulations indicate that FF degradation is small (~0.04) when ρc < 0.8 Ω-cm2, 

however the degradation is significant when ρc > 3 Ω-cm2. 

  

 

 

 

 

 

 

 

Figure 3.12. a) Simulated contact resistivities for different interface state defect densities 

at the a-Si:H(i)/c-Si(p) hetero-interface  vs. a-Si:H(i) layer thickness. b) Simulated Fill 

Factor (for different interface state defect densities) vs. a-Si:H(i) layer thickness. 

 

3.3 Conclusion 

In this chapter, simulations were conducted using the TCAD tool SILVACO to 

understand the effect of the ITO/a-Si:H(p) and a-Si:H(i)/c-Si heterointerfaces on transport 

of carriers and device performance. The ITO was explicitly treated as a n-type doped 

semiconductor, and hence the effect of the ITO(n+)/a-Si:H(p) junction on contact resistivity 

of the hole contact was quantified. Simulations conducted in this chapter determined that 

band to band tunneling is the dominant transport mechanism at the ITO(n+)/a-Si:(p) 

junction. Also, thermionic emission is the limiting transport mechanism across the a-

Si:H(i)/c-Si heterointerface at low temperatures. 

a) b) 
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Several simulation studies conducted previously treated the ITO as a metallic contact 

with a workfunction. This treatment becomes problematic as the ITO is a low workfunction 

material which is sputtered on top of a high workfunction a-Si:H(p) layer. This creates a 

Schottky barrier at the ITO/a-Si:H(p) heterointerface which suppresses transport of 

carriers. Simulations tend to suffer from convergence issues when experimental values of 

the ITO workfunction are used (which are low) and unrealistic material parameters are 

used in order to match experimental trends. However, in this chapter, the treatment of the 

ITO as a n-type semiconductor reveals that a low workfunction ITO (highly doped) leads 

to ideal conditions for band to band tunneling. This also leads to a more stringent set of 

realistic parameters that can be used to conduct the simulations.  

While we did pay attention to transport of carriers across the ITO(n+)/a-Si:H(p) and a-

Si:H(i)/c-Si heterointerface, we did not consider the role of defects in transport. Some 

experimental and simulation studies have suggested the possibility of multi-phonon 

assisted (hopping) transport across the a-Si:H(i)/c-Si layer; this effect was not included in 

the simulations conducted in this chapter. The inclusion of defect transport may add 

another layer of insight to the transport of carriers, as we can further understand when 

defects act as recombination centers, and if they can be used to improve device 

performance. The methodology presented in this chapter can be used to investigate novel 

carrier selective contacts such as MoOx and WoOx which are still in the early stages of 

being evaluated for the purposes of SHJ solar cells. 

Even though the simulations conducted in this chapter provide great insight into 

transport of carriers in hole contacts and their effect on contact resistivity, an inherent 
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limitation of such simulations arises from the assumptions made to drive a convenient drift-

diffusion model. The drift-diffusion model is derived from the Boltzmann transport 

equation by making several assumptions, such as velocity saturation of carriers, thermal 

energy distribution of carriers etc. The research conducted in this thesis will attempt to go 

beyond the limiting assumptions of the drift-diffusion model while studying transport in 

SHJ solar cells.  
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Table I 

Base parameters used for simulations in Chapter 3 

Parameters ITO a-Si:H(p/i) c-Si 

χ (eV) 4.5 3.9/3.9 4.05 

Eg (eV) 3.7 1.72/1.70 1.12 

 

Conduction Band DOS 7.91 × 1017 2.5 × 1020/2.5 × 1020 

 

2.28 × 1019 

Valence Band DOS 7.91 × 1017 2.5 × 1020/2.5 × 1020 

 

1.04 × 1019 

Electron Mobility 

(cm2/Vs) 

50 0.5/0.5 800 

Hole Mobility 

(cm2/Vs) 

50 0.1/0.1 400 

 

Peak Density of Band 

Tail States (cm-3) 

1018 1018/1018 1018 

Peak Density of Mid-

Gap States (cm-3) 

1016 1016/1016 1016 

Doping  

(cm-3) 

1020 1.8 × 1020/ 1014 

 

5 × 1015 

Thickness (nm) 70 15/10 180 × 103 

 

Equation Chapter (Next) Section 1 
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CHAPTER 4 

ENSEMBLE MONTE CARLO 

In Chapter 2 and Chapter 3, the theoretical framework for drift-diffusion modeling was 

introduced and used to study cell level properties of SHJ solar cells. It has also been 

established that the standard drift-diffusion model is limited by the inherent assumptions 

made while deriving it from the BTE. In particular, the standard drift-diffusion models that 

are used to study electrical characteristics of solar cells assumes low electric fields. Thus, 

such a model is not well suited for studying hot carrier effects. In the case of SHJ solar 

cells, there are two crucial regions where the standard drift-diffusion formulation may 

break down, and therefore requires a more complete theoretical analysis. Firstly, the high 

electric field region at the a-Si:H(i)/c-Si heterointerface which results from the band 

discontinuity, and secondly, the a-Si:H(i) layer where defect assisted transport may be 

dominant. In this chapter, the implications of high electric fields at the a-Si:H(i)/c-Si 

heterointerface will be discussed.  

Previously, Ghosh et al. [53] used ensemble Monte Carlo (EMC) simulations to 

investigate the effect of high electric fields on photogenerated holes at the a-Si:H(i)/c-Si 

heterointerface using a single band model. In this chapter, an in-house EMC solver is 

presented which extends the EMC approach developed by Ghosh et al. to model high field 

effects. A three-band warped non-parabolic model was developed and implemented to 

accurately simulate high field transport of photogenerated holes. This chapter describes the 

bulk EMC model and the implementation of a particle-based device simulator to study the 

effects of high fields at the a-Si:H(i)/c-Si heterointerface on photogenerated holes. 
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4.1 Bandstructure 

The valence band in c-Si consists of a heavy hole, light hole and split off band. As the 

heavy hole and light hole bands co-exist at the Γ point, this causes warping of the heavy 

and light hole bands, which is represented by the dispersion relation in Eq. 4.1. It is also 

important to note that warping of the bands causes the effective mass to have an angular 

dependence. Figure 4.1 shows a schematic diagram of the 3-band model that has been 

implemented 

 ( ) ( )
2 2

0

1 ,
2

A k
E k g

m
 =      (4.1) 

where, '-' refers to heavy holes, '+' refers to light holes and m0 is the fundamental mass of 

a free electron The term g(θ,φ) is defined as 
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  (4.2) 

where θ and φ are the polar and azimuthal angles of the wave vector k. A, B and C are 

inverse valence band parameters where A = -4.22, B = -0.78 and C = 4.80. The split off 

band is considered to be parabolic in nature and is 44 meV below the top of the valence 

band [54] with an effective mass ~ 0.15m0.  

To consider the effect of non-parabolicity in the heavy and light hole bands, an energy 

dependent factor β(E) is introduced into the dispersion relation [55].  
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The introduction of the non-parabolicity factor creates an implicit equation. To make 

things easier, β(E) is approximated by a piecewise continuous second order equation 
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where Eq. 4.4 applies to heavy holes and Eq. 4.5 applies to light holes. In subsequent 

sections in this chapter 1-β is simply referred to as β. 

 

 

 

 

 

 

 

 

Figure 4.1. Schematic diagram for three band model for the valence band. 
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4.2 Acoustic Scattering 

In this section, a brief derivation for an elastic acoustic scattering rate process 

considering non-parabolic warped bands is given. This is applicable for heavy and light 

hole bands, whereas a parabolic scattering rate has been used for the split-off band. To 

derive the scattering rate associated with acoustic phonons, one starts with the Fermi's 

golden rule that gives the transition rate from an initial state k to a final state k' 

 ( ) ( )
2'

0 '
2

k ,k k kM E E


 = −   (4.6) 

where ħ is Plank's constant, δ(Ek'-Ek) is the energy conserving delta function and |M0|
2 is 

the matrix element which is given by 
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where Ξac is the deformation potential, Vs is the sound velocity and k is Boltzmann’s 

constant. The total scattering rate out of an initial state k is defined by summing over all 

possible final states k'. Namely  
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Differentiating E (Eq. 4.1) w.r.t k we obtain, 
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where k can be written as  
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Combining Eq. 4.9-4.11, the RHS of Eq. 4.8 can be written as 
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On further solving we get 
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Finally, using Eq. 4.13, we can calculate the total energy dependent scattering rate as 
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where G(θ) is the overlap integral and it approximated as described by Wiley [56]. 

4.3 Non-Polar Optical Phonon Scattering 

An expression for non-polar optical scattering can be derived by using a similar 

approach as for acoustic phonons in Section 4.2. The matrix element for non-polar optical 

phonons is given by  
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where D0 is the optical deformation potential, ρ is the density, and N0 is the phonon 

occupation number which is given by 
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where ħω0 is the optical phonon energy. Following a similar procedure as in Section 4.2, 

the triple integral representing the total scattering from an initial state k' to all final states 

is given by 
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where E'=E ± ħω0. On solving Eq. 4.17, we obtain the energy dependent scattering rate, 

given by  
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where G(θ) is treated according to [38]. 

4.4 Selection of Final States  

The final states for the scattering mechanisms have to be calculated using a rejection 

mechanism as all scattering mechanism have an angular dependence [57]. A final angle is 

selected if it satisfies the condition 
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where r is a random number from a uniform probability distribution, and f is the angular 

distribution function. More details on the implementation of the rejection mechanism can 

be found in [39]. 

4.5 Drift Velocity 

Due to the warped non-parabolic nature of valence bands, the drift velocity has an 

angular and energy dependence. The drift velocity is given by  
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where E(k) is obtained from the dispersion relation given in Eq. 4.3, where the 1-β can be 

represented as β. 
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Substituting Eq. 4.21 in Eq. 4.20.  
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4.6 Theoretical Model 

In this chapter, a theoretical model is presented to understand the origin of hot carriers 

in SHJ solar cells. To understand the effect of high electric fields on photogenerated holes, 

a simulation model is presented that combines the drift-diffusion and bulk EMC methods. 

Figure 4.2a shows a schematic diagram of a SHJ solar cell, where drift-diffusion 

simulations were conducted over the entire domain using a commercial TCAD tool 

(SILVACO), and the EMC solution was applied to a very small area near the a-Si:H(i)/c-
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Si heterointerface. The simulations presented in this chapter do not consider the transparent 

conduction oxide (TCO) and the silver (Ag) contacts. 

 

 

 

 

 

 

 

 

Figure 4.2. a) Schematic diagram of SHJ solar cell with the simulation domains. The 

EMC solution is applied in the c-Si region near the a-Si:H(i)/c-Si heterointerface. b) 

Simulated band diagram at maximum power point ~ 0.65 V. 

 

Figure 4.2b shows the simulated band diagram of the SHJ cell at the maximum power 

point (~0.65 V). The simulated device considers a 10 nm thick a-Si:H(i) passivation layer. 

In order to generate potentials for a realistic device, the interface defect distribution at the 

a-Si:H(i)/c-Si heterointerface and the defect distribution in the a-Si:H bulk layers are 

considered [58]. From Fig. 4.2b we can see that the band bending due to the a-Si:H(i)/c-Si 

heterointerface extends well into the c-Si layer. Figure 4.3 shows the electric field profile 

in a strongly inverted SHJ solar cell, which corresponds to the band bending shown in Fig. 

4.2b. The photogenerated minority carrier holes traverse this high field or “inversion” 

region in the c-Si near the a-Si:H(i)/c-Si heterointerface in order to be collected as majority 

carriers in the a-Si:H(p) emitter layer. 

a) b) 
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Figure 4.3. Electric field at the front contact for a strongly inverted a-Si:H(i)/c-Si 

heterointerface in a SHJ solar cell at maximum power point voltage ~ 0.65 V. 

 

Similar to the methodology outlined by Ghosh et al. in [35], an Ensemble Monte Carlo 

(EMC) solver (discussed in the previous section) is employed to study hole transport in the 

high electric field region in the c-Si near the a-Si:H(i)/c-Si heterointerface. At first the 

potential and the electric field profiles are calculated at the maximum power point by the 

drift-diffusion model. Using these parameters as an input, the EMC solution is applied in 

the c-Si near the a-Si:H(i)/c-Si heterointerface (as shown in Fig. 4.4). The EMC domain 

extends from the edge of the a-Si:H(i)/c-Si heterointerface into the quasi-neutral regions of 

the c-Si with low electric fields < 5 kV/cm; thus, the EMC domain ~ 100-200 nm.  
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Figure 4.4. Flow of information between the drift-diffusion solver and the EMC solver. 

Also shown in this figure are the corresponding physical processes incorporated in the 

theoretical models of the corresponding solvers. 

 

The EMC domain is populated by injecting holes into the domain to replicate a current 

of 40 mA/cm2. The injection is performed at the boundary placed in the quasi-neutral c-Si 

region. A certain number of carriers are injected into the domain every 10 fs with a 

Maxwellian energy distribution and a half-Maxwellian momentum distribution. Reflective 

boundary conditions are implemented at this boundary to prevent the carriers from leaving 

the EMC domain (see Fig. 4.5). The simulation is conducted until the extracted current 

matches the injected current, and the domain population has stabilized. The extraction 

boundary is placed at the a-Si:H(i)/c-Si heterointerface. There are two strategies that were 

implemented to allow carriers to exit the EMC domain via the extraction boundary: 1) a 

tunneling coefficient was computed using the WKB method, and 2) a fictitious tunneling 

coefficient was used, i.e. manually setting the tunneling coefficient. A random number was 

generated, and then compared to the tunneling coefficient to select carriers for extraction. 

Finally, when steady state is achieved, the energy distribution function of holes at the a-
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Si:H(i)/c-Si heterointerface is analyzed. It is important to note that the main purpose of 

these simulations is to observe the energy distribution function of the holes at the a-

Si:H(i)/c-Si heterointerface. 

 

 

 

 

 

 

 

Figure 4.5. Visualization of the boundary conditions of the EMC domain. 

