
Structured Disentangling Networks for Learning Deformation Invariant Latent Spaces

by

Kaushik Koneripalli Seetharam

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved July 2019 by the
Graduate Supervisory Committee:

Pavan Turaga, Chair
Antonia Papandreou-Suppappola

Suren Jayasuriya

ARIZONA STATE UNIVERSITY

August 2019

ABSTRACT

Disentangling latent spaces is an important research direction in the interpretability of

unsupervised machine learning. Several recent works using deep learning are very effective

at producing disentangled representations. However, in the unsupervised setting, there is

no way to pre-specify which part of the latent space captures specific factors of variations.

While this is generally a hard problem because of the non-existence of analytical expres-

sions to capture these variations, there are certain factors like geometric transforms that can

be expressed analytically. Furthermore, in existing frameworks, the disentangled values are

also not interpretable. The focus of this work is to disentangle these geometric factors of

variations (which turn out to be nuisance factors for many applications) from the semantic

content of the signal in an interpretable manner which in turn makes the features more dis-

criminative. Experiments are designed to show the modularity of the approach with other

disentangling strategies as well as on multiple one-dimensional (1D) and two-dimensional

(2D) datasets, clearly indicating the efficacy of the proposed approach.

i

ACKNOWLEDGMENTS

I would like to extend my sincere gratitude to Prof. Pavan Turaga for giving me an

opportunity to work under his guidance in the Geometric Media Lab. Over the past year

that I have been associated with the lab, I have gained tremendous amount of knowledge

related to computer vision and machine learning. I would like to thank Dr. Rushil Anirudh

and Suhas Lohit for actively being a part of my thesis and giving me the right amount

of guidance. Our periodic discussions were not only helpful in generating new ideas, but

also helped me imbibe critical thinking and research skills. I would like to thank the other

members of our lab, Kowshik Thopalli and Rajhans Singh, with whom I have had wonder-

ful discussions and consequently learnt a lot. I would like to thank my academic advisor

Toni Mengert for being very helpful in all administration related issues. Finally, I would

like to thank my mother, Prof. M.K. Nagamani who has provided unconditional emotional

and financial support during the course of my Master’s program, without which none of

this would have been possible.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . iv

LIST OF FIGURES . v

CHAPTER

1 INTRODUCTION . 1

1.1 Our Contributions . 3

2 DISENTANGLED REPRESENTATIONS . 5

2.1 Introduction to Disentanglement . 5

2.2 Invariance in Computer Vision . 8

2.3 Invariance Through Disentanglement . 10

3 DEFORMATION DISENTANGLING STRATEGY . 12

3.1 Disentangling Affine Transforms . 12

3.2 Disentangling Rate Transforms . 13

4 EXPERIMENTAL RESULTS . 15

4.1 Image Data . 15

4.1.1 AffNIST Dataset . 15

4.1.2 Disentangling Sprites Dataset . 16

4.1.3 Mixing Autoencoders . 18

4.1.4 β - Variational Autoencoder . 26

4.2 Time Series Data . 31

4.2.1 Synthetic Dataset 1 - Bimodal Gaussian . 33

4.2.2 Synthetic Dataset 2 - Multi Class Time Series 36

4.2.3 ICL Hand Pose Dataset . 38

5 CONCLUSION . 42

REFERENCES . 44

iii

LIST OF TABLES

Table Page

4.1 Clustering Metrics of the Latent Space for Mixing Autoencoder Framework 23

4.2 Clustering Metrics of the Latent Space for Variational Autoencoder Frame-

work . 29

4.3 Cluster Purity Metrics of the Feature Representations . 40

4.4 Classification Accuracies of the Three Methods . 41

iv

LIST OF FIGURES

Figure Page

1.1 Visualization of the Concept of Invariance. 2

2.1 Illustration of Disentangled Latent Space . 6

2.2 Invariant versus Equivariant Representations . 9

3.1 Disentangling Affine Parameters in an Unsupervised Fashion Using a Spa-

tial Warping Layer . 12

3.2 Disentangling Rate Variations in an Unsupervised Fashion Using a Tempo-

ral Warping Layer . 13

4.1 Examples from AffNIST Dataset . 16

4.2 Examples from Dsprites Dataset . 17

4.3 Disentangling Latent Spaces by Mixing Them . 18

4.4 Modified Mixing Autoencoders - Training Architecture 19

4.5 Modified Mixing Autoencoders - Inference Architecture 20

4.6 Estimated Template by Mixing Autoencoders - AffNIST Dataset 22

4.7 Latent Chunk Traversals for Mixing Autoencoders - Affnist Dataset 22

4.8 Visualization of Latent Representations for Mixing Autoencoders - Affnist

Dataset . 23

4.9 Estimated Template by Mixing Autoencoders - DSprites Dataset 24

4.10 Latent Chunk Traversals for Mixing Autoencoders - DSprites Dataset 25

4.11 Visualization of Latent Representations for Mixing Autoencoders - DSprites

Dataset . 25

4.12 β-VAE Architecture . 26

4.13 Modified β-VAE Architecture . 27

4.14 Estimated Template by Mixing Autoencoders - AffNIST Dataset 28

4.15 Latent Chunk Traversals for β-VAE - AffNIST Dataset 28

v

Figure Page

4.16 Visualization of Latent Representations for β-VAE - AffNIST Dataset 29

4.17 Estimated Template for β-VAE - DSprites Dataset . 29

4.18 Latent Traversals for β-VAE - DSprites Dataset . 30

4.19 Illustration of Rate Variations in Time Series Signals . 32

4.20 Visualization of Bimodal Gaussian Data . 34

4.21 Visualization of Rate Invariant Bimodal Gaussian . 35

4.22 Two Classes of Time Series Signals Considered. 36

4.23 Warped Version of Two Class Time Series Signals . 36

4.24 Autoencoder Template Prediction . 37

4.25 Autoencoder Template Post Processed . 37

4.26 Visualization of Latent Representations - ICL Dataset . 40

4.27 Example Data from ICL Dataset Before and After Warping 41

vi

Chapter 1

INTRODUCTION

Prior to the deep learning era, computer vision systems made use of features that were

hand-engineered and task-oriented. One of the desired goals for these features was to be

invariant to certain nuisance factors in the data such as affine transforms, blur etc. Works

such as Lowe (2004), Gopalan et al. (2012) have achieved it, but these methods are hand-

engineered. Modern day computer vision systems are primarily data-driven where features

are learned by enforcing suitable constraints on the learning paradigm. Being dependant

on data, it makes them susceptible to learn any noise that is implicitly there in the data

(due to noise in data generating process). Note that “noise” in this case is any undesired

transformation of the original data which we parametrize with a mathematical model. Thus

it becomes important to learn features that are invariant to these noise factors.

Figure 1.1 illustrates the concept of invariance that is desired in the feature representa-

tion of multi-dimensional signals. Specifically, it illustrates blur, affine and rate invariance

for images and time-series. Common kinds of nuisance/noise factors that creep into im-

age datasets that are used to train computer vision systems are: affine variations, blur and

brightness/illumination. Similarly time series data have a lot of rate variations. Let us

collectively call them as “parametric deformation models”. Thus, having a deformation in-

variant feature representation is crucial for many downstream computer vision and machine

learning applications.

Typically in signal processing applications, noise corresponds to Additive White Gaus-

sian Noise (AWGN) which is added to the range of the signal. This means that the signal

at the receiver is assumed to be a sum of the “clean” signal and a noise term. Here, let us

define noise in a slightly different way as “task-based undesired factors of variations”. This

1

Figure 1.1: Visualization of the concept of invariance - This figure illustrates commonly
desired invariances in the feature representation of image and time series data. The first and
second figures represent blur and affine transform invariance. The third figure represents
rate invariance in time series data.

means that certain factors of variation are desirable for some tasks and are undesirable for

other tasks. For example, if the task is image classification, affine transformations can be

considered noise as it can disrupt the classifier’s performance. However, if the task is to

generate new images with similar geometric variations as that of a particular image in the

dataset, affine transforms are not considered noise and is in fact desirable to know them

explicitly. Since the term “nuisance factor” is task dependant, it is desirable to have an

invariant representation to these nuisance factors, along with the parameters that generate

these nuisance factors.

