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ABSTRACT

Reasoning with commonsense knowledge is an integral component of human behavior.

It is due to this capability that people know that a weak person may not be able to lift some-

one. It has been a long standing goal of the Artificial Intelligence community to simulate

such commonsense reasoning abilities in machines. Over the years, many advances have

been made and various challenges have been proposed to test their abilities. The Winograd

Schema Challenge (WSC) is one such Natural Language Understanding (NLU) task which

was also proposed as an alternative to the Turing Test. It is made up of textual question

answering problems which require resolution of a pronoun to its correct antecedent.

In this thesis, two approaches of developing NLU systems to solve the Winograd

Schema Challenge are demonstrated. To this end, a semantic parser is presented, vari-

ous kinds of commonsense knowledge are identified, techniques to extract commonsense

knowledge are developed and two commonsense reasoning algorithms are presented. The

usefulness of the developed tools and techniques is shown by applying them to solve the

challenge.
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Chapter 1

INTRODUCTION

1.1 Motivation

Natural Language Understanding (NLU) is an important aspect of Artificial Intelli-

gence. It is because of NLU components in the virtual assistants such as Amazon Alexa

1 that we can switch off/on our bedroom lights by just talking to our phones. In simple

words, an NLU based system is able to comprehend natural language text or speech and

it is able to act according to the instructions in the comprehended input. To understand

natural language text it is often important to have additional knowledge related to that text.

It is also important to be able to reason with the knowledge. For example, let us consider

the sentence, “The man could not lift his son because he was so weak.” and the question

“Who was weak?” about the sentence. Then we can say that an NLU system understands

the sentence if it is able to correctly answer the question. To be able to correctly answer the

question, an NLU system needs the additional knowledge that “someone weak may not be

able to lift someone else” and the ability to reason with it.

Recently, various tasks (Rajpurkar et al., 2018; Xu et al., 2016; Chang, 2016; Antol

et al., 2015) have been proposed to test the capabilities of NLU systems. Machine reading

comprehension is one such task. Several large-scale datasets (Joshi et al., 2017; Trischler

et al., 2016; Rajpurkar et al., 2016) have been created for reading comprehension. These

datasets have led to a wide variety of model architectures (Huang et al., 2017; Clark and

Gardner, 2017). Several systems have even surpassed human-level accuracies on certain

datasets (Rajpurkar et al., 2018). Even then these systems are still far from the real nat-
1https://developer.amazon.com/alexa
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ural language understanding because they do not explicitly focus on the use of additional

knowledge and reasoning with the knowledge. For example, the recent analysis showed that

models which could do well at Stanford Question Answering Dataset (SQuAD) (Rajpurkar

et al., 2016) version 1.1 by learning context and type-matching heuristics (Weissenborn

et al., 2017), did not perform very well on the SQuAD 2.0 (Rajpurkar et al., 2018) dataset

which intentionally contains the questions that can not be answered with respect to a given

passage. The systems which do well on SQuAD 2.0 are trained on large amount of exam-

ples and do not explicitly focus on additional knowledge and reasoning with the knowledge.

This makes them not so useful for the datasets which specially focus on reasoning with re-

spect to additional knowledge and the ones which do not contain large amount of training

samples. The Winograd Schema Challenge (WSC) (Levesque et al., 2011) corpus is one

such corpus.

Various NLU systems which focus on additional knowledge and reasoning with the

knowledge are made up of the following components.

1. Semantic Parsing Component: Semantic parsing refers to the task of translating

a natural language text into a formal representation. Lately, there has been a new

interest in the semantic parsing field with the introduction of Abstract Meaning Rep-

resentation (AMR) (Banarescu et al., 2012) but the low performance of the AMR

parsing systems (Flanigan et al., 2016; Wang et al., 2016) is still a concern in terms

of the progress in the field.

2. Commonsense Knowledge Extractor: There are several works which extract many

different kinds of commonsense knowledge from text (Singh et al., 2002; Allen et al.,

2013; Aharon et al., 2010; Chambers and Jurafsky, 2008). Many times, the extraction

of knowledge is motivated by its need in the task at hand, which makes the extraction

process somewhat task specific. Also, most of the tasks do not require one kind
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of knowledge and there must be a way to differentiate those kinds so that another

application which requires a particular kind of knowledge can focus only on a subset

of knowledge. The knowledge is useful if there is another task that requires it but it

becomes useless otherwise. Recent trend of crowd-sourcing knowledge (Sap et al.,

2018) is promising, however the process is expensive.

3. Reasoning with Knowledge: There are various works which focus on the aspect

of reasoning with commonsense knowledge (Bailey et al., 2015; Schüller, 2014).

Though these works provide foundations of reasoning frameworks, they rely on a

big assumption that the required knowledge is available in their desired format.

Considering the challenges and limitations in the above mentioned components, our

goal in this work is to progress towards the development of an automated system to solve

a Natural Language Understanding (NLU) problem that requires co-reference resolution.

We aim to do that by making progress towards semantic parsing, automatic commonsense

knowledge extraction from text, and reasoning with commonsense knowledge.

In this dissertation we present our progress towards the goal. We demonstrate the steps

we took and the tools/techniques we developed. We present improvements in a seman-

tic parser, different kinds of newly identified knowledge, two algorithms to reason with

commonsense knowledge and techniques/attempts to automatically acquire commonsense

knowledge from text. We also show the usefulness of the developed tools and techniques by

applying them to solve the Winograd Schema Challenge (WSC) (Levesque et al., 2011).

WSC is an NLU task such that the problems in it require reasoning with commonsense

knowledge to perform pronoun resolution.

1.2 Contributions of the Research

The Figure 1.1 provides an overview of our two commonsense reasoning approaches.

The approaches are designed to solve the Winograd Schema Challenge (WSC) but it can
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be viewed as a combination of different modules that will be helpful in various NLU tasks.

A brief overview of all the modules and their outputs at different stages is provided in the

sections below.

Figure 1.1: Overall System:

(SEMP) Semantic Parser. (CE) Commonsense Extractor. (GRM) Graphical Reasoning

Module. (ERM) Entailment Based Reasoning Module.
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• Input Problem (IP): This is the input to each of the commonsense reasoning ap-

proaches. It consists of a sequence of one or more sentences (from a WSC problem),

a pronoun that is needed to be resolved in the sentences and two answer choices. The

answer choices are noun phrases in the sentences. An example of an input problem

is shown in the Figure 1.1.

• Semantic Parser (SEMP): This is a semantic parsing system which translates a

piece of text into a graphical semantic representation. The parser is used in Sen-

tence Parser (SP) and Knowledge Parser (KP) modules as shown in the Figure 1.1.

The SP and KP modules are respectively used to translate an input problem and a

commonsense knowledge into formal graphical representations. The representations

generated by SP and KP are used in the reasoning module, as shown in the Fig-

ure 1.1, of the first approach to solve the input problem. The semantic parser is a

general purpose module and it can be used to translate an English text into its mean-

ing representation. A demonstration of the semantic parser is available online at

www.kparser.org. We have three published works

(Sharma et al., 2015d,b,c) explaining the implementation and application details of

our semantic parser. More on SEMP is present in the Chapter 6 of this dissertation.

• Commonsense Extractor (CE): This module extracts different kinds of common-

sense knowledge from large unstructured text repositories. The kinds of knowledge

extracted by this module are manually identified by analyzing the WSC corpus. We

have one published work (Sharma and Baral, 2016) on extracting commonsense

knowledge from the text. Attempts have been made to extract different kinds of

commonsense knowledge from various text repositories. The details of the attempts

are present in Chapter 5. The CE module has two facets. In the first facet a WSC

problem is taken as input and the needed knowledge and a piece of text which may

5
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contain the needed knowledge are extracted, from a text repository or a search en-

gine. In the second facet a text repository is taken as input and a knowledge base

of predefined knowledge types is produced as output. As shown in the Figure 1.1,

both of our approaches towards commonsense reasoning utilize the outputs of the CE

module. A detailed description of this module is available in the Chapter 5 of this

dissertation.

• Graphical Reasoning Module (GRM): This module uses the formal graphical rep-

resentations of an input WSC problem and a commonsense knowledge to deduce

an answer to the input problem. It is the main reasoning component of the first ap-

proach towards solving the WSC. We used Answer Set Programming to code the

graphical reasoning module (or graphical reasoning algorithm). The reasoning algo-

rithm is general and can be easily implemented in any other high level programming

language. A detailed description of this module is available in the Chapter 4 of this

dissertation.

• Entailment Based Reasoning Module (ERM): This module uses the WSC sen-

tences, pronoun to resolve, two answer choices and a sentence which may contain

the needed commonsense knowledge to deduce an answer to the input problem. In

this approach, we use a pre-trained Natural Language Inference (NLI) 2 system to

predict which answer choice is more likely to be the answer of the input problem.

More details about this approach are present in the Chapters 2 and 7.

Below is the list of publications reflecting the contributions of this dissertation:

• IJCAI 2015 (Sharma et al., 2015): Towards Addressing the Winograd Schema Chal-

lenge - Building and Using a Semantic Parser and a Knowledge Hunting Module.
2See http://nlpprogress.com/english/natural_language_inference.html
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• NAACL 2015 Workshop (Sharma et al., 2015): Identifying Various Kinds of Event

Mentions in K-Parser Output.

• AAAI 2015 Spring Symposium (Sharma et al., 2015): An Approach to Solve Wino-

grad Schema Challenge Using Automatically Extracted Commonsense Knowledge.

• AAAI 2016 Workshop (Sharma et al., 2016): Automatic Extraction of Events-Based

Conditional Commonsense Knowledge.

• IJCAI 2016 DC (Sharma, 2016): Towards Understanding Natural Language: Se-

mantic Parsing, Commonsense Knowledge Acquisition and Applications

• ACL 2019 (Prakash, Sharma, Mitra, Baral 2019): Combining Knowledge Hunting

and Neural Language Models to Solve the Winograd Schema Challenge

• ICLP 2019 (Sharma, 2019): Using Answer Set Programming for Commonsense Rea-

soning in the Winograd Schema Challenge

Above points presented the brief overview of the overall system. There are various

underlying submodules, tools and techniques that are used to develop each module of the

system. The intricate details are explained in different chapters of this dissertation. The

following section provides an introduction to each chapter in this dissertation.

1.3 Dissertation Organization

Following is the list of chapters in the dissertation:

• Chapter 1 provides an introduction to the Natural Language Understanding, explains

the motivation for the research and lists the contributions of the dissertation towards

solving an NLU problem called the Winograd Schema Challenge.

• Chapter 2 provides a glimpse of our two commonsense reasoning approaches with

the help of worked out examples from the Winograd Schema Challenge corpus.
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• Chapter 3 lists and explains the different types of commonsense knowledge iden-

tified from the Winograd Schema Challenge corpus that are required to solve the

challenge.

• Chapter 4 explains the implementation of a graphical reasoning module which is

used to reason with the different kinds of commonsense knowledge identified from

the Winograd Schema Challenge corpus.

• Chapter 5 shows the details of the different methods and algorithms used to extract

the commonsense knowledge identified in Chapter 3. This chapter lists the attempts

towards commonsense knowledge extraction from text.

• Chapter 6 provides the detailed implementation and improvements in a semantic

parser called Knowledge Parser (or K-Parser) system which translates English sen-

tences into directed acyclic semantic graphs. The chapter also provides the details of

how the K-Parser is used to translate a WSC problem and a needed knowledge into

graphical representations that are defined in the Chapter 4.

• Chapter 7 provides the detailed description of the end-end systems based on our two

commonsense reasoning approaches.

• Chapter 8 concludes by looking at the contributions of the dissertation and discussing

future directions for this work.
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Chapter 2

SOLVING THE WINOGRAD SCHEMA CHALLENGE: A GLIMPSE OF OUR TWO

APPROACHES

2.1 Introduction

With significant advances and success in many Artificial Intelligence subfields, and

instances of acing the Turing test (Turing, 1950), there is a concern about the ability of

the Turing test to correctly evaluate if a system exhibits human-like intelligence. There is

now a need to more clearly define how to evaluate when a system is replicating humanoid

intelligence 1 . The Winograd Schema Challenge (WSC) (Levesque et al., 2011) is one

such attempt. WSC was also proposed as an alternative to the Turing Test. It is made up of

special types of pronoun resolution problems. Each WSC problem consists of a sequence

of one or more sentences which contain a definite pronoun. For example,

The fish ate the worm. Itpronoun was tasty

A WSC problem also contains a binary question about the sentences such that the answer

to the question provides the most natural resolution for the pronoun (e.g., What was tasty?).

Additionally, two answer choices (noun phrases) for the question are also provided (e.g.,

fish and worm). The answer choices are present in the sentences. The goal in the WSC

challenge is to determine the correct answer choice. Following is an example WSC prob-

lem.

1See also http://www.newyorker.com/tech/elements/why-cant-my-computer-understand-me
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Example 1:

Sentences: The man couldn’t lift his son because hepronoun was so heavy.

Question: Who was heavy? Answer Choices: a) man b) son

Each WSC problem also contains a “special word” in the paragraph, and an “alternate

word.” Replacing the former by the latter changes the resolution of the pronoun to be

resolved. In the example above, the special word is heavy and the alternate word is weak,

which results in the following WSC problem.

Example 2:

Sentences: The man couldn’t lift his son because hepronoun was so weak.

Question: Who was weak? Answer Choices: a) man b) son

The motivation behind this challenge is to evaluate human-like intelligence in ma-

chines. A human-like intelligent system that can answer such questions correctly requires

to have commonsense knowledge that is not explicitly mentioned in the winograd schema

sentences. Very recently, this aspect of human-like intelligence has also been emphasized

in several other (besides the Winograd challenge) research initiatives such as the call by

Paul G. Allen Family Foundation 2 , and the Big Mechanism call of DARPA. Since the

existing knowledge repositories (such as CYC, ConceptNet, and AURA) are not compre-

hensive enough, and a comprehensive knowledge base may be too unwieldy, we propose

two approaches to address this aspect of human-like intelligence. Both the approaches are

based on hunting the needed knowledge as plain English text and then reasoning with it. In

the following sections, we provide an overview of each of these approaches with the help

of worked out examples.
2http://www.pgafamilyfoundation.org/programs/investigators-fellows/key-initiative/adi-artificial-

intelligence-rfp
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2.2 Related Challenges

Similar to the WSC, there are various NLU challenges (Roemmele et al., 2011; Weston

et al., 2015; Rajpurkar et al., 2016, 2018) which are used to test the human-like natural lan-

guage understanding capabilities in machines. For example, Stanford Question Answering

Dataset (SQuAD) (Rajpurkar et al., 2016) is a reading comprehension dataset which con-

tains more than 100K questions written by crowdworkers on a set of Wikipedia articles.

The answer to each question is a segment of text from the corresponding reading passage.

Following is a problem from the SQuAD.

Passage:

In meteorology, precipitation is any product of the condensation of atmospheric water

vapor that falls under gravity. The main forms of precipitation include drizzle, rain,

sleet, snow, graupel and hail... Precipitation forms as smaller droplets coalesce via

collision with other rain drops or ice crystals within a cloud. Short, intense periods of

rain in scattered locations are called “showers”.

Question 1: What causes precipitation to fall? Answer: gravity

Question 2: What is another main form of precipitation besides drizzle, rain, snow,

sleet and hail? Answer: graupel

Question 3: Where do water droplets collide with ice crystals to form precipitation?

Answer: within a cloud

There are similarities between the SQuAD and WSC dataset. For example, both of them

contain natural language question answering problems, and answering questions in both of

them require understanding natural language text. Despite being similar in some aspects,

there are differences in the datasets which affect the development of NLU systems to solve
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these challenges. For instance, SQuAD contains more than 100K problems whereas the

latest version of the WSC dataset only contains about 300 problems. The unavailability of

large amount of training data makes it difficult to develop machine learning based systems

for the WSC.

SQuAD2.0 (Rajpurkar et al., 2018) is the updated version of SQuAD (SQuAD1.1). It

contains all the 100K questions which are in SQuAD1.1 and it also contains over 50K unan-

swerable questions written adversarially by crowdworkers. To perform well on SQuAD2.0,

a system must not only answer questions when possible, but also determine when a ques-

tion can not be answered with respect to the corresponding passage. Following is a problem

from the SQuAD2.0.

Passage:

The 8- and 10-county definitions are not used for the greater Southern California

Megaregion, one of the 11 megaregions of the United States. The megaregion’s area is

more expansive, extending east into Las Vegas, Nevada, and south across the Mexican

border into Tijuana.

Question 1: Which border does the megaregion extend over? Answer: Mexi-

can

Question 2: How many megaregions are there in the United States? Answer: 11

Question 3: What is Las Vegas one of in the United States? Answer: <No Answer>

Various approaches have been proposed to solve the SQuAD1.1 and SQuAD2.0 datasets.

A complete list of the approaches is available on the leaderboard 3 for the challenge. Since

SQuAD contain reading comprehension problems where an input problem contains a read-
3https://rajpurkar.github.io/SQuAD-explorer/

12

https://rajpurkar.github.io/SQuAD-explorer/


ing passage and a list of questions about it, the approaches to solve the datasets can very

well be used to solve the WSC dataset. This is because each WSC problem can also be

viewed as a reading comprehension problem where a sequence of sentence in a WSC prob-

lem corresponds to a reading passage and the question about the sentences corresponds to

a question in SQuAD. A limitation of using a SQuAD solver for WSC is that there are very

few training examples available in the WSC corpus.

Another challenge which is similar to the WSC is Choice Of Plausible Alternatives

(COPA) (Roemmele et al., 2011) challenge. Each problem in the COPA challenge contains

a premise and two alternative choices, out of which one is more plausible than the other.

The goal is to select the more plausible choice based on the causal relationship (as defined

by a question) between the premise and the alternative choices. An example COPA problem

is as shown below.

Premise: The man broke his toe. What was the CAUSE of this?

Alternative 1: He got a hole in his sock.

Alternative 2: He dropped a hammer on his foot.

Similar to many problems in the WSC dataset, each problem in the COPA challenge

requires causal commonsense knowledge. A difference between the COPA challenge and

the WSC is that both the choices in the COPA challenge are plausible but only the more

plausible one is deemed as the correct choice whereas in WSC only one of the answer

choice is plausible. In terms of dataset size, both COPA and WSC contains small number

of problems which does not allow data intensive techniques to be easily applied to them.

COPA contains 1000 problems and WSC contains about 300 problems.
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2.3 Approach 1: Semantic Parsing and Graphical Reasoning Approach

In this approach, a WSC problem and a needed knowledge is formally represented and

a reasoning algorithm is defined which outputs the answer to the problem if it is entailed by

the formal representations. The formal representation is a graphical semantic representa-

tion. In other words, this approach involves semantic parsing of the natural language text,

identification and extraction of commonsense knowledge that is needed to solve the prob-

lem, and a reasoning framework that uses the semantic representation of the WSC problem,

and the commonsense knowledge to deduce the answer to the problem.

The sections below provide a brief overview of the different steps in the approach.

2.3.1 Step 1: Formal Representation of a WSC Problem

The sentences in a WSC problem are formally represented as a graph. The nodes in

such a graph represent the concepts in the WSC sentences and the edge labels represent the

semantic relations between the concepts. An example of a graphical representation of the

sentences in the WSC problem mentioned in the Example 2 above is shown in Figure 2.1

. The detailed description of the graphical representation of English sentences in a WSC

problem is provided in the Chapter 4 of this thesis. In this work, we developed a semantic

parser called Knowledge Parser (K-Parser). We used K-Parser to translate the sentences

in a WSC problem to their graphical representation. The details of the K-Parser algorithm

and its implementation are provided in the Chapter 6 of this thesis.

2.3.2 Step 2: Commonsense Knowledge Extraction and Representation

In this work, a commonsense knowledge corresponding to a WSC problem is extracted

from text repository by following a sequence of steps detailed in the Chapter 5.

1. Creating search queries by using the input WSC problem. A set of search queries are

created by selecting important words from the sentences in an input WSC problem.
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Figure 2.1: K-Parser Output for the Sentence “The man could not lift his son because he

was so weak.”

For example, a query generated from the WSC sentence “The man could not lift his

son because he was so weak.” is “ * could not lift * because * weak * ”

2. A set of text snippets are extracted from Google search engine by using the queries

created in the Step 1. For example, a text snippet for the query mentioned in the Step

1 is “She could not lift him because she was weak.”

3. From each of the text snippets extracted in the Step 3, a knowledge is extracted (if

present). For example, the snippet shown in Step 2 is used to extract the knowledge

“person1 is weak may prevent person1 lifts someone”

The extracted knowledge is also represented as a graph. We used K-Parser to translate

a knowledge into the graph. The details of the representation are provided in the Chapter 4
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An example of a representation of the knowledge is shown in the Figure 2.2

Figure 2.2: Graphical Representation of the Knowledge “person1 is weak prevents person1

lifts someone”

2.3.3 Step 3: Reasoning with Commonsense Knowledge

In this approach, we developed a reasoning algorithm that uses the graphical repre-

sentations of the sentences in a WSC problem and a needed knowledge, the pronoun to be

resolved and the two answer choices as input and outputs the answer choice which provides

the most natural resolution to the pronoun in the sentences.

There are four steps in the reasoning algorithm. The steps are briefly mentioned below

with the help of examples. The detailed description of the algorithm is provided in the

Chapter 6.

1. In this step, a subgraph is extracted from the graphical representation of the WSC

sentences such that it contains all the nodes from the original graph except the ones

which represent classes. A subgraph extracted from the graph shown in Figure 2.1 is

shown in Figure 2.3.

16



Figure 2.3: An Example of Step 1 Output of the WiSCR Algorithm with Respect to the

WSC Sentence “The man could not lift his son because he was so weak.”

2. In this step, a subgraph is extracted from the graphical representation of the knowl-

edge such that it contains all the nodes from the original graph except the ones

which represent classes and it contains all the edges except the ones labeled as

“is same as”. A subgraph extracted from the graph shown in Figure 2.2 is shown in

Figure 2.4.
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Figure 2.4: An Example of Step 2 Output of the WiSCR Algorithm with Respect to the

Knowledge “person1 is weak prevents person1 lifts someone”

3. In this step all the possible graph-subgraph isomorphism are detected between the

two graphs detected in the previous two steps. We used Answer Set Programming

(ASP)(Baral, 2003) to detect the isomorphisms. A graph-subgraph isomorphism is a

mapping (say M) between two graphs (say G1 and G2) such that M is a set of pairs of

the form (x,y) where x is a node in G1 and y is a node in G2, and if for all (x,y) ∈M,

x is replaced by y then G2 becomes an induced subgraph of G1. The main goal of

this step is to find all the mappings which make the graph extracted in the step 2 an

induced subgraph of the graph extracted in the step 1. In other words, let M be a

graph-subgraph isomorphism such that it makes the subgraph extracted in Step 2 an

induced subgraph of the subgraph extracted in the Step 1. If such an isomorphism

does not exist then M = /0. An example of the isomorphism detected between the

outputs of Step 1 and Step 2 is as shown below.

M = {(weak 9,weak 12), (li f t 4, li f t 5), (is 8,was 10), (person2 7,he 9),
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(person1 1,man 2), (someone 5,son 7), (not 3,not 4), (can 2,could 3)}

4. In this step an answer to a WSC problem is deduced from the input representations

and the results of the previous steps of this algorithm. Let M be the set of pairs

extracted in the Step 3. In this step, the answer is deduced based on the following

conditions which are again based on the concept of ‘most natural resolution’. The

concept ‘most natural resolution’ is described in detail in the Chapter 6 of this dis-

sertation. Basically, if x in WSC sentences provides ‘most natural resolution’ for y

in WSC sentences then it means that x and y are suggested to be co-referents of each

other by a given knowledge.

• The answer choice a1 is the answer of the WSC problem if only a1 provides the

‘most natural resolution’ for the pronoun in the WSC sentences.

• The answer choice a2 is the answer of the WSC problem if only a2 provides the

‘most natural resolution’ for the pronoun in the WSC sentences.

• No answer otherwise.

The output of this step based on the inputs of the previous steps, the input represen-

tations and the isomorphism mentioned above is the answer choice ‘man 2’. So, the

answer to the running WSC problem is ‘man 2’.

2.4 Approach 2: Natural Language Inference Based Approach

In the approach 1 shown above, to be able to use the knowledge, the reasoning module

puts several restrictions on the structure of the extracted knowledge sentence. If the knowl-

edge extraction module could not find any knowledge pertaining to those preferred schema

the extracted knowledge would probably of no use. Due to reporting bias, people hardly re-

port the obvious and on top of that if the reasoning system puts hard filtering, the approach
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of knowledge extraction followed by reasoning will probably face severe difficulties. So,

here we take a detour from building better knowledge extraction modules and focus on de-

veloping a reasoning system that can better utilize the extracted knowledge. Towards this

we manually extract a knowledge sentence for each co-reference resolution problem from

the existing Winograd Schema Challenge dataset without paying any attention to the rea-

soning system. The main steps in this approach are briefly described below with the help

of an example. The steps are described in detail in Chapter 7. Let us consider the WSC

problem shown below to explain this approach.

Sentence: The man could not lift his son because hepronoun was so weak.

Answer Choices: a) man b) son

2.4.1 Step 1: Knowledge Hunting

This step is similar to knowledge sentence extraction step in the approach 1 above. In

it a set of search queries are created and a sentence is extracted by using Google search

engine which may contain the needed knowledge. For example the knowledge sentence

extracted with respect to the above WSC problem is “She could not lift him because she

was weak”.

2.4.2 Step 2: Entity Alignment

In this step an alignment between the entities (two answer choices and a pronoun to

resolve) in the original WSC sentences and the extracted knowledge sentence is identified.

For example, in the above WSC example and the knowledge sentence from the Step 1 the

alignment is as shown below.

man aligns with She

son aligns with him

he aligns with she
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We used semantic role labeling function (Palmer et al., 2010; FitzGerald et al., 2018) and

pre-trained NLI systems (Chen et al., 2016; Parikh et al., 2016) from AllenNLP (Gardner

et al., 2018) to compute the alignments. The details are shown in the Chapter 7.

2.4.3 Step 3: Answer Retrieval

In this step the alignments extracted in the Step 2 are used to retrieve the answer to the

input WSC problem. For example, both man (an answer choice) and he (the pronoun to

resolve) are aligned with a common entity (i.e, she) whereas the other answer choice and

the pronoun are not, hence the final answer (or coreferent of the pronoun) is ‘man’.

A detailed description of the entire approach along with various possible alignments is

shown in the Chapter 7.
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Chapter 3

KNOWLEDGE TYPES IDENTIFICATION

3.1 Introduction

There are various kinds of knowledge that are needed to really understand the natural

language. In broader terms, these kinds can be categorized into factual or common knowl-

edge and commonsense knowledge (Cambria and Howard, 2014; Tandon et al., 2011).

The common knowledge include the factual knowledge that humans learn as general

knowledge over the years by reading and watching things around them. Examples of com-

mon knowledge include “Donald J Trump became the president of the United State of

America in 2017.”, and “United States of America is a country on Earth.”

The commonsense knowledge is the knowledge about the concepts of the world. Over

the years various kinds of commonsense knowledge have been identified. Commonsense

knowledge is useful in various applications (Sharma et al., 2015c; Chambers and Jurafsky,

2009). ConceptNet (Liu and Singh, 2004) is a knowledge base which stores one such

commonsense knowledge. The knowledge in it is a connected graph of concepts, where

nodes represent concepts such as person, and the relations between the concepts represent

the way they interact with each other. For example “has” is the relation between the

concepts “person” and “head”.

Most of the times the extraction of both common and commonsense knowledge is ini-

tiated by its need for solving a specific task. Later, when the task is solved, the extracted

knowledge is stored in a knowledge base so that it can be used again in a different task

which requires similar knowledge. In this work, our main focus is to extract commonsense

knowledge which is helpful in solving the Winograd Schema Challenge (WSC). Similar
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to many of the other approaches (Emami et al., 2018; Liu et al., 2017; Isaak and Michael,

2016; Sharma et al., 2015c; Bailey et al., 2015) towards addressing the challenge, we be-

lieve that answering the WSC questions requires knowledge beyond what is given in the

text. Let us consider the following WSC example.

Example 1:

Sentences: The fish ate the worm. Itpronoun was tasty

Question: What was tasty? Answer Choices: a) fish b) worm

To answer the given question one needs the knowledge that “something that is eaten may

be tasty”.

Following up on our belief, in this work we started with an aim to explore this fur-

ther and answer questions such as, How to automatically identify the needed knowledge?

and How to automatically extract such knowledge? After careful analysis of the challenge

problems, we realized that to answer these question, we should first answer a few other

questions. Such questions include, What kind of knowledge is needed? and Can we cate-

gorize the problems based on the required knowledge? Hence, in this work we attempted

to answer these questions with respect to the WSC corpus 1 .

We found that reasoning with additional knowledge can indeed be helpful in solving

the challenge. But, to develop an automated system we need to have a way to (a) obtain

such knowledge, and (b) reason with such knowledge. Although automating the process to

obtain knowledge is not the focus of this work, from our attempts in this direction, we re-

alized that the first step towards that would be to identify various categories of knowledge.

As recently shown in the ATOMIC knowledge base (Sap et al., 2018), such categoriza-

tion is specially helpful in crowd-sourcing and/or automatically inferring the commonsense
1Available at: https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html
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knowledge of particular types. The categorization of knowledge is also useful in develop-

ing a reasoning mechanism as different categories may need slightly different reasoning

modules. Furthermore, it will also allow the storage of different types of knowledge in

separate sections of a Knowledge Base (KB) (or in entirely different KBs) and hence al-

lowing the retrieval to be very efficient in an application that requires only a specific kind

of knowledge.

Continuing on the similar lines, as part of this thesis, we identified several new kinds

of commonsense knowledge to solve the WSC problems. The knowledge kinds are not

directly present in any of the knowledge bases currently available.

In the section below, we present the intuitive meaning and detailed description of all

the knowledge types which were identified as part of this work.

3.2 Commonsense Knowledge Categorization

In this section, we present the 12 kinds of commonsense knowledge which were dis-

covered as part of this work. We performed a comprehensive analysis of the problems in

the WSC and found that a knowledge required to answer each of them can be categorized

as one of the types mentioned in this section. Here we provide the details of the knowledge

types with the help of example problems from the WSC corpus. Let us begin by visiting

the following WSC example.