 

It should be noted that certain assumptions need to be made in order to justify the 

application of an EMC solver in solar cells. The EMC solves for hole transport in the c-Si 

absorber in the SHJ solar cell which is n-type doped (see Fig. 4.2a). However, due to the 

properties of the a-Si:H(i)/c-Si heterointerface, the surface density of minority carrier holes 

is orders of magnitude higher than the majority carrier electrons. The EMC solver is applied 

in this region where the minority carrier hole density is much higher than the majority 

carrier electron in the c-Si absorber layer. However, at some point in the quasi-neutral low 

field region, the majority carrier electron density surpasses the minority carrier hole 

density. It is assumed that there is no recombination of minority carrier holes in the EMC 

domain (including at the a-Si:H(i)/c-Si heterointerface); this is a fair assumption as the 

minority carrier hole density >> majority carrier hole density. Also, it is assumed that most 
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of the generation takes place outside the inversion region in the quasi-neutral region. The 

EMC simulator monitors the progress of photogenerated carriers in real space by 

calculating energy, velocity and real space positions. 

4.7 Results and Analysis 

As mentioned in Chapter 2, the drift-diffusion model does not account for the non-local 

effects of high field transport. 

 

 

 

 

 

 

 

 

Figure 4.6. Ensemble Monte Carlo simulation results for warped non-parabolic bands: a) 

Velocity vs. time for different electric fields. b) Population of carriers in each band. 

 

Figure 4.6a shows the transient velocity characteristics of holes for warped non-

parabolic bands. Figure 4.6b shows that around 80% of the population resides in the heavy 

hole band, thus the warping is important to describe valence band transport characteristics.  

A SHJ solar cell with a VOC ≈ 730 mV and an efficiency (η) ≈ 23% was simulated using 

the drift-diffusion model. The simulated structure considered an a-Si:H(p) emitter layer of 

7 nm thickness with doping NA ~ 1019 cm-3, and an a-Si:H(i) passivation layer of 10 nm 

a) b) 
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thickness. As discussed previously, initially the drift-diffusion model simulates the 

electrical characteristics of the entire device. Then the EMC is applied at the high electric 

field a-Si:H(i)/c-Si heterointerface (see Fig. 4.2a). The results presented in this section 

considered a 3-band warped non-parabolic approach (unless mentioned otherwise) to study 

the correlation between electric fields at the a-Si:H(i)/c-Si interface on the energy 

distribution function of the photogenerated holes.  

Figure 4.7 shows the energy distribution function (EDF) of the photogenerated carriers 

at the a-Si:H(i)/c-Si heterointerface for varying passivation at the heterointerface. A high 

quality heterointerface is achieved by having good chemical passivation, i.e. low interface 

state defect density. A low interface state defect density facilitates high electric fields at 

the a-Si:H(i)/c-Si heterointerface. Figure 4.7a shows the EDF of photogenerated holes 

when the interface state defect density (Dit) ~ 1010 cm-2, this scenario corresponds to 

devices with high efficiency. Figure 4.7b and Fig. 4.7c shows the EDF of photogenerated 

holes for interface state defect densities > 1011 cm-2. It is quite clear that the EDF is non-

Maxwellian in every case [59]. However, it can be seen that the average energy of the hole 

distribution decreases with increasing interface state defect density at the a-Si:H(i)/c-Si 

heterointerface. This is because an increase in the interface state defect density at the a-

Si:H(i)/c-Si leads to a reduction of the electric field at the heterointerface. In 0, it is shown 

that the average energy of the photogenerated carriers affects the transport of 

photogenerated holes across the a-Si:H(i) passivation layer. 
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Figure 4.7. Energy distribution function of photogenerated carriers at the a-Si:H(i)/c-Si 

heterointerface for an interface state defect density of a) 1010 cm-2, b) and c) >1011 cm-2. 

 

Figure 4.8a shows the EDF of photogenerated holes for a poorly passivated a-Si:H(i)/c-

Si heterointerface. The poor passivation (Dit ~ 1012 cm-2) leads to lower electric fields at 

the a-Si:H(i)/c-Si heterointerface. However, the average energy of the hole carrier 

population is still > thermal equilibrium (≈ 38 meV). In contrast, the average energy of the 

b) 

c) 

a) 
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hole carrier population in the quasi-neutral (low field) region is shown to be ~ 42.4 meV 

(see Fig. 4.8b), which is similar to the assumption of thermal equilibrium. Thus, it can be 

concluded that while the Maxwellian assumption works well for low field regions, it is an 

inaccurate assumption for high field scenarios. 

 

 

 

 

 

 

 

 

 

Figure 4.8. a) EDF of the photogenerated carriers at the heterointerface for a weakly 

inverted device. b) EDF in the quasi neutral region. 

 

Figure 4.9 shows a comparison between the 3-band warped model vs. a single band 

parabolic model for a poorly passivated (Dit ~ 1012 cm-2) a-Si:H(i)/c-Si heterointerface. 

Simulations indicate that the single band model underestimates the energy of the hole 

carrier population. 

 

 

 

a) b) 
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Figure 4.9. a) EDF using the three-band approach. b) EDF using a single parabolic band 

approach. 

  

4.8 Conclusion 

In this chapter, an EMC technique was applied to a SHJ solar cell structure to determine 

the effect of high electric fields on transport of photogenerated holes at the a-Si:H(i)/c-Si 

heterointerface. The EMC simulations determined that the high electric fields at the a-

Si:H(i)/c-Si heterointerface cause the photogenerated holes to exhibit non-Maxwellian 

behavior, however, simulations also showed that a Maxwellian distribution in the quasi-

neutral regions is accurate. In this chapter, only acoustic phonon and non-polar optical 

phonon scattering were considered. However, the EMC domain considers the a-Si:H(i)/c-

Si heterointerface, where the hole density (minority carrier) is many orders of magnitude 

higher than the electron density (electron density) at the heterointerface, thus making the 

a) b) 
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surface "inverted". A carrier-carrier scattering model would be a useful model to include 

into the bulk EMC to further the understanding of the hole behavior at the heterointerface.  

To understand the role of the a-Si:H(i) passivation layer on overall SHJ solar cell device 

properties, there are two regions that have transport properties that might deviate from 

semi-classical principles, namely, 1) the high electric field region at the a-Si:H(i)/c-Si 

heterointerface and 2) the a-Si:H(i) passivation layer itself. While the EMC is a perfect tool 

to analyze the high field behavior, it is not an ideal methodology to study defect transport. 

The EMC methodology is a solution to the BTE which is constricted in time by scattering 

rates which are femtosecond phenomena, however, transport across the a-Si:H layer is 

described by defect assisted transport which involves capture and emission processes by 

defects. These mechanisms happen on much larger time scales (10-9 - 10-3 sec) as compared 

to scattering phenomena. In the next chapter we introduce the kinetic Monte Carlo and its 

role in studying defect assisted transport.  
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CHAPTER 5 

KINETIC MONTE CARLO 

In Chapter 4, the behavior of photogenerated carriers at the a-Si:H(i)/c-Si 

heterointerface was studied using the ensemble Monte Carlo technique. This chapter 

focuses on the transport of photogenerated carriers across the a-Si:H(i) passivation layer. 

The concept of carrier selective contacts has previously been introduced in this thesis. For 

the purposes of a SHJ solar cell, a heterojunction stack comprised of a transparent 

conducting oxide (TCO), doped a-Si:H, and a-Si:H(i) on top of a c-Si absorber forms a 

contact structure that is selective to the transport of electrons/holes, as shown in Fig. 5.1a. 

Figure 5.1b shows that for an a-Si:H(p) emitter layer at the front contact, the a-Si:H(i) layer 

forms a potential barrier that impedes the collection of photogenerated holes that are 

generated in the c-Si absorber layer. However, this layer is critical for the performance of 

SHJ solar cells as it passivates the interface between the doped a-Si:H and c-Si; this allows 

the device to obtain high Voc’s and, consequently, high efficiencies [3]. a-Si:H is an 

inherently defective material due to the presence of strained and dangling bonds in the 

amorphous Si structure, resulting in the formation of band tails comprised of localized 

states, and mid-gap defect states. Transport of photogenerated holes through this barrier 

has been a subject of much discussion and research. Temperature dependent current-

voltage (J-V) [17] and capacitive decay experiments [15] have led to conclusions that 

defect assisted transport across the barrier plays a very important role in the collection of 

photogenerated carriers. However, most simulation studies that analyze the electrical 
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behavior of SHJ solar cells do not explicitly study defect assisted transport across the a-

Si:H(i) barrier [19,21,41].  

In this chapter, multi-phonon defect assisted transport of holes through the a-Si:H(i) 

passivation layer in a SHJ solar cell is simulated using an in-house kinetic Monte Carlo 

(KMC) simulator that was developed as part of this dissertation. The unique problem 

associated with defect assisted transport is that the time associated with defect 

capture/emission transitions can vary several orders of magnitude depending upon the 

nature of defects. The KMC approach allows consideration of processes with widely 

different time scales because it is an event driven methodology. In recent years, the KMC 

methodology has been applied to a wide variety of problems such as:  processing issues - 

the creation and migration of defects during various process steps [61], leakage currents 

through high-κ dielectrics [62], charge transport in organic light emitting diodes [63], 

current-voltage characteristics of polymer solar cells [64], growth conditions of crystals 

[65], organic solar cells [66] and polymer solar cells [67]. It has also been used to study 

transport and leakage mechanisms in dielectric materials that are used in memories [68]. 

The next generation of materials being investigated for the purposes of forming carrier 

selective contacts include many transition metal oxides (TMO's). In particular, titanium 

oxide (TiOx) has been reported as an electron selective contact [69], and tungsten oxide 

(WoOx) and molybdenum oxide (MoOx) have been investigated as hole selective contacts 

[63,64]. These materials have unique defect states due to the presence of oxygen. Thus, 

defect chemistry and defect assisted transport need to be given special consideration in the 

transport properties of carrier selective contacts. There are several simulation studies in 
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literature that have investigated novel TMO's for the purposes of CSC solar cells [65,66]. 

However, these studies use commercial tools that greatly simplify the description of defect 

assisted transport. 

The kinetic Monte Carlo (KMC) algorithm is a stochastic method to solve a Markov 

chain. This method was initially used to study the physics of surface reactions; a model to 

describe physics at the atomistic level and relate it to microscopic kinetics. In other words, 

a study of the individual atoms reacting at the surface and correlating these reactions to 

macroscopic characteristics such as reaction rates of the adsorbates [74]. Therefore, a 

unique problem emerged in terms of time scales as the motion of atoms occurs over a 

period of femtoseconds and the macroscopic properties vary over a much larger time 

period. Typically, a Molecular Dynamics (MD) approach can be used to study such a 

system. However, a MD approach discretizes time in equal lengths which is determined by 

vibration of the chemical bonds. Therefore, even though a MD approach is ideal to study 

microscopic properties at sub picosecond time scales, it is computationally extremely 

expensive to study macroscopic behavior at larger time scales [75]. To fully correlate 

microscopic phenomena at short time scales with macroscopic phenomena at larger time 

scales it is necessary to bridge the time scales. The KMC proves to be a very effective tool 

in bridging the information between different time scales [76].  
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Figure 5.1. a) Schematic diagram of the SHJ solar cell indicating the drift-diffusion and 

KMC simulation domains and b) the energy band diagram of a SHJ solar cell at 

equilibrium at the front contact. 

 

5.1 Defect Assisted Transport 

Most commercial simulators employ the drift-diffusion model to study the electrical 

characteristics of solar cells. While this model is more than sufficient for describing low 

field diffusive transport; any non-idealities or deviation from semi-classical transport is 

added as a correction factor to the generation-recombination terms or as a boundary 

condition to the current equations. Trap assisted tunneling is usually added as a correction 

to the Shockley-Read-Hall recombination term by using a field effect term 'Γ' (Eq. 5.1).  
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 (5.1) 

where τn,p is the minority carrier lifetime, and ET is the energy of the trap. There are several 

models to analytically determine the value of Γ [70,71]. Γ is quite often also utilized as a 

local quantity which is dependent on local variables. While Γ does include some interaction 

a) b) 
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with phonons it cannot explicitly describe 'hopping'. Hopping transport is crucial in devices 

where the transport layer is defective.  

In this chapter, a combination of drift-diffusion and KMC methods are used to study 

transport of photogenerated carriers across the a-Si:H(i) passivation layer. As shown in 

Figure 5.1a, drift-diffusion modeling is employed in the bulk of the device structure, while 

the KMC method is used to study the transport of photogenerated holes across the a-Si:H(i) 

passivation layer. At first, drift-diffusion simulations are conducted over the entire device 

domain to obtain the energy band profiles, quasi-Fermi levels and electric fields for a given 

voltage. The valence band profile, hole quasi-Fermi level, electric field, and band tail defect 

distribution in the a-Si:H(i) passivation layer are used to setup the KMC solver domain. A 

hole carrier distribution is initialized at the a-Si:H(i)/c-Si heterointerface, and then the 

KMC methodology is used to model the transport of carriers across the a-Si:H(i)/c-Si 

heterointerface and through the a-Si:H(i) passivation layer. All the simulations presented 

in this chapter consider an a-Si:H(p) layer thickness ~ 10 nm with a doping ~ 1019 cm-3. 

The drift-diffusion and KMC simulations do not include the TCO and the Ag contact. 

5.2 Band-Tail Defects 

Due to its amorphous nature, a-Si:H has many defect states that arise due to deviations 

from the crystalline Si structure, which lead to electronic states in the forbidden gap [79]. 

Primarily, strained Si-Si bonds lead to localized band-tail defect states, which are below 

and above the conduction and valence band edges respectively, these localized states 

below/above the band edge can be described by an exponential decay model. 
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where NVBT is the peak valence band density of states (~ 2 × 1021 cm-3 eV), EV is the valence 

band edge energy and E0 is the characteristic decay/Urbach energy (~ 45 meV) [60]. The 

occupation of the band-tail states is decided based on the Fermi-Dirac distribution function 

where the Fermi level is the device Fermi level (Eq. 2.26). 