Consider the clean version of a signal given by the equation:

y = φ(x)

Let us consider noise such that it acts on the domain of the signal. This is modeled using

the equation:

y = φ(N (x; w)) (1.1)

whereN (.) is the noise that acts on the domain of the signal x. As we saw earlier, for many

signal processing applications, noise is modelled to be “additive” white gaussian which acts

on the range of the signal. The above equation represents noise that is “transformative” in

nature which acts on the domain of the signal. The goal is to undo these transformations

2

N (.) so as to retrieve the original clean signal φ(x) along with the parameters of N (.).

We consider two kinds of signals for our experiments: 1-dimensional (time series) and

2-dimensional (images).

Recent works in computer vision such as Cohen and Welling (2016) have focused on

achieving invariant and equivariant representations of data during the learning process. A

closely related line of work is learning disentangled representations which is primarily use-

ful in controlling the factors of data generation. In this work, we show how to achieve

invariance to nuisance factors by disentangling them out from the remainder of the repre-

sentation. More specifically, we provide an unsupervised data-driven approach to disen-

tangle these nuisance factors from the canonical representation of the signal. This method

is completely unsupervised in the sense that we do not even provide a reference canonical

representation. It is interesting to see that the network learns a canonical representation on

its own from the data.

1.1 Our Contributions

1. We propose a training strategy to disentangle deformation parameters from the se-

mantic content of the signal.

2. We show modularity of approach with other disentangling strategies and improve-

ment in class-discriminative ability of the latent space. We also show experiments

indicating the efficacy of our approach for time-series alignment.

3. Finally, we show experiments on a real world dataset of hand action recognition.

Using our approach, we show improvement in classification accuracy when the data

is corrupted with rate variations.

3

Organization of Thesis: Chapter 2 begins with historically understanding the im-

portance of invariant representations for computer vision applications. We then look at

disentangled representations in unsupervised methods in Section 2.2. Finally, we conclude

the chapter by discussing the focus of this thesis: to achieve invariance through disentan-

glement. Chapter 3 briefly describes the proposed method for one dimensional (1D) and

two dimensional (2D) data. Chapter 4 presents experimental results for 1D and 2D data. It

also shows the modularity of the proposed method with other existing disentangling frame-

works. Chapter 5 concludes the work and discusses future lines of research.

4

Chapter 2

DISENTANGLED REPRESENTATIONS

This chapter begins with an introduction to the idea of disentangling latent spaces in

an autoencoding model. This is followed by understanding the importance of invariant

representations in computer vision. Finally, we look at how disentangled representations

implicitly promote invariance and why we need to achieve interpretable disentangled rep-

resentations.

2.1 Introduction to Disentanglement

Unsupervised representation learning is central to several problems in machine learn-

ing. The idea of autoencoders (Hinton and Salakhutdinov (2006)) has been at the forefront

of data-driven unsupervised learning. They are neural network models that are trained

with the goal of reconstructing the input. In the process of doing so, they learn a low-

dimensional embedding/representation of the input. These low-dimensional embeddings

(also called the latent spaces) can be used for downstream computer vision tasks such as

image classification. One of the major questions that needs to be addressed is regarding

the semantic interpretability of these representations. Furthermore, with the rise of unsu-

pervised generative models like Variational Autoencoders (Kingma and Welling (2013))

and Generative Adversarial Networks (Goodfellow et al. (2014)), the interpretability of

the latent space is all the more important in order to control the factors of variation when

generating new data.

The idea of having disentangled representations is to “assign semantic meaning to dif-

ferent parts of the latent space”. Disentangled representations contribute greatly towards

5

interpretability of latent spaces where, each variables/chunks (group of contiguous vari-

ables) represent a certain factor of variation. As a result, disentangling enables the easy

modification of latent variables in order to generate desired variations in the image space.

Figure 2.1 illustrates that, when each of the latent variables/chunks (depending on frame-

work) are perturbed, there is a corresponding smooth variation in the image space with

respect to a semantic attribute. More importantly, each chunk seems to capture a different

factor of variation such as hair color, gender, brightness etc.

Figure 2.1: Illustration of disentangled latent space - Interpolations taken from Hu
et al. (2018). This figure illustrates disentangled representations captured by the latent
chunk/variables. The arrow marks indicate the interpolation observed when that particular
chunk/variable is varied while keeping others constant.

6

After the introduction of neural network based generative models like VAE and GANs,

there has been a lot of work on disentangled representations. The literature in disentan-

glement can be broadly classified into two streams: a) works that propose new methods to

disentangle latent spaces, b) works that use existing frameworks and discover new aspects

to disentangle with minor modifications to the method. Kulkarni et al. (2015) introduced a

weakly supervised way to learn disentangled representations where you can specify apriori

what each latent variables represent. Mathieu et al. (2016) proposed a method to break

down latent space into chunks of variables where each chunk captures one aspect of vari-

ation. Methods that directly build on generative frameworks like β-VAE (Higgins et al.

(2017)), InfoGAN (Chen et al. (2016)) propose disentanglement by promoting statistical

independence among latent variables. Makhzani et al. (2015) adversarially train the latent

space to match the desired distribution hence promoting disentanglement.

Coming to the second stream of works, (Shu et al. (2018)) propose a new way to dis-

entangle texture, shading and illumination information from the data. (Xing et al. (2018))

disentangles appearance from geometry information. Hu et al. (2018) builds on Mathieu

et al. (2016) to improvise the mixing chunks of latent space and shows disentangling ca-

pabilities. Worrall et al. (2017) provides a way to achieve equivariant feature space while

being able to disentangle. However, the values obtained at the latent space are not inter-

pretable. Liu et al. (2018) propose a method to disentangle appearance from pose.

As we have seen above, there has been a lot of success in neural network architectures

that achieve unsupervised disentanglement like β-VAE (Higgins et al. (2017)), Mixing Au-

toencoders (Hu et al. (2018)), Factor VAE (Kim and Mnih (2018)) etc. However, these

approaches suffer from some drawbacks: (a) they cannot guarantee a priori which dimen-

sions of the latent space representation correspond to a given attribute, and (b) the latent

space loses its discriminative nature in the presence of structured nuisance transforms in the

training set. As a result, these methods require post-hoc analysis before they can be suc-

7

cessfully deployed into downstream applications. A priori guarantees of factors of variation

is generally hard because these factors (such as thickness, style, hair-color etc.) cannot be

controlled using an analytic expression. However, geometric factors of variations that can

be expressed analytically, are also not captured in an interpretable fashion and we choose

them as the focus of this work. In the following section we will look at the idea of invariant

representations.

2.2 Invariance in Computer Vision

Finding low dimensional, task-specific feature representation is the backbone of any

computer vision application. It is often desired that the features have some specific proper-

ties. Two of the most commonly desired properties are invariance and equivariance. Figure

2.2 illustrates the difference between the two kinds of representations. Equivariant repre-

sentation means that any change in the input space should yield a proportional change in

the feature space. Mathematically, f(Tθ(x)) = Fθ(f(x)), where T (.) is a transformation

in the signal space, F(.) is a transformation in the feature space and f(.) is a function that

transforms the signal to the feature space. Invariant representation means that any change

in input space should not change the representation in the feature space. Mathematically,

f(Tθ(x)) = f(x).

Let us focus on invariant representations. As mentioned before, real world data comes

with a lot of nuisance transformations like affine, illumination, blur etc. Thus it is impor-

tant for features to be invariant to these nuisance factors. Such invariant representations

have proven to be crucial for the robustness of computer vision system that are developed.