Sentence: The man couldn’t lift his son because hepronoun was so weak.

Question: Who was weak?

Answer Choices: a) man b) son

The above problem can be correctly solved by using the commonsense knowledge that,

someone weak may not be able to lift someone else
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OR

person1 is weak may prevent person1 lifts someone

Intuitively, the above knowledge means that person1 being weak is a possible reason

why person1 is unable to lift someone. The knowledge needed in the above example has

four main components, i.e., an action (‘lifts’), a property (‘weak’), two entities (‘person1’

and ‘someone’) and the relationship between the action and the property (‘may prevent’).

Another important aspect of the knowledge mentioned above is that there are two mentions

of person1.

Similar to the above example knowledge, a knowledge in each of the first 10 categories

defined in this work is based on the relation between two actions or a property and an action.

Also, there is atleast one entity with two mentions in the knowledge. In the following

section we explain each of the first 10 categories with the help of examples from the WSC

corpus. In a later section we describe the remaining two categories of knowledge.

3.2.1 Knowledge Type 1: A Property May Prevent an Action

In this category, if a property prevents an action from executing then an entity associated

with the property is also a participant in the action. Following is a WSC problem and a

knowledge of this type that is required to solve the problem.

Sentence: The man couldn’t lift his son because hepronoun was so weak.

Question: Who was weak?

Answer Choices: a) man b) son

Required Knowledge:

person1 is weak may prevent person1 lifts someone
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3.2.2 Knowledge Type 2: An Action May Cause an Action

In this category of commonsense knowledge if an action (say A1) causes another action

(say A2) then an entity that participates in A1 also participates in A2. Following is a WSC

problem and a knowledge of this type that is required to solve the problem.

Sentence: The city councilmen refused the demonstrators a permit because theypronoun

feared violence.

Question: Who feared violence?

Answers Choices: a) councilmen b) demonstrators

Required Knowledge:

group1 fears violence may cause group1 refuses permit

3.2.3 Knowledge Type 3: A Property May Cause an Action

In this category, if a property causes an action then an entity that participates in the

action is also associated with the property. Following is a WSC problem and a knowledge

of this type that is required to solve the problem.

Sentence: The sculpture rolled off the shelf because itpronoun was not anchored.

Question: What was not anchored?

Answer Choices: a) sculpture b) shelf

Knowledge Needed:

object1 is not anchored may cause object1 is rolled off
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3.2.4 Knowledge Type 4: An Action May Cause a Property

In this category, if an action causes a property then an entity that participates in the

action is also associated with the property. Following is a WSC problem and a knowledge

of this type that is required to solve the problem.

Sentence: I took the water bottle out of the backpack so that itpronoun would be handy.

Question: What would be handy?

Answer Choices: a) bottle b) backpack

Required Knowledge:

object1 is taken out of something may cause object1 is handy

3.2.5 Knowledge Type 5: An Action May Prevent an Action

In this category of commonsense knowledge if an action (say A1) prevents another

action (say A2) then an entity that participates in A1 also participates in A2. Following is a

WSC problem and a knowledge of this type that is required to solve the problem.

Sentence: Beth didn’t get angry with Sally, who had cut her off, because shepronoun

stopped and counted to ten.

Question: Who counted to ten?

Answers: a) Beth b) Sally

Required Knowledge:

person1 counts to ten may prevent person1 gets angry
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3.2.6 Knowledge Type 6: An Action May be Followed By an Action

In this category of commonsense knowledge if an action (say A1) is followed by another

action (say A2) then an entity that participates in A1 also participates in A2. Following is a

WSC problem and a knowledge of this type that is required to solve the problem.

Sentence: The customer walked into the bank and stabbed one of the tellers. He was

immediately taken to the hospital.

Question: Who was taken to the hospital?

Answers: a) teller b) customer

Required Knowledge:

person1 is stabbed may be followed by person1 is taken to hospital

3.2.7 Knowledge Type 7: An Action May be Followed by a Property

In this category, if an action is followed by a property then an entity that participates

in the action is also associated with the property. Following is a WSC problem and a

knowledge of this type that is required to solve the problem.

Sentence: Sam broke both his ankles and he is walking with crutches. But a month or

so from now theypronoun should be unnecessary.

Question: What should be unnecessary?

Answer Choices: a) ankles b) crutches

Required Knowledge:

person1’s ankles are broken and person1 walks with crutches may be followed by

crutches are unnecessary
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3.2.8 Knowledge Type 8: A Property May be followed by an Action

In this category, if a property is followed by an action then an entity that participates

in the action is also associated with the property. Following is a WSC problem and a

knowledge of this type that is required to solve the problem.

Sentence: Thomson visited Cooper’s grave in 1765. At that date hepronoun had been

dead for five years.

Question: Who had been dead for five years?

Answer Choices: a) Cooper b) Thomson

Knowledge Needed:

person1 is dead may be followed by person1’s grave is visited

3.2.9 Knowledge Type 9: A Property May Cause a Property

In this category, if a property (say P1) causes another property (say P2) then an entity

associated with P1 is also associated with P2. Following is a WSC problem and a knowledge

of this type that is required to solve the problem.

Sentence: Sam and Amy are passionately in love, but Amy’s parents are unhappy

about it, because theypronoun are fifteen.

Question: Who are fifteen?

Answer Choices: a) Sam and Amy b) Amy’s parents

Knowledge Needed:

person1 is in love and person1 is fifteen years old may cause person1’s parents are

unhappy
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3.2.10 Knowledge Type 10: A Co-occurring Set of Actions and Properties

This category accounts for the following two cases.

Case 1 - Two Actions: In this case there are two co-occuring actions (say A1 and A2) such

that a common entity participates in both the actions. Following is a WSC problem and a

knowledge of this type that is required to solve the problem.

Sentence: Steve follows Fred’s example in everything. He influences himpronoun

hugely.

Question: Who is influenced?

Answer Choices: a) Steve b) Fred

Knowledge Needed:

person1 follows person2’s example in everything may co-occur with person1 is

influenced by person2

Case 2 - An Action and a Property: In this case an action and a property co-occur, such

that a common entity participates in both the action and the property. Following is a WSC

problem and a knowledge of this type that is required to solve the problem.

Sentence: The fish ate the worm. Itpronoun was hungry.

Question: What was hungry?

Answer Choices: a) fish b) worm

Knowledge Needed:

animal1 eats something may co-occur with animal1 is hungry

30



3.2.11 Additional Knowledge Categories

Along with the above mentioned 10 knowledge categories, in this work we identified

two additional knowledge types. In this section we describe those types.

Knowledge Type 11: Statement 1 is more likely than Statement 2 This type consists of

a likelihood comparison between two statements or propositions. The likelihood is based

on the acceptability of a statement in a normal scenario. Following is a WSC problem and

a knowledge of this type that is required to solve the problem.

Sentence: Sam tried to paint a picture of shepherds with sheep, but theypronoun ended

up looking more like dogs.

Question: What looked like dogs?

Answer Choices: a) sheep b) shepherds

Knowledge Needed:

sheep look like dogs is more likely than shepherds look like dogs

The above knowledge represents that the statement ‘sheep look like dogs’ is more likely

than the statement ‘shepherds look like dogs’. The validity of the likelihood relies on the

normal scenario because for example if a shepherd is sitting then he may look like a dog

but that would not be a normal scenario.

A generalized representation for this kind of knowledge is as shown below.

Statement1 is more likely than Statement2

Knowledge Type 12: Multiple Pieces of Knowledge

In this category, a list of more than one piece of knowledge is called one knowledge. Each
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knowledge piece in the list may be of a type from Knowledge Type 1 to Knowledge Type

10. Following is a WSC problem and a knowledge of this type that is required to solve the

problem.

Sentence: Mary tucked her daughter Anne into bed, so that shepronoun could work.

Question: Who is going to work?

Answer Choices: a) Mary b) daughter

Knowledge Needed:

1. person1 tucks person2 into bed may cause person2 sleeps

2. daughter of person1 sleeps may prevent person1 is disturbed

3. person1 is not disturbed may cause person1 can work

Table 3.1 below summarizes all the knowledge types and their corresponding examples

from the Winograd Schema Challenge corpus.
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Knowledge Type Example Knowledge WSC Example
1. PROPERTY
may prevent AC-
TION

person1 is weak may prevent person1
lifts someone

Sentence: The man couldn’t lift his son because
hepronoun was so weak. Question: Who was weak?
Answer Choices: a) man b) son

2. ACTION1 may
cause ACTION2

group1 fears violence may cause group1
refuses permit

Sentence: The city councilmen refused the demon-
strators a permit because theypronoun feared violence.
Question: Who feared violence? Answers Choices:
a) councilmen b)

3. PROPERTY
may cause AC-
TION

object1 is not anchored may cause ob-
ject1 rolls off

Sentence: The sculpture rolled off the shelf because
itpronoun was not anchored. Question: What was not
anchored? Answer Choices: a) sculpture b) shelf

4. ACTION may
cause PROPERTY

object1 is taken out of something may
cause object1 is handy

Sentence: I took the water bottle out of the back-
pack so that itpronoun would be handy. Question:
What would be handy? Answer Choices: a) Paul
b) George

5. ACTION1 may
prevent ACTION2

person1 counts to ten may prevent per-
son1 gets angry

Sentence: Beth didn’t get angry with Sally, who had
cut her off, because shepronoun stopped and counted
to ten. Question: Who counted to ten? Answers: a)
Beth b) Sally

6. ACTION1 may
be followed by
ACTION2

person1 is stabbed may be followed by
person1 is taken to hospital

Sentence: The customer walked into the bank and
stabbed one of the tellers. He was immediately taken
to the hospital. Question: Who was taken to the hos-
pital? Answers: a) teller b) customer

7. ACTION may
be followed by
PROPERTY

person1’s ankles are broken and person1
walks with crutches may be followed by
crutches are unnecessary

Sentence: Sam broke both his ankles and he is walk-
ing with crutches. But a month or so from now
theypronoun should be unnecessary. Question: What
should be unnecessary? Answer Choices: a) ankles
b) crutches

8. PROPERTY
may be followed
by ACTION

person1 is dead may be followed by per-
son2 visits person1’s grave

Sentence: Thomson visited Cooper’s grave in 1765.
At that date hepronoun had been dead for five years.
Question: Who had been dead for five years? An-
swer Choices: a) Cooper b) Thomson

9. PROPERTY1
may cause PROP-
ERTY2

person1 is in love and person1 is fifteen
years old may cause person1’s parents
are unhappy

Sentence: Sam and Amy are passionately in love,
but Amy’s parents are unhappy about it, because
theypronoun are fifteen. Question: Who are fifteen?
Answer Choices: a) Sam and Amy b) Amy’s parents

10. Co-occurring
ACTION(s) and
PROPERTY(s)

animal1 eats something may co-occur
with animal1 is hungry

Sentence: The fish ate the worm. Itpronoun was hun-
gry. Question: What was hungry? Answer Choices:
a) fish b) worm

11. Statement 1 is
more likely than
Statement 2

sheep look like dog is more likely than
shepherds look like dogs

Sentence: Sam tried to paint a picture of shepherds
with sheep, but theypronoun ended up looking more
like dogs. Question: What looked like dogs? An-
swer Choices: a) sheep b) shepherds

12. Multiple
Pieces of Knowl-
edge

1). person1 tucks person2 into bed may
cause person2 sleeps 2). daughter of
person1 sleeps may prevent person1 is
disturbed 3). person1 is not disturbed
may cause person1 can work

Sentence: Mary tucked her daughter Anne into bed,
so that shepronoun could work. Question: Who is go-
ing to work? Answer Choices: a) Mary b) daughter

Table 3.1: Table of Knowledge Examples in Different Formats
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Chapter 4

REASONING WITH THE COMMONSENSE KNOWLEDGE

In this chapter we present the details of our reasoning algorithm for the Winograd

Schema Challenge (WSC) problems and a logical implementation of the algorithm. We

provide the details of the reasoning paradigms used and the various formalisms introduced

to perform the reasoning.

One of the reasoning approaches used in this work is based on translating a WSC prob-

lem and a needed commonsense knowledge into graphical representations. The represen-

tations are then used as input in the reasoning algorithm to produce an answer to the WSC

problem. In the following sections, we first provide the detailed description of the graphical

representations of a WSC problem and a needed knowledge. Then, we provide the details

of the reasoning algorithm that uses those representations as input.

4.1 Formal Representation of a WSC Problem

In this work, we use a commonsense reasoning approach to tackle the problems in the

WSC corpus. A requirement of using such an approach is to formally represent an input

WSC problem. A WSC problem mainly consists of a sequence of one or more sentences.

We use a graph based representation schema for the sentences in a WSC problem. In this

section, we provide a brief overview of some of the popular graphical semantic representa-

tions which are used for representing text and inspired us to use a similar schema.

4.1.1 Abstract Meaning Representation (AMR)

AMR (Banarescu et al., 2013) is a logical semantic representation which was developed

to represent a natural language text. Its development was motivated by the goal to generate

semantic banks similar to the syntactic treebanks. This would ultimately be helpful in
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initiating new work in the development of semantic parsers which are as ubiquitous as their

syntactic counterparts. An AMR of a text is a rooted, edge labeled, leaf labeled and directed

graph. An AMR can be represented in various forms such as conjunctions of logical triples,

a directed graph, and PENMAN 1 inputs (Matthiessen and Bateman, 1991). An example

of an AMR of a sentence is shown in Figure 4.1.

Figure 4.1: An Abstract Meaning Representation (AMR) of the Sentence “The boy wants

to go.”

4.1.2 Knowledge Parser (K-Parser) Representation

K-Parser (Sharma et al., 2015c) is a semantic parser which generates a graphical se-

mantic representation of an English sentence. Similar to AMR, a representation generated

by K-Parser can be formatted as a conjunction of logical triples or a rooted, edge-labeled

and node-labeled, directed acyclic graph. An example of a K-Parser representation of a

sentence is as shown in Figure 4.2.
1https://github.com/goodmami/penman
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Figure 4.2: K-Parser Output for the Sentence “The boy wants to go.”

4.1.3 TRIPS Parser Representation

TRIPS (Allen et al., 2008) is another semantic parser which translates an English text

snippet into its logical semantic representation. The representation generated can be for-

matted as a graph or as an AMR like structure. An example of a TRIPS representation of a

sentence is as shown Figure 4.3.

Figure 4.3: TRIPS output for the Sentence“The boy wants to go.”
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In our approach, we formally represent a WSC problem, i.e., a sequence of sentences,

a pronoun and two answer choices, in a graphical representation that is inspired from the

representations mentioned above. In the following section of this chapter, we define a

graphical representation of a sequence of English sentences in a WSC problem. For that

reason we define a set of tokens in a sequence of sentences, a POS tagging function which

maps each token in a sequence of sentences to a POS tag, a class mapping function which

maps each token in a sequence of sentences to its class (or type) and finally we define a

graphical representation of a sequence of sentences by using a POS tagging function and

a class mapping function. The nodes in the graphical representation are made up of the

tokens in the sentences and the classes of the tokens. The edge labels in the graphical

representation are from a set of binary relations between two nodes in the representation.

Definition 1 (Set of Tokens in a Sequence of Sentences) Let S = (S1, S2, ..., Sn), n≥ 1,

be a sequence of English sentences, Wi be the sequence of words in the sentence Si and

WS =W_
1 W_

2 ..._Wn be the concatenation of the word sequences. Then the set of tokens

T(S) is defined as follows:

T(S) = {w i | w is the ith word inWS}

Example 1 Let us consider the sequence of English sentences ‘John ate the pizza. It was

very tasty.’ Then the set of tokens in the sequence is,

T(S) = {John 1, ate 2, the 3, pizza 4, It 5, was 6, very 7, tasty 8}.

Definition 2 (A POS Tagging Function) Let S be a sequence of one or more English sen-

tences, T(S) be the set of tokens in S. Then, the POS tagging function f pos
S maps an element

in T(S) to an element in the set {verb,noun, pronoun,adverb,ad jective,other}, i.e.,

f pos
S : T(S)→ {verb,noun, pronoun,adverb,ad jective,other}
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Example 2 Let us consider the sequence of English sentences ‘John ate the pizza. It was

very tasty.’ The set of tokens in the sequence is, T(S) = {John 1, ate 2, the 3, pizza 4,

It 5, was 6, very 7, tasty 8}. Then an example of a mapping produced by a POS tagging

function is as shown below,

f pos
S (John 1) = noun

f pos
S (ate 2) = verb

f pos
S (the 3) = other

f pos
S (pizza 4) = noun

f pos
S (It 5) = pronoun

f pos
S (was 6) = verb

f pos
S (very 7) = adverb

f pos
S (tasty 8) = ad jective

Definition 3 (A Class Mapping Function) Let S be a sequence of one or more English

sentences, T(S) be the set of tokens in S. Then, the class mapping function f class
S maps an

element of T(S) to an element in a set C, i.e., f class
S : T(S)→C where the set C is a union

of three sets C1, C2 and {φ} such that,

• C1 = {c | c is the lemmatized 2 form of w where w i ∈ T(S) and f pos
S (w i) ∈

{verb,adverb,ad jective}}

• C2 = {ob ject, person, group, location, quantity, shape, animal, plant, cognition,

communication, event, f eeling, act, motive, phenomenon, possession, process, rel-

ation, state, time} 3

2https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html,
https://www.thoughtco.com/what-is-base-word-forms-1689161

3Inspired from WordNet (Miller, 1995) lexicographer files https://wordnet.princeton.edu/
documentation/lexnames5wn
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and,

f class
S (x) =


c1 ∈ C1 if f pos

S (x) ∈ {verb,ad jective,adverb}

c2 ∈ C2 if f pos
S (x) ∈ {noun, pronoun}

φ otherwise

Example 3 Let us consider the sequence of English sentences ‘John ate the pizza. It was

very tasty.’ The set of tokens in the sequence is, T(S) = {John 1, ate 2, the 3, pizza 4,

It 5, was 6, very 7, tasty 8}. Also a mapping produced by a POS tagging function is,

f pos
S (John 1) = noun

f pos
S (ate 2) = verb

f pos
S (the 3) = other

f pos
S (pizza 4) = noun

f pos
S (It 5) = pronoun

f pos
S (was 6) = verb

f pos
S (very 7) = adverb

f pos
S (tasty 8) = ad jective

Then an example of a mapping produced by a class mapping function is as shown below,

f class
S (John 1) = person

f class
S (ate 2) = eat

f class
S (the 3) = φ

f class
S (pizza 4) = ob ject

f class
S (It 5) = ob ject

f class
S (was 6) = be

f class
S (very 7) = very

f class
S (tasty 8) = tasty
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Definition 4 (A Formal Representation of a Sequence of English Sentences) Let S be

a sequence of one or more English sentences, T(S) be a set of tokens in S, f pos
S be a POS

tagging function and f class
S be a class mapping function. Then, a formal representation

of S is an edge labeled directed acyclic graph, GS = (V,E, f ). The set of vertices V,

is a union of two disjoint sets V1 and V2, such that,

• V1 = {w i | w i ∈ T(S) and f pos
S (w i) ∈{verb, adverb, ad jective, noun, pronoun}}

• V2 = {c | f class
S (w i) = c where w i ∈ V1}

E⊆ V×V, has following properties,

• E is a union of the two disjoint sets E1 and E2,

• (v1,v2) ∈ E1 if v1 ∈ V1 and v2 ∈ V1,

• (v1,v2) ∈ E2 if v1 ∈ V1 and v2 ∈ V2,

• if (v1,v2) ∈ E2 then there does not exist v ∈ V2 such that (v1,v) ∈ E2 where v 6= v2

f :E→L∪{instance o f}, is an edge labelling function where L is a set of binary relations

between two nodes in V1 and ‘instance of’ is a binary relation between a node in V1 and

a node in V2, i.e.,

f ((v1,v2)) =


l ∈ L if (v1,v2) ∈ E1

“instance o f ” if (v1,v2) ∈ E2

Example 4 Let us consider the sequence of sentences ‘John ate the pizza. It was very

tasty.’. Also, let us consider a POS tagging for the sequence as shown in Example 2 and

a class mapping for the sequence as shown in Example 3. Then, according to the above

definition, a representation of the sequence of sentences is as shown in Figure 4.4.
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Figure 4.4: A Representation of a Sequence of English Sentences, “John ate the pizza. It

was very tasty.”

Example 5 Figure 4.5 shows another example of a graphical representation of a sequence

of sentences. The sentences are taken from a WSC problem.

Figure 4.5: A Representation of the Sequence of Sentences, “The man could not lift his son

because he was so weak”
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Semantics of a Representation of a Sequence of Sentences: The semantics or meaning

of a graphical representation of a sequence of sentences are defined with respect to each of

the components in the representation. There are following two components of a graphical

representation presented in the Definition 4.

1. Nodes: There are two types of nodes. The first are the token nodes. A token node

represents a particular occurrence of a concept in the concerned sequence of sen-

tences. Only verb, adverb, adjective, noun and pronoun words are converted into

token nodes. For example the node ‘weak 12’ is a token node in the example repre-

sentation shown in the Figure 4.5. The second type of nodes are the class nodes. A

class node represents a ‘type’ of a token node. For example ‘person’ in Figure 4.5

is a class node where ‘man 2’ is of ‘type’ ‘person’. A type or class node may be

grounded in an ontology (for example schema.org ontology) of classes but to keep

things simple we do not use such a grounding in this work. Following is an example

of grounding the class ‘person’ in a hierarchy, ‘person’ is a subclass of ‘human’ and

‘human’ is a subclass of ‘living things’.

2. Edges and Edge Relations: There are two types of directed edges. The first type

accounts for the edges from a token node to another token node. Since token nodes

represent particular occurrences of concepts in a sequence of sentences, this type of

edges represent a semantic dependency between two such concept occurrences. The

labels of these edges define the semantics of the dependency. For example, the edge

labeled ‘agent’ from the node ‘lift 5’ to the node ‘man 2’ represents that ‘man 2’ is

an agent or doer of the action represented by ‘lift 5’. The second types of edges are

from a token node to a class node. All such edges are labeled as ‘instance of’. Let

such an edge exists between a token node t and a class node c. Then we say that t is

of type c. For example ‘man 2’ in the Figure 4.5 is of type (or instance of ) ‘person’.
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A token node is always connected to exactly one class node in the representation.

4.2 Representation of the Knowledge Types

In this section we define the formal representations of the knowledge types defined in

the Chapter 3. In Chapter 3 we identified 12 different kinds of commonsense knowledge.

The first ten types follow a similar pattern and hence a common reasoning algorithm is

defined to handle them. In the following sub-section (4.2.1) we present the formal repre-

sentation of the knowledge types 1 through 10 and then in Section 4.3 we present

the reasoning algorithm with respect to those ten knowledge types.

Later in the Sections 4.5 and 4.6 we present the representation and reasoning with

respect to the remaining two knowledge types.

4.2.1 Representation of Knowledge Types 1 through 10

In this work we write a knowledge of types 1 through 10 (See Chapter 3) in a English

like format which allows co-reference resolution. The format is formally defined in the

Definition 5 below. The definition uses the Definitions 1 and 2. An example knowledge is

also shown below.

Definition 5 (A Knowledge) A knowledge K is a statement of the form ‘IF S THEN x

is same as y’ where S is an English sentence, T(S) is a set of tokens in S, x,y ∈ T(S),

f pos
S (x) = noun and f pos

S (y) = noun, where f pos
S is a POS tagging function.

Example 6 An example of a knowledge is,

“IF person1 can not lift someone because person2 is weak THEN person1 1 is same as

person2 7”.

Here, S=‘person1 can not lift someone because person2 is weak’ is an English sentence

and person1 1 and person2 7 are tokens in S.
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Table 4.1 shows examples of the knowledge (Types 1 through 10) in the format shown

in the Chapter 3 and the format defined in the Definition 5.
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Knowledge Type Example Knowledge
Example Knowledge in Co-reference En-

abled Format

1. PROPERTY may

prevent ACTION

Person1 is weak may prevent Person1 lifts

someone

IF Person1 can not lift someone because Per-

son2 is weak THEN Person1 1 is same as

Person2 7

2. ACTION1 may

cause ACTION2

Group1 fears violence may cause Group1 re-

fuses permit

IF Group1 refuses permit because Group2

fears violence THEN Group1 1 is same as

Group2 5

3. PROPERTY may

cause ACTION

Object1 is not anchored may cause Object1

rolls off

IF Object1 rolls off because Object2 is not

anchored THEN Object1 1 is same as Ob-

ject2 5

4. ACTION may

cause PROPERTY

Object1 is taken out of something may cause

Object1 is handy

IF Object1 is handy because Object2 is taken

out of something THEN Object1 1 is same as

Object2 5

5. ACTION1 may

prevent ACTION2

Person1 counts to ten may prevent Person1

gets angry

IF Person1 does not get angry because Per-

son2 counts to ten THEN Person1 1 is same

as Person2 7

6. ACTION1 may

be followed by AC-

TION2

Person1 is stabbed may be followed by Per-

son1 is taken to hospital

IF Person1 is taken to hospital after Person2

is stabbed THEN Person1 1 is same as Per-

son2 7

7. ACTION may be

followed by PROP-

ERTY

Person1’s ankles are broken and Person1

walks with crutches may be followed by

crutches are unnecessary

IF crutches are unnecessary after Per-

son1’s ankles are broken and Person1 walks

with crutches THEN crutches 1 is same as

crutches 14

8. PROPERTY may

be followed by AC-

TION

Person1 is dead may be followed by Person2

visits Person1’s grave

IF Person1 visits Person2’s grave after Per-

son3 is dead THEN Person2 3 is same as

Person3 7

9. PROPERTY1

may cause PROP-

ERTY2

Person1’s army is larger may cause Person1

is victorious

IF Person1 is victorious because Person2’s

army is larger THEN Person1 1 is same as

Person2 5

10. Co-occurring

ACTION(s) and

PROPERTY(s)

Animal1 eats something may co-occur with

Animal1 is hungry

IF Animal1 eats something and Animal2 is

hungry THEN Animal1 1 is same as Ani-

mal2 5

Table 4.1: Table of Knowledge Examples in Different Formats
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Similar to the sentences in a WSC problem, the knowledge of types 1 through 10 in

co-reference enabled format (in Definition 5) is formally represented as a graph. The graph

is formally defined in the Definition 6.

Definition 6 (A Graphical Representation of a Knowledge) Let K = ‘IF S THEN x is

same as y’ be a knowledge where S is an English sentence, x and y are tokens in S and

GS = (VS ,ES , fS) be a graphical representation of S. Then, a graphical representation of

K is an edge labeled directed graph GK = (VK,EK, fK), such that,

• VK = VS ,

• EK = ES
⋃
{(x,y),(y,x)}, and

•

fK((v1,v2)) =


fS((v1,v2)) if (v1,v2) ∈ ES

“is same as” Otherwise

Here, we say that fK is defined using fS .

Example 7 An example of a representation of a knowledge (Type 1) is shown in Figure

4.6.
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Figure 4.6: Graphical Representation of the Knowledge, “IF person1 can not lift someone

because person2 is weak THEN person1 1 is same as person2 7”

4.3 Reasoning Algorithm for Knowledge Types 1-10

In this work we defined a reasoning algorithm for solving the WSC problems. The

algorithm takes graphical representations of a WSC problem and a knowledge (Types 1-

10) as input and outputs the answer of the WSC problem if it is inferred from the inputs.

As per the problem definition the correct answer provides the ‘most natural resolution’ for

the pronoun in the WSC sentences. In the following two definitions we formally define the

‘most natural resolution’ and the answer of a WSC problem with respect to the graphical

representations of a WSC problem and a commonsense knowledge that is needed to answer

it.
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Definition 7 (Most Natural Resolution) Let S be a sequence of sentences in a WSC prob-

lem, GS = (VS ,ES , fS) be a graphical representation of S, G′S = (V′S ,E′S , f ′S) be a subgraph

of GS such that V′S = VS −Vc
S where Vc

S is the set of all the class nodes in GS , f ′S = fS

and E′S = ES −Ec
S where e ∈ Ec

S iff fS(e) = “instance o f ”. Let GK = (VK,EK, fK) be a

graphical representation of a knowledge where fK is defined using fS , G′K = (V′K,E′K, f ′K)

be a subgraph of GK such that V′K = VK−Vc
K where Vc

K is the set of all the class nodes

in GK, f ′K = fK and E′K = EK−Ec
K where e ∈ Ec

K iff fK(e) ∈ {is same as, instance o f}.

Also, let M be a set of pairs of the form (a,b) such that either all of the below conditions

are satisfied or M= /0.

• a ∈ V′S and b ∈ V′K,

• a and b are instances of same class, i.e., (a, i)∈ES , (b, i)∈EK, fS((a, i)) = instanc-

e o f and fK((b, i)) = instance o f

• if for every pair (a,b)∈M, a is replaced by b in V′S then G′K becomes a subgraph of

the node replaced G′S

Then we say that x ∈ V′S provides the ‘most natural resolution’ for y ∈ V′S if (x,n1)∈M,

(y,n2)∈M and either one of the following is true

• (n1,n2) ∈ EK and fK((n1,n2)) = is same as

• (n2,n1) ∈ EK and fK((n2,n1)) = is same as

Example 8 Let us consider the representation of a knowledge shown in the Figure 4.6,

the representation of the sentences in a WSC problem as shown in the Figure 4.5 and

the set of node pairs M = {(weak 12, weak 9), (lift 5, lifts 4), (he 9, person2 7), (son 7,

someone 5), (was 10, is 8), (not 4, not 3), (could 3, can 2), (man 2, person1 1)}. Then,

the ‘most natural resolution’ for he 9 is man 2.
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Definition 8 (Answer of a WSC Problem) Let S be a sequence of sentences in a WSC

problem P , T(S) be the set of tokens in S, p ∈ T(S) be the token which represents the pro-

noun to be resolved, a1,a2 ∈ T(S) be two tokens which represent the two answer choices,

GS = (VS ,ES , fS) be a graphical representation of S, and GK = (VK,EK, fK) be a graph-

ical representation of a knowledge such that fK is defined using fS . Then,

• a1 is the answer of P , if only a1 provides the ‘most natural resolution’ for p,

• a2 is the answer of P , if only a2 provides the ‘most natural resolution’ for p,

• no answer otherwise

Example 9 Let us consider the representation of a knowledge from Figure 4.6, the rep-

resentation of WSC sentences from Figure 4.5, the token for pronoun to resolve is ‘he 9’,

the tokens for answer choices are ‘man 2’ and ‘son 7’. Then according to the Definition

7, only ‘man 2’ provides the ‘most natural resolution’ for ‘he 9’. Hence, according to the

Definition 8 ‘man 2’ is the answer of the WSC problem.