5.3 Mid Gap Defects 

Defects in the amorphous silicon bandgap originate from weak Si-Si bonds and 

dangling Si bonds. It is widely agreed that the density of dangling bonds is caused due to 

a chemical equilibrium established between the inter conversion of Si-Si weak bonds and 

Si dangling bonds. The electronic states due to dangling bonds can take up a range of values 

and charge states including neutral, positive and negative. Thus, dangling bond states are 

amphoteric in nature. The defect-pool model is an analytical model that can predict the 

mid-gap defect density in amorphous silicon. In device grade amorphous silicon, most mid-

gap states result from singly hydrogenated Si-Si bonds [24] 
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where Ev0 is the characteristic energy, f0(E) is the occupation function for neutral defects 

and P is a Gaussian function.  
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Figure 5.2. Density of mid gap states calculated by the defect-pool model (implemented 

in Matlab). a) Density of defect states in intrinsic amorphous silicon. b) Density of defect 

states in n-type silicon. 

 

Figure 5.2 shows the distribution of amphoteric dangling bond states as described by 

the defect-pool model, where D0 is a neutral state (occupied by one electron), D+ is a 

positively charged state (occupied by zero electrons), and D- is a negatively charged state 

(occupied by two electrons). The distribution of mid gap states in a-Si:H(i) is shown in 

Figure 5.2a where the Fermi level is considered to be 1.05 eV. Figure 5.2b shows the mid 

gap states of n-type doped a-Si:H with a Fermi level of 1.30 eV. While implementing the 

defect-pool model, the occupation of the mid-gap states is decided by the device Fermi 

level (see Eq. 2.29). 

5.4 Initialization of the Carrier Distribution 

Once the KMC domain is established with the description of band-tail and mid-gap 

defects in energy space and real space, the carrier distribution of holes at the a-Si:H(i)/c-Si 

a) b) 
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heterointerface is used as an input. In Chapter 4, an ensemble Monte Carlo method was 

described which calculates the energy distribution of photogenerated holes at the a-

Si:H(i)/c-Si heterointerface [40]. In this section, the initialization of equilibrium 

(Maxwellian) and far from equilibrium (non-Maxwellian) carrier distributions is described 

by using analytical techniques. 

5.4.1 Maxwellian Distribution 

An equilibrium distribution of carriers can be generated by considering a Maxwellian 

distribution function 

 ( ) exp
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E
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  (5.4) 

where E is the energy, and Eav is the average energy per particle for a Maxwellian 

distribution ~ 1.5kT. We apply the inversion method [80] to the normalized cumulative 

distribution function (shown in Eq. 5.5) in order to use a random number 'r' to generate the 

Maxwellian distribution 
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Solving the integrals in Eq. 5.5 leads to 

 ( )
3

ln
2

E kT r= −    (5.6) 

where k is the Boltzmann's constant and T is the temperature and r is random number 

between 0 and 1.  
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5.4.2 Gaussian Distribution 

A far from equilibrium (non-Maxwellian) distribution can be generated by using a 

Gaussian distribution function 
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where E is the energy, μ is the mean energy of the distribution and σ is the standard 

deviation. This approach represents a carrier distribution that occurs under the effect high 

fields (as described in Chapter 4).   

5.5 Transition Mechanisms 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Schematic diagram of the various transport mechanisms that assist the 

photogenerated holes across the barrier layer. We consider multi-phonon injection (MPI) 

for transitions into the a-Si:H(i) passivation layer, defect to defect (hopping) mechanisms 

for transport within the layer, and Poole-Frenkel and multi-phonon defect emission for 

emission from the layer 
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In this chapter, the KMC solver simulates quasi-1D transport across the a-Si:H(i) 

passivation layer. This is done by creating transition rate tables that describe the various 

physical mechanisms associated with carrier transport. Once the appropriate transition is 

selected based on the transition tables, we choose the time associated with the selected 

transition using a second random number. In this section the various transport mechanisms 

that are considered for injection into the barrier, transport within the barrier, and extraction 

from the barrier are described (see Fig. 5.3).  

5.5.1 Tunneling 

In the process of tunneling, a carrier can cross a potential barrier which under semi-

classical considerations would otherwise be impossible. This mechanism depends on the 

height (energy) of the barrier and the thickness (length) of the barrier. In devices at the 

nano-scale level or devices with novel structures (heterojunctions, quantum wells etc.), 

tunneling is often a dominant mechanism. Tunneling is often characterized by a tunneling 

transmission coefficient T(E) which is a measure of the probability that a particle can cross 

the potential barrier. A simple way of determining the transmission coefficient is given by 

the Wentzel-Kramers-Brillouin (WKB) method 

 ( )
( )2 x Edx

T E e
− −=   (5.8) 

A more accurate method to describe the transmission coefficient is by using the transfer 

matrix method [81]. We have implemented the WKB method for simplicity. And after 

some investigation it was found that for the triangular barrier under consideration, the 

WKB method and the transfer matrix method gave quite similar results. 
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Figure 5.4. Transmission coefficient across a piecewise linear barrier calculated by the 

WKB method and transfer matrix method. 

 

5.5.2 Elastic Injection and Emission from Traps 

The injection of charge from a semiconductor to a defect in an insulator is a crucial 

mechanism that contributes to current transport in insulators and amorphous materials. In 

the specific case of the SHJ solar cell being considered in this thesis, a photogenerated hole 

at the a-Si:H(i)/c-Si heterointerface can be injected into the band-tail states of a-Si:H(i) 

through an elastic process when energetically allowed. The rate associated with an elastic 

transition is derived from Fermi’s golden rule [82]  

 22 dn
p T

dE


=   (5.9) 

where T is the matrix element associated with a tunneling transition and dn/dE is the 

derivative of the density of states. Figure 5.5 shows a schematic diagram of a carrier that 

is energetically at the same level as the defect state. 
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Figure 5.5. Elastic tunneling from conduction band to defect level. 

 

According to Bardeen [83], the matrix element for a tunneling transition can be written 

as 

 ( )*
rl r l lT H E dr = −   (5.10) 

where ψl is the wave function of the particle, ψr is the wave function of the defect, H is the 

Hamiltonian of the system and El is the energy of the particle. The particle (electron/hole) 

has a plane wave description while the defect is assumed to have an exponentially decaying 

wave function. 
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where kD = 2πED/ħ2, kD is the wave vector of the defect and ED is the energy of the defect 

w.r.t the band edge. The defect is assumed to have a δ - function like behavior. Figure 5.6 

shows the schematic description of wavefunction representation of the carrier and the 

defect state. 
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Figure 5.6. Wavefunction description of elastic tunneling. 

 

In Chapter 4, it was shown that in the case of valence bands, the heavy hole and the 

light hole bands are warped in nature and the split off band is assumed to be parabolic in 

nature. It was also shown that most of the carriers in the high field region reside in the 

heavy hole and light hole bands. To accurately represent the physics, the dispersion relation 

should include the warping of the valence bands. However, warping introduces an angular 

dependence which makes the derivation quite difficult. Thus, this is a limiting assumption 

that has been employed in this thesis in order to calculate elastic tunneling of holes into 

traps. Lundström et al. previously showed that the transition rate (Γ) between a 

semiconductor and a defect in an insulator is given by 
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where ms is the effective mass in the semiconductor, mi is the effective mass in the insulator 

(a-Si:H(i) in our case), Es is the energy of the carrier in the semiconductor, ED is the defect 

depth, f(Es) is the Fermi-Dirac probability of an occupied state, and T(Es) is the 

transmission coefficient from the energy state in the semiconductor to the defect state in 
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the insulator. Similarly, the emission rate of a carrier from a defect state to the 

semiconductor is given by 
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where 1-fs(E) is the probability that the energy state E is unoccupied. All other terms retain 

the same meaning as given in Eq. 5.12. 

5.5.3 Inelastic Injection and Emission from traps 

The presence of various defect energy levels in the barrier layer provide many options 

of the final states that are now accessible to the carrier. Carriers can tunnel to these states 

via a multi-phonon assisted process as shown in Fig. 5.7. Herrmann and Schenk [84] 

derived a single mode approximation where all the states are coupled to a single phonon 

mode characterized by an energy ħω0. The coupling to phonons in the barrier is 

characterized by an effective phonon energy nħω0 (where n is an integer) and two coupling 

constants (the lattice relaxation energy and the Huang-Rhys factor). Multi-phonon 

transitions are only allowed for energies that correspond to carrier-phonon coupled states, 

i.e. Em = E + mħω, where m is an integer. Due to the strong scattering present in a-Si:H (as 

it is an amorphous/defective material), energy is not always conserved. The lack of 

conservation in energy is accounted for by assuming broadening of the states, which is 

usually taken to be a Lorentzian distribution in energy. For simplicity, in our simulations 

we approximate the broadening of the states with a square function with a width of 10 meV 

centered around the selected energy state Em.  
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Figure 5.7. Injection and extraction of carriers via multi-phonon tunneling. 

 

The formalism developed by Hermann and Schenk describes the rate of multi-phonon 

assisted capture by a defect as 

 ( ) ( ) ( ) ( )
( )

1 , ,m n

E xt

N E f E T E x c E x dE


− = =    (5.14) 

where N(E) is the 3D density of states in the semiconductor (see Eq. 5.15), f(E) is the 

occupational probability, T(E,x) is the transmission coefficient from an energy E to the 

defect state present at a distance x, and cn is the capture rate given by Eq. 5.16. It is assumed 

that N(E) implies a 3D density of states with parabolic bands 
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where c0 is derived from a 3D delta like potential [85] and is given by  
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where θ0 is the electro-optical energy in the amorphous silicon barrier (see Eq. 5.18), rt is 

the localization radius of the trapped carrier and the Eg is the band gap of the amorphous 

silicon barrier 
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where F is the electric field in the barrier.  

The multi-phonon transition probability Ln(z) is given by 
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where S is the Huang-Rhys factor, In(z) is a Bessel function of the order n and 𝑧 =

2𝑆√𝑓𝐵(𝑓𝐵 + 1), and fB is the Bose-Einstien distribution function which gives the phonon 

occupation number. It is important to note that ED - E > 0 corresponds to a scenario where 

the carriers absorb phonons (gain energy) and is exponentially weighted down as opposed 

to an emission process. A more detailed explanation of these terms can be found in [65]. 

Using Eq's 5.14-5.19, we arrive at the total rate of capture by a defect for absorption and 

emission 
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Similar to multi-phonon injection, carriers can also undergo multi-phonon emission 

from the defects into the extended states of the semiconductor [65]. This transition can be 

modeled according to 

 ( ) ( ) ( ) ( )
( )

1 1 , ,m n

E xt

N E f E T E x e E x dE


− = = −     (5.21) 

where 1-f(E) is the probability that the state is unoccupied and en is the emission rate 
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where all terms have same meaning as Eq. 5.16. The total rate of emission from the defect 

state to the extended state in the semiconductor is given by 
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5.5.4 Defect to Defect 

Thus far we have discussed mechanisms that describe charge injection into and charge 

extraction from a barrier. A core component of transport within an amorphous barrier layer 

with defects is the 'hopping' of charge between defects. The defect is assumed to have a 

delta like defect potential whose wavefunction is given by Eq. 5.24. 
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where rD is the localization radius. The charge transport between defects can be elastic and 

inelastic (shown in Fig. 5.8). If the initial and final states are at the same energy then the 

transport will be elastic, whereas, if the initial and final defect are at different energy levels, 

then the carriers must emit or absorb a phonon in order to make the transition. 

 

 

 

 

 

Figure 5.8. a) Elastic defect to defect transition. b) Inelastic defect to defect transition. 

 

The transition rate between defects for elastic and inelastic transitions is given by Miller 

- Abrams hopping model [86]  
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where Tij is the transmission coefficient initial defect state 'i' and final defect state 'j', ∆E = 

Ej - Ei, and ν is the lattice vibration frequency ~ 1013 Hz, which is a measure of interaction 

of a carrier with the crystal lattice per second. 

5.5.5 Poole Frenkel Emission 

Carriers that are trapped in a defect state can be thermally injected into the conduction 

band under high electric field. It is assumed that the carrier is trapped in a Coulombic 

potential well. High field conditions can lead to a potential barrier lowering thus increasing 

a) b) 
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the probability of carrier emission (shown in Fig. 5.9). Frenkel developed a theory to 

explain the increased conductivity of insulator under a high field [87] 
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where ED is the defect depth, F is the electric field, εopt is the optical permittivity and v is 

the lattice vibration frequency. The barrier lowering is given by 
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Equation 5.27 represents a 1D rate, where the carrier is emitted in the direction of the field. 

5.6 KMC Algorithm 

The kinetic Monte Carlo is used to describe the time evolution of a system. At first the 

initial state of the system is set up by defining the defect distributions in energy and real 

space as described by the models in Section 5.2 and 5.3. Using the transition mechanisms 

defined in Section 5.5, the system can transition from one state to the next. System 

transitions are defined by two statistical processes, namely, 1) choosing the appropriate 

transition and 2) the time (Δt) associated with this transition. This process is repeated until 

enough statistics have been collected in order to analyze system dynamics. 
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Figure 5.9. Barrier lowering due to high fields in the Poole-Frenkel mechanism. 

 

5.6.1 Transition Table 

Thus far the transition rates associated with different mechanisms have been discussed. 

Here, a single particle KMC algorithm is described which simulates the transition of 

carriers across the a-Si:H(i)/c-Si heterointerface, through the a-Si:H(i) passivation layer, 

and finally emission from the a-Si:H(i) passivation layer. At the beginning of the 

simulation, carriers are initialized at the valence band edge at the a-Si:H(i)/c-Si 

heterointerface with a Maxwellian energy distribution. For the purposes of injection into 

the barrier, as described in Section 5.5, multi-phonon and elastic processes are considered. 

