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ABSTRACT

This dissertation addresses access management problems that occur in both emer-

gency and outpatient clinics with the objective of allocating the available resources

to improve performance measures by considering the trade-offs. Two main settings are

considered for estimating patient willingness-to-wait (WtW) behavior for outpatient

appointments with statistical analyses of data: allocation of the limited booking hori-

zon to patients of different priorities by using time windows in an outpatient setting

considering patient behavior, and allocation of hospital beds to admitted Emergency

Department (ED) patients. For each chapter, a different approach based on the prob-

lem context is developed and the performance is analyzed by implementing analytical

and simulation models. Real hospital data is used in the analyses to provide evidence

that the methodologies introduced are beneficial in addressing real life problems, and

real improvements can be achievable by using the policies that are suggested.

This dissertation starts with studying an outpatient clinic context to develop an

effective resource allocation mechanism that can improve patient access to clinic ap-

pointments. I first start with identifying patient behavior in terms of willingness-to-

wait to an outpatient appointment. Two statistical models are developed to estimate

patient WtW distribution by using data on booked appointments and appointment

requests. Several analyses are conducted on simulated data to observe effectiveness

and accuracy of the estimations. Then, this dissertation introduces a time windows

based policy that utilizes patient behavior to improve access by using appointment

delay as a lever. The policy improves patient access by allocating the available ca-

pacity to the patients from different priorities by dividing the booking horizon into

time intervals that can be used by each priority group which strategically delay lower

priority patients. Finally, the patient routing between ED and inpatient units to im-

prove the patient access to hospital beds is studied. The strategy that captures the
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trade-off between patient safety and quality of care is characterized as a threshold

type. Through the simulation experiments developed by real data collected from a

hospital, the achievable improvement of implementing such a strategy that considers

the safety-quality of care trade-off is illustrated.
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Chapter 1

INTRODUCTION

Interest in healthcare resources has grown significantly throughout the years glob-

ally. Due to this growing demand, the hospitals are facing the problem of prolonged

waiting times experienced by the patients while seeking access to care. Timeliness is

considered as one of the key indicators of the quality of healthcare delivery as well

as patient safety. Many studies in the literature emphasize lengthy waiting times can

have a negative effect on patients condition and put patients’ safety at risk. Con-

sidering this vitality of timeliness of care on healthcare outcomes, it is essential for

the hospital administrators to manage the available capacity effectively to satisfy

patients’ needs and obtain better healthcare outcomes without incurring additional

costs.

Hospitals receive patient demand from various resources which can be divided

into three main encounter types as emergency, inpatient, and outpatient care. The

patients who require access to care are different in terms of level of care needed,

urgency and stochasticity of the need, service time expectations, and resource us-

age. Additionally, the wait experienced by each one of these patient types differs

since emergency patients physically experience the delay while they are actually in a

healthcare facility while outpatients usually request an appointment on a future date.

Therefore, in emergency cases, we can observe a queue accumulated in a waiting area,

while in outpatient case, patients experience indirect waiting, mostly in days, in a

virtual queue.

The differences in healthcare experience of each one of the encounter types call

for unique approaches in improving healthcare delivery in terms of effectiveness, ef-
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ficiency, timeliness, and safety which are directly related to prolonged waiting times

experienced by patients. While there is a consensus on importance of reducing the

waiting times in patient service satisfaction and safety, there are no standardized

guidelines to reduce those waiting times under different settings. Inefficiencies and

prolonged waiting times experienced by patients beg for decision support tools that

can help to improve utilization of resources and patient outcomes. We utilize op-

erations research, statistical estimation, and stochastic control methods to provide

strategies to satisfy the goals of healthcare delivery listed above.

In this dissertation, we introduce the concept of access management, which is a

new concept in healthcare systems. Our main goal in access management is developing

policies that consider differences in patients’ needs and differences in service level

expectations rather than providing equal access to each patient. This approach can

be summarized as designing an access protocol that assigns “the right capacity to

the right patients with the right access delay.” Access is a different concept from the

scheduling where in the scheduling problems the concept includes the sequencing of

the job while in the access problem, we go beyond the scheduling and focus on high-

level rules that allocates capacity based on the patient characteristics and priorities.

Based on our collaborations with a healthcare institution, we identify the chal-

lenges within the system based on the data available and we focus on the allocation of

healthcare resources in two different settings considering the setting specific trade-offs

and objectives.

In the first setting, we examine an outpatient access problem where patients re-

quest an appointment for a future date. Unlike ED, in outpatient systems patients

experience a virtual (indirect) waiting. In this setting, one of the critical compo-

nents of the system is patient behavior which is not relevant in our first setting. In

outpatient care, determining “right” patients are directly associated with identifying
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patient priorities. While there is no general tool to determine patient priorities, we

consider a setting where the priorities can be determined by institution based rules.

After determining who the “right” patients are the next step of access management

is allocation of the capacity with “right” delay which can be achieved through prior-

itization. While prioritization is the key to improve access, it is not the only criteria

that needs to be considered since determining “right” delay also depends on patients’

waiting time expectations and their sensitivity to experienced delay.

We then consider an Emergency Department (ED) in the second setting where

patients experience direct waiting times while accessing the hospital beds in inpatient

wards (IW). In this setting, allocating the “right” capacity to the “right” patient is

directly associated with appropriateness of patient’s condition to the IW that the bed

belongs to and the “right” access delay can be determined based on patient’s urgency.

Considering these differences in the settings and the concept of access in them,

we develop two different approaches in this dissertation to respond setting specific

goals. In the first setting, we focus on prioritizing patients while allocating the clin-

ical capacity where patients exhibit reaction to access delay. Therefore, we analyze

the second setting in two steps. First, in Chapter 2, we focus on identifying patients’

waiting time expectations. Then, in Chapter 3, we develop an access protocol to

prioritize patients considering the behavior studied in Chapter 2. In our work on the

second setting which is presented in Chapter 4, we specifically focus on appropriate-

ness and timeliness of the assignment to improve access for patients are admitted to

different IWs through ED.

1.1 Contributions of this Dissertation

The first contribution is developing statistical models to understand the patient

willingness-to-wait (WtW) behavior and comprehensive analysis of this behavior on

3



simulated and real life data. Our observations from real life systems suggest that of-

fered appointment delay has an effect on patients’ appointment booking and fulfilling

behavior and patients show aversion to prolonged appointment delays. This obser-

vation suggests that it is crucial to understand WtW behavior before designing an

effective access policy and consider this behavior in making access decisions. In order

to develop a policy that considers patient behavior, one needs to fully characterize

WtW from available data. To this end, we develop two novel statistical methods

to obtain patient willingness-to-wait from available data on booked appointments.

Through an extensive analysis on simulated datasets, we show that the statistical

methods that we develop are effective in parameterizing WtW as a function of the

offered appointment delay.

We then focus on improving patient access by developing an access protocol that

utilizes WtW behavior and prioritize by using offered appointment delay as a lever.

We propose a framework that schedules patients from different priorities on certain

time intervals of the booking calendar which are called time windows. In this part,

we focus on managing the available capacity in terms of the calendar days that can

be used by each priority group and by strategically delaying the patients from lower

priority groups. Our objective is to segmentize patients from different priority groups

considering patient WtW and prioritize patients by not only serving higher priorities

earlier in the booking horizon but also serving a higher proportion of the arriving

demand from higher priorities.

The final contribution in this dissertation is developing an assignment policy that

utilizes overflows to improve the access of ED to IW where the patients that require

beds from different IWs experience prolonged waiting (boarding) times before they are

admitted to an IW while occupying an ED bed. We employ a Markov decision process

(MDP) and model the patient flow as a multi-class queueing network problem with
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flexible servers where the servers are inpatient beds with the objective of minimizing

the total cost consists of the cost associated with the risk of adverse events can

be developed while waiting in ED and the cost of assigning patient to a secondary

unit where patients can get less than ideal treatment. By analyzing the structural

properties of our MDP, we identify the optimal policy as a state-dependent threshold-

type policy where keeping patients in ED for a primary assignment is beneficial up

until a certain number of outstanding ED bed requests. We then develop a heuristic

policy which is effective and easy to use where we dynamically balance the cost

associated with patient safety and quality of care. Finally, we use a simulation model

which is calibrated with the real-life data to assess the performance of our proposed

patient routing policy.

1.2 Dissertation Organization

The rest of this proposal is organized as follows. In Chapter 2, we focus on

understanding patient willingness-to-wait to outpatient appointment by conducting

empirical analyses on available appointment data. We then present our time-window

based framework to improve patient access by considering patient behavior in Chap-

ter 3. Chapter 4 focuses on our research in improving patient flow between ED to

inpatient units considering patient safety and quality of care. Finally, we present our

concluding remarks with research plan in Chapter 5.
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Chapter 2

STATISTICAL CHARACTERIZATION OF PATIENT RESPONSE TO ACCESS

DELAY USING HEALTHCARE TRANSACTIONAL DATA

2.1 Introduction

Lengthy waiting times for medical care is a growing problem that the US health-

care system faces. Appointment scheduling literature defines two main types of wait-

ing, where direct wait refers to the amount of time patient waits at the care facility on

the day of the appointment, whereas indirect wait refers to the number of days (typ-

ically) between the appointment request and the actual appointment. While direct

wait is an important metric since it impacts patients’ perception of quality of care,

excessive indirect wait may have a larger impact on the patients’ health outcomes,

and may even put patients’ safety and positive health outcomes in jeopardy (Murray

and Berwick, 2003). Additionally, long indirect waiting times are often associated

with higher cancellation and no-show rates, reducing clinic efficiency and increasing

healthcare costs (LaGanga and Lawrence, 2007). Unfortunately, indirect waiting has

been an growing problem in many healthcare settings. A recent survey conducted

in 15 metropolitan areas shows that the average wait time for a new appointment

has increased by 30% to 24.1 days since 2014 (Merrit-Hawkins, 2017). The same

survey also indicates that the average new patient wait time for a physician appoint-

ment can be as high as 52.4 days in some major metropolitan areas such as Boston.

Considering the growing healthcare needs of an aging population, increasing rates of

chronic diseases, and significant expansion of health insurance coverage, it is essential

for healthcare systems to use available capacity effectively to provide timely access
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to healthcare services.

The ability to use the available care capacity effectively depends strongly on ac-

curate understanding of patient needs, expectations and behavior. Ideally, access to

healthcare resources should be provided in such a way that “the Right patient sees the

Right care provider, at the Right time,” which we refer to as 3R Healthcare Access,

or 3R-HA for short. Unfortunately, appointments are currently provided to patients

in first-come-first-served manner by an appointment office (AO) agent, who typically

lacks the ability and information to assess the potential negative consequences of of-

fering a particular slot with a long appointment delay to a patient. For example,

if the patient’s needs are indeed more urgent than the offered appointment delay,

the patient may “leave,” (i.e., hang-up the phone) without booking an appointment

(incidence referred to as PLWBA hereon), or book the offered appointment but can-

cel, reschedule or “no-show” (incidence referred to as C/RS/NS hereon), subsequent

to booking the appointment. In the worst case, patient waits for the offered ap-

pointment and then suffers negative health outcomes due to delayed treatment and

interventions. All of these undesirable outcomes mainly result from a mismatch be-

tween the patient’s needs/expectations and the offered appointment delay, and the

operational and financial impact of these incidences can be significant, especially in

severely capacity-constrained specialty clinics. For example, PLWBA means that the

patient has to seek care elsewhere (which may not be in his best interest), and the

clinic foregoes an opportunity to provide care. The term PLWBA is inspired from

left without being seen (LWBS) term which is a well-known concept in emergency

departments (see, e.g., Baker et al., 1991; Batt and Terwiesch, 2015; Lucas et al.,

2014). On the other hand, C/RS/NS may possibly mean that an appointment slot

which could have been used to serve a patient in need of care goes unused.

While the operational and financial impacts of PLWBA and C/RS/NS have been
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assessed by several studies (see, e.g., Rust et al., 1995; Murray and Berwick, 2003;

LaGanga and Lawrence, 2007; Dreiher et al., 2008; Defife et al., 2010; Zacharias and

Pinedo, 2014), attempts to understand and quantitatively characterize patient behav-

ior in terms of how they respond to offered appointment delay have been relatively

scarce, even though a clear understanding of patient response may help us avoid

PLWBA and C/RS/NS incidences and provide 3R-HA. Note that we are pointing

to a gap in the understanding of how patients respond to “offered” appointment de-

lays rather than a characterization of events that result in abandonment of “already

booked” appointments since we are interested in the phase at which slots are offered

to patients by appointment office agents.

A fundamental reason for the scarcity of work in this area is the fact that data

that one can use to characterize patient response have been difficult to obtain, since

healthcare systems, while they have very comprehensive IT infrastructure to collect

and maintain data on appointments that have taken place for billing and insurance

purposes, have not paid real attention to collecting other transactional data that

are useful to characterize patient response as a function of appointment delay. For

example, most systems have data on appointments that were booked by patients (even

though they may subsequently result in C/RS/NS), but do not keep information on

PLWBA incidences. As we will discuss below, this creates a missing data problem,

where “lost” appointment requests are not observable (similar to lost sales in retail

systems).

A highly useful characterization of patient response to indirect wait is the proba-

bility that an offered appointment with a k-day delay will be booked and ultimately

“fulfilled” by the patient, since this characterization can then be used in several dif-

ferent ways to improve the degree to which the offered appointment delay matches

the needs of a given patient, or make scheduling or resource allocation decisions. We
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refer to this probability as the realization probability in this chapter. Overbooking,

for example, means scheduling multiple patients in one slot, and is similar to over-

selling of seats on a commercial flight. It is a generally “unpublicized but relatively

ubiquitous” practice to provide care to patients that are deemed-urgent by staff and

to combat the loss of use of care capacity due to NS situations. Information on

the fulfillment probability, for example, can be used to decide which of the already-

booked appointment slots can be more reliably used for overbooking. We note that

this characterization can be done either for an arbitrary patient, or for a patient

from a particular subpopulation, e.g., patients that need surgical intervention among

patients with low back pain. In this example, it is easy to appreciate that these pa-

tients will be more “impatient” than other groups of patients that need other, more

conservative interventions.

In this chapter, our objective is develop methodologies to characterize realiza-

tion probability, for a given patient subpopulation, as a function of appointment

delay using existing patient transactional data. To do this, we take an approach

that is inspired by the willingness-to-pay or reservation price (i.e., maximum price

that a customer will pay for a specific product) concepts from the economics litera-

ture, and assume that each patient in a given population of interest has an inherent

“willingness-to-wait” (WtW for short hereon) for an appointment of the same type.

A characterization of the distribution of WtW for a patient population allows us to

calculate the probability that a randomly chosen patient from this population will

fulfill an appointment with k-days’ delay (we use business days as the time unit for

appointment delays) since the appointment will only be booked and subsequently ful-

filled if and only if the patient’s WtW is at least k-days. Then, from this argument,

it is trivial to see that the appointment realization probability (denoted by pk here-

forth) is equal to the probability that WtW of an arbitrary patient in this population
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is greater than or equal to k, i.e., pk = P (WtW ≥ k). Unfortunately, direct data on

WtW of patients is almost never available, and even if patients were asked questions

on how long they would be willing to wait, it would probably be a moot exercise,

since patients would most likely indicate a low WtW (e.g., two days) to game the

system for quick access. Hence, it is necessary to develop statistical methods to make

inferences on the WtW distribution using the available historical transactional data

on appointment requests, bookings and fulfillment.

We build two non-parametric models to characterize WtW and then use it to

estimate pk , k ∈ {0, 1, . . . , T} where T denotes maximum possible access delay

for an offered appointment. The performance of the models are assessed using the

errors between the estimated pk and what is “observed” either from real-life data or

“assumed” our simulated datasets, which realistically generate with relevant variates

such as appointment requests, offered appointment delays, booked or PLWBA, and

final status of the appointment by assuming a WtW distribution.

The first method we present involves non-parametric survival analysis of the

“lifetime of an offered appointment.” Note that if the patient does not book an

appointment and leaves the system (i.e., PLWBA) the lifetime of the offered appoint-

ment is zero. On the other hand, if the patient books the appointment and C/RS

at a time τ days after the current time (but before the offered appointment date),

then the lifetime of the appointment is τ days. For the case of no-show (i.e., NS),

the lifetime can be considered to be equal to the delay of the booked appointment.

Finally, if the appointment is fulfilled, then the lifetime of the appointment is at least

as large as the delay of the booked appointment. Note that this last type of observa-

tions are right-censored since we do not get to observe an event that marks the end

of the appointment life. The literature on non-parametric estimation from censored

data is well established (see, e.g., Kaplan and Meier, 1958; Turnbull, 1976; Gentle-
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man and Geyer, 1994; Anderson-Bergman, 2017a). Hence, survival analysis can be

directly used to characterize the lifetime of an appointment with delay k, except that

the exact timing of C/RS events are almost never recorded, in addition to the data

being right-censored.

The second estimation method uses a rank-based choice model commonly used

in the retail and revenue management literature to estimate customer preferences for

a set of products assuming that customers have a rank-based preference list. We use

the non-parametric maximum likelihood estimator, which was introduced in Farias

et al. (2013) and van Ryzin and Vulcano (2014). Osadchiy and Kc (2017) was the first

study to use a rank-based choice model to analyze patient’s reactions to appointment

delay in a healthcare setting; their focus was on estimating the probability of no-

shows and late cancellations. There are, also, other differences in our assumptions on

the nature of patient response and decisions; for example, they consider appointment

booking and fulfilling decisions separately. In our study, we explore the assumption

that patients have a pretty concrete idea of whether or not they will be fulfilling

an appointment at the time of appointment request, guided by their inherent WtW.

Additionally, we consider all possible ways that a booked appointment may not be

fulfilled, such as cancellation, rescheduling, and no-shows while Osadchiy and Kc

(2017) focuses only on late cancellations and no-shows. To develop the rank-based

choice model, we follow a similar rationale as we did for survival model in using

the transactional appointment data. We assume that each patient has a “preference

list” of acceptable appointment delays, bounded by his WtW. As stated before, we

assume that the patient is always offered the earliest appointment available. Hence,

the patient only needs to evaluate whether the offered appointment delay is in the

preference list or not. For instance, if the patient has a WtW of w days, his preference

list includes all waiting times from 0 to w, in integer increments and a lower waiting

11



time always preferred to a longer waiting time. If a patient is observed to have fulfilled

the offered appointment, we can infer that the offered delay is in his preference list.

Our extensive experimentation and rigorous statistical testing on simulated data

show that the proposed methods are effective in estimating WtW. We further scru-

tinize the performance of the proposed methods by comparing them with a baseline

model that directly estimates pk from data, by calculating the fraction of realized

appointments among all offered appointments with delay of k days. We observe that

estimating pk through the use of predicted WtW distributions by either the survival

model and the rank-based choice model outperforms the baseline method in terms of

various error metrics and robustness with respect to the availability of data.

An important contribution of the chapter is to provide a comprehensive methodol-

ogy to use patient transactional data, including imputation techniques to complement

the available data. Our testing demonstrates that imputation significantly improves

the estimation performance, and furthermore, the estimates obtained with imputed

datasets look almost as good as the ones that would be obtained by much more com-

prehensive datasets that include all details on all patient “encounters.” The study

also makes a case for collecting data over time, and more information on different

aspects of patient response (such as details on PLWBA), since we observe that the

estimates also improve as the number of data points collected increases. Finally, we

use the proposed methods on real patient data from a highly specialized clinic that

offers destination medicine to obtain insights into the differences in sensitivity to

delay of different patient populations (e.g., new and established patients) and make

suggestions on possible ways of employing the estimated probabilities for developing

policies to improve patient access.

The rest of the chapter is organized as follows. Section 2.2 describes the available

data used to build the models. Section 2.3 and Section 2.4 present the two proposed
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methods for modeling patient WtW behavior. In Section 2.5, we describe a typical

patient flow process, which we use to obtain simulated data and conduct numeri-

cal experiments. We report detailed analyses of the performance of the models in

estimating the parameters of the underlying WtW distribution. In Section 2.6, we

present our results on real patient data. We give concluding remarks in Section 2.7.

2.2 Problem Description and Available Data

We assume that at the time of his appointment request, the patient (to whom we

will referring with the “he” pronoun hereon) knows his WtW; for example, he knows

that he would not be willing to wait more than two weeks for this appointment.

Hence, if the appointment delay for the appointment offered by the agent is less than

two weeks, the patient will book this appointment but may later C/RS/NS due to

reasons unrelated to the length of indirect wait, such as insurance coverage or an

unexpected improvement in medical condition. If the offered appointment delay is

more than two weeks, we assume that the patient knows this is longer than the time

that he is prepared to wait, but with a certain probability, he may still decide to book

the appointment to “keep his options open,” and have a booked appointment while he

seeks care elsewhere (i.e., misclassification at the time of appointment). We assume

that this patient will, subsequently, “abandon” this appointment through C/RS/NS

(not particularly important which one).

We are well aware of the fact that there are numerous other situations we are

unable to consider with this basic model, but we have found that it sufficiently models

patient behavior at a population level. Figure 2.1 provides an outcome tree describing

all of the above defined possible outcomes of an appointment request by a patient.

In addition, the red check and cross marks in the figure refers to the outcomes for

which data are typically recorded and maintained by healthcare systems. In general,
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several different pieces of information on booked appointment instances are available,

but we do not have (at least at the time of writing of this chapter) access to detailed

data on appointment requests resulting in PLWBA (although some partial data, as

discussed below, is available on those instances).

 

Arriving patient is 
offered an 
appointment delay of t 
days 

 

WTW ≥ t 

WTW < t 

Misclassification 
at time of request 

Correct classification 
at time of request 

Appt. booked and 
then abandoned 
(C/RS/NS) due to 
WTW 
(C/RS/NS (WtW)) 

Appt. not 
booked, pt leaves 
system 
(PLWBA) 

✔ 

✘ 

Appt. booked 
and then 
abandoned due 
to reasons other 
than WTW 
(C/RS (other)) 

Appt. booked 
and realized 
(Realized) 

✔ 

✔ 

Figure 2.1: All Possible Outcomes of an Appointment Request.

Since the availability of data on appointment request and scheduling transactions

may change in different contexts, we define different “data settings.” For example,

in some healthcare systems, patient requests for an appointment may be recorded

and maintained along with information on various traits of the patient, as well as

the offered appointment delay, etc. even when the patient decides not to book an

appointment and leaves (i.e., PLWBA). We refer to such a set of data as the Full

Encounter Dataset (FED for short) since an instance in that dataset represents a

patient request for an appointment, and hence includes all of the “encounters” that

AO agents have with patients, along with the relevant data on the encounter such

as delay(s) of the offered appointment(s), final status of the request (i.e., the patient

booked an appointment or left without booking), and the final status of the booked
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appointments (i.e., fulfilled, cancelled, rescheduled, no-show).

The available data at the institution that we conducted this study did not include

information on appointment requests that did not result in a booked appointment. We

only had access to information on encounters that resulted in booked appointments.

We refer to such datasets as the Booked Appointment Dataset (BAD for short),

which is a subset of FED. The BAD we had access to included information on the

usual suspects like the delay of the booked appointment, but did not, for example,

include any information on whether there were other appointment slots with possibly

different delays offered to the patient that the patient did not accept. A depiction

of FED, as well as BAD as a subset of FED are given in Tables 2.1 and 2.2. In

this example, the appointment records 1001 thru 1006 show all of the appointment

requests received in this FED. The BAD that corresponds to this FED is given in

Table 2.2; only records 1001, 1003, 1004 and 1006 resulted in a booked appointment

and were recorded as part of BAD.

Table 2.1: A Depiction of Data Contained in FED, for Each Appointment Request

Record

Record ID Appt ID Appt Delay Patient Type Status

1001 123 3 New Seen

1002 - 5 Established Not Booked

1003 124 2 Established Cancel

1004 125 6 New No-show

1005 - 30 New Not Booked

1006 126 10 New Seen

In healthcare settings there is usually a set booking horizon (say, 6 months) that
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Table 2.2: A Depiction of Data Contained in BAD, for Each Booked Appointment

Record ID Appt ID Appt Delay Patient Type Status

1001 123 3 New Seen

1003 124 2 Established Cancel

1004 125 6 New No-show

1006 126 10 New Seen

the appointment scheduling agents have access to book appointments. We use T to

denote this booking horizon length, which is also the highest delay observable from

the transactional appointment data. Note that, although not likely, the maximum

possible WtW for the patient population may be higher than T . Therefore, we denote

the maximum WtW with Z and we set it to a large value to allow for this behavior.

In our study, we were able to alleviate the unavailability of data on PLWBA

instances by using a separate source of data, called the Demand Universe Dataset

(DUD for short), which includes information about calls patients make to the AO

to request an appointment and the final status of these requests (i.e., booked an

appointment or left without booking). The DUD we had access to also included a free-

text column containing the reason for PLWBA outcome, for example, “patient refused

the offered appointment and is no longer interested in booking an appointment.” A

representation of DUD is available in Table 2.3. Using DUD, we determined that

approximately 6.4% of the patients who called to request an appointment during the

study period left the system without booking. This rate represents the probability of

PLWBA given that the patient is not denied due to any other reasons. Unfortunately,

DUD does not include further details on the patient, or the offered appointment delays

that were offered to but not accepted by the patient.
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Table 2.3: A Depiction of Data Contained in DUD

Record ID Final Status Reason

1001 Booked -

1002 Not Booked Patient rejected due to delay

1003 Booked -

1004 Booked -

1005 Not Booked Denied by the department

1006 Booked -

A simplifying assumption worth noting is that we assume that patients will prefer

an earlier appointment to a later appointment, even though this assumption may

not always hold due to the patient’s personal scheduling conflicts. Such conflicts

are almost never properly reflected in the data so there was no way that we could

accurately consider such effects. Furthermore, this simplifying assumption allowed us

to identify an interval within which the patient’s WtW lies. For example, it allowed

us to infer that the patient’s WtW should be at least k days if this particular patient

fulfilled an appointment with k days’ delay. Similarly, a C/RS/NS record indicates a

WtW that is at most k days.

Another assumption we made is that patients are provided appointments in the

order of their call; that is, a patient calling before another one will be offered an

appointment with lower appointment delay. Due to queuing, multiple agents serving

patients on the phone, and other effects due to patient’s scheduling conflicts, we un-

derstand this may not be the case, but again, this assumption allowed us to develop

imputation methods to append BAD with probable PLWBA instances and their re-

spective offered delays. Our method obtains probable PLWBA instances by randomly
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sampling instances in BAD and inserting “likely” PLWBA instances. The resulting

dataset is one that includes imputed PLWBA instances that would be statistically

equivalent to those that would be found in a FED. This imputed dataset, which we

call this an Imputed BAD (I-BAD), actually comes quite close to having FED in

terms of the performance of the estimation procedures.

The idea behind the imputation via sampling can be considered as following.

Consider a point in time that a patient arrives and an appointment with certain

delay is offered to the patient during the call. The patient evaluates that wait based

on his WtW and leaves without booking an appointment. Following this PLWBA,

the same appointment will most likely be offered to the next arriving patient that

requests an appointment since the slot is still not utilized. If the new patient’s WtW

is more than the offered delay, the current patient books the appointment and the

appointment slot that is offered more than once will appear in BAD only once. While

we consider PLWBA as a behavior that is similar to C/RS/NS, we do not necessarily

sample from the appointments that result in C/RS/NS to avoid introducing bias into

our analyses. In Section 2.3 and Section 2.4, we further discuss the details of the

imputation methods for each of our proposed models separately.

Our real-life dataset is a BAD, and consists of almost three years of information

on all of the booked appointments for multiple outpatient clinics in a specialty unit.