Traditionally achieving invariant representations have been approached by using various

statistical and differential geometric frameworks (Begelfor and Werman (2006), Mumford

(1994)). Existence of such invariant representations have been theoretically proved, and im-

8

Figure 2.2: Invariant versus equivariant representations - The first row represents the
UMap plots for the MAE framework. The left picture represents the latent space embedding
of the MAE trained on regular MNIST data. The middle picture represents latent space
embedding of MAE trained on AffNIST data. The right picture represents latent space
embedding of MAE along with our training strategy trained on AffNIST data.

proved methods to obtain affine representations have also been proposed (Vedaldi (2008)).

Feature extraction methods such as SIFT (Lowe (2004)) and SURF (Bay et al. (2006)) were

proposed with the claim of scale invariance.

The main problem that still persisted was the necessity to hand-tune the parameters

of these methods using experiment-based thresholds. However, they were very popular in

the computer vision community for mainstream tasks like object detection until the rise of

data-driven-learning era. With the advent of deep learning, feature learning became a data

driven process. Learning invariant and equivariant representations were now determined

by imposing suitable constraints on the training procedure. Convolutional networks were

then designed with the goal of achieving such representations (Cohen and Welling (2016)).

The most common aspects to which invariance is desired for images are nuisance trans-

forms like affine, blur, illumination/lighting. Jaderberg et al. (2015) proposed the Spatial

Transformer Networks to learn features invariant to transformations like affine, projective

and thin-plate spline. (Lu et al. (2019)) proposed a methd to disentangle blur and in turn

capture a blur invariant representation. (Lohit and Turaga (2017)) proposed a method to

capture invariant representations for illumination/lighting. Invariant representations are

9

also being explored for point cloud (Qi et al. (2017), Som et al. (2018)) and time series

data (Lohit et al. (2019)).

2.3 Invariance Through Disentanglement

In the previous section, we have seen the importance of having invariant representations

in computer vision applications. Referring to Figure 2.1, in the process of achieving disen-

tangled representations, specific chunks/variables are actually invariant to other factors of

variations. For example, in Figure 2.1, the blue variable is invariant to all changes except

brightness, red variable is invariant to all changes except saturation, and so on.

However, we wish to go a step further and be able to obtain these transformation pa-

rameters along with the invariant feature representations which could potentially be useful

for various applications. Consider the scenario of a mobile robot with a camera trying

to move around. The robot has to be “self-aware” when it moves i.e. know its motion

with respect to its surrounding objects and have a frame of reference. In other words, it

has to possess egomotion. This idea of “self-awareness” is drawn from biology where liv-

ing organisms developed the ability of visual perception for the purpose of moving and

acting in the world. Thus it becomes important to know these transformation parameters

which could potentially guide the motion of the robot. As a second example, consider data

augmentation with geometric transforms. If we want to generate new data with certain ge-

ometric transformations from the dataset, disentangled representations could be useful to

know these transformations explicitly. Agrawal et al. (2015) propose a way to learn from

such scenario where you only have access to successive frames at a time. However, when

we have access to an entire dataset of images, we should be able to retrieve the transforma-

tion parameters with respect to some canonical representation and this is explored in this

work.

10

We address these goals by proposing an unsupervised training strategy to disentangle

geometric factors of variations from the semantic content of the data. As desired, we will

be able to achieve invariant feature representations along with the transformation parame-

ters. Since the latent space structure corresponding to the deformation factors is enforced

analytically (by using the spatial and temporal warping layers described later), we directly

obtain a factored representation leading to a robust semantic latent space. We demonstrate

that in the presence of deformations in a dataset, the proposed strategy is able to “undo”

these deformations and also maintains/improves the class-discriminative ability of this fea-

ture space. Furthermore, we cement our claims by showing the modularity of our approach

with other disentangling networks.

11

Chapter 3

DEFORMATION DISENTANGLING STRATEGY

In this chapter we propose a training strategy to disentangle deformation parameters

from image and time series data. As described previously, we specifically focus on defor-

mations that manifest as affine variations for image data and rate variations for time-series

data. This training strategy is completely unsupervised, modular and yields interpretable

latent representations. We train the autoencoder architecture with the regular L2 loss or

any other loss as required by the disentangling strategy that is being used. In the following

sub-sections, we illustrate the strategy for both images and time series.

3.1 Disentangling Affine Transforms

For a general autoencoding framework, we illustrate how our training strategy can be

applied to disentangle affine transforms.

Figure 3.1: Disentangling Affine Parameters in an Unsupervised Fashion Using a Spa-
tial Warping Layer - The encoder is used to generate two chunks: one to capture affine
transform parameters and the other to capture content information. The output of decoder
is a canonical/template representation which is transformed using a spatial warping layer
with the predicted affine transforms.

Figure 3.1 illustrates the proposed strategy to disentangle affine transforms from the

semantic content of the signal. The broad idea is to bifurcate the latent space into 2 chunks:

12

the affine chunk and the content chunk. As we will see in the next chapter, the content

chunk can also have disentangled representations as governed by various strategies in lit-

erature. This approach is interpretable in the sense that, the affine chunk learned by the

encoder is actually a 2x3 affine matrix and can be actually used to transform an image

with respect to a “template” predicted by the decoder. It is important to note that only the

content chunk is fed to the decoder with the idea of making it output an “affine-invariant”

image which we consider to be a template/canonical representation. Finally, a spatial-

warping layer (Jaderberg et al. (2015)) is used to transform the predicted template using

the learned affine transform. Using the above described framework, we show experiments

on two datasets and two disentangling frameworks as described in the next chapter.

3.2 Disentangling Rate Transforms

Since we are dealing with time series, consider an autoencoding framework based on

Temporal Convolution Networks (Bai et al. (2018)) and/or LSTM (Hochreiter and Schmid-

huber (1997)). Figure 3.2 illustrates how to disentangle rate variations (γ) from the seman-

tic content of the time series.

Figure 3.2: Disentanging rate parameters in an unsupervised framework using a tem-
poral warping layer - The encoder is used to generate two chunks: one to capture rate
transform parameters and the other to capture content information. The output of decoder
is a canonical/template representation which is transformed using a temporal warping layer
with the predicted rate transforms.

13

It is important to note that γ is of the same length as the input sequence and zcontent is

made as small as possible. Similar to the previous case, the latent space is bifurcated into

2 chunks: the rate chunk and the content chunk. The content chunk is a low dimensional

embedding of the time series signal. However, as in the case of images, we do not consider

any disentangled representations for the content chunk of the time series.

Similar to the spatial warping layer by Jaderberg et al. (2015), for time series signals we

make use of a “temporal warping layer” proposed by Lohit et al. (2019) to perform warping

of time-series in a differentiable manner so as to be integrable within a neural network. We

show that the above described framework can be used to perform time series alignment of

signals while maintaining/improving class-discriminative ability of latent space. We show

experiments on datasets with increasing level of difficulty.

14

Chapter 4

EXPERIMENTAL RESULTS

In this chapter, we show our results on different experiments carried out. For image

data, we show performance on AffNIST (Tieleman (2013)) and DSprites datasets (Matthey

et al. (2017)). For modularity, we show experiments on β-VAE (Higgins et al. (2017)) and

MAE (Hu et al. (2018)). For time series signals, we show performance on two synthetic

datasets and one real world dataset that are described in the subsequent sections.

4.1 Image Data

We consider the AffNIST and DSprites datasets which have many affine transform vari-

ations. We show the modularity of our approach by combining it with the following two

disentangling strategies:

1. Mixing Autoencoders (MAE) (Hu et al. (2018))

2. β-VAE (VAE) (Higgins et al. (2017))

The first method involves disentangling the latent space by breaking it down into chunks.

The second method involves promoting statistical independence between the latent vari-

ables. Let us see the composition of the two datasets.