To select the mechanism for injection, a transition table is created which maps the transition 

rates for all initial carrier energies to all possible final defect states, where transitions into 

occupied defects are forbidden. Figure 5.10a shows the structure of the transition table 
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constructed for injection into the a-Si:H(i) passivation layer. The transition rate for each 

initial energy is a summation over all (n) final possible defects states as shown below 

 ( ) ( )
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,
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i i j

j

E E E

=

 =    (5.28) 

where Ei is the initial energy, Ej is the final energy, Γ(Ei,Ej) is the transition rate from Ei to 

Ej, and Γinj is the cumulative transition rate for an energy Ei.  

Once the carrier is inside the barrier, it has the possibility of either staying within the 

barrier (through hopping to another defect state) or exiting the barrier. For simulating these 

transitions, transition tables are created on the fly, i.e., for a given initial carrier energy, a 

cumulative transition rate to all possible final states for different transition mechanisms is 

calculated (shown in Eq. 5.29) 
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where Γ(Ei,Ej) is the transition rate from initial energy (Ei) to final energy (Ej) and Γk is the 

cumulative transition rate over 'n' final states for a given transition mechanism 'k'. Figure 

5.10b shows the transition table for the extraction of carriers, where Γk(E) is the cumulative 

transition rate for a given initial energy over all final states. Once the transition rate table 

is created, a transition can be chosen by generating a uniformly distributed random number 

(r1) such that 
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where m is the total number of transitions available. Once the transition is selected, the 

time associated with the transition can be calculated by using 
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where r2 is a uniformly generated random number (that is different from r1), and Γmax(E) 

is the cumulative transition rate for all possible transition mechanism (shown in Eq. 5.32), 

given by 
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where Γk
sum is the cumulative transition rate for an initial energy 'Ei' over all possible final 

states for a given transition mechanism 'k', and 'Γmax' is the cumulative transition rate over 

all possible mechanisms for a given energy. A more complete description of the KMC 

method can be found in [44] and [49]. 

 

 

 

 

 

Figure 5.10. Schematic diagram of the transition tables for selecting the final mechanism 

for (a) multi-phonon injection, and (b) extraction mechanisms which include Poole-

Frenkel emission, thermionic emission, direct tunneling and defect emission. 

 

a) b) 
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5.6.2 Algorithm 

This chapter describes the decoupled use of drift-diffusion and kinetic Monte Carlo 

simulations to study the transport of photogenerated holes across the a-Si:H(i) passivation 

layer. The algorithm to conduct the simulations can be described as follows: 

1) At first, drift-diffusion simulations are performed over the entire device domain 

(see Fig 5.1a) to obtain the valence band profile, quasi-Fermi level and electric field 

for a given device operating point. This information along with parameters 

describing the band tail and mid-gap defect distributions are used to setup the KMC 

domain (see Fig. 5.11). The defect distributions in the KMC domain are setup in 

energy space according to the models described in sections 5.2 and 5.3, whereas 

the defects are uniformly distributed in real space. To complete the KMC domain, 

carrier distributions are initialized to mimic equilibrium (see section 5.4.1) or non-

equilibrium (see section 5.4.2) situations. An initial carrier distribution can also be 

obtained from the Monte Carlo solution for the energy distribution function of 

photogenerated carriers in the high electric field region at the a-Si:H(i)/c-Si 

heterointerface (described in Chapter 4). Also, the system time is set to zero. 

2) Transition rate tables are setup for the injection of carriers into defect states inside 

the a-Si:H(i) layer. As mentioned previously, once the carrier is in the a-Si:H(i) 

layer, transition rate tables are created on the fly to simulate transitions within the 

a-Si:H(i) layer or emission from the a-Si:H(i) layer. Transition tables are created 

on the fly to save memory. 
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3) Random numbers from a uniform distribution are used to select a particular 

transition. Once the transition is selected, a final state is selected, and the system 

time is incremented.  

4) The time taken for each carrier to exit the domain is stored. When all the carriers 

from the input distribution have exited, an average transit time for the distribution 

can be calculated. Also, the method of exiting the barrier is stored for analysis.  

It should be noted that in this thesis, a single particle KMC has been implemented to 

simulate transport. While the drift-diffusion model provides the initial condition to setup 

the KMC domain, the KMC solution is not self-consistently coupled to Poisson's equation. 

The KMC studies transport across the a-Si:H(i) layer for a given device operating condition 

assuming that properties, such as electrostatic potential, electric field, quasi-Fermi level, 

etc., remain constant. 

 

 

 

 

 

 

 

 

Figure 5.11. Flow of information between the drift-diffusion solver and the KMC solver. 

Also shown in this figure are the corresponding physical processes incorporated in the 

theoretical models of the corresponding solvers. 
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5.7 Results and Discussion 

In this section we consider the SHJ solar cell shown in Fig. 5.1a, where drift-diffusion 

simulations are performed over the entire device domain and the KMC is applied to the a-

Si:H(i) layer. At first, we conduct drift-diffusion simulations to obtain the valence band 

edge, hole quasi-Fermi level and electric field of the device at the maximum power point 

of the SHJ solar cell. 

5.7.1 Variation of a-Si:H(i) Layer Thickness 

In this section, two devices are considered, 1) a high fill factor device and 2) a low fill 

factor device. The high fill factor device has an a-Si:H(p) doping ~ 1019 cm-3 and the low 

fill factor has a a-Si:H(p) doping ~ 1016 cm-3 (both at the front contact). We vary the a-

Si:H(i) layer thickness at the front contact from 5 → 30 nm. The n-type c-Si absorber layer 

is 180 μm and its doping is ND = 1015 cm-3. For the "high fill factor device" we notice a 

reduction in FF and MPP with increasing a-Si:H(i) thickness. While for the "low fill factor" 

device, we notice a reduction in FF and MPP, but also observe the S-shape curve in the J-

V characteristics. Figure 5.12 shows the reduction in MPP for the high and low fill factor 

device at MPP. 

Figure 5.13 shows the average transit time (τ) of the photogenerated holes to cross the 

a-Si:H(i) barrier as calculated by the KMC. It is assumed that carriers are collected by the 

Ag contact as soon as they exit the a-Si:H(i) barrier. Also, the results in Fig. 5.13 assume 

that the carriers at the a-Si:H(i)/c-Si heterointerface have a Maxwellian energy distribution 

at a lattice temperature of 300 K. As can be in seen in Fig. 5.13, τ increases for both devices 

as the a-Si:H(i) layer thickness increases. At the first glance, the increase in τ can be 
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attributed to the fact that a thicker a-Si:H(i) barrier will take a longer time to be traversed 

by the carriers.  

Consider a device with a short circuit current ~ 40 mA/cm2 and a cross-section ~ 1 μm 

× 1μm with an inversion layer density ~ 1012 cm-2; assuming perfect ohmic transport, the 

transit time of carriers to reach the metal contact ~ 40 μsec (see Eq. 6.1). The τ calculated 

by the KMC is the time taken to extract carriers incident on the a-Si:H(i)/c-Si 

heterointerface to the contact. To obtain perfectly ohmic transport across the a-Si:H(i) 

layer, the rate of extraction of carriers must be equivalent to the rate of injection of carriers 

at the a-Si:H(i)/c-Si heterointerface. If the rate of extraction of carriers is slower than the 

rate of injection of carriers, this implies that the charge is piling up at the a-Si:H(i)/c-Si 

heterointerface, which is indicative of photocurrent suppression. As described earlier in 

Section 5.5, the KMC simulates defect assisted transport for holes across the a-Si:H(i) 

barrier layer. Simulations indicate that photogenerated holes at the a-Si:H(i)/c-Si 

heterointerface are injected into the a-Si:H(i) barrier through multi-phonon injection [65]. 

As the thickness of the a-Si:H(i) barrier increases, the valence band gets stretched out, 

causing the band tail states to be further away from the bottom of the a-Si:H(i)/c-Si 

heterointerface. Thus, the number of phonons required to inject a carrier into the barrier 

increases. As the electron-phonon coupling rates are exponentially weighted down by the 

number of phonons required for absorption transitions, more phonons are required for 

transitions that take a long time. Finally, increasing the a-Si:H(i) layer thickness causes a 

reduction in the inversion layer density at the a-Si:H(i)/c-Si heterointerface which also 

results in a reduction in the electric field (shown in Fig. 5.14). 
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Figure 5.12. Maximum power point vs. a-Si:H(i) layer thickness for a high fill factor and 

low fill factor device. 

 

 

 

 

 

 

 

 

Figure 5.13. Average transit time (τ) for the photogenerated holes to cross the a-Si:H(i) 

barrier layer vs. a-Si:H(i) layer thickness. 

 

As multi-phonon injection is dependent on the electric field, a weaker field at the 

heterointerface leads to weaker (longer) multi-phonon transitions. In the case of the low 

fill factor device, the electric fields at the interface are lower (for a given a-Si:H(i) 
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thickness) as compared to high fill factor devices. Thus, the average transit time for low 

fill factor devices is always higher as compared to high fill factor devices. It is also 

noticeable that, for the high fill factor device, τ increases drastically at first (5 → 20 nm) 

and then eventually starts (> 20 nm) saturating. There are two reasons for this behavior; 

first, the electric field decreases sharply at the a-Si:H(i)/c-Si heterointerface for increase in 

a-Si:H(i) layer thickness (5 → 20 nm) and then gradually begins to saturate (shown in 

Figure 5.14). The average transit time is inversely proportional to this behavior. Secondly, 

after a certain thickness a specific phonon transition starts dominating injection transport, 

which has a characteristic time associated with it. 

 

 

 

 

 

 

 

 

 

Figure 5.14. Electric field (V/m) at the a-Si:H(i)/c-Si heterointerface vs. a-Si:H(i) layer 

thickness. 
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5.7.2 Injection and Extraction Analysis 

Figure 5.15 shows the percentage of phonon transitions required to inject holes at the 

a-Si:H(i)/c-Si interface into the a-Si:H(i) barrier. Simulations indicate that the multi-

phonon injection process is the rate limiting step that determines the overall transit time. 

Hopping within the defects inside the a-Si:H(i) layer and emission of the carriers out of the 

a-Si:H(i) layer (via Poole-Frenkel and defect emission) are much faster processes. 

 

 

 

 

 

 

 

 

 

Figure 5.15. Percentage of phonons required for injection into the a-Si:H(i) layer vs. a-

Si:H(i) layer thickness for a) high fill factor device and b) low fill factor device. 

 

Figure 5.15 indicates that both devices exhibit very similar phonon dependencies at the 

heterointerface for both devices, i.e. elastic (0 phonon) processes < 10% and 3 phonon 

processes dominate after an a-Si:H(i) thickness of 20 nm. However, as the fields at the a-

Si:H(i)/c-Si heterointerface are weaker for the low fill factor device as compared to the 

a) b) 
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high fill factor device, a higher τ is observed. It is important to note that even in the low 

fill factor device, we still have an inversion layer at the a-Si:H(i)/c-Si heterointerface. 

 

 

 

 

 

 

 

 

Figure 5.16. Percentage of Poole-Frenkel (solid lines) and multi-phonon defect emission 

(dashed lines) as extraction mechanisms vs. a-Si:H(i) layer thickness for a high fill factor 

(black) and low fill factor device (red). 

 

The simulations presented in this chapter consider two extraction mechanisms for the 

carriers once they are in the a-Si:H(i) barrier, namely, Poole-Frenkel (PF) emission and 

defect emission. Poole-Frenkel emission is a field assisted emission of a carrier from a 

defect state into the extended state [69] of a semiconductor, and defect emission is a multi-

phonon assisted process similar to multi-phonon injection [65]. Figure 5.16 shows the 

percentage of extraction for the two mechanisms that are being considered vs. a-Si:H(i) 

layer thickness. Simulations indicate that for thin a-Si:H(i) layers (<10 nm), Poole-Frenkel 

emission is the primary extraction mechanism for carriers to exit the barrier. PF emission 

is a mechanism which is exponentially dependent on the barrier height. It also involves a 

barrier lowering term which has a strong dependence on electric field. As we have already 



98 

 

established, the peak electric field in the a-Si:H(i) layer is inversely proportional to the 

thickness of the a-Si:H(i) layer, thus, PF emission is the dominant extraction process for 

low a-Si:H(i) layer thicknesses. For a-Si:H(i) layers > 10 nm, carriers predominantly exit 

the barrier via defect emission. It is also evident from Figure 5.16 that for thick a-Si:H(i) 

barriers (~ 30 nm), Poole-Frenkel emission ~ 0. 

5.7.3 Carrier Decay Simulations 

Previously, experiments have been conducted to ascertain the transport mechanisms 

that enable photogenerated holes present at the a-Si:H(i)/c-Si heterointerface to cross the 

a-Si:H(i) layer and be collected. Crandall et. al [15] conducted capacitive decay 

experiments on SHJ cells and concluded that photogenerated holes hop across the a-Si:H(i) 

barrier in order to get collected. In the experiment, electron hole pairs were photogenerated 

at the a-Si:H(i)/c-Si heterointerface via a light flash, and the decay of holes was monitored 

by measuring the capacitance decay w.r.t time. The simulations recreated the experiment 

by initializing a hole carrier population at the a-Si:H(i)/c-Si heterointerface and monitored 

the carrier decay w.r.t time. Simulations indicated that initially the carrier decay slows 

down with increasing a-Si:H(i) thickness. However, as the a-Si:H(i) layer gets thicker, the 

rate of carrier decay beings to saturate. Figure 5.17 shows the decay of holes across a a-

Si:H(i) barrier vs. time for different a-Si:H(i) layer thicknesses. As can be seen, the carrier 

decay slows down when the a-Si:H(i) layer thickness is increased from 5 nm (blue) → 25 

nm (black). However, the carrier decay is very similar for an a-Si:H(i) layer thickness of 

25 nm (black) and 30 nm (green). As discussed earlier, increasing the a-Si:H(i) layer 

thickness causes the energy bands to get stretched out which results in multi-phonon 
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injection (of an integer number, nħω) becoming dominant. Multi-phonon injection limits 

the overall transit time across the a-Si:H(i) layer and causes the saturation of the transit 

time. A combination of multi-phonon injection and defect-defect hopping enables the 

photogenerated holes to get collected. This conclusion agrees well with the conclusions of 

the experiment conducted in [15], where they observe a saturation in carrier decay and 

escape time (a parameter extracted from the capacitance measurements) with increasing a-

Si:H(i) layer thickness. 