A nice feature of our dataset is that it includes data on two different patient types:

(i) new patients, who are calling the clinic for the first time to request an initial ap-

pointment, and (ii) established patients, who have been previously seen by a provider

in the clinic. In our study, we analyze the WtW behavior of these two patient types

separately to explore the ability of our methods to capture the different reactions of

new and existing patients to different levels of offered appointment delays.

Unlike typical appointment scheduling data that only include timestamp data
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with basic appointment type information, our dataset captures the reason of can-

cellations (i.e., C) and rescheduled appointments (i.e., RS). Using this information,

we can clearly distinguish whether an appointment is canceled or rescheduled due to

WtW related reasons or not. The reason for no shows (NS) cannot be obtained from

the patient, therefore, we assume that all NS occurs due to WtW. Note that other

approaches are possible to incorporate to our methodology as well; we have found

this assumption to work sufficiently well for our estimation problem. If a patient’s

WtW is higher than the offered appointment delay, the patient would book the ap-

pointment but later may cancel or reschedule it due to reasons unrelated to waiting

time (denoted as C/RS (other) below) such as insurance coverage or unexpected im-

provement in medical condition. On the other hand, if the patient’s WtW is less than

the offered delay, the patient, even though he/she is expected to not book the offered

appointment, may still book the appointment, but would abandon the appointment

subsequently through cancellation, rescheduling to an earlier appointment, which can

be identified since the reasons of C/RS are recorded or not showing up at the time

of the appointment (denoted as C/RS/NS (WtW) below). Accordingly, all of the

three top outcomes (marked with a check mark in Figure 2.1), can be observed in our

dataset, which covers all of the booked appointments during the study period. The

unobserved instances of patient appointment requests are due to patients leaving the

system without making an appointment.

Table 2.4 lists descriptive statistics on appointment delays for new and established

patients using our real-life data. We see that the new patients consistently show

higher average delays for all three appointment status types (significant at p = 0.005),

which may be due to various ways that established patients are “prioritized.” For

example, in many cases nurses and physician assistants are able to “work in” (using

overbooking) established patients who want to be seen due to a patient-reported
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urgency. Additionally, we observe that fulfilled appointments have a significantly

lower average appointment delay (significant at p = 0.005).

Table 2.4: Descriptive Statistics from Our Real-life Dataset

Established Patients New Patients

Avg. Std. Avg. Std.

Delay Delay Delay Delay

Final Status n (days) (days) n (days) (days)

Fulfilled 5350 21.5 20.4 5757 30.0 22.8

C/RS/NS (WtW) 2441 26.9 20.2 2851 36.1 22.6

C/RS (other) 639 23.5 19.4 586 34.0 22.6

We propose two non-parametric models, which we refer to as survival model and

rank-based choice model, to empirically characterize patient WtW. We consider

non-parametric models since our goal is to develop good models that are generalizable

to a broad range of situations and at different clinical settings. The main difference

between two models is the way they treat patient WtW. Survival analysis model treats

WtW as a continuous variable, and therefore, the model generates and estimate of

the probability that patient WtW belongs to a certain interval.

In particular, the survival model starts by empirically generating the set of inter-

vals that patient WtW can belong to and provides the probability that an arbitrary

patient’s WtW is contained in the interval [sj−1, sj) ⊆ T , where T = {[s0, s1), [s1, s2),

. . . , [sy, sy+1)} and sj where j ∈ {1, . . . , y + 1} are determined empirically, s0 = 0

and sy+1 = ∞. We discuss how these intervals are determined in Section 2.1 in

more details. In comparison, the rank-based choice model estimates the probability

that a given patient belongs to “patient group k,” which is defined as the group of
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patients with WtW equal to k days, where k ∈ D = {0, 1, . . . , Z}. In rank-based

model, we use Z as the maximum value that a patient’s WtW can take and set it

to a large number to avoid having infinitely many discrete values for patient WtW.

Suppose that we observe from data that a booked appointment with k day’s delay is

not fulfilled. Upon observing this instance, rank-based choice model infers that the

patient’s WtW is one of the values in the set {0, 1, . . . , k − 1}. The same instance for

the survival model is an observation that the WtW belongs to one of intervals in the

set {[s0, s1), [s1, s2), . . . , [sd, sd+1)} ⊆ [0, k) ⊆ T .

Suppose we obtain unit intervals {[0, 1), [1, 2), . . . , [d, d+ 1)} from a dataset em-

pirically (which may not be the case for the FED that the data in Table 2.1 sampled

from), an illustration of how each model considers the observation with record ID

1004 from Table 2.1 is shown in Figure 2.2.
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(b) Rank-based Choice Model

Figure 2.2: Illustration of Observation with Record ID 1004 Based on Each Model

Before we start providing further details on the models, we find it useful to sum-

marize the different types of datasets described above, in Table 2.5.

2.3 WtW Estimation Using Survival Analysis

The literature on survival analysis is vast. Successful applications of survival anal-

ysis are observed in clinical trials, health-related systems, and reliability engineering

(see, e.g., Wei, 1992; Kessler et al., 1995; Fleming and Lin, 2000). We employ an

approach that is similar to traditional survival analysis to characterize the “lifetime

of an offered appointment” and use it to estimate the WtW distribution.
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Table 2.5: Different Dataset Types Defined in the Study

Available Data Abbrv. Description

Full Encounter Dataset FED All appt. requests including

PLWBA, with dates and final status

Booked Appt. Dataset BAD Only booked appts. with dates and

final status

Demand Universe Dataset DUD All appt requests and their outcomes

(booked or PLWBA)

Imputed Booked Appt. Dataset I-BAD Dataset appended with PLWBA in-

stances through imputation meth-

ods

The following analysis uses a FED, which includes all appointment requests, re-

gardless of the final status (i.e., booked or PLWBA). We evaluate each offered ap-

pointment of delay k separately to classify them into two categories (0 or 1). This

classification is done based on the relationship between the observed lifetime of the

appointment and the delay of that particular appointment. An offered appointment

is considered from category 1 if it is fulfilled (i.e., observed lifetime of the appointment

is more than the appointment’s delay), and 0 if it is either PLWBA or C/RS/NS.

Additionally, we transform the data by defining observation intervals [L,R) for every

observation. Each observation interval is determined based on that specific appoint-

ment’s delay and is considered as the interval that contains the appointment’s actual

lifetime, which is, actually, never observed in the data. For each appointment record

i from category 1 in FED, we say that the observation is right-censored; the appoint-

ment delay k is the left side, L, of the interval that contains the unobserved appoint-
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ment lifetime, and [Li, Ri) = [k,∞) for observation i. Similarly, k would be the right

side of the interval, R, for the appointments from category 0, and hence, and the

observation interval for the appointment record i in this case is [Li, Ri) = [0, k). Note

that this means, in traditional survival analysis terms, that in FED, all of the obser-

vations (i.e., appointment records in FED) are either left-censored or right-censored.

As a result of this processing, the FED is transformed, as shown in Table 2.6 (for the

original FED sample given in Table 2.1).

Table 2.6: Transformed Version of the FED Data Sample in Table 2.1

Appointment Lifetime

Record ID Appt. ID Patient Type Category L R

1001 123 New 1 3 ∞

1002 - Established 0 0 5

1003 124 Established 0 0 2

1004 125 Established 0 0 6

1005 - New 0 0 30

1006 126 New 1 10 ∞

We use a non-parametric maximum likelihood estimator (NPMLE) developed as a

generalized version of the Kaplan-Meier estimator to allow interval censoring (Turn-

bull, 1976), and we use the notation denoted in (Zhang and Sun, 2010). Let M be the

total number of observations (i.e., the total number of appointment requests records

in FED), and Li and Ri be the left and right side of the interval that contains lifetime

of record i, respectively. Our case is similar to the clinical studies where there is

only one observation time for each subject to observe whether or not the subject “has

died” before the observation time (see, e.g., Sun and Kalbfleisch, 1993; Andersen and
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Ronn, 1995).

Let sj, j ∈ {1, . . . , y+ 1} be the ordered elements of set {0,∪iLi,∪iRi,∞} that is

obtained empirically from the data and let T = {[s0, s1), . . . , [sy, sy+1)}. Suppose ρij

is an indicator variable that shows whether interval j is contained in observation i,

[sj−1, sj) ⊆ [Li, Ri). As an example, consider the transformed FED in Table 2.6.

From this table, we can generate sj values from set {0, 2, 3, 5, 6, 10, 30,∞} with

set T = {[0, 2), [2, 3), [3, 5), [5, 6), [6, 10), [10, 30), [30,∞)} (where y = 6). Then, for

record 1001, the indicator variables are ρ11 = ρ12 = 0 and ρ13 = ρ14 = · · · = ρ17 = 1.

These intervals are referred as Turnbull intervals, which are defined as the union of

disjoint intervals [l, r] that are determined empirically, from available data on lifetime

observations.

The data that we have used in this small example results in relatively longer

intervals (for instance, [10, 30)) since there are only six observations. However, the

real-life dataset from the specialty unit that we study consists of almost three years

of information on all of the booked appointments. Therefore, the set of intervals

generated from our data is almost equal to the set of unit length intervals.

The probability pj for each interval j is defined as F (sj) − F (sj−1) where F is a

non-decreasing function representing the cumulative distribution function of lifetime

of an appointment. Then, the log-likelihood function for set of pj of in vector form p

is proportional to:

L(p) =
M∑
i=1

(
y+1∑
j=1

log (ρij (F (sj)− F (sj−1)))

)
=

M∑
i=1

(
y+1∑
j=1

log (pjρij)

)
. (2.1)

By employing the notation and approach for Turnbull intervals, we estimate
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NPMLE, by using our set of observations with the following model:

max L(p) (2.2)

s.t.

y+1∑
j=1

pj = 1, (2.3)

pj ≥ 0 , ∀ j ∈ {0, . . . , y + 1}. (2.4)

where the objective function maximizes the log-likelihood function based on each

observation. Considering each request observed, the model assigns the probabilities

of intervals that are contained by the observation to maximize the log-likelihood

function. Turnbull (1976) shows that the objective function can be reduced to include

only intervals that are contained within the observations, therefore, the model assigns

zero probability to intervals that are not observed from the dataset and it is shown

that the maximum likelihood estimate cannot be out of the set characterized as the

union of Turnbull intervals and likelihood is determined by interval boundaries [l, r].

We use R package icenReg to solve the model and obtain probabilities for each

interval (see Anderson-Bergman, 2017a,b, for details) by sequentially updating them

based on our data. icenReg package uses an algorithm called EMICM, which was

developed to reduce the computation time of the Expectation Maximization (EM) al-

gorithm (Wellner and Zhan, 1997). The algorithm uses EM algorithm in a way that in-

stead of direct maximization of log-likelihood function, the function is reparametrized

and approximated by using second-order Taylor expansion to empirically estimate the

probabilities (Anderson-Bergman, 2017a).

Recall that in our case FED is not available since no data is collected for the

PLWBA instances. Estimating the probabilities pj by solely using the booked ap-

pointments in BAD would result in overestimation of pj. Therefore, to avoid this

overestimation, we impute a set of statistically equivalent PLWBA instances and

append them into BAD via random sampling to obtain I-BAD. Ideally, number of
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observations sampled should be equal to the number of PLWBA instances. In our

case, we only observe the proportion of patients that PLWBA from DUD. Therefore,

we sample a certain fraction from BAD to obtain I-BAD where the sampling fraction

is determined based on DUD (6.4% in the real data).

For instance, for the depicted BAD in Table 2.2, suppose that two data points are

randomly sampled from BAD to insert PLWBA instances (observations with record

ID 1002 and 1005) to obtain an Imputed BAD (I-BAD), and further suppose that

the sampled observations are the ones with record ID 1001 and 1003. The sampled

observations are imputed to BAD (with record IDs 1001-I and 1003-I) to obtain I-

BAD that is given in Table 2.7.

Table 2.7: Depiction of Data Contained in I-BAD from BAD in Table 2.2

Record ID Appt ID Appt Delay Patient Type Status

1001 123 3 New Seen

1003 124 2 Established Cancel

1003-I - 2 Established Not Booked

1004 125 6 New No-show

1006 126 10 New Seen

1001-I - 3 New Not Booked

After obtaining I-BAD via random sampling, we treat I-BAD as FED in our

survival model. We first transform I-BAD similar to how we transform FED in

Table 2.6. Then we use this transformed I-BAD in our model given by Equations (2.2)

thru (2.4).
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2.4 WtW Estimation Using a Rank-Based Choice Model

As a second approach to understanding patients’ appointment fulfilling behavior,

we employ a rank-based choice model that is commonly used in retail operations and

revenue management. In a retail management setting, upon arrival, each customer

either chooses a product among the set of available products at the time of their

arrival or leaves without any purchase. The product selection is done based on each

customer’s rank-based preference list. Therefore, if none of the products in customer’s

preference list is available at the time of the arrival, the customer leaves without

any purchase. Each customer group is assumed to be characterized based on their

preference list. In this setting, customers are assumed to always make rank-based

decisions based on their preference list. Therefore, based on the type of the purchased

product or lack thereof, arriving customer’s group can be determined with a certain

probability. Notice that total number of customer groups can be as large as the total

number of all possible combinations of products of interest.

In our setting, we assume that each patient’s preference list is fundamentally

driven by his inherent WtW. As we indicate in Section 2.1, we make the simplifying

(and generally valid) assumption that patients prefer an earlier appointment to a later

one. Therefore, each patient’s rank-ordered preference list is assumed to be all of the

possible discrete appointment delay values up to and including the patient’s WtW.

Note that this is an ordered list, from smallest to largest delay values, indicating

patient’s preference, that is, for a patient with a WtW of k days, the preference list

is (0, 1, . . . , k) . We divide the patient population under consideration into a number

of “patient groups” that are characterized by distinct preference lists resulting from

the different WtW values that patients can have. Specifically, if a patient is from

Group k, then the patient is willing to wait at most k days for an appointment. This

27



indicates that we allow Z + 1 possible patient groups due to the upper limit Z that

we assume on the WtW of a patient. An appointment with a delay of zero days is a

same-day appointment; therefore, WtW group 0 includes the patients who are only

willing to take a same-day appointment.

Transactional data on appointments provide information on a patients’ WtW

group in the following way. When a patient books an appointment with a delay of

w days and later abandons this appointment via canceling or rescheduling indicating

a WtW reason, or the appointment results in a no-show, we infer that the patient is

from any one of the WtW groups k ∈ {0, 1, . . . , w − 1}. If the patient decides not

to book at the time of request, the patient is again inferred to be from any one of

WtW groups k ∈ {0, 1, . . . , w − 1}. On the other hand, a patient is from any one of

WtW groups k ∈ {w,w + 1, . . . , Z} if the patient fulfills a booked appointment with

a w-day delay, or cancels/reschedules it for a non-WtW related reason.

We assume that each business day is divided into H time buckets that are short

enough such that appointment requests arrive according to a discrete-time homoge-

neous Bernoulli process with probability 0 < λ < 1. The parameter λ is set to a value

obtained from FED (or if FED is not available, jointly from BAD and DUD), repre-

senting the proportion of time buckets that an appointment request arrives. We show

how we calculate λ in Equation (2.5). The length of time buckets can be set according

to the observed daily patient demand. We assume that appointment request arrivals

are stationary throughout the day. Our objective is to estimate the probability that

an arriving appointment request is from a patient of Group k, denoted as pk. At each

time bucket t, either an appointment request occurs with probability λ or no patient

calls. Notice that for the survival model presented in Section 2.3, we denote the total

number of observations with M where H ≥ M since M can be considered as the

total number of time buckets that an appointment request arrives. Also note that,
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in a traditional implementation of the rank-based choice model, keeping track of the

available products at each time bucket is important since the type of the customer

can be estimated by considering the choice that the customer makes between the

available product offerings. In our case, we only need to keep track of the earliest

available appointment delay at the time of each request.

If we have access to FED, we can identify the time buckets in which an arrival oc-

curs, the offered appointment delay at each time bucket, whether the patient decided

to book the appointment, and whether the appointment booked at that time bucket

is ultimately fulfilled or the reasons for the abandonment. This allows us to divide the

study period, consisting of H time buckets, into four disjoint sets. The sets S, A and

W represent the set of time buckets that an appointment request results in: either a

fulfilled appointment or a booked appointment that is later cancelled or rescheduled

due to a non-WtW reason, a booked appointment that is subsequently abandoned

through either a no-show or cancelled or rescheduled due to a stated reason that is

WtW-related, and no booking (i.e., PLWBA) due to a WtW reason, respectively. The

set N , on the other hand, represents the set of time buckets with no appointment

requests. We denote the set of all time buckets with H = S ∪ A ∪W ∪N .

As a first step for our analysis, similar to what we did in Section 2.3, we transform

FED. The main difference here is the existence of time buckets in the rank-based

choice model. Therefore, we first assign each observation into an associated time

bucket, t, of the day based on time of the request (which is included in the dataset)

and include the time buckets with no appointment request. Note that we have two dif-

ferent patient types (i.e., new and established) in our real-life dataset. Since different

patient types may have different arrival patterns, we assign time buckets separately

for each type and analyze them separately in our models. We then assign each time

bucket to their associated set (i.e., S, A , W , or N ).
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Table 2.8: Updated FED After Including Time Buckets

Day t Record ID Appt ID Appt Delay (wt) Pt. Type Status Set

5 1 1001 123 3 New Seen S

5 2 - - - - No Arrival N

5 3 - - - - No Arrival N

5 4 1004 125 6 New No-show A

5 5 1005 - 30 New Not Booked W

5 6 1006 126 10 New Seen S

Table 2.9: Transformed Version of the Data in Table 2.8

Day t Record ID Appt ID Θt(wt) Patient Type Status Set

5 1 1001 123 {3, . . . , Z} New Seen S

5 2 - - - - No Arrival N

5 3 - - - - No Arrival N

5 4 1004 125 {0, . . . , 5} New No-show A

5 5 1005 - {0, . . . , 29} New Not Booked W

5 6 1006 126 {10, . . . , Z} New Seen S

Table 2.8 shows the transformed version of the FED we have presented above.

This dataset is then transformed again to indicate the discrete set that the WtW

of the patient in each record can belong to, denoted as Θt(wt), which is a function

of the appointment delay as well as the set membership of the time bucket t. The

transformed-again dataset is shown in Table 2.9, which we use for the analysis.

We use a maximum likelihood estimator (MLE) for estimating the probabilities pk,

where k ∈ {0, 1, . . . , Z}, or in vector notation, p. If we have access to a FED, we can
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obtain the set membership of each time bucket, denoted as qt for all t ∈ {0, . . . , H},

or q in vector notation, as well as the offered appointment delays, wt. In addition,

from FED, we can obtain:

(i) an estimate for rate λ as the fraction of time buckets that an appointment is

requested, i.e.,

λ =
|S|+ |A|+ |W|

H
= 1− |N |

H
, and (2.5)

(ii) an estimate for the probability that a patient with WtW less than the offered

delay will still go ahead and book an appointment, which we denote as 1 − α,

and will subsequently abandon the appointment, that is,

α =
|W|

|W|+ |A|
(2.6)

If one only has access to BAD, it is not possible to differentiate the time buckets

in set W (i.e., PLWBA instances) and the time buckets in N (i.e., no appointment

request arrivals). In this case, we treat the set of time buckets with no recorded events

in BAD as B =W ∪N . To be able to conduct the analysis on BAD, we first update

BAD by including the time buckets into BAD, as given in Table 2.10.

After that, for any time bucket t ∈ B, we impute an appointment delay value that

might have been offered to an arriving appointment request in that time bucket using

the following argument. In any time bucket with no registered event in the BAD, if

a patient arrived and left without booking (i.e., PLWBA), the offered appointment

was then offered to and booked by another subsequent patient, which is included in

BAD. We impute “likely” appointment delays for the time buckets with no events

and obtain I-BAD shown in Table 2.11.

Note that the difference between the data shown in Table 2.11 (I-BAD) and Ta-

ble 2.9 (FED) is the fact that in Table 2.11 we do not know which of the time buckets
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Table 2.10: Updated BAD After Including Time Buckets

Day t Record ID Appt ID Appt Delay (wt) Pt. Type Status Set

5 1 1001 123 3 New Seen S

5 2 - - - - No Event B

5 3 - - - - No Event B

5 4 1004 125 6 New No-show A

5 5 - - - - No Event B

5 6 1006 126 10 New Seen S

Table 2.11: Depiction of I-BAD Obtained by Imputation for the Rank-based Choice

Model, from the Updated BAD Given in Table 2.10

Day t Record ID Appt ID Appt Delay (wt) Pt. Type Status Set

5 1 1001 123 3 New Seen S

5 2 - - 6 New No Event B

5 3 - - 6 New No Event B

5 4 1004 125 6 New No-show A

5 5 - - 10 New No Event B

5 6 1006 126 10 New Seen S

in B are actually inW and which are in N . Recall that even in the case of BAD, α is

still parameterizable due to availability of DUD. DUD allows us observe the fraction

of appointment requests that result in PLWBA over all appointment requests (which

is 6.4% for the dataset that we use). Denoting this fraction obtained from DUD as

β, we can write

α =
|W|

|W|+ |A|
=

|W|
|S|+ |W|+ |A|

· |S|+ |W|+ |A|
|W|+ |A|

= β
λ H

λ H − |S|
, (2.7)
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where the terms in the RHS are all available. For the instances that are observed to

be in B from BAD, we can write

P (t ∈ B) = P (t ∈ W) + P (t ∈ N ) = λα

wt−1∑
k=0

pk + (1− λ) . (2.8)

In order to address the incompleteness due to not observing the exact set member-

ship in B, we employ the approach that is introduced in van Ryzin and Vulcano (2017).

In the study, van Ryzin and Vulcano (2017) suggest using a simplified approach that

considers the log-likelihood function that one would obtain for a dataset that also

includes information on the WtW group of the patients in each time bucket, t. Let

gt denote the observed WtW group of the patient in time bucket t. Then, given the

vector of set memberships for each time bucket observed in the dataset, q, wt for all

t and the estimated parameters λ and α, we can write the log-likelihood of a given

probability vector, p, as follows.

LC(q,g|p) =
∑
t∈S

log (λ pgt) +
∑
t∈A

log (λ(1− α)pgt) +
∑
t∈W

log (λαpgt)

+
∑
t∈N

log(1− λ) =
∑
t∈H

at log λ+ (1− at) log(1− λ)

+
∑
t∈H

at log pgt +
∑
t∈A

log(1− α) +
∑
t∈W

logα , (2.9)

where at = 1{qt ∈ S ∪ A ∪ W}. To maximize this log-likelihood function, it is

sufficient to maximize the term

L̃C(q,g|p) =
∑
t∈H

at log pgt =
Z∑
k=0

∑
t∈H

at1{k = gt} log pk =
Z∑
k=0

mk log pk (2.10)

with respect to the values pgt where mk indicates number of patients arriving from

each group k. Then, the model becomes

max
Z∑
k=0

mk log pk (2.11)

s.t.
Z∑
k=0

pk = 1, (2.12)

pk ≥ 0 , ∀ k ∈ {0, . . . , Z}. (2.13)
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We need to use KKT conditions to identify optimal p∗ where we can write the La-

grangian as

L(p, µ) =
Z∑
k=0

mk log pk + µ

(
1−

Z∑
k=0

pk

)
, (2.14)

which results in p∗k = mk
µ

and µ =
∑Z

k=0mk which satisfies pk ≥ 0. Therefore, for

the complete log-likelihood case p∗k is simply the fraction of patients arriving from

group k.

In reality, even when one has access to the FED, the observations only include at

values. In that case, the log-likelihood function that one needs to optimize is obtained

by taking an expectation over the WtW group of the patients, as follows.

L̃FED(q|p) = E[E[L̃C(q|p)|G]] =
∑
t∈H

at

Z∑
k=0

log pk P (Gt = k)

=
∑
t∈H

at

Z∑
k=0

1{k ∈ Θt(wt)}
1

|Θt(wt)|
log pk (2.15)

where Gt denotes the random variable that represents the WtW group of the patient

in time bucket t, assuming that the patient belongs to each one of the possible WtW

groups in Θt(wt) with equal likelihood.

In the case of availability of only I-BAD (as in our case), we additionally have

to take an expectation over the arrivals, since we do not exactly know which time

buckets in the set B has arrivals (i.e., PLWBA) and no arrivals. Let At denote the

binary random variable that indicates arrival in a time bucket t. Then, in this case,

L̃I-BAD(q|p) = E[E[L̃C(q|p)|G,A]]

=
∑
t∈S∪A

Z∑
k=0

log pk P (Gt = k) +
∑
t∈B

P (At = 1|t ∈ B)
Z∑
k=0

log pk P (Gt = k)

=
∑
t∈S∪A

Z∑
k=0

1{k ∈ Θt(wt)}
1

|Θt(wt)|
log pk

+
∑
t∈B

λα
∑wt−1

k=0 pk

λα
∑wt−1

k=0 pk + (1− λ)

Z∑
k=0

1{k ∈ Θt(wt)}
1

|Θt(wt)|
log pk .(2.16)
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Solving the model for L̃I-BAD(q|p) to obtain p∗ is not straightforward, therefore,

we utilize an Expectation-Maximization (EM) algorithm (Dempster et al. (1977)).

The details of EM algorithm are presented in Appendix A.1.

2.5 Testing Performance of Estimations on Simulated Data

To test the effectiveness of our methodology, we generate realistic datasets care-

fully simulated to resemble real-life transactional data. This testing methodology

gives us the ability to assess the accuracy of the predictions with respect to the as-

sumed characterizations of patient WtW in the simulation model. In particular, we

focus on a single patient type and build a discrete event model that simulates patient

arrivals, appointment delays offered to them and the decisions that they make, which

are randomly generated from the assumed WtW distribution. We rigorously test the

performance of the estimation methods given in Sections 3 and 4 by comparing the

appointment realization probabilities indicated by our estimations with the ones im-

plied by the WtW distribution assumed in our simulation model. Using a simulated

dataset also allows us to test the behavior of our estimation methodologies under dif-

ferent cases of available data; essentialy, we generate a complete FED that includes

all patient responses including PLWBA, and then remove them to assess the degree

to which the developed imputation methods can improve estimations from a BAD.

2.5.1 Test Data Generation

The real data is collected from a system with highly complex dynamics that are

not easy to replicate. Therefore, we generate the simulated data with the fundamen-

tal characteristics that we can observe from the data. We simulate patient arrivals as

a Poisson process where, upon each arrival, the first available appointment slot is of-

fered to the patient from a calendar system with limited capacity and limited booking
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horizon. For each delay value k, there is an assumed “true” realization probability,

which is non-increasing in k, in accordance with our assumption that earlier appoint-

ments are always preferred. As in Section 4, let pk denote this “true” probability

that an offered appointment with delay k will be realized (i.e., booked and subse-

quently fulfilled). Note that pk = P (WtW ≥ k), so the patient WtW distribution is

represented as a discrete cdf by the pk values assumed in the simulation model.