4.1.1 AffNIST Dataset

The AffNIST dataset consists of affine transformed variations of the original MNIST

handwritten digits dataset. There are about 32 affine variations to each of the 70, 000 images

in the dataset, thus giving rise to about two million data points (train + validation + test

data). The training set contains about 1.6 million examples with equal distribution among

15

classes. Figure 4.1 illustrates a few examples from the dataset. For our experiments, we

use ∼ 50000 as training set and about 10000 as test set with equal distribution of classes.

The range of variations of affine parameters in this dataset are:

1. Rotations: +20 to −20 degrees.

2. Shear: +0.2 to −0.2.

3. Scale: 0.8 (shrink) to 1.2 (enlarge).

4. Translations.

Figure 4.1: Examples from AffNIST dataset - The first column represents each of the 9
digits of different styles. The remaining columns represent an affine transformed version
of the first column. Figure taken from webpage of Tieleman (2013)

4.1.2 Disentangling Sprites Dataset

The range of variations present in this dataset are:

1. Shapes: 3 - square, circle, heart

16

2. Scale: 6 values linearly spaced in range [0.5, 1]

3. Rotation: 40 values in range [0, π]

4. Translation X: 32 values in range [0, 1]

5. Translation Y: 32 values in range [0, 1]

Thus, the total size of dataset is around 700, 000. For our purpose, we consider a subset of

this dataset with a more coarsely sampled set of affine transforms. Specifically, we consider

only 11 values along the x and y translations. This leads to a dataset of size around 88, 000.

Figure 4.2 shows a few examples from the DSprites dataset.

Figure 4.2: Examples from Dsprites dataset - This figure represents various affine trans-
formed versions of all three shapes in the dataset. Figure taken from github page of Matthey
et al. (2017)

17

4.1.3 Mixing Autoencoders

This method was originally proposed in Hu et al. (2018). The architecture is as shown

in Figure 4.3. The idea of mixing is to first take 2 images (batches) and project them

Figure 4.3: Disentangling latent spaces by mixing them - Here the latent space is bifur-
cated into chunks. The two encoders and decoders shown in the figure have tied weights.
f12 is performing mixing between f1 and f2. f31 is performing un-mixing. Finally the
autoencoder is trained with a weighted combination of reconstruction error, classification
error and discriminator error. Figure taken from Hu et al. (2018)

to the latent space f1 and f2 respectively. Now, consider chunks (blocks of contiguous

dimensions) of the latent space and “mix” the chunks of f1 and f2 by multiplying them

with appropriate binary masks mi and adding them. This yields the mixed latent space f12.

Now the mixed latent space is fed into the decoder producing an output. Intuitively, this

output x3 has a mixture of features from both x1 and x2. These could be anything like

texture, style, brightness etc. Now this intermediate representation x3 is again fed through

the encoder to obtain latent space f3. Ideally f12 and f3 have to be the same. With this

goal, “un-mixing” is performed to obtain f31 which is fed to the decoder to obtain x4. The

reconstruction loss is computed between x4 and x1. It also important to note that, for each

18

image combination x1 and x2, there are 2n − 2 mixing combinations. For more details on

how mixing is performed please refer Hu et al. (2018).

The proposed loss function to train the AE end to end is given by:

Ltotal = λ1Ex1,x2

[∑
m

|x4 − x1|2
]

+ λ2
∑
m

Ex1,x2 [log(Dsc(x1)) + log(1−Dsc(x3))] +

λ3Ex1,x2

[
−
∑
m

∑
i

mi log yi + (1−mi) log(1− yi)

]
(4.1)

There are a total of three components to the loss function: a) reconstruction loss, b)

classification loss and c) adversarial loss. The adversarial training ensures that the inter-

mediate output x3 belongs to the image distribution. The classification loss ensures that

the “shortcut” problem (Szabó et al. (2017)) is avoided. More details about the intuition of

these loss functions can be found in Hu et al. (2018).

Modified Mixing Architecture

We now describe the architectural modifications with our training strategy so as to learn an

affine-invariant and disentangled latent space as illustrated in Figure 4.4

Figure 4.4: Mixing autoencoders with our training strategy - The black and cyan
chunks represent the affine components with 6 variables. The blue and red chunks rep-
resent the content components.

19

While retaining the broad idea of mixing, we allocate the first chunk (of size six) to

be the affine chunk and the remaining to be the content chunk. It is important to note

that, the content chunk is also disentangled i.e. the dark blue and red chunks represent

different factors of variations. Also, according to our training strategy, we feed only the

mixed content chunk (dark blue and red chunks) to the decoder. The loss function to train

the network is a simple L2 error given by:

Ltotal = Ex1,x2

[∑
m

|x4 − x1|2
]

(4.2)

From our experiments we observe that the discriminator and classifier are not crucial to see

disentanglement in the latent space for the datasets we consider.

Figure 4.5: Inference architecture for modified mixing framework - The architecture is
that of a simple autoencoder but with the latent space disentangled. There are three chunks
in this case. The cyan chunk represents affine transform parameters and the dark blue and
red chunks represent other factors of variation in the data.

Figure 4.5 shows the inference architecture. As we can notice, during the testing phase,

this entire framework is just that of a simple autoencoder, but with the latent space disen-

tangled.

As mentioned previously, a by-product of such a training procedure is template esti-

mation i.e. the affine transform predicted by the network is w.r.t a template output by the

decoder. The template need not be an “upright” version of the image, but can be any trans-

formed version, as long as all images get warped to the same transform. As we might ex-

pect, when we train the network multiple times, we end up with different looking templates.

20

However, the tendency is to end up with a template which has an “average” orientation of

all the images in the dataset as also observed by Jaderberg et al. (2015). Below we describe

the architectural details used to implement the algorithm.

Architectural Details

We make use of a fully connected architecture with layer sizes 784 − 512 − 256 − 128 −

64− 26 for the encoder and 26− 64− 128− 256− 784 for the decoder. The latent space

dimension is 26 (6 + 10 + 10) where the first six variables capture the values of an affine

matrix and the remaining is divided into two chunks of ten variables each to capture the

disentangled representation of the content chunk. We make use of LeakyRelu activation

function with a negative slope of 0.2, Adam optimizer with learning rate of 0.0002 and

momentums of 0.5 and 0.999 respectively. Also, we randomly sample the masks instead

of using all the 2n − 2 (subtract 2 because all zeros and all ones do not constitute any

mixing) combinations of possible masks, where n is the number of chunks. For all these

experiments, we have divided the latent space into three chunks out of which one captures

affine information. Let us now visualize and analyze the results on two datasets: AffNIST

and DSprites.

AffNIST Results

Figure 4.6 and Figure 4.7 represent the estimated template and the latent space traversals

respectively. During inference stage, we use the architecture given in Figure 4.5. According

to Figure 4.5, the second row of Figure 4.6 represents ˜xtest i.e. the output of the decoder.

As it can be noticed, all the images have the same (or very close) values of scale, translation

and rotation, thus conforming to the notion of a template. Figure 4.7 represents latent space

traversal along different chunks. The first row represents xtest when linear interpolation is

performed between two digits (8 and 9) in the latent space. The second row represents

21

xtest for interpolation only along the affine chunk of the latent space. We can see that the

identity of the image is retained while only inducing affine variations. The third and fourth

rows represent interpolation along 2 different chunks in content part of the latent space. As

it can be noticed, the two chunks represent variations in style and identity respectively.

Figure 4.6: Estimated template by mixing autoencoders - AffNIST dataset - The first
row indicates some examples of the number 5 from the AffNIST dataset. As it can be seen,
there are a lot of translation, scale and rotational variations. After the training procedure,
the templates learned by the autoencoder are illustrated in row 2.