 

 

 

 

 

 

 

 

Figure 5.17. Carrier decay of a normalized carrier population of holes at the a-Si:H(i)/c-

Si heterointerface for different a-Si:H(i) thicknesses vs. time. 

 

Figure 5.18 shows the carrier decay of holes across the a-Si:H(i) layer vs. time as a 

function of temperature for a 10nm a-Si:H(i) layer. As discussed previously, multi-phonon 

injection is the rate limiting process for transport across the a-Si:H(i) layer. The availability 

of phonons is based on the Bose-Einstein distribution (see Eq. 5.33). 
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where ħω is the phonon energy, k is the Boltzmann constant and T is the temperature. In 

accordance with Eq. 5.33, the availability of phonons decreases with a decrease in 

temperature. This leads to an increase in transit time and slower carrier decay with a 

reduction in temperature. 

 

 

 

 

 

 

 

 

Figure 5.18. Carrier decay of a normalized carrier population of holes at the a-Si:H(i)/c-

Si heterointerface various temperatures vs. time. 

 

In Chapter 4, an EMC solver was described that calculated the average energy of the 

photogenerated carriers at the a-Si:H(i)/c-Si heterointerface under high fields. These 

simulations indicated that for fields > 100 kV/cm, the carriers exhibit a non-Maxwellian 

distribution, i.e. average energy > 39 meV. Figure 5.19 shows the average transit time for 

photogenerated holes to cross the a-Si:H(i) layer vs. average energy of the photogenerated 

holes at the a-Si:H(i)/c-Si heterointerface. As can be seen, the average transit time 
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decreases with increasing average carrier energy. Carriers with higher energy can easily 

access the defect states that are right below the band edge, therefore, transitions into the 

band tail defect states are going to require lesser number of phonons. As explained in 

earlier, less phonons correspond to faster transitions. 

 

 

 

 

 

 

 

 

Figure 5.19. Average transit time of photogenerated holes across a 10nm thick a-Si:H(i) 

layer vs. average carrier energy of photogenerated holes. 

 

 

 

 

 

 

 

 

Figure 5.20. Carrier decay of a normalized carrier population of holes at the a-Si:H(i)/c-

Si heterointerface for different average carrier energies for photogenerated holes vs. time. 
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Figure 5.20 shows the decay of photogenerated holes vs. time for carrier distributions 

with different average energies. It is evident that carrier distributions with higher average 

energies decays faster. This is due to the fact the rate limiting step of multi-phonon injection 

is significantly faster for higher carrier energies. As the carrier energy is strongly dependent 

on the electric field at the a-Si:H(i)/c-Si interface, it can be concluded that passivation at 

this heterointerface is critical to achieve fast carrier decay. 

5.7.4 Effect of the Band Tail Density of States 

In this section, a SHJ solar cell (see Fig. 5.1a) with a 10 nm thick a-Si:H(i) passivation 

layer at the front contact is considered. Drift-diffusion simulations are performed to extract 

the relevant band profiles at the maximum power point of the SHJ solar cell to set up the 

KMC domain. Figure 5.21 shows the average transit time (τ) for photogenerated holes at 

the a-Si:H(i)/c-Si heterointerface to cross the a-Si:H(i) layer as the localized state density 

of the band tail states is increased. Simulations indicate that holes are injected into the a-

Si:H(i) barrier through a multi-phonon injection process, and then move from defect to 

defect (hopping) before being emitted from the passivation layer.  

Primarily, the band tail states assist in the transport of carriers, for both the injection 

and hopping mechanisms. As mentioned in section 5.2, the localized band tail states are 

characterized by an exponential decay law (Eq. 5.2). The characteristic decay energy or 

Urbach energy 'Evt' is determined by the slope of the density of states of defects from 

experimental measurements, and is an indicator of the band tail state density in the a-

Si:H(i) passivation layer [89]. In Fig. 5.21, the band tail defect density is varied by varying 

Evt from 20 meV → 80 meV (typically, Evt = 45 meV for device grade a-Si:H). Figure 5.21 
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considers that the holes at the a-Si:H(i)/c-Si heterointerface have a Maxwellian distribution 

(i.e. average energy ~ 40 meV). It is observed that τ reduces as the defect density in the 

barrier increases. An increase in defect density in the a-Si:H(i) barrier results in more low 

energy defect states being available near the a-Si:H(i)/c-Si heterointerface that carriers can 

transition into (see Fig. 5.22).  

 

 

 

 

 

 

 

 

Figure 5.21. Transit time vs. characteristic decay energy (Evt) for a 10 nm a-Si:H(i) 

passivation layer. 

 

In Fig. 5.22, the defect-energy space of the a-Si:H(i) barrier for Evt = 20 and 80 meV is 

shown; where the zero of the energy axis represents the bottom of the valence band at the 

a-Si/c-Si heterointerface, and the zero of the x-axis represents the beginning of the a-Si:H(i) 

barrier. Figure 5.22b shows an a-Si:H(i) layer with defect density ~ 1020 cm-3 (Evt = 80 

meV). We can observe the presence of low energy defect states implies that fewer phonons 

are required for injection into the a-Si:H(i) passivation layer. Also, the transition time 

associated with phonon assisted transitions are inversely proportional to the number of 
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phonons required for the transition (see section 5.5.3). It is also important to note that the 

defect density in the a-Si:H is strongly correlated with the amount of hydrogenation in the 

layer, therefore there are some practical limits associated with defect densities that can be 

achieved in a-Si:H. 

 

 

 

 

 

 

 

 

Figure 5.22. Defect energy space in the a-Si:H(i) passivation layer for an Evt of a) 20 

meV and b) 80 meV. 

 

5.7.5 Effect of the Optical Phonon Energy 

Drift-diffusion simulations were conducted for a SHJ solar cell with a 10 nm a-Si:H(i) 

passivation layer at the front contact to extract the relevant band profiles at maximum 

power point to set up the KMC domain. Figure 5.23 shows the average transit time (τ) 

taken by photogenerated holes present at the a-Si:H(i)/c-Si heterointerface to cross the a-

Si:H(i) passivation layer for different optical phonon energies in the a-Si:H(i). It is 

observed that the transit time reduces with an increase in optical phonon energy.  

a) b) 
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The phonons are distributed in accordance with the Bose-Einstein distribution (shown 

in Eq. 5.33). A higher phonon energy means a lower population of optical phonons at a 

given temperature. However, the a-Si:H(i) passivation layer forms a triangular barrier. 

Also, the band tail state density exponentially decays from the a-Si:H(i) valence band edge, 

and the photogenerated holes are placed energetically at the valence band edge at the a-

Si:H(i)/c-Si heterointerface (see Fig. 5.22) with a Maxwellian distribution; a higher phonon 

energy would imply that fewer phonons are required to inject carriers into the a-Si:H(i) 

passivation layer. Also, it is important to note that the optical phonon energy for a-Si:H ~ 

60 meV. 

 

 

 

 

 

 

 

 

Figure 5.23. Transit time vs. optical phonon energy for a 10 nm a-Si:H(i) passivation 

layer. 

 

Figure 5.24 shows the path taken by a few selected carriers across the a-Si:H(i) 

passivation layer. For Fig. 5.24, a 10 nm thick a-Si:H(i) passivation layer was considered 

with a carrier distribution with average energy ~ 150 meV and Evt = 45 meV. In Fig. 5.24, 
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we see that the carriers initially gain energy by absorbing phonons to get to the defect states 

near the valence band edge and proceed to cascade down the band edge and eventually get 

collected. However, simulations indicated that the path taken by carriers to cross the a-

Si:H(i) barrier layer depends heavily on the properties of the barrier. For layers with low 

thickness (< 10 nm) and low defect densities, it is more likely that the carriers will undergo 

single step hopping; i.e. the carriers at the a-Si:H(i)/c-Si heterointerface will undergo a 

multi-phonon injection mechanism to enter a defect state in the a-Si:H(i) passivation layer, 

and then exit the a-Si:H(i) via Poole-Frenkel or defect emission. Conversely, for layers 

with higher thickness (>15 nm) and higher defect densities, the carriers will hop multiple 

times within the barrier before exiting. In both cases, the total time taken to cross the barrier 

is strongly controlled by the time taken by the multi-phonon injection transition. 

 

 

 

 

 

 

 

 

Figure 5.24. Tracking carriers through a 10 nm a-Si:H(i) passivation layer. 
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5.7.6 Effect of Mid-Gap States and Interface Recombination 

 

Figure 5.25. The kMC domain (i-aSi) with localized and mid gap states. 

 

A qualitative study was conducted to understand the effect of interface states and 

midgap states on transport. The interface states were defined as a Gaussian with two peaks 

and the midgap states were defined according to the defect-pool model. Figure 5.25 shows 

the KMC domain with the presence of localized and midgap states. Simulations indicated 

that carrier distributions with low average energies are limited by interface recombination. 

As mentioned in previous sections, transport across the barrier is strongly controlled by the 

multi-phonon injection into the a-Si:H(i) layer. In other words, the slowest process is the 

carrier going from the inverted heterointerface into a defect state in the a-Si:H(i). 

Therefore, the interface recombination rate can compete with the transport mechanism. 

However, once the carrier is 'hopping' through the localized defect states, the hopping rates 
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are much faster than the midgap recombination rates. A poorly passivated device can be 

driven out inversion due to interface recombination; which will greatly reduce the surface 

potential at the heterointerface [90]. 

5.7 Conclusion 

The kinetic Monte Carlo is a tool that can go beyond time scale constraints that limits 

the application of ensemble Monte Carlo techniques to study defect related processes. 

Defect assisted transport is characterized by defect capture and emission times; these 

processes can range anywhere from picoseconds to microseconds. The EMC however is 

limited by scattering times of the carriers which are femtosecond processes. However, there 

are weighted Monte Carlo techniques [91] which can deal with recombination processes, 

but it is still immensely complicated to add defect interactions. 

In this chapter, a kinetic Monte Carlo methodology is presented that is applied to study 

transport of photogenerated holes through the a-Si:H(i) passivation layer in a SHJ solar 

cell. Drift-diffusion simulations are performed to obtain the valence band profile, quasi-

Fermi level and electric field in the a-Si:H(i) passivation layer at any given voltage. The 

results from the drift-diffusion simulations are then used to setup the KMC domain. To 

model transport through the a-Si:H(i) passivation layer, multi-phonon injection, defect to 

defect transitions (hopping), multi-phonon defect emission, thermionic emission and 

Poole-Frenkel emission are considered. Since, the drift-diffusion simulations provide a 

snapshot of the band profiles, the KMC method is used to correlate transport through the 

a-Si:H(i) layer for a given device operating condition. Simulations indicate that transport 

through the a-Si:H(i) passivation layer is strongly dependent on the properties of the a-Si:H 
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and, the average transit time across the barriers is strongly controlled by multi-phonon 

injection into the barrier.  

The simulations specifically analyzed the effect of various parameters related to the a-

Si:H(i) layer and the a-Si:H(i)/c-Si heterointerface on transport of carriers. In the case of 

the band-tail state density in the a-Si:H(i) layer, simulations showed that an increase in 

defect density in the a-Si:H(i) passivation layer reduced the number of phonons required 

to inject a carrier from the a-Si:H(i)/c-Si heterointerface into the a-Si:H(i) passivation layer, 

resulting in faster transit times. However, varying the defect density in the a-Si:H(i) is 

achieved by changing the amount of hydrogenation which results in changes of some other 

material parameters (bandgap etc.) which may not be ideal for the purposes of solar cells. 

Simulations also indicated that for thin a-Si:H passivation layers and low defect densities, 

the carriers crossed the passivation layer through single step hopping, whereas for thicker 

barriers and high defect densities the carriers underwent multi-step hopping to get across 

the barrier. In both cases, the transit time to cross the barriers was limited by the multi-

phonon injection into the barrier. Simulations indicated that for extraction from the a-

Si:H(i) layer, Poole-Frenkel emission was the main mode of extraction for thin a-Si:H(i) 

layers (< 10 nm), whereas defect emission was dominant for a-Si:H(i) layers > 10 nm.  

The simulations presented in this chapter conclude that the high electric field at the a-

Si:H(i)/c-Si heterointerface is essential for efficient transport of holes across the a-Si:H(i) 

layer. High electric fields can only be achieved by optimizing the various layers of the 

heterojunction contact stack. In particular, the a-Si:H(p) layer doping and thickness, the a-

Si:H(i) layer thickness, and passivation at the a-Si:H(i)/c-Si layer heterointerface. 
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Simulations show that increasing the a-Si:H(i) layer thickness results in a reduction of 

electric fields at the a-Si:H(i)/c-Si heterointerface and subsequently an increase in transit 

time to cross the a-Si:H(i) layer. Longer transit times are indicative of photocurrent 

suppression at the a-Si:H(i)/c-Si heterointerface, which can lead to S-shape like behavior 

in the J-V characteristics and overall degradation of device performance (especially FF) in 

SHJ solar cells. Also, the carrier decay simulations presented in this chapter were consistent 

with experimental findings that the carrier decay across the a-Si:H(i) layer saturates with 

increasing a-Si:H(i) layer thickness. 

The KMC simulations presented in this chapter analyze transport for a given device 

operating condition that is calculated by the drift-diffusion model. These simulations are 

performed in a de-coupled manner where the KMC results are not fed back into the drift-

diffusion simulation. In other words, the KMC solution is not self-consistently coupled 

with the Poisson's solution. To gain further understanding of the effect of non-equilibrium 

transport through defects, the KMC can be coupled to the drift-diffusion solution. 

However, this is a non-trivial task as the KMC will be a sub-domain within the drift-

diffusion domain. This introduces many complications in terms of establishing charge and 

current continuity at the boundaries.Equation Chapter (Next) Section 1 
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CHAPTER 6 

MULTISCALE MODELING 

Modern solar cell devices (2nd, 3rd generation and beyond) [92] employ the use of novel 

heterojunctions, quantum well structures, tandem structures, and utilize new materials 

which propels the underlying transport physics out of the traditional semi-classical regime. 