At the time of each appointment request, we generate a discrete WtW value for

the patient requesting the appointment. If the patient’s WtW is more than the of-

fered delay, the appointment is booked and realized. If the patient’s WtW is less than

the offered delay, the patient can do one of the three possible things; (i) PLWBA, (ii)

books the appointment and then cancels, or (iii) decides not to show up at the ap-

pointment. We do not include rescheduled appointments into the simulation model;

instead, we consider them as canceled appointments and consider the appointment

that is scheduled as a result of reschedule request from the patient as a new appoint-

ment request since we only consider each encounter in the real data. We simulate this

process by distributing patients according to a set of delay dependent probabilities,

which are directly obtained from the available data. To represent the real system, we

fix PLWBA rate at 6.4% to match the observed lost patient rate from our DUD. Then

from the data, we calculate the delay dependent no-show probabilities as the fraction

of no-shows among the appointments that are not fulfilled for each delay value. We

calculate the delay dependent cancellation probabilities in a similar manner. The

delay dependent no-show and cancellation probabilities are shown in Figure 2.3. For

instance, for a delay value of 15 days, 62.5% of the patients who have WtW less

than 15 days end up canceling their booked appointments while 12.5% of them do

not show up to their appointments and the remaining ones PLWBA. Notice that the

probability of PLWBA among the ones with WtW less than the appointment delay
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is equal to the value α that we described in Equation (2.6) and represents the 6.4%

of the total encounters.
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Figure 2.3: Delay Dependent Cancellation and Rescheduling Probabilities

Additionally, if the appointment is booked and then cancelled, we generate the

day of cancellation. For each delay value, a cancellation date before the day of

appointment is assigned to the patient with a certain probability. These probabilities

are determined from the C/RS cases in the data as the fractions of appointments that

were cancelled or rescheduled on days {1, 2, . . . , k− 1} among the appointments with

offered with k days delay. In the case of cancellations, after a certain amount of time

(but before the day of appointment), the patient cancels the appointment and the

appointment slot becomes available, while, in the case of no-shows, the appointment

slot is never released once it is booked since we only observe no-shows at the time of

the appointment.

We run the simulation model to obtain a simulated FED (referred to as sFED).

Each row of sFED represents a generated appointment request, and columns show

the day and time bucket of the day, the offered appointment delay as well as the
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final status of the encounter (fulfilled, canceled, no-showed, and not booked). We

consider 48 time buckets per day in our simulation analyses. In addition to testing

the performance of our models with respect to “true” realization probabilities, sim-

ulated datasets allow us to consider the effect of the number of data points on our

estimations. We run our simulation model for 100 and 1000 days to observe whether

probability estimates can be improved over longer periods of data collection. We

generate two separate sFEDs for 100 day model and 1000 day model separately and

generate sFED(100) and sFED(1000). After obtaining sFED(100) and sFED(1000),

we generate a total of 10 random folds from the each of these datasets. We obtain 10

different training sets each of which consists of 9 of the 10 random folds; we refer to

each of them as Tr-1 to Tr-10. Each of the training sets allow us to observe whether

a time bucket results in PLWBA or not. From each training set, Tr-1 to Tr-10, we

removed the observations with PLWBA and obtained 10 different sBADs. We refer

these sBADs as sBAD-Tr-1 to sBAD-Tr-10.

2.5.2 Observed Errors of Estimations Obtained by Each Model

The two models that we propose in Sections 2.3 and 2.4 aim to characterize an

underlying WtW distribution for the patient population under study. This charac-

terization is expressed and tested with respect to the accuracy of estimates for pk,

the probability that an offered appointment with delay k will be realized (i.e., booked

and eventually fulfilled), which is equal to P (WtW ≤ k). In particular, we compare

the estimated pk values by the two methods with the “true” realization probabilities

assumed in the simulation model and calculate statistics on absolute errors.

To provide a benchmark, we consider the method of estimating the pk directly from

the data by calculating the fraction of realized appointments among all appointments

with delay k. We refer the pk estimates obtained in this fashion as “baseline.” Note
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that a major issue with the baseline method is that the data may not be homogeneous

with respect to the observations with different levels of appointment delay. Hence,

some of the pk estimates with the baseline method are obtained based on a lot fewer

observations, making our confidence in some of these estimations less than other ones.

Furthermore, in some cases, there may be no observations with delay k, making it

impossible to obtain an estimate for pk. In contrast, both survival and rank-based

choice models use the available data in a more “holistic” manner, to make inferences

on the patients’ WtW.

We employ 10-fold cross validation to obtain absolute errors. We use 150 days as

an upper bound for patients’ WtW throughout the study (i.e., Z value for the rank-

based choice model, determined via experimentation with different values), and using

each model, we obtain 10 different sets of realization probabilities estimated from

each fold of sFED(100) and from each fold of sFED(1000). The reported statistics on

mean absolute errors (average, minimum and maximum MAD) are obtained over the

10-folds for sFED(100) and 10-folds for sFED(1000). Figures 2.4(a) and 2.4(b) show

the realization probabilities estimated with the three methods along with the “true”

realization probabilities for one fold of sFED(100) and sFED(1000, respectively. The

figures suggest that both models obtain probability estimates that are close to “true”

probabilities and show significantly better estimation performance compared to base-

line model, while representing reasonable patient responses to delays (e.g., nonin-

creasing in k), in accordance with our assumptions. Additionally, our results show

that probability estimates obtained with the survival and rank-based choice models

drastically improve through the use of more data points since we observe sFED(1000)

estimates look closer to “true” probabilities compared to sFED(100) in the figures.

This observation is not trivial since we see below that the error metrics for the base-

line method does not necessarily improve with more data. We observe similar results
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(a) Single Fold Results from sFED(100)
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(b) Single Fold Results from sFED(1000)

Figure 2.4: Estimates Obtained by the Three Different Models for One Fold of

sFED(100) and sFED(1000)

from our estimates on each training set that we generate.

We next test the performance of the three estimation methods with and without

imputation. To this end, we obtain imputed versions of each of the 10 folds (de-

noted as I-sBAD-Tr-1 to I-sBAD-Tr-10) for the survival model and the rank-based

choice model; recall that the imputation method is slightly different for the two

algorithms. For the baseline model, we use the imputation strategy presented for

the survival model and calculate the fraction of realized appointments from this I-

sBAD. Figures 2.5(a) and 2.5(b) show the estimations obtained from a single fold of

I-sBAD(100) and I-sBAD(1000), respectively. We make similar observations to the

ones made for the estimations obtained from sFED folds, which indicates that it is

possible to obtain similar characterizations with FED and BAD, through imputation

and estimation methods we have outlined.

To emphasize the above visual observations through a quantification of the errors,

we calculate the MAD of each model for all training sets; the error statistics are

40



0 10 20 30 40

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

I−sBAD−Tr−4
Days

R
ea

liz
at

io
n 

P
ro

ba
bi

lit
y

Baseline
Choice
Survival
True Realization Probability

(a) Single Fold Results from I-sBAD(100)
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(b) Single Fold Results from I-sBAD(1000)

Figure 2.5: Estimates Obtained by the Three Different Models for One Fold of I-

sBAD(100) and I-sBAD(1000)

provided in Table 2.12. We denote survival model as S, rank-based choice model as

C, and baseline model as B in the table.As indicated above, we first note that the

errors observed for both survival model and the rank-based choice model improve

drastically (from about 2% to less than 1%) as the data increases from 100 days to

1000 days’ worth of patient transactional data. The baseline model estimations actu-

ally get slightly worse, as more data is used, raising questions about the robustness

and intuitiveness of the method since one generally expects the estimations to get

better as more data is used in the estimations. An additional fundamental issue with

using baseline model is that since it depends on observations for each individual delay

value, it might result in no estimation for a delay value if the delay is not observed in

the data, or it might estimate the probabilities for a delay value as 0 or 1, if there is

a single observation for that delay. We observe MAD range for baseline being wider

than the other models since baseline model can arbitrarily estimate the realization

probabilities since it does not assume an underlying distribution or a functional form
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to estimate the probabilities.

Table 2.12: Statistics on MAD for Simulated Data on 100 Days Versus 1000 Days

Results from 100-days simulated data

MAD Range (min, max) over 10 training data folds Average MAD

sFED I-sBAD sBAD sFED I-sBAD sBAD

S (0.0000, 0.0945) (0.0000, 0.9473) (0.0000, 0.1998) 0.020 0.024 0.060

C (0.0002, 0.0787) (0.0063, 0.1352) (0.0003, 0.3876) 0.026 0.045 0.065

B (0.0002, 0.2712) (0.0004, 0.3313) (0.0004, 0.7427) 0.044 0.050 0.115

Results from 1000-days simulated data

MAD Range (min, max) over 10 training data folds Average MAD

sFED I-sBAD sBAD sFED I-sBAD sBAD

S (0.0000, 0.0433) (0.0000, 0.0624) (0.0000, 0.1726) 0.009 0.014 0.0624

C (0.0000, 0.0327) (0.0000, 0.0400) (0.0000, 0.3158) 0.010 0.011 0.063

B (0.0000, 0.1295) (0.0000, 0.1571) (0.0001, 0.4231) 0.055 0.061 0.107

Our suggested models are using the available data in a more comprehensive way

since the pk estimations are made by using all observations that contain that delay

value. For instance, while baseline model estimates the probability for 10 days’ delay

only using the observations with 10 days’ offered delay, survival and rank-based choice

models use the data from appointments being realized with delays 10 days or more,

and appointments that are not fulfilled with delay less than 10 days.

For all three methods, imputation improves the quality of estimations drastically;

for the survival model and the rank-based choice model the average MAD values

reduce to about one fifth of those observed without imputation. Furthermore, the

average MAD values obtained with imputed BAD are almost as low as those obtained
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with the FED, clearly demonstrating the feasibility of using our methods on less-than-

complete datasets that only include information on booked appointments.

2.5.3 Testing Goodness-of-Fit of Obtained WtW Distributions

In this section, we present a statistical test to evaluate the goodness-of-fit of

an obtained WtW distribution to be used in real-life data analysis, when “true”

realization probabilities are not available. In particular, we employ a hypothesis

testing approach that checks the statistical significance of an estimate for the WtW

distribution.

Consider 95% confidence intervals (CI) on the fraction of appointments realized for

each delay value, calculated from the dataset, FED or I-BAD, which includes PLWBA

instances. Since the number of realized appointments are binomially distributed with

pk, the so-called Wilson confidence interval (see, e.g., Brown et al. (2001)) provides

the range of values that includes the true probability that an offered appointment

with k-days’ delay will be realized with, say, 95% probability. Wilson CIs on fraction

of appointments realized for each appointment delay is obtained by

ns + z2/2

n+ z2
± z

n+ z2

√
nsnf
n

+
z2

4
, (2.17)

where ns refers to the number of appointments realized out of n appointments offered

with a certain delay, nf is the number of appointments not realized, and z denotes

the z-value from standard normal distribution where z is equal to 1.96 in our case (for

95% CI). Hence, under the hypothesis that the WtW characterization is a good one,

each pk estimate will lie in the associated Wilson interval with 95% probability, and

assuming independence, the number of pk estimates that fall outside the Wilson inter-

vals should be binomially distributed with T trials (number of possible appointment

delay values) and 0.05 “success” probability. Hence, we conduct a one-tailed Binomial
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test (with H0 : “success” probability = 0.05 and Ha : “success” probability > 0.05)

and calculate a p value using the observed number of estimates that fall outside the

Wilson CIs.

We follow the above-mentioned procedure for the realization probabilities obtained

through the two models on sFED(100), sFED(1000), I-sBAD(100), and I-sBAD(1000)

by generating the 95% Wilson CIs for each delay value k. We report the p-values

in Table 2.13, and plot the probability estimates and Wilson CIs as a function of

appointment delay in Figure 2.6. We observe that the data depicts behavior that

would be strongly aligned with the WtW characterizations obtained with either of

the two models (i.e., fail to reject the null hypothesis at α = 0.05) and hence, can be

considered to be effective mechanisms to estimate WtW distribution with respect to

the data at hand.

Table 2.13: p-values from the Goodness-of-fit Tests

sFED(100) sFED(1000) I-sBAD(100) I-sBAD(1000)

Survival Model 1.000 0.954 1.000 0.954

Choice Model 1.000 0.180 1.000 0.079

Note that since we have fewer number of observations in sFED(100) compared to

sFED(1000), and hence, the confidence intervals that are generated from sFED(100)

are wider. This again shows us the importance of collecting more data on offered

(and/or booked) appointments to obtain more accurate estimations for realization

probabilities.
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(a) Results from 100 Days Simulated Data
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(b) Results from 1000 Days Simulated Data

Figure 2.6: Comparison of Estimates from Different Models with 95% CIs from sFED

2.5.4 Further Analysis with Multiple Simulated FEDs

In the above analyses, we used a single set of “true” realization probabilities

that reflected the WtW behavior observed from our real-life dataset (details of which

are provided in the next section) to generate sFED(100) and sFED(1000). To gain

further insights into how our models perform under different settings of patient WtW

behavior, we extend our numerical analysis by considering alternative sets of “true”

realization probabilities (Cases 1 thru 4), and sFEDs generated for each case (referred

to as FED#1 thru FED#4). The four cases of true realization probabilities depict

somewhat extreme types of responses; ranging from linearly/nonlinearly decreasing

to step-wise constant. In our simulation model, we keep the other parameters the

same while generating new sFEDs. We employ both estimation models on each sFED

we generate, and report on performance of the models.

Figure 2.7 shows the estimations obtained from each sFED along with the “true”

realization probabilities used to generate the four sFEDs. We observe that the models
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(a) Realization Probabilities for FED#1
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(b) Realization Probabilities for FED#2
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(c) Realization Probabilities for FED#3
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(d) Realization Probabilities for FED#4

Figure 2.7: Performance of Proposed Models on Alternative sFEDs
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perform poorly after a certain appointment delay except for FED#4. The reason is

that our estimates are limited by the available data, hence we expect higher errors on

the pk values with very rarely observed offered delays. Not observing certain delay

values might be due to the length of the booking horizon or the congestion in the

system. For instance, we expect to observe high delay values rarely in less congested

systems.

Therefore, it is important to have homogeneous data that contains transactions

with different offered appointment delays. For instance, in FED#1, the maximum

offered appointment delay is observed as 33 days. Therefore, our models start to

perform poorly after day 33 where survival analysis assigns zero to pk for k > 33

since there are no records collected for those values while the rank-based choice model

assigns the same probability to each individual value. Notice that the realization

probability that the models start to perform poorly (maximum observed delay in

each FED) is almost the same for all FEDs since this value represents the required

dilution level in arrival rate to stabilize the system.

We expect our proposed models to perform better in a more congested system

under Cases 1, 2 and 3, and perform worse in a less congested system under the

realization probability Case 4. We test this claim by obtaining new sFEDs (referred to

as FED#1-2 thru FED#4-2) by using the same “true” probability cases but with less

service capacity for Cases 1-3, and with more service capacity for Case 4. Figure 2.8

shows our estimations with the new set of sFEDs.

Our experiments on new sFEDs show that both models are effective in estimating

the probabilities as long as we can observe the related data for the delay. One can

discuss whether it is crucial to estimate the realization probabilities for the delays

not offered and not observed. While these appointment delays are not offered to the

patients during a certain study period, those delay values are possible due to length
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(a) Realization Probabilities for FED#1-2
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(b) Realization Probabilities for FED#2-2
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(c) Realization Probabilities for FED#3-2
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(d) Realization Probabilities for FED#4-2

Figure 2.8: Performance of Proposed Models on Second Set of Alternative sFEDs
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of booking horizon. Therefore, in the case of changing the scheduling policy and

utilizing appointment slots that are further into future, it is suggested to collect FED

or BAD, if possible, for a certain period of time to observe different values of offered

delays and re-estimate the realization probabilities by using the proposed models.

Another way to generate an alternative FED is using the same set of “true” real-

ization probabilities but changing the distribution of the no-shows and cancellations

for each delay value for the appointments that are not realized. Note that changing

the distribution depicted in Figure 2.3 only affects the offered delays observed. If

patients decide to no-show more compared to Figure 2.3, we expect to observe higher

delays offered to patients since the system congestion will be higher due to no-show

slots being occupied until the time of the appointment while cancellations result in

slots being available before the time of the appointment. We use two different sets of

no-show and cancellation probabilities as inputs and generate two alternative sFEDs

to observe whether the choice of input changes the quality of estimates. We use the

statistical testing framework that we presented in Section 2.5.3 to test the quality of

our estimates and conclude that the choice of cancellation and no-show probabilities

for the appointment is not realized do not affect the performance of the estimation

methods significantly.

2.6 Case Study on Real-life Patient Transactional Data

In this section, we use the data that is described in Section 2.2 to gain insights into

patient responses in a real-life clinical setting with two types patients (i.e., established

and new patients), which we analyze separately. Since our real-life data only includes

data on booked appointments (i.e., it is a BAD), we first use the imputation methods

outlined in the previous sections to construct I-BAD, using 6.4% as the lost patient

rate, estimated from the demand universe dataset (i.e., DUD) available in the clinical
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setting we study.

Our data comes from a specialty unit that provides highly specialized, destination

medicine to patients, and hence, our assumption on the PLWBA and C/RS/NS obser-

vations only occurring due to patient’s WtW is highly appropriate for most patients

in this context. In other settings, we acknowledge the fact that WtW may not be the

only reason for PLWBA or C/RS/NS observations. We consider 48 time buckets per

day that an appointment can be requested for both new and established patients.
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Figure 2.9: Probability Estimates from I-BAD

Figures 2.9(a) and 2.9(b) demonstrate the delay-based realization probabilities

obtained with the survival and rank-based choice models for established and new

patients, respectively. We plot the realization probabilities on a backdrop of the

95% CIs obtained from the fraction of realized appointments with each level of delay

observed from I-BAD. For new patients, the number of pk estimates outside the CIs

results in p-values of 0.7300 and 0.1724 for the WtW distributions estimated from the

survival model and rank-based choice models, respectively, failing to reject the null
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hypothesis that the obtained WtW distributions effectively reflect patient response.

Both models yield a p-value of 0.0810 for established patients, again failing to reject

the null hypothesis.

Given the clinic under study is one that provides very specialized care to patients

in a destination medicine setting, it is probably not very surprising that we do not

observe a high sensitivity to appointment delays. For both patient types, we observe

a steep decline in realization probabilities as delays increase from zero to five business

days (i.e., one-week delay).

However, a side-by-side comparison of the realization probabilities show that new

patients tend to be more “patient” toward experienced appointment delays (i.e.,

higher realization probabilities for almost all delay values, k). This can be explained

by the fact that new patients are probably expecting longer delays to start treatment

in a new, highly reputable healthcare facility.

A comparison of the realization probabilities for new and established patients

show a notable difference in their responses; established patients show relatively sta-

ble realization probabilities for delay values of more than a week, whereas we see that

the realization probabilities degrade consistently as delay values increase. This ob-

servation can probably be explained by the fundamental healthcare trade-off between

speed and service quality which in our case corresponds to access delay and continu-

ity of care (Saultz, 2003; Liu et al., 2017). Considering that established patients are

already in the system and have an ongoing relationship with their physician or the

institution, they may have a relatively stable response to delays ranging from 10 to

60 business days due to the nature of their ongoing, long-term, periodic medical care

needs provided by a provider who is familiar with their condition or stay within a

healthcare system that they have prior experience with.

Due to the way that the two models work, the realization probabilities estimated

51



by the survival model for new patients resemble a step-wise function, resulting in

similar realization values for delays in certain ranges, but decreasing as delays increase

beyond a certain level. In comparison, the rank-based choice model for new patients

depicts almost strictly decreasing behavior for the new patients. For established

patients, the two models provide almost the same “stable” characterization. While

both models provide WtW characterizations that are statistically significant, the

choice of which one to use may be a function of the specific medical context, which

may make one model more appropriate than the other.

We can discuss possible ways of using our results to improve patient access to

care. There are many ways that such a characterization of patients WtW can be used

to reduce waste (i.e., no-shows, cancellations, etc.) and improve patient outcomes

and provider satisfaction. A better understanding of patient response can lead to

improved strategies to offer appointments to patients, considering various system

parameters such as capacity and slot availability as well as how a given patient may

react to an offered appointment delay. Such efforts may effectively reduce no-shows

and cancellations, and improve patient access times, rather than simply monitoring

these performance measures.

One relatively direct way is identifying a good strategy to use overbooking while

scheduling patients. Overbooking basically means assigning a patient to an appoint-

ment slot that is already occupied by another patient. It is commonly used in practice

for accommodating patients who are in urgent need of care, as well as reducing the

negative effects of patient no-shows or late cancellations and increase slot utilization.

Unfortunately, overbooking generally leads to higher direct wait experienced by pa-

tients and/or overtime for providers. Our realization probability estimates (which

are obtained as a function of patient type and appointment delay) can be used to

determine which appointment slot should be considered as a good candidate slot to
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overbook a patient if overbooking is unavoidable. Suppose two patients are scheduled

to different appointment slots on the same clinic day. Further suppose that one of

the patients requested the appointment 3 days prior to the appointment date while

the second one experiences 10 days’ appointment delay. Our analyses suggest that

an appointment with 3 day delay is more likely to be realized than an appointment

with 10 day delay. Therefore, the slot that the patient is scheduled with 10 day delay

is a better overbook candidate compared to one with 3 day delay.

A similar decision can be made based on the patient type that is scheduled to

an appointment slot. An overbooking policy can be designed by considering these

different realization probabilities of each appointment slot based on the delay ex-

perienced by patients who are scheduled in those slots and types of these patients.

Additionally, we can estimate the expected load in the system from those probabili-

ties and amount of overbooking that should be allowed can be determined based on

the capacity required to serve that demand load.

2.7 Conclusions

Understanding patient sensitivity to appointment delays is crucial to develop poli-

cies to effectively utilize the available care capacity. While patient response is a crit-

ical component to understand and quantify to improve access to care, the data that

represent patients’ sensitivity to appointment delays are not collected at the time of

the appointment request and mostly not easy to collect from the patients. There-

fore, direct estimation of patient WtW is not possible with the available data that

we can access. However, the transactional appointment data collected let us observe

each offered appointment with their delay and the patient’s reaction to that partic-

ular appointment. While these data do not directly give us the probability that an

appointment being booked and subsequently fulfilled by the patient, it allows us to
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observe the intervals that patient’s WtW belongs to.

We focus on developing methods that utilize transactional appointment data to be

used under different healthcare settings and for various patient populations. There-

fore, instead of developing models that are specifically designed for the available data

that we have from a single institution and a single specialty clinic, we consider devel-

oping good models that can be adapted to different settings as long as transactional

appointment data is available. Additionally, we assume each patient population has

an underlying inherited WtW distribution and focus on characterizing this distribu-

tion via statistical methods.

Hence, our objective becomes developing statistical models to characterize patient

WtW as the probability of an appointment with a certain delay being realized. While

the collected data allow us gain insights into patient WtW, we do not have full access

on FED since it is incomplete in the sense that the data on offered delays for PLWBA

is not collected. Even though we do not have access to FED, the two datasets that

we can access, BAD and DUD, let us represent PLWBA and append an estimate of

PLWBA to BAD via imputation with random sampling to obtain an I-BAD.

We develop two non-parametric statistical model, namely survival model and rank-

based choice model, to observe the effect of offered appointment delay on patients’

decision on fulfilling a particular appointment. For each model, we first discuss the

modeling approach that we take if FED is available. Then separately for each model,

we discuss the possible imputation strategies to obtain I-BAD and introduce how we

modify our models to utilize I-BAD instead of FED.

We start with testing our proposed models on simulated datasets, sFED and

sBAD, that are generated by simulating a patient flow that resembles the process in

the setting that we focus on. Using simulated data helps us observe FED and test

the effect of amount of data on the estimations. Additionally, since we use a set of
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probabilities to represent WtW in simulation model, it allows us to test effectiveness

of proposed models by calculating the error of the estimates compared the “true”

realization probabilities that we use as inputs in our simulation model.

By conducting the analyses on simulated datasets, we make numerous observations

on performance of our models. By calculating error metrics compared to “true” real-

ization probabilities, we observe that proposed models perform better than a baseline

model that directly estimates probability of realizing an appointment as a function of

appointment delay without considering any underlying WtW distribution. Our ob-

servations show that continuous collection of data is effectively improving estimates.

Additionally, our results suggest that collection of FED is crucial to obtain probabil-

ity estimates that are close to reality. However, if collection of FED is not possible,

time-consuming, or costly, it is observed that using I-BAD instead of BAD leads to

results close to reality and close to estimates that are obtained from using FED. We

then develop a goodness-of-fit test procedure to assess how well our estimates repre-

sent WtW distribution. Our analyses show that the estimates generated from both

models on sFED and I-sBAD are effectively representing WtW distribution.

From various analyses of simulated data, we conclude that both models are useful

in estimating WtW distribution and generating estimates that are close to “true”

realization probabilities. We then employ our models on a real BAD and DUD for

multiple outpatient clinics in a specialty unit that includes data on two different

patient types, new patients and established patients. We use the data on those two

different patient types to observe differences in patient responses. Our observations

suggest that established patients show more stable responses to delay values compared

to new patients which supports the trade-off between access to care and continuity

of care.

Our research only focuses on WtW aspect of the patient behavior. In real life,
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patient behavior is complex and there are several patient specific aspects that can

impact patients’ decisions. While understanding the underlying components of the

patient behavior is critical to improve patient flow, characterizing patient behavior

completely requires substantial amount of data which are mostly not collected and

possibly not easy to capture. Thus, we focus only on WtW behavior which is one of

the most critical patient behavior that has a substantial effect on patient experience

in accessing healthcare resources and this behavior can be reliably estimated from

the available data.

In the present study, we present effective statistical models to estimate patient

response from transactional appointment data. Our analyses show that the probabil-

ity of realizing an appointment can be parametrized which let us incorporate patient

WtW into developing prioritization policies while assigning patients to appointments

to improve patient access. In Section 2.2, our analyses on average appointment delays

show that established patients have relatively lower average delays than new patients

which signals a prioritization scheme that is used to schedule patients to appoint-

ment slots. While we focus on two patient types in this study, generally hospitals use

multiple patient types that might be based on urgency, referral type (internal or ex-

ternal), location (in-state, out-of-state, international, etc.), or based on the visit type

as the dataset that we consider (new, established, etc.). One possible future direction

can be extending the prioritization scheme that we observe to cover various patient

types considering patient WtW and develop an access policy that assigns capacity to

patients’ based on their priority and WtW.
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Chapter 3

TIME WINDOWS POLICY TO IMPROVE PATIENT ACCESS

3.1 Introduction

Providing timely access is one of the main indicators of quality of healthcare

delivery. In the recent years, increasing gap between the need for healthcare re-

sources and available capacity leads longer waiting times experienced by the patients

((Merrit-Hawkins, 2017)) when they request appointments from outpatient clinics.

Long waiting times not only lead to lower patient satisfaction but also have potential

negative impact on patient safety and healthcare outcomes.

One may think of an obvious way of managing the mismatch between the demand

and supply is increasing the available capacity. However, increasing the number of

resources in healthcare is costly and the supply for the resources is limited, especially

if the resource is a human component. One way to improve system performance and

healthcare delivery is allocating the available capacity based on patient needs and

expectations. This task goes beyond simply scheduling the patients to the available

appointment slots since it requires an approach that captures multiple components

of the system in a more comprehensive manner and considers the unique characteris-

tics of different healthcare setting to improve patient experience rather than simply

treating patients identically. It is a challenging task to identify how to allocate the

available capacity due to heterogeneity of the patient characteristics, their priorities,

and service needs as well as uncertainties involved in patient arrivals and service time

durations. An ideal access policy should take differences in patient characteristics

into account and satisfy patient needs accordingly. Our objective is developing an ac-
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cess protocol by considering patient priorities and their care needs to provide timely

care and improve patient experience. While access can be defined for all sorts of

patient-provider interaction, our focus is on improving patient access to outpatient

appointments in this study.