Figure 4.7: Latent Chunk Traversals for Mixing Autoencoders - Affnist dataset - The
first row represents the overall interpolation between the 2 digits. The second row repre-
sents interpolation only along the affine chunk of the latent-space. The third and fourth
chunks represent interpolations along chunks 2 and 3 respectively.

An interesting phenomenon we observed is the latent space clustering with and with-

out using our training strategy. When a dimensionality reduction technique such as t-SNE

(Maaten and Hinton (2008)) or UMap (McInnes et al. (2018)) is applied to the latent space

to visualize it in two dimensions, and when the embeddings are colored with respect to

classes, we notice that using our training strategy promotes better clustering. This is sug-

22

gestive of the fact that affine invariant latent spaces are helpful for basic vision tasks like

image classification.

Figure 4.8: Visualization of Latent Representations for Mixing Autoencoders - Affnist
Dataset - The figure represents the UMap plots for the MAE framework. The left picture
represents the latent space embedding of the MAE trained on regular MNIST data. The
middle picture represents latent space embedding of MAE trained on AffNIST data. The
right picture represents latent space embedding of MAE along with our training strategy
trained on AffNIST data.

Mixing Autoencoders Purity Homogeneity Completeness

Clean MNIST 0.93 0.86 0.86

AffNIST 0.14 0.01 0.01

AffNIST + our strategy 0.8 0.69 0.69
Table 4.1: Clustering metrics of the latent space for mixing autoencoder framework -
This table represents the clustering metrics for the MAE framework. As it can be noticed,
by using our training strategy the class-discriminative ability of the latent space improves.

Figure 4.8 represents the latent space embeddings for the MAE architecture. When the

normal/clean MNIST (LeCun et al. (1998)) is trained using MAE, the latent space is not

only disentangled into chunks, but also well clustered according to classes i.e. the latent

space is class discriminative. However, when nuisance transforms like affine transforms are

introduced into the data, we notice that the latent space, although disentangled is not class-

discriminative anymore. These embeddings cannot be used even for simple vision tasks

such as classification. By introducing our strategy, we notice that the class-discriminative

ability of these embeddings are regained. Thus, a by-product of our training mechanism is

23

improved class-discriminatve ability of the latent space. This is also reflected in the cluster

purity metrics in Table 4.1

DSprites Results

Similar experiments were conducted for the DSprites dataset with the MAE architecture.

We notice that all the predicted templates have the same scale and position. However, the

rotational invariance is something that the architecture struggles to capture. As before,

Figures 4.9 and 4.10 represent the templates and latent space traversals for the DSprites

dataset.

Figure 4.9: Estimated template by mixing autoencoders - DSprites dataset - The first
row indicates some examples of the number 5 from the DSprites dataset. There are a lot
of translation, scale and rotational variations. After the training procedure, the templates
learned by the autoencoder (x̃3 in Figure 4.4) are illustrated in row 2.

As we can notice from Figure 4.9, the output of decoder is invariant to translations and

scales thus conforming to the notion of a template. Figure 4.10, illustrates the latent space

traversals of the MAE framework. When we vary the affine chunk, we notice that the only

change in the image is that of affine transform. When the chunks in the content space is

varied, we can notice that only the “identity” of the image changes (in this case, its from

heart to circle). This is because it is the only factor of variation that hasn’t been captured

yet.

Figure 4.11 illustrates the latent space embeddings of the Mixing Autoencoder frame-

work with and without using our training strategy. Even though disentangled, without using

24

Figure 4.10: Latent chunk traversals for mixing autoencoders - DSprites Dataset -
The first row represents the overall interpolation between the 2 shapes, square and circle.
The second row represents interpolation only along the affine chunk of the latent-space.
The third and fourth rows represent interpolations along chunks 2 and 3 respectively.

Figure 4.11: Visualization of latent representations for mixing autoencoders -
DSprites dataset - The figure on the left represents the latent space embedding when the
vanilla MAE framework is trained on the DSprites dataset. The figure on the right repre-
sents the latent space embedding when MAE framework along with our approach is trained
on Dsprites dataset.

our strategy, the latent space is not class-discriminative as it can be seen from figure on the

left. However, on using our strategy, we see that the latent embedding separates out into

distinct clusters.

25

4.1.4 β - Variational Autoencoder

The variational autoencoder was originally introduced in (Kingma and Welling (2013)).

It is basically a neural network parametrization of latent variable models. A very simple

modification to this idea was to scale up the Lagrangian multiplier to the KL divergence

term of the cost function, which was proposed in β-VAE (Higgins et al. (2017)). Figure

4.12 represents the architecture of a VAE. The loss function used to train a VAE architecture

Figure 4.12: β-VAE architecture - This figure represents the architecture of a Varia-
tional Autoencoder. The encoder is used to predict the mean and variance parameters of a
Gaussian distribution. The re-parametrization trick is used to sample from this distribution
which in turn is fed to the decoder.

is given by:

Ltotal(θ, φ) = Ez∼qθ(z|xi) [log pφ(xi|z)]−KL(qθ(z|xi)||p(z)) (4.3)

where, qθ(.) is the encoder distribution, pφ(.) is the decoder distribution andKL(.) is the KL

divergence calculated between the encoder distribution and a Gaussian prior. By assuming

that the decoder distribution is also Gaussian, the first term in the loss function, reduces to

the L2 reconstruction error between input and decoder’s output. By assuming that the prior

on the latent space is normal Gaussian, the KL divergence term can be calculated using a

closed form expression. Finally, the loss function used to train the VAE is given by:

Ltotal =
n∑
i=1

||xi − x̂i||2 −
(
σ2
i + µ2

i − log σi − 1
)

(4.4)

26

To train the β-VAE, the modified loss function is going to be:

Ltotal =
n∑
i=1

||xi − x̂i||2 − β
(
σ2
i + µ2

i − log σi − 1
)

(4.5)

Modified β-VAE Architecture

Figure 4.13: Modified β-VAE architecture - This figure represents the architectural mod-
ification to the β-VAE. The encoder is used to predict the mean, variance of a Gaussian
distribution AND affine matrix parameters. The re-parametrization trick is used to sample
from this distribution which in turn is fed to the decoder. However, as discussed previously,
the affine chunk is not fed into the decoder.

We make the architectural modifications as shown in Figure 4.13 to incorporate our

strategy into β-VAE. As it can be seen, the affine chunk predicted by the encoder is used to

directly transform the output of the decoder x̃ to get x̂. Let us now visualize some results

with these architectural modifications.

AffNIST Results

Figure 4.14 illustrates the outputs of the decoder of a VAE. As it an be seen, the outputs

are invariant to scale, rotation and translation in the inputs, thus conforming to the notion

of a template. Figure 4.15 illustrates the latent space traversals in the β-VAE framework.

As we expect, interpolation along affine chunk leads to only affine transform variations in

27

Figure 4.14: Estimated template by mixing autoencoders - AffNIST dataset - The first
row indicates some examples of the number 5 from the AffNIST dataset. There are a lot
of translation, scale and rotational variations. After the training procedure, the templates
learned by the autoencoder (output of decoder in Figure 4.4) are illustrated in row 2.

Figure 4.15: Latent chunk traversals for β-VAE - AffNIST dataset - The first row
represents the overall interpolation between the 2 numbers (8 and 4). The second row
represents interpolation only along the affine chunk of the latent-space. The third row
represents interpolation along the non-affine part of the latent space.

the image and interpolating along the non-affine/content chunk leads to only variation in

the identity of the digit.

Just as in the case of MAE, an interesting phenomenon we observed is the latent space

clustering with and without using our training strategy. When a dimensionality reduction

technique such as t-SNE or UMap is applied on the latent space to visualize in two dimen-

sions, and when the points are colored with respect to classes, we notice a huge difference

in the way clusters are formed. Figure 4.16 represents t-SNE embeddings of the affine

invariant latent space. Our training strategy implicitly promotes better clustering thus indi-

cating improved class-discriminative ability of the latent space. This is also reflected in the

cluster purity metrics shown is Table 4.2

28

Figure 4.16: Visualization of latent representations for β-VAE - AffNIST dataset - The
first row represents the UMap plots for the β-VAE framework. The left picture represents
the latent space embedding of the MAE trained on regular MNIST data. The middle picture
represents latent space embedding of β-VAE trained on AffNIST data. The right picture
represents latent space embedding of β-VAE along with our training strategy trained on
AffNIST data.