4.3.1 Winograd Schema Challenge Reasoning (WiSCR) Algorithm

Input to the WiSCR Algorithm: a graphical representation, GS = (VS ,ES), of the sen-

tences in a WSC problem (By Definition 4), a node p in GS which represents the pronoun

to be resolved, two nodes a1 and a2 in GS which represent the two answer choices for the

WSC problem, and a graphical representation, GK = (VK,EK), of a commonsense knowl-

edge (By Definition 6).

Output of the WiSCR Algorithm: The algorithm outputs a1, a2 or it does not output any

answer.

Behavior of the WiSCR Algorithm:
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STEP 1: In this step a subgraph of GS is extracted. Let the extracted subgraph is named

GS ′. GS ′ contains all the nodes which are not class nodes in GS . All the edges which

connect such nodes are also extracted. An example of the output of the Step 1 is shown in

the Figure 4.7. The entire graph is the representation of the sentences in a WSC problem,

and the highlighted part of the graph represents the subgraph extracted in this step.

Figure 4.7: An Example of Step 1 Output of the WiSCR Algorithm with Respect to the

WSC Sentence “The man could not lift his son because he was so weak.”

STEP 2: In this step a subgraph of GK is extracted. Let the extracted subgraph is named

GK′. GK′ contains all the nodes from GK which are not class nodes and it contains all the

edges which connect such nodes, except the edges which are labeled as ‘as same as’. An

example of the output of the Step 2 is shown in the Figure 4.8. The entire graph in the

figure is the representation of a knowledge (as shown in Figure 4.6) and the highlighted

part of the graph is the subgraph extracted in this step.
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Figure 4.8: An Example of Step 2 Output of the WiSCR Algorithm with Respect to

the Knowledge “IF person1 can not lift someone because person2 is weak THEN

person1 1 is same as person2 7”

STEP 3: In this step, all the possible graph-subgraph isomorphisms (Cordella et al., 2004)

are detected between GS ′ and GK′ (the subgraphs from the previous two steps respectively).

A graph-subgraph isomorphism is a mapping (say M) between two graphs (GS ′ and GK′)

such that M is a set of pairs of the form (x,y) where x is a node in GS ′, y is a node in GK′,

and if for every (x,y) ∈M, x is replaced by y then GK′ becomes a subgraph of the node

replaced GS ′. If such a mapping does not exist then M = /0. An important constraint that

we put on the mapping set is that for each (x,y) ∈M, both x and y must be instances of

same class. This is because our assumption for a correct knowledge is that it represents a

scenario which is similar to the sentences in the concerned WSC problem. For example if a

WSC sentence mentions about ‘lift’ action with the help of the word ‘lifting’ then a suitable

knowledge must also mention about ‘lift’ action. It does not matter which form of a word

(e.g., ‘lifting’ or ‘lifts’) is used in the knowledge or the WSC sentences. This information
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is captured by the class nodes in the graphical representations.

STEP 4: In this step an answer to a WSC problem is deduced from the input representations

and the results of the previous steps of this algorithm. For each of the graph-isomorphism

detected in Step 3, an answer to the input WSC problem is extracted by using the following

rules.

• The answer choice a1 is an answer with respect to the set M if (p,n1)∈M, (a1,n2)∈

M, either (n1,n2) or (n2,n1) is an edge in GK and it is labeled as ‘is same as’, and

there does not exist an n and an x such that (x,n) ∈M and either (n1,n) or (n,n1) is

an edge in GK labeled as ‘is same as’

• The answer choice a2 is an answer with respect to the set M if (p,n1)∈M, (a2,n2)∈

M, either (n1,n2) or (n2,n1) is an edge in GK and it is labeled as ‘is same as’, and

there does not exist an n and an x such that (x,n) ∈M and either (n1,n) or (n,n1) is

an edge in GK labeled as ‘is same as’

• Otherwise the input WSC problem does not have an answer with respect to the set M

Finally, after processing all the isomorphisms, if a1 is the only answer retrieved then a1

is the final answer. If a2 is the only answer retrieved then a2 is the final answer. Otherwise

the algorithm does not ouput an answer.

Theorem 1 Let S be a sequence of sentences in a WSC problem P , GS = (VS ,ES , fS) be

a graphical representation of S, p be a node in GS such that it represents the pronoun to

be resolved in P , a1 and a2 be two nodes in GS such that they represent the two answer

choices for P , and GK = (VK,EK, fK) be a graphical representation of a knowledge such

that fK is defined using fS . Then, the Winograd Schema Challenge Reasoning (WiSCR)

algorithm outputs,
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• a1 as the answer of P , if only a1 provides the ’most natural resolution’ (By Definition

7) for p in GS ,

• a2 as the answer of P , if only a2 provides the ‘most natural resolution’ for p in GS ,

• no answer otherwise

Proof 1 Proof of the theorem is in the Appendix.

4.3.2 Implementation of the WiSCR Algorithm

There are various constraints imposed on the two input graphs in the WiSCR algorithm

to retrieve the final answer. For example, in Step 3 a constraint that both the nodes in a

pair belonging to an isomorphism set must be instances of the same class node. Consider-

ing that, our main motivation while implementing the WiSCR algorithm was to make the

process of adding new constraints easier. Answer Set Programming (ASP) (Gelfond and

Lifschitz, 1988; Baral, 2003) provides this facility. Furthermore, 1) ASP has simple syntax

yet is expressive and it is non-monotonic, 2) ASP has a strong theoretical foundation with

many building-block results, allowing us to prove the correctness of our implementation

in this work, and 3) ASP has several efficient solvers (Gebser et al., 2007; Niemelä and

Simons, 1997; Leone et al., 2006).

An ASP program is a collection of rules of the form:

a← a1, ... ,am, not am+1, ... , not am+n

where a, a1, ...,am+n are atoms. The rule reads as “a is true if a1...am are all known

to be true and am+1...am+n can be assumed to be false”. The semantics of answer set

programs are defined using answer sets. An entailment relation (|=) with respect to answer

set programs is defined as follows: a program Π entails an atom p iff p is true in all the

answer sets of Π.
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In this section, first we present the details of the ASP encoding of the inputs to WiSCR

algorithm and an ASP implementation of the WiSCR algorithm. Then we show, with the

help of examples, how the current implementation can be easily updated to include new

constraints.

ASP encoding of Inputs

There are four inputs to the algorithm, a sequence of sentences in a WSC problem, a pro-

noun to be resolved, two answer choices and a knowledge. The WSC sentences are repre-

sented as a graph. Each edge in the graph is encoded in the ASP format by using a ternary

predicate has s(h,l,t), where h and t are two nodes and l is an edge label of the directed

edge from h to t. Similarly, a knowledge is represented as a graph and encoded in ASP by

using a ternary predicate has k. The pronoun is encoded in ASP by using a unary predi-

cate pronoun(p) where p is the pronoun. Similarly, the two answer choices are encoded

by using the unary predicates ans ch1(a1) and ans ch2(a2), respectively. Based on the

above, following are the ASP encoding of the WSC problem and the knowledge shown in

the Figures 4.5 and 4.6 respectively.

% ASP encoding of the graph in Figure 4.5

has_s ("he_9"," instance_of ","person ").

has_s (" weak_12"," is_trait_of ","he_9").

has_s (" weak_12","modifier","so_11 ").

has_s ("so_11"," instance_of ","so").

has_s (" weak_12"," supporting_verb ","was_10 ").

has_s (" was_10"," instance_of ","be").

has_s (" weak_12"," instance_of ","weak").

has_s (" lift_5"," instance_of ","lift").

has_s (" lift_5","agent","man_2 ").

has_s (" lift_5","recipient ","son_7 ").
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has_s ("son_7"," instance_of ","person ").

has_s ("man_2"," instance_of ","person ").

has_s ("son_7"," is_related_to ","his_6 ").

has_s ("his_6"," instance_of ","person ").

has_s (" weak_12","causes","lift_5 ").

has_s (" lift_5","modifier","not_4 ").

has_s ("not_4"," instance_of ","not").

has_s (" lift_5"," supporting_verb ","could_3 ").

has_s (" could_3"," instance_of ","can").

% ASP encoding of pronoun from the graph in Figure 4.5

pronoun ("he_9").

% ASP encoding of answer choices from the graph in Figure 4.5

ans_ch1 (" man_2").

ans_ch2 (" son_7").

% ASP encoding of the graph in Figure 4.6

has_k (" weak_9"," instance_of ","weak").

has_k (" weak_9"," is_trait_of ","person2_7 ").

has_k (" person2_7 "," instance_of ","person ").

has_k (" weak_9"," supporting_verb ","is_8").

has_k ("is_8"," instance_of ","be").

has_k (" lift_4"," instance_of ","lift").

has_k (" lift_4","agent","person1_1 ").

has_k (" person1_1 "," instance_of ","person ").

has_k (" lift_4","recipient ","someone_5 ").

has_k (" someone_5 "," instance_of ","person ").

has_k (" weak_9","causes","lift_4 ").
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has_k (" lift_4","modifier","not_3 ").

has_k ("not_3"," instance_of ","not").

has_k (" lift_4"," supporting_verb ","can_2 ").

has_k ("can_2"," instance_of ","can").

has_k (" person1_1 "," is_same_as ","person2_7 ").

has_k (" person2_7 "," is_same_as ","person1_1 ").

ASP implementation of the Step 1 of WiSCR Algorithm

In Step 1 of the WiSCR algorithm a subgraph of the graphical representation of WSC

sentences is extracted such that the subgraph contains only the non-class nodes and the

edges which are not labeled as instance of. Following ASP rules encode the first step of

the WiSCR algorithm.

s11: node_G_s(X) :- has_s(X,R,Y), R!=" instance_of ".

s12: node_G_s(Y) :- has_s(X,R,Y), R!=" instance_of ".

s13: edge_G_s(X,R,Y) :- has_s(X,R,Y), R!=" instance_of ".

node G s(X) represents a node X in the extracted subgraph, edge G s(X,R,Y) repre-

sents an edge, labeled R, between the nodes X and Y in the extracted subgraph. The output

of the above rules, based on the encoding of inputs, as mentioned above, is,

node_G_s (" weak_12 ")

node_G_s (" lift_5 ")

node_G_s ("son_7 ")

node_G_s ("he_9")

node_G_s ("so_11 ")

node_G_s (" was_10 ")

node_G_s ("man_2 ")

node_G_s ("his_6 ")

node_G_s ("not_4 ")
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node_G_s (" could_3 ")

edge_G_s (" weak_12"," is_trait_of ","he_9")

edge_G_s (" weak_12","modifier","so_11 ")

edge_G_s (" weak_12"," supporting_verb ","was_10 ")

edge_G_s (" lift_5","agent","man_2 ")

edge_G_s (" lift_5","recipient ","son_7 ")

edge_G_s ("son_7"," is_related_to ","his_6 ")

edge_G_s (" weak_12","causes","lift_5 ")

edge_G_s (" lift_5","modifier","not_4 ")

edge_G_s (" lift_5"," supporting_verb ","could_3 ")

ASP implementation of the Step 2 of WiSCR Algorithm

In Step 2 of the WiSCR algorithm a subgraph of the graphical representation of a knowl-

edge is extracted such that the subgraph contains only the non-class nodes and the edges

which are not labeled as instance of or is same as. Following ASP rules encode the second

step of the WiSCR algorithm.

s21: node_G_k(X) :- has_k(X,R,Y), R!=" instance_of ".

s22: node_G_k(Y) :- has_k(X,R,Y), R!=" instance_of ".

s23: edge_G_k(X,R,Y) :- has_k(X,R,Y), R!=" instance_of",

R!=" is_same_as ".

node G k(X) represents a node X in the extracted subgraph and edge G k(X,R,Y) rep-

resents an edge, labeled R, between the nodes X and Y in the extracted subgraph. The output

of the above rules, based on the encoding of inputs, as mentioned above, is,

node_G_k (" weak_9 ")

node_G_k (" lift_4 ")

node_G_k (" person1_1 ")

node_G_k (" person2_7 ")

57



node_G_k ("is_8")

node_G_k (" someone_5 ")

node_G_k ("not_3 ")

node_G_k ("can_2 ")

edge_G_k (" weak_9"," is_trait_of ","person2_7 ")

edge_G_k (" weak_9"," supporting_verb ","is_8")

edge_G_k (" lift_4","agent","person1_1 ")

edge_G_k (" lift_4","recipient ","someone_5 ")

edge_G_k (" weak_9","causes","lift_4 ")

edge_G_k (" lift_4","modifier","not_3 ")

edge_G_k (" lift_4"," supporting_verb ","can_2 ")

ASP implementation of the Step 3 of WiSCR Algorithm

Let G′S and G′K be the graphs extracted in step 1 and 2 of the WiSCR algorithm respectively.

Then, in this step, all possible sets of pairs (say Mi) of the form (x,y) are extracted from

G′S and G′K such that x is a node in G′S , y is a node in G′K, both x and y are instances of the

same class and if for every (x,y) ∈Mi, x is replaced by y then G′K becomes a subgraph of

the node replaced G′S . Following ASP rules encode the third step of the WiSCR algorithm.

s31: { matches(X,Y) : node_G_s(X), node_G_k(Y) }.

s32: :- matches(X,Y), matches(X1 ,Y), X!=X1.

s33: :- matches(X,Y), matches(X,Y1), Y!=Y1.

s34: k_node_matches(Y) :- matches(X,Y).

s35: :- not k_node_matches(Y), node_G_k(Y).

s36: :- matches(X,Y), has_s(X," instance_of",C),

not has_k(Y," instance_of",C).

s37: :- edge_G_k(X1 ,R,Y1), matches(X,X1), matches(Y,Y1),

not edge_G_s(X,R,Y).
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Here, matches(X,Y) represents a pair in a Mi. The rule s31 above generates all pos-

sible groundings of the form matches(X,Y) such that X is a node in the graph extracted in

Step 1 and Y is a node in the graph extracted in Step 2. The rules s32 and s33 only keep

the answer sets in which each X in the groundings of matches(X,Y) contains exactly one

corresponding Y and vice-versa. The remaining answer sets are removed by the rules s32

and s33. The rules s34 and s35 removes all the answer sets in which there does not exist a

grounding of matches(X,Y) corresponding to each node in the graph extracted in Step 2.

The rule s36 removes all the answer sets in which at least one grounding of matched(X,Y)

exists such that both X and Y are not instances of the same node in the knowledge graph.

Finally, the rule s37 ensures that if two node X and Y in the graph extracted in the Step

2 match with two nodes X1 and Y1 respectively in the graph extracted in the Step 1, and

(X1,R,Y1) is an edge in the graph from Step 2 then (X,R,Y) is an edge in the graph from

Step 1.

The only set of pairs generated by the above rules, based on the encoding of inputs

presented above, and the outputs of previous two steps is,

matches (" weak_12","weak_9 ")

matches (" lift_5","lift_4 ")

matches (" man_2"," person1_1 ")

matches ("he_9"," person2_7 ")

matches (" was_10","is_8")

matches (" son_7"," someone_5 ")

matches (" not_4","not_3")

matches (" could_3","can_2")

As shown above, the rule s31 generates all possible candidate sets for graph-subgraph

isomorphism between G′S and G′K. Then the rules/constraints s32-37 remove the candi-

dates which do not satisfy the required criteria. For example, the rule s36 removes the
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candidates which contain at least one grounding of matches(X,Y) where both X and Y are

not instances of same class. The ease of adding such constraints motivated us to use ASP

in this work. While adding such constraints in high level implementations of isomorphism

algorithms would require one to delve deep into the implementations.

Implementation of the Step 4 of WiSCR Algorithm

In this step an answer to the input WSC problem is retrieved from the inputs of the WiSCR

algorithm and the outputs of the steps 1 through 3. There are two parts of this the imple-

mentation in this step. The first part uses ASP rules to extract an answer from each set of

pairs generated by the ASP implementation of Step 3 of the algorithm. Separate rules are

used for each answer choice. Following ASP rules encode this part of Step 4 for the first

answer choice.

s41: invalid_1 :- matches(P,N1), matches(X,N2),

ans_ch1(A), pronoun(P),

A!=X, N1!=N2 ,

has_k(N1 ," is_same_as",N2).

s42: invalid_2 :- matches(P,N1), matches(X,N2),

ans_ch2(A), pronoun(P),

A!=X, N1!=N2 ,

has_k(N1 ," is_same_as",N2).

s43: ans(A) :- matches(P,N1), matches(A,N2),

ans_ch1(A), not invalid_1 ,

pronoun(P), has_k(N1 ," is_same_as",N2).

s44: ans(A) :- matches(P,N1), matches(A,N2),

ans_ch2(A), not invalid_2 ,
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pronoun(P), has_k(N1 ," is_same_as",N2).

Here, ans(A1) represents that A1 is an answer of the input WSC problem given a set of

matches. Similar rules are written for the second answer choice (assume rules s45, s46,

s47, s48). Finally the following rule makes sure that there is one answer generated with

respect to one set of matches(X,Y) facts.

s49: :- ans(A1), ans(A2), A1!=A2.

The above AnsProlog program produces zero or more answer sets. Zero answer sets mean

that none of the sets of matches were able to produce an answer. The second part assembles

all the answers and produces the final answer of the input WSC problem. To perform this

aspect of the WiSCR algorithm, we defined a sub-algorithm named ANSWERFINDER. The

ANSWERFINDER sub-algorithm takes as input the answers generated by the ASP code and

outputs the final answer based on the following conditions.

1. if all the answers correspond to one common answer then the algorithm outputs it as

final answer,

2. otherwise the algorithm does not ouput anything.

4.3.3 Adding New Constraints

In this section we present examples of how new constraints can be easily added to the

above ASP implementation.

Suppose we would like to add a constraint that a pair of nodes are valid in a graph-

subgraph isomorphism if the two nodes in it are synonyms of each other or they are in-

stances of the same class node. Then we can encode such constraint by replacing the rule
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s36 with the following three rules.

valid_pair(X,Y) :- has_s(X," instance_of",C),

has_k(Y," instance_of",C).

valid_pair(X,Y) :- synonyms(X,Y).

:- matches(X,Y), not valid_pair(X,Y).

Here, synonyms(X,Y) represents that a node X in the WSC sentences’ graph is syn-

onymous to a node Y in the knowledge graph. We assume that a set of synonymous(X,Y)

facts are provided as input.

Let us consider the following WSC problem as an example to understand the signifi-

cance of the above rules,

Sentence: The man could not lift his son because hepronoun was so weak.

Question: Who was weak? Answer Choices: a) man b) son

Now, let us consider the knowledge that,

IF person1 could not lift someone because person2 was frail

THEN person1 1 is same as person2 7

The basic implementation of the WiSCR algorithm will not be able to utilize the above

knowledge because the knowledge has the word frail instead of weak. However since

weak is a synonym of frail, if we provide synonyms(weak 12,frail 9) as an input to the

code which is updated by replacing the rule s36 with the above mentioned three rules then

the ASP implementation can handle the knowledge and the algorithm outputs the correct

answer, i.e., man 2.
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Replacing an existing rule with only three new ones allows the algorithm to be more

flexible with respect to the needed knowledge. This also shows how additional constraints

and generalizations can be easily expressed as new ASP rules.

Another generalization could be done by using similarity along with synonymy to add

node pairs in an isomorphism. We say that if the similarity between two nodes is above a

certain threshold then allow them to be added to the isomorphism set. An additional rule

to encode that would be,

valid_pair(X,Y) :- similar(X,Y).

Here, similar(X,Y) represents that a node X in the WSC sentences’ graph is similar to

a node Y in the knowledge graph. We assume that a set of similar(X,Y) facts are provided

as input.

Definition 9 (AnsProlog Program for WiSCR Algorithm) Let S be a sequence of sen-

tences in a WSC problem P , T(S) be the set of tokens in S , p ∈ T(S) be the token which

represents the pronoun to be resolved, a1,a2 ∈ T(S) be two tokens which represent the

two answer choices, GS = (VS ,ES , fS) be a graphical representation of S , and GK =

(VK,EK, fK) be a representation of a knowledge such that fK is defined using fS . Then,

we say that the AnsProlog program Π(GS,GK, p,a1,a2) is the answer set program con-

sisting of a) the facts of the form has s(h1, l1, t1) and has k(h2, l2, t2),b) a fact of the form

pronoun(p),c) two facts of the form ans ch1(a1) and ans ch2(a2),d) the rules s11 to s49

Theorem 2 Let S be a sequence of sentences in a WSC problem P , T(S) be the set of to-

kens in S, p∈T(S) be the token which represents the pronoun to be resolved, a1,a2 ∈T(S)

be two tokens which represent the two answer choices, GS = (VS ,ES , fS) be a graphical

representation of S, and GK = (VK,EK, fK) be a representation of a knowledge such that

fK is defined using fS . Also, Π(GS,GK, p,a1,a2) be the AnsProlog program for WiSCR

algorithm and ANSWERFINDER be the sub-algorithm defined in Section 4.3.2. Then, the
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WiSCR algorithm produces an answer x to the input WSC problem iff Π(GS,GK, p,a1,a2)

and ANSWERFINDER together output the answer x.

Proof 2 Proof of the theorem is in the Appendix.

4.4 Empirical Evaluation of the WiSCR Algorithm

The reasoning framework defined in this work relies on the following two assumptions,

1. A WSC problem can be automatically translated into the desired formal representa-

tion, and

2. The required knowledge instances can be automatically extracted.

In this section, we show the results of an empirical evaluation of the reasoning frame-

work by automating the above two assumptions to a great extent with the help of a semantic

parsing system (K-Parser) and an in-house knowledge extraction system.

We used K-Parser (Sharma et al., 2015b) for translating the input problems into the

desired formal representation. K-Parser (or Knowledge Parser) is a semantic parsing and

knowledge augmentation system which was developed as a part of this work. The detailed

explanation of the implementation of K-Parser and how it is used to translate WSC prob-

lems into graphs is available in the Chapter 6 of this thesis.

We also developed a rule based knowledge extractor for this work. There are three

aspects of our system,

1. creating search queries from the WSC problems,

2. using a search engine to collect the sentences which satisfy the queries, and

3. extract knowledge from the collected sentences, if they contain any.
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Because of the limited availability of search engine access, the first two aspects were

carried out manually. The collected sentences are then passed one by one to an in-house

rule based knowledge extraction module 4 . The module uses semantics (from K-Parser)

of the input sentences to find the patterns which satisfy the knowledge types (Type 1 to 10

in Chapter 3) which are currently handled by our reasoning framework. The details of the

knowledge extraction module are available in the Chapter 5 of this thesis.

Based on the above mentioned setup, we were able to automatically extract knowledge

corresponding to 120 WSC problems and the reasoning algorithm answered all of the 120

problems correctly. The details about the number of problems solved for each knowledge

type is as shown in the Table 4.2 below.

Knowledge Type Total WSC Prolems Solved Correctly

Knowledge Type 1 17 9

Knowledge Type 2 58 17

Knowledge Type 3 38 14

Knowledge Type 4 21 3

Knowledge Type 5 8 3

Knowledge Type 6 25 15

Knowledge Type 7 1 0

Knowledge Type 8 1 0

Knowledge Type 9 68 59

Knowledge Type 10 3 0

Table 4.2: Detailed Results of Empirical Evaluation of the Reasoning Framework

In another setting, to evaluate the performance of the reasoning algorithm and the se-

mantic parser, we provided a WSC problem and a knowledge (in “IF S THEN x is same

4preliminary version of the system is mentioned in detail in Chapter 5
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as y” format) as input to the system. There were 240 problems which required a knowl-

edge of types 1 through 10 (See Chapter 3 for knowledge types). The system was able to

answer 200 out of 240 WSC problems. All of the 200 problems were correctly answered

by the system. The remaining 40 problems were not translated into the needed graphical

representation by the semantic parser. The main reasons for such errors were incorrect

part-of-speech tagging and syntactic parsing.

The high precision of the reasoning algorithm empirically supports the correctness of

the algorithm. However the low recall of the knowledge extraction aspect reflects on the

difficult nature of the commonsense knowledge extraction.

4.5 Representation of the Knowledge Types: Revisited

The representation and reasoning with respect to the first 10 types of knowledge (As

shown in Chapter 3) are covered in the previous sections. So, in this section we will discuss

the remaining two types of knowledge (Type 11 and Type 12 from Chapter 3).

4.5.1 Representation of the Knowledge Type 11: Statement 1 is more likely than

Statement 2

This type consists of a comparison between two statements or propositions. The likeli-

hood is based on the acceptability of a statement in a normal scenario. Following is a WSC

problem and a knowledge of this type that is required to solve the problem. This kind of

knowledge is represented as a statement of the form,

Statement1 is more likely than Statement2

where Statement1 and Statement2 are two English sentences.

Following is a WSC example which requires a knowledge of type 11. The needed

knowledge is also mentioned below.
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Sentence: Sam tried to paint a picture of shepherds with sheep, but theypronoun ended

up looking more like dogs.

Question: What looked like dogs?

Answer Choices: a) sheep b) shepherds

Knowledge Needed:

sheep look like dog is more likely than shepherds look like dogs

4.5.2 Representation of the Knowledge Type 12: Multiple Knowledge Pieces

In this category, a list of more than one piece of knowledge of types 1 through 10 is

called a knowledge. Following is a WSC problem and a knowledge of this type that is

required to solve the problem.

Sentence: Mary tucked her daughter Anne into bed, so that shepronoun could work.

Question: Who is going to work?

Answer Choices: a) Mary b) daughter

Knowledge Needed:

1. Person1 tucks Person2 into bed normally causes Person2 sleeps

2. daughter of Person1 sleeps normally prevents Person1 is disturbed

3. Person1 is not disturbed normally causes Person1 can work

Similar to the representation of the knowledge from types 1 through 10, each piece of

knowledge in this category is represented as a separate graph (By Definition 6).
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4.6 Reasoning : Revisited

In this section we revisit the reasoning approach and define the reasoning process to

handle the knowledge types 11 and 12 from the Chapter 3.

4.6.1 Reasoning Algorithm to Handle “is more likely than” Knowledge

The knowledge type 11 that is defined in Chapter 3 of this work is based on the like-

lihood of a proposition with respect to another proposition under normal situations. The

reasoning algorithm defined in the sections above is not capable of handling such knowl-

edge. This is because it relies on matching a representation of a knowledge with respect to

that of an input sentence but in this case such a matching does not help. So, we developed

an algorithm to handle the “is more likely than” kind of knowledge. In this section we

present the details of the algorithm.

Let W be a Winograd Schema Challenge problem, S be the sentence in W , Q be the

question in W , P be the pronoun in S such that to answer Q correctly one must resolve P to

its correct co-referent in S, C1 and C2 be the two possible answers of Q and both of them

are present in S, and A be the correct answer of Q i.e., A = C1 or A = C2. Also, let K be

a knowledge of “is more likely than” kind. K is of the form PROP1 is more likely than

PROP2. Then, following are the main components of the algorithm.

• Input: The inputs to the algorithm are S, Q, P, C1, C2, A and K.

• Output: The output of the algorithm is an answer to Q. It is either C1 or C2.

• Behavior: Following are the steps that depict the functionality of the algorithm.

1. Premises Production: In this step two premises are generated from S. The first

premise (Premise1) is generated by replacing P in S by C1. The second premise

(Premise2) is generated by replacing P in S by C2.
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2. Hypothesis Identification: In this step, a proposition/statement which is

deemed to be more likely in the input knowledge is identified as a hypothesis

H.

3. Final Answer Retrieval: In this step the entailment scores between the pairs

(Premise1,H) and (Premise2,H) are calculated. If the entailment score of

(Premise1,H) is greater than the entailment score of (Premise2,H) then C1

is the final answer, otherwise C2 is the answer. We used ESIM with ELMO

encodings (Parikh et al., 2016; Chen et al., 2016) to calculate the entailment

scores.

Let us consider a couple of examples from the Winograd Schema Challenge corpus to

better understand the above algorithm.

Example 1

S = Sam tried to paint a picture of shepherds with sheep, but they ended up looking

more like dogs.

Q = What looked like dogs?

P = they

C1 = sheep

C2 = shepherds

A = sheep

K = sheep look like dogs is more likely than shepherds look like dogs

Following are the outputs of the different modules of the behavior of the reasoning algo-

rithm as explained above.

1. Premise Production: Following premises are generated in this step.
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Premise 1: Sam tried to paint a picture of shepherds with sheep, but sheep ended up

looking more like dogs.

Premise 2: Sam tried to paint a picture of shepherds with sheep, but shepherds ended

up looking more like dogs.

2. Hypothesis Identification: Following hypothesis is identified in this step.

Hypothesis (H): sheep look like dogs

3. Final Answer Retrieval: Following are the final answers and intermediate results re-

trieved in this step.

Entailment score(Premise1,H) = 75.4%

Entailment score(Premise2,H) = 58.3%

Final Answer = sheep

Example 2

S = Sam tried to paint a picture of shepherds with sheep, but they ended up looking

more like golfers.

Q = What looked like golfers?

P = they

C1 = sheep

C2 = shepherds

A = shepherds

K = shepherds look like golfers is more likely than sheep look like golfers
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Following are the outputs of the different modules of the behavior of the reasoning algo-

rithm as explained above.

1. Premise Production: Following premises are generated in this step.

Premise 1: Sam tried to paint a picture of shepherds with sheep, but sheep ended up

looking more like golfers.

Premise 2: Sam tried to paint a picture of shepherds with sheep, but shepherds ended

up looking more like golfers.

2. Hypothesis Identification: Following hypothesis is identified in this step.

Hypothesis (H): shepherds look like golfers

3. Final Answer Retrieval: Following are the final answers and intermediate results re-

trieved in this step.

Entailment score(Premise1,H) = 90.1%

Entailment score(Premise2,H) = 94.9%

Final Answer = shepherds

Evaluation

We found 26 winograd schema challenge problems which required the “is more likely”

knowledge. To evaluate our algorithm with respect to the problems, we manually wrote

down the needed knowledge and used it in the algorithm. out of 26 problems, 17 were

correctly answered by the algorithm. The remaining 9 were incorrectly answered.
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4.6.2 Reasoning Algorithm to Handle Multiple Knowledge Pieces

The reasoning algorithms defined above handle the knowledge types 1 through 11 as

identified in Chapter 3. Each of the knowledge in those types consists of only one piece

of knowledge. However, each knowledge instance of the type 12 knowledge defined in

Chapter 3 consists of more than one piece of knowledge. Also, each of the piece in those

pieces is of either one of the types 1 through 10. Let us consider an example from the

Winograd Schema Challenge corpus which requires multiple pieces of knowledge.