Access is a complex concept and definition of it varies among institutions and

specialties (see e.g.,Levesque et al. (2013)) based on clinic dependent characteristics

and goals. Additionally, differences in patient characteristics and care needs result

in different access requirements for each patient. To this end, we redefine improving

patient access and determine our goal as using the existing transactional data to meet

the right patients with right provider with right access delay. This definition contains

not only prioritizing the right patients but also doing it under the concept of right

access delay which is characterized based on patients’ delay expectations and their

urgencies.

3.1.1 Outpatient Scheduling

Outpatient appointment scheduling has been extensively studied in the literature.

The appointment scheduling literature can be classified into two groups according to

the wait type the patients experience; direct wait and indirect wait. In direct wait,

the focus is on the waiting time spent during the day of appointment after the patient

arrives while indirect wait considers the virtual waiting that patient experiences after

they are scheduled to an appointment in a future day on a booking horizon. This way

of scheduling is named as advanced scheduling in the literature. We focus on advanced

scheduling systems and indirect waiting times in the context of improving patient

access in this study. Gupta and Denton (2008) and Cayirli and Veral (2003) provide

an extensive literature review on the appointment scheduling systems in healthcare.

We also refer readers to Ahmadi-Javid et al. (2017) for detailed review on models on
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outpatient scheduling systems.

We focus on a system where patients call an appointment office to schedule an

appointment in a specialized clinic of a large hospital system. The appointment office

agent obtains patient information at the time of the request and offers an available

appointment slot with a provider based on patient’s medical needs and characteristics.

If the patient books the appointment, the patients’ access delay (indirect) is calculated

in business days and we refer this metric as time to appointment (TtA). In the system

we consider, the appointment calendar of each provider consist of certain number of

fixed-length appointment slots on each clinical day on a limited booking horizon.

When a patient is scheduled to an appointment slot, we assume that both the patient

and the physician are punctual so that the direct waiting times are negligible.

There are several studies in literature that present different approaches for re-

ducing indirect wait. Even though it is a well studied concept in the literature, the

studies on settings with patients from multiple priority classes are limited. Most of

the research in outpatient scheduling either assume the patients are homogeneous in

terms of the service needs or there are priority classes based on urgency (see, e.g.,

Klassen and Rohleder, 2004; Wang and Gupta, 2011; Ayvaz and Huh, 2010; Truong,

2015), encounter type (Patrick et al., 2008), service time characteristics (Klassen and

Rohleder, 1996; Cayirli et al., 2008) or patient location and diagnosis characteris-

tics Kazemian et al. (2017).

In multipriority setting, the literature mainly addresses allocation of available

limited capacity to patients from different priority classes. The study of Patrick and

Puterman (2007) proposes a simple way to allocate the available capacity to patients

of higher priorities for a two day planning problem and use overtime when the pa-

tients cannot be scheduled. Patrick et al. (2008), is one the leading studies in the

appointment scheduling area where authors consider an advanced scheduling system
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with multipriority patients in a diagnostic imaging facility. They use a prioritiza-

tion scheme based on patients’ encounter type which are emergency, inpatient, and

outpatient. They model the problem as an infinite horizon Markov Decision Process

(MDP), and solve it with an LP-based Approximate Dynamic Programming (ADP)

model. Similar to Patrick et al. (2008), in Saure et al. (2012) authors model the prob-

lem as an infinite horizon MDP for multi-priority patients by extending the model

with including multi stage appointments. In the study, the patient priority classes

refer to urgency levels, cancer site, and treatment intent with different waiting time

targets. Another study that focuses on surgical scheduling is Astaraky and Patrick

(2015) where authors develop a model for both operating room and recovery bed

scheduling under the presence of multiple priority classes again the priority classes

represent urgency of the patients.

While these studies show useful strategies to improve patient access, there is a

clear distinction between our work and this body of work in outpatient scheduling.

Unlike many studies in literature, we do not focus on giving slot-based decisions,

instead, we focus on developing higher level prioritization policies as set of rules

that can help appointment office agents to offer multiple appointment slot options to

patients based on patients’ needs and specific characteristics. Our encounters health

systems show us that appointment office agents act as a gatekeeper to the health

system since they are the ones that patients directly interact. Therefore, an effective

access policy should be clear and easy to implement by the appointment office agents.

Additionally, while allocating the capacity, the policy should provide options for the

patients on appointment days so that patients can choose among them based on their

personal schedules.
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3.1.2 Patient Behavior

Mainstream outpatient appointment scheduling literature directly focuses on con-

trolling the available capacity and allocating it to the patients from different priority

classes with the assumption that the patient demand is independent of the schedul-

ing policies that the institutions use. However, a stream of research in literature

suggests that patients show aversion to prolonged waiting times (see, e.g., Gallucci

et al., 2005; Liu et al., 2010; Norris et al., 2014; Osadchiy and Kc, 2017), which in-

dicates that offered appointment delay can affect patients’ appointment booking and

fulfilling behavior. We refer this behavior as willingness to wait (WtW), which is the

maximum access delay that a patient can tolerate to wait. Therefore, if the offered

appointment delay is more than patient’s WtW, patient does not to fulfill the offered

appointment and abandon the system without booking.

WtW is a similar to the willingness-to-pay concept in revenue (yield) manage-

ment. Yield management is one of the most popular techniques that is successfully

implemented in for profit service industry, such as airline companies and hotels, to

manage the available limited capacity (see, e.g., Belobaba, 1987; Smith et al., 1992)

through segmenting the market based on customers’ willingness-to-pay. While there

are obvious differences between the systems that revenue management is successful

in and healthcare systems, some of the insights from revenue management can be

used to address the issues in access context. We inspire from the idea of segmenting

the market in yield management and focus on developing access protocols that use

WtW to divide patient population in segments by offering the patients different delay

values.
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3.1.3 Time Window Based Policy

This insights from literature shows us observed delay is an important factor in

patient decisions and it is possible to use appointment delays to control patient de-

mand to address the mismatch between available capacity and demand. Our goal

is to bring a new perspective to studies in outpatient scheduling area by focusing

on how to control the demand to improve patient access to care by impacting ap-

pointment booking decisions of non-urgent, lower priority patients. Our policy not

only focuses on serving higher priority patients early but also considers serving higher

proportion of them. Therefore, we can identify our approach as matching available

clinical capacity and patient demand subject to patient behavior.

To this end, we focus on policies that considers patients’ inherent aversion to

waiting times and use this behavior to provide diverse care for patients from different

priorities. In this study, we introduce a time-windows based access protocol (TWP)

to improve patient access in multipriority patient environment. Instead of allocating

the capacity in terms of appointment slots, the policy allocates the available capac-

ity as time intervals on booking calendar that each priority can be scheduled. By

strategically delaying the lower priority patients, goal of time window based policy is

to dilute the arrivals from lower priority levels by inducing a higher rate of abandon-

ments. Our goal is to determine the optimal time windows for each priority class to

be scheduled in considering the patient abandonments due to appointment delay to

improve patient access.

A successful implementation of time window based access protocol lies in clearly

identifying patient priorities along with patients’ sensitivity to waiting times. Notice

that the reason why time window based policy is an effective prioritization scheme is

due to inherent patient WtW and dilution of demand as a result of it. Therefore, it
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is critical to understand patients’ WtW and quantify this behavior from the available

data to successfully implement a time window based policy. In Chapter 2, two alter-

native statistical methods to estimate patients’ response to appointment delays from

transactional appointment data are provided. This study shows us that the parame-

ters associated with WtW can be effectively estimated from the available data, hence,

can be used in developing an effective access protocols. We focus on a system where

patient priorities are easy to identify. In particular, we assume that there is a set of

guidelines that can be used to assign priority classes to patients at the time of their

request for an appointment with a provider. Additionally, we assume that complete

characterization of patient abandonment behavior is possible through analyzing the

transactional appointment data.

Considering that the concept of access and perception of improving the access

are different for each institution and each specialty, there is no single model that

can cover all those cases. Therefore, we focus on a specific setting that is common

in healthcare institutions where decision makers have a clear hierarchical preference

for higher priority patients over patients from lower priorities. Demand from each

patient class is satisfied in a hierarchical manner considering the available capacity.

Since patient behavior is an undeniable component of the patient satisfaction, we take

it into account while determining the time windows for each priority class. There-

fore, the access policy that we develop targets prioritizing patients not only serving

higher priority patients earlier but also serving higher priority patients with fewer

abandonments.

In our study, in addition to regular demand, we also consider overbook decisions.

In the literature, overbooking is mostly used to prevent negative effects of patient

no-shows and cancellations (see, e.g., LaGanga and Lawrence, 2007; Zacharias and

Pinedo, 2014; Liu and Ziya, 2014; Parizi and Ghate, 2016). However, in the case of less
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than expected no-shows and cancellations case, overbooks can lead to increased direct

waiting times which lead patient dissatisfaction or it can cause overtime for medical

providers which is costly and leads lower provider satisfaction. Unlike these studies,

we do not employ overbooks to avoid unutilized appointments due to cancellations

and no-shows since time window based policy already makes the assignment decisions

considering the estimated dilution of patient demand.

Our main target while making overbooking decisions is to consider the trade-

off between making a patient wait longer and overbooking the patient at an earlier

appointment slot. Overbooks can help us to provide a certain level of service when

the regular available capacity is insufficient to provide the targeted service level. We

provide a set of solutions to decision makers under alternative overbook capacities

to help them decide on the level of capacity that should be used o reach certain

average TtA and service level targets. Additionally, it helps us to capture the trade-

off between increasing the capacity and increasing the performance measures.

Determining the optimal time windows on a calendar system is a challenging task.

The literature on outpatient scheduling shows that advanced scheduling systems tend

to fail to “curse of dimensionalty” due to necessity to keep track of full appointment

calendar. In order to avoid this consequence, we consider the calendar as a collection

of uncapacitated bins where each bin represents the time window for a certain priority

class. Uncapacitated bin representation along with the assumption that each patient

is equally likely scheduled to any day on their time windows help us to characterize

the optimal time windows for each priority class based on demand load, available

regular and overbook capacity, and patient behavior.
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3.1.4 Common Policies for Patient Prioritization

One family of policies commonly used in practice to prioritize patients is “template

type” policies. This family of policies uses appointment templates that are designed

in a way that each appointment slot is designated for a specific class of patients.

This way, the policy limits the number of slots that can be allocated to lower priority

patients and prioritizes higher priorities by allowing them access to a higher portion

of the capacity. Even though this family of policies is commonly used in practice, it

requires an accurate estimation of the traffic to allocate the slots between multiple

patient classes. Since this family of policies is strict in reserving the capacity to

patients, if they are not managed correctly, they can lead to low utilization levels while

result in poor access levels for lower priority patients at the same time. Additionally,

this type of policies are not easy to manage and adjust to the changes in demand mix

since it does not have any dynamic features.

A less restricted way of protecting appointment slots is to use protection level

policies that protect some portion of capacity from lower priority. The policy mainly

does not allow the capacity to be used for lower priority patients if the available

capacity is below a certain protection level. In Patrick and Puterman (2007), a

capacity protection policy is proposed for higher priority patients each day and certain

capacity is reserved in the subsequent day for carry-over demand of lower priority

patients, and overtime used when those reserved capacities do not satisfy the incoming

demand. The study of Ayvaz and Huh (2010) studies two patient case where the

urgent patient demand is lost when it is not satisfied instantly, the authors use a

dynamic programming formulation. Simple heuristics that reserve capacity for urgent

patients is studied by Patrick and Puterman (2007) for the same setting. A dynamic

allocation problem in a general setting on job processing is studied by Erdelyi and
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Topaloglu (2009), where a model that reserves a certain amount of capacity in each

day for jobs from different priorities is presented and a sample-path based solution

methodology is discussed.

In our study, unlike the above mentioned families of policies, instead of reserving

capacity in terms of appointment slots, we (weakly) allocate capacity by restricting

the time intervals that each priority class can be scheduled in. One nice feature of

using such a policy is that, since it does not restrict the capacity for certain patient

types unlike to a template style calendar, it may provide better utilization levels due

its flexibility. Additionally, since it allocates a certain time range that patients can

be assigned to, multiple appointment slot alternatives can be offered to the patients.

A study that uses an approach that resembles our time windows is Kazemian et al.

(2017), where the authors consider an appointment system where clinical and surgi-

cal appointments are scheduled in coordination in a multipriority patient- multiple

provider environment. The authors suggest various alternative policies that include

the delay target-dependent time windows similar to the ones suggested in Patrick

et al. (2008), and evaluate the performance of those policies by using simulation.

Then, the most effective policy in terms of average operating room overtime is fine-

tuned through investigation. In our study, unlike Kazemian et al. (2017), we provide

the optimal time windows that patients can be scheduled into considering hierarchical

preference. Additionally, our study generates the time windows not only considering

the targets but also acknowledging patients’ sensitivity to appointment delays.

We conduct various simulation experiments under different arrival and WtW cases

to test the performance of the time window based policy as a comparison to the

policies that we mention above. Our extensive analyses show that time window

based policy is effectively prioritizing patients by assigning lower priority patients to

appointment slots that are further into the future, and diluting higher proportion
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of the demand from lower priority patients. We observe that both time window

based policy and protection level policy are effective policies to improve patient access

without resulting in high number of overbooks. We then compare these two policies

from an application point of view, and discuss the advantages of using the time

window based policy in terms of its flexibility and ease of implementation.

We provide a case study on our approach by using a real-life patient transactional

data from a specialty clinic that provides destination medicine. We use the dataset to

identify patient priority classes and estimate patient WtW from the data by using one

of the statistical methods that are introduced in Chapter 2. We then calculate the

optimal time windows for each priority class and utilize a simulation model to observe

the amount of improvement in patient access due to implementing time windows

based policy to prioritize patients. Our results suggest that time windows based

policy results in lower access delay and fewer WtW-related abandonments from higher

priorities while appropriately delaying the lower priority patients and diluting the

demand of patients from those priority classes.

Following the real-life case study, we introduce the concept of “compromised prior-

itization” where the decision maker targets certain levels of performance measures for

each priority class rather than strictly prioritizing higher level patients. We discuss

the trade-off between not serving a lower priority class completely and compromising

from the service level of higher priority class. By utilizing the real data, we gener-

ate managerial insights and provide an alternative set of solutions that can be used

under different targets on performance measures and overbook capacities to help the

decision maker.

The rest of the chapter is organized as follows. Section 3.2 presents the modeling

framework of proposed scheduling policy that utilizes time windows to improve access

in a setting with distinct priorities and hierarchical preferences of higher priority
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classes over lower priorities. In Section 3.3, we describe our simulation model of the

appointment system and compare the performance of time window based policy with

other policies. In Section 3.4, we present our case study on a real dataset. Section 3.5

introduces compromised prioritization and the managerial insights that we generate.

We conclude the chapter in Section 3.6.

3.2 Problem Description

We consider the problem of constructing time windows for each of N patient

priority classes on a limited booking horizon of length T . We assume that it is

possible to assign each patient to a priority class based on available patient traits,

such as acuity or the urgency of the patient’s medical needs where priority class 1

denotes the higher priority class. Following an appointment request from a patient

from priority class n, the scheduling agent only search for an appointment within the

specified time window for priority class n.

Previous studies on patient access and appointment scheduling show that keeping

track of the full appointment calendar leads to “curse of dimensionality.” In order

to avoid “curse of dimensionality,” we make a simplifying assumption that each time

windows is represented as uncapacitated bins. At any day t, any arriving patient

type n can be accommodated by their respective bin only. In this bin representation,

we consider total used capacity within each bin rather than usage in separate days.

However, this simplification is not representative enough since in the actual calendar

whenever day changes, the first day of time window for patient type n becomes the

last day of time window for patient type n−1. Therefore, we represent the process as

when the day rolls (at the end of each day) each bin n(except the last one) receives

a certain amount of used capacity from bin n + 1 since the time windows are in

sequential order in the actual calendar. This representation helps us to capture the
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characteristics of a calendar and the ways days are rolled without keeping track of

the full calendar.

In order to calculate the distribution of used capacity within each bin, we start

with considering priority class N , the last priority class. Let TN denote the length of

time window for priority classN . Hence, the time windows policy assigns arrivals from

priority class N into bin that represents the time period that starts with (T+1)−TNth

day from the current day until the end of day T .

To calculate the distribution of appointments in bin for priority class N , we keep

track of the number of patients on a given day (we call this the “marked day”),

from the first calendar day that the marked day enters the booking horizon (we re-

fer to this calendar day as “day 1” without loss of generality) to the calendar day

that the marked day becomes the first day in the time window. Notice that at the

end of each day when the calendar is rolled, a calendar day with no used capacity

appears at the end of booking horizon, we refer this day as the “marked day” in

this representation. Assume that on a given day, the type N arrivals are distributed

randomly (i.e., equally likely to any day within the time window and the number of

type N arrivals on any day are distributed Poisson with rate λN . Let WN(1) denote

the random number of type N patients received on day 1, and distributed equally

among the days in time window N , where the last of these days is our marked day.

In Figure 3.1 the marked day is shown with the diagonal hatch pattern with type

N time window length TN = 6. Since the WN(1) are distributed equally among

the TN days in the time window, the number of day 1 patients who are scheduled

on our marked day (denoted as YN(1)) can be modeled as the sum of WN(1) in-

dependent, identically distributed Bernoulli variables, I1(1), I2(1), . . . , IWN (1)(1) with

success probability, p = 1/TN . On day 2, this marked day gets another YN(2) pa-

tients scheduled on it that is equal to the sum of WN(2) independent, identically
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distributed Bernoulli variables, I1(2), I2(2), . . . , IWN (2)(2), again with success proba-

bility p = 1/TN when the day is rolled. Hence, the number of patients scheduled on

our marked day by calendar day TN (i.e., SN(TN) =
∑TN

t=1 YN(t)) can be modeled by

the following probability generating function (since the type N arrivals in subsequent

days are independent Poisson variables with rate λN :

πSN (TN )(u) =

TN∏
t=1

πYN (t)(u) =

TN∏
t=1

πWN (t)(πI1(t)(u))

=

TN∏
t=1

πWN (t) (1− p+ pu)

=

TN∏
t=1

e
−λN

[
1−
(

1− 1
TN

+ 1
TN

u
)]

= e
−TNλN 1

TN
(1−u)

= e−λN (1−u) . (3.1)

The probability generating function for SN(TN) shows that the number of type N

patients scheduled on the marked day is Poisson distributed with rate λN .

Day 1

Day 6

Day 5

Day 4

Day 3

Day 2

Day 7

Figure 3.1: Days in the Time Windows

Using a similar argument, we can calculate the total number of patients scheduled

in the time window for type N patients by calendar day TN . The number of type

N patients scheduled on the day after our marked day can be shown to be Poisson
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distributed random variable with rate TN−1
TN

λN . Furthermore, it is straightforward to

show that this random variable is independent of SN(TN), the number of patients

scheduled on the marked day, since the number of type N patients arriving each day

is a Poisson random variable, and the allocation of these Poisson arrivals on each day

is determined randomly with probability 1/TN . Summing TN independent Poisson

random variables with rates λN ,
TN−1
TN

λN , . . . ,
2
TN
λN ,

1
TN
λN , we find that XN , which

represents the number of patients scheduled in TN days to be distributed Poisson with

rate TN+1
2
λN .

Since the number of patients in time window N includes the patients that are

allocated in the first day of this period (i.e., marked day), the number of patients in

the first day of the period is not independent of the total number of patients scheduled

in the time window. As the calendar is rolled, the number of patients in this first

day becomes part of the number of patients scheduled in the time window for priority

class N − 1. Therefore, it is important to analyze the conditional probability of the

number of patients on the first day of the time window given the total number of

patients in the time window. That is, for x ≥ s

P (SN(TN) = s|XN = x) =
P (SN(TN) = s,XN = x)

P (XN = x)
(3.2)

=
P (SN(TN) = s,XN − SN(TN) = x− s)

P (XN = x)
(3.3)

=
P (SN(TN) = s)P (XN − SN(TN) = x− s)

P (XN = x)
, (3.4)

where the last equality is due to the fact that the number of patients scheduled on the

first day of the time window is independent of the number of patients scheduled on

the other days of the time window. Then, using the fact that the number of patients

on the remaining TN − 1 days of time window N on day TN is Poisson with rate
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TN−1
2
λN , we have

P (SN = s|XN = x) =

e−λN λN
s

s!
.
e−

TN−1
2 λN

(
TN−1

2
λN

)x−s
(x−s)!

e−
TN+1

2 λN
(
TN+1

2
λN

)x
x!

(3.5)

=

(
x

s

)(
2

TN + 1

)s(
1− 2

TN + 1

)x−s
(3.6)

which equals to Binom( x, 2/(TN + 1)).

To calculate the distribution of the number of patients in the time window for

priority N −1, we note that each day in this time window has a number of priority N

patients, independent and identically Poisson distributed with rate λN . Hence, using

independence, we can show that the total number of patients in time window N − 1

(which is of length TN−1) is Poisson with rate
(
TN−1+1

2

)
λN−1 + TN−1λN . Hence, as

before, the rate is a function of the length of the time window used. The independence

implied by random splitting of Poisson arrivals further imply that the total number

of patients (of priority N − 1 and N) in time window N − 1 is independent of the

number of patients in time window N .

It is possible to generalize this result for any time window for patient class n ∈

{1, 2, . . . , N − 1}. In general, the number of patients in priority time window n, Xn,

is Poisson distributed with rate Λn =
(
Tn+1

2

)
λn + Tn

∑N−1
k=n λk+1 .

3.2.1 Modeling Abandonment

One of the main reasons that time window based policy is an effective method

to improve patient access is that patients show aversion to wait. This time sensitiv-

ity leads to abandonments especially if the patients experience lengthy appointment

delays. Due to this behavior, realization of an offered appointment becomes depen-

dent on delay of the appointment and which patient class it is offered to. Chapter 2

provides two alternative methods that can be used to estimate the probability of real-
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izing an appointment as a function of appointment delay. Those probabilities directly

show patients’ WtW for an appointment with k-day delay since an appointment is

realized only when the patient’s WtW ≥ k. Therefore, we can obtain an estimate for

P (WtW ≥ k) for each patient class by employing the models suggested in Chapter 2

on real patient data.

Under a time window based access protocol, we expect to observe more abandon-

ment from lower priority classes compared to the higher priority classes since the lower

priority patients are scheduled further into the future. This dynamic makes time win-

dows an effective method in controlling the patient demand. Therefore, our objective

is to include appointment delay dependent abandonment rates into our analyses to

reflect the true effect of time windows on the system in this section.

Suppose that on a given day, the arrivals from priority N are distributed equally

among the days in time window N . In addition to notation defined in sections above,

we also define the beginning and end of time window N by day BN and EN , respec-

tively. The number of patients on the first day of time window N (referred to as SN)

is distributed Poisson with rate 1
EN−BN+1

λN
∑EN

k=BN
P (WtW ≥ k). Also suppose that

WtW follows cumulative distribution function (cdf) Fn for patient priority class n.

Hence, the distribution of SN is Poisson with rate:

ΛN =
1

EN −BN + 1
λN

EN∑
k=BN

1− P (WtW ≤ k − 1),

=
1

EN −BN + 1
λN

EN∑
k=BN

(1− FN(k − 1)).

Therefore, the distribution of SN is a function of both BN and EN , the beginning and

end dates of the time windows for priority N . For any priority level n, the calculation

is the same where the number of class n patients on the first day of the time window

for n will be Poisson with the same rate that depends on the beginning and end dates
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of the time window for n.

Consider the number of patients on the first day of the booking horizon, which

includes patients from all priority classes. Since the Poisson arrivals of patients from

different priority levels are independent due to the fact that unlimited amount of

overbooking is possible, the number of patients from each priority level on the first

day S1 are Poisson distributed with the above calculated rates. Assuming that for the

first priority time window starts on day 1 (i.e., B1 = 1), the total number of patients

scheduled over the entire booking horizon are then Poisson (sum of independent

Poisson variables) with rate

N∑
n=1

1

En −Bn + 1

En∑
k=Bn

(1− Fn(k − 1))λn. (3.7)

Note that (1− Fn(k)) is equal to the probability of realizing an appointment with k

day delay; this can be estimated from the available data for each priority class n and

can be utilized in calculation of the realized arrival rates.

After including the abandonments due to appointment delays in our model, we

now focus on obtaining the optimal time windows.

3.2.2 Strict Prioritization Model

We consider the setting that is described in Section 3.1 where there is a clear

order on patient priorities to be served. Particularly, we prefer serving priority n

patients over priority l ∈ {n+ 1, . . . , N} patients. For instance, under three priority

classes case, we first focus on allocating the available capacity to priority 1 patients,

the remaining capacity from priority 1 patients are allocated to priority 2 patients.

Lastly, priority 3 fills the remaining slots.

In our model, we fix a minimum and a maximum time windows length, Tmin and

Tmax, respectively. These parameters help us obtain time windows that are suitable for
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applying in real hospitals. Notice that putting a lower bound on time window length

results in dilution from priority 1 patient demand which is not desirable. However,

this minimum time window length ensures that a reasonable period on the booking

calendar is allocated to patients and it reflects the nature of the system where pa-

tients abandon even though they are served within the earliest possible time windows.

Additionally, setting an upper bound, Tmax, for the length of time windows helps us

avoid observing high variances in appointment delays experienced by the patients

from same priority class.

We also consider an upper limit on the expected number of overbooks, denoted

by θmax, which can be expressed as

∞∑
s1=0

e−(
∑N
n=1 Λn)(

∑N
n=1 Λn)s1

s1!
max{0, s1 − C} ≤ θmax , (3.8)

where s1 is the total number of patients on the first day of the booking horizon.

Notice that θmax along with the total capacity C limits the total demand rate that

can be served with the regular capacity and overbooks.

We define Λ = (
∑N

n=1 Λn) and rewrite the expression in (3.8) as:

Λ +
C∑

s1=0

e−ΛΛs1

s1!
(C − s1) ≤ C + θmax . (3.9)

From this, we say that there exists a Λ∗ that satisfies (3.9) in equality which is the

maximum rate that can be served with total regular and overbook capacity; we refer

to this quantity as the effective capacity. In our model, our focus is on allocating this

effective capacity among patients from different priority classes with clear hierarchical

preference by setting the time windows while considering the fill rates for each patient

class where fill rate is defined as the proportion of demand that is served.

For each patient class n with a time window that is defined as [Bn, En], fill rate
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of priority class n, denoted as βn, is

βn =
Λn

λn
=

1

En −Bn + 1

En∑
k=Bn

(1− Fn(k − 1)) , (3.10)

where we refer to Λn as the diluted demand of priority class n. For our case with N

patient priority classes, we can write

N∑
n=1

βnλn ≤ Λ∗. (3.11)

The expression (3.11) is an inequality (rather than a strict equality) since βn values

for each patient class n belongs to a discrete set that is determined by the underlying

WtW distribution with cdf Fn and possible [Bn, En] values, which may not make use

of the effective capacity, Λ∗.

Under strict prioritization, we start with determining the time window for priority

1 patients that maximizes the fill rate (minimizing the dilution) of those patients.

After determining the time window and the resultant Λ∗1 for priority 1 patients, we

continue with patients from the next priority level. Our model becomes setting time

windows [Bn, En] for each patient priority class n ∈ {1, . . . , N} where we solve the

following model for each n separately in the order of priority

max βn (3.12)

s.t.