β-VAE framework Purity Homogeneity Completeness

Clean MNIST 0.92 0.85 0.85

Affine MNIST 0.15 0.01 0.01

Affine MNIST + proposed strategy 0.78 0.63 0.63
Table 4.2: Clustering metrics of the latent space for variational autoencoder frame-
work - This table represents the clustering metrics for the VAE framework. As it can be
noticed, by using our training strategy the class-discriminative ability of the latent space
improves.

DSprites Results

Figure 4.17: Estimated template for β-VAE - DSprites dataset - The first row represents
some examples from the dataset. The second row shows the corresponding affine-invariant
templates predicted by the decoder.

Figure 4.17 illustrates the templates predicted by the β-VAE framework for DSprites

dataset. As before, these templates are scale and translation invariant. In Figure 4.18, the

first row represents the overall interpolation between two shapes. The second row illustrates

29

Figure 4.18: Latent traversals for β-VAE - DSprites dataset - The first row represents
the overall interpolation between the 2 shapes, square and heart. The second row represents
interpolation only along the affine chunk of the latent-space. The remaining rows repre-
sent the interpolation along each latent variable. The highlighted rows capture the identity
information.

interpolation only along affine chunk. The two rows highlighted in red show that they are

the only ones capturing identity/class information. The rest of the latent variables do not

capture anything (because the affine chunk already captures affine variations, and the only

other factor variation remaining to be captured is the class information).

30

4.2 Time Series Data

We will first look at the idea of rate variations followed by how to mathematically model

them. Then we will see some experiments on datasets with increasing levels of complexity

to show the efficacy of our approach.

Rate Variations

Consider the action of “wearing a jacket” or “picking up a bootle”. These are common

actions that are performed in our day to day lives. However, these actions can be performed

with different speeds/rates. In Figure 4.19, we illustrate the idea of rate variations. Top left

and bottom left figures show the action of “wearing a jacket” performed at two different

rates. The different colors show rate variations happening within the actions. Top right and

bottom right graphs show the x,y,z rate variations summed over all joints. It is interesting

to see how the same action with different rate variations have very different time series. If a

classifier is trained on a signal with a particular rate, it will perform poorly on a signal with

a different rate. Thus, it is important to achieve a rate-invariant representation for these

signals.

Modeling rate variations

Let α1(t) represent the original time series (signal) and α2(t) be the rate distorted ver-

sion of the signal. We will model these rate variations using a parameter γ. As we will see

next, we assume that the rate variations belong to a specific class of functions Γ which obey

some properties. Let γ be a 1-differentiable function defined on the domain [0,T]. Then,

γ ∈ Γ should obey the following properties:

1. γ(0) = 0

2. γ(T) = 1

31

Figure 4.19: Illustration of rate variations in time series signals - Top left and bottom
left figures represent the action of “wearing a jacket” performed at two different rates. Top
right and bottom right graphs illustrate the x,y,z time series summed over all joints of the
person. Figure taken from Lohit et al. (2019)

3. γ(t1) < γ(t2) for t1 < t2

The last property indicates that γ is a monotonically increasing function and is order pre-

serving. This is especially important, because order has to be preserved in time series data

such as action sequences. Let γ̇ be the first differential of γ. Along with the monotonicity

property, we can see that: γ(t) =
∫ t
0
γ̇(t)dt. Now, γ(T) =

∫ T
0
γ̇(t)dt = γ(T) − γ(0) =

1 − 0 = 1. Thus the area under the γ̇ curve is 1 which suggests that it is like a probability

density function (pdf). This indicates that γ is like a cumulative distribution function (cdf).

32

Time series signals are typically captured using devices like Microsoft Kinect or MoCap

systems. Thus, the data is discrete in nature. The same properties described above can be

extended to discrete time signals as:

γ(t) =
t∑
i=0

γ̇(i) and γ(T) =
1

T

T∑
i=0

γ̇(i) = 1

Equipped with this modeling of rate variation parameter γ, we will now use the frame-

work described in Figure 3.2 to disentangle γ from the input signal. Similar to image

data, we employ a completely unsupervised training approach by using an autoencoder

framework. It shows a general autoencoder framework that can be used to disentangle rate

variations from a time series signals. The input to the architecture is some rate-distorted

signal and the output of the decoder is a rate-invariant/aligned signal. Similar to the spatial

warping layer, here we make use of the temporal warping layer proposed in Lohit et al.

(2019). It is also important to note that the output of the encoder is actually interpreted as γ̇

which is then used to construct γ using the properties described above. We will now look

at experiments on three datasets.

4.2.1 Synthetic Dataset 1 - Bimodal Gaussian

The first dataset we use to show rate disentanglement is the bimodal Gaussian data. We

generate the data using the equation:

X(t) = α ∗ N (0.25, 0.15)(t) + β ∗ N (0.75, 0.15)(t) (4.6)

where,

α = 0.35 + 0.3 ∗ U(0, 1)

β = 0.35 + 0.3 ∗ U(0, 1)

33

Figure 4.20: Visualization of bimodal gaussian data - The figure on the left illustrates
the “clean” bimodal Gaussian data generated using the equation 4.6. The figure on the right
illustrates the same bimodal Gaussian signal with rate distortions.

N (.) representing a Gaussian distribution and U(.) representing a uniform distribution. The

dataset is illustrated in Figure 4.20.

Figure 4.20 (left) represents the “clean” bimodal Gaussian data. Each sequence is of

100 time steps. Figure 4.20 (right), represents the warped version using some rate variation

γ. This serves as the input to the autoencoder architecture in Figure 3.2. According to our

training strategy, the output of the decoder should be a “rate-invariant” / template version of

the input. Finally, the rate parameters γ learned by the encoder is used to directly transform

the output of the decoder to obtain a reconstruction which has to be same as the input.

It is interesting to see that the rate-invariant signal predicted by the autoencoder (Fig-

ure 4.21) is very similar to Figure 4.20(left), the original rate invariant version of the input

to the AE. On applying some post processing steps to Figure 4.21(left), we obtain Fig-

ure 4.21(right). Although the reconstructed signal is not exactly Gaussian, it captures the

modalities of the Gaussian distribution and more importantly aligns the sequences by un-

doing the rate variations. The post processing steps are only done to obtain a “cleaned-up”

version and is described in the following sub-section.

34

Figure 4.21: Visualization of rate invariant bimodal gaussian - The figure on the left
illustrates the output of the decoder Xtemp(also called the template). Figure on the right
illustrates the template after some post-processing steps.

Post Processing Step

Referring to Figure 3.2,

x̂ = x̃ ◦ γ

Let γµ represent the arithmetic mean of all the γ’s predicted for the dataset. Now,

γµ ◦ γ−1µ = γI

where γI is the identity rate variation. Hence, we can see that

x̂ = x̃ ◦ γµ ◦ γ−1µ ◦ γ

The post-processed output that we see is the output of x̃◦γµ. We have chosen γµ so that the

mean of the γ when the post-processed output is fed into the autoencoder, will be identity.

35

Figure 4.22: Two classes of time series signals considered - These figures represent
the two classes of time series signals considered to experiment the unsupervised rate-
disentangling capability using the proposed framework.

Figure 4.23: Warped version of two class time series signals - These figures represent
the warped version of Figure 4.22. They have been warped using some rate-variation pa-
rameters.