Example

Sentence: Tom threw his schoolbag down to Ray after hepronoun reached the bottom of

the stairs.

Question: Who reached the bottom of the stairs?

Answer Choices: a) Ray b) Tom

Needed Knowledge:

1. x reach bottom may cause x at bottom

2. y is at bottom may co-occur with z throws down to y

Reasoning with multiple knowledge pieces is an interesting line of work. In this work,

we propose it as a possible future work. Though reasoning with multiple knowledge pieces

is not the focus of this work, in Chapter 8 we present a proof of concept reasoning algorithm

for handling multiple knowledge pieces.
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Chapter 5

KNOWLEDGE HUNTING AND KNOWLEDGE BASE CREATION

In this chapter, we present our attempts in the direction of extracting various kinds of

commonsense knowledge from text. Here we focus on the commonsense kinds which

were defined in the Chapter 3.

5.1 Introduction & Motivation

Commonsense knowledge plays an important part in Natural Language Understanding.

It is because of commonsense that people, when perceive an action, are able to predict its

plausible causes, effects, preconditions and the conditions which prevents the action from

executing. For example, people can easily predict that “someone attends to a person” may

be an effect of “the person is injured”. Reasoning with such knowledge plays an important

role in NLU tasks such as the Winograd Schema Challenge (Levesque et al., 2011). But,

the current NLU systems lack such commonsense knowledge and often the knowledge is

needed to be extracted separately.

In this chapter we provide a detailed description of our attempts to automatically extract

such knowledge from text. Although the commonsense knowledge acquisition community

have discussed about reporting bias (Gordon and Van Durme, 2013) and why that makes it

difficult to extract commonsense knowledge from text, in this work we overcome the bias

by performing the human validation of the automatically extracted knowledge.

In recent years, various challenges have been proposed that require various kinds of

commonsense knowledge. Two of the famous challenges include the Winograd Schema

Challenge (Levesque et al., 2011) and the COPA challenge (Roemmele et al., 2011). Much

of the knowledge needed in these challenges revolves around actions and their plausible
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The Winograd Schema Challenge

Sentence: The man could not lift his son because he was weak. Ques-

tion: Who was weak? Answer: man

Needed Knowledge: person1 is weak may prevent person1 lifts some-

thing

Choice of Plausible Alternatives (COPA)

Premise: I knocked on my neighbor’s door. Question: What happened

as an effect?

Alternative 1: My neighbor invited me in.

Alternative 2: My neighbor left the house. Correct Alternative: Al-

ternative 1

Needed Knowledge: person X knocks on person Y’s door may cause

person Y invites person X in.

Table 5.1: Example Problems That Require Commonsense Knowledge

causes, effects, preconditions and the conditions which prevent the actions from executing.

See examples in the Table 5.1.

The popular NLU tasks such as hard co-reference resolution, and deep QA require some

sort of world knowledge about the problem. Both factual knowledge such as Gravity is a

kind of force, and commonsense knowledge such as if there was no gravity then we would

not stay on the ground are important in completely understanding the meaning of text. A

way in which such knowledge is attained by humans by experiencing different scenarios

that include entities (concrete or abstract), their interaction with other entities, and their

participation in events (actions or state of being). There are systems such as IBM Watson

for Deep Question Answering which make use of various Knowledge Bases (Singhal, 2012;
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Leacock and Chodorow, 1998) that contain such knowledge.

There has been various works for extraction of both factual and commonsense knowl-

edge in the past such as WordNet (Miller, 1995), ConceptNet (Liu and Singh, 2004) and

Cyc (Lenat, 1995). Most of these are created by hand by a small number of people and

hence it is not possible for them to have every kind of commonsense knowledge that all the

humans have. Recently, there has also been some work for automatic extraction of knowl-

edge from natural language text. One such attempt is NELL (Betteridge et al., 2009). It also

does not focus on the kind of knowledge that we have extracted in this work. These knowl-

edge repositories are a great source but as mentioned before, the knowledge contained in

them is not sufficient to solve many hard NLU problems. For example the knowledge used

in (Sharma et al., 2015a) is not present in any of them.

In this chapter we present our attempts towards extracting commonsense knowledge

about actions. We present an algorithm to automatically extract such knowledge from text.

We explain the technical details of our algorithm and present the detailed results of the ex-

traction experiments. We discuss how this knowledge is different from the already existing

ones. We validate the extracted knowledge with the help of human workers and make the

valid knowledge publicly available for download as well as through an on-line interface to

view the knowledge. We also present an approach to use the extracted knowledge in gen-

erating a set of pronoun disambiguation problems which require commonsense knowledge

for disambiguation.

5.2 Events-Based Conditional Commonsense Knowledge Extraction

In our preliminary attempt, we defined an algorithm to automatically extract a special

kind of commonsense knowledge about events. The knowledge is proved helpful in solving

a subset of the Winograd Schema Challenge (WSC) (Sharma et al., 2015a), which is a

pronoun resolution challenge. A problem in the challenge consists of a sentence and a
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question about the sentence such that to answer the question, one must resolve a pronoun

to its correct co-referent in the sentence. Let us take an example inspired from the WSC to

understand the extracted knowledge through an example.

Sentence: John was bullying Tom so we rescued him. Question: Who did we rescue ?

Required commonsense knowledge:

IF A bullying B causes T rescued Z THEN (possibly) Z = B

In other words, if someone bullies someone/something and due to that someone is res-

cued then the one who is rescued is likely to be the one who was bullied. The knowledge

is based on two events, for example someone bullying someone/something and someone

being rescued, so in this work we call such knowledge as an Event-Based Conditional

Commonsense (ECC).

The sections below explain details of the knowledge extraction algorithm.

5.2.1 Background

Corpus

One of the ways in which people acquire commonsense knowledge is by reading. They

acquire the knowledge about actions and the relationships between them by reading about

them in a story or another form of free text. In this work, we use this intuition to extract the

above mentioned kind of knowledge from raw English sentences. We selected the freely

available Open American National Corpus (OANC) 1 for this project. OANC is a massive

collection American English text, both written and spoken (for this work we chose only the

written part of it). It is a collection of 15 million words, and it is designed to represent a

wide cross-section of American English collected on or after 1990. The OAN corpus comes

with different annotations but we have used only the unannotated form of the written texts.
1The OAN corpus is available for free at http://www.anc.org/data/oanc/download/.
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Semantic Parsing

The knowledge type focused in this work requires understanding of semantics of natu-

ral language sentences. So, we need some sort of semantic representation of the text for

knowledge extraction. We do not believe that such a knowledge extraction can be easily

done by using the bag-of-words or word-vector representations as it often ignores the con-

text. To perform the extraction of entities, events and their inter-relations, we used our in

house semantic parsing and knowledge augmentation system called K-Parser (available at

www.kparser.org) (Sharma et al., 2015a). The K-Parser system translates a sentence into

a semantic graph that captures the semantics in the sentence. The parser is developed as a

part of the project (Sharma et al., 2015a) to solve the Winograd Schema Challenge (WSC)

(Levesque et al., 2011) but it has evolved into a general purpose semantic parser since

then. A detailed explanation of the parsing system is available in the Chapter 6 of this

dissertation.

The parser uses the Stanford Dependency Parser (De Marneffe and Manning, 2008) as

a base to retrieve the dependencies between the events and entities in the input text. Due

to the lack of generality in relations of Stanford Dependency parse, the parser uses a more

general relation set from Knowledge Machine Component Library (Clark et al., 2004), and

many other new relations inspired from the need. The parser maps the Stanford depen-

dencies to the semantic relations. The output of K-Parser also has two level of conceptual

class information about the events and entities in the input text. More information about

K-Parser is available at www.kparser.org

5.2.2 Knowledge Extraction Algorithm

The knowledge extraction algorithm defined in this work takes an English sentence

as input and outputs a piece of knowledge that belongs to the type of knowledge defined

above, provided the input sentence contains the knowledge.
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The goal of the knowledge extraction algorithm is to identify and extract the relevant

knowledge in a sentence. We took a logic-based approach for the extraction, where we

see the knowledge extractor as an intelligent agent which uses a specific language to repre-

sent its knowledge and a reasoning algorithm to extract commonsense from text. We used

Answer Set Programming(ASP) (Gelfond and Lifschitz, 1988; Baral, 2003) to perform the

logical reasoning with respect to the semantic representation generated by the K-Parser sys-

tem. Following are the main steps in the algorithm which are used to extract a knowledge

from an input sentence.

STEP 1: Representing an English Sentence

We used the K-Parser system to translate an input English sentence into its semantic repre-

sentation. The output of the K-Parser system is a directed acyclic graph. Let S be an input

sentence and G be the semantic graph of S as generated by the K-Parser system. We used an

RDF triples style representation of G to use it in our logical knowledge extraction system.

In this step we make the semantic graph of a sentence to comply with the syntax require-

ments of our logic programming module. Each edge in G is translated into a has-predicate.

Each has-predicate is of arity three and has the following form has(X ,rel,Y ), where X ,Y

are the nodes in the graph and rel is the edge label between X and Y . For example an edge

labeled “causes” between “bullying 3” and “rescued 7” is represented as

has(bullying_3 ,causes ,rescued_7).

Similarly all the edges are translated into has-predicates. The label “bullying 3” in the

graph refers to the word “bullying” appearing at the third position in the input sentence.

STEP 2: Logical Knowledge Extraction

In this step a logical knowledge extraction engine is used to extract the previously defined

kind of knowledge from the semantic representation of the input sentence. The goal of the

logical engine is to find relevant knowledge in the set of has-predicates corresponding to
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the representation of the input sentence. To achieve this goal, we first encoded the domain

knowledge in the agent’s brain. The following block of code describes all possible relations

between any two events in the K-Parser output.

eventRelation(causes).

eventRelation(caused_by).

eventRelation(enables).

eventRelation(enabled_by).

eventRelation(objective).

eventRelation(next_event).

eventRelation(previous).

eventRelation(event).

eventRelation(resulting_state).

eventRelation(subevent).

eventRelation(inibits).

eventRelation(inhibited_by).

Knowing “all” possible relations between two events, an intelligent agent should be

able to tell whether any given relation is an event relation. The ASP rule below encodes

that information by using the nonEventRelation predicate for all the non event relations

in the input graph.

nonEventRelation(R) :- has(X,R,Y), not eventRelation(R).

Similarly the following block of ASP code describes domain knowledge encoded in the

agent’s mind that two event nodes are connected via an event relation and a node is negative

or positive.

relatedEvents(V1,R,V2) :- has(V1,R,V2), eventRelation(R).

negative(V1) :- has(V1,negative ,N).
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positive(V1) :- not negative(V1),

relatedEvents(V1,R,V2).

positive(V2) :- not negative(V2),

relatedEvents(V1,R,V2).

Having this knowledge, the following block of code shows how the agent can extract

relevant commonsense knowledge from the has-predicates.

answerEvents(positive ,V1,VV1 ,R1,X1,R,positive ,V2,VV2 ,R2,X2

):-

relatedEvents(V1,R,V2),

has(V1 ,R1,X1),

has(V2 ,R2,X2),

has(X1 ,instance_of ,X),

has(X2 ,instance_of ,X),

has(V1 ,instance_of ,VV1),

has(V2 ,instance_of ,VV2),

positive(V1),positive(V2),

nonEventRelation(R1),

nonEventRelation(R2).

When the predicate answerEvents(.....) evaluates to true for some assignment of the

input variables according to the rule specified above, it describes that

“if event V1 is related to event V2 by an event relation R and the polarity of both the

events are positive, then the entity X1 related to V1 with relation R1 is identical to the entity

X2 related to V2 by the relation R2.”

The values inside the predicate answerEvents(.....) are (in order of occurrence) the

polarity of the event V1, the actual value of event V1, base form of V1 i.e. VV1, relation
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between V1 and X1 i.e. R1, the actual value of X1, the relation between V1 and V2, the

polarity of the event V2, the actual value of event V2, base form of V2 i.e. VV2, relation

between V2 and X2 i.e. R2 and the actual value of X2.

The above block of code shows one ASP rule that is used to extract the commonsense

in the case where both the related events are of positive polarity. The other three cases with

different combinations of polarities also work in similar fashion.

5.2.3 Storage and Retrieval of the Knowledge

Storage

Hence, the goal here was to make the extracted knowledge available to the NLU research

community so that it can be used in a variety of applications. To accomplish this we have

used MongoDB database to save the extracted knowledge. MongoDB was chosen because

of its speed, accessibility and usefulness.

Knowledge Retrieval

The knowledge database consists of three sets of elements, namely, the set of events ( E),

the set of relation among events (R) and the set of slot-relations connecting events and

entities (S). Each query in the knowledge retrieval language posed to the database is a

tuple consisting of elements from all these sets. Currently, we have defined the following

seven queries,

1. Event1=E1,Rel=R,Event2=E2,Slot1=S1,Slot2=S2

2. Event1=*,Rel=R,Event2=E2,Slot1=S1,Slot2=S2

3. Event1=E1,Rel=R,Event2=*,Slot1=S1,Slot2=S2

4. Event1=E1,Rel=R,Event2=E2,Slot1=*,Slot2=S2

5. Event1=E1, Rel=R, Event2=E2, Slot1=S1, Slot2=*

6. Event1=E1,Rel=∗,Event2=E2,Slot1=S1,Slot2=S2
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7. Event1=E1,Rel=∗,Event2=E2,Slot1=∗,Slot2=∗ The star (“*”) in above queries means

any legal value. For example, query 5 is used to extract all the knowledge instances where

“event1” is E1, “event2” is E2, “relation” is R, “slot1” is S1 and any legal value for

“slot2”.

We have also developed a web interface for querying the knowledge base. The web

application accepts the input query in both form-based and free-form (natural language).

A demo version of the system is available at http://bioai8core.fulton.asu.edu/

knet/

5.2.4 Evaluation

The kind of knowledge extracted here is already proved useful in solving a hard problem

(Sharma et al., 2015a) such as WSC. Now the questions arise, if the knowledge base created

in this experiment has sufficient instances of such knowledge and are those instances are

of any use. Both quantitative and qualitative analysis were performed to address these

questions. The details are mentioned below.

Quantitative & Qualitative Evaluation

We performed the knowledge extraction experiment on the Open American National

(OAN) corpus. The written part of the corpus contains a total of 6405 documents from six

genre. On an average each document contains 106 sentences. Out of all the sentences our

system was able to extract 19336 instances of knowledge. In other words, about 2.85%

(19336 out of 678930) of the sentences in OAN corpus were found to contain the required

commonsense knowledge.

For the qualitative analysis, a set of 886 instances of the commonsense knowledge were

randomly sampled from the 19336 total instances. Two human evaluators 2 were employed

to test the quality of the instances. Each evaluator was provided with a natural language
2One undergraduate Computer Science student and one graduate Computer Science student.

82

http://bioai8core.fulton.asu.edu/knet/
http://bioai8core.fulton.asu.edu/knet/


translation of 543 commonsense knowledge instances (with an overlap of 200) along with

the instructions to rank the quality of the knowledge. This evaluation instructions were

inspired from (Gordon et al., 2010). The table 5.2 shows the evaluation results. Here, rank

1 means the evaluator agrees that the knowledge instance is clear and entirely plausible.

Rank 6 means the evaluator disagrees on the good quality of the knowledge. Rank 2 to 5

are in the order of decreasing evaluator agreement.

Table 5.2: Evaluation Results for 886 Randomly Selected Knowledge Instances

Rank Evaluator 1 (E1) Evaluator 2 (E2) Both E1 and E2

1 326 359 91

2 54 44 15

3 33 16 6

4 19 30 3

5 12 21 3

6 99 73 38

Miss-Matches - - 44

Total 543 543 200

We also analyzed the agreement among the evaluators by counting the difference in

the rankings of both the evaluators. The results chart is shown in Fig. 5.1. From this

experiment, we found that the evaluators were in agreement 156 of the times out of 200 and

25 times there was only a difference of 1 between their rankings (cased on our evaluation

schema). This shows that most (90.5%) of the times the evaluators were either in complete

agreement with each other or they ranked next to each other.
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Figure 5.1: Evaluator Agreement Chart

5.3 Extraction of Commonsense Knowledge about Actions

As a second attempt towards extracting commonsense knowledge, we extracted the

knowledge about actions. The knowledge types 1 through 10 mentioned in the Chapter 3

can be viewed as the causes, effects preconditions of actions. Below are the details of our

extraction attempt and the results.

5.3.1 Background

In this work, we attempt to automatically extract commonsense knowledge about ac-

tions. We extract the knowledge in terms of plausible causes, effects, preconditions of

actions and conditions which prevent actions from executing. A few examples of the

knowledge extracted in this work are shown in Table 5.3. The extracted knowledge is

characterized based on the entities which play various roles in the concerned action. For

example, “person1 is injured may cause someone attends to person1”. Where, “attends”

is the main action and a plausible cause of its execution is “person1 is injured”. Here, we
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Knowledge Type Example Knowledge

Cause of an Action person1 is injured may cause people attend to

person1

Effect of an Action everybody hates person1 may cause person1 is

nervous

Precondition of an Action someone hit person1 may be followed by per-

son1 faints

Condition Preventing an Ac-

tion from Executing

person1 is jet-lagged may prevent person1

could sleep at night

Table 5.3: Knowledge Types and Their Examples

extract the knowledge with respect to the entities that participate in actions. The extracted

knowledge is general because the entities are represented by their types appended by a

number at the end for discrimination among them (e.g. person1).

In this work, every cause, effect, precondition and condition which prevents an action

from executing is categorized into either an action or a property. An action refers to a verb

phrase and a property refers to an adjective phrase. For example, let “person1 attends to

person2”, then two possible causes of the action “attends” are, (1) a property such as “ill”

in “person2 is ill” and (2) an action such as “faints” in “person2 faints”.

5.3.2 The Extraction Algorithm

The extraction Algorithm developed in this work takes an English sentence as input

and outputs a set K of knowledge instances. Each instance in K belongs to one of the first

ten knowledge types mentioned in the Chapter 3. The complete algorithm is shown in the

Algorithm 1. The basic idea is to first divide an input sentence into two parts such that one

of the parts contains an action and the other part contains its cause, effect, precondition or
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condition which prevents the action. Then the two parts are used to generate a knowledge

instance. If the input sentence can not be divided in such a way then no knowledge is

extracted from it.

Data: An English sentence

Result: A set of knowledge (K) about actions

K← []

splits← SPLIT(S)

SG← GETSEMANTICPARSE(S)

for each triple <S1,S2,S3> in splits do

if S1 6= ε & S2 6= ε & S3 6= ε then
SGS1← GETSEMGRAPH(SG,S1)

SGS2← GETSEMGRAPH(SG,S3)

raw knowledge← GETKNOWLEDGE(SGS1,SGS2,S2)

knowledge = POSTPROCESS(raw knowledge)

Add knowledge to K

end

end

Algorithm 1: Knowledge Extraction Algorithm

There are following main procedures in the extraction algorithm.

1. SPLIT: There are different phrases in English which act as the cues for the knowl-

edge types mentioned in the Table 5.3. For example “because” and “leads to” cor-

respond to causality based knowledge. Following up on the idea of dividing a

sentence into two parts, this procedure uses the knowledge identification cue
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phrases 3 and divides a sentence into triples of the form < S1,S2,S3 >. The first part

of a triple (i.e., S1) corresponds to the part of the input sentence which may contain

an action, the second part in the triple (i.e., S2) corresponds to a knowledge type

identification cue phrase, and the third part in the triple (i.e., S3) corresponds to the

part of the input sentence which may contain a plausible cause, effect, precondition

or a condition which prevents the action from executing. If S2 is not found in the in-

put sentence then S1 = ε and S3 = ε . For example let us consider the input sentence

“She could not lift him because she is weak”. Then, the only split generated by this

procedure is <She could not lift him,because,she is weak>. Here S1 = She could not

lift him, S2 = because and S3 = she is weak.

2. GETSEMANTICPARSE: This procedure takes an English sentence as input and re-

turns its graphical meaning representation that is produced by the Knowledge Parser

(K-Parser) (Sharma et al., 2015b). The representation is a directed, acyclic, edge-

labeled graph. The nodes in the graph represent actual words (or concepts including

actions, entities and properties) in the input sentence and the types of the concepts

(e.g. “She” is of type “person”). The edges on the other hand represent the semantic

relationships between the nodes. More details about K-Parser output are present in

Chapter 6. For example the semantic parse of the sentence “She could not lift him

because she is weak” is as shown in the Figure 5.2.
3the complete list of cues is available at https://github.com/arpit7123/CommonsenseKnowledgeExtraction

87



Figure 5.2: Semantic Parse of the Sentence, “John could not lift Tom because John is

weak”.

3. GETSEMGRAPH: This procedure takes a semantic graph (GS) and a sequence of

words (S′) as input and outputs a subgraph (GE) of GS such that GE is an intersection

of GS and the semantic representation graph of S′ (say GS′). To do that, GE is initial-

ized as an empty graph and each node N from GS is added to GE if N is same as a

node in GS′ . An edge E is added from GS to GE if the two nodes connected to E in

GS are already present in GE . For example, let GS be the graph shown in the Figure

5.2 and a sequence of words be “John could not lift Tom”, then GE is as shown in the

Figure 5.3.
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Figure 5.3: An Example of a Semantic Graph Extracted by the Procedure GETSEMGRAPH

Similarly, if GS be the graph shown in the Figure 5.2 and a sequence of words be

“John is weak”, then GE is as shown in the Figure 5.4.

Figure 5.4: An Example of a Semantic Graph Extracted by the Procedure GETSEMGRAPH

4. GETKNOWLEDGE: This procedure takes two semantic graphs (GS1 and GS2, which

are sub-graphs of a K-Parser output graph) and a knowledge type identification cue
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phrase C as inputs and outputs a set of knowledge instances. Here, GS1 and

GS2 respectively refer to the semantic representations of the first and the second

parts of the input sentence as mentioned above in the definition of the SPLIT

procedure. This procedure uses a set of if-then rules to extract a knowledge

from GS1, GS2 and C. A sample rule is mentioned below.

IF GS1 contains a action A which is not executed, GS2 contains a property P, an

entity X of type T is associated with A in GS1 with a semantic relation R, X is

also associated with P in GS2 and C is because

THEN T_1 is P may prevent A R T_1

The symbol _ stands for concatenation.

For example, the knowledge extracted in this step by using the graph in Figure 5.3

as GS1, the graph in Figure 5.4 as GS2 and because as the causal clue C, is as shown

below.

person1 is weak may prevent lift agent person1

5. POSTPROCESS: This procedure takes the output raw knowledge from the GET-

KNOWLEDGE procedure along with the graphical representation of the input sen-

tence and the sentence itself and outputs a processed knowledge in a more English

like format. For example, if the input sentence is John could not lift Tom because

John is weak, its semantic graph is as shown in the Figure 5.2 and the raw knowledge

generated by the above procedure is person1 is weak may prevent lift agent person1,

then the post processed knowledge is, person1 is weak may prevent person1 lifts

person2.
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5.3.3 Evaluation of the Extracted Knowledge

Since the automatic evaluation of generated language is an open research question (Liu

et al., 2016a), we also validate the extracted knowledge through human evaluation. The

details of the validation and its result are mentioned in the section below.

Human Evaluation for Validity

We randomly selected a collection of 5000 knowledge instances from the extracted knowl-

edge base of over 50k instances. The examples were selected in such a way that they

are uniformly distributed with respect to the knowledge types mentioned in the Table

5.3. The collection of the selected knowledge is evaluated by two human workers on

a binary scale of zero and one. One signifies that the knowledge is valid and the zero

signifies invalid. An overlap of 100% was kept between the workers. Overall, 2002

out of 5000 knowledge were found meaningful. The filtered knowledge is available at

https://github.com/arpit7123/CommonsenseKnowledgeExtraction

Pronoun Disambiguation Problems

The Winograd Schema challenge (Levesque et al., 2011) is an NLU challenge which con-

tains pronoun resolution problems. Due to the need for commonsense knowledge, it was

proposed as an alternative to the Turing test in 2011. In 2016, first annual contest on solv-

ing the challenge was organized. In the first step of the contest, each participating system

was tested on a set of Pronoun Disambiguation Problems (PDPs). Unfortunately, none of

the systems surpassed a predefined accuracy threshold and could not proceed to the next

step. The best performing system (Liu et al., 2016b) was based on learning knowledge em-

bedding in a neural network framework. The unavailability of a large number of problems

to learn from is to an extent responsible for the low performance of such a system. And due

to the same reason not many of the other learning based approaches (Wang et al., 2018) can

be applied on the dataset. So, in this work we explore the avenue of automatically gener-
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ating pronoun disambiguation problems by using the extracted commonsense knowledge.

Following are the steps in the automated problem generation process.

Step 1: Retrieve a knowledge that is of one of the types in the Table 5.3. Also retrieve an

English sentence from which the knowledge was extracted by using the Algorithm 1.

Step 2: Each knowledge type extracted in this work can be abstractly written as “A R B”.

Here R is either “may cause”, “may prevent” or “has plausible precondition”, and A and B

are the two parts of knowledge which are on the left and right hand sides of R respectively.

An important aspect of the knowledge, the relation between A and B is via a common entity.

That entity is identified and its two occurrences in the sentence from which the knowledge

is extracted and its first occurrence is replaced by ”Tom” and the second occurrence by

“he”. The sentence generated after the replacement now contains an ambiguous pronoun

“he”.

Human Evaluation of PDPs

We generated a total of 1100 pronoun disambiguation problems. The problems were gen-

erated by using the knowledge type “effects of an action”. Each problem is accompanied

with three answer choices. Two of the choices refer to two distinct entities in the input

sentence such that one of them is the correct co-referent of the ambiguous pronoun. The

third choice is “Do not understand”. It refers to the case when a human worker does

not understand the problem because of any reason, including the case when the problem

sentence does not make any sense to the worker. We used one human worker to answer

all of the problems. A problem is deemed valid if it is answered correctly by the human

worker. We found 777 (70.6%) out 1100 such problems. The rest were answered “Do

not understand”. The valid problems are available at https://github.com/arpit7123/

CommonsenseKnowledgeExtraction.
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5.4 Automatic Extraction of Knowledge For the Winograd Schema Challenge Problems

There are various kinds of commonsense knowledge that are required to solve the prob-

lems in the Winograd Schema Challenge. The input text does not explicitly contain such

knowledge. To overcome the lack of the required commonsense knowledge, in this work

we have devised a technique to automatically extract commonsense knowledge from text

repositories by using an input WSC problem.

An example of a WSC problem and the needed knowledge is as shown below.

Sentence: The man could not lift his son because hepronoun was so weak.

Question: Who was weak? Answer Choices: a) man b) son

Knowledge Needed:

person1 is weak may prevent person1 lifts person2

It should be noticed here that the knowledge contains a similar scenario to that of the

associated WSC problem. In other words the knowledge contains similar verbs and adjec-

tives. In this vein, we aim to extract such knowledge from plain text by first extracting the

text which is similar to the text in a WSC problem and it may contain the needed knowl-

edge. The following steps explain the extraction of such sentences which may contain

commonsense knowledge.

1. The verbs, adjectives, adverbs and discourse connectives in a given WSC problem

are identified. For example “could”, “not”, “lift”, “weak” and ‘because’ from the

above example are identified.

2. A set of search queries are created by using the words extracted in the previous step.

The order of words is preserved in the queries. Also, an asterisk symbol (‘*’) is

added between two words if they are not adjacent to each other in the original WSC
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sentences. For example a query “* could not lift * because * weak * ” is created for

the problem mentioned above.

3. the queries generated in the previous step are used to search and extract sentences

from a search engine. In this work, we used the Google search engine. An example

sentence extracted by using the query mentioned above is, “She could not lift him

because she is weak.”. Not all the results from the search engine will be useful.

Some sentences might not contain enough information about the scenario (e.g. “she

lifts”). Some sentences might be similar to the original scenario but contain the co-

reference ambiguity that is present in the original scenario. Thus in this step, the

sentences which were similar to the original sentences and the ones which contained

obvious ambiguities are filtered out. Additionally, more queries are generated by

using the variants of the words used in the previous query. The variants include

synonyms, similar words (lifted, raise), and base forms of verbs in the verb phrases

of the original query.

After several iterations of step 2 and step 3 we obtain sentences which may contain

the needed knowledge. We call such sentences as knowledge sentences. The knowledge

sentences that are extracted often contain pronouns. For example the extracted sentence

“She could not lift him because she was weak.” also contains two pronoun occurrences of

(“she”, ). However, we make sure that the pronouns in the extracted knowledge sentences

can be easily resolved using the following procedure:

1. Two pronouns refer to each other if they have the same string description. For e.g.

all the occurrences of the pronoun “she” always refer to the same entity.

2. Two pronouns (p1, p2) refer to each other if they belong to a special list containing

the following: {(he,him),(she,her),(i,me),(they, them),(he,his),(his,him)}. We
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also ignore knowledge sentences where any of these special pair of pronouns appears

as an argument to a common verb (e.g. “she could not lift her because ...”).

The knowledge sentences extracted by using the above steps are passed to the knowl-

edge extraction system described in the Section 5.3. An example knowledge extracted from

the above knowledge sentence by using the algorithm is “person1 is weak may prevent per-

son1 lifts person2”.

5.5 Related Works

WordNet (Miller, 1995) is one of the most popular knowledge base used by Natural

Language Processing community. However, it is a lexical database consisting words, their

senses, synonyms, hyponyms and hypernyms, it does not contain the commonsense knowl-

edge that we are extracting in this work.

ConceptNet (Liu and Singh, 2004) is another big source of commonsense knowledge.

It is a semantic network containing more than 1.6 million edges connecting more than

300000 nodes where nodes represent concepts(words, small phrases) and edges represent

the relation between nodes. However, the knowledge in ConceptNet is very high level and

it does not have the kind that we are extracting in this work. Furthermore, the relations in

ConceptNet are very coarse grained and also the participants of both the concepts are not

specifically related.