βn =
1

En −Bn + 1

En∑
k=Bn

(1− Fn(k − 1)) , (3.13)

∞∑
s1=0

e−(
∑n−1
i=1 Λ∗i+λnβn)(

∑n−1
i=1 Λ∗i + λnβn)s1

s1!
max{0, s1 − C} ≤ θmax, (3.14)

Bn ≥ 1, (3.15)

T ≥ En ≥ Bn + Tmin − 1, (3.16)

T ≥ Bn + Tmax − 1 ≥ En , (3.17)

Bn, En ∈ Z+ . (3.18)
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While solving the model for priority n patients, we fix the Λ∗i , i ∈ {1, 2, . . . , n−1},

values for patients from higher priority classes and continue in this manner until either

the effective capacity is filled or a time window is set for all priority classes. Notice

that since we follow a strict prioritization scheme, the capacity can be filled before a

particular patient priority class and any classes below that are served. In that case,

we conclude that desired service cannot be provided to those patient classes with the

current available capacity.

It is trivial to see that the model assigns the time windows that result in min-

imum possible dilution to each patient class until inequality (3.14) is satisfied with

equality or with minimum slack (since equality cannot be reached for some WtW

distributions). Therefore, in any cases where we observe that the patient class n is

not served with minimum possible dilution (in the earliest time window) that means

the patient classes l ∈ {n+ 1, . . . , N} cannot be served with the available capacity.

Our solution approach starts with creating a dilution table which indicates the

achievable dilution for each [B,E] pair that are constrained by (3.15)-(3.17) where

achievable dilution for a patient class n, for each [Bn, En] pair can be denoted as

1 − βn. Note that we create the dilution table since we do not assume any specific

functional form for Fn(k), therefore, we need to enumerate the dilution table based

on WtW distribution. However, it may be possible to denote a closed-form expression

for the achievable dilution as a function of [Bn, En] pairs under certain underlying

WtW distribution cases. For instance, if the WtW is geometrically distributed with

rate p, the cdf is P (WtW ≤ k) = 1 − (1 − p)k. Hence, the diluted demand rate for

patient class n can be written as
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1

EN −BN + 1
λN

EN∑
k=BN

(1− p)k−1

=
1

En −Bn + 1

[
(1− pn)Bn−1

] (1− (1− pn)En−Bn+1

pn

)
λn . (3.19)

We present the pseudocode for the solution methodology for the strict prioriti-

zation case in Appendix B.1. In the next section, we study the performance of the

obtained strict prioritization time windows on a realistic system and compare it to

that of other policies that we have introduced in Section 3.1.

3.3 Numerical Experiments via Simulation

We develop a discrete event simulation model to assess the performance of the time

windows approach in a realistic system. Simulation model helps us to obtain the level

of multiple performance measures considering the uncertainty of appointment request

arrivals from different priority classes and compare these performance measures with

those obtained by alternative policies that can be used in an outpatient setting.

We analyze the performance of time window based policy in two steps. In the

first step, we consider various parameter combinations that are artificially generated

and observe insights into how time window based policy performs and whether it is

more beneficial in improving patient access compared to other policies. In the second

step, we conduct a case study on a real dataset from a real healthcare institution. In

this case, we observe how time windows perform in a real life setting in comparison

to current performance of the system.

3.3.1 Simulation Study on Generated Data

We model a patient flow with simulation that is similar to the appointment sys-

tem that we observe. We focus on the two priority classes case to easily observe and
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compare the performance measures. When a patient requests an appointment, an ap-

pointment is offered to a patient based on his priority class and the clinic’s scheduling

policy. We assume that the institution has an effective tool to assign each patient

to a priority class at the time of the appointment request. After the appointment

is offered to the patient, patient evaluates the delay against his WtW. We assume

that each priority class has a separate inherent WtW distribution and lower priority

patients tend to be more patient towards appointment delays. Note that this assump-

tion reflects a worst case scenario for the performance of the TWP, the effectiveness

of which is relatively limited when lower priority patients are less sensitive to delays

and do not abandon the system easily. If the offered appointment delay satisfies the

patient’s expectations, he books the appointment and is assigned to the slot, and

the TtA is recorded. Otherwise, patient abandons the system without booking and

the event is recorded. In our simulation model, we assume that available number of

regular appointment slots and overbooks slots are equal on each day of the booking

horizon.

In the implementation of time windows based policy, we randomly assign any

available regular slot to a patient within the appropriate time window to reflect our

modeling assumption that the patient can be scheduled at any day during his time

window. If there is no regular capacity available within his time window, patient is

assigned to an overbook slot within his time window. If there is no available regular

or overbook slots within the time window, the patient is assigned to first available

slot on the rest of the booking calendar. Patients are only rejected when there is no

regular and overbook capacity available on the booking calendar after the first day

on their time windows.

We test the performance of time window based policy and three families of policies

that are commonly used in the literature and in practice, template type policies (TP),
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protection level policies (PLP), and first come first served (FCFS).

Under TP, certain appointment slots are strictly templated to only accommodate

higher priority patients where a higher number of slots are typically made available to

patients of higher priority since lower priority patients cannot use a certain portion of

the slots. There is a nested allocation in TP where all appointment slots that can be

used by priority class n+1 can also be used by class n. When an appointment request

arrives, TP searches for an appointment slot that is templated for the requesting

patient’s priority class and schedules the patient to the first available such slot. We

relax the strict rules of TP and generate another policy that allows lower priority

patients to be scheduled to slots templated for higher priorities if the slot is not

utilized five business days prior to the appointment date. We name this policy as

template type policy utilizing unused slots (TP-U).

In designing the template for each week, we set the number of appointments to

be templated to higher priority on each day as the value that sets Poisson cdf to

99% based on the arrival rate. If that value is higher than the capacity, we allow one

appointment slot per day for lower priority patients. We set certain rules to avoid

request rejections and utilize overbooks when needed. That is, if there is no available

capacity that a patient class can use within the regular calendar considering the

template, the patients are assigned to any overbook slot within the booking horizon.

Request rejections only happen when there is no regular and overbook capacity on

the booking horizon.

Under PLP, a certain level of weekly capacity is protected for higher priority

classes by not allowing lower priority patients to be scheduled within a week if the

available capacity is lower than a certain level. In PLP, we again take a similar ap-

proach as we did with template type policies to determine the number of appointment

slots that need to be protected for higher priority patients on each week. For PLP,
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we additionally put an upper bound on the delay that higher priority patients can

experience to make it similar to time window policy for equal comparison and to

trigger overbooks from this patient class. Instead of assigning the first available slot,

we assign priority 1 patient to an available slot within 10 days of the appointment

request. If there is no available regular slot within 10 days, patient is assigned to an

overbook slot within 10 days if there is one available. Otherwise, patient is assigned

to first available slot within the booking horizon. Priority 1 patients are only rejected

if there is absolutely no regular and overbook capacity within the limited booking

horizon. On the other hand, priority 2 patients are assigned to an appointment slot

on any day of a week that has total number of available slots that are more than a

determined protection level. If there is no week that satisfies this condition within

the booking horizon, the patient is assigned to any available overbook slot within the

booking horizon.

Lastly, we consider the FCFS policy as a benchmark to show the performance

when no prioritization is used. In FCFS policy, we assign the first available slot

for any patient that requests an appointment without considering their priorities.

To make our comparison fair, in FCFS, we trigger overbooks for priority 1 patients

with certain probabilities. These probabilities are obtained from the result of time

window based policy. We calculate the proportion of priority 1 patients overbooked

in our simulation on time window based policy and use these proportions in each

case as the probabilities for FCFS policy to trigger the overbooks. If the priority 1

patient is decided to be overbooked, he is assigned to first available overbook slot

on the booking horizon. We additionally utilize overbooks when regular calendar is

completely booked for both patient classes.

In order to gain insight into the performances of alternative access policies under

different system conditions, we generate a large variety of parameter combinations.
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Additionally, we consider alternative overbook capacity levels as a percentage of regu-

lar capacity where fix regular capacity as 20 slots per business day and overbook slots

are determined as 10%, 25% and 50% of the regular capacity (2, 5, and 10 overbook

slots per day). Overbook slots can be considered as regular slots that an additional

patient can be assigned to even when they are already utilized.

We only focus on overloaded systems where arriving total demand is higher than

the total regular capacity and we assume that the demand is stationary. The arrival

rate combinations used in the simulation model are presented in Table 3.1. We mark

the arrival regimes as H, E, and L based on the combination between two patient

types. H denotes the cases where priority 1 patients have higher demand compared to

priority 2, L denotes the ones where priority 1 patients have lower demand compared

to priority 2, and E denotes the ones where the demand from priority 1 and priority

2 is equal. We additionally the mark the regimes on a figure in Table 3.1 and show

their positions with respect to λ1 + λ2 = C line that is shown in the figure.

We consider three different patient populations in terms of WtW behavior. We

can name these three populations as impatient (I), average (A), and patient (P)

population. In population I, underlying WtW distribution is right-skewed where a

larger portion of the population have lower WtW. Population A represents a popu-

lation where more patients tend to have average values for WtW and very low and

very high WtW is relatively rare, and population P represents the population where

more patients have higher WtW values. We present the WtW distributions and their

resulting realization probabilities in Figure 3.2.

We run the simulation for three years with one year of warm-up period, and use

100 replications. Since we are using multiple replications, we illustrate our results

with boxplots.

For each case, we calculate five different performance measures; average TtA for
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Regime ID λ1 λ2

L1 4 20

L2 8 16

L3 5 25

L4 10 20

E1 12 12

E2 15 15

H1 20 4

H2 16 8

H3 25 5

H4 20 10
0 5 10 15 20 25 30
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Table 3.1: Arrival Regimes

each priority class, fill rate (FR) for each priority class, percent rejected for each

priority class, utilization of regular slots, and utilization of overbook slots for each

policy. Since we have 90 (10 arrival regimes, 3 WtW cases, and 3 alternative overbook

capacities) cases in our simulation model with five performance measures, we only

report three representative cases to generate insights. In Figures 3.3 through 3.5,

we illustrate the results for the patient population under WtW P with θmax = 5 for

arrival cases L1, E2, and H2, respectively. We do not observe any rejections in any

of the cases, therefore, we do not report rejections. We also illustrate the results on

the same arrival cases with I and A WtW groups in Appendix B.2.

Under WtW cases P and A, we observe that TWP leads to significant improvement

in performance measures compared to FCFS. However, WtW case I, almost all of the

policies that we test in the simulation model, except TP, perform similarly since the
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(c) WtW Cases-Priority 2
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Figure 3.2: WtW Parameters Used in Simulation Model

natural dilution in WtW case I leads to system not being congested. For instance,

under WtW case I for the cases where λ1 +λ2 = 24, we rarely observe overbook slots

being utilized, while we start to observe overbook slot utilization and differences in

performance measures between the policies when λ1 + λ2 = 30.

Under WtW cases A and P, we observe that arrival regime H3 when θmax = 2

is the only case where priority 1 patients are not served within 10 days under the

policies that uses prioritization (the ones except FCFS). Under arrival regime H3,
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(f) Utilization of Overbook slots

Figure 3.3: Simulation Results for WtW case P, Arrival Case L1 (θmax = 5)
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(f) Utilization of Overbook Slots

Figure 3.4: Simulation Results for WtW Case P, Arrival Case E2 (θmax = 5)
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Figure 3.5: Simulation Results for WtW Case P, Arrival Case H2 (θmax = 5)
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natural dilution from priority 1 patients under WtW cases A and P does not result

in an arrival rate that can be satisfied with only two overbook slots. This result

signals that decision maker should consider increasing the daily available capacity

before using prioritization since even under the policies that uses strict prioritization,

the highest priority patients cannot be served with minimum possible delay.

Generally speaking, we observe that TWP and PLP generate similar performance

measures where TWP tends to utilize overbook slots more compared to PLP. While

PLP is a good policy, it is not easy to maintain this policy since performance is highly

dependent on the predetermined weekly protection levels. When we are determining

the protection level for each case in our numerical experiments, we use the protection

levels that result in the best performance measures since using a correct protection

level is crucial for PLP’s performance.

We consider a case to demonstrate the effect of protection levels on PLP’s perfor-

mance. We generate results for arrival case H3 with WtW case P and with θmax = 5

in Figure 3.6. The results denoted as PLP2 depict the results of PLP with the best

protection level while PLP1 is the result of PLP that protects one additional slot per

week than the best protection level.

The results show that PLP1 results in much lower fill rate compared to PLP2 due

to protecting one additional capacity for priority 1 patients. One interesting obser-

vation in here is that, since more patients are abandoning the system, the observed

TtA(2) for priority 2 patients are lower while PLP2 utilizes more overbook slots.

While PLP is an effective prioritization policy, even small changes in the predeter-

mined protection level can lead to drastic changes in level of performance measures.

FCFS policy does not use patient priority classes, therefore, it results in higher

average TtA(1) compared to other policies. On the other hand, since TP policy uses

a strict template, and focusing on priority 1 patients, it results in higher average
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Figure 3.6: Simulation Results for WtW Case P, Arrival Case H3 (θmax = 5)
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TtA(2) along with a low utilization. This performance is expected from TP since

when appointment requests from priority 1 patients are lower than the expected,

the slots templated for priority 1 patients stay unutilized while priority 2 patients

are experiencing unnecessary prolonged appointment delays. Since we are mainly

focusing on heavily loaded cases, we observe that the utilization is close to 100% in

all of the policies except TP. TP-U addresses this issue by allowing priority 2 patients

to be scheduled to slots reserved for priority 1 patients if they are not used five days

prior. Our results show that TP-U is performing similar to TWP and PLP in terms

of average TtA measures and utilization. The main disadvantage of TP-U is that

since it only allows slots to be used five days prior, it results in a higher variance

in appointment delays that priority 2 patients experience. Even though the policy

results in an average TtA(2) metric similar to TWP and PLP, it results in lower

FR(2) due to the way it assigns patients to appointment slots.

Additionally, since H3 represents a case where the system is heavily loaded and

the requests from priority 1 patients are higher than the capacity and much higher

than the priority 2 requests, we observe that the utilization generated from all policies

are equal to 100%, even the one from TP. We also observe that in this case, TP and

TP-U results are identical since the high number of requests from priority 1 implies

no slots assigned to priority 1 being available five days prior to appointment date.

3.4 Simulation Study on Real Data

So far in our analyses, we have used generated data to test the performance of our

proposed policy in comparison to other policies that are commonly used in practice.

Our simulation cases reflect the stylized case where higher priority patients are more

sensitive to appointment delays and patients leave without booking an appointment

if the offered appointment delay is more than their WtW. While a stylized simulation
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model and generated data allow us to explore a variety of cases, our assumptions might

not be correct in the real life. To this end, we utilize a dataset from a healthcare

institution that provides destination medicine to patients.

Our data is from a pulmonary subspecialty; we use almost three years of data on

booked appointments. The dataset includes appointment request dates, appointment

dates, and referral type. The dataset also includes disposition codes, which indicate

whether the booked appointment resulted in patient being seen by the provider,

whether the appointment was canceled (C), rescheduled (RS), or patient did not

show up to appointment (NS), and date of the cancellations and rescheduling. The

data is specifically on booked consultation appointments of 60 minutes duration and

consider three patient priority classes based on patient’s referral type. Specifically,

we use the appointment requests from three patient classes, which are new patients

(NCON), external referrals (ECON), and internal referrals (ICON).

NCON patients new to the institution and trying to enter the system by self refer-

ral while ECON patients have a referral from their providers from another healthcare

institution, and ICON patients are the ones that are referred to the subspecialty from

another specialty within the institution. We use the referral based priorities as NCON

patients are priority 1, and ICON patients are the last priority. The reason behind

this prioritization scheme is that NCON patients are in the need specifically from the

subspecialty while ICON patients are the ones who enter the system towards another

clinic which they are visiting for their primary complaints, for instance from Internal

Medicine specialty. Therefore, in terms of medical needs, getting an appointment

from pulmonary clinic can be considered as an additional visit for ICON patients

while it is the main destination of NCON and ECON patients. The distinction be-

tween NCON and ECON patients is due to the institution’s goal of attracting new

patients.
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We analyze the available data under the stated three priority classes. We observe

that 19% of the patient population that books an appointment at pulmonary clinic

is priority 1 patients while it is 16% and 65% for priority 2 and priority 3 patients,

respectively. The average offered appointment delays are observed as 47 days for

priority 1 patients, 41 days for priority 2 patients, and 33 days for priority 3 pa-

tients. This observation shows that an appointment policy that utilizes prioritization

is needed for improving the performance of the system since the current performance

measures do not prioritize the patients in the desired order.

In our modeling efforts, we assume that the patients abandon the system if the

offered delay is higher than their WtW. However, booked appointment data, it is not

possible for us to observe this lost demand where we can only observe the booked

appointments that are not realized, the ones with disposition code C/RS/NS. Due

to only having access to booked appointment data, we only consider the dilution

from demand due to patients C/RS/NS their booked appointments. In here, we

assume that all C/RS/NS events occur due to patients’ sensitivity to appointment

delay. The main difference between patients abandoning the system at the time of

the appointment request and C/RS/NS is that patients who C/RS/NS occupy an

appointment slot until a certain point. In most cases, patients who NS or cancel

on the day of appointment cause appointment slots being left unutilized since they

occupy the slot until the very last moment.

In order to estimate patient WtW, we utilize the survival model that was in-

troduced in Chapter 2. For each patient class, we separately use survival model on

appointment requests from that class to estimate WtW. We limit the maximum delay

that can be observed to 90 days and analyze the data accordingly. The estimated

realization probabilities are shown in Figure 3.7.

Figure 3.7 shows that patient WtW is not in the same order with priority classes.
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Figure 3.7: Estimated realization probabilities

We observe that priority 3 patients have higher sensitivity to waiting times, while

priority 1 and priority 2 patients have higher WtW with similar characteristics. Since

we focus on an institution that provides destination medicine, a large portion of the

patients are usually not local patients. ICON patients are usually already visiting the

hospital for another clinic due to their chief complaint at the time of the appointment

request. For those patients, it is not desirable to wait for an additional appointment.

Therefore, instead of waiting, these patients tend to cancel the booked appointments

or try to reschedule them to an earlier date while they are already on the hospital

campus. On the other hand, the requested appointment is more crucial for ECON

and NCON patients considering that they want to enter the system, therefore, these

patients prefer waiting for their booked appointments. Additionally, since ECON and

NCON patients are externally referred or self referred, they are usually subjected to

additional triage and testing, which lead to higher appointment delays being offered

to those patients.

We design our simulation model to reflect the above-mentioned dynamics of the
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system. The patient flow is modeled as follows. Upon an appointment request arrival,

patient’s priority class is assigned. Based on this priority and scheduling policy, an

appointment with a certain delay is offered to the patient. The patient assesses this

delay based on his WtW. If delay is less than the patient’s WtW, appointment is

booked and patient fulfills the appointment. If the delay is more than the WtW,

patient still books it then subsequently cancels or not show up at the time of the ap-

pointment. We consider reschedules as cancellations and new requests since our main

focus is the appointment requests and in most of the cases, patients are rescheduled to

an earlier appointment. We label the patients that have WtW less than the delay as

cancellation patients and no-show patients based on the patient class and delay value

with the proportions estimated from the data. Additionally, for each delay value and

for each patient class, we estimate a day of cancellation from the data if the patient

is determined as a cancellation patient.

One of the issues of the dataset is that we do not have access to exact appointment

calendar, therefore, we cannot identify the available capacity on each day and cannot

calculate the exact utilization. To resolve this issue, we first calculate the average

number of appointments that are either realized, no-show, or late cancelled (cancella-

tion on the day of the appointment) to have an estimate on the capacity assuming no

overbooks are used and no last minute patient is scheduled to late cancellation slots.

After obtaining the estimate for available capacity, we replicate the real data with a

simulation. Since we do not observe the exact dynamics of the scheduling policy, we

use the exact data to replicate arrivals per day and delays offered to each patient.

However, instead of directly replicating the C/RS/NS when we are considering the

patient responses to delays, we use the realization probabilities as well as the cancel-

lation probabilities and day of cancellation proportions that are estimated from the

data. The reason we use simulation in this way is to estimate slot utilization and
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make the results comparable to those from time window based policy. Notice that the

average TtA values from the simulation will be the exactly the same as the real data

while fill rates will be estimates. We run the simulation model for each of the obser-

vations in the dataset with 100 replications. The average fill rate that we obtain from

the simulation model is 63.4% for priority 1 patients, 66.3% for priority 2 patients,

and 53% for priority 3 patients while the values are 62.8%, 66.1%, and 52.4% in the

real data. We conclude that the simulation model produces results similar to real

data and we use the WtW associated parameters that we estimated from the data

as well as the estimated capacity in our simulation model to test the performance of

time window based policy.

We first obtain time windows for the three priority classes, with booking horizon

of length 90 days and Tmin = 10 and Tmax = 30. We set the available daily capacity to

C = 14 where λ1 = 4, λ2 = 3.4, and λ3 = 14. While determining the time windows,

we only consider the results where each patient class can be served within the booking

horizon with the available capacity. Therefore, while determining the time windows

for higher priority classes, we ensure that the lower priorities can at least be served

with minimum possible fill rate. The time windows that we obtain for priority 1 is

[1, 15] whereas the time windows for priority 2 and 3 are [12, 41] and [52, 62].

In real data, we cannot observe whether overbooking is used while assigning pa-

tients to appointment slots since we do not have an indicator in the dataset. There-

fore, we do not include overbooks in our simulation model, we only utilize the regular

slots. However, when we are setting the time windows, we set θmax to 0.5 since setting

it to 0 results in low effective capacity. For instance, when c = 14, expected number

of overbooks are close to 0 with effective capacity is 7.13 that does not allow all three

classes to be served. Since we are not using overbooks in our simulation model, if

there is no available slot available for patients within their time windows, the policy
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assigns patients to the first available slot beyond their time window.
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Figure 3.8: Simulation Results for TWP on Real Data

The results show TWP effectively delaying lower priority patients further into

the future to improve performance measures for higher priority patients. Along with

improving the TtA, TWP also improves FR for priority 1 and priority 2 patients by

diluting more demand from priority 3 patients. Even though TWP results in lower FR

for priority 3 compared to that observed in real data, we observe a slight increase in the

slot utilization. This result might be due to the delay dependent day of cancellations

for the patients who do not fulfill the booked appointments. From the real data, we

observe that the patients who book appointments with lower delay values tend to
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late cancel or reschedule, or cancel on a day closer to the appointment day compared

to ones who experience higher delays. Therefore, it is expected to observe more late

cancellations if priority 3 patients are booked earlier on the booking horizon, which

can result in unutilized appointment slots.

Our analysis shows the effectiveness of using TWP using both artificially generated

data and a real dataset from a real hospital. In our numerical experiments, we mainly

focus on maximizing the proportion of higher priority patients with the effective

capacity. While this is a valid objective for most cases, there might be other objectives

such as minimizing the number of overbooks used under a given average TtA target.

In those cases, objective function of our model can be changed to reflect decision

maker’s point of view.

While there are other effective policies to prioritize the patients, such as protection

level policy, our results suggest that time windows based policies are performing

well and easy to implement. From implementation point of view, time windows are

guaranteeing a maximum appointment delay for each priority class which can be

adapted based on patients’ urgencies. Additionally, it is easy to maintain the time

windows under the changes in patient arrival patterns and changes in patient mix

since time window requires setting starting and ending days on the booking calendar

for each priority class. With an effective method to identify the changes in arrival

regimes, one can preemptively fine-tune the time windows easily and automatically

update the policy without a significant effort.

As we discuss before, appointment office agents are acting as a gatekeeper to the

system and the correct implementation of the appointment policy by the agents is

essential for the success of the policy. Ideal way of implementing time windows is to

design a software which only allows appointment office agent to see the associated

part of the calendar at the time of the appointment request to avoid any human error
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and provide a certain level of flexibility to both patients and appointment office agents

by providing multiple possible appointment days and slots within the time window if

the slots are available.

3.5 Compromised Prioritization

So far in this study, we have only focused on the case where strict prioritization is

used. While using strict prioritization helps us to provide the highest level of service

for the patients with the highest priority, it can result in some patient classes not

being served due to serving higher priority classes with minimum level of dilution. In

real life, not serving a patient class due to serving another class with higher fill rate

is rarely observed. In some cases, serving all patient classes might be more desirable

for decision makers rather than serving some classes with the highest possible fill

rate. We call this scheme “compromised prioritization,” where service provided for

a higher priority class is reduced due to providing a higher service level to a lower

priority class or to avoid rejecting all appointment requests from a lower priority class.

For instance, in our analysis on real data, we relax strict prioritization to be able to

serve patients from all three priority classes.

There are three main levers in providing care: fill rate, average TtA, and expected

number of overbooks. Fill rate is a metric that represents the service level that are

provided to patients while average TtA can be considered as the indicator of the

quality of service provided. Average TtA metric for each patient class n for a time

window [Bn, En] can be defined as

Bn + En
2

, (3.20)

since we assume that patients are equally likely to be scheduled to any day within

their time windows.
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Especially for the patient populations that require urgent medical care, there

might be certain time limits to provide care, we call these limits “safety fences.”

We denote these safety fences as τ . Since safety fences indicate medical urgency,

this metric should be satisfied under any conditions. If the available capacity is not

enough to provide care within the safety fence, the decision maker can either increase

the regular capacity by hiring more providers or simply use overbooks as a temporary

way of increasing the capacity.

While fill rate and average TtA metrics are related since higher fill rates are

expected to be observed for lower average TtA values, they are not directly indicating

the same results. Based on population WtW and medically-determined safety fences,

one performance measure might limit the performance of the other. For instance, for

patient populations that are more tolerant to appointment delays, high fill rates can

be observed even for higher average TtA values which might exceed the medically

determined safety fences.

The dynamic between the three levers that we describe and trade-off between

providing care for patients from different priority classes can be captured by providing

alternative set of solutions. These sets of solutions can be used by the decision maker

by observing the service level and service quality that can be provided with the current

capacity, determining the level of care that can to be provided to each priority group,

and required capacity to reach certain service level and average TtA targets.

We use the real dataset that we utilize in Section 3.4 to provide set of alternative

time windows that can used under compromised prioritization. While we are deter-

mining the time windows for each priority class, we take the hierarchy of priority

levels into consideration. Specifically, as we did for strict prioritization, we first set

the time windows for priority 1 patients and then calculate the possible time windows

for priority 2 with the remaining capacity from priority 1. However, if the desired
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service level or average TtA cannot be reached for priority 2 patients, the service level

for priority 1 patient is lowered without violating the desired service level or average

TtA for priority 1 patients. After fixing the time windows for priority 1 patients, same

approach is used to analyze the trade-off between priority 2 and priority 3 patients.

Note that at each step we consider the trade-off between two consecutive priority

classes when determining the time windows for the higher priority class. Then con-

tinue with the remaining classes by setting the time windows for the higher priority

class at each step.

In order to provide alternative set of solutions, we first determine relevant θmax

values that can be used as in this setting. With the arrival parameters determined

from the real life data, we calculate the maximum expected number of overbooks

possible as 3.22 and the minimum as 0.125. We set the θmax values as 0.5, 1, 2,

and 3 to observe the range of results that can be reached with different levels of

available capacity. Under these θmax values, we first set targets on safety fences for

each priority class and provide alternative solutions that satisfy these targets. We

additionally consider the performance of strict prioritization. The set of targets are

presented in Table 3.2.

Table 3.2: Targets Determined on Performance Measures

Target No. τ1 τ2 τ3

T1 Strict prioritization

T2 6 10 15

T3 10 15 20

T4 10 30 45

T5 20 30 45
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In T2, our goal is to observe the case where patients from each priority class are

urgent, and targeted safety fences are relatively close. T3 considers a case similar to

T2 with less strict safety fences. T4 covers the case where there are distinct targets,

and T5 is the case that patients from all priority classes are less urgent compared to

other cases.