4.2.2 Synthetic Dataset 2 - Multi Class Time Series

The next dataset we consider, consists of two classes of waveforms as illustrated in

Figure 4.22. These are the original “clean” waveforms. On applying rate variations, we

obtain Figure 4.23 which inturn are fed to the autoencoder architecture in Figure 3.2.

The equations that govern the waveforms generated for the two classes are as follows:

y1(t) = α ∗ N (0.5, 0.15)

α = 0.35 + 0.3 ∗ U(0, 1)

(4.7)

36

y2(t) =

β ∗ t/10 0 ≤ t ≤ 10

β − (t−10)∗β
50−10 11 ≤ t ≤ 50

β − ((40−t)−50)∗β
90−50 51 ≤ t ≤ 90

β ∗ (10−t)
10

91 ≤ t ≤ 100

0 else

β = 0.35 + 0.3 ∗ U(0, 1)

(4.8)

When the autoencoder is trained with the 2 classes of waveforms, the template predicted

as a result is as illustrated in Figure 4.24.

Figure 4.24: Autoencoder template prediction - These figures represent the templates
predicted for the two class of signals by the autoencoder.

Figure 4.25: Autoencoder template post processed - These figures represent the tem-
plates predicted for the two class of signals by the autoencoder after post-processing.

Finally, applying the post-processing steps discussed in the previous sub-section, we

get more “clean” looking waveforms as shown in Figure 4.25. It is very interesting to

37

note that, the autoencoder is able to learn a template representation per class and doesn’t

collapse all classes to the same template.

In the next section, we present a set of experiments where the goal is to perform hand-

actions classification using MoCap data corresponding to the joints of the hand. This is a

time-series dataset (Garcia-Hernando et al. (2018)) and we show that using our proposed

approach, we can obtain a rate-invariant representation and in turn achieve better classifi-

cation accuracy.

4.2.3 ICL Hand Pose Dataset

Here, we demonstrate experiments on a real world dataset of hand actions. The dataset

contains 3D hand pose sequences with 21 joint locations per frame of 45 daily hand action

categories interacting with 26 objects, such as “pour juice”, “put tea bag” and “read paper”.

These action sequences are performed by six subjects, each of them performing each action

for about four to five times. The actions are recorded using an accurate motion capture

system. There are 600 training sequences and 575 test sequences. As the sequences are

of varying lengths, we uniformly sample the sequences such that all sequences contain 50

samples. If the sequences are shorter than 50 samples, we use zero padding. As there are

21 joints per frame, each input sequence is of dimension 50x63 (21x3 = 63).

Real world data is often not very clean and contains a lot of nuisance factors. In order to

illustrate the effectiveness of this training strategy, we artificially introduce rate variations

into this dataset. We set the sequence length to 100 such that the original sequence is

placed between 25 and 75 and the remaining time steps are set to zero. Now, random

“affine warps” are introduced into the data which has the form γ(t) = at + b, where t

∈ [25, 75], a ∈ [0.75, 1.25] and b ∈ {0, 1, 2, ...49}.

38

Architectural details

The TCN based classifier is composed of 1 Conv1D layer and 1 FC layer of size 45 (num.

of classes). It uses convolution filters of size 8 and feature maps of depth 32. Training is

done using momentum optimizer with learning rate of 1e-3 and momentum of 0.9. The

TCN-AE is composed of the encoder and decoder. Encoder is made up of 3 Conv1D and

1 FC layer. Convolutional layers have filter size 16 and 63 feature maps are used at every

layer. The FC layer (latent space) has 7 dimensions for TCN-AE + proposed approach

and 10 dimensions for the vanilla TCN-AE. Similarly, the decoder is also composed of 3

Conv1D layers with the same number of filter and feature map size. A FC network/multi-

layer perceptron is used to train the features obtained from latent space of TCN-AE. The

FC network is composed of 2 hidden layers with 80 dimensions. Experiments on TCN-

AE + proposed approach were conducted on both features learned as well as templates

learned and we observe similar performance on both. The reported numbers are obtained

by training the templates using the TCN classifier described above.

Description of Experiments

We conduct experiments in three settings to show the efficacy of the proposed approach.

The first setting is to train the affine warped version of the ICL dataset using a TCN-

based classifier. Note that this is a supervised experiment. The second setting is to train a

TCN based autoencoder and evaluate the learned features (latent representations) for class-

discriminative ability. The third setting is to train a TCN based autoencoder along with

proposed method and evaluate the rate-invariant latent space. Note that the second and

third settings are completely unsupervised.

We then plot the t-SNE embeddings of these feature/latent representations and also

calculate the classification accuracies. Figure 4.26 show the t-SNE plots for these settings

39

described above in the same order and Tables 4.3 and 4.4 show the classification accuracies

and clustering metrics for the corresponding experiments. Interestingly we observe that

training in an unsupervised fashion using our approach does perform marginally better than

directly training the affine-warped data with a classifier. We also notice that our proposed

method is a huge improvement over a vanilla TCN-based autoencoder whose latent space

prove to be not class-discriminative. However, this marginal improvement over supervised

setting comes along with a huge increase in number of parameters. Depending on the

application, computational and storage resources available, performance requirements and

label constraints, a suitable strategy can be chosen.

Figure 4.26: t-SNE plots of feature representation for ICL Dataset - The first figure
represents the t-SNE plot of penultimate layer of a TCN-based classifier. The second and
third figures represent the t-SNE plots of latent space of a TCN based autoencoder without
and with our training strategy. We can clearly see that the proposed strategy improves the
class-discriminative ability of the latent space while making it rate-invariant.

Affine warped

ICL data
Purity Homogeneity Completeness

TCN - Classifier 0.308 0.505 0.517

TCN - AE 0.199 0.407 0.416

TCN - AE + proposed method 0.433 0.589 0.609
Table 4.3: Cluster purity metrics of the feature representations of the three methods
- The table represents three cluster purity metrics: purity, homogeneity and completeness
for the experiments described in this section. It can be seen that the proposed method
outperforms the other two.

40

Method Accuracy #params

TCN - Classifier 72.86% 160k

TCN - AE 43.66% 1.1 million

TCN - AE + proposed method 76.6% 1.25 million
Table 4.4: Classification accuracies of the three methods - The table represents clas-
sification accuracies for the experiments described in this section. It can be seen that the
proposed method outperforms the other two.

Figure 4.27 illustrates example data from the ICL dataset for action no. 1 (correspond-

ing to “charge cell phone”) and joint no. 4. Figure on the left illustrates the original signal.

The figure in the center illustrates the signal after introducing affine warps. The figure on

the right illustrates the template output by the autoencoding architecture. This corresponds

to x̃ in Figure 3.2. The original signal is aligned between time-steps 25 to 75. However,

after introducing affine warps, the signal is spread out between 0 to 100 time steps. From

the template, we can see that it not only centers the data (approximately), but also tries to

find a canonical/template representation and aligns them.

Figure 4.27: Example data from ICL dataset before and after warping - The first figure
represents the original signal from the dataset. The middle figure represents the signal after
introducing affine warps into it. The rightmost figure represents the template predicted by
the autoencoding framework.

41

Chapter 5

CONCLUSION

In this thesis, we have presented a training strategy to disentangle deformation param-

eters from the semantic content of the signal. For image data, we show experiments on

the AffNIST and DSprites datasets where affine parameters were successfully disentangled

along with other factors like style and identity. We have also shown its modularity by in-

tegrating it with other disentangling strategies like MAE and VAE. As a by product of this

strategy, we were able to observe improved class discriminative ability of the latent space.

For time series data, we showed that the proposed strategy can be used to align sequences

that have been distorted by rate variations. We create and use synthetic datasets to show

the efficacy of the proposed approach. Finally, we present experiments on a real-world

dataset of hand action recognition and clearly show that the features learned are more class

discriminative.