Narrative Chains (Chambers and Jurafsky, 2008), is another automatically extracted

commonsense knowledge base. It contains a list partially ordered set of events that are

centered around a common protagonist. The ordering of the events is temporal. Because

of this, other relationships such as causality are not captured properly in narrative chains.

An example of this is given in the “bullying” example mentioned in the sections above.

In it there exists a causal relation between the events i.e. “bullying” causes “rescue”. In

this example it seems obvious to say that the recipient of bullying is also the recipient of
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rescue but if we do not consider the causal relationship between events then the knowledge

becomes less obvious.

Other popular knowledge bases such as Cyc (Lenat, 1995) tend to compile complex

assertions such as every human has exactly one mother. WebChild (Tandon et al., 2014)

is a knowledge base created by extracting information from web. It contains properties

of objects. For example “Orange” is “round” and its color is “Orange”. It lacks the

constraint defined property knowledge such as the one mentioned in this work.

In addition to the above, there has been a lot of research towards building Knowledge

bases with deeper knowledge instead of basic facts. One of the most interesting works are

carried out bye Dr. Oren Entzioni’s group on Open Information Extraction. In (Lin et al.,

2009), they focus on more interesting assertions such as “the FDA banned Ephedra” ig-

noring less useful statements such as “the FDA banned products”. In (Lin et al., 2010),

they have focused on commonsense knowledge inference based on the properties of rela-

tions such as functionality and transitivity. They have also proposed how to detect such

properties, for example the functionality 4 of particular relations such as bornIn. Though

different from our primary goals, their work on event extraction from twitter (Ritter et al.,

2012) and entity linking in (Lin et al., 2012) has inspiring thoughts in building higher-order

knowledge bases in comparison to factoid ones.

Accumulation of commonsense knowledge is a topic of interest since a long time. The

earlier attempts of accumulating commonsense knowledge focused mainly on the factual

or taxonomic knowledge. Such attempts included manual knowledge collection (Lenat,

1995; Miller, 1995) and automatic knowledge extraction from text (Bollacker et al., 2008;

Carlson et al., 2010; Tandon et al., 2017). Such knowledge bases, although useful where

taxonomic knowledge is needed, do not contain the commonsense knowledge about actions
4Functionality of a relation such as bornIn indicates that if (A,bornIn,B) and (A,bornIn,C) then B is same

as C if they are either both locations or both time-range.
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which is the focus of this work.

Recently, various knowledge bases have been collected that focus on more involved

commonsense knowledge about actions and events. These knowledge bases are created

by crowd sourcing. In many cases a set of seed actions/events are automatically identified

from a corpus and then used to develop a crowd sourcing task to generate knowledge about

those actions/events. For example in Atomic (Sap et al., 2018) a set of events are automat-

ically extracted from a corpus and then specific questions about those events are asked in

a crowd-sourcing task to get the cause and effect knowledge about those events. A similar

approach is used in VerbPhysics (Forbes and Choi, 2017) and Event2Mind (Rashkin et al.,

2018). Though the idea of collecting knowledge from people is meaningful, the process

is expensive. This is because the generation of information such as effects and causes of

actions is a complicated task and hence require more focus from crowd workers. Whereas

validating a given information is relatively easier. Here we use this intuition to develop an

algorithm which automatically extracts knowledge from text and later the extracted knowl-

edge is validated by crowd workers. This makes the overall extraction process relatively

less expensive.

5.6 Conclusion

In this chapter we presented our two attempts towards extraction different kinds of com-

monsense knowledge about events and actions. The first attempt uses a semantic parsing

and logical reasoning technique to extract a new kind of commonsense knowledge from

text repository. The knowledge extracted has already been proved useful in solving an

NLU task. Also, this knowledge is not present in currently available knowledge bases. The

quantity of knowledge extracted is noticeably less than some other similar works such as

KNEXT (Van Durme and Schubert, 2008), where there are about 1.78 unique knowledge

instances extracted from each sentence in the corpus. This is because the kind of knowl-
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edge that we are extracting in this work is of very different nature and significance. Also,

the knowledge we have extracted is based on the experience earned by people over the

years and it is very difficult for a small group of people to list such knowledge by hand.

Furthermore, the quality of the knowledge is determined in a fashion similar to KNEXT

and found to be better (≈ 67% as compared to 54% in KNEXT) .

In the second knowledge extraction attempt we presented our algorithm to automati-

cally extract a knowledge base about actions and their plausible causes, effects, precon-

ditions and the conditions which prevent the actions from executing. We validated the

extracted knowledge by using human workers. We made the valid knowledge base of 2002

knowledge pieces. We also contributed to increase the size of problems in the Winograd

Schema Challenge by using the extracted knowledge to generate a set of 777 pronoun dis-

ambiguation problems.
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Chapter 6

PARSING TEXT TO SEMANTIC GRAPHS: THE KNOWLEDGE PARSER

In this chapter, improvements in a semantic parsing system are presented. The parser trans-

lates English sentences into a graphical semantic representation. It is used to translate the

sentences in WSC problems and the knowledge that is needed to solve the problems into

the graphical representations defined in the Chapter 4. This chapter is organized as follows.

• The Section 6.1 presents the details of a semantic parsing and knowledge augmenta-

tion system called Knowledge Parser or K-Parser.

• A basic version of the K-Parser system was implemented as part of my Masters

thesis (Sharma, 2014). In this chapter we present the improvements made to the

K-Parser system as part of this thesis. The Section 6.2 presents the details of those

improvements.

• The Section 6.3 presents a wrapper around the K-Parser system to translate the sen-

tences in a WSC problem into a graphical representation as mentioned in the Chapter

4.

• The Section 6.4 presents a wrapper around the K-Parser system to translate knowl-

edge into a graphical representation as mentioned in the Chapter 4.

6.1 Knowledge Parser (K-Parser): An Events Centered Semantic Representation System

Events and the relationship between them are important aspects of natural languages

such as English. They play an important role for people to understand the meaning of a

language. For example, it is because of the arrest event in the sentence “Jim arrested Tom”
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that people understand that “Jim” took “Tom” into his custody. People can also infer that

“Jim” may be a police officer. So, the identification and representation of event mentions

is important not just for semantically representing a sentence but it also helps in infer-

ring additional information about it. Many natural language understanding applications

such as question answering on narratives (Hajishirzi et al., 2011) rely on the identifica-

tion of events in the text. The narratives are the basic parts of many other applications

such as reading comprehension of stories and sports commentary (Hajishirzi et al., 2012b),

(Hajishirzi et al., 2012a). These applications are primarily concerned about the questions

whose answers are not directly mentioned in a given text. To answer such questions, one

needs to identify and formally represent the phrases in a given text which depict events. For

example let us consider the text “John shot Jim and a few hours later he was arrested.”,

and the question “Who was arrested?”. To answer the question, one must identify and

formally represent the events expressed by the phrases “John shot Jim” and “he was ar-

rested”. There are various other works which further stress the importance of identifying

events in the given text. Some such works include (Ouyang and McKeown, 2014; Glavaš

et al., 2014; Glavaš and Šnajder, 2014; Swanson et al., 2014; Chambers and Jurafsky, 2009)

and even a separate workshop 1 on events’ definition, detection and representation.

Broadly speaking, an event is a phrase which contains an action and the entities that

participate in the action in various capacities. Attributes or properties of the entities are

also important because most of the times altering the attributes changes the meaning of the

entire event. Considering this, in this work we defined a semantic representation which

focuses on formalizing events. We also defined and implemented an algorithm to auto-

matically parse a given English sentence and translate it into the events centered semantic

representation. The algorithm is a combination of both rule based and statistical approaches

towards semantic parsing. It uses the syntactic dependency parse of a given sentence along
1https://sites.google.com/site/wsevents2015/home
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with various other NLP tools and techniques such as preposition and word sense disam-

biguation, discourse parsing and WordNet.

In this work we first describe the details of our events centered graphical semantic

representation. Then we explain the semantic parsing algorithm. The algorithm is imple-

mented as a parsing tool called K-Parser which is available for download from https:

//github.com/arpit7123/K-Parser-JAR. In a later section we present the evaluation

of the K-Parser. The evaluation was performed via three separate experiments. First an in-

vitro quality evaluation of the parser was performed by examining the results of K-Parser

on STEP 2008 (Bos, 2008a) “shared task” texts. The results were compared with various

systems that participated in the task. Secondly, the parser was evaluated with respect to the

sentences in the Winograd Schema Challenge corpus. The parser outputs were compared

with the gold standard representations and precision and recall were calculated with respect

to the main components of the representation. Thirdly, an in-vivo evaluation of the parser

outputs was performed by solving a subset of the Winograd Schema Challenge corpus with

the help of a logical reasoning framework and comparing the results with the existing work

on the subset.

The sections below explain the semantic representation, the parsing algorithm and the

detailed evaluation of the parser.

6.1.1 Semantic Representation

In this work we defined a graphical semantic representation for English sentences. A

graphical representation is useful because (a) it is easier for people to comprehend as com-

pared to other representation (e.g., a logic rule). (b) There exists a rich literature on graph

algorithms which can be leveraged for processing a graphical representation. (c) It can

easily be used in both the logical (Sharma et al., 2015d) and the probabilistic (Rao et al.,

2017) reasoning frameworks. Inspired by the usefulness of a graphical representation based
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formalisms such as AMR (Banarescu et al., 2013), Universal Conceptual Cognitive Anno-

tation (UCCA) (Abend and Rappoport, 2013), Semantic Dependency Parsing (Oepen et al.,

2015) and Alexa Meaning Representation language (Kollar et al., 2018), we adopted it in

this this work. In this section we mention the basic components of the representation and

how the components combine into the final representation. An example of a representa-

tion of an English sentence is as shown in the Figure 6.1. The representation shown in the

Figure 6.1 is displayed as a tree instead of a graph for making it easier to read.

Figure 6.1: A Semantic Representation of the Sentence “Barack Obama signed the new

reform bill.”

Basic Components

There are following basic components of the representation.

1. Action Nodes: The verbs in an input sentence are called actions. Actions includes

both auxiliary and the non-auxiliary verbs. The actions are represented as nodes

called action nodes in our semantic representation. For example the node “signed 3”
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is an action node in the Figure 6.1. It is generated from the word “signed” in the

sentence. The “ 3” in the node represents the index of the word “signed” in the

sentence.

2. Entity Nodes: The content words in an input sentence, except the verbs, are called

entities. The entities are represented as entity nodes in our semantic representation.

The named entities in the sentence (an n-gram where n≥1) are also called entities

and hence translated into entity nodes in the representation. For example the nodes

“Barack Obama 1”, “bill 7” and “new 5” are the entity nodes in the Figure 6.1.

3. Conceptual Class Nodes: These depict the ‘type’ of an action or an entity. In other

words, a conceptual class performs the grounding of an entity or an action. The

conceptual classes of entities and actions in a sentence are shown with the help of

conceptual class nodes in the semantic representation. For example, the conceptual

class of the entity “Barack Obama” is represented by the node “person” in the Fig-

ure 6.1. There are two levels of class information. The first level refers to the base

form of the word which is transformed into an event or entity node and the second

level refers to an abstract class such as “person”.

4. Semantic Relations: The action, entity and conceptual class nodes which are se-

mantically dependent on each other are connected to each other through a set of se-

mantic relations. Such relations define a meaningful connection between the nodes.

There are three main types of semantic relations namely action-entity, entity-entity

and action/entity-class. A few examples of the semantic relations are as shown in the

Figure 6.1. The relations used in this work are inspired from the Knowledge Machine

(Clark et al., 2004) library.
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The Representation of English Sentences

A representation of English sentences (as defined in this work) is an edge labeled and

directed acyclic graph. The graph is made up of action, entity and conceptual class nodes

and the semantic relations between the nodes that are semantically dependent on each other.

The representation is centered around events in the sentences. An event is made up of an

action and a set of entities which participate in the action. An action is a concrete or an

auxiliary verb such that it is not a modifier of a concrete verb. For example in the event “Ja-

son kicks Michael” the entities “Jason” and “Michael” participate in the action “kicks”.

The representation of sentences is made up of the representations of the events present in

them and connected to each other via event-event semantic relations. A representation of a

unique event is called an event mention in this work.

In other words, an event mention is a graph that is rooted at an action node and a set of

entity nodes connected to the action node. For example, the graph in Fig. 6.1 represents an

event mention, rooted at the action node “signed 3”.

Representing Various kinds of Events

There are three broad kinds of event mentions defined in the existing literature. All of these

can be easily represented using our schema. Following are the details of the types.

• Aspectual Category: There are four categories of aspectual event mentions, namely

achievements, accomplishments, process or activity and states. Pustejovsky (Puste-

jovsky, 1991) demonstrates how same verbs can be used in different kinds of event

mentions (see example sentences 1(a) and 2(a) in Table 6.1). The difference between

these kinds is determined by the arguments of the action in the event mention. For

example in 1(a), the action is an unbounded ‘process’ whereas in 2(a) it is an accom-

plishment because of the bounding done by the phrase “to the store”.
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Table 6.1: Event Categories and Example Sentences

Category Sub-category Example Sentences

Aspectual

Process or Activity 1(a) Mary walked.

1(b) John ran.

Accomplishment 2(a) Mary walked to the store.

Achievement 3(a) Tim ran two miles.

3(b) John arrived at his destination.

State 4(a) John loves Mia.

4(b) I knew about the incident.

4(c) He fell asleep during the meeting.

Complexity
Complex Events 5(a) The knife was used to kill the dog.

5(b) George was bullying Tim so we rescued him.

Simple Events 6(a) John loves Mia, and Mia hates John.

6(b) Tom killed John before Tom and Jane ran away.

Temporal - 7(a) Tom killed John before Tom and Jane ran away.

7(b) She sat opposite him and looked into his eyes.

• Complexity Category: Another criteria for categorizing event mentions is based on

the complexity. An event mention M is defined as complex if an argument of the

action in M is the main action of another event mention M1. For example, 5(a) in

Table 6.1 has a complex event consisting of two actions “used” and “killing”. The

“killing” action is an argument to the “used” action. On the other hand a simple

event mention has only one action. See Table 6.1 for examples.

• Temporal Category: Temporal ordering is other criteria for categorization of events

mentions. It is used to specify the order of occurrence of unique events in a chain of

events. See examples in Table 6.1.
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6.1.2 Semantic Parsing

In this work we defined a semantic parsing algorithm and implemented it as a seman-

tic parser that can be downloaded for free. The algorithm takes English sentences as an

input and produces a graphical semantic representation as defined in the sections above.

Following are the details of the algorithm and the parser.

The Semantic Parsing Algorithm

The Figure 6.2 provides an overview of the semantic parsing algorithm. The algorithm

takes an English sentence as input and produces a graphical semantic representation as

defined in the sections above. The algorithm uses the below mentioned six modules to

transform the input into the output.

Figure 6.2: K-Parser System Algorithm Explained with the Help of the Example Sentence

“John cared for his lovely wife.”
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Module 1 - EXTRACT SYNTACTIC DEPENDENCIES: This module transforms the given

sentences into their syntactic dependency graph. Such a graph establishes the dependencies

usually between the content words in the sentences by representing the function words as

dependency relations from a predefined set of relations. An example of a dependency graph

is shown in Figure 6.2. In this work we used the Stanford Dependency Parser (De Marneffe

and Manning, 2008) to extract the syntactic dependencies between words in sentences. The

parser uses a probabilistic context free grammar to produce a syntactic tree of the input

sentences and then extracts the syntactic dependencies for the input sentences. Stanford

Dependency Parser is one of the most popular syntactic dependency parser for English.

Module 2 - EXTRACT CLASSES: This module extracts two levels of conceptual classes

with respect to the words in the input sentences. The first level of classes are extracted by

finding the base form of the respective words. For example the base form of the verb signed

is sign. It is a normalization step that illustrates that if two or more words with the same

base form are used in the text then all those words belong to class defined by the based

form. The second level of classes represent the type of a word. For example John is of type

person. Both part-of-speech and correct sense of a word are important in extracting the type

information. So, we used the Stanford POS tagger and the Word Sense Disambiguation

algorithm mentioned in (Basile et al., 2007) on WordNet (Miller, 1995) knowledge base

to get the correct sense of the words and then extracted their corresponding lexical senses

from the WordNet knowledge base.

Module 3 - SEMANTIC MAPPING: This module transforms a syntactic dependency graph

into a preliminary version of a semantic graph by translating the syntactic relations into

semantic relations. For example if a syntactic relation nsubj exists between John and cared

then it is translated into a semantically rich agent relation. The module consists of a set of
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if-then rules. An example rule is shown below.

IF

nsub j(N1,N2) AND pos(N1) == verb AND pos(N2) == noun AND type(N2) == person

THEN

has(N1,agent,N2)

In the above rule, N1 and N2 are two nodes in a syntactic dependency graph.

nsub j(N1,N2) represents a nominal subject syntactic relation as produced by the Stan-

ford parser. pos(N1) and pos(N2) represent the part-of-speech of the nodes N1 and N2

respectively. type(N2) represents the type of the node N2.

There are a set of 92 such if-then rules in the current implementation of the parser.

These rules cover all the syntactic dependency relations in the Stanford Dependency Parser

version 3.4.1 except the ones which correspond to prepositions i.e. relations of the form

prep *. The rules were manually created by analyzing the example sentences provided in

the Standford Dependency Manual with respect to each syntactic dependency.

Module 4 - PREPOSITION SENSE DISAMBIGUATION: This module performs preposi-

tion sense disambiguation to find the correct senses of prepositions in the given sentences.

The senses are then used to allocate semantic relations between concepts in the sentences.

The semantic mapping module presented above (i.e., Module 3) does not cover the syn-

tactic dependencies generated due to prepositions in the text. This is because a unique

preposition may be interpreted in more than one way. In other words it may be responsible

for two or more distinct meanings. For example in the sentences John came by his car

and John came by his office, a unique preposition (i.e., by) have different meanings. In K-

Parser implementation we used a multilayer perceptron classifier to classify the preposition
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senses into a set of senses (semantic relations) from KM library. We used The Preposi-

tion Project (Litkowski, 2013) corpus as the training corpus and manually annotated the

training sentences with appropriate semantic labels from KM library.

Module 5 - GET EVENT RELATIONS: This module allocates semantic relations between

two semantically dependent events in the given sentences. Various events in sequential

sentences are many times dependent on each other. Such dependencies are of various forms

such as causal, sequential and temporal (see Table 6.1 for examples). This module extracts

such dependencies and allocates suitable semantic relations to those dependencies. We

used a discourse parsing based approach to allocate such relations. There are three main

steps in the approach. In the first step, the input sentence is parsed based on the explicit and

implicit discourse connectives by using a Penn Discourse Treebank style discourse parser

(Lin et al., 2014). The discourse parser extracts the discourse connectives from the sentence

and their two argument phrases which are related to the connectives. The second step

translates the discourse connectives into semantic relations between the arguments of the

connectives. There are only small number of predefined connectives that are annotated with

their corresponding semantic relation. For example the connective “because” is mapped

to “caused by” relation. The third step extracts the action words from the arguments of

the connective. Afterwards the semantic relation which was extracted in the second step

connects an action node generated by an action in one argument of connective to an action

node generated by an action in the second argument of the connective.

Module 6 - ADD FEATURE: This module adds two new features to the semantic repre-

sentation. First, the Propbank frame sets (Palmer et al., 2005) are used to add the semantic

roles to the entities in the sentence. Secondly, the two levels of classes are added with

respect to each of the event and entity node in the representation. The classes are extracted

in the module 2 explained above.
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6.1.3 Evaluation

In this section we present the evaluation results of our semantic parsing algorithm. We

performed three separate experiments. In the first experiment, we followed the existing

trend and manually analyzed the outputs of our parser with respect to the texts in STEP

2008 “shared task” (Bos, 2008a). In the second experiment, we compared the outputs

of K-Parser with the gold representations with respect to the sentences in the Winograd

Schema Challenge (Levesque et al., 2011). In the third experiment we used the K-Parser in

a logical reasoning based framework to solve a subset of the Winograd Schema Challenge

corpus. The details of each experiment are mentioend in the sections below.

Experiment 1 - STEP 2008 “shared task”

We evaluated the performance of our semantic parser with respect to the text pieces in STEP

2008 “shared task” (Bos, 2008a). There are total seven text pieces in the corpus. Each piece

of text is made up of one or more English sentences. We followed the evaluation criteria

used in various other works (see Table 6.2) and manually analyzed the representation pro-

duced by K-Parser to verify if it satisfies the properties of a good semantic representation

(As mentioned in the existing works shown in Table 6.2). Table 6.2 shows the comparison

of K-Parser with various existing works in terms of representing the important aspects of a

semantic representation.

We also evaluated the performance of K-Parser by comparing the K-Parser outputs for

the text pieces in the shared task with their gold representations as per the representation

defined in this work. The evaluation focused on determining the percentage of the nodes

and the edges which were correctly or incorrectly identified in the K-Parser output. The

evaluation results are shown in the Tables 6.3 and 6.4.
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Table 6.2: Evaluation Results for Comparison with Other Systems

Feature Example Sentenc Systems
K-
Parser

TRIP
S

BLU
E

Boxe
r

GETARU
NS

LXGra
m

TextCa
p

OntoSe
m

Coordination The atmosphere was
warm and friendly

4 4 4 4 8 4 4 4

Entities’
Attributes

the gun crew was
killed, they were
crouching unnatu-
rally

4 4 4 8 4 8 8 8

Uncertainty Researchers have
been looking for
other cancers that
may be caused by
viruses

4 4 8 8 8 4 4 4

Named En-
tities

In Mortagua, Marta
Gomes coordi-
nates the project
that seven people
develop in this
school

4 8 4 4 8 4 4 4

Complex
Time

In the mid-’80s,
wind turbines had
a typical maximum
power rating of 150
kW

4 4 8 4 8 4 8 8

Conceptual
Classes

The waiter took the
order

4 8 8 8 8 8 4 4

Easily
Readable

He began to read his
book

4 8 4 8 8 8 4 8

Parsing
Questions

What is the duration
of the fall?

4 4 4 4 8 8 8 8

Experiment 2 - Winograd Schema Challenge

Gold Standard Evaluation

There are various versions of WSC corpus available on its official website. In this experi-

ment we selected the version 2 which consists of 285 individual problems. We manually

defined the gold representations for the sentences in the WSC corpus. Then we compared

the K-Parser outputs for the WSC sentences with the gold representations. We identified

five important categories to assess the accuracy of K-Parser. The categories are Number

of Events, Number of Entities, Number of Classes, Number of Event-Event Relations and

Number of Event-Entity Relations. Each of the categories are compared with the gold

standard based on measures (a) t1 = identified and relevant and the label is correct, (b) t2 =
2https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WSCollection.xml
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Correct Labels (%) Incorrect Labels (%)

Text Edges Nodes Edges Nodes

1 52.1 68.5 47.9 31.5

2 72.2 76.2 27.8 23.8

3 92.3 83.3 07.7 15.7

4 67.3 79.7 32.7 20.3

5 68.1 80.8 31.9 19.2

6 66.7 80.0 33.3 20.0

7 67.2 78.2 32.8 21.8

AVG. 69.4 78.1 30.6 21.9

Table 6.3: Evaluation Results Based on Gold Standard for ”Shared Task” Texts.

Criteria Precision Recall

Events 0.94 0.92

Entities 0.97 0.96

Classes 0.86 0.79

Event-Event Relations 0.91 0.79

Event-Entity Relations 0.94 0.89

Table 6.4: Evaluation Results Based on the Events, Classes and Semantic Relations in the

Output of K-Parser
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identified and relevant and the label is wrong, (c) t3 = identified, but not relevant and (d) t4

= not identified, but relevant. We then defined precision and recall of our system based on

the above terms.

Precision = t1/(t1 + t2 + t3) (6.1)

Recall = t1/(t1 + t2 + t4) (6.2)

Table 6.4 shows the evaluation results for K-Parser based on the above measures.

6.1.4 Related Works

There are two types of popular semantic or meaning representations of text. The first

is a logic based representation in which a text is represented in a logical formalism. Such

a formalism includes very basic first order representation such as the classic first order

logic (Liang, 2016) or more complex and expressive ones such as first order logic with

lambda calculus (Carpenter, 1997) and lambda DCS (Liang, 2013). These representa-

tions have been used in various applications including to query databases (Zettlemoyer and

Collins, 2012), conversational agents (Artzi and Zettlemoyer, 2011), providing instructions

to robots (Artzi and Zettlemoyer, 2013) and various other applications (Berant et al., 2013;

Pasupat and Liang, 2015; Krishnamurthy et al., 2017). The second is a graphical represen-

tation in which nodes represent actions/events/entities and the edges represent the semantic

relations between the nodes. A few examples of such a graph based formalism are the

Abstract Meaning Representation (AMR) (Banarescu et al., 2013), Universal Conceptual

Cognitive Annotation (UCCA) (Abend and Rappoport, 2013), Semantic Dependency Pars-

ing (Oepen et al., 2015) and the Alexa Meaning Representation language (Kollar et al.,

2018). There are various advantages of using a graphical representation over others which

inspired us to use such a representation in this work. Such advantages are, (1) they are eas-

ily readable by people, and (2) there exists a rich literature on graph processing algorithms

which can be used for such a representation.
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As far as semantic parsing goes, based on the parsing algorithm, such systems can be

divided into two types. The first includes the systems which use a rule based algorithm

to transform a given NL text into a semantic representation. For example domain specific

systems which are based on pattern matching (Johnson, 1984) or the systems which utilize

syntactic structure of text (Woods, 1973). Other rule based systems use predefined seman-

tic grammars (Templeton and Burger, 1983; Hendrix et al., 1978). The second type of

semantic parsing algorithms are based on statistical techniques and they are more popular

these days. Such algorithms include supervised and unsupervised learning algorithms such

as the ones used in (Lyu and Titov, 2018; Guo and Lu, 2018) and (Poon, 2013) respec-

tively. In this work, we utilized the benefits of both, the rule based and statistical learning,

approaches by developing an algorithm which is a merge of both.

Though the available parsing systems produce representations which have many im-

portant features, they lack the other important ones. For example SEMAFOR parser (Das

et al., 2010) assigns semantic roles to entities and verbs in a text but lacks in defining events

and relations between them. It also does not correctly process the implications, quantifi-

cation and conceptual class information about a text. Similarly, the Boxer system (Bos,

2008b) translates English sentences into first order logic. It fails to represent the event-

event and event-entity relations in the text. Other parsing systems such as (Carbonell and

Smith, 2014), TRIPS (Allen et al., 2007), TEXTCAP semantic interpreter (Callaway, 2008)

also capture some important features but lack in representing the others. In our parser, we

covered the main aspects of the existing systems and also the aspects which were not con-

sidered in the existing systems. A comparison between our work and some of the important

existing systems is as shown in the Table 6.2.
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6.2 Improvements in the K-Parser System

In this work, improvements were made on a basic version of the K-Parser system. The

implementation details of the current version of K-Parser are provided in the previous sec-

tion. A basic version of K-Parser was implemented as part of my masters thesis (Sharma,

2014). Here we started with the basic version of K-Parser and performed various improve-

ments on it to make it more robust and efficient. In this section we provide the details about

those improvements.

Following are the improvements made in the K-Parser implementation.

1. Use of Preposition Sense Disambiguation: In the basic version of the parser the

prepositions in the input sentences were translated into the semantic relationships by

using a set of rules similar to the ones described in the module 3 of Section 6.1.2

above. For example a rule for the preposition ‘to’ translates into a semantic relation

‘destination’. Such a relation is correct with respect to the sentence ‘I went from

Italy to Rome’ where ‘Rome’ is the destination of ‘went’ action but it is not correct

with respect to the sentence ‘John went to eat.’ because here ‘eat’ is an objective of

‘went’ action. Such issues are handled in the current version of the parser because the

preposition relations are retrieved after performing preposition sense disambiguation

(as mentioned in the module 4 of Section 6.1.2). The current approach relies on large

amount of data to distinguish different senses of a preposition which was not possible

by simple semantic mapping rules.

2. Use of Discourse Parsing: In the basic version of the parser, the semantic relation-

ships between actions was determined based on the existence of explicit connectives,

such as ‘because’ and ‘so’, between them in the sentences. Each action on one side

of the connective was then connected with each action on the other side of the con-

nective by a semantic relation corresponding to the connective, event if they are not
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semantically related. To overcome this, in the current version of the parser we use

discourse parsing (see Module 5 of Section 6.1.2) where the arguments of a connec-

tive (which may not span over all the actions on either side) are also predicted along

with its type.

3. Ability to Parse Questions: The basic version of the parser was designed to only

parse sentences. Whereas the current version has the ability to parse questions as

well. There are following two types of questions which are currently parsed by the

K-Parser system.

(a) Yes/No Questions: The answer to these questions is either ‘yes’ or ‘no’. For ex-

ample, ‘Did she like it?’. An example K-Parser parse for this types of question

is shown in the Figure 6.3.

Figure 6.3: K-Parser Output for the Question ‘Did she like it?’

(b) Wh-Questions: These questions contain a Wh-word which usually represents

an unknown. For example, ‘Who killed the dog?’. An example K-Parser parse
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for this types of question is shown in the Figure 6.4.

Figure 6.4: K-Parser Output for the Question ‘Who killed the dog?’

4. Classes for Adjectives: The basic version of the K-Parser system categorized every

adjective as type ‘all’ because in the WordNet knowledge base each adjective belongs

to the lexical file named ‘all’. Whereas in the current version a type for each adjective

is explicitly defined. These types are defined based on their types, such as size, color

and description. A complete list of adjectives and their types is available in the K-

Parser implementation at https://github.com/arpit7123/Kparser.

6.3 K-Parser Wrapper to Automatically Represent WSC Sentences

Each WSC problem is made up of a sequence of one or more sentences. The WiSCR

algorithm as defined in the Chapter 4 of this thesis takes a graphical formal representation

of the sentences as input. We use K-Parser to automatically generate a graphical repre-

sentation for the sentences in the WSC sentences. We used the definition of the formal

representation (Definition 4) as a reference to write a wrapper around the K-Parser system

which transforms the output of K-Parser according to the definition.
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K-Parser produces a graph for an input English text. Following modifications were

made to the K-Parser output of a sequence of WSC sentences to translate it according to

the Definition 4.