Table 3.3 presents the time windows generated for each class under alternative

targets and limit on expected number of overbooks. There are various insights that

can be gained from the results in Table 3.3. Under θmax values 2 and 3, we observe that

we can serve priority 1 and priority 2 patients with the natural dilution. Therefore, we

do not observe any differences between the time windows set under different targets

for those patients. T2 is the most restrictive target among the ones that we set. Under

θmax values 0.5 and 1, there is no solution that can satisfy the safety fence targets for

all patient classes. Therefore, we say that under T2, decision maker should increase

the available care capacity by using more overbook slots to provide higher quality of

care.

We can observe the trade-off between providing higher level of care to a higher

priority and serving a lower priority patient clearly in θmax = 0.5, under targets T4

and T5. While we cannot provide the required service quality under T4 to patients

with the available capacity, with a small compromise from the service level provided

for priority 1 patient, all patient classes can be served under T5. As it is shown in

Table 3.3 for θmax = 0.5, under targets T4 and T5, a minor reduction in FR1 and in

average 2 days of increase in TtA for priority 1 patients, priority 3 patients can be

served without increasing the available capacity.

The time windows that are provided in Table 3.3 are not the unique solutions

that satisfy the targets. For instance, under T3, we serve priority 1 patients with

the earliest available time window while serving other priorities at their average TtA
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Table 3.3: Time Windows Set Under Each Target

θmax Target No. [B1, E1] FR1 [B2, E2] FR2 [B3, E3] FR3

θmax = 0.5

T1 [1,10] 0.86 [1,10] 0.88 - -

T2 [1,11] 0.858 [5,15] 0.825 - -

T3 [3,17] 0.789 [5,25] 0.794 - -

T4 [3,17] 0.789 [25,35] 0.672 - -

T5 [6,18] 0.763 [25,35] 0.672 [33,57] 0.444

θmax = 1

T1 [1,10] 0.86 [1,10] 0.88 [20,42] 0.467

T2 [1,10] 0.86 [5,15] 0.825 - -

T3 [1,10] 0.86 [5,25] 0.794 [15,25] 0.488

T4 [1,10] 0.86 [1,10] 0.88 [20,42] 0.467

T5 [1,10] 0.86 [1,10] 0.88 [20,42] 0.467

θmax = 2

T1 [1,10] 0.86 [1,10] 0.88 [5,14] 0.602

T2 [1,11] 0.858 [1,10] 0.88 [5,14] 0.602

T3 [1,10] 0.86 [1,10] 0.88 [5,14] 0.602

T4 [1,10] 0.86 [1,10] 0.88 [5,14] 0.602

T5 [1,10] 0.86 [1,10] 0.88 [5,14] 0.602

θmax = 3

T1 [1,10] 0.86 [1,10] 0.88 [1,12] 0.696

T2 [1,10] 0.86 [1,10] 0.88 [1,12] 0.696

T3 [1,10] 0.86 [1,10] 0.88 [1,12] 0.696

T4 [1,10] 0.86 [1,10] 0.88 [1,12] 0.696

T5 [1,10] 0.86 [1,10] 0.88 [1,12] 0.696
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target. Similarly, for θmax = 1 under targets T4 and T5, we are providing care

for priority 1 and priority 2 patients much earlier than their required safety fence.

We can generate alternative solutions under these targets that allow lower priority

patients to be serviced with higher service level by reducing the service level for higher

priority patients without violating their targets. To observe this trade-off, we generate

alternative solutions specifically for θmax = 1, under targets T3 and T4.

Table 3.4: Alternative Time Windows

θmax Target No. [B1, E1] FR1 [B2, E2] FR2 [B3, E3] FR3

θmax = 1

T3 [4,14] 0.810 [5,25] 0.794 [8,32] 0.504

T3 [5,14] 0.8038 [1,29] 0.806 [8,32] 0.504

T4 [1,13] 0.848 [16,27] 0.752 [7,36] 0.502

T4 [5,14] 0.803 [16,27] 0.752 [8,26] 0.515

When presenting the alternative results, we generate two alternative solutions

where service level for priority 1 are set above 80%, above 75% for priority 2, and

above 50% for priority 3 patients.

As we note before, average TtA and fill rate are similar metrics, however, one

can be overcoming the other. For instance, to be able to satisfy the safety fence for

priority 2 patients in T3, resulting fill rate should be higher than 75%. Therefore,

TtA target overcomes the fill rate target for priority 2 patients in the cases we present

in Table 3.4.

The decision maker can utilize results based on the system specific goals and

additional preferences, and implement time windows accordingly. If the decision

maker’s main goal is to provide service to all patient types while using some form of

strict prioritization that does not allow rejecting requests from a priority class, the
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results that are presented in Table 3.3 are the time windows that should be used to

prioritize patients.

If the decision maker’s goal is to satisfy certain service level targets for each priority

class under medically determined safety fences, compromising the performance of

higher priority patients as we present in Table 3.4 is an effective approach to reach

the targets. Among the results that are presented in Table 3.4, decision maker can

make additional decisions on the features of the time windows. For instance, under

target T3 and additional fill rate targets, decision maker can pick the window [1, 29] to

reduce the minimum possible delay or pick the window [5, 25] to reduce the variance

of the appointment delay experienced by priority 2 patients.

In a setting where patient urgencies are not the main concern of the decision maker

while the service level is an important measure, the trade-off between service level

and average overbook required should be analyzed. For instance, if the target service

level is to provide 75% service level to priority 1 patients, 70% to priority 2, and

50% to priority 3 patients, the lowest level of expected overbooks that can be used to

reach the service level targets is 0.762 while it is 1.587 for service level targets 80%,

75%, and 60% for priority 1, priority 2, and priority 3 patients, respectively. A small

increase in the number of overbook slots used can result in significant improvements

in service level as well as reduce average TtA for priority 1 patients from 15.5 to 9.5,

from 29 to 20.5 for priority 2 patients, and from 21 to 12 for priority 3 patients.

The reason why we observe more significant changes in performance measures

with a small increase in overbooks used is due to the characteristics of WtW distri-

bution. Since patients are more sensitive to the increases in appointment delays for

the lower delay values, we can obtain significant improvements in service levels by

serving patients earlier in the booking horizon, especially for delay values lower than

20 days.
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Another insight that we can get from the analysis is the effect of θmax value on the

performance measures. As we note before, 3.22 is the maximum expected number of

overbooks with the set parameters and the available capacity. Therefore, we can say

that increasing θmax value beyond 3.22 does not lead any improvements in the perfor-

mance measures. Additionally, we expect to observe that the relative improvement

in performance measures diminishes as θmax value increases. This observation can

be made from the results that we present in Table 3.3. From Table 3.3, we can ob-

serve that increasing the number of available overbook slots from 2 to 3 only changes

the service level that can be provided to priority 3 patients while we can improve

performance measures significantly by increasing θmax from 0.5 to 1.

If we have access to associated cost parameters or any sort of financial data, we can

decide on ideal level of overbook capacity under the diminishing marginal return of the

performance measures. We can also decide on the best solution that needs to be used

among the alternatives by conducting a cost-benefit analysis. For instance, between

the two alternative cases that are presented in Table 3.4 under T4, the main difference

is the service level provided for priority 1 and priority 3. If serving additional 4.5%

of priority 1 patients is more financially beneficial than serving 1.8% of priority 3

patients, one can choose the set of time windows in the first alternative presented

in Table 3.4 under T4 than the second alternative. However, obtaining these cost

parameters in this setting is not an easy task to conduct a financial analysis. Instead

of cost components, one can use certain weights for performance measures that are

determined by the decision maker to identify the optimal time windows to be chosen

among the alternatives.

We generate additional data on patient arrivals and WtW distributions to further

analyze compromised prioritization in two patient classes case. We generate trade-off

curves under different system parameters on possible fill rate metrics for patients from
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different priority classes. We construct the trade-off curves between the fill rates of

priority 1 and priority 2 patients by evaluating the maximum β2 value for each possible

value of β1 that satisfies inequality (3.11). Then, we generate managerial insights from

the trade-off curves to assist decision maker to decide on the time windows that need

to be used. We give further details in Appendix B.3.

3.6 Conclusion

Timely access is a critical component of quality of healthcare delivery. Through-

out the years, healthcare systems facing issues regarding serving increasing demand

to healthcare resources with limited clinical capacity. Due to this increasing demand,

meeting right patients with right providers by allocating the available capacity be-

comes extremely important for both patient and provider satisfaction. While im-

proving patient access can be considered as increasing the performance for overall

system, the level of access necessary for patients are not identical considering re-

sponses to access delays, patient care needs, urgencies and priorities. Characterizing

the patients’ responses to delays and identifying patients’ care needs are crucial in

effectively utilizing the clinical capacity in providing timely access.

While the studies in the outpatient scheduling area is suggesting methods to utilize

the available capacity in a way that improves the performance measures, addressing

the mismatch between the clinical capacity and patient demand in a single perspective

is not sufficient. An efficient method in improving patient access should consider the

system as a whole rather than focusing on a single component and should not assume

demand as an independent from the access policies used since patients react to the

prolonged delays. While it is not possible to reduce the source of the demand, it is

possible to manage the demand with an effective access policy by acknowledging the

patients’ inherent reactions to delays and using it as a lever.
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Our main goal is to develop higher level access protocols that consider patient

characteristics rather than determining slot level appointment decisions. We focus

on developing such a policy that we refer as time window based policy which mainly

identifies time intervals on the booking horizon that patients can be assigned to based

on their priorities and their tolerance to appointment delays offered. The idea behind

this policy is encouraging non-urgent, low priority patients to seek care at other

institutions by offering appointments with higher delays and use appointment delay

as a lever to control the patient demand by diluting the total demand in a way to

match it with the available clinical capacity. This approach can be considered as

weak rejection where patients from lower priorities are offered appointments that are

further into future rather than directly getting rejected. The policy that we design

utilizes patient WtW behavior and patient priorities to identify the time windows.

The main challenge in appointment systems is curse of dimensionality due to

keeping track of the appointment calendar. To avoid curse of dimensionality, we

consider a simplifying yet an effective approach that considers each time window as

an uncapacitated bin. With the assumption that each patient is scheduled equally

likely to any day within their respective bins, uncapacitated bin approach helps us

to calculate the expected demand load as a function of the time windows allocated

for each patient priority class and patient WtW without keeping track of the full

appointment calendar.

Our suggested approach is similar to pricing strategies in revenue management

which focus on determining set of fare classes to open at each point in time to dis-

courage the customers that are not willing to pay the offered price. We use inherent

patient WtW in a similar manner by offering higher delays to patients from lower

priority classes. Time windows policy is a completely new perspective in patient ac-

cess context since our approach mainly focusing on controlling the patient demand
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through prioritization and improve access for the patients who requires timely access

to care since concept of improving the access is not the same for every patient.

We specifically focus on the setting where patient priorities can be identified at

the time of the appointment request and decision maker uses strict prioritization.

Our study contributes to area of outpatient scheduling by bringing an innovative way

to improve patient experience and provide care for the patients who are in dire need

and sensitive to appointment delays. Via extensive simulation experiments, we show

that the access policy that we propose performs better than the common policies that

are used in practice. In addition to its performance, time windows based policy is

also beneficial due to its ease of implementation in real life. It is easy to adjust based

on the changes in total traffic and patient mix and these adjustments can be put in

action without requiring significant effort and time.

We then utilize a dataset from a specialty clinic that patient priority classes can

be identified from the available data to observe time window policy’s performance in

a real system. We show that the policy effectively improves performance measures

in a real life system that does not completely satisfy our modeling assumptions by

using a simulation model that is calibrated with real data. In the simulation model,

we use realization probabilities for each delay value that represents the probability

that a booked appointment will be realized to represent patient WtW. We estimate

these probabilities from the available data by employing a statistical model designed

for estimating patient WtW.

For our policy to be successfully applied in practice and improve patient access, it

is necessary to approach the system in a comprehensive manner since the policy that

we offer consider patient priorities and behavior in making decisions. The first step of

this comprehensive approach should be identifying the patients who can benefit most

from the provided service, i.e., identifying the right patients to prioritize. Establishing
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the target patient population is critical to improve access since patients cannot be

considered as equal in terms of access needs. In our study, we consider referral type

based priorities that indicates a prioritization scheme considering patients need to for

entering the system and attracting new patients. The nice feature of this prioritization

scheme is that the priorities can be assigned at the time of appointment request and

easy to identify.

Another way of identifying patient priorities can be considered as prioritizing pa-

tients in terms of medical necessity and urgency. While medical necessity and urgency

are ideal characteristics to identify each patient’s priority class, observing those char-

acteristics at the time of the appointment request is a challenging task. In most

cases, to identify patient’s condition a preliminary triage is required by the medical

providers. While pre-triage results in accurate priority assignments, it is costly and

causes additional delays in access to care. An effective way of identifying need based

priority levels is to utilize tools to detect prognostic evidence from available data.

With the advancements in data mining and machine learning techniques, deriving

critical information from Electronic Health Records (EHR) becomes more accessible.

Developing a data-driven triage tool by employing machine learning techniques can

be considered as a promising direction for a future study.

Another direction that we can follow for future study is identifying patient be-

havior in a more detailed way and reflecting it in our model in more details. For

instance, as we observe in our case study not all patients who have WtW lower than

the appointment delay balk without booking an appointment. As we indicate before,

we observe that at many encounters, patients with WtW lower than the appointment

delay can book the offered appointment but then either reschedule to an earlier date,

cancel completely, or decide not to show up for the appointment. Notice that among

all these disposition reasons only cancellations results in reduction in the system load.
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However, this reduction does not observed instantly since patients who cancel first

keep the appointment until a certain point in time then cancel before the time of

appointment. Since we are specifically focusing on the total load on the first day of

the appointment calendar, we can include the late cancellations and no-shows into

our model to calculate the utilization and overbook slots utilized in more details.

Lastly, we can extend this study for different settings under different objectives.

One objective can be determining the time windows to minimize the deviations from

the available capacity under specific safety fences. We can also control the charac-

teristics of time windows in terms of the variance of the appointment delays that are

experienced by the patients from the same priority class.
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Chapter 4

DYNAMIC ASSIGNMENT OF PATIENTS TO PRIMARY AND SECONDARY

INPATIENT UNITS

4.1 Introduction

Over the last decade, hospital Emergency Department (ED) overcrowding has

become a widely recognized problem in healthcare delivery in the U.S. and around the

world. In a report to congress, the U.S. Government Accountability Office highlighted

this problem, and emphasized that ED waiting times for the emergent patients exceeds

the recommended time window for 50% of visits (GAO (2009)).

ED overcrowding may have dire consequences, including higher complication rates

and even increased mortality (Bernstein et al. (2009), CNN (2008)). As overcrowding

increases, patients are subject to higher dissatisfaction, impaired access, higher rates

of leaving without being seen (LWBS), and decreased economic performance (Hoot

and Aronsky (2008)).

One important factor associated with ED overcrowding is the prolonged ED board-

ing of patients admitted to inpatient units (GAO (2003)). ED boarding occurs when

an admitted patient waits for transfer to an inpatient unit due to bed unavailability in

a downstream unit. Although this may cause congestion and may block ED resources

from being assigned to newly arrived patients (see, e.g., Saghafian et al. (2012), and

the references therein for the so-called “bed-block” effect), boarding may be viewed

in a positive light by some when it is done to ensure transfer to the most appro-

priate inpatient unit (rather than a secondary unit that has bed availability). This

is due to a questionable yet prevalent belief that patience in transferring admitted
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patients is always a virtue. This belief deserves further scrutiny, especially because it

is well understood that prolonged boarding times have several negative consequences

for patients, including an increased risk of adverse events (ROAE). 1

The assignment of hospital beds to patients is a challenging task due to several

complexities, including limited capacity of hospital beds, time-dependencies of bed

request arrivals, and unique treatment requirements of patients (Proudlove et al.

(2007)). These complexities force hospital administrators to incorporate various as-

pects of the operational status of their system (such as the current congestion level,

time of the day, and discharge times in inpatient units) in their decision-making pro-

cess. Nevertheless, from a medical standpoint, the ideal way of assigning a bed for

a specific type of patient is directly related to the patient’s medical diagnosis and

treatment needs. However, to accommodate patient demands with the limited avail-

able hospital resources, hospital administrators may consider alternative assignment

options. In particular, when there is no available bed in the ideal downstream unit

(i.e., the patient’s primary inpatient unit), the patient may be assigned to an alter-

native, secondary inpatient unit with an acceptable (if suboptimal) service capability

and capacity. This practice of assigning patients to an alternative unit is known as

“overflowing.”

Overflowing is not a new concept in hospitals; however, in practice the overflow

process is often controlled in a myopic manner without much attention to the needs

of future patients. Instead, what is needed is a reasonable balance between the risk

of keeping a patient in the ED (with the hope of a primary unit assignment) vs.

that of assigning the patient to a secondary unit that has current bed availability.

A careful consideration of these trade-offs might have a significant impact on both

1Patients boarded in the ED are sometimes kept on hallway beds, which raises additional con-
cerns about whether they receive the care that is deemed necessary for them — the inpatient unit
level of care.
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Table 4.1: IWs and Their Sizes in MCA

IW Name Abbrev. Definition No. of Beds

2 West 2W Intensive Care Unit (ICU) 30

3 East 3E Orthopedics and Urology Surgical Services 40

3 West 3W Medical/Surgical Organ Transplant 36

4 East 4E Hematology, Oncology 30

4 West 4W Cardiology and Cardiothoracic Surgery 36

5 West 5W Neurosciences and E.N.T. 36

7 East 7E Palliative Care, General Surgery 36

7 West 7W
Hematology and Oncology patients with

medical-surgical overflow
24

patient safety and operational efficiency of hospitals. Our goal in this chapter is to

develop a systematic approach to facilitate better decision making with respect to

inpatient unit assignments.

To gain insights, we explore these issues in our partner hospital, Mayo Clinic

Arizona (MCA). There are eight inpatient wards (IWs) in MCA from which a bed

can be requested for an admitted patient. A detailed description of these eight IWs

are shown in Table 4.1. The data we have collected from MCA shows that the average

ED boarding time (the average time between bed request and occupancy) at MCA

is 111 minutes, with boarding times up to 150 minutes for some patients. Moreover,

we observe from our data that about 30% of the patients admitted through the MCA

ED are boarded for at least two hours. An average delay of 111 minutes is significant,

especially when we consider that the average ED Length of Stay (LOS) for admitted

patients in MCA is about 5 hours. This suggests that, on average, almost 37% of ED
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LOS is caused by boarding. 2 Furthermore, as is shown in Figure 4.1(a), we find that

boarding duration is highly time-dependent. Therefore, even if the average waiting

time is not extremely long, patients admitted through the ED experience different

levels of delay based on the hour in which their inpatient bed is requested.

As we illustrate in Figure 4.1(a), boarding delays consists of two parts: Pre-

Assignment and Post-Assignment. Pre-Assignment delay is the time between bed

request and assignment of a suitable inpatient bed to the patient. Post-assignment

delay is the time between bed assignment and bed occupancy. Our analyses of MCA

data reveal that post-assignment delays are higher on average than pre-assignment

delays (see Figure 4.1(a)). Additionally, as we show in Figure 4.1(b), there is a

significant mismatch (i.e., time lag) between the hourly bed request pattern and the

ED departure pattern (see, e.g., Shi et al. (2015), Armony et al. (2015), and Powell

et al. (2012) for related results reported for other hospitals). The time between ED

arrivals and ED departures in Figure 4.1(b) is defined as ED LOS, and the time

between bed requests and ED departures represents the ED boarding time. As can

be seen from this figure, the ratio of ED boarding time to ED LOS can be as high as

48% for some patients.

Effective assignment policies to primary and secondary inpatient units might sig-

nificantly help hospitals such as MCA to improve their prolonged ED boarding times.

In this study, we utilize a variety of analytical and simulation analyses calibrated

with hospital data to gain insights into the structure of such policies as well as their

achievable improvement magnitudes. In particular, we seek to answer the following

questions:

• Structure: When should a patient be kept in the ED until a bed becomes

2See also, Carr et al. (2010) who report that 17% of the ED total LOS is caused by the ED
boarding.
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Figure 4.1: ED Boarding Times Based on Collected Data from Our Partner Hospital

available in his/her primary inpatient unit instead of being quickly assigned to

a secondary unit with current bed availability?

• Magnitude: How much improvement can be achieved if a hospital adopts an

effective policy for dynamically assigning ED admitted patients to their primary

or secondary inpatient units?

To gain insights and answer these questions, we start by utilizing a Markov deci-

sion process (MDP) and modeling the flow process as a multi-class queueing network

problem with “flexible” servers. In this model, the servers are defined as the down-

stream inpatient unit beds that are “flexible,” in that they can serve different classes

of patients. The literature on hospital-like multi-class queueing systems with flexi-

ble servers that can address the appropriateness of bed assignment decisions is not

vast. We contribute to this literature by considering (a) a stochastic penalty cost that

reflects the reduction in service quality when a patient is assigned to a secondary in-

patient unit, and (b) stochastic risk of adverse events that can occur due to prolonged
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ED boarding times. By analyzing our MDP setting, we find that the optimal assign-

ment policy is a state-dependent threshold-type policy: keeping patients in the ED

for their primary inpatient unit to become available pays off, but only up to a certain

threshold that depends on the number and status of outstanding ED bed requests.

That is, patience is a virtue, but only up to a point.

Our findings and results regarding the structure of the optimal policy can help

hospitals to make better bed assignment decisions, particularly as we shed light on

some guidelines that can strike a better balance between patient safety, quality of care,

and operational efficiency. However, we note that the optimal policy generated by our

model is complex to use in practice, since it is highly dependent upon the system state

(e.g., the number of patients of different types boarded in the ED). Therefore, based

on the properties of the optimal policy, we develop two heuristic policies which are

simple to implement and effective. We test these heuristic policies by comparing their

performance with the optimal policy using a detailed patient flow simulation model

calibrated with hospital data. We find that implementing our proposed assignment

policy would reduce the average ED boarding time by 10 minutes per patient (a

9% improvement). Moreover, our analysis suggests that our proposed policy would

improve a combined measure of patient safety and quality of care metrics by 14%,

and would decrease the percentage of patients with more than two hours of boarding

by 2%.

We also use our simulation framework to generate insights into hospital conditions

under which such improvements can be most significant. Our results suggest that hos-

pitals with higher congestion levels (e.g., busy teaching hospitals) would benefit more

than other hospitals (e.g., less busy community hospitals) from utilizing our proposed

policy as a way to strike a better balance between patient safety, quality of care, and

operational efficiency. Our results also suggest that, under specific conditions on ad-

116



verse event rates and number of patients boarded in the ED, keeping an inpatient

bed idle for potential future bed requests is beneficial. This practice of intentional

bed idling is currently used in some inpatient units such as the ICU. However, our

results provide support for implementation across a wider range of inpatient units,

and reveal that bed idling should be used more broadly in hospitals.

The main contributions of this chapter are four-fold: (1) We generate insights

into effective bed assignment policies by developing a model that considers the trade-

offs between risk of adverse events that may occur while a patient is boarded in

ED, and a potentially lower quality of care that might be provided if the patient is

routed to a secondary unit. (2) We develop an easy-to-implement and yet effective

policy for bed assignment in hospitals that considers multiple inpatient units, multiple

patient types, time-dependent bed request arrivals, and dynamic ED and inpatient

unit congestion levels. (3) By making use of some laboratory findings, and testing

our proposed bed assignment policy via a detailed simulation model calibrated with

hospital data, we generate various insights for hospitals. For example, we find that

our proposed policy is more effective in reducing ED boarding times for patients that

are less sensitive to assignment to a secondary inpatient unit. Examples of such

patients include those without an elevated serum troponin (Tn) level among chest

pain (CP) patients, or those with a B-type natriuretic peptide (BNP) less than 4,000

pg/ml among congestive heart failure (CHF) patients. (4) We also shed light on

various hospital-dependent conditions under which our proposed policy is reasonably

effective, thereby discussing the suitability of our proposed policy for implementation

in a wide range of hospitals.

The rest of this chapter is organized as follows. Section 4.2 reviews the related

studies on patient flow and dynamic assignment policies. Section 4.3 presents a model

of patient flow, and develops an MDP framework that captures the trade-offs in the
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model. Section 4.4 identifies the structure of the optimal policy. In Section 4.5, we

describe our proposed heuristic bed assignment policy, and compare its performance

with the optimal policy. In Section 4.6, we describe our detailed simulation model of

patient flow, and use it to perform various sensitivity analyses. Finally, we present

our concluding remarks in Section 4.7. All proofs are provided in Appendix C.2.

4.2 Literature Review

In this section, we briefly review studies that are related to our work. We divide

such studies to two categories: (a) related studies on ED patient flow, and (b) related

studies on dynamic assignment and routing in queueing systems.

4.2.1 Related Studies on ED Patient Flow

ED patient flow studies can be found in both the medical and operations re-

search/management science literature. Such studies typically focus on patient flow

either into the ED, within the ED, or out of the ED. An extensive review of operations

research/management science contributions to these three elements can be found in

Saghafian et al. (2015). Our work in this chapter focuses on patient flow out of the

ED. Research on this last part of flow includes studies on effective ways for improving

the process for those who are admitted to the hospital through the ED as well as

those discharged to go home. Our study contributes to the former, and hence, we

discuss only the relevant studies within that literature.

Harrison et al. (2005) use discrete-event simulation to analyze the effect of bed

capacity on overflow rates. The authors indicate that seasonality of arrivals is one

of the main triggers of overflow in hospitals. Thompson et al. (2009) study a ca-

pacity utilization-based patient allocation problem. In their model, patients may be

transferred between different units to minimize the total cost under a preemptive
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service policy assumption, where assignment to each unit is accompanied by a re-

ward/cost. Similar to Thompson et al. (2009), we consider different levels of quality

of care that can be provided in different inpatient units. However, unlike that study,

we also model the risk of adverse events (ROAE) that can occur because of prolonged

waiting in the ED. This allows us to provide a system-wide view that, in addition

to operational efficiency, considers both patient safety and quality of care concerns.

Another related study is Mandelbaum et al. (2012), which considers the fair routing

of patients to inpatient units, where fair routing means targeting the same level of

idleness among all servers. Unlike Mandelbaum et al. (2012), we consider patient

routing as a mechanism to eliminate prolonged ED boarding times. Furthermore, the

study of Mandelbaum et al. (2012) analyzes a model with a single customer class,

whereas we consider heterogeneous patient classes in order to gain insights into the

questions we raised in the Introduction.

Teow et al. (2012) use data mining techniques to identify factors that trigger over-

flow decisions. Unlike Teow et al. (2012), our study attempts to identify conditions

under which it is optimal to overflow a patient to a secondary inpatient unit. Shi

et al. (2015) focus on patient flow from ED to inpatient units, and propose early dis-

charge policies in inpatients units as a mechanism to reduce and flatten ED boarding

times. Our study focuses on a similar patient flow from the ED to inpatient units;

however, unlike the predetermined trigger times in Shi et al. (2015), we (a) optimize

bed assignment decisions based on the number of boarded patients in the ED, and

(b) consider both patient safety and quality of care metrics. Furthermore, a policy

of changing physician discharge routines that is described in Shi et al. (2015) might

be hard to implement in many hospitals due to cultural issues such as difference in

physicians’ preferences. Our study offers guidelines on alternative ways of improving

the patient flow.
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Similar to our study, Griffin (2012) develops a patient flow model to improve

bed assignment by maximizing the suitability of patient assignments and minimizing

ED boarding times. The author evaluates five dynamic bed assignment algorithms

to aid decision makers. Due to the large dimension of the state and action spaces,

Griffin (2012) cannot identify the exact structure of the optimal assignment policy.