We provide a general framework to estimate the parameters of a noise model which

typically acts on the domain of the signal. We show that in the case of geometric factors

of variation like affine and rate transforms, it is possible to disentangle these factors in an

explicit manner. Furthermore, these disentangled nuisance factors are interpretable i.e. can

be used to transform our signal to the desired form. As mentioned previously, interpretable

disentangled representations have significance in many application like egomotion which

is used to guide robots in an active perception scenario.

This work could be extended in multiple directions. The strategy could be extended to

perform warping from one signal to another. This could potentially be the data-driven ver-

sion of dynamic time warping. With the help of latent space embeddings, we showed that

the features learned are in-fact class discriminative. We hope to connect the affine invariant

42

properties of the proposed approach back to classical affine invariant shape analysis, and

study how the classical affine invariant metrics can be realized within deep neural networks.

Since this is a general framework to disentangle interpretable factors, it can be extended to

perform disentanglement of other factors of variations such as illumination, blur, etc.

43

REFERENCES

Agrawal, P., J. Carreira and J. Malik, “Learning to see by moving”, in “Proceedings of the
IEEE International Conference on Computer Vision”, pp. 37–45 (2015).

Bai, S., J. Z. Kolter and V. Koltun, “An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling”, arXiv preprint arXiv:1803.01271 (2018).

Bay, H., T. Tuytelaars and L. Van Gool, “Surf: Speeded up robust features”, in “European
conference on computer vision”, pp. 404–417 (Springer, 2006).

Begelfor, E. and M. Werman, “Affine invariance revisited”, in “2006 IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition (CVPR’06)”, vol. 2, pp.
2087–2094 (IEEE, 2006).

Chen, X., Y. Duan, R. Houthooft, J. Schulman, I. Sutskever and P. Abbeel, “Infogan: Inter-
pretable representation learning by information maximizing generative adversarial nets”,
in “Advances in neural information processing systems”, pp. 2172–2180 (2016).

Cohen, T. and M. Welling, “Group equivariant convolutional networks”, in “International
conference on machine learning”, pp. 2990–2999 (2016).

Garcia-Hernando, G., S. Yuan, S. Baek and T.-K. Kim, “First-person hand action bench-
mark with rgb-d videos and 3d hand pose annotations”, in “Proceedings of Computer
Vision and Pattern Recognition (CVPR)”, (2018).

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville
and Y. Bengio, “Generative adversarial nets”, in “Advances in neural information pro-
cessing systems”, pp. 2672–2680 (2014).

Gopalan, R., S. Taheri, P. Turaga and R. Chellappa, “A blur-robust descriptor with appli-
cations to face recognition”, IEEE transactions on pattern analysis and machine intelli-
gence 34, 6, 1220–1226 (2012).

Higgins, I., L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed and
A. Lerchner, “beta-vae: Learning basic visual concepts with a constrained variational
framework.”, ICLR 2, 5, 6 (2017).

Hinton, G. E. and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural
networks”, science 313, 5786, 504–507 (2006).

Hochreiter, S. and J. Schmidhuber, “Long short-term memory”, Neural computation 9, 8,
1735–1780 (1997).

Hu, Q., A. Szab, T. Portenier, P. Favaro and M. Zwicker, “Disentangling factors of variation
by mixing them”, in “The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR)”, (2018).

Jaderberg, M., K. Simonyan, A. Zisserman et al., “Spatial transformer networks”, in “Ad-
vances in neural information processing systems”, pp. 2017–2025 (2015).

44

Kim, H. and A. Mnih, “Disentangling by factorising”, arXiv preprint arXiv:1802.05983
(2018).

Kingma, D. P. and M. Welling, “Auto-encoding variational bayes”, arXiv preprint
arXiv:1312.6114 (2013).

Kulkarni, T. D., W. F. Whitney, P. Kohli and J. Tenenbaum, “Deep convolutional inverse
graphics network”, in “Advances in neural information processing systems”, pp. 2539–
2547 (2015).

LeCun, Y., C. Cortes and C. J. Burges, “The mnist database of handwritten digits, 1998”,
URL http://yann. lecun. com/exdb/mnist 10, 34 (1998).

Liu, B., X. Wang, M. Dixit, R. Kwitt and N. Vasconcelos, “Feature space transfer for data
augmentation”, in “Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition”, pp. 9090–9098 (2018).

Lohit, S. and P. Turaga, “Learning invariant riemannian geometric representations using
deep nets”, in “The IEEE International Conference on Computer Vision (ICCV) Work-
shops”, (2017).

Lohit, S., Q. Wang and P. Turaga, “Temporal transformer networks: Joint learning of in-
variant and discriminative time warping”, in “Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition”, pp. 12426–12435 (2019).

Lowe, D. G., “Distinctive image features from scale-invariant keypoints”, International
journal of computer vision 60, 2, 91–110 (2004).

Lu, B., J.-C. Chen and R. Chellappa, “Unsupervised domain-specific deblurring via disen-
tangled representations”, in “Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition”, pp. 10225–10234 (2019).

Maaten, L. v. d. and G. Hinton, “Visualizing data using t-sne”, Journal of machine learning
research 9, Nov, 2579–2605 (2008).

Makhzani, A., J. Shlens, N. Jaitly, I. Goodfellow and B. Frey, “Adversarial autoencoders”,
arXiv preprint arXiv:1511.05644 (2015).

Mathieu, M. F., J. J. Zhao, J. Zhao, A. Ramesh, P. Sprechmann and Y. LeCun, “Disentan-
gling factors of variation in deep representation using adversarial training”, in “Advances
in Neural Information Processing Systems”, pp. 5040–5048 (2016).

Matthey, L., I. Higgins, D. Hassabis and A. Lerchner, “dsprites: Disentanglement test-
ing sprites dataset”, URL https://github. com/deepmind/dsprites-dataset/.[Accessed on:
2018-05-08] (2017).

McInnes, L., J. Healy and J. Melville, “Umap: Uniform manifold approximation and pro-
jection for dimension reduction”, arXiv preprint arXiv:1802.03426 (2018).

Mumford, D., “Pattern theory: a unifying perspective”, in “First European congress of
mathematics”, pp. 187–224 (Springer, 1994).

45

Qi, C. R., H. Su, K. Mo and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d
classification and segmentation”, in “The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR)”, (2017).

Shu, Z., M. Sahasrabudhe, R. Alp Guler, D. Samaras, N. Paragios and I. Kokkinos,
“Deforming autoencoders: Unsupervised disentangling of shape and appearance”, in
“Proceedings of the European Conference on Computer Vision (ECCV)”, pp. 650–665
(2018).

Som, A., K. Thopalli, K. Natesan Ramamurthy, V. Venkataraman, A. Shukla and P. Turaga,
“Perturbation robust representations of topological persistence diagrams”, in “Proceed-
ings of the European Conference on Computer Vision (ECCV)”, pp. 617–635 (2018).

Szabó, A., Q. Hu, T. Portenier, M. Zwicker and P. Favaro, “Challenges in disentangling
independent factors of variation”, arXiv preprint arXiv:1711.02245 (2017).

Tieleman, T., “affnist”, URL https://www. cs. toronto. edu/˜ tijmen/affNIST/, Dataset URL
https://www. cs. toronto. edu/˜ tijmen/affNIST/.[Accessed on: 2018-05-08] (2013).

Vedaldi, A., Invariant representations and learning for computer vision, Ph.D. thesis, Cite-
seer (2008).

Worrall, D. E., S. J. Garbin, D. Turmukhambetov and G. J. Brostow, “Interpretable trans-
formations with encoder-decoder networks”, in “Proceedings of the IEEE International
Conference on Computer Vision”, pp. 5726–5735 (2017).

Xing, X., R. Gao, T. Han, S.-C. Zhu and Y. N. Wu, “Deformable generator net-
work: Unsupervised disentanglement of appearance and geometry”, arXiv preprint
arXiv:1806.06298 (2018).

46