Similar to the Definition 4, there are two types of nodes in the K-Parser output. One is

the words in the input text appended with their occurrence index and the other contains the

conceptual classes of the first types of nodes. There are two levels of conceptual classes in

the K-Parser output. The first level refers to the lemmatized form of words and the second

level refers to the conceptual class from the WordNet KB. But the Definition 4 has only

one level of classes. So, in this wrapper, the two levels of classes are transformed into one

level by performing the following.

1. The two levels are reduced to one level by keeping the first level (lemmatized form)

only if the concerned word is not a noun or a pronoun. For example, let Figure 6.5

below represents a part of K-Parser output such that ‘signed 3’ is a verb then its

transformed output is shown in Figure 6.6 below.

Figure 6.5: A Part of a K-Parser Output

2. The two levels are reduced to one level by keeping the second level (lemmatized

form) only if the concerned word is a noun or a pronoun. For example, let Figure
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Figure 6.6: A Part of a K-Parser Output Transformed

6.7 below represents a part of K-Parser output such that ‘John 3’ is a noun then its

transformed output is shown in Figure 6.8 below.

Figure 6.7: A Part of a K-Parser Output

6.4 K-Parser Wrapper to Automatically Represent Commonsense Knowledge

We also used the K-Parser system to automatically transform the knowledge of types 1

through 10 (See Chapters 3 and 4 for details) into graphical representations. A knowledge,

as defined in the Definition 6, is of the type,

IF S THEN x is same as y,

where S is an English sentence, x and y are tokens in S.

We use the wrapper defined in the Section 6.3 above to transform S into a graph and
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Figure 6.8: A Part of a K-Parser Output Transformed

then add the two edges labeled ‘is same as’ between the nodes in the graph of S which

represent the tokens x and y. The directions of the edges are opposite.

An example of a representation of a knowledge is as shown in the Figure 6.9.

Figure 6.9: Graphical Representation of the Knowledge, “IF person1 can not lift someone

because person2 is weak THEN person1 1 is same as person2 7”
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Chapter 7

END-TO-END SYSTEMS

In this chapter we present two end-to-end systems to solve the Winograd Schema Chal-

lenge (WSC). The systems were developed as part of this work. The first system is based

on formally representing an input WSC problem and the needed commonsense knowledge

into a graphical reasoning algorithm. The second system and its updated version on the

other hand takes WSC problem and the needed commonsense knowledge as plain English

text and uses a Natural Language Inference based approach to address it. The details of

each of the systems and their evaluation results are provided in the sections below.

7.1 System 1: Graphical Reasoning Based System

In this section we explain how various components, which are described throughout

this thesis, are used to develop an end-to-end graphical reasoning based system to solve the

Winograd Schema Challenge.

7.1.1 Overview of the System

Figure 7.1 provides an overview of the graphical reasoning based system. There are

various components of the system including, a semantic parser to translate an English text

into a graphical representation, a knowledge extraction module which takes a WSC prob-

lem as input and outputs zero or more pieces of commonsense knowledge, each of which

belongs to a type defined in Chapter 3, and a reasoning algorithm which takes the graphi-

cal representations of a WSC problem and the needed knowledge as input and outputs the

answer to the problem.
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Figure 7.1: An Overview of the Graphical Reasoning Based System

7.1.2 Representing WSC Problems

Each WSC problem is represented as a graph. The representation is as defined in the

Definition 4 of Chapter 4. A wrapper around the K-Parser system, as shown in the Chapter

6, is used to generate the graphical representations for the sentences in each WSC problem.

An example is shown in Figure 7.2.
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Figure 7.2: A Representation of the Sentence, “The man could not lift his son because he

was so weak”

7.1.3 Extraction and Representation of Commonsense Knowledge

In this work, a commonsense knowledge corresponding to a WSC problem is automat-

ically extracted by following a sequence of steps. The detailed description of the extraction

process is provided in the Chapter 5. The extraction process involves the following main

steps.

1. Creating search queries from the sentences in an input WSC problem. The queries

are then used to extract text snippets which may contain the needed knowledge.

2. Extracting commonsense knowledge from the text snippets retrieved in the previous

step as shown in the Chapter 5.

Based on the above steps a knowledge extracted for the WSC sentences shown in Figure

7.2 is, “IF person1 could not lift someone because person2 is weak THEN person1 1 is

same as person2 7”.
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The above knowledge is then translated into a graph by using a wrapper around the

K-Parser system as explained in the Chapter 6. Figure 7.3 below shows the graphical

representation of the knowledge.

Figure 7.3: Graphical Representation of the Knowledge, “IF person1 can not lift someone

because person2 is weak THEN person1 1 is same as person2 7”

7.1.4 Reasoning Algorithm

The reasoning algorithm is explained in the Chapter 4.

7.1.5 Evaluation

The goal of the evaluation process is two-fold. First, we validate if the WiSCR algo-

rithm is able to correctly answer the WSC problems if the problem and a relevant knowl-

edge is provided as inputs to it in the graphical as well as plain English formats. Secondly,
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we evaluate the automatic knowledge extraction along with the reasoning algorithm by pro-

viding only WSC problem as input to the system. We evaluated a corpus 1 of 291 WSC

problems. . In this section we present the experiments to validate the WiSCR algorithm

and our findings with respect to those experiments.

Experiment 1: First, we manually created the input graphical representations of the WSC

sentences and the needed knowledge. We found that the WSC problems require different

kinds of knowledge. The knowledge defined in this work (See Definition 5) is helpful in

tackling 240 out of 291 WSC problems (82.47%). So we wrote the representations for

those 240 problems by hand. The ASP implementation answered all of those problems

correctly. The reasoning algorithm defined in this work relies on the fact that the provided

knowledge contains the same or similar scenarios as that of the original WSC sentences. A

scenario is basically defined by the actions, properties and the ‘types’ of entities present.

By performing a comprehensive analysis of the WSC problems, we found that 240 out of

291 WSC problems can be answered using such knowledge. The remaining problems re-

quire two different kinds of knowledge. 26 problems require multiple pieces of knowledge.

For example, WSC Sentence: Mary tucked her daughter Anne into bed, so that she could

work. Question: Who is going to work? Knowledge 1: someone who is tucked into bed,

may sleep Knowledge 2: someone who’s daughter is sleeping may be able to work. It

was observed that such knowledge has a partial overlap with the scenarios in a WSC prob-

lem. For example see the WSC sentence and knowledge 1 shown above. Due to this, such

knowledge is not handled by the current algorithm. If one tries to format such knowledge

according to the Definition 5 then the reasoning algorithm will not answer anything because

it will not be able to find a graph-subgraph isomorphism between the subgraphs of WSC

sentences’ representation and knowledge’s representation. The remaining 25 problems re-

quire the knowledge that one statement is more like to be true than the other. For example,
1Avaiable at https://tinyurl.com/y22ykz5p
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WSC Sentence: Sam tried to paint a picture of shepherds with sheep, but they ended up

looking more like dogs. Question: What looked like dogs? Knowledge: Sheep looks like

a dog is more likely to be true than Shepherd looks like a dog. Such knowledge is also not

handled by the current reasoning algorithm because it does not satisfy the definition (Def

5) of knowledge reasoned with in this work. A list of the WSC problems which are not

handled by the WiSCR algorithm because of the reasons mentioned above is also present

at https://tinyurl.com/y22ykz5p.

Experiment 2: Secondly, we provided both the knowledge and the WSC sentences to the

system in plain English format. We used the K-Parser wrappers to translate both WSC sen-

tences and knowledge into graphical representations. The representations were then used

by the reasoning algorithm to predict the answers to the problems. We found that out of

the 240 problem which satisfied the reasoning criteria according to the previous evaluation,

200 were automatically translated into graphs and all of them were correctly solved by

the reasoning algorithm. The main reasons for the incorrect representation generations for

the remaining 40 problems were incorrect part-of-speech tagging and incorrect syntactic

dependency parsing.

Experiment 3: Thirdly, we automatically extracted the knowledge by providing only a

WSC problem as input to the system. The knowledge was found and automatically ex-

tracted for 120 problems. The ASP implementation was able to correctly answer all of the

120 problems. The automated extraction of knowledge is inspired from the work done in

(Sharma et al., 2015c).

7.1.6 Conclusion

In this work, we attempted to solve the Winograd Schema Challenge by creating a

system which reasons with additional knowledge. To that end we defined a graphical rep-

resentation of the English sentences in the input problems and a graphical representation
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of the relevant knowledge. We also defined a commonsense reasoning algorithm for WSC

(WiSCR algorithm). We showed with the help of three experiments how an approach built

on top of graph-subgraph isomorphism encoded in ASP is able to tackle 240 out of 291

WSC problems.

7.2 System 2: Entailment Based Reasoning System

One of the most difficult challenges in Artificial Intelligence (AI) is to develop systems

that exhibit commonsense. It is a general consensus in the AI community that building

machine commonsense is much more difficult than building a machine for tasks that require

“expert adult thinking”. The reason for which is nicely described in (Minsky, 1988):

To be considered an “expert”, one needs a large amount of knowledge of only

a relatively few varieties. Each type of knowledge needs some form of “repre-

sentation” and a body of skills adapted to using that style of representation. In

contrast, an ordinary person’s “common sense” involves a much larger variety

of different types of knowledge and this requires more complicated manage-

ment systems.

This challenging nature of commonsense has drawn the attention of a large body of

researchers. Several benchmarks have been proposed to track the progress towards the

direction. Two popular benchmarks among these are the task of science question answering

(Clark et al., 2018; Clark, 2015; Clark and Etzioni, 2016; Mihaylov et al., 2018; Mishra

et al., 2018) and Winograd Schema challenge (Levesque et al., 2011). The benchmark of

science question answering, with the aim of building machines that are smarter than a 8th

grade science students could accommodate a large test-bed that evaluates a wide variety of

commonsense behaviours such as understanding day-to-day context, reasoning about what

led to a situation or what would be true in a situation or how the situation will evolve.
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The Winograd Schema challenge, on the other hand, is more focused and concentrates

solely on the task of coreference resolution. The main part of a Winograd Schema is a

sentence(s) containing a pronoun, for instance:

The city councilmen refused the demonstrators a permit because they feared

violence.

In addition, two definite noun phrases, called “answer choices” are given; in the exam-

ple above, the answer choices are the city councilmen and the demonstrators. The objective

is to select the answer choice which provides the correct resolution for the pronoun. For

instance, the correct answer to the question Who feared violence? is the city councilmen. A

Winograd Schema also specifies an “alternate word” for a “special word” in the sentence.

Replacing the “special word” by the “alternate word” changes the resolution of the pro-

noun. In the example above, the special word is feared and the alternate word is advocated.

Thus every schema represents a pair of coreference resolution problems that are almost

identical but have different answers. The presence of the “special word” and “alternate

word” suggests that to solve these coreference resolution problems one need commonsense

knowledge.

The restricted nature of the Winograd Schema challenge makes it an interesting bench-

mark. Also developing better coreference resolution system has broader impact on a variety

of natural language applications. In this work we focus on Winograd Schema challenge.

Many existing methods on Winograd Schema Challenge use knowledge extraction and

reasoning. Given a problem, the knowledge extraction module first extracts relevant knowl-

edge. The reasoning module then takes those knowledge and make a prediction. To be able

to use the knowledge, the reasoning module puts several restrictions on the structure of

the extracted knowledge sentence. If the knowledge extraction module could not find any

knowledge pertaining to those preferred schema the extracted knowledge would probably
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of no use. Due to reporting bias, people hardly report the obvious and on top of that if

the reasoning system put hard filtering, the approach of knowledge extraction followed

by reasoning will probably face severe difficulties. Several knowledge extraction methods

have been proposed to get relevant knowledge however the state-of-the-art accuracy of the

knowledge based systems is still at 58.3%. We take a detour from building better knowl-

edge extraction modules in this work and focus on developing reasoning systems that can

better utilize the extracted knowledge. Towards this we manually extract a knowledge sen-

tence for each coreference resolution problem from the existing Winograd Schema Chal-

lenge dataset without paying any attention to the reasoning system. Through experiments

we observe that existing knowledge based methods is unable to utilize the gold knowledge

sentences. We then propose a simple reasoning method that uses Natural Language Infer-

ence (MacCartney and Manning, 2009; Bowman et al., 2015) to deal with a broad varieties

of knowledge sentences. Given a Winograd Schema problem and a knowledge sentence,

our method uses a semantic role labelling function (Palmer et al., 2010; FitzGerald et al.,

2018) to convert a Winograd Schema problem into a Natural Language Inference (NLI)

problem (Bowman et al., 2015). It then uses pre-trained NLI systems (Chen et al., 2016;

Parikh et al., 2016) from AllenNLP (Gardner et al., 2018) to compute the answer.

Our contributions in this work are two-fold: (a) we manually pair each coreference

resolution problem from the Winograd Schema Challenge dataset with a knowledge sen-

tence to create a knowledge augmented Winograd Schema Challenge dataset. The dataset

is publicly available at https://goo.gl/Q5khUC; (b) we propose a novel algorithm that

takes a coreference resolution problem from a Winograd Schema, a knowledge sentence

and outputs confidence for each answer choice by using question answer based semantic

role labelling (FitzGerald et al., 2018) and Natural Langugae Inference.
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7.2.1 Problem Formulation

In this section we define the task of knowledge based coreference resolution from Wino-

grad Schema as follows:

Definition 10 Knowledge Based Winograd Schema Coreference Resolution A knowledge

based Winograd Schema coreference resolution problem is a quintuple CWSCR
KB = 〈D,A1,A2-

,P1,K〉, where

1. D is a sequence of sentences, that describes a specific scenario.

2. P refers to the pronoun in the D which needs to be resolved.

3. A1 and A2 are sub-strings of D and are called answer choices. The pronoun refers to

one of these two answer choices.

4. K is a sentence, called the knowledge sentence which justifies if P is more likely to

refer to A1 or A2 in the situation described by D.

A solution to a CWSCR
KB problem is A1 if P is more aligned towards A1 based on D and

K. Otherwise the solution is A2. Table 7.1 shows an example of a CWSCR
KB problem.

D 〈Fish ate the worm., It was tasty.〉

P It

A1 Fish

A2 the worm

K I can eat it because it is tasty.

Table 7.1: An Example of a Knowledge Based Winograd Schema Co-reference Resolution

Problem.
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7.2.2 Knowledge Extraction

The goal of the knowledge extraction process is to extract a knowledge sentence for

each Winograd Schema coreference resolution (WSCR) problem. The knowledge sentence

should be able to justify the answer of the associated WSCR problem. In this vein, we

aim to extract knowledge sentences that depict a similar scenario to that of the associated

WSCR problem. We roughly characterize a WSCR scenario in terms of the events (verb

phrases) and the properties of the participants that are associated with the scenario. The

characterization of a scenario optionally includes the discourse connectives between the

events of the scenario. For example, in the sentence “The fish ate the worm. It was tasty.”,

the scenario is mainly characterized by the verb phrase “ate”, the property “tasty”.

In this work, we use this abstract notion of a scenario to extract knowledge sentences

which depict similar scenarios. The following steps summarize the extraction process:

1. First, the verb phrases, properties and discourse connectives in a given WSCR sce-

nario are identified. For example the verb phrase “ate” and the property “tasty” in

the example mentioned above.

2. Secondly, a set of search queries are created by using the items extracted in the

previous step. For example a query “* ate * tasty * ” is created for the problem

mentioned above.

3. Thirdly, the above created query is used to search and extract sentences from a search

engine. In this work, we have used the search engine of Google. An example sen-

tence extracted by using the query mentioned above is, “I can eat it because it is

tasty”. Not all the results from the search engine will be useful. Some sentences

might not contain enough information about the scenario (e.g. “she ate”). Some sen-

tences might be similar to the original scenario but contain the coreference ambiguity
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that is present in the original scenario. Thus in this step, we manually classify results

to be useful or not. If we are not able to find a useful sentence with the initial query

then we go back to the second step and generate a new query by using a variants of

the words used in the previous query. The variants include synonyms, similar words

(looser, lost), and base forms of verbs in the verb phrases of the original query.

After several iterations of step 2 and step 3 we obtain sentences which can justify the

answer of the given WSCR and do not contain the coreference ambiguity which was present

in the original WSCR sentence. The knowledge sentences that are extracted often contain

pronouns. For example the extracted sentence “I can eat it because it is tasty” also contains

two pronoun occurrences (“it”, ). However, we make sure that the pronouns in the extracted

knowledge sentences can be easily resolved using the following procedure:

1. Two pronouns refer to each other if they have the same string description. For e.g.

all the occurrences of the pronoun “it” always refer to the same entity.

2. Two pronouns (p1, p2) refer to each other if they belong to a special list containing

the following: {(he,him),(she,her),(i,me),(they, them),(he,his),(his,him)}. We

also ignore knowledge sentences where any of these special pair of pronouns appears

as an argument to a common verb (e.g. “it ate it because ...”).

We call such sentences as “easily resolvable” sentences. The manually curated knowl-

edge base contains only “easily resolvable” and no-pronoun sentences. Table 7.2 shows

some of the sample knowledge sentences and the corresponding WSCR problem.

Scenario Knowledge Sentence

The city councilmen refused the demon-

strators a permit because they feared vio-

lence.

He also refused to give his full name be-

cause he feared for his safety.
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The city councilmen refused the demon-

strators a permit because they advocated

violence.

He has been refused travel to the West be-

cause he has openly advocated for terror

against Israeli citizens as well as Ameri-

cans in Iraq and Afghanistan.

Joan made sure to thank Susan for all the

help she had received.

I just wanted to thank you because you

have helped me the best when I received

the deny letter from immigration some

years ago.

Frank felt crushed when his longtime rival

Bill revealed that he was the winner of the

competition.

We lose property, and feel crushed and

poor. We lose our ideals, our hopes.

Although they ran at about the same

speed, Sue beat Sally because she had

such a good start.

If you get off to a good start , you are suc-

cessful in the early stages of doing some-

thing.

Although they ran at about the same

speed, Sue beat Sally because she had

such a bad start.

England got off to a bad start in the Five

Nations Championship, losing 35-10 to

France.

Anna did a lot better than her good friend

Lucy on the test because she had studied

so hard.

He succeeded because he studied hard.

The firemen arrived before the police be-

cause they were coming from so far away.

My teachers know that I arrive late some-

times. They do not punish me because

they know I live far away, he said.
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The sack of potatoes had been placed

above the bag of flour, so it had to be

moved first.

Coal seams are extracted from a moun-

tain by removing the land , or overburden,

above the seams.

Susan knew that Ann’s son had been in a

car accident , so she told her about it.

he got out of the car, and I told him to get

back in because I knew he would do it all

over again the next day.

Susan knew that Ann’s son had been in a

car accident, because she told her about it.

You knew about this pain, because we told

you.

Bob was playing cards with Adam and

was way ahead. If Adam had not had a

sudden run of good luck, he would have

won.

And if you’re not lucky, you loose your

money like my friend and cry!

Table 7.2: Examples of Manually Extracted Knowledge Sentences for CWSCR
KB Problems.

Each Row Shows a Winograd Schema Coreference Resolution Problem and a Knowledge

Sentence That Depicts a Similar Scenario.

7.2.3 Alignment Algorithm

Existing Winograd solvers that use explicit commonsense knowledge to solve a Wino-

grad Schema problem (CWSCR
KB = 〈D,A1,A2,P1,K〉) first convert the knowledge sentence K

and the Winograd scenario D into a logical form and then use a set of axioms to compute

the answer. However, it is a daunting task to convert free form sentences into causal log-

ical representation. Thus these methods often produce low recall. In this work, we take a

detour from this approach and aim to build an “alignment” function. Informally, the job of

the alignment function is to decide which replacement D[P/A1] or D[P/A2] closely mimics

K. Here, D[P/Ai] represents the sentence(s) that is obtained by replacing the pronoun P by
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Ai in D.

Intuition behind the Alignment Algorithm By definition, every replacement of a Wino-

grad scenario D[P/Ai] contains three special entities A1,A2 and A3 where A3 is A1 if i = 1

or A2 if i = 2. Each occurrences of these entities may have a semantic role with respect

to some of the events in D. From the choice of extraction, the knowledge sentence K

also contains similar events. The goal is to replace the special entities in D[P/Ai] by the

“similar” entities (noun phrases) from K. Let θ denotes such a substitution and D[P/Ai,θ ]

denote the string that is obtained by performing such a substitution. A textual entailment

function is then used to compute the entailment score between K (premise) and D[P/Ai,θ ]

(hypothesis), which we treat as the alignment score between D[P/Ai] and K.

For example, for the Winograd scenario D =, “I put the heavy book on the table and

it broke .” and the knowledge sentence K = “A broken (fractured) toe is an injury nor-

mally caused by impact , usually from dropping a heavy object on the toe or stubbing

the toe hard.”, a possible substitution is θ={“the heavy book”/“a heavy object”,“the ta-

ble”/“toe”}. We then compute, D[P/A1,θ ] =“I put the heavy object on toe and the heavy

object broke .” and D[P/A2,θ ] =“I put the heavy object on toe and toe broke .” and the

textual entailment score for (premise=K and hypothesis=D[P/A1,θ ]) and (premise=K and

hypothesis=D[P/A2,θ ]) to find out that K is more aligned towards D[P/A2].

Computing Similar Entities We define an entity (noun phrase) E j from K to be

similar to an entity A j from a replacement D[P/Ai], i ∈ {1,2} if the following holds:

1. There exists a verb v in D and v′ in K such that either v = v′ or v is a synonym of v′.

2. The “semantic role” of A j with respect to v is same as the “semantic role” of E j with

respect to v′.

To compute the semantic role of each entity we use the semantic role labelling func-

tion, called QASRL(He et al., 2015). QASRL represents the semantic roles of an entity,
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in terms of question-answer pairs. Figure 7.4 shows the QASRL representation of the sce-

nario “‘I put the heavy book on the table and it broke .”. The scenario involves two events

“put” and “broke”. The questions represent the roles of the participating entities.

Figure 7.4: QASRL Output for the Sentence “I put the heavy book on the table and it

broke.”.

Textual Entailment: Recognizing textual entailment is an important aspect of the ap-

proach described in this section. It refers to the task of determining whether the meaning

of one text fragment can be inferred from the other (Dagan et al., 2005). More formally 2

, “textual entailment is a directional relation between two text fragments Text (t) and Hy-

pothesis (h) such that t entails h (t ⇒ h) if, typically, a human reading t would infer that

h is most likely true”. For example, if t = ‘seafood is tasty’ and h = ‘crab is tasty’ then t

entails h.

Textual entailment is different than the logical 3 entailment. According to the logical

entailment, a entails b (a�b) if each model of a is a model of b. In other words a�b if every

interpretation that satisfies a also satisfies b. Also, if there does not exist an interpretation

which satisfies a then anything is entailed by a. For example, according to the definition of
2http://www.lsi.upc.edu/~ageno/anlp/textualEntailment.pdf

3https://en.wikipedia.org/wiki/Logical_consequence
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logical entailment ‘1=2’ � ’unicorns are real’ because there does not exists an interpreta-

tion which satisfies ‘1=2’. But according to the definition of textual entailment ‘1=2’ does

not entail that ‘unicorns are real’ because a human reading ‘1=2’ would not infer from it

that ‘unicorns are real’.

Formal Specification of the Alignment Algorithm Each of the A1, A2 and A3 may or

may not have a similar entity in K. Thus there are 23 = 8 cases ranging from the situation

where all of A1,A2 and A3 has a matching pair to the situation where none of them have a

matching pair. The following list shows the behavior of the alignment function in all these

8 scenarios. Through this section, we use Ei to denote the similar entity for Ai.

Case TTT: This case occurs when each of A1, A2 and A3 has a similar entity in K. In

this case, P refers to A1 if E1 and E3 refers to the same entity. Otherwise P refers to A2.

Since E1, E2, E3 belongs to K, by the property of K, we know if E1 and E3 refers to the

same entity or not. The following is an example of this case:

D: Lily spoke to Donna, breaking her concentration.

K: If someone (E1) speaks to you (E2) and breaks your (E3) concentration, or you

realise a harness strap is twisted and have to untwist it, start checks again at the be-

ginning.

Case TTF: This case occurs when A1 and A2 have a similar entity but A3 does not. In

this case, a score is computed for each of D[P/A1] and D[P/A2] using textual entailment.

Here, the θ for D[P/Ai] is {A1/E1,A2/E2,A3/Ei}. An example of this situation is the

following:
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D: I put the heavy book on the table and it broke .

K: A broken (fractured) toe is an injury normally caused by impact , usually from

dropping a heavy object (E1) on the toe (E2) or stubbing the toe hard .

Case TFT: This case occurs when only A1 and A3 have a similar entity. In this case,

P refers to A1 if E1 and E3 refers to the same entity. Otherwise P refers to A2. We do not

have any example of this case in the dataset.

Case FTT: This case occurs when only A2 and A3 have a similar entity. In this case, P

refers to A2 if E2 and E3 refers to the same entity. Otherwise P refers to A1. The following

is an example of this scenario:

D: Mary tucked her daughter Anne into bed, so that she could sleep.

K: My dog (E2,E3) is very serious about being tucked in to sleep in the morning and

at night.

Case TFF: This case occurs when, only A1 has a similar entity. In this case, the

substitution for D[P/A1] is {A1/E1,A3/E1} but the substitution for D[P/A2] is {A1/E1}.

The case of FTF (only A2 has similar entity) and FFT (only A3 has similar entity) similar

to the case of TFF. The following is an example of the case TFF:

D: Frank felt crushed when his longtime rival Bill revealed that he was the winner of

the competition.

K: We (E1) lose property, and feel crushed and poor. We lose our ideals, our hopes .
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Case FFF: This case occurs when none of A1,A2,A3 have a similar entity. In this case,

the alignment score for D[P/Ai] is computed by taking the entailment score between K and

D[P/Ai]. We do not have any example of this case in the dataset.

7.2.4 Experiments

Each problem in the Winograd Schema Challenge (WSC) requires additional knowl-

edge to solve it. Consequently, every system which attempts to solve the challenge can be

thought of having two main components. The first component is the knowledge identifica-

tion component and the other is a reasoning component. The objective of the knowledge

identification component is to identify the knowledge needed to solve a problem. Whereas,

the objective of the reasoning component is to use the knowledge identified by the knowl-

edge identification component to get the final answer to the problem. Both, the knowledge

identification and the reasoning, components can be parts of a joint neural network archi-

tecture (Trinh and Le, 2018; Liu et al., 2017) or they can be parts of a knowledge hunting

and inference based reasoning framework (Sharma et al., 2015c; Emami et al., 2018).

In this work our focus is on developing a reasoning component hence we generate a

new WSC dataset which contains the knowledge needed to solve each of the problems in

the dataset. Therefore, we perform various experiments to highlight the capabilities of our

reasoning algorithm. First we compare the existing systems with respect to their precision

and recall on the challenge. Then we compared different versions of our system among

themselves. The experiments show that the reasoning algorithm defined in this work is

promising.

In this section, we start by introducing the datasets used in the experiments. Afterwards,

we present the experimental setup, results and finally the error analysis.
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Dataset

The Winograd Schema Challenge corpus 4 consists of pronoun resolution problems where

a sentence is given along with a pronoun in the sentence and two possible answer choices.

As mentioned in Section 4, a modified version of the Winograd Schema Challenge dataset

is created as part if this work. The dataset contains the WSC problems and a piece of

knowledge corresponding to each of the problems. In total, there are 285 problems in the

WSC dataset 5 . The problems are made up of 141 pairs (as mentioned in the Introduction

section) and one triple (three variants of a problem with a couple of words difference).

From this point onward, we will call this dataset as WSC285. The generation of the original

WSC dataset (without the knowledge) itself is an ongoing work. Hence the dataset keeps

getting updated. This is why the systems earlier than this paper used a smaller dataset of

273 problems (135 pairs and one triple). All the problems in it are also present in WSC285.

From this point onward, we will call this subset of WSC285 as WSC273. The WSC273 also

contains knowledge corresponding to each WSC problem in it. For a more fair comparison

between our work and others’, we performed our experiments with respect to both WSC285

and WSC273.

Experimental Setup and Results

First, we compared the results of our system with the previous works in terms of the num-

ber of correct predictions, the precision, recall and F1 scores. We compared our system

with four other systems. The comparison results are as shown in the Table 7.3. The first

two, (Sharma et al., 2015c) and (Liu et al., 2017) hereafter called S2015 and L2017 re-

spectively, address a subset of WSC problems (71 problems). Both of them are able to
4Available at https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/

WSCollection.xml

5Available at https://drive.google.com/file/d/1TGnzoLuiRHQ8c04-c211_66qmvZ2eIKT/
view?usp=sharing
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exploit only causal knowledge. This explains their low coverage over the entire corpus.

We overcome this issue by using any form of knowledge sentence. More recently, two ap-

proaches on solving the WSC273 dataset have been proposed. The first work (Emami et al.,

2018) (hereafter called E2018) extract knowledge in form of sentences to find evidences to

support each of the possible answer choices. We planned to execute their reasoning system

with respect to our dataset but it could not be done as the complete code is not publicly

available yet. A comparison between their results and our is however present in the Table

7.3. Another work (Trinh and Le, 2018) (hereafter called T2018) uses a neural network

architecture to learn language models from huge data sources to predict the probability of

choosing one answer over the other is also compared as shown in the Table 7.3.

#correct % Correct P R F1

S2015 49 18.0 0.92 0.18 0.30

L2017 43 15.0 0.61 0.15 0.25

E2018 119 44.0 0.60 0.44 0.51

T2018 174 63.7 0.637 0.637 0.637

Our Method (WSC273) 176 64.4 0.644 0.644 0.644

Our Method (WSC285) 184 64.5 0.645 0.645 0.645

Table 7.3: Evaluation Results of Our System for WSC273 and WSC285 Along with Compar-

ison with Other Systems

As mentioned in the previous section, our algorithm uses textual entailment to identify

the more plausible answer. As part of second set of experiments we evaluate our reasoning

algorithm with respect to two state of the art textual entailment systems , namely ESIM

(Chen et al., 2016) and Decoposibale Attention Model (DecAtt) (Parikh et al., 2016). The

results of using these two entailment systems with respect to the WSC285 and WSC273 are
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shown in the Table 7.4.