In our study, we first gain insights into the structure of the optimal policy by using a

stylized model of patient flow with two inpatient units and two patient types. We then

make use of these insights to develop a heuristic policy. Using realistic simulations

calibrated with hospital data, we next examine the performance of this heuristic

policy in a realistic setting. This combination of analytical and simulation analyses

allows us to fully address the questions we raised in the Introduction. In addition,

instead of assuming that all inpatient units can serve as a potential secondary unit

for all patients (as is assumed in the majority of the above-mentioned studies), we

use historical hospital data, laboratory findings, and physicians’ opinion to determine

specific secondary inpatient units for each patient type.

4.2.2 Related Studies on Dynamic Assignment and Routing in Queueing Systems

Our model captures the system characteristics as a multi-class queueing system

where the bed requests for ED admitted patients are considered as arrivals, and in-

patient unit beds are considered as servers. In multi-class queueing systems, the

customers can be differentiated based on service rates, holding costs, arrival rates,

or service requirements. Under an average holding cost objective, Cox and Smith

(1991) demonstrate that the widely-used cµ policy is optimal for both preemptive

and non-preemptive cases service protocols. The cµ policy is also shown to be the

optimal policy in various more complex queueing networks (see, e.g., Kakalik and

Little (1971), Buyukkoc et al. (1985), and Walrand (1988)). A version of the cµ rule,
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generalized cµ, is proved to be the optimal policy for different queueing structures

under heavy traffic (see, e.g.,(Van Mieghem, 1995; Mandelbaum and Stolyar, 2004)).

Saghafian and Veatch (2016) establish the optimality of the cµ rule for queueing sys-

tems with flexible servers and two tier structures, where one tier is served by one

server while the second tier can be served by all the servers.

In Lin and Kumar (1984), the authors show that when two types of servers with

different service speeds are available—a setting termed “slow server problem”—the

optimal assignment policy is a threshold-type policy: customers/jobs are assigned to

the slow server whenever the queue length reaches a certain threshold. Our model

resembles similar characteristics to the “slow server problem,” because (a) patient

service times in inpatient units are not identical, and (b) there is some flexibility in

assignments (for some patients). However, instead of heterogeneous servers, we con-

sider heterogeneous patient types with different service rates, since it better matches

the hospital patient flow we study. This differentiates our study from the above-

mentioned studies in the literature since in such studies the resulted optimal policy

typically depends on the difference between service rates of servers (see, e.g., Bell and

Williams (2001)). However, our data analysis shows that service durations in primary

and secondary units are not statistically different (for patients of the same type).

Dynamic assignment problems in queueing networks are extensively analyzed in

the literature (see, e.g., (Mandelbaum et al., 2012; Meyn, 2001, 2003), and Palmer and

Mitrani (2004)). Armony and Bambos (2003) and Dai and Lin (2005) study dynamic

assignment problems considering a throughput maximization objective. Andradóttir

et al. (2007) and Saghafian et al. (2011) allow for server disruptions and repairs in

systems with heterogeneous flexible servers, and De Véricourt and Zhou (2005) study

a call center setting where agents are heterogeneous in terms of both service rate

and quality of service (see also Zhan and Ward (2013)). Another related stream of
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literature that considers flexible servers is the “skill-based routing” literature, where

the customers are routed to the servers that have the appropriate skill sets (similar to

the routing of patients to primary vs. secondary units in our study). However, unlike

our work, the focus of those studies are mostly on settings where (a) servers have

multiple skills (e.g., call center agents), and (b) staffing decisions are the primary

concerns (see, e.g., Garnett and Mandelbaum (2000), Gans et al. (2003), Wallace

and Whitt (2005)). There are also various other studies on routing policies in multi-

server, multi-class settings (see, e.g., Gurvich and Whitt (2009), Tezcan and Dai

(2010), Armony and Ward (2010), Gurvich and Perry (2012)). However, in these

studies only costs related to waiting and losing customers are considered, whereas we

focus on the trade-off between waiting and overflows. Moreover, we note that the

majority of the above-mentioned studies focus on heavy traffic settings. Unlike them,

we seek to address the questions we raised in the Introduction under practical hospital

congestion levels. To this end, we do not impose any heavy traffic assumption, and

instead make use of actual hospital bed census data as the basis of our analytical and

simulation analysis.

4.3 The Model

A general representation of patient flow through the ED and hospital inpatient

wards (IWs) is presented in Figure 4.2. A patient that arrives to the ED goes through

the triage stage, and is assigned an Emergency Severity Index (ESI). If there is an

examination room available, the patient immediately starts the ED service; otherwise,

he/she will have to wait in a designated ED waiting area. Once the ED treatment

is done, the patient is either discharged home or is admitted to the hospital. For an

admitted patient, if there is a bed available in his/her primary IW (or the secondary

IW if applicable), the patient is transferred out of the ED; otherwise, he/she is kept
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Figure 4.2: General Flow of Patients with the Dotted Area Representing the Focus

of This Chapter (IW: Inpatient Ward)

in the ED until a bed becomes available. For the goals of this study, we focus on the

patient flow within the dashed area of Figure 4.2. 3

To gain insights into the questions we raised in the Introduction, we start by mod-

eling the patient flow as a multi-class queueing system with IWs as flexible servers,

and analyze it by using an MDP. The patients in the system are classified based on

their primary IW, i.e., where they can be best served from a medical standpoint.

Ward-level placement is typically determined by a bed placement coordinator, some-

times in consultation with the ED or the admitting physician. Once a patient is

moved to an IW, the IW bed is considered as unavailable until the patient is done

with the inpatient unit service, and hence, the service processes in IWs are typically

non-preemptive. To gain some high level insights, we start by considering each of the

IWs as a single “super server,” which represents the capacity of the IW as a whole.

This pooling of beds within each IW allows us to keep track of availability of capacity

3Thus, we do not consider measures related to events that occur outside this flow. For instance,
an important measures for EDs is the percentage of patients who leave without being seen. But
this occurs almost always from the waiting room of EDs (i.e., before the ED service starts), which
is outside the dashed area in Figure 2.
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Figure 4.3: A Queueing Representation of the Patient Flow

in IWs in a computationally tractable way. However, to test the insights we gain from

this simplifying assumption, we relax it in Section 4.6, and consider each IW bed as a

server. Similarly, we start by considering the arrival process as a stationary Poisson

Process, and assume IW service times are exponential. In Section 4.6, we also relax

these simplifying assumptions by using empirical distributions (for both interarrival

and service times) that we have estimated based on our data.

Figure 4.3 illustrates the patient flow under consideration as a queueing system.

Our discussions with medical providers revealed that, for the vast majority of patients,

only one IW can be considered as a secondary IW. 4 Hence, as illustrated in Figure

4.3, the system consists of multiple primary-secondary pairs, where each patient type

has only one primary IW and only one secondary IW.

To analyze the patient flow depicted in Figure 4.3, we let Np and Ns denote

the set of patient classes and servers (IWs), respectively. For i ∈ Np, we denote

by λi the arrival (i.e., bed request) rate of class i patients. We model the service

4We also note that some patients can only be served in their primary unit (e.g., ICU patients).
We still consider a primary-secondary pair for such patients, but disallow for service in the secondary
IW by considering a high penalty cost for care delivery in the secondary IW.
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process in IWs with class-dependent service rates µi where i ∈ Np. We also let

Xi(t) denote the number of class i patients boarded in the ED at time t, and define

X(t) = (Xi(t) : i ∈ Np) as the vector of the number of all such patients. Moreover,

for i ∈ Np and j ∈ Ns, we let aij(t) = 1 if IW j is serving a class i patient at time

t, and aij(t) = 0 otherwise. We model the potential occurrence of adverse events

that might occur for patients boarded in the ED (awaiting transfer to an inpatient

unit) by class-dependent Poisson process, In particular, we let θ̄i denote the per unit

of time risk of adverse events (i.e., the rate of the underlying Poisson process) that

can occur for a class i patient boarded in the ED, denote by ci the associated cost

per adverse event, define θi = ciθ̄i, and let θ = (θi : i ∈ Np). In this setting, θi

plays the role of “expected holding cost” for a patient of class i, and is accrued

per unit of time boarding in the ED. However, the actual “holding cost” is random

and depends on stochastic deteriorations in the patient’s conditions. Similarly, for

assignments to secondary inpatient units, we let pij denote the expected value of a

non-negative “penalty cost” (which is random in nature due to its dependency to

various patient and provider-dependent conditions) that is accrued due to a lower-

than-desired quality of care when a patient of class i is assigned to IW j (pij = 0 if

i = j). 5

The objective is to find an optimal assignment policy to control the patient flow

in order to minimize the expected total long-run average sum of (a) adverse events (a

patient safety concern), and (b) the penalties accrued due to placement in secondary

units (a quality of care concern). 6 This optimal objective can be calculated as:

5In Section 4.6, we will discuss how we have used a year of data on patients with chest pain
(CP) or congestive heart failure (CHF) to estimate all the parameters required for our model.

6We may refer to these as “costs” for simplicity. However, it should be noted that these are
general, and may include various negative consequences of undesirable outcomes with respect to
patient safety and/or quality of care caused by patient flow decisions. We refer interested readers to
empirical studies such as Kuntz et al. (2014), Berry Jaeker and Tucker (2016), Chan et al. (2016)),
and the references therein for further examples of such outcomes.
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Z∗ = inf
π∈Π

Zπ = inf
π∈Π

∑
i∈Np

∑
j∈Ns

pijO
π
ij +

∑
i∈Np

θiL
π
i

 , (4.1)

where Π is the set of admissible (non-preemptive, non-collaborative, and non-

anticipative 7 ) policies, Zπ is the long-run average objective under policy π ∈ Π, Lπi

denotes the long-run average number of class i patients in the queue (i.e., boarded in

the ED) under policy π ∈ Π, and Oπ
ij denotes the long-run average number of class i

patients overflowed to IW j under policy π ∈ Π. In this setting:

Lπi = lim sup
T→∞

1

T

∫ T

0

E [Xπ
i (s)] ds, (4.2)

Oπ
ij = lim sup

T→∞

Aπij(T )

T
, (4.3)

where Aπij(T ) is the cumulative number of times up to time T that IW j has been

assigned to a class i patient under policy π ∈ Π (i.e., a counting process associated

with aij(t) = 1).

4.3.1 A Markov Decision Process Formulation

As mentioned earlier, our partner hospital has eight main IWs (see Table 4.1),

and hence, |Np| = |Ns| = 8. However, as noted earlier, because each patient type

has only one primary and one secondary IW, the hospital can be viewed as multiple

primary-secondary IW pairs. Hence, we expect the insights generated by focusing

on a single primary-secondary pair to be useful for the whole hospital system. For

this reason, and to gain some clear insights into effective patient flow control policies,

we start by considering the simplest case where Np = Ns = {1, 2}, and later test

the insights gained via simulations calibrated with data for a larger system. We let

a1 = (a11, a21) and a2 = (a12, a22), where aij = 1 if server j is busy with a patient

7The reason we focus on non-anticipative policies is that even when the providers have a rough
estimate on the discharge times of their patients, the exact discharge time is unknown and can be
affected by several factors. Similarly, the exact timing of future bed requests are not known.
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of class i. We assume that all the underlying processes are memoryless, and require

that at any point in time
∑

i∈Np aij ≤ 1 (∀j ∈ Ns). With these, we define the system

state as X̃ = (X, a1, a2) with state space S = Z2
+ × {0, 1}2 × {0, 1}2. 8 We then

use uniformization to transfer the underlying continuous-time Markov chain (CTMC)

to a discrete-time Markov chain (DTMC). Let ψ = λ1 + λ2 + 2 max{µ1, µ2} be the

uniformization factor. Then, the long-run average cost optimality equation for the

DTMC can be written as:

J(X̃) + Ẑ∗ =
1

ψ

[
θ XT + min

u=uij∈U(X̃)

{∑
i∈Np

∑
j∈Ns

λiT
uijJ(X + ei, aj)

+
∑
i∈Np

∑
j∈Ns

∑
k∈Np

akjµkT
uijJ(X, aj − ek)

+

ψ −∑
i∈Np

λi −
∑
k∈Np

∑
j∈Ns

akjµk

 J(X̃)

}]
, (4.4)

where J(X̃) is a relative cost function defined as the difference between the total

expected cost of starting from state X̃ and a reference state (state 0), Ẑ∗ is the op-

timal average cost per uniformized period, the notation “T” represents the transpose

operator, and T uij is a functional operator that depends on action vector uij and is

defined in Appendix C.1. In optimality equation (4.4), ei is a vector with the same

dimensions as X containing a one in the ith position and zeros elsewhere. Thus, the

first line inside the minimization in (4.4) is due to inpatient bed request arrivals from

the ED, which occur with rate λi for patients of class i. Similarly, the second line in

(4.4) is due to discharges of patients from IWs, and the last line in (4.4) is due to the

self-loop in the underlying DTMC. The control actions uij in (4.4) are taken so as to

minimize the long-run average cost, where the set of admissible actions is:

8Since we do not allow preemptions to better reflect the actual practice, it is necessary to keep
track of the IWs’ availabilities (a1, a2) as a part of the state.
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U(X̃) =
{
u = (uij)i∈Np,j∈Ns s.t. : uij ∈ {0, 1}, (4.5)

∑
i∈Np

uij ≤ (1−
∑
i∈Np

aij) ∀j ∈ Ns,
∑
j∈Ns

uij ≤ Xi ∀i ∈ Np

 .

That is, a patient cannot be assigned to IW j, if IW j is busy or if the number of

patients boarded in the ED is insufficient.

4.4 The Optimal Patient-IW Assignment Policy

In Appendix C.2, we show that we can restrict our attention to policies that

do not allow idling an IW j ∈ Ns when there is a patient with IW j as his/her

primary IW boarded in ED (See Proposition 2 in Appendix C.2). 9 Although this

is an expected result in service systems in which preemption is allowed, we note that

in non-preemptive services such as the one we model, this insight can be counter

intuitive. To establish this non-idling result under our non-preemptive assumption,

we first demonstrate a monotonicity property in Appendix C.2 (see, Lemma 2). Here,

we seek to answer the questions we raised in the Section 4.1, and generate insights

into conditions under which patients should be forced to wait in the ED until a bed

in their primary inpatient unit becomes available (rather than being transferred to a

secondary unit with current bed availability). We start by establishing the following

result.

Proposition 1 (Optimality of an Index-Based Priority Rule) If pij = 0 for

all i ∈ Np and j ∈ Ns, it is optimal for each IW to give strict priority to the pa-

tient class that has the highest θiµi except to avoid idling, regardless of the status or

allocation of other IWs.

9Note that this result is only on idling when a primary patient exists, and does not mean idling
IW beds cannot be optimal in general (see, e.g., Theorem 1).
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Strict priority rules are typically suboptimal in non-preemptive service environ-

ments such as the one we study. Interestingly, however, Proposition 1 provides a

sufficient condition under which inpatient units should give strict priority to serving

the patient class with the highest θµ value: when reduction in quality of care is not a

main concern, or similarly when the differences in service qualities between primary

and secondary inpatient units are negligible. Labeling the class with the highest

value of θµ as Class 1, this means that although care delivery of patients cannot

be preempted to accommodate a new bed request, in order to merely minimize the

risk of adverse events, IWs should always prioritize serving Class 1 patients when at

least one such patient is boarded in the ED and the inpatient unit has some available

capacity. The implication of Proposition 1 for a hospital bed manager is important

and is as follows. If there is a Class 1 patient boarded in ED that is not expected

to experience a reduction in quality of care from an alternative IW assignment, the

bed manager should prioritize assigning him/her to a bed as soon as one becomes

available in either his/her primary or secondary IW: patience is not a virtue in this

case.

But what if in addition to the risk of adverse events (a patient safety concern),

the bed manager is also concerned about the quality of care? Our numerical results

suggest that the optimal policy in such a situation is a state-dependent threshold-type

policy, where the threshold is on the number of patients boarded in the ED. We will

discuss this in detail in the remainder of this section. However, to gain some initial

analytical insights, we first focus on the patient flow to IW 1. This allows us show

that when we introduce non-zero overflow penalty costs in our model, the primary

unit of Class 1 patients (IW 1) prioritizes Class 1 patients under the optimal policy

whenever it has some available capacity, and idles when X2 < X̄2 where X̄2 is a

threshold level. Thus, Class 2 patients should be kept boarded in the ED rather than
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being overflowed to IW 1 when X2 < X̄2. Hence, in this case, we find that patience

is a virtue, but only up to a point.

Theorem 1 (Threshold-Based Idling) There exists an optimal stationary policy

which is of a threshold type: IW 1 (i) serves its secondary patients when the number

of such patients boarded in the ED reaches a state-dependent threshold level and has

no primary patient boarded in the ED, (ii) serves its primary patients whenever such

patients are boarded in the ED, and (iii) idles otherwise.

As is specified in Theorem 1, it is optimal to idle IW 1 when there is no Class 1

patient available and the number of Class 2 patients waiting for an inpatient bed is

below a threshold level. This is due the non-zero overflow penalty, which represent

the reduction in quality of care when a patient is assigned to a secondary unit. In fact,

when pij is high enough, the optimal policy idles IW j whenever it does not have any

primary patient boarded in the ED. For non-extreme overflow penalty cases, when IW

1 does not have a primary patient boarded in the ED, it first idles until the number

of Class 2 patients boarded in the ED reaches a certain level, then prioritize Class 2

patients until either a Class 1 patient starts to board in the ED, or the number of Class

2 patients falls below the threshold. For hospital bed managers, Theorem 1 implies

that when a bed becomes available in IW 1, Class 1 patients should be assigned to

that IW if there are Class 1 patients boarded in the ED. Otherwise, Class 2 patients

should be assigned to IW 1, but only if the number of Class 2 patients boarded in the

ED is higher than a certain level. This insight is important, because it sheds light

on the fact that an IW 1 bed can be left idle under the optimal policy depending

on the congestion level of the ED. By idling such a bed and asking Class 2 patients

to continue boarding in the ED, the hospital bed manager can avoid a potential

reduction in quality of care, and also prevent a future arriving Class 1 patient from
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Figure 4.4: A Queueing Representation of the Simplified System

prolonged ED boarding, which in turn may have significant patient safety related

consequences.

4.4.1 Patient Flow to IW 2

To gain further insights into the structure of effective patient-IW assignment poli-

cies, we now turn our attention to IW 2, and consider the simplified model illustrated

in Figure 4.4. Recall that IW 2 is the primary IW for Class 2 patients, and the sec-

ondary IW for Class 1 patients, where we labeled classes (without loss of generality)

such that θ1µ1 ≥ θ2µ2. Thus, IW 2 prefers to serve Class 1 with respect to the θµ

index, but Class 2 with respect to the overflow penalty cost parameters. As we will

see, understanding the main trade-offs in this simplified model is essential for answer-

ing the questions we raised in the Introduction. Put differently, although the model

presented in Figure 4.4 is a stylized version of the complex patient flow in hospitals,

it allows us to gain useful insights that we can further test via realistic simulations.

We further simplify our analysis here by assuming that the service process is

preemptive. 10 This allows us to consider Y = (Y1, Y2) as the system’s state, where

Yi represents the number of Class i patients in the system, the state space is S = Z2
+,

10We realize that allowing service preemption is not fully realistic; however, this assumption is
useful for tractability and for gaining sharp insights. We relax this assumption in Section 4.6, and
utilize real-world data along with simulation analyses to verify the insights gained.
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and the set of admissible actions is:

U(Y ) =
{
u = (ui2)i∈{1,2} s.t. : ui2 ∈ {0, 1}, ui2 ≤ Yi, (4.6)

∑
i∈{1,2}

ui2 ≤ 1 ∀i ∈ {1, 2}

 .

Since the optimal policy and performance under long-run average setting can be

obtained by using limit arguments over the infinite-horizon (see, e.g., Linn (1999)),

we start by considering the system in infinite horizon. The infinite-horizon optimality

equation for this simplified model can be written as:

J(Y ) = θ Y T + β min
u∈U(Y )

{ ∑
i∈{1,2}

λ̃i J(Y + ei)

+
∑
i∈{1,2}

µ̃iui2 (pi2 + J(Y − ei)) +

1− Λ−
∑
i∈{1,2}

µ̃iui2

 J(Y )

}
, (4.7)

where β is the discount factor per uniformized period, the overflow penalty cost

parameters p12 and p22 are scaled so that p22 = 0, and the vector θ is scaled so that

θ Y T represents the expected cost per uniformized period when the system is at state

Y . Moreover, in (4.7), the uniformization rate is ψ̄ = λ1 + λ2 + max{µ1, µ2}, where

µ̃i =
µi
ψ̄

, λ̃i =
λi
ψ̄

, and Λ = λ̃1 + λ̃2. Next, we define the functional operators Ta, Tu

and T∗ (see, e.g, Saghafian and Veatch (2016) for the use of similar operators in a
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different queueing structure) as:

TθJ(Y ) = θ Y T , (4.8)

TaJ(Y ) =
∑
i∈{1,2}

λ̃i J(Y + ei), (4.9)

TuJ(Y ) =
∑
i∈{1,2}

µ̃iui2 (pi2 + J(Y − ei)) ,

1− Λ−
∑
i∈{1,2}

µ̃iui2

 J(Y ),

= (1− Λ)J(Y )−
∑
i∈{1,2}

µ̃iui2 (∆iJ(Y − ei)− pi2) , (4.10)

T∗J(Y ) = min
u∈U(Y )

TuJ(Y ), (4.11)

TJ(Y ) = TθJ(Y ) + β (TaJ(Y ) + T∗J(Y )) , (4.12)

where ∆iJ(Y ) = J(Y + ei)− J(Y ). Using these functional operators, we can simply

write the infinite-horizon optimality equation (4.7) as

J(Y ) = TJ(Y ). (4.13)

The average cost and finite-horizon cost equations can be obtained in a similar man-

ner. Specifically, the finite-horizon cost satisfies Jn+1(Y ) = TJn(Y ), and the average

cost can be calculated as limβ→1−(1− β)J(Y ) (see, e.g., Linn (1999) Corollary 7.5.10

for further discussion).

Using the above-mentioned setting, we next consider the following two properties

for all Y ≥ (1, 1)

(i) µ1∆1J(Y )− µ2∆2J(Y + e1 − e2) ≥ µ1∆1J(Y − e1)− µ2∆2J(Y − e2), (4.14)

(ii) µ1∆1J(Y − e1)− µ2∆2J(Y − e2) ≥ µ1∆1J(Y + e2 − e1)− µ2∆2J(Y ). (4.15)

Property (i) implies that assigning Class 1 patients to IW 2 becomes more desirable

as the number of boarded Class 1 patients increases, and property (ii) implies that

assigning Class 2 patients to IW 2 becomes more desirable as the number of boarded
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Class 2 patients increases. Let F be the set of real-valued functions defined on S = Z2
+

such that if F ∈ F then F satisfies properties (4.14)-(4.15). The following lemma

shows that, if θ1µ1 ≥ θ2µ2, the functional operator T defined in (4.12) preserves

properties (4.14)-(4.15).

Lemma 1 (Preservation) If θ1µ1 ≥ θ2µ2 and J ∈ F , then TJ ∈ F .

Utilizing Lemma 1, we can establish the following result.

Theorem 2 (Optimality of a Threshold-Type Policy) If θ1µ1 ≥ θ2µ2, then the

optimal policy obtained from (4.7) is of a threshold type: IW 2 should prioritize

its primary patients until the number of Class 1 patients boarded in the ED reaches

a threshold that depends on the number of Class 2 patients still waiting for a bed

assignment.

The optimal policy described in Theorem 2 is a threshold-based “primary-then-cµ”

rule: IW 2 serves its primary patients up to a point, and switches to the cµ rule (θµ

in our notation) afterwards. Note that when p12 = 0, the optimal assignment policy

is the well-known cµ rule (see, e.g., Buyukkoc et al. (1985) and Saghafian and Veatch

(2016)), because the threshold becomes zero. However, when we consider a non-zero

penalty cost in the model, under the optimal policy, IW 2 first serves its primary

patients until the marginal benefit of serving a primary patient versus a secondary

one reaches the value of the penalty that might be accrued due to the reduction in

quality of care. This suggests that, when the number of boarded patients is low, EDs

should try to match their patients with their primary units to ensure the highest

quality of care. However, once the number of boarded patients passes a specific

threshold, the focus should shift from concerns about decrements in quality of care to

concerns about the risk of adverse events that can occur due to prolonged boarding.
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Thus, we again observe that patience (for a primary unit assignment) is a virtue, but

only up to a point.

Hospital bed managers can use our results in various ways when deciding on which

patient class to assign to an IW 2 bed that has just become available. For instance,

when a bed becomes available in IW 2, and they do no expect any near-term bed

availability in IW 1, Theorem 2 suggests that bed managers should consider the

number of both Class 1 and 2 patients boarded in ED and prioritize the primary

patient type (Class 2) until the number of Class 1 patients boarded in ED reaches a

certain level. From then on, they should start prioritizing Class 1 patients until the

number of Class 1 patients boarded in ED drops below that certain level. However,

the bed manager should be aware that this level is highly dependent on the number

of patients from both classes in the ED as well as estimation of parameters related to

(a) reduction in quality of care when a secondary inpatient unit is used (pij), (b) risk

of adverse events for both classes (θi), and (c) average length of stay for both classes

( 1
µi

). Thus, the decision should be made in a careful way and only after performing

sensitivity analysis. To further assist hospital bed managers in making such decisions,

we utilize the insights we gained from analyzing the optimal policy of our simplified

models, and develop effective bed assignment heuristics in the next section. We then

use a variety of simulation experiments (calibrated with hospital data that we have

collected) to evaluate their effectiveness under realistic conditions, and generate more

detailed insights for hospital administrators via sensitivity analyses.

4.5 Heuristic Policies

When we consider non-preemptive service policies (which better represent the

current practice in most hospitals) under the general system structure discussed in

Section 4.3, our numerical computations show that the optimal policy is complex: it

135



has a state-dependent threshold that depends on all the elements in the system state,

including IW bed availabilities. Our numerical results also show that the optimal

policy has a structure similar to the optimal control of the “N” structure queueing

network, where one server works as a shared server while the other works as a dedi-

cated server. That is, the primary unit of Class 1 patients (IW 1) typically prioritizes

its primary patients (i.e., works as a dedicated unit whenever its queue of boarded

patients is not empty), and primary unit of Class 2 patients (IW 2) typically first

serves its primary patients until the number of Class 1 patients boarded in ED ex-

ceeds a threshold, then helps IW 1 by serving Class 1 patients (see Appendix C.2

for some numerical experiments supporting this observation). In what follows, we

take advantage of this (as well as our earlier findings) to develop easy-to-implement

heuristic policies for use in hospitals.

4.5.1 A Birth-and-Death Process to Approximate the Optimal Threshold

To develop a heuristic that is easy to implement, we start by considering the

optimal policy of an “N” queueing network by assuming that IW 2 can serve patients

from both types (a shared server) while IW 1 can only serve Class 1 patients (a

dedicated server). We use a birth-and-death process for this system to estimate the

optimal threshold level on the number of Class 1 patients boarded in the ED above

which IW 2 starts helping IW 1 by serving Class 1 patients. In particular, assuming

that the threshold level is some number T , we can approximate the Class 1 queueing

dynamics via the birth-and-death process depicted in Figure C.6 (see Appendix C.3).