This necessitates the use of atomistic and first principle approaches [93] while trying to 

understand the properties of new materials or quantum phenomena that occur in novel 

nanostructured devices. Methods such as non-equilibrium Green's functions (NEGF) [94] 

and full band Monte Carlo [95] are often utilized to study quantum transport in 

nanostructured devices; however such approaches are computationally very expensive. 

Most solar cells (even thin film solar cells) are macroscopic devices (microns) where non-

local transport occurs in only a very small region of the device. Therefore, applying full 

particle-based transport approach to the entire device domain can be very computationally 

costly. On the other hand, continuum models such as drift-diffusion are very effective in 

studying semi-classical transport in macroscopic devices. However, as described in 

Chapter 2, the drift-diffusion model is derived from the BTE after making several 

assumptions (see Fig. 6.1). Analytical and continuum models eventually breakdown while 

dealing with non-local phenomena as the basic assumptions inherent to these models are 

violated.  

Another issue while considering a wholistic approach to describe transport in a device 

is that low field semi-classical behavior and nano-scale quantum behavior occur at vastly 

different time scales and length scales. An effective method of solving the transport 
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problem would be to couple different methodologies which resolve varying time and length 

scales to form a multiscale solution to a multiscale problem. However, formulating a 

multiscale solution is a non-trivial problem, as resolving different mathematical models is 

quite challenging [85,86]. In a multiscale formulation, the focus is on unifying models self-

consistently to facilitate a comprehensive and quantitative analysis of the problem. Figure 

6.2 shows the three different solvers that have been developed in this thesis, namely drift-

diffusion (Chapter 2), ensemble Monte Carlo (Chapter 4) and kinetic Monte Carlo (Chapter 

5), and their interaction over varying time and length scales. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Schematic diagram of the hierarchy of simulation models. The boxes shaded 

in green (Monte Carlo and Drift-Diffusion) are coupled to form a relatively accurate and 

computationally efficient solution to a high field transport problem. 
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Figure 6.2. Visualization of the interaction of the three solvers in a multiscale framework. 

 

Recently, the multiscale methodology has been applied to address various issues in 

solar cells such as mechanical properties of materials [98], optical properties [99] and 

interface phenomena [100]. Using the principle of coupling macroscopic and microscopic 

models, the multiscale methodology has been used to study the effect of complex interface 

morphologies and bulk mechanisms in organic solar cells [101]. In this thesis we utilize 

the multiscale methodology to study transport in SHJ solar cells. In particular, the drift-

diffusion model operates in the low field region of the device, the EMC operates in the 

high field c-Si region adjacent to the a-Si:H(i)/c-Si heterointerface, and the KMC operates 

solely in the a-Si:H(i) layer. Each individual module was used to study a specific aspect of 

the multiscale problem in a decoupled manner. In this chapter the process and various 

challenges of self consistently coupling the drift-diffusion and EMC solvers are described. 
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Figure 6.3. Schematic diagram describing the coupling of the drift-diffusion and EMC 

solver. 

 

6.1 Drift-Diffusion Coupled with a Monte Carlo 

In a simple drift-diffusion model, the carrier density and mobility are treated as local 

functions of the electric field. This assumption is valid and relatively accurate when the 

electric field is weak and slowly varying. However, in the cases of large and quickly 

varying electric fields, this assumption is no longer valid. In the high electric field case, the 

energy distribution function of the carriers can no longer be defined as a local function of 

the electric field. An EMC solution can be quite inefficient in low field regions, as the 

carriers can remain virtually stagnant due to the weak driving force. Therefore, a coupled 

solution where the drift-diffusion model operates in the low field region and the EMC 

operates in the high field region offers an ideal compromise between accuracy and 

computational efficiency (see Fig. 6.3). This technique has previously been used to study 
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hot carrier effects in MOSFET's [95,96]. As described in Chapter 4, the EMC is an ideal 

tool to study carrier distributions under high electric fields, and therefore it was used to 

study the behavior of photogenerated carriers under high fields at the a-Si:H(i)/c-Si 

heterointerface. A crucial point to note here is that EMC solution captures the non-local 

effects of high fields on the carrier distribution which will differ from predictions of the 

drift-diffusion model. To consider these non-local effects, there must be some self-

consistency between the two solvers. Self-consistency for a coupled drift-diffusion and 

EMC solver has been addressed previously by Kosina et al. [104] for MOSFET devices. 

The goal of this research work is achieving self-consistency for a bipolar device, i.e. a solar 

cell. 

The subsequent sections of this chapter describe the considerations required to couple 

an EMC to a drift-diffusion model self consistently (DDEMC). Sections 6.1.1 - 6.1.9 

describe the process of setting up the Monte Carlo region once the drift-diffusion model 

has computed the initial solution. 

6.1.1 Injection Boundary 

Figure 6.4 shows a SHJ device along with the various simulation domains. The drift-

diffusion model calculates the initial solution throughout the entire domain. The primary 

aim of the EMC is to study the effect of high electric fields at the a-Si:H(i)/c-Si 

heterointerface on photogenerated holes in the device. The injection boundary of the EMC 

is placed in a quasi-neutral low field region in the c-Si where the energy distribution 

function of the holes can be approximated by a Maxwellian distribution. For Si devices the 

injection boundary can be placed in regions with fields greater than 10 kV/cm. The 
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sensitivity to the injection boundary is low as the saturation velocity in Si is quite high. 

Also, placing the injection boundary in regions with electric field ≈ 0 kV/cm can 

significantly slow down the simulation as the carriers remain virtually stagnant in the 

absence of a strong driving force, and this can considerably increase the size of the EMC 

domain. It is important to note that the simulation presented in this chapter do not consider 

the TCO layer and silver contact. Also, only the coupling between the EMC and drift-

diffusion solver is described. 

 

 

 

 

 

 

 

 

Figure 6.4. Visualization of the simulation domains in SHJ solar cell. The EMC domain 

that operates at the heterointerface (red) must be coupled to the drift-diffusion domain in 

the low field regions (green). 

 

6.1.2 Current Injection Boundary Conditions  

Once the EMC window is placed within the device, boundary conditions are required 

to ensure continuity between the two solvers. These boundary conditions must ensure 

current continuity and charge conservation. At the current injection boundary, the current 
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calculated by the drift-diffusion model is injected into the EMC domain. The current from 

the drift-diffusion model is calculated in A/cm2. The current is defined as the charge per 

unit time (Eq. 6.1) 

 
nq

J
A

=


  (6.1) 

where n is an integer number of particles, q is the fundamental charge, ∆τ is the observation 

time (0.2 fs) used for the EMC, and A is the cross-sectional area of the device. Using Eq. 

6.1, the drift-diffusion current is interpreted as a number of particles that will be injected 

into the EMC region per unit time. 

Currents in single junction solar cells are to order of mA/cm2. This usually results in n 

< 1. Therefore, to inject particles, a strategy involving random numbers is used. For every 

Δτ, a random number r [0,1] is generated from a uniform distribution. If r < n; 1 particle is 

injected, if r > n; 0 particles are injected. Using this scheme, the current J can be injected 

over a total time τ. 

As mentioned before the injecting boundary is placed in a low field region. However, 

the non-zero fields will cause the velocity distribution of the carriers to be slightly 'drifted'. 

Thus the injected carriers must have a displaced Maxwellian velocity distribution [105] 

which is used to generate a 'drifted' wave vector distribution in direction of the field. 

Calculating velocity for a warped bandstructure can lead to implicit equations due the 

angular dependence of effective masses. To simplify the velocity calculations, we assume 

a parabolic bandstructure (Eq. 6.2) to create the 'drifted' velocity distribution.  

 
2 2

*2

k
E

m
=   (6.2) 
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where k is the wave vector in direction of the field, and m* is the effective mass of the 

carrier. Thus, the velocity can now be given by 

 
1 xkE

v
k m


= =


  (6.3)  

To create a drifted distribution, a Maxwellian distribution centered around the drift velocity 

is assumed. Equation 6.4 is used to create the ‘drifted’ velocity distribution 
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where v is the Maxwellian distribution of the velocity, and vd is the value of average 

velocity extracted from the drift-diffusion current. The current can be related to average 

drift velocity by 

 dJ q n v=     (6.5) 

where J is the current density, n is the carrier density, and vd is the average drift velocity. 

The 'drifted' wave vector (in the direction of the electric field) can be calculated by using 

the 'drifted' velocity (for parabolic bands) 

 ,
drift

x drift

mv
k =   (6.6) 

An important point to note is that at the injection boundary, carriers are assumed to 

only be injected. A reflective boundary condition is applied so that carriers cannot leave 

the domain; they are elastically reflected back into the domain. The carriers are extracted 

at the collecting boundary as shown in Fig. 6.5. The drift-diffusion solver and the EMC 

solver are said to be current matched when the extracted current = injected current. Thus, 

current continuity between the two models is ensured.  
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6.1.3 Half Maxwellian Charge Injection 

Charge at the injection/extraction boundaries must be injected with half-Maxwellian 

distributions perpendicular to the boundary. If the injected charge is not injected in the 

direction of the electric field, it can lead to spurious accumulation or depletion of charge 

in the simulation domain. As the EMC is coupled to a Poisson solver, this can lead to 

instability in the electrostatic potential in the device. Also, as the EMC solution feeds back 

into the drift-diffusion model, it is imperative that the charge density from the EMC 

solution is correct and not discontinuous. 

6.1.4 Extraction Boundary (placed at the contact) 

According to Fig. 6.4 the extraction boundary of the EMC domain is placed at the a-

Si:H(i)/c-Si boundary. To simplify the problem, let us assume that the extraction boundary 

for the EMC region is placed at the contact; charge neutrality conditions can be enforced 

on the contact cell. In other words, at every Δt carriers will be injected back into the contact 

cell to maintain charge neutrality. The amount of charge to be maintained at the contact 

cell is given by doping under the contact. Figure 6.5 shows the visualization of the EMC 

domain with the boundary conditions. 

 

 

 

 

 

Figure 6.5. Visualization of the MC domain. 
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6.1.5 Extraction Boundary (placed away from the contact) 

As shown in Fig. 6.4 the EMC domain ends at the a-Si:H(i)/c-Si heterointerface. 

However, matters are complicated when the EMC domain extraction boundary is placed 

away from a contact (see Fig 6.6) as charge neutrality conditions are no longer valid. To 

ensure charge continuity across the boundary, we implement a 'fixed charge density' 

boundary condition. The charge density of the extraction boundary cell is determined by 

the drift-diffusion solution. Carriers are injected to maintain a constant charge density in 

the collecting boundary cell. The injected carriers must have a 'drifted' velocity distribution 

in order to capture the high field effects. The nature of the collecting boundary is 

characterized by a velocity distribution function. Previously, Nguyen et al. have 

implemented boundary conditions for a collecting boundary by using a 'Back Diffusion 

Ratio' [106]. 

 

 

 

 

 

 

Figure 6.6. Visualization of MC domain where the collecting boundary is placed away 

from the contact 
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6.1.6 Current Matching 

The EMC solver converts the charge density and fluxes obtained from the drift-

diffusion solver into discrete particles. To ensure charge and current continuity across the 

virtual boundaries, injection and extraction boundary conditions are implemented. The 

EMC solver is run until it is current matched to the drift-diffusion solver, i.e. the extracted 

current = injected current. Assuming that there is no recombination in the EMC domain, 

the solver should be current matched after a few picoseconds. Once the EMC solution is 

current matched to the drift-diffusion solution, it is an indication that the EMC solver has 

reached steady state, and thus the charge density is in steady state. At this point the charge 

distribution in the EMC (represented by discrete particles) is coupled back to the mesh 

using particle mesh coupling (PMC). There are several schemes to perform PMC such as 

nearest element  center (NEC), nearest grid point (NGP), cloud-in-cell CIC etc. [107]. In 

this work, the CIC method has been implemented. Figure 6.7 shows all the steps required 

to current match the MC solver to the drift-diffusion solver. 

6.1.7 Robin Boundary Conditions (RBC’s) 

The EMC solution calculates the correct hole charge distribution under high electric 

fields. To preserve the physics of the EMC solution, the DD solution no longer operates in 

the EMC region. For this purpose, the charge density in the EMC domain is frozen, and 

the continuity equations are then solved only outside the EMC domain (discussed further 

in Section 6.1.8). As the flux between the DD and EMC regions must remain continuous, 

a flux boundary condition is implemented at the DDMC boundaries while solving the 
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continuity equations. This boundary condition is known as a Robin boundary condition 

whose general form is given by 

 
du

u
dx

 + =   (6.7) 

where α and β are constants, u is a function, du/dx is its spatial derivative and Γ is another 

function. In the case of the DD model, the Robin boundary condition takes the form of the 

current equations 

 p p
dp

q pE qD J
dx

 − =  (6.8) 

The discretized form of Eq. 6.8 is given by Eq. 6.9 
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where ‘i’ is the node point and B is the Bernoulli function. 

 

 

 

 

 

 

 

 

 

Figure 6.7. Flowchart describing how to current match a MC solver to a drift-diffusion 

solver. 
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6.1.8 Gummel Loop 

Self-consistent coupling requires that properties calculated by the EMC are utilized by 

the drift-diffusion solver. At first, the drift-diffusion solution is applied to the entire 

domain. The charge density calculated by the drift-diffusion solver is used as an initial 

condition for initializing carriers in the EMC domain, and the current calculated by the 

drift-diffusion is used as an injection boundary condition (B2). Once the EMC has reached 

steady state, the continuity equations are used to recalculate the charge density using 

RBC’s. Finally, Poisson’s equation is used to calculate the potential all over the device. 

Figure 6.8 shows how the entire device domain is divided into various regions where the 

continuity and the EMC solutions are applied; C1 and C2 are the contacts of the device 

(Dirichlet boundaries), and B1 and B2 are the boundaries of the EMC domain.  