Dataset Criteria
Textual Entailment System

DecAtt Model ESIM Model

WSC285

Correctly Answered 180 184

Incorrectly Answered 105 101

Total 285 285

WSC273

Correctly Answered 172 176

Incorrectly Answered 101 97

Total 273 273

Table 7.4: Experimental Results for Different Textual Entailment (or Natural Language

Inference) Systems

We performed a third set of experiments to further investigate the robustness of our

reasoning algorithm as compared to the state of the art system (T2018). As mentioned

earlier, there are 141 pairs of problems in the entire WSC dataset. The sentences in the

problems which make up a pair differ only by a word or two. The two answer choices for

both the problems in the pair are same but the answers to each of the problems are different.

For example, consider the following pair of problems.

Problem1:

Sentence: The firemen arrived after the police because they were coming from so far

away.; Pronoun: they; Answer Choice 1: The firemen; Answer Choice 2: The police;

Correct Answer: The firemen
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Problem2:

Sentence: The firemen arrived before the police because they were coming from so far

away .;Pronoun: they; Answer Choice 1: The firemen; Answer Choice 2: The police;

Correct Answer: The Police

In the above problems, only changing one word (before/after) in the sentence changes

the answer to the problem. Due to this property of the dataset, a system can achieve an ac-

curacy of 50% by just answering choice 1 as the correct answer for every problem. To make

sure that this is not the case in our system, we performe the following two experiments.

1. Experiment to Evaluate Pairwise Accuracy: In this experiment we evaluate our

system and the state of the art system (T2018) to find out how many of the problem

pairs were correctly solved. The table 7.5 shows the results of the experiment.

Method Total Pairs Correctly Answered Incorrectly Answered

T2018 131 42 89

Our Method (WSC273) 131 60 71

Our Method (WSC285) 141 61 80

Table 7.5: Experimental Results for Pairwise Accuracy

It can be seen from the results that our system solves 61 pairs correctly, which is

significantly more than the state of the art system.

2. Experiment to Evaluate System Bias: In this experiment we evaluate our system

and the state of the art system (T2018) to find out if the system is biased to chose the

answer choice which is closer to the pronoun in the WSC sentence. We found that

usually the answer choice 2 in the problem is closer to the pronoun to be resolved.

143



Hence the experiments were performed to figure out how many times a system an-

swers choice 2 as the final answer. The results of the experiments are as shown in the

Table 7.6 below.

Method #Times Choice2 is Chosen

T2018 142 out of 273

Our Method (WSC273) 143 out of 273

Our Method (WSC285) 148 out of 285

Table 7.6: Experimental Results for System Bias

As seen from the results in Table 7.6 above, both, the language model based approach

and our approach passed the test by not having a bias towards one of the answer

choices.

Error Analysis

We categorize the errors of our reasoning algorithm by based on their cause. Following are

the different types of errors observed.

Errors Caused by the QASRL System

We use the QASRL (FitzGerald et al., 2018) system to translate the sentences into ques-

tions and answers. Sometimes the QASRL system failed to identify an important verb.

Sometimes it assigned incorrect roles to the participants. These errors led to further errors

in the downstream reasoning. An example of an incorrect role assignment is shown in Fig-

ure 7.5. Here, both “I” and “The foxes” are found to be the answers of the question “Who

kill someone?”, which is incorrect.
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Figure 7.5: QASRL Output for the Sentences, “The foxes are getting in at night and at-

tacking the chickens. I shall have to kill them.”.

Errors in the Reasoning Process

These errors are categorized into four ‘buckets’. Each ‘bucket’ corresponds to a collection

of cases in the alignment algorithm (Section 5). Bucket 1 contains case TTT, bucket 2 con-

tains case TTF, TFT and FTT , bucket 3 contains case TFF, FTF and FFT and finally the

bucket 4 contains the case FFF. Few examples of the errors with respect to these different

buckets are shown below.

Example from Bucket 1

Scenario: Joe paid the detective after he delivered the final report on the case.

Pronoun: he

Knowledge Sentence: You paid them to deliver your package by a certain date.

Cause of Error: The cause of error for the above problem was found to be an error se-

mantic role labeling by the QASRL system. The output of the QASRL system for the
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knowledge sentence in the above problem is shown in Figure 7.6. Here, both You and them

are found to be the answers to the question Who delivered something? Because of this error

both the answer choices are found to be the correct answers, which contradicts the initial

assumption.

Figure 7.6: QASRL Output for the Sentence “You paid them to deliver your package by a

certain date.”.

Example from Bucket 2

Sentence: Thomson visited Cooper’s grave in 1765 . At that date he had been dead for

five years.

Pronoun: he

Knowledge Sentence: After Her Dad Died , She Wanted To Visit His Grave On Prom

Night , But Noticed Something Odd.

Cause of Error: The cause of error for the above problem was found to be an error made

by the entailment function (ESIM).
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Example from Bucket 3

Sentence: Mary took out her flute and played one of her favorite pieces . She has loved

it since she was a child.

Pronoun: it

Knowledge Sentence: I loved the musical piece and the analogy!

Cause of Error: Here, the number of similar entities between the Winograd sentence and

the knowledge sentence is only one. And particularly in this case the two generated hy-

potheses are quite different from the premise (knowledge sentence). As a result, the textual

entailment scores were incorrect.

Example from Bucket 4 None of the problem from the current dataset fell into this bucket.

Due to this reason, we did not encounter any error example from this bucket. However, due

to issues in “similar” entity computation, sometimes a problem from different case falls

into Bucket 4. Consider the following two phrases for example: “he was the winner” and

“John won”. Ideally, the reasoning system should match the phrase “was the winner” with

“win” and conclude that “he” and “John” are similar. But the existing reasoning algorithm

can only match verb pairs with string equality or synonymy. Thus it fails to detect that “he”

and “John” are similar which sometimes results in an error.

7.2.5 Conclusion

One of the major obstacle towards solving the Winograd Schema Challenge is knowl-

edge extraction. However, that obstacle becomes more prominent if the reasoning system

is naive. This is due to the old consensus that commonsense knowledge does not follow

simple representation schemes and thus require complex knowledge management (Min-
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sky, 1988). Thus it is important to produce better commonsense reasoning modules. In this

work, we created a dataset to make progress towards this cause. We observe that the exist-

ing knowledge based reasoning systems for the Winograd Schema Challenge cannot utilize

the knowledge sentences well. However, significant improvements can be made with a so-

phisticated general purpose reasoning system. Extraction of the required knowledge took

significant amount of manual effort. So we could not automate the knowledge extraction at

this point and compute the accuracy in an end-to-end fashion. However, our work provides

a proof of concept that with knowledge extraction and reasoning, it is possible to achieve

noticeable performance in the Winograd Schema Challenge.

7.3 Updated System 2: Combining Automatic Knowledge Extraction and Neural

Language Models

System 2 mentioned above relies on the manual extraction of knowledge sentences cor-

responding to the WSC problems. Furthermore, it relies only on the extracted knowledge

to predict the correct answer of a WSC sentences. But sometimes the needed knowledge

are embedded in the pre-trained language models. Let us consider the WSC example men-

tioned below.

Sentences: The painting in Mark’s living room shows an oak tree. It is to the right of

a house.

Pronoun to resolve: It

Answer Choices: a) painting b) tree

Here, the knowledge that ‘a tree is to the right of a house’ is more likely than ‘a painting

is to the right of a house’ is needed. With recent developments in neural network architec-

tures for language modeling, it is evident that they are able to capture such knowledge by

predicting that ‘a tree is to the right of a house’ is a more probable phrase than ‘a painting
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is to the right of a house’. This is because language models are trained on huge amounts

of text and they are able to learn the frequently co-occurring concepts from that text. Al-

though the knowledge from language models is helpful in many examples, it is not suitable

for several others. For example, with respect to the WSC sentences “The fish ate the worm.

It was tasty.”, the language models in (Trinh and Le, 2018) predict that ‘fish is tasty’ is a

more probable than ‘worm is tasty’. This is because the words ‘fish’ and ‘tasty’ occur in

the same context more often than the words ‘worm’ and ‘tasty’.

So, considering the benefits and limitations of the above mentioned approaches, in

this work, we combine the knowledge hunting and neural language models to solve the

Winograd Schema Challenge (WSC). The main contribution of this work is to tackle the

WSC by:

• developing and utilizing an automated knowledge hunting approach to extract the

needed knowledge and reason with it without relying on a strict formal representa-

tion,

• utilizing the knowledge that is embedded in the language models, and

• combining the knowledge extracted from knowledge hunting and the knowledge in

language models.

As a result, our approach improves on the existing state-of-the-art accuracy by 7.36%

and solves 71.06% of the WSC problems correctly.

The sections below provide the details of our approach. The parts which were common

with the system 2 mentioned above are omitted to prevent repetition.

The knowledge hunting approach described in this work is similar to the knowledge ex-

traction approach defined in the Chapter 5 for the WSC problems. The language modeling

and combining the results of knowledge hunting and language modeling were performed

in collaboration with a graduate student at Arizona State University. The details of the
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implementations are present in the ACL 2019 paper (Prakash et al., 2019). The sections

below provide an overview of the entire approach.

7.3.1 Knowledge Extraction

The goal of the knowledge extraction module is to automatically extract a set of knowl-

edge texts for a given WSC problem. Ideally, a knowledge text should be able to justify the

answer of the associated WSC problem. In this vein, we aim to extract the texts that depict

a scenario that is similar to that of the associated WSC problem. We roughly characterize

a WSC scenario in terms of the events (verb phrases) and the properties of the entities that

are associated with the scenario. The characterization of a scenario optionally includes the

discourse connectives between the events and properties of the scenario. For example, in

the WSC sentence “The city councilmen refused the demonstrators a permit because they

feared violence .”, the scenario is mainly characterized by the verb phrases “refused” and

“feared”, and the discourse connective “because”.

In this work, we use this abstract notion of a scenario to extract knowledge texts which

depict similar scenarios. The following are the steps in the extraction module.

1. First, the module identifies the verb phrases, properties and discourse connectives

in a given WSC scenario. For example the one-word verb phrases “refused” and

“feared”, and the discourse connective “because” in the example mentioned above.

2. Secondly, the module automatically generates a set of search queries by using the

keywords extracted in the previous step. The first query in the set is an ordered

combination (as per the WSC sentence) of the keywords extracted in the previous

step. For example the query “* refused * because * feared * ” is the first query

for the problem mentioned above. Afterwards the following set of modifications

are performed with respect to the first query and the results are added to the set of

queries.
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• The verb phrases are converted to their base form. For example, “ * refuse *

because * fear * ”.

• The discourse connectives are omitted. For example, “* refuse * fear * ”.

• The verbs in verb phrases and the adjectives are replaced with their synonyms

from the WordNet KB (Miller, 1995). The top five synonyms from the top

synset of the same part of speech are considered. An example query generated

after this step is “* decline * because * fear * ”.

3. Thirdly, the module uses the generated queries to search and extract text snippets,

of length up to 30 words, from a search engine. The top 10 results (urls) from the

search engine are retrieved for each query and text snippets from those results are

scraped. Out of the extracted texts, the 10 text snippets which are most similar to

the WSC text are filtered and passed to the alignment module. We used a natural

language inference model (Parikh et al., 2016) to find the most similar sentences.

Since we also do not want to extract the snippets which contain the corresponding

WSC sentences (because of ambiguity), this module removes the results with WSC

sentences in them. We filtered out the knowledge texts which contained 80% or more

words from the sentences in any of the WSC problems.

An example knowledge text extracted by using the query “ * refused * because * feared

* ” via the steps mentioned above is, “He also refused to give his full name because he

feared for his safety.”

7.3.2 Entity Alignment

A total of up to 10 knowledge texts are extracted with respect to each WSC problem.

Each of them is processed individually along with the WSC problem to produce a corre-

sponding intermediate result from the knowledge hunting module.
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Let W = 〈S,A1,A2,P,K〉 be a modified WSC problem such that S be a set of WSC

sentences, A1 and A2 be the answer choices one and two respectively, P be the pronoun

to be resolved, and K be a knowledge text. The existing solvers (Sharma et al., 2015c)

that use explicit knowledge to solve a WSC problem of the form W first convert K and S

into a logical form and then use a set of axioms to compute the answer. However, it is a

daunting task to convert free form text into a logical representation. Thus these methods

often produce low recall. In this work, we take a detour from this approach and aim to

build an “alignment” function. Informally, the task of the alignment function is to align the

answer choices (A1 and A2) and the pronoun to be resolved (P) in S with the corresponding

entities (noun/pronoun phrases) in K. These alignments are the intermediate results of the

knowledge hunting module.

By the choice of knowledge extraction approach, the knowledge texts are similar to the

WSC sentences in terms of events, i.e., they contain similar verb phrases, properties and

discourse connectives. So, in an ideal situation we will have entities in K corresponding

to each one of the concerned entities (A1, A2 and P) in W respectively. The goal of the

alignment algorithm is to find that mapping. The mapping result is generated in the form of

a aligned with predicate of arity three. The first argument represents an entity (an answer

choice or the pronoun) from S, the second argument represents an entity from K and the

third argument is an identifier of the knowledge text used. We define an entity (noun phrase)

E j from a knowledge text K to be aligned with to an entity A j from a WSC text S if the

following holds:

1. There exists a verb v in S and v′ in K such that either v = v′ or v is a synonym of v′.

2. The “semantic role” of A j with respect to v is same as the “semantic role” of E j with

respect to v′.

We use the semantic role labelling function, called QASRL (He et al., 2015) to com-
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pute the semantic roles of each entity. QASRL represents the semantic roles of an entity,

in terms of question-answer pairs. Figure 7.7 shows the QASRL representation of the

knowledge text “He also refused to give his full name because he feared for his safety.” It

involves three verbs “refused”, “feared” and “give”. The questions represent the roles of

the participating entities.

Figure 7.7: QASRL Output for the Sentence “He also refused to give his full name because

he feared for his safety.”

An example alignment generated for the WSC sentence,

S = “The city councilmen refused the demonstrators a permit because they feared violence.”

and the knowledge text,

K = “He also refused to give his full name because he feared for his safety.”

is,

aligned with(city councilmen,He,K)

aligned with(they,he,K)

There are three relevant entities in an input WSC problem, i.e., A1, A2 and P. Based on

the existence of the entities corresponding to the entities in the WSC problem there are 28

possible cases. For example, the case {True True True}, abbreviated as {TTT}, represents
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that each of the entities A1, A2 and P are aligned with corresponding entities in a knowledge

text.

Case Details Example

TTT

Each entity (among A1, A2 and P) in the WSC

sentences W have corresponding entities in

the corresponding knowledge text K

WSC Sentence: Jim comforted Kevin because he was so

upset . Knowledge Text (K): She says I comforted her, be-

cause she was so upset Alignments: aligns with(Jim,I,K),

aligns with(Kevin,her,K), aligns with(he,she,K)

TFT

Only the entity representing the answer

choice one (A1) and the pronoun to be re-

solved (P) have corresponding entities in the

knowledge text K

WSC Sentence: The trophy does not fit into the brown

suitcase because it is too large . Knowledge Text (K):

installed CPU and fan would not fit in because the fan

was too large Alignments: aligns with(trophy,fan,K),

aligns with(it,fan,K)

FTT

Only the entity representing the answer

choice 2 (A2) and the pronoun to be resolved

(P) have corresponding entities in the knowl-

edge text K

WSC Sentence: James asked Robert for a favor but he re-

fused . Knowledge Text (K): He asked the LORD what he

should do, but the LORD refused to answer him, either by

dreams or by sacred lots or by the prophets. Alignments:

aligns with(Robert,LORD,K) and aligns with(he,LORD,K)

Table 7.7: Alignment Cases in the Knowledge Hunting Approach. A1 and A2 Are Answer

Choices One and Two, and P Is Pronoun to Resolve

The intuition behind the alignment approach is to find a common entity in a knowledge

text such that it aligns with one of the answer choices (say Ai) and also with the pronoun

to be resolved (P). Then we can say that both Ai and P refer to same entity and hence they

refer to each other. An important aspect of such a scenario is the existence of the entities

in a knowledge text which align with at least one of the answer choices and the pronoun

to be resolved. In other words the cases {TTT}, {TFT} and {FTT}. So we consider the

alignments generated only with respect to these three cases as an output of the alignment

module. The three cases and their details are shown in the Table 7.7 along with examples

from the dataset.
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7.3.3 Using the Knowledge from Language Models

In recent years, deep neural networks have achieved great success in the field of natural

language processing (Liu et al., 2019; Chen et al., 2018). With the recent advancements in

the neural network architectures and availability of powerful machine it is possible to train

unsupervised language models and use them in various tasks (Devlin et al., 2018; Trinh

and Le, 2018). Such language models are able to capture the knowledge which is helpful

in solving many WSC problems. Let us consider the WSC problem shown below.

S3: I put the heavy book on the table and it broke.

Pronoun to resolve: it

Answer Choices: a) table b) book

A knowledge that, “table broke is more likely than book broke” is sufficient to solve

the above WSC problem. Such a knowledge is easily learned by the language models

because they are trained on huge amounts of text snippets which are transcribed by people.

Furthermore, these models are good at learning the frequently occurring patterns from data.

In this work, we aim to utilize such knowledge that is embedded in the neural lan-

guage models. We replace the pronoun to be resolved in the WSC text with the two answer

choices, one at a time, generating two possible texts. For example the two texts gener-

ated in the above WSC example are, S3(a) = I put the heavy book on the table and table

broke., S3(b) = I put the heavy book on the table and book broke. Then a pre-trained lan-

guage model is used to predict the probability of each of the generated texts. Let Pa be

the probability of S3(a) and Pb be the probability of S3(b). To be able to use the result of

language models in Probabilistic Soft Logic (PSL) (Kimmig et al., 2012), the output of this

step contains coref(P,A1):PROB1 and coref(P,A2):PROB2, where P is the pronoun to be

resolved, A1 and A2 are answer choices one and two respectively, and PROB1 and PROB2
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are the probabilities of the texts generated by replacing P with A1 and A2 in the WSC text

respectively, i.e., Pa and Pb in the example above.

7.3.4 Combining Knowledge Hunting and Language Models

In this step, the alignment results generated from the knowledge hunting module and

the co-reference probabilities generated from the language models are combined in a Prob-

abilistic Soft Logic (PSL) (Kimmig et al., 2012) framework to infer the confidence for each

of the answer choices in a WSC problem. The details of the PSL framework are present in

Prakash et al. (2019).

7.3.5 Experiments

The Winograd Schema Challenge corpus 6 consists of pronoun resolution problems

where a set of sentences is given along with a pronoun in the sentences and two possible

answer choices such that only one choice is correct. There are 285 problems in the WSC

dataset. From this point onward, we will call this dataset as WSC285. The generation

of the original WSC dataset itself is an ongoing work. Hence the dataset keeps getting

updated. This is why the works earlier than ours, used a smaller dataset containing 273

problems. All the problems in it are also present in WSC285. From this point onward, we

will call this subset of WSC285 as WSC273. For a fair comparison between our work and

others’, we performed our experiments with respect to both WSC285 and WSC273. The core

to reproduce the results of this paper is available at https://github.com/Ashprakash/

CKLM.

7.3.6 Results

First, we compared the results of our system with the previous works in terms of the

number of correct predictions. The language models based component of our approach
6Available at https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/

WSCollection.xml
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relies on pre-trained language models. Here we compared two different language models.

First we used the ensemble of 14 pre-trained language models which are used in (Trinh and

Le, 2018). Secondly, we used BERT (Devlin et al., 2018) pre-trained model. Based on the

language model used, in the following experiments we use OUR METHODT 2018 to repre-

sent our approach which uses models from (Trinh and Le, 2018) and OUR METHODBERT

to represent our approach which uses the BERT language model. We compared our method

with five other methods (two language models based and three others). The comparison re-

sults are as shown in the Table 7.8. The first two, (Sharma et al., 2015c) and (Liu et al.,

2017) hereafter called S2015 and L2017 respectively, address a subset of WSC problems

(71 problems). Both of them are able to exploit only causal knowledge. This explains

their low coverage over the entire corpus. We overcome this issue by using any form of

knowledge text making predictions for each of the problems in the dataset. More recently,

two approaches on solving the WSC273 dataset have been proposed. The first work (Emami

et al., 2018) (hereafter called E2018) extract knowledge in form of sentences to find evi-

dences to support each of the possible answer choices. A comparison between their results

and our is present in the Table 7.8. Another work (Trinh and Le, 2018) (hereafter called

T2018) uses a neural network architecture to learn language models from huge data sources

to predict the probability of choosing one answer over the other is also compared as shown

in the Table 7.8.

7.4 An Entailment Based Reasoning Approach for Natural Language Question

Answering

In this section we provide an overview of how the entailment based approaches men-

tioned above can be used in developing a general reasoning approach for any natural lan-

guage question answering problem that requires the use of additional knowledge.

Let P be a natural language question answering problem such that P contains,
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#correct % Correct

S2015 49 18.0

L2017 43 15.0

E2018 119 44.0

T2018 (WSC273) 174 63.70

T2018 (WSC285) 180 63.15

BERT Only (WSC273) 173 63.36

BERT Only (WSC285) 179 62.80

OUR METHODT 2018 (WSC273) 189 69.23

OUR METHODT 2018 (WSC285) 195 68.42

OUR METHODBERT (WSC273) 194 71.06

OUR METHODBERT (WSC285) 200 70.17

Table 7.8: Evaluation Results of Our Method with Respect to WSC273 and WSC285, Com-

pared with Other Systems.

• a sequence of one or more sentences (or a reading passage), say S,

• a question about the sentences, say Q,

• a list of answer choices, say A = A1,A2, ...,An

Also, let K be a list of additional knowledge about P, written in English. Then, a general

approach for solving P, which uses entailment based reasoning, has the three steps in it. Let

us consider the following example problem to better understand the steps in the reasoning

approach.
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Passage: In some countries, formal education can take place through home schooling.

Informal learning may be assisted by a teacher occupying a transient or ongoing role,

such as a family member.

Question: Who is most likely to teach a child at home?

Answer Choices: a) mom b) friend c) stranger

Knowledge: mom is a family member

• Step 1: Combine S and K. In this step the English text which represents the addi-

tional knowledge is appended to the reading passage in P. Let the combined passage

be C. For example, following is the combined passage with respect to the above

example.

C = In some countries, formal education can take place through home schooling.

Informal learning may be assisted by a teacher occupying a transient or ongoing

role, such as a family member. mom is a family member.

• Step 2: Generate sentences by using the input question and the answer choices.

In this step, each answer choice is used along with the input question to generate an

English sentence. For example, following are the sentences generated with respect

to the question and the answer choices in the above mentioned problem.

A1 = mom is most likely to teach a child at home.

A2 = friend is most likely to teach a child at home.

A3 = stranger is most likely to teach a child at home.

• Step 3: Use a Natural Language Inference (NLI) system to select the correct

answer choice. In this step an NLI system is used to identify the textual entailment

score between C and each of the sentences generated in the Step 2. Then, the answer
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choice which corresponds to the generated sentence that resulted in the highest en-

tailment score is deemed as the correct answer of the input problem P. For example,

entailment scores for (C,A1), (C,A2) and (C,A3) will be retrieved from an NLI sys-

tem for the example problem mentioned above. The answer choice ‘a) mom‘ will be

selected as the final answer because (C,A1) gets the highest textual entailment score.
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Chapter 8

CONCLUSION AND FUTURE WORK

In this dissertation, progress towards Natural Language Understanding (NLU) is made

by presenting commonsense reasoning algorithms, identifying different types of common-

sense knowledge, developing and implementing commonsense extraction techniques and

improving a semantic parser. The tools and techniques developed as part of this work are

used to solve a popular NLU task called the Winograd Schema Challenge (WSC). WSC is a

textual question-answering challenge such that the answer to a question requires resolution

of a pronoun to its correct antecedent in a sentence.

Although while developing various tools and techniques our main focus was to solve a

particular application (i.e., WSC), the instruments and procedures developed as part of this

work are general purpose and they are useful for solving the other NLU applications which

require additional commonsense knowledge and reasoning with the knowledge.

The following section presents a review of all the modules developed in this work and

a summary of experimental evaluation of those modules.

8.1 Research Contributions

• Knowledge Types Identification: As part of this dissertation we identified several

new kinds of commonsense knowledge. We used the problems in the Winograd

Schema Challenge (WSC) corpus to identify these kinds because these types of com-

monsense knowledge are found to be necessary to solve the WSC (Sharma et al.,

2015c). Furthermore, we found that such commonsense is also helpful in other NLU

problems such as the COPA challenge (Roemmele et al., 2011). Furthermore, these

kinds are not present in the currently available knowledge bases.
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In Chapter 3, the various new kinds of commonsense knowledge which are identified

in this work are explained. There are 12 knowledge kinds identified in this work and

they are useful in solving all of the problems in the WSC corpus.

• Graphical Reasoning Algorithm: We defined and implemented a graphical reason-

ing algorithm to solve the WSC problems. The framework takes graphical represen-

tations of a problem and a piece of commonsense knowledge as inputs and produces

the answer to the problem if it is supported by the inputs. The reasoning module has

the ability to reason with the different kinds of commonsense knowledge identified

from the WSC corpus. The framework takes the input and produces the answer to

the question if the commonsense knowledge is suitable for answering the problem.

In Chapter 4, the graphical reasoning algorithm is explained in detail.

• Knowledge Extraction: There are various kinds of commonsense knowledge iden-

tified as part of this work. Various techniques to automatically extract those types of

knowledge are implemented. A knowledge base to store the extracted knowledge is

also implemented as part of this work.

In Chapter 5, the details of different methods that are used to extract commonsense

knowledge are showed. The details of the database which is used to store the ex-

tracted knowledge are also provided in the chapter.

• Semantic Parsing: In this thesis, improvements in a general domain semantic parser

and knowledge augmentation system are made. The system is called Knowledge

Parser or K-Parser. K-Parser takes an English text as input and produces a directed

acyclic semantic graph. The nodes in the graph represent the concepts in the text

such as actions, entities and traits. The edges in the graph represent the relationships

between concepts (or nodes).
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In Chapter 6, the detailed implementation of the K-Parser system and improvements

made to it in this work are provided.

8.1.1 Summary of Experimental Evaluations

Various experiments were performed in this work to evaluate the contributions defined

above. Below is a summary of those experiments and results with respect to them.

1. Evaluation of Knowledge Types Identification: A total of 291 WSC problems were

considered for knowledge type identification. All 291 problems were categorized in

the 12 categories mentioned in the Chapter 3. The split of WSC problems according

to the knowledge types is as shown in the Table 8.1 below.

Table 8.1: Table of Knowledge Types and Number of WSC Problems in Them

Knowledge Type Number of WSC Problems
1: A PROPERTY may prevent an ACTION 17
2: An ACTION may cause an ACTION 58
3: A PROPERTY may causes an ACTION 38
4: An ACTION may cause a PROPERTY 21
5: An ACTION may prevent an ACTION 8
6: An ACTION may be followed by an ACTION 25
7: An ACTION may be followed by a PROPERTY 1
8: A PROPERTY may be followed by an ACTION 1
9: A Co-occurring ACTION(s) and PROPERTY(s) 68
10: A PROPERTY may cause a PROPERTY 3
11: Statement1 is more likely than Statement2 25
12. Multiple Pieces of Knowledge 26

2. Evaluation of the Graph Based Reasoning Approach: We performed the follow-

ing three experiments to evaluate the graph based reasoning approach for common-

sense reasoning.

(a) Experiment 1: There are 240 problems in the knowledge types 1-10 (See Table

8.1). All the 240 WSC problems were automatically translated into graphs by

using K-Parser wrapper mentioned in the Chapter 6. The needed knowledge
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for each problem was manually written in graph format. All the 240 problems

were correctly answered by the WiSCR Algorithm mentioned in the Chapter 4.

(b) Experiment 2: Similar to the experiment 1 above, in this experiment we con-

sidered the 240 WSC problems. The needed knowledge for all the 240 prob-

lems was manually written in the ‘IF S THEN x is same as y’ format defined

in the Chapter 4. Both, the WSC problems and the needed knowledge were

automatically converted into graphs by using the K-Parser wrappers explained

in the Chapter 6. 200 out of 240 problems were correctly answered in this

experiment by the graphical reasoning algorithm. The remaining 40 problems

were not answered because of syntactic dependency parsing errors and part-of-

speech errors while generating the graphical representations of the input WSC

problems and the needed knowledge.

(c) Experiment 3: In this experiment, the knowledge needed to solve the 240 WSC

problems which require a knowledge of type 1-10 was automatically extracted

by using the procedure described in the Chapter 5. Both, the WSC problems

and the automatically extracted knowledge were translated into graphs by using

the K-Parser wrappers described in the Chapter 6. 120 out of 240 problems

were correctly answered. The remaining 120 were not answered because of the

inability of the knowledge extraction module to extract a suitable knowledge.

This happened mainly because of the limited access to the search engine.

3. Evaluation of the Entailment Based Reasoning Approach: The evaluation results

for the entailment based reasoning approach as as shown in the Table 8.2 below. Our

approach beats the previous state-of-the-art approach on two versions of WSC corpus

(WSC273 and WSC285).

4. Evaluation of the Knowledge Hunting and Language Models Based Approach:
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#correct % Correct

S2015 49 18.0

L2017 43 15.0

E2018 119 44.0

T2018 174 63.7

Our Method (WSC273) 176 64.4

Our Method (WSC285) 184 64.5

Table 8.2: Evaluation Results of Our Entailment Based Reasoning Approach for WSC273

and WSC285 Along with Comparison with Other Systems

The evaluation results for the knowledge hunting and language models based reason-

ing approach as as shown in the Table 8.3 below. This approach also beats the previ-

ous state-of-the-art approach on two versions of WSC corpus (WSC273 and WSC285).

8.2 Future Work: Multi-Hop Reasoning

Many problems in the Winograd Schema Challenge (WSC) corpus require more than

one pieces of knowledge. We call the process of reasoning with more than one piece of

knowledge as multi-hop reasoning.

Let us consider the following Winograd Schema Challenge problem.

Sentence: The dog chased the cat , the cat ran up a tree . Itpronoun waited at the top .

Question: What waited at the top?

Answer Choices: a) dog, b) cat

Knowledge Needed:

1. entity1 runs up a tree may cause entity1 is at top

2. entity1 is at top may co-occur with entity1 waits at top
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#correct % Correct

S2015 49 18.0

L2017 43 15.0

E2018 119 44.0

T2018 (WSC273) 174 63.70

T2018 (WSC285) 180 63.15

BERT Only (WSC273) 173 63.36

BERT Only (WSC285) 179 62.80

OUR METHODT 2018 (WSC273) 189 69.23

OUR METHODT 2018 (WSC285) 195 68.42

OUR METHODBERT (WSC273) 194 71.06

OUR METHODBERT (WSC285) 200 70.17

Table 8.3: Evaluation Results of Knowledge Hunting and Language Models Based Ap-

proach with Respect to WSC273 and WSC285, Compared with Other Systems.