When the number of patients in the Class 1 queue, X1, is smaller than the threshold

level, only IW 1 will serve Class 1 patients which will occur with rate µ1. However,

when X1 is larger than the threshold, both IW 1 and IW 2 will serve Class 1 patients,

and hence, the death rate becomes 2µ1.
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We use a separate birth-and-death process to approximate the dynamics for Class

2 patients (see Figure C.7 in Appendix C.3). Let P 2(T ) be the steady-state fraction

of time that IW 2 serves Class 2 patients. Then, the service rate for Class 2 patients

is P 2(T )µ2. Let L1(T ) and L2(T ) denote the long-run average queue length (i.e.,

number of patients boarded in the ED) of Class 1 and Class 2 patients, respectively.

Assuming that O1(T ) denotes the average number of Class 1 patients served by IW

2, and Z(T ) denotes the long-run average system cost under threshold level T , we

can calculate Z(T ) as:

Z(T ) = θ1L
1(T ) + θ2L

2(T ) + p12O
1(T ). (4.16)

The objective is to find the value of T that minimizes Z(T ). To calculate (4.16), we

use the above-mentioned birth-and-death processes to estimate L1(T ), L2(T ), and

O1(T ). To this end, we first need to obtain the steady-state probability P j
i which is

the probability that the length of queue j ∈ {1, 2} equals to i ≥ 0. From the balance

equations, we have:

P 1
i = (

λ1

µ1

)iP 1
0 ∀ i ≤ T, (4.17)

P 1
i = (

λ1

µ1

)T (
λ1

2µ1

)i−TP 1
0 , ∀ i > T. (4.18)

By using the fact that these probabilities must sum to 1, we find P 1
0 as:

P 1
0 (T ) =

(1− ρ1)(1− ρ2)

ρT1 (ρ2 − ρ1) + (1− ρ2)
, (4.19)

where ρ1 =
λ1

µ1

and ρ2 =
λ1

2µ1

. By using these probabilities, we can obtain the average

queue length for Class 1 patients, L1(T ):

L1(T ) =
T∑
i=0

iρi1P
1
0 (T ) +

∞∑
i=T+1

iρT1 ρ
i−T
2 P 1

0 (T ). (4.20)

Also, O1(T ) = 1
2

∑∞
i=T+1 iρ

T
1 ρ

i−T
2 P 1

0 (T ) by assuming that Class 1 patients in the queue

137



will be served equally by IW 1 and IW 2 after the number of Class 1 patients boarded

in ED reaches the threshold. 11 To calculate the average queue length of Class 2

patients, L2(T ), we first calculate the following:

P 2(T ) = P (x1 ≤ T ) = P 1
0 (T )

1− ρT+1
1

1− ρ1

. (4.21)

The average queue length for Class 2 patients is then:

L2(T ) =
λ2

P 2(T )µ2 − λ2

. (4.22)

These allow us to calculate Z(T ) via (4.16), and find the optimal threshold value

T ∗ = arg minT≥0 Z(T ). However, the threshold level T ∗ does not have a closed-form

solution, and the function Z(T ) can be non-convex in general. Nevertheless, we can

utilize numerical approaches (e.g., bisection search) to find the value that minimizes

(4.16). We term the heuristic policy that controls the patient flow based on this

threshold as the birth-and-death threshold (BDT) policy.

4.5.2 Penalty-Adjusted Largest Expected Workload Cost Policy (LEWC-p)

Our results in Section 4.4 reveal that there exists a threshold type optimal policy

that optimizes performance by following the primary-then-cµ rule (see, e.g., Theorem

2). This policy tends to serve the primary patient type with the lower cµ value until

the cost differences of serving the secondary patients exceeds the overflow penalty cost

(see the discussion in Appendix C.2, proof of Lemma 1). This insight suggests that

instead of using a heuristic policy to directly approximate the threshold—the idea

behind the BDT policy—there might be value in following a heuristic that balances

the costs associated with different queues. Thus, as our second heuristics, we develop

11This is not a strong assumption, because the service rates are patient class dependent not IW
dependent.
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a modified version of the Largest Expected Workload Cost (LEWC) policy proposed

by Saghafian et al. (2011) for general parallel queueing systems. The LEWC policy

dynamically balances the expected workload cost of queues by prioritizing the queue

with the largest expected workload cost (ROAE in our setting). 12 In order to also

incorporate the additional penalty cost of serving patients in their secondary IW—a

main factor for the patient flow focus of this study— we propose a penalty-adjusted

version of LEWC, which we term LEWC-p. To this end, similar to Saghafian et al.

(2011), we first use the following Linear Program (LP). In this LP, the objective is

to find the optimal server allocations to maximize the minimum percentage excess

capacity among all patient types:

Max τ (4.23)

Subject to: ∑
j∈Ns

yijµi ≥ λi(1 + τ) ∀i ∈ Np, (4.24)

∑
i∈Np

yij ≤ 1 ∀j ∈ Ns, (4.25)

yij ≥ 0 ∀i ∈ Np,∀j ∈ Ns. (4.26)

In this LP, yij is the decision variable that represents the long-run proportion of time

that IW j serves patient class i. Constraint (4.24) ensures that the objective function

maximize the minimum excess capacity among all patient classes. Constraint (4.25)

guarantees that the total proportion of time for each IW does not exceed 1, and

Constraint (4.26) enforces the proportions to be non-negative.

Next, when a bed in IW j becomes available, we calculate an index, Iij(xi), for

each queue i ∈ Np (class of patients boarded in the ED) to approximate the penalty-

12LEWC is a dynamic policy, because it prescribes different actions based on the system state.
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adjusted expected workload cost of that queue given that its current length is xi:

Iij(xi) =
θixi∑

j∈Ns y
∗
ijµi
− pij

xiy
∗
ij∑

j∈Ns y
∗
ij

, (4.27)

where y∗ij’s are the solution to LP (4.23)-(4.26). The first part of the index approxi-

mates the cost associated with risk of adverse events for class i patients: since there

are xi patients in the queue, it will take approximately xi∑
j∈Ns y

∗
ijµi

units of time to

serve them, and the cost due to adverse events is θi per unit of time per patient

boarded. The second part of the index approximates the associated penalty cost. In

this term,
y∗ij∑

j∈Ns y
∗
ij

represents the proportion of patients of class i served by IW j.

13

With these, the penalty-adjusted LEWC policy (LEWC-p) is as follows:

1. Solve LP (4.23)-(4.26) to derive optimal allocations y∗ij.

2. Whenever a patient arrives or IW j becomes available, compute indices Iij(xi)

for all patient classes (i ∈ Np), then assign the bed to patient class k =

arg maxi∈Np Iij(xi). If the primary and secondary queues of IW j have the

same index, break the tie by assigning the bed to the primary queue. If the

primary queue of IW j is empty, and its secondary queue has a negative index,

keep the bed in IW j idle.

4.5.3 Comparison of the Proposed Heuristic Policies

We now compare the performance of the proposed BDT and LEWC-p heuristic

policies with the optimal policy. As a benchmark, we also use the generalized cµ

13In using (4.27), we assume that LP (4.23)-(4.26) has a unique optimal solution with y∗ij 6= 0
whenever i 6= j. For systems in which this solution is not unique (e.g., balanced systems where
λi
µi

= κ, ∀i ∈ Np) ties need to be broken based on cost parameters.
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(Gcµ) rule. Under the Gcµ policy, the available bed in IW j is assigned to the class

that has the highest θiµixi value. We use this policy as a benchmark since it (a) takes

the queue lengths into account, and (b) is known to work well in a variety of queueing

systems. 14

To compare these policies (BDT, LEWC-p, and Gcµ), we create a large test suite

which covers various combinations of parameters (e.g., costs associated with risk of

adverse events and reduction in quality of care, arrival rates, service rates, etc.).

Tables C.4-C.6 in Appendix C.4 summarize the parameter combinations in this test

suite, which generate a total of 216 problem instances. To find the optimal policy for

each problem instance, we use the well-known value-iteration algorithm to solve our

MDP formulation. This allows us to report optimality gaps for each of the policies

under consideration.

Figure 4.5 illustrates our computational results over the test suite by constructing

the empirical Cumulative Distribution Function (CDF) for the percentage optimality

gap of each of the non-optimal policies (BDT, LEWC-p, and Gcµ). The results

presented in this figure show that LEWC-p and BDT policies can both be considered

as “nearly-optimal” policies. However, the mean and standard deviation of LEWC-p

optimality gap is smaller than that of the BDT policy, so we can conclude that it is the

better policy. The performance of Gcµ is, however, significantly worse than both the

LEWC-p and BDT policies. This is mainly because Gcµ does not consider penalties

associated with secondary unit assignments. However, even when the underlying

penalty parameter is zero, we observe that Gcµ is not the best policy for all cases.

When the penalty parameter is zero, both of the proposed heuristic policies (BDT

and LEWC-p) perform close to each other while BDT performs slightly better due to

14This is especially the case in systems with quadratic holding costs and in systems that face heavy
traffic. Our system does not meet any of these conditions. However, we still use the optimality gap
of the (Gcµ) rule to better gage the optimality gap of our proposed heuristics.
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Figure 4.5: Performance of LEWC-p, BDT, and Gcµ Relative to the Optimal Policy

the assumption that IW 1 only serves Class 1 patients (under the cµ policy both of

the IWs serve Class 1 whenever feasible).

Table 4.2 compares the optimality gap of LEWC-p, BDT, and Gcµ policies for

various congestion levels in the system. All of the policies show a smaller mean

optimality gap in moderate to high congestion levels than in the low congestion level.

This observation suggests that implementing them in crowded systems (e.g., in busy

teaching hospitals) is better than doing so in less crowded systems (e.g., in less busy

urban hospitals). Finally, Table 4.3 compares the policies based on various penalty

parameter settings and shows that all policies perform best when the underlying

penalty parameter is high. Moreover, LEWC-p is more robust than the BDT policy

to changes in the penalty parameter. This is intuitive, since the BDT policy only uses

one threshold level, while the LEWC-p policy dynamically adjusts the assignments

based on the number of patients of different classes that are boarded in the ED.
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Table 4.2: Optimality Gap of Policies for Various Congestion Levels

Congestion Level Policy Mean Min Max

Low: ρ ≤ 0.5

LEWC-p 7.01 % 0.00 % 14.03 %

BDT 8.66 % 0.00 % 28.38 %

Gcµ 16.90 % 11.90 % 34.25 %

Moderate: ρ = 0.7

LEWC-p 5.83 % 1.29 % 16.54 %

BDT 8.34 % 2.61% 15.47 %

Gcµ 13.47 % 8.66 % 17.17 %

High: ρ ≥ 0.9

LEWC-p 5.68 % 1.74 % 9.20 %

BDT 7.07 % 3.82 % 14.42 %

Gcµ 10.49 % 0.09 % 15.28 %

4.6 Simulation Analysis Using Hospital Data

To gain more insights into effective policies for assigning ED patients to their

primary or secondary inpatient units, we use a discrete-event simulation model of

ED patient flow, and calibrate it with a year of hospital data that we have from

our partner hospital. This enables us to relax some of the assumptions we made

earlier (e.g., exponential service times, Poisson arrivals, etc.), and also shed light on

the magnitude of achievable benefits for EDs as well as hospital conditions under

which our proposed assignment policy (LEWC-p) will work well. To this end, we

first describe the admission sources in our partner hospital. We then describe the

arrival process from such sources. Finally, we discuss the service process as well as

the empirical length of stay (LOS) distributions and other parameters that we have

estimated from our data set.
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Table 4.3: Optimality Gap of Policies for Various Penalty Cost Parameters

Penalty Cost Policy Mean Min Max

Low: p12 = p21=1

LEWC-p 7.02 % 1.29 % 16.54 %

BDT 9.87 % 6.00 % 28.38%

Gcµ 14.37 % 8.85 % 21.78 %

Moderate: p12 = p21=10

LEWC-p 5.82 % 0.00 % 15.06 %

BDT 6.17 % 0.00% 15.73 %

Gcµ 12.92 % 0.09 % 22.40 %

High: p12 = p21=100

LEWC-p 4.68 % 0.00 % 13.24 %

BDT 4.68 % 0.00 % 13.92 %

Gcµ 11.73 % 0.44 % 34.25 %

Low-High: p12 = 1, p21=100

LEWC-p 4.55 % 2.78 % 4.73 %

BDT 5.21 % 4.59 % 7.24 %

Gcµ 11.68 % 10.49 % 13.05 %

High-Low: p12 = 100, p21=1

LEWC-p 7.96 % 5.74 % 10.15 %

BDT 10.22 % 8.74 % 12.53 %

Gcµ 15.42 % 11.14 % 16.41 %

4.6.1 Patient Flow and IWs in Our Partner Hospital

Admission Sources. Patients are admitted to IWs from three main sources. We

categorize admitted patients based on their source of admission in three groups: ED

admits, direct admits, and Operating Room (OR) admits. ED admits are patients who

finish their treatment with ED and receive an admit decision from an ED physician.

Direct admits are the ones directly admitted to an IW without any preceding visits.

OR admits are the patients who initially receive a surgery from the hospital and are
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subsequently admitted to an IW.

IWs. Patients from the three admission sources described above require a bed from

one of the eight inpatient units based on their diagnosis. The name of IWs, their

descriptions, and number of beds in each of them in our partner hospital can be

found in Table 4.1 (see Section 4.1).

Patient Types. To gain clear insights into effective assignment policies, we focus

on patients who were admitted via the ED of our partner hospital with an admission

diagnosis of either chest pain (CP) or congestive heart failure (CHF). These patients

are often assigned to a secondary IW; the primary IW for both CP and CHF patients

is 4 West (4W), and their secondary IW is 5 West (5W) (see Table 4.1 for more in-

formation regarding these IWs). There are two types of CP and CHF patients: Type

1 patients are those considered to be more sensitive to a secondary bed assignment

(i.e., are subject to higher reduction in quality of care if assigned to a secondary

inpatient unit). Type 2 patients are those who are less sensitive to a secondary bed

assignment. We develop a classification scheme using simple laboratory findings and

based on our discussions with medical experts at our partner hospital. We define

Type 1 CP patients as those who have an elevated serum troponin (Tn) level, and

Type 2 CP patients as those who have a normal troponin level. We define Type 1

CHF patients as those who have a B-type natriuretic peptide (BNP) level of 4,000

pg/ml or greater, and Type 2 CHF patients as those with BNP levels below 4,000

pg/ml. Our empirical analyses show that, among patients of same type, there is no

statistically significant difference in the mean IW service time between primary and

secondary units (see Table C.7 in Appendix C.5).

Arrival Process. We use bed-request times as the “arrival” time of each patient to

our system. We observe from our data set that, for each of the three arrival sources

(ED admit, direct admit, OR admit), the arrival rate is highly time-dependent. Fur-

145



thermore, we observe that the arrival process for each arrival source and for each IW

can be modeled as a nonhomogeneous Poisson Process with a rate that is constant

during one-hour time blocks. In addition to hour-of-day dependent arrival rates, we

observe day-of-week dependency in arrival rates for ED admits. We simulate the pa-

tient flow assuming that the arrival process is cyclo-stationary with one week as the

cycle. We do not consider the rare transfers between inpatient units, since (a) our

focus in this chapter is on the patient flow between ED and IWs, (b) these transfers

do not have any significant effect on the optimal policy, and (c) based on our data

set, the rate of such transfers is negligible compared to the arrival rate of ED admits,

direct admits, and OR admits.

Service Process. In our simulation model, we consider the beds in IWs as servers.

Based on our data, the service rates depend on patient type and admission source

but not the IW (see Table C.7 in Appendix C.5 for p-values on the equality of means

of service times for primary and secondary IWs for different patient types). Table

C.8 in Appendix C.5 shows the average service time (in days) for each IW based

on the admission source. Our statistical analyses suggest that we can use lognormal

distributions as service time distributions. 15

Costs. Penalty costs are assigned based on the patient type (Type 1 and Type 2

discussed above). The average penalty cost for Type 1 patients are always higher

than that of Type 2 patients, since Type 1 patients are more sensitive to a secondary

bed assignment. However, due to current lack of data on quality of care and patient

safety, estimating cost parameters is inherently subject to error, and necessitates per-

forming various sensitivity analyses. To perform such sensitivity analyses, we consider

a wide range of parameters for both penalty costs and costs associated with risk of

15Lognormal distribution as a service time distribution is not unique to hospitals. For instance,
Brown et al. (2005) show similar characteristic of the service time distribution in call centers.
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adverse events (see Appendix C.6 for more information). This range of parameters

are provided by our physician collaborators, and are intended to represent values that

are realistic while covering possible differences among hospitals.

Performance Measures. In addition to the overall objective we introduced in Sec-

tion 4.3, we use the overflow proportion (the ratio of patients assigned to a secondary

IW to the total number of patients of same type served) and the average ED boarding

time (the average time between a request and bed occupancy) as other performance

measures. We also use the 2-hour boarding rate (the fraction of patients that are

boarded for two hours or more) 16 as another performance measure. We do so be-

cause reducing excessive boarding times (and not just average boarding times) is also

important for most EDs.

Priorities and Runs. We use the first-in-first-out (FIFO) priority rule for each IW

regardless of the admission source of patients. Each simulation observation is obtained

for 1,000 replications with a replication length of one year. The number of replications

is chosen so as to enforce tight confidence intervals, enabling us to represent simulation

confidence intervals with their midpoint in all of our graphs. This warm-up period is

determined through the Welch method (see, e.g., Welch (1983)).

Base Case Scenario. We consider the base case scenario to be a reflection of the

current system in our partner hospital based on a year of data that we have collected.

We use this scenario as a benchmark to analyze the potential changes that may occur

due to implementing our proposed policies. Thus, we use the level of performance

measures in the base case scenario (e.g., 2-hour boarding rate, average boarding time

in the ED, etc.) for CP and CHF patients as a point of reference, and compare the

results of our proposed policy with those metrics. To this end, we focus on patient

16As we discussed in Section 4.1, the current 2-hour boarding rate at our partner hospital based
on our data set is around 30%.
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Figure 4.6: Patient Flow in the Simulation Model

flow from ED to the two IWs that can serve CP and CHF patients: 4 West and 5

West. In addition to CP and CHF patients, we simulate the flow of other patients

that require a bed from 4 West or 5 West, but note that these patients are not eligible

for overflows, and can only be assigned to their primary inpatient units. We include

these patients in our simulation model to represent the capacity utilization in 4 West

and 5 West more accurately, thereby increasing the fidelity of our simulations. Figure

4.6 illustrates the patient flow under consideration. 17 The dashed lines in Figure 4.6

show assignments of patients to secondary IWs (overflows that incur a penalty cost)

while the solid lines show assignments to primary IWs. In the current practice, there

is no specific rule for assigning patients to their primary vs secondary units. Thus,

for our base case scenario, we use the FIFO rule for the primary bed assignments,

and model the overflows to secondary IWs by using the proportions that are obtained

from our data analyses.

17In Appendix C.7, we extend our simulation analysis to the whole patient flow depicted in Figure
4.3 with all the 8 IWs listed in Table 4.1. However, since this requires estimating various parameters
for each and every patient type served in the hospital, our simulations lose fidelity. Thus, here we
stay with CP and CHF patients (i.e., patients for which we have more accurate data).
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Figure 4.7: Validating the Simulation Model

4.6.2 Validating the Simulation Model

To validate our simulation model, we compare our empirical results obtained di-

rectly from our data set with those obtained from our simulation model. Figures

4.7(a) and 4.7(b) compare the resulting time-dependent boarding time of patients as

well as the resulted overflow rates of the simulation model with that of the empirical

data. Using the t-test for the equality of means, we observe no statistical difference

between outputs of our simulation model and those from empirical data (p-value =

0.412). Similarly, using Kolmogorov-Smirnov tests for comparing the distributions of

outputs (e.g., boarding time distributions) with the empirical distributions from our

data, we do not observe any significant mismatch. These results give us confidence

that our simulation model is relatively of high fidelity, and accurately matches the

current practice.

4.6.3 Performance of the Proposed LEWC-p Policy

We now use our simulation model for CP and CHF patients to investigate the

impact of implementing our proposed LEWC-p policy. Based on our results, we

make the following observation:
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Observation 1 (Benefits of LEWC-p) Implementing LEWC-p for assigning CP

and CHF patients to their IWs improves the total average cost by 14%, the 2-hour

boarding rate by 2%, and the average boarding time by 9% (10 minutes/patient). Also,

compared to current practice, these improvements due to implementing LEWC-p are

all statistically significant (the p-value on the difference is 0.00018, 0.022, and 0.001,

respectively).

We next test the sensitivity of the gained benefits to the penalty costs and costs

associated with adverse events. As we increase the latter, the improvement in the

2-hour boarding rate and the average ED boarding time increases (see Figures 4.8(a)

and 4.8(b)). Furthermore, we observe that as we increase the penalty cost, IWs start

to work as dedicated units tending to only serve their primary patients. Hence, after

increasing the penalty cost, we observe improvements in overflow proportions, but the

average ED boarding time and the costs associated with adverse events increase. This

result is similar to what we observed from the optimal policy of the analytical model:

as we increase (decrease) the penalty cost, the LEWC-p policy mimics the optimal

policy by decreasing (increasing) the assignments to secondary IWs. Similarly, as we

increase (decrease) costs associated with adverse events that may occur during ED

boarding, the LEWC-p policy mimics the optimal policy by increasing (decreasing)

the assignments to secondary IWs.

Figures 4.9(a) and 4.9(b) illustrate the change in total number of boarded patients

in the ED and overflow proportion as ROAE and penalty cost parameters change

under the LEWC-p policy. As the ROAE cost increases, the proposed policy starts

to assign patients to their secondary IW more aggressively. This leads to lower average

ED boarding times, and suggests that utilizing a secondary IW is a more attractive

option for patients who have a higher ROAE (e.g., those in need of timely care

following their ED service). Another implication of Figures 4.9(a) and 4.9(b) is that

150



 

(a) Improvement in 2-Hour Boarding Rate

 

(b) Improvement in Average Boarding Time

Figure 4.8: Improvement Due to LEWC-p Compared to Current Practice for Various

Penalty and ROAE Parameters

assigning patients to their secondary IWs has a minimal effect on the average ED

boarding time when the penalty cost parameter is high. This suggests that hospital

administrators should be more patient in assigning beds for patients who are more

sensitive to a secondary IW assignment (e.g. Type 1 patients as opposed to Type 2

patients): the virtue of patience is dependent on patient type.

Our proposed policy allows idling IW beds (in anticipation of future needs) even

when there are patients boarded in the ED who need them. However, hospital beds

are valuable assets, and keeping them idle while patients are waiting for them might

not be perceived as attractive by hospital administrators. To gain some insights into

the impact of idling, we modify our policy by assigning 4 West patients to 5 West

when there is no 5 West patient boarded in the ED (disallowing idling of 5 West

beds). From our results on the performance of LEWC-p policy with and without

idling, we can make the following observation:

Observation 2 (Nonidling Policy) Non-idling flow policies increase the number
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(b) Overflow Proportion

Figure 4.9: The Effect of ROAE and Penalty Cost Parameters on the Average Number

of Patients Boarded and Overflow Proportion Due to LEWC-p

of patients overflowed, but does not significantly change the average number of patients

boarded in the ED, the average boarding time, and the 2-hour boarding rate.

The above observation captures one of the most fundamental trade-offs in our

study. Prohibiting idling 5 West beds increases the number of 4 West patients as-

signed to 5 West while reducing the number of 4 West patients boarded in ED who

are eligible for a secondary unit assignment. However, these assignments result in

blocking the access of future arriving 5 West patients to 5 West beds, which increases

the number of 5 West patients boarded in ED. As a result, the average number of

patients boarded in ED, the average boarding time, and the 2-hour boarding rate do

not change significantly. These outcomes contradict the prevalent perception among

hospital administrators that beds should not be idled intentionally. We note that this

perception might be correct when the ROAE among different patient groups (in our
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Figure 4.10: Effect of Inpatient Bed Capacity on the Improvements Due to LEWC-p

case, 4 West and 5 West patients) is significantly different. 18 However, our results

suggest that hospitals should typically refrain from prohibiting idling: idling IW beds

can be beneficial.

In our previous simulation experiments, we used the current bed capacity of IWs

in our partner hospital (see, Table 4.1). To gain more insights for other hospitals

which might have higher or lower capacities, we now provide sensitivity analysis by

altering the number of beds in IWs (both 4 West and 5 West). Figure 4.10 illustrates

the results, and enables us to make the following observation:

Observation 3 (Effect of Inpatient Bed Capacity) The achievable improve-

ments due to implementing LEWC-p on the performance measures are greater in

hospitals with lower inpatient bed capacity (all else equal).

This observation suggests that hospitals that lack enough inpatient bed capacity

(e.g., busy teaching hospitals) will benefit more from implementing the LEWC-p

18If the ROAE for eligible 4 West patients is much larger than that of the 5 West patients,
prohibiting idling can be beneficial in terms of the total average cost metric and average boarding
time for 4 West patients.
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policy. Thus, instead of investing in increasing their capacity—a challenging and

extraordinarily expensive undertaking that often requires a certification of need—

they can benefit from better bed assignment policies such as LEWC-p, which requires

only a minimal investment.

Another related issue in understanding the effect of inpatient bed capacity is the

practice of “bed reservation.” Unlike our partner hospital, some hospitals reserve a

portion of their IW capacity for their primary patients so as to reduce the effect of

overflows on those patients. It is clear that as the number of beds usable for overflows

decreases, the number of patients that are assigned to a secondary IW decreases, which

in turn results in a lower total penalty cost. However, the impact of this practice on

other performance measures such as the average boarding time, the average number

of patients boarded, and the 2-hour boarding is not obvious. To observe the effect of

this practice, we consider three cases by assuming that only 25% (9 beds), 50% (18

beds), and 75% (27 beds) of the beds in 5 West can be used for accommodating CP

and CHF patients. From this analysis, we make the following observation:

Observation 4 (Effect of Restricting Bed Capacity) Under the proposed

LEWC-p policy, restricting the bed capacity for overflow patients significantly

increases the average boarding time, the average number of patients boarded, and the

2-hour boarding rate, while decreasing the number of overflows. However, the relative

impact of this practice is not statistically significant between cases with 25% and 50%

restriction, or with 50% and 75% restriction.

Our results suggest that, when the number of beds usable for overflows decreases,

the number of overflows decreases (as expected). Since our proposed policy captures

the trade-off between the ROAE and the quality of care, reduction in overflows leads

to an increase in the number of patients boarded in the ED. However, the changes in
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performance measures are not significant when we either drop to 25% bed capacity

from 50% bed capacity, or drop to 50% bed capacity from 75% bed capacity. For

hospitals with similar characteristics to our partner hospital (in terms of bed request

arrivals, inpatient LOS, etc.) this suggests that, to make a statistically significant im-

pact on the performance measures, hospital administrators should consider dramatic

changes in the number of beds to be used for overflows.

Overflow trigger times are often used in practice (see, e.g., Shi et al. (2015)) where

a patient is overflowed to a secondary IW only when the boarding time of the patient

exceeds a predetermined trigger time. We next investigate how our proposed policy

performs when the hospital employs an overflow trigger time. To this end, we assume

that a patient can be overflowed either when his/her boarding time exceeds the trigger

time, or when the LEWC-p policy assigns him/her to a secondary IW. We analyze

the performance of this modified policy by considering various trigger times.

Observation 5 (Overflow Trigger Time) Imposing overflow trigger times typi-

cally increases the penalty costs accrued due to lower levels of quality of care. How-

ever, regardless of the level of the trigger time, the relative improvement in the costs

associated with adverse events is not high enough to yield an overall improvement in

the aggregate cost measure. In addition, the impact of imposing a trigger time on the

average boarding time and the 2-hour boarding rate is significant only when the trigger

time is no more than two hours.

This observation suggests that imposing an overflow trigger