 

 

 

 

 

 

 

 

 

Figure 6.8. Visualization of the coupled DDMC solution, where the continuity equation 

solves (green) for charge density outside the EMC domain (red) and Poisson’s equation is 

solved over the entire device domain. C1 and C2 are the contacts of the device, and B1 and 

B2 are the shared boundaries of the drift-diffusion and EMC domains. 
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Figure 6.9 shows a flow chart of the process flow of the Gummel loop. The drift-

diffusion solution provides all the initial conditions in terms of charge density, potentials, 

electric fields and current density. These parameters set up the initial conditions for the 

EMC. The EMC solution coupled with the Poisson solution runs until it is current matched 

with the drift-diffusion solver, and steady state conditions for the hole density are reached; 

then the program flow returns to the drift diffusion domains. It is important to note that 

there are two drift-diffusion domains in the device which operate on either side of the EMC 

domain (see Fig. 6.8). Once the program flow exits the EMC domain, the continuity 

equations for holes are solved outside the EMC domain, while the charge in the EMC 

domain remains frozen. The electron charge density is computed by solving the continuity 

equations over the entire domain; finally, Poisson’s equation is solved over the entire 

domain.  

As the EMC is coupled to a Poisson solver, the fields are recalculated for each time 

step. Once steady state is reached, the EMC recalibrates the mobilities for the high field 

and low field regions which are used to calculate the current. The coupling of the drift-

diffusion to the EMC leads to new currents which can be used as injection conditions for 

the EMC. Now, the EMC and the drift-diffusion must be current matched for the new 

injection condition. Once the injection condition stabilizes, the EMC and drift-diffusion 

solvers have been self-consistently coupled. 
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Figure 6.9. Flow chart of the Gummel loop employed by the multiscale solver. 

  

6.1.9 Mesh 

The SHJ solar cell under consideration has a heavily doped a-Si:H(p) emitter layer (≈ 

1019 cm-3), an a-Si:H(i) passivation layer and a low doped absorber (≈ 1016 cm-3) c-Si 

absorber. In such a design, the electric field will vary rapidly in the depletion region and 

eventually go to zero in the quasi neutral regions. Therefore, a fine mesh should be used 

for the regions where the fields vary rapidly, and a coarse mesh can be used for low field 

areas. However, having different meshes for the EMC and drift-diffusion solver would lead 

to a few complications. The results from the EMC mesh would have to be interpolated back 

on to the drift-diffusion mesh. It is much simpler to adopt a single meshing strategy for 

both the solvers. For simplicity we use a fine uniform mesh in the region where the EMC 
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operates (i.e. the high field region at the interface) and a non-uniform coarse mesh in the 

low field regions. A uniform mesh in the EMC region is used to avoid complications arising 

from self-forces. 

6.2 Results and Analysis 

To understand current matching between the EMC and drift-diffusion solvers, a silicon 

homojunction solar cell was used as a test structure. As shown in Fig. 6.10, a simple silicon 

pn homojunction solar cell was used with a thin emitter (20 nm) and a thick absorber (3 

μm). Most silicon based solar cells use absorbers which are ~ 100 μm. A smaller absorber 

is used for computational efficiency as the purpose of this section is to explain the schemes 

employed to obtain current matching between the EMC and the drift-diffusion solvers. In 

the following sections, two scenarios are explored where, 1) the EMC extraction boundary 

is placed at the contact and 2) the EMC extraction boundary is placed in the depletion 

region. 

 

 

 

 

 

 

Figure 6.10. A pn junction test structure to study the coupling of the drift-diffusion and 

EMC solvers where: a) the EMC extraction boundary is placed at the contact, and b) the 

EMC extraction boundary is placed away from the contact. 

b) a) 



127 

 

6.2.1 Collecting Boundary at the Contact 

In this section, the EMC extraction boundary is placed at the front contact of the solar 

cell (shown in Fig 6.10a). As mentioned earlier in this chapter, the number of particles 

injected into the EMC domain is obtained from the current calculated by the drift-diffusion 

equation. However, the short circuit current density in a solar cell is usually quite low, even 

world record efficiency cells, such as the 25.6% cell from 2015 has a short circuit current 

≈ 41 mA/cm2 [7]. To increase the injection statistics, the test structure is illuminated with 

1000 suns, as can be seen in the charge density profile shown in Fig. 6.11. While this 

scenario is impractical in reality; it is an acceptable mathematical trick to establish the 

current matching process between the EMC and drift-diffusion solvers as a proof of 

concept.  

 

Figure 6.11. Charge density profile of the test structure under a 1000 suns illumination. 
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Figure 6.12 shows the current density profile for both electrons and holes in the device, 

where the EMC window extends from the front contact to some point at the edge of the 

depletion region (shown by dashed line in Fig. 6.12), where the electric fields < 10 kV/cm. 

As the carrier density varies rapidly in magnitude across the depletion region, the cells of 

the EMC window near the contact are extremely dense, whereas, the cells in the depletion 

region are extremely sparse (as shown in Fig. 6.13). As the doping density is high in the 

emitter, the contact cell population can be ~ 106 carriers, whereas, some cells at the edge 

of the depletion region might have a carrier population ~ 0. This can lead to significant 

statistical noise in the EMC simulations as the amount of charge being injected over a 

period of time (picoseconds) is orders of magnitude lower than the charge present in the 

contact cell. 

 

Figure 6.12. Electron and hole current density profile. The dashed line indicates the 

Monte Carlo/drift-diffusion boundary. 
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Figure 6.13. Cell population for every cell in the Monte Carlo domain. 

 

To understand the effect of injection statistics, a current of 100 A/cm2 (see Fig. 6.14) 

was injected into the EMC, and its characteristics were compared to an injection level of 

50 mA/cm2. Figure 6.14a shows the cumulative charge extracted at the front contact vs. 

time. The slope (dq/dt) gives us the magnitude of the current being extracted. It is evident 

from the figure that the cumulative charge increases linearly after about 2 picoseconds, 

thus the current can be extracted accurately. Figure 6.14b shows that the total amount of 

charge present in the EMC domain saturates and reaches steady state after 2 picoseconds. 

Similarly, Figure 6.14c shows that the flux being extracted at every time step at the left 

contact has a transient feature from 0 - 1 picosecond but quickly settles into steady state 

like behavior. 
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Figure 6.14. EMC charge characteristics corresponding to an injection of 100 mA/cm2. a) 

Cumulative charge extracted at the front contact vs. time. b) Total charge density in the 

EMC domain vs. time. c) Flux extracted at the front contact per Δt (0.2 femto seconds) 

vs. Time. 

 

Figure 6.15 shows the EMC characteristics for an injection level of 50 mA/cm2. As we 

can see in Fig. 6.15a, the cumulative charge is observed over 40 picoseconds, but there is 

no noticeable slope. This is because the injected charge is orders of magnitude lesser than 

a) b) 

c) 
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the charge present in the contact cell, and as compared to the charge present in the EMC 

domain. When the charge in the contact cell far exceeds the amount of charge being 

injected into the EMC domain, the net flux at the contact cell caused by the charge 

neutrality boundary condition induces a significant amount of noise in the current 

calculations. 

 

 

 

 

 

 

 

 

Figure 6.15. EMC characteristics for an injection level of 50 mA/cm2. a) Cumulative 

charge extracted at the front contact vs. time. b) Total charge present in the EMC domain 

vs. time. 

 

There are some charge enhancement techniques that can be used to boost poor injection 

statistics. However, in this case, the most effective strategy to represent the current proved 

to be data collection over longer periods of time (30 - 100 ps). It is possible to use weighted 

carriers [91] to improve the statistics of the EMC. In this case, the use of weighted carriers 

does not change the fact that the amount of charge being injected is far less than the charge 

present in the simulation domain. To put things into perspective, while injecting 100 

A/cm2, ≈105 carriers can be injected over 8 picoseconds, whereas, while injecting 50 

b) a) 
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mA/cm2, ≈500 carriers are injected over 50 pico seconds. Therefore, to represent lower 

currents, longer simulation runs are needed to collect the required statistics; and the 

application of data processing techniques can be used to extract the current. Figure 6.16 

shows the cumulative charge vs. time after the application of a moving average filter. This 

shows the existence of a slope and a liner fit predicts an extracted current ~ 49.8 mA/cm2 

which is very close to the injected current (54 mA/cm2). Even a linear fit through the noisy 

data in Fig. 6.16 gives a current of 46.4 mA/cm2. However, after data processing, the slope 

becomes visible due to the removal of all the high frequency noise.  

 

Figure 6.16. A moving average filter can be applied to the noisy cumulative charge data. 

a) Cumulative charge vs. time after using a moving average filter. 

 

The hole current calculated by drift-diffusion for the test structure (Fig 6.16a) under a 

1000 suns ≈ 1.2 A/cm2 and can be matched by the EMC in ~ 20 pico seconds. It should be 

noted that the EMC is self-consistently coupled with the Poisson’s equation, i.e. the 

Poisson’s equation recalculates the field on the charge distribution calculated by the EMC 
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at every time step (∆t = 0.2 fs). Also, the electron charge remains frozen for the duration 

that the EMC is calculating the hole distributions. Once the EMC is current matched to the 

drift-diffusion, the electron continuity equation is solved over the entire domain to calculate 

the electron charge density, and the hole continuity equation is solved only outside the 

EMC domain, i.e. the hole density calculated by the EMC remains frozen. In this case, the 

hole density calculated by the EMC at the edge of the depletion region was used as a 

boundary condition for the hole continuity equation. The electron and hole densities are 

then used by Poisson’s equation to recalculate the potentials. This describes the entire 

iterative process (Gummel’s loop) of coupling the drift-diffusion to the EMC. 

 

Figure 6.17. Charge density profile given by the self-consistent DDEMC solver. 

 

Figure 6.17 shows that charge density is continuous across both domain after the self-

consistent DDEMC solution. Minor fluctuations can also be noticed in the hole density 
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which is introduced by the stochastic nature of the EMC. It is imperative that there be 

charge continuity between across the two domains; any discontinuity will affect the 

potential. This will lead to spurious depletion of charge which will cause instability in the 

Poisson solution. Figure 6.18 shows the current density profile before and after the 

coupling of the drift-diffusion and EMC solvers. The aim of the self-consistent solution is 

to calculate the total current in the device with the inclusion of high field physics through 

the EMC solution. The total current is a factor of both the electron and hole currents. Only 

the holes are treated with the EMC solution, thus the electron current is still described over 

the entire domain by the drift-diffusion model. It is important to note that the total current 

must always be constant in the device. Figure 6.18a shows the total current density 

(calculated by drift-diffusion) over the entire device whereas Fig. 6.18b shows the total 

current density (calculated by the DDEMC) from the edge of DDEMC window across the 

drift-diffusion region. A slight slope can be observed in total current of the device (Fig. 

6.18b). This slope is a function of the tolerance to which the solver has converged. Lower 

tolerances show higher slopes. A very low tolerance has to be used in order obtain a 

perfectly flat total current density profile. While this is easily achievable, it does add to the 

total computational time. For the purposes of computational efficiency, a lower tolerance 

can be used provides that the total current doesn't deviate more than few σ (standard 

deviations). 
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Figure 6.18. a) Total current density profile calculated by drift-diffusion. b) Total current 

density profile calculated by the DDMC. 

 

Similarly, Fig. 6.19a and Fig. 6.19b shows the electron and hole current densities as 

calculated by drift-diffusion and DDEMC respectively. Figures 6.18 and 6.19 show the 

current densities that are obtained after one Gummel loop. In other words, the EMC has 

calculated a new injection conditions only once. To truly self-consistently couple both 

solvers, the injection condition must be calculated several times. Eventually, when the 

current stabilizes, it can be said that the two solvers have been self-consistently coupled. 

Figure 6.20 shows the hole current density that is calculated by the drift diffusion and is 

used as an injection condition for the EMC. Despite a slight initial increase, the current 

reaches a stable state within a few iterations. As described earlier, the use of EMC in dense 

regions of the depletion region leads to a domain with a large number of particles which 

leads to computational inefficiency. In this situation, the EMC is the rate limiting step of 

the solver due to which only a limited number of Gummel cycles can be performed. 

a) b) 
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Figure 6.19. a) Electron and hole current density calculated by drift-diffusion. b) Electron 

and hole density calculated by the DDEMC (from the edge of the DDEMC window). 

 

However, since the ith Gummel cycle uses information such as charge densities, 

potentials and injection current from the (i-1)th Gummel cycle, a better initial guess reduces 

the amount of time required for current matching. As is evident from Fig. 6.21 (JExtracted = 

1.22 A/cm2), the EMC characteristics no longer have a transient trend where the cumulative 

charge and domain charge increases rapidly and then decreases to a steady state value. 

However, there is still significant noise in the characteristics which can only be overcome 

with longer simulation runs. Long simulation runs combined with a dense EMC domain 

means that even during successive Gummel cycles the EMC is still the rate limiting step. 

a) b) 
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Figure 6.20. Hole current density injected into the EMC domain vs. Gummel Index (The 

index on the x scale represents the ith iteration of the Gummel Loop). 

 

 

 

 

 

 

 

 

Figure 6.21. a) Cumulative charge density vs. time for ith Gummel cycle. b) Total charge 

in the Monte Carlo domain vs. time for ith Gummel cycle. 

 

a) b) 
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6.2.2 Weighted Carriers 

A single carrier with a charge 'q' can be represented by 10 carriers with a charge ~ 

'0.1q'. By weighting carriers, 1 carrier can be replaced by 10 smaller carriers of equivalent 

charge or vice versa. This is also referred to as the super particle approach. In the previous 

section it was concluded that the weighted carrier scheme was not appropriate to boost 

injection statistics, as multiplying the number of carriers injected would not change the 

amount of charge being injected. Also, the source of the noise in the EMC was attributed 

to the large mismatch between the charge being injected and the charge present in the dense 

contact cells. However, this approach can be used to boost the population of cells present 

in the depletion region. A charge enhancement scheme which uses weighted carriers to 

increase the number of carriers representing the low depletion region charge [108] has been 

implemented. This improves the statistics representing the charge density in the EMC 

domain and improves the stability of the DDEMC. 