The above example shows that two knowledge pieces are needed to solve the problem.

Similarly, any number (≥ 2) of such simple knowledge pieces can be required for a WSC

problem.

Although multi-hop reasoning is not the main contribution of this work, as a stepping

stone for future work, we developed a multi-hop reasoning procedure which takes a WSC

problem and a list of required commonsense knowledge and produces the answer to the

WSC problem. Below are the details of the procedure and a worked out example.

Multi-Hop Reasoning Procedure For WSC

Let us start by revisiting the above WSC example.
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Sentence: The dog chased the cat , the cat ran up a tree . Itpronoun waited at the top .

Question: What waited at the top?

Answer Choices: a) dog, b) cat

Knowledge Needed:

1. entity1 runs up a tree may cause entity1 is at top

2. entity1 is at top may co-occur with entity1 waits at top

As mentioned in the Chapter 4 the above two pieces of knowledge can also be written

as,

1. IF entity1 is at top because entity2 runs up a tree THEN entity1 1 is same as

entity2 6

2. IF entity1 is at top and entity2 waits at the top THEN entity1 1 is same as entity2 6

There are following main steps in the reasoning procedure.

1. The input WSC sentences and each of the knowledge in the list of knowledge are

represented as graphs by using the same process as explained in the Chapter 4. The

graphical representations of the WSC sentences and the knowledge pieces shown

above are depicted below in the Figures 8.1, 8.2 and 8.3.
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Figure 8.1: Graphical Representation of the WSC Sentences, “The dog chased the cat , the

cat ran up a tree . It waited at the top .”

Figure 8.2: Graphical Representation of the Knowledge, “IF entity1 is at top because

entity2 runs up a tree THEN entity1 1 is same as entity2 6”
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Figure 8.3: Graphical Representation of the Knowledge, “IF entity1 is at top and entity2

waits at the top THEN entity1 1 is same as entity2 6”

2. The graphical representation of the first knowledge in the list is merged with the

representation of the input WSC sentences to obtain a merged representation graph.

There are two steps in the merging operation.

• Step 1: In this step all the nodes in the knowledge graph are identified which

have a corresponding node in the graph of the WSC sentences. The corre-

spondence between two nodes is determined if two nodes are instances of the

same conceptual class and if they have same outgoing and incoming edges to

and from already corresponding nodes. We used Answer Set Programming

(ASP) to extract corresponding nodes from the two graphs. The corresponding

nodes are extracted by using a binary predicate called k s crossdomain clone.

k s crossdomain clone(x,y) represents that a node x in the representation of a

knowledge corresponds to a node y in the representation of input WSC sen-

tences. Following ASP rules are used to extract such nodes. Here,
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has s(X,R,Y) represents an edge in WSC sentences’ graph and has k(X,R,Y)

represents an edge in a knowledge graph.

% General rules to extract usful information from

% input graphs

k_val(X) :- has_k(X,R,Y).

k_val(Y) :- has_k(X,R,Y).

s_val(X) :- has_s(X,R,Y).

s_val(Y) :- has_s(X,R,Y).

s_const(X) :- has_s(X,"instance_of",I).

k_class(X) :- has_k(A,"instance_of",X).

k_const(X) :- not k_class(X), k_val(X).

s_has_par(X) :- has_s(P,R,X), s_const(X), s_const(P).

k_has_par(X) :- has_k(P,R,X), k_const(X), k_const(P).

s_has_child(X) :- has_s(X,R,C), s_const(X), s_const(C).

k_has_child(X) :- has_k(X,R,C), k_const(X), k_const(C).

% Rules to determine the cross representation nodes

% which belong to same conceptual class

not_k_s_crossdom_sib(X,Y) :- has_k(X,"instance_of",I1),

has_k(X,"instance_of",I2),

has_s(Y,"instance_of",I1),
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not has_s(Y,"instance_of",I2),

I1!=I2.

not_k_s_crossdom_sib(X,Y) :- has_k(X,"instance_of",I1),

has_k(X,"instance_of",I2),

not has_s(Y,"instance_of",I1),

has_s(Y,"instance_of",I2),

I1!=I2.

not_k_s_crossdom_sib(X,Y) :- has_k(X,"instance_of",I1),

has_k(X,"instance_of",I2),

not has_s(Y,"instance_of",I1),

not has_s(Y,"instance_of",I2),

s_const(Y),

I1!=I2.

k_s_crossdom_sib(X,Y) :- has_s(Y,"instance_of",I),

has_k(X,"instance_of",I),

not not_k_s_crossdom_sib(X,Y),

s_const(Y), k_const(X).

% Rules to determine the nodes, across knowledge

% and WSC sentences’ graphs, which correspond to

% each other

k_sibling_exists(X) :- k_s_crossdom_sib(X,Y),

k_val(X), s_val(Y).
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entity_class(person;object;entity).

k_entity(X) :- has_k(X,"instance_of",E), entity_class(E).

k_not_entity(X) :- k_const(X), not k_entity(X).

s_entity(X) :- has_s(X,"instance_of",E), entity_class(E).

s_not_entity(X) :- s_const(X), not s_entity(X).

k_not_have_sib(X) :- not k_sibling_exists(X), k_const(X).

k_child_not_have_sib(X) :- has_k(X,R1,C1),

has_k(X,R2,C2),

k_not_have_sib(C1),

k_const(C1),

k_const(C2).

all_child_have_sib(X) :- not k_child_not_have_sib(X),

k_const(X).

k_s_crossdom_clone(X,Y) :- has_k(Pj,Rj,X),

k_not_entity(X),

has_s(Pj_prime,Rj_prime,Y),

s_not_entity(Y),

k_s_crossdom_sib(X,Y),

not k_sibling_exists(Pj),

k_const(Pj),k_const(X),

s_const(Pj_prime),s_const(Y),

Rj!="instance_of",
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Rj_prime!="instance_of".

k_s_crossdom_clone(X,Y) :- has_k(X,Rk,Cj),

k_not_entity(X),

has_s(Y,Rk_prime,Cj_prime),

s_not_entity(Y),

k_s_crossdom_sib(X,Y),

not k_sibling_exists(Cj),

k_const(Cj),k_const(X),

s_const(Cj_prime),s_const(Y),

Rk!="instance_of",

Rk_prime!="instance_of".

k_s_crossdom_clone(X,Y) :- has_k(Pj,Rj,X),

has_s(Pj_prime,Rj,Y),

k_s_crossdom_sib(X,Y),

k_s_crossdom_clone(Pj,Pj_prime),

k_const(Pj),

has_k(X,Rk,Cj),

has_s(Y,Rk,Cj_prime),

k_s_crossdom_sib(Cj,Cj_prime),

k_const(Cj).

k_s_crossdom_clone(X,Y) :- k_s_crossdom_sib(X,Y),

not k_has_par(X),

has_k(X,Rk,Cj),
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has_s(Y,Rk,Cj_prime),

k_s_crossdom_sib(Cj,Cj_prime),

k_const(Cj).

k_s_crossdom_clone(X,Y) :- k_s_crossdom_sib(X,Y),

has_k(Pj,Rj,X),

has_s(Pj_prime,Rj,Y),

k_s_crossdom_clone(Pj,Pj_prime),

k_const(Pj),

not k_has_child(X).

k_s_crossdom_clone(X,Y) :- k_s_crossdom_sib(X,Y),

not k_has_par(X),

not k_has_child(X).

• Step 2: In this step the corresponding nodes which were extracted in the pre-

vious step are used to merge the graphs of input WSC sentences and the in-

put knowledge. The basic motivation behind merging is to add the knowledge

graph nodes which do not have corresponding nodes in the WSC sentences’

graph. Following set of ASP rules are used in this step. Here has m(X,R,Y)

represents an edge in the merged representation.

has_m(X,R,Y) :- has_s(X,R,Y).

k_covered(X) :- k_const(X),

s_const(Y),

k_s_crossdom_clone(X,Y).
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k_not_covered(X) :- not k_covered(X), k_const(X).

k_not_all_covered :- not k_covered(X), k_const(X).

k_all_covered :- not k_not_all_covered.

k_covered_edge(X,R,Y) :- has_k(X,R,Y),

R!="instance_of",

k_s_crossdom_clone(X,X1),

k_s_crossdom_clone(Y,Y1),

has_s(X1,R,Y1),

s_const(X1),

s_const(Y1).

k_covered_edge(X,"instance_of",Y) :- has_k(X,"instance_of",Y),

k_s_crossdom_clone(X,X1),

has_s(X1,"instance_of",Y),

s_const(X1).

k_not_all_edges_covered :- has_k(X,R,Y),

not k_covered_edge(X,R,Y).

k_all_edges_covered :- not k_not_all_edges_covered.

has_m(X,R,Y) :- has_s(X,R,Y1),

has_s(X2,R2,Y),

Y1!=Y,

k_s_crossdom_clone(Y_k,Y1),

k_s_crossdom_clone(Y_k,Y),

k_all_covered,

k_all_edges_covered.

175



has_m(X,R,Y) :- has_s(X1,R,Y),

has_s(X,R2,Y2),

X1!=X,

k_s_crossdom_clone(X_k,X1),

k_s_crossdom_clone(X_k,X),

k_all_covered,

k_all_edges_covered.

has_m_candidate_right(N1S,R,N2,N2S) :- has_k(N1,R,N2),

k_covered(N1),

k_not_covered(N2),

k_s_crossdom_clone(N1,N1S),

coref(N2,N2K),

k_s_crossdom_clone(N2K,N2S).

has_m_candidate_right(N1S,R,N2,N2S) :- has_k(N1,R,N2),

k_covered(N1),

k_not_covered(N2),

k_s_crossdom_clone(N1,N1S),

coref(N2K,N2),

k_s_crossdom_clone(N2K,N2S).

has_m_candidate1_right(N1S,R,N2) :- has_k(N1,R,N2),

k_covered(N1),

k_not_covered(N2),

k_s_crossdom_clone(N1,N1S).
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has_m(X,R,Y) :- has_m_candidate1_right(X,R,Y),

not has_m_candidate_right(X,R,Y,Y1),

s_const(Y1).

has_m(X,R,Y1) :- has_m_candidate_right(X,R,Y,Y1).

has_m(Y,"instance_of",YI) :- has_m_candidate1_right(X,R,Y),

not has_m_candidate_right(X,R,Y,Y1),

has_k(Y,"instance_of",YI),

s_const(Y1).

has_m_candidate_left(N1S,N1,R,N2S) :- has_k(N1,R,N2),

k_not_covered(N1),

k_covered(N2),

k_s_crossdom_clone(N2,N2S),

coref(N1,N1K),

k_s_crossdom_clone(N1K,N1S).

has_m_candidate_left(N1S,N1,R,N2S) :- has_k(N1,R,N2),

k_not_covered(N1),

k_covered(N2),

k_s_crossdom_clone(N2,N2S),

coref(N1K,N1),

k_s_crossdom_clone(N1K,N1S).

has_m_candidate1_left(N1,R,N2S) :- has_k(N1,R,N2),

k_not_covered(N1),

k_covered(N2),

k_s_crossdom_clone(N2,N2S).
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has_m(X,R,Y) :- has_m_candidate1_left(X,R,Y),

not has_m_candidate_left(X1,X,R,Y),

s_const(X1).

has_m(X1,R,Y) :- has_m_candidate_left(X1,X,R,Y).

has_m(X,"instance_of",XI) :- has_m_candidate1_left(X,R,Y),

not has_m_candidate_left(X1,X,R,Y),

s_const(X1),

has_k(X,"instance_of",XI).

has_m_both(N1S,NI1,R,N2S,NI2) :- has_k(N1,R,N2),

R!="instance_of",

k_not_covered(N1),

k_not_covered(N2),

coref(N1,N1K),

coref(N2,N2K),

k_s_crossdom_clone(N2K,N2S),

k_s_crossdom_clone(N1K,N1S),

has_k(N1,"instance_of",NI1),

has_k(N2,"instance_of",NI2).

has_coref(N1) :- coref(N1,N2).

n_coref(N1) :- not has_coref(N1), k_const(N1).

has_m_both1(N1S,R,N2,NI2) :- has_k(N1,R,N2),
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R!="instance_of",

k_not_covered(N1),

k_not_covered(N2),

coref(N1,N1K),

n_coref(N2),

k_s_crossdom_clone(N1K,N1S),

has_k(N2,"instance_of",NI2).

has_m_both2(N1,NI1,R,N2S) :- has_k(N1,R,N2),

R!="instance_of",

k_not_covered(N1),

k_not_covered(N2),

coref(N2,N2K),

n_coref(N1),

k_s_crossdom_clone(N2K,N2S),

has_k(N1,"instance_of",NI1).

has_m(N1,R,N2) :- has_k(N1,R,N2),

R!="instance_of",

k_not_covered(N1),

k_not_covered(N2),

n_coref(N1),

n_coref(N2).

has_m(N1,"instance_of",NI1) :- has_k(N1,R,N2),

R!="instance_of",

k_not_covered(N1),
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k_not_covered(N2),

n_coref(N1),

n_coref(N2),

has_k(N1,"instance_of",NI1).

has_m(N2,"instance_of",NI2) :- has_k(N1,R,N2),

R!="instance_of",

k_not_covered(N1),

k_not_covered(N2),

n_coref(N1),

n_coref(N2),

has_k(N2,"instance_of",NI2).

has_m(N1S,R,N2S) :- has_m_both(N1S,NI1,R,N2S,NI2).

has_m(N1S,"instance_of",NI1) :-

has_m_both(N1S,NI1,R,N2S,NI2).

has_m(N2S,"instance_of",NI2) :-

has_m_both(N1S,NI1,R,N2S,NI2).

has_m(N1S,R,N2) :- has_m_both1(N1S,R,N2,NI2).

has_m(N2,"instance_of",NI2) :- has_m_both1(N1S,R,N2,NI2).

has_m(N1,R,N2S) :- has_m_both2(N1,NI1,R,N2S).

has_m(N1,"instance_of",NI1) :- has_m_both2(N1,NI1,R,N2S).

An Example of a merged representation generated by using the graphical representa-

tion of WSC sentences shown in the Figure 8.1 and the representation of a knowledge

piece shown in is as shown in the Figure 8.2 is as shown in the Figure 8.4 below. The
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highlighted part in the Figure 8.4 represents the information that is added to the WSC

sentences by using a piece of knowledge.

Figure 8.4: An Example of a Merged Representation

3. The output merged graph from the previous step is merged with the graph of the

next knowledge in the list to generate another merged representation graph using the

same merging procedure as explained above. This step is continued until only one

knowledge in the list of knowledge pieces remains.

4. Finally, the k s crossdomain clones(X,Y) with respect to the last knowledge in the

list and the merged representation generated in the previous step are extracted and

the following ASP rule is used to extract the final answer to the input WSC problem.

ans(A) :- k_s_crossdom_clone(X1,P),

k_s_crossdom_clone(X2,A),

pronoun(P),

has_k(X1,"is_same_as",X2).
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Here, ans(A) represents that A is the answer to the WSC problem and pronoun(P)

represents that P is the pronoun to be resolved.

For example, the k s crossdomain clones(X,Y) groundings generated from the repre-

sentation in the Figure 8.4 and the knowledge shown in the Figure 8.3 are,

k_s_crossdom_clone("is_2","is_2")

k_s_crossdom_clone("top_4","top_4")

k_s_crossdom_clone("entity1_1","cat_7")

k_s_crossdom_clone("entity2_6","It_12")

k_s_crossdom_clone("waits_7","waited_13")

k_s_crossdom_clone("top_10","top_15")

As per the input question, the pronoun to resolve is ‘It 2’, i.e., pronoun(It 2). So,

the answer to the input problem is cat 7.
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Parikh, A. P., O. Täckström, D. Das and J. Uszkoreit, “A decomposable attention model for
natural language inference”, arXiv preprint arXiv:1606.01933 (2016).

Pasupat, P. and P. Liang, “Compositional semantic parsing on semi-structured tables”,
arXiv preprint arXiv:1508.00305 (2015).

Poon, H., “Grounded unsupervised semantic parsing”, in “Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)”,
vol. 1, pp. 933–943 (2013).

Prakash, A., A. Sharma, A. Mitra and C. Baral, “Combining knowledge hunting and neural
language models to solve the winograd schema challenge”, in “Proceedings of the ACL
2019”, (Association for Computational Linguistics, 2019).

189



Pustejovsky, J., “The syntax of event structure”, Cognition 41, 1, 47–81 (1991).

Rajpurkar, P., R. Jia and P. Liang, “Know what you don’t know: Unanswerable questions
for squad”, arXiv preprint arXiv:1806.03822 (2018).

Rajpurkar, P., J. Zhang, K. Lopyrev and P. Liang, “Squad: 100,000+ questions for machine
comprehension of text”, arXiv preprint arXiv:1606.05250 (2016).
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A.1 Proof of Theorem 1

The proof of Theorem 1 is done using a set of lemmas. In this sections we present those
lemmas and then use them to prove Theorem 1.

Lemma 1 Let GS = (VS ,ES , fS) be a graphical representation of the sequence of sen-
tences in a WSC problem. Then, Step 1 of the WiSCR Algorithm extracts a subgraph G′S of
GS such that G′S = (V′S ,E

′
S , f ′S) where V′S =VS−Vc

S , Vc
S is a set of all the class nodes in

GS , f ′S = fS , E′S = ES −Ec
S , and e ∈ Ec

S if f (e) = instance o f .

Proof 3 According to the Step 1 of the WiSCR algorithm, given a graph GS = (VS ,ES , fS),
a subgraph of it is extracted. Let G′S =(V′S ,E

′
S , f ′S) be the extracted subgraph. V′S contains

all the nodes from GS which are not class nodes, i.e., V′S = VS −Vc
S , Vc

S is a set of all the
class nodes in GS . Also, E′S contains all the edges between the nodes in V′S . So, by
Definition 4 E′S = ES −Ec

S where e ∈ Ec
S if f (e) = instance o f . Furthermore, no new

edges or nodes are added to G′S so f ′S = fS .
Hence, the step 1 of the WiSCR Algorithm extract a subgraph G′S from GS such that if

GS = (VS ,ES , fS) then G′S = (V′S ,E
′
S , f ′S) where V′S = VS −Vc

S , Vc
S is a set of all the

class nodes in GS , f ′S = fS , E′S = ES −Ec
S , and e ∈ Ec

S iff f (e) = instance o f .

Lemma 2 Let GK = (VK,EK, fK) be a graphical representation of a knowledge (By Def-
inition 6). Then, Step 2 of the WiSCR Algorithm extracts a subgraph G′K from GK such
that G′K = (V′K,E

′
K, f ′K) where V′K = VK−Vc

K, Vc
K is a set of all the class nodes in GK,

f ′K = fK, E′K = EK−Ec
K, and e ∈ Ec

K if f (e) ∈ {instance o f , is same as}.

Proof 4 According to the Step 2 of the WiSCR algorithm, given a graphical representation
of a knowledge GK = (VK,EK, fK), a subgraph of it is extracted. Let G′K = (V′K,E

′
K, f ′K)

be the extracted subgraph. V′K contains all the nodes from GK which are not class nodes,
i.e., V′K = VK−Vc

K, Vc
K is a set of all the class nodes in GK. Also, E′K contains all the

edges between the nodes in V′K except the ones labeled as ‘is same as’. So, by Definition
6 E′K = EK−Ec

K, and e ∈ Ec
K if f (e) ∈ {instance o f , is same as}. Furthermore, no new

edges or nodes are added to G′K so f ′K = fK.
Hence, the step 2 of the WiSCR Algorithm extract a subgraph G′K from GK such that

if GK = (VK,EK, fK) then G′K = (V′K,E
′
K, f ′K) where V′K = VK−Vc

K, Vc
K is a set of all

the class nodes in GK, f ′K = fK, E′K = EK−Ec
K, and e ∈ Ec

K if f (e) ∈ {instance o f , is -
same as}

Lemma 3 Let GS = (VS ,ES , fS) be a graphical representation of a sequence of sentences
in a WSC problem, G′S = (V′S ,E′S , f ′S) be a subgraph of GS such that V′S = VS −Vc

S
where Vc

S is the set of all the class nodes in GS , f ′S = fS and E′S = ES −Ec
S where

e ∈ Ec
S iff fS(e) = “instance o f ”. Let GK = (VK,EK, fK) be a graphical representation

of a knowledge where fK is defined using fS , G′K = (V′K,E′K, f ′K) be a subgraph of GK
such that V′K = VK−Vc

K where Vc
K is the set of all the class nodes in GK, f ′K = fK and

E′K = EK−Ec
K where e ∈ Ec

K iff fK(e) ∈ {is same as, instance o f}. Then, Step 3 of the
WiSCR algorithm extracts all possible sets of node pairs of the form (a,b) such that either
there does not exist such a non-empty set or if Mi is one such non-empty set then,

• for each (a,b) ∈Mi, a ∈ V′S and b ∈ V′K,
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• for each (a,b) ∈Mi, a and b are instances of same class, i.e., (a, i) ∈ ES , (b, i) ∈ EK,
fS((a, i)) = instance o f and fK((b, i)) = instance o f
• if for every pair (a,b)∈Mi, a is replaced by b in V′S then G′K becomes a subgraph of

the node-replaced G′S

Proof 5 (i) Given a graphical representation of the sentences in a WSC problem (say GS =
(VS ,ES , fS)) and Lemma 1, the Step 1 of the WiSCR algorithm produces a subgraph of GS
(say G′S = (V′S ,E′S , f ′S)) such that V′S =VS−Vc

S where Vc
S is a set of all the class nodes in

GS , f ′S = fS and E′S = ES −Ec
S where e ∈ Ec

S if fS(e) = instance o f .

(ii) Given a graphical representation of a knowledge (say GK = (VK,EK, fK)) and 2, the
step 2 of the WiSCR algorithm produces a subgraph of GK (say G′K = (V′K,E′K, f ′K)) such that
V′K =VK−Vc

K where Vc
K is a set of all the class nodes in GK, f ′K = fK and E′K =EK−Ec

K
where e ∈ Ec

K if fK(e) ∈ {instance o f , is same as}.

(iii) Given G′S and G′K are the graphs generated by the steps 1 and 2 of the WiSCR algorithm
respectively, then according to the Step 3 of the WiSCR algorithm, it extracts all possible
graph-subgraph isomorphisms between G′S and G′K. In other words, it extracts all possible
sets of pairs of the form (a,b) such that either there does not exist such a non-empty set or
if Mi is one such non-empty set then,

• for each (a,b) ∈Mi, a ∈ V′S and b ∈ V′K,
• for each (a,b) ∈Mi, a and b are instances of same class, i.e., (a, i) ∈ ES , (b, i) ∈ EK,

fS((a, i)) = instance o f and fK((a, i)) = instance o f , and
• if for every pair (a,b) ∈Mi, a is replaced by b then G′K becomes a subgraph of the

node-replaced G′S

Theorem 1 Let S be a sequence of sentences in a WSC problem P , GS = (VS ,ES , fS) be
a graphical representation of S, p be a node in GS such that it represents the pronoun to
be resolved in P , a1 and a2 be two nodes in GS such that they represent the two answer
choices for P , and GK = (VK,EK, fK) be a graphical representation of a knowledge such
that fK is defined using fS . Then, the Winograd Schema Challenge Reasoning (WiSCR)
algorithm outputs,

• a1 as the answer of P , if only a1 provides the ’most natural resolution’ (By Definition
7) for p in GS ,
• a2 as the answer of P , if only a2 provides the ‘most natural resolution’ for p in GS ,
• No answer otherwise

Proof 6 If GS = (VS ,ES , fS) is a graphical representation of the sequence of sentences in
a WSC problem then by Lemma 1, we have that
Step 1 of the WiSCR Algorithm extract a subgraph G′S from GS such that G′S = (V′S ,E

′
S , f ′S)

where V′S = VS −Vc
S , Vc

S is a set of all the class nodes in GS , f ′S = fS , E′S = ES −Ec
S ,

and e ∈ Ec
S if f (e) = instance o f .

If GK=(VK,EK, fK) is a graphical representation of a knowledge then by Lemma 2, we
have that
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Step 2 of the WiSCR Algorithm extracts a subgraph G′K from GK such that G′K = (V′K,E
′
K-

, f ′K) where V′K = VK−Vc
K, Vc

K is a set of all the class nodes in GK, f ′K = fK, E′K =
EK−Ec

K, and e ∈ Ec
K if f (e) ∈ {instance o f , is same as}.

If GS , GS ′, GK and GK′ are inputs to the Step 3 of the WiSCR algorithm then by Lemma 3,
we have that
Step 3 of the WiSCR algorithm produces all the possible sets of node pairs of the form (a,b)
such that either there does not exist such a non-empty set or if Mi is one such non-empty
set then,

• for each (a,b) ∈Mi, a ∈ V′S and b ∈ V′K, and
• for each (a,b) ∈Mi, a and b are instances of same class, i.e., (a, i) ∈ ES , (b, i) ∈ EK,

fS((a, i)) = instance o f and fK((a, i)) = instance o f
• if for every pair (a,b)∈Mi, a is replaced by b then G′K becomes an induced subgraph

of G′S
If p ∈ VS represents the pronoun to be resolved, a1,a2 ∈ VS represent the two answer
choices. Then by Step 4 of the WiSCR algorithm and for each possible non-empty set of
pairs (say Mi) produced by Step 3, we have that

1. a1 as an answer if,

• (p,n1) ∈Mi,
• (a1,n2) ∈Mi,
• (n1,n2) ∈ EK and fK((n1,n2)) = is same as, or (n2,n1) ∈ EK and fK((n2,n1)) =

is same as, and
• there does not exist an n and an x (x 6= a1) such that (x,n)∈Mi and either fK((n,n1)-

) = is same as or fK((n1,n)) = is same as.

2. a2 as an answer if,

• (p,n1) ∈Mi,
• (a2,n2) ∈Mi,
• (n1,n2)∈EK where fK((n1,n2))= is same as, or (n2,n1)∈EK where fK((n2,n1))=

is same as, and
• there does not exist an n and an x (x 6= a2) such that (x,n)∈Mi and either fK((n,n1)-

) = is same as or fK((n1,n)) = is same as.

3. not answer is produced if neither a1 nor a2 are found as an answer

Then, the Step 4 of the WiSCR algorithm outputs a1 as the final answer if only a1 is
found as an answer with respect to the possible node pairs extracted in the Step 3. The Step
4 of the WiSCR algorithm outputs a2 as the final answer if only a2 is found as an answer
with respect to the possible node pairs extracted in the Step 3. The Step 4 of the algorithm
does not answer anything otherwise.
By definition of ‘most natural resolution’ and above details of the Step 4 of the WiSCR
algorithm, we have that

• a1 is the answer of P , if only a1 provides the ’most natural resolution’ (By Definition
7) for p in GS ,
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• a2 is the answer of P , if only a2 provides the ‘most natural resolution’ for p in GS ,
• No answer otherwise

The theorem is proved.

A.2 Proof of Theorem 2

Theorem 2 Let S be a sequence of sentences in a WSC problem P , T(S) be the set of to-
kens in S, p∈T(S) be the token which represents the pronoun to be resolved, a1,a2 ∈T(S)
be two tokens which represent the two answer choices, GS = (VS ,ES , fS) be a graphical
representation of S, and GK = (VK,EK, fK) be a representation of a knowledge such that
fK is defined using fS . Also, Π(GS,GK, p,a1,a2) be the AnsProlog program for WiSCR
algorithm and ANSWERFINDER be the sub-algorithm defined in Section 4.3.2. Then, the
WiSCR algorithm produces an answer x to the input WSC problem iff Π(GS,GK, p,a1,a2)
and ANSWERFINDER together output the answer x.

Proof 7 (i) Given the ASP encoding of a graphical representation of the sequence of sen-
tences in a WSC problem, the rules s11-s13 extract a subgraph such that it contains only
the non class nodes from the original graphs and the edges which connect them. The nodes
of the subgraph are represented using the predicate node G s and the edges are repre-
sented using the binary predicate edge G S. In other words, the rules s11-s13 implement
the Step 1 of the WiSCR algorithm.
(ii) Similar to (i) the rules s21-s23 implement the Step 2 of the WiSCR algorithm.
(iii) Given the outputs of the rules s11-s23, and the ASP representations of the sequence of
sentences in a WSC problem and a knowledge, the rules s31-s37 first generate all possible
matching pairs corresponding to the nodes of the graph of WSC sentences and the graph
of knowledge, then a set of constraints are used to remove the possibilities which do not
represent an isomorphism between the subgraphs of WSC sentences and knowledge. In
other words, the rules s31-s37 implement the Step 3 of the WiSCR algorithm.
(iv) Given an output of the rules s31-s37, and the ASP representations of the sequence of
sentences in a WSC problem and a knowledge, the rules s41-s49
• output ans(a1) if matches(p,n1), matches(a1,n2) are true and has k(n1,”is same a-
s”,n2) or has k(n2,“is same as′′,n1) is true, and there does not exist an n and an x (x 6= a1)
such that matches(x,n) is true and either has k(n1,”is same as”,n) or has k(n,”is same a-
s”,n1) is true.
• output ans(a2) if matches(p,n1), matches(a2,n2) are true and has k(n1,”is same a-
s”,n2) or has k(n2,“is same as′′,n1) is true, and there does not exist an n and an x (x 6= a2)
such that matches(x,n) is true and either has k(n1,”is same as”,n) or has k(n,”is same a-
s”,n1) is true.
• do not satisfy the current interpretation

If more than one answers are produced and all of them correspond to one answer then
ANSWERFINDER sub-algorithm outputs that as the final answer. Otherwise if zero answers
are produced, or not all among the multiple answers correspond to a common answer then
the ANSWERFINDER sub-algorithm does not output anything.

In other words, the rules s41-s49 and the ANSWERFINDER sub-algorithm together
implement the step 4 of the WiSCR algorithm.

By (i), (ii), (iii) and (iv), the WiSCR algorithm produces an answer x to the input WSC
problem iff Π(GS,GK, p,a1,a2) and ANSWERFINDER together output the answer x.
The theorem is proved.
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