 

Figure 6.22. Visualization of charge enhancement in regions with low charge density. 
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6.2.3 Collecting Boundary Away from the Contact 

In section 6.2.1, the extraction boundary of the EMC was placed at the contact. This 

led to the EMC domain encompassing the entirety of the heavily doped emitter which led 

to very a high EMC domain population, resulting in poor computational efficiency and 

noise issues while extracting current. In this section, the extraction boundary is placed away 

from the contact as show in Figure 6.10b. Since the EMC domain encompasses only the 

depletion region, the overall domain population is reduced (Fig. 6.23b), which allows 

accurate extraction of current (as shown in Fig. 6.23a). In this situation the convergence 

time of the drift-diffusion solver becomes the rate limiting step. By implementing this 

strategy, more Gummel iterations can be run in a shorter amount of time (as shown by Fig. 

6.24). Figure 6.24 shows that hole injection current doesn't change drastically and is quite 

stable. 

 

 

 

 

 

 

 

 

Figure 6.23. Cumulative charge (a) and total device charge (a) vs. time when the 

collecting boundary is placed away from the contact. 

a) b) 
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Figure 6.24. Hole injection current vs. ith Gummel iteration. 

 

Figure 6.25. Charge density profile using a collecting boundary placed away from the 

contact. The Monte Carlo domain lies between the black dashed lines, whereas the green 

circles indicate the drift-diffusion regions. 
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Figure 6.25 shows the charge density calculated by the DDEMC solver with the 

collecting boundary placed away from the contact. To achieve charge continuity across the 

drift-diffusion and EMC domains, the EMC solver used an injection boundary condition at 

the collecting boundary, and a “fixed charge density” boundary condition at the extraction 

boundary. The hole continuity equation was solved outside the EMC domain, where 

Dirichlet boundary conditions were implemented at the contact boundaries C1 and C2. 

Fixed charge boundary conditions were implemented at boundaries B1 and B2 where the 

value of charge was calculated by the EMC solution. 

 

Figure 6.26. Band diagram at the front contact of a SHJ under short circuit conditions as 

calculated by the drift-diffusion solver. The figure also indicates the region in which the 

EMC is implemented. 

 

The DDEMC methodology was also applied to a SHJ test structure with an a-Si:H(p) 

layer ~ 40 nm with doping ~ 1019 cm-3, an a-Si:H(i) layer ~ 10 nm, and an n-type c-Si 
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absorber ~ 3 μm in thickness. Figure 6.26 shows the equilibrium band diagram of the front 

contact of a SHJ solar cell at short circuit conditions as calculated by the drift-diffusion 

solver. The EMC solution was applied to a small window near the a-Si:H(i)/c-Si 

heterointerface as shown in Fig. 6.26. Due to the nature of the “inversion” region in the 

SHJ cell, the hole carrier density decays by orders of magnitude within a few nm’s, i.e. 

1019 cm-3 – 1014 cm-3 within 40 nm. Thus, a smaller window ~ 10 nm is applied at the a-

Si:H(i)/c-Si heterointerface in order to reproduce the injection current accurately. This 

approach does require careful consideration, which is further discussed in Section 6.3.  

 

 

 

 

 

 

 

 

 

Figure 6.27. a) Hole charge density as calculated by the drift-diffusion (blue) and 

DDEMC (red). b) Hole current (red) and electron current (blue) as calculated by the 

DDEMC. 

 

Figure 6.27a shows the hole charge density at the a-Si:H(i)/c-Si heterointerface, and 

Fig. 6.27b shows the electron and hole current profiles as calculated by the coupled 

DDEMC solution. For the results in Fig. 6.27 the EMC used an injection boundary 

a) b) 
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condition at boundary B2. At the boundary B1, carriers were extracted based on direct 

tunneling and thermionic emission, and reinjection was performed according to the “fixed 

charge” boundary condition. 

6.3 Conclusion 

In this chapter, a strategy was presented to couple an EMC solver to a drift-diffusion 

solver to study high field effects in silicon heterojunction solar cells. Previously, studies 

that have coupled drift-diffusion to EMC solvers use parameters (charge density, carrier 

velocity) obtained from the EMC solution, and use it in a “modified” drift-diffusion 

equation; this modified drift-diffusion equation is then solved over the entire domain 

[93,98]. The approach presented in this chapter differs from previous approaches as the 

charge calculated by the EMC domain is frozen, so that the integrity of the EMC solution 

is preserved. However, this approach creates two drift-diffusion domains that are separated 

by the EMC domain (see Figure 6.8).  The hole continuity equations are solved in the drift-

diffusion domains while sharing a boundary with the EMC domain. Using the correct 

boundary conditions is imperative to ensure continuity of charge and current across the 

shared boundaries of the drift-diffusion and EMC solvers. 

The EMC has two boundaries, namely 1) the injection boundary that is placed in the 

low field quasi-neutral region of the c-Si, and 2) the extraction boundary that is placed at 

the a-Si:H(i)/c-Si heterointerface. At the injection boundary, current calculated by the drift-

diffusion is injected into the EMC domain. However, the extraction boundary is a 

complicated matter. Carrier are extracted based on a tunneling probability. A “fixed charge 

density” boundary condition is used to ensure that extraction boundary cell does not get 
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depleted by extracted carriers. This implies that carriers are injected into the extraction 

boundary cell to maintain a “fixed charge density”. It is unclear what the energy 

distribution of the reinjected carriers should be. Reinjecting a Maxwellian distribution into 

the extraction boundary cell might lead to ‘cooling’ of the carrier distribution at the a-

Si:H(i)/c-Si heterointerface. At present, the carriers at the a-Si:H(i)/c-Si heterointerface are 

being extracted using a simple WKB based tunneling probability which does not factor in 

the phonon assisted transport across the a-Si:H(i) layer described Chapter 5. 

Once the EMC solution determines the hole charge density, the hole continuity solution 

must recalculate the hole density on either side of the EMC domain. Dirichlet boundary 

conditions can be used at the contacts C1 and C2 (see Fig. 6.8). There are two types of 

boundary conditions that were used at the internal boundaries B1 and B2. At B2 (also the 

injection boundary for the EMC), a “fixed charge density” boundary condition was used. 

This charge density was determined by the EMC solution. However, we also used a RBC 

at B2, where the current flux at the boundary is the initial flux calculated by the drift-

diffusion. Similarly, a “fixed charge density” boundary condition and a RBC was used at 

B1. In both scenarios, the charge density at B1 was preserved across multiple Gummel 

cycles. Even though a stable solution was achieved using both types of boundary 

conditions, it is unclear which boundary conditions should be used to see a real change in 

hole current density. It would appear that by using the suggested boundary conditions, the 

DDEMC solver is pathologically recreating the initial flux conditions calculated by the 

drift-diffusion solver.  
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As described earlier in this thesis, the EMC solution captures the effect of high electric 

fields on the hole carrier population; and the DDEMC solution integrates the EMC solution 

into a drift-diffusion framework. The electron density in the SHJ is treated with the drift-

diffusion model over the entire domain. The total current density in the device is the sum 

of electron and hole current densities; which must be constant over the entire domain. In 

results presented in this chapter, the hole current density at the injection (B2) and extraction 

(B1) boundaries were discussed. It is unclear how to treat the hole current density within 

the EMC domain and therefore the entire hole current density profile in the device. In this 

chapter, the total current density was calculated at injection boundary (B2). A scheme must 

be developed to address current density of electrons/holes and resolve it with the total 

current density of the device. 

There are several non-trivial numerical challenges that must be overcome when 

coupling an EMC solution to a drift-diffusion solver in a bipolar device. The application 

of the EMC window must be compatible with several assumptions, such as, no 

recombination in the EMC domain, and the distribution function at the boundaries of the 

EMC must be near equilibrium. However, due to the unique structure and hole charge 

density profile of the SHJ solar cell, the conditions above cannot be strictly adhered to. The 

extraction boundary (B1) of the EMC is placed in a high field region at the a-Si:H(i)/c-Si 

heterointerface, as the EMC cannot operate in the a-Si:H(i). The injection boundary (B2) 

of the EMC cannot be placed in the quasi-neutral region in the c-Si where electric fields < 

10 kV/cm as it results in disproportionately dense extraction boundary cells.  
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

The research work presented in this thesis investigates the transport of photogenerated 

holes in a SHJ solar cell structure. In particular, the impact of the a-Si:H(i)/c-Si 

heterointerface, and the a-Si:H(i) passivation layer on transport properties was 

investigated. Several theoretical methodologies were developed to gain insight into 

transport behavior and device properties of the SHJ solar cell. In Chapter 3, a commercial 

TCAD tool was utilized to study the impact of the ITO(n+)/a-Si:H(p) and a-Si:H(i)/c-Si 

heterointerfaces on the contact resistivity of a SHJ solar cell. To investigate the contact 

resistivity behavior of carrier-selective contacts in SHJ solar cells, the TLM measurement 

technique was simulated. Using the drift-diffusion model of a commercially available 

TCAD tool (Silvaco), it is possible to simulate other measurement techniques that are used 

to characterize solar cells, such as various contactless measurements and lifetime 

measurements. Though there are limitations in applying the drift-diffusion model to study 

novel device structures where this model is not valid, it is possible to add several 

corrections to the drift-diffusion model, and thus gain insight into the device properties of 

solar cells. 

In Chapter 4, an EMC solver was developed to investigate the effect of high electric 

fields on the energy distribution function of photogenerated holes at the a-Si:H(i)/c-Si 

heterointerface. The EMC solution established the presence of a non-Maxwellian energy 

distribution function of injected photogenerated carriers at the a-Si:H(i)/c-Si 

heterointerface; this violates the assumption made in the drift-diffusion model. However, 
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the EMC solution also showed that the energy distribution function of carriers in low-field 

areas of the device is Maxwellian. Acoustic phonon and non-polar optical phonon models 

were used to describe scattering of holes in c-Si, while also considering warping and non-

parabolicity of the valence band. Considering that the a-Si:H(i)/c-Si heterointerface has a 

high-density inversion layer of holes, a carrier-carrier scattering model can offer further 

insight into the energy distribution function at the heterointerface. As the photogenerated 

holes must traverse the potential barrier created by the a-Si:H(i)/c-Si heterointerface, an 

‘energized’ or ‘hot-carrier’ population at the heterointerface can be beneficial for efficient 

transport.  

To investigate hole transport across the a-Si:H(i) layer, a KMC solver was developed 

(described in Chapter 5). The KMC solution showed that multi-phonon injection of holes 

into the a-Si:H(i) layer is the rate limiting step for transport across the barrier; this injection 

process is critical to avoid photocurrent suppression in the SHJ structure. Photocurrent 

suppression at the a-Si:H(i)/c-Si barrier can be viewed as a charge pileup, where 

photogenerated carriers that are incident on the a-Si:H(i)/c-Si heterointerface do not get 

extracted quickly. In other words, the rate of incidence of photocarriers at the a-Si:H(i)/c-

Si heterointerface is much faster than the rate of extraction of carriers. The rate of incidence 

of carriers at the a-Si:H(i)/c-Si barrier is function of the short-circuit current in the device. 

The rate of extraction of carriers across the a-Si:H(i) barrier is computed by the KMC, 

where carriers traverse the barrier via multi-phonon injection into the a-Si:H(i) layer, 

hopping via defect states in the a-Si:H(i) layer, and finally exit the a-Si:H(i) layer into the 

a-Si:H(p) layer via Poole-Frenkel emission and defect emission. The KMC simulations 
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show that the average transit time of carriers across the a-Si:H(i) can vary orders of 

magnitude depending on properties of the a-Si:H(i) layer, such as, thickness, band-tail 

defect density, electric field and optical phonon energy. Therefore, it is essential to 

optimize the a-Si:H(i) layer to obtain efficient electrical transport across this layer. As 

mentioned earlier, photocurrent suppression occurs when the rate of extraction of carriers 

from the a-Si:H(i)/c-Si heterointerface ≪ rate of incidence of carriers at the a-Si:H(i)/c-Si 

heterointerface. An imbalance in the rates causes transport across the a-Si:H(i)/c-Si 

heterointerface to be more resistive, which is expected to cause a degradation in the fill 

factor and hence a degradation in the overall device performance. This work can be 

extended by coupling the KMC self-consistently to a standard drift-diffusion model, which 

would enable one to see the effect of the microscopic transport mechanisms (described in 

Chapter 5) on macroscopic device performance parameters such as fill factor. 

The KMC method can also be extended to study transport properties of novel materials 

that are being investigated for the purposes of forming a new generation of electron (TiOx) 

and hole selective (MoOx and WoOx) contacts. There are several studies that show that 

defect-assisted transport is going to be crucial for electrical transport of photocarriers in 

these carrier-selective contacts, and thus the KMC is an ideal method to study this behavior.  

As an extension to this work, the results of the KMC simulations can also be added to 

the drift-diffusion model non-self-consistently. Deviations from drift and diffusion current 

can be added as corrections to the drift-diffusion model. In particular, thermionic emission 

and field emission can be added to the drift-diffusion model as a boundary condition to the 

current equations. The field emission is generally characterized by a transmission 
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coefficient ‘δ’ representing direct tunneling. Similarly, the ‘δ’ term can be extended to 

represent a hopping transmission coefficient, which can be calculated by the KMC. The 

KMC solver presented in this thesis can easily be extended to study other novel materials 

that are being explored to improve the carrier selective contact structure. 

In Chapter 6, a novel strategy to couple an EMC to a drift-diffusion solver was 

presented. To fully solve the multiscale problem present in the SHJ solar cell, it is 

imperative to self-consistently couple all the three modules presented in this thesis. The 

decoupled simulations presented in this thesis provides great resolution in the physics of 

transport of photogenerated carriers. A fully self-consistent model can correlate the overall 

effect microscopic physical mechanisms to device performance parameters. However, to 

achieve complete self-consistency is a non-trivial task that requires a rigorous 

mathematical analysis of boundary conditions that connects continuum models to discrete 

models. 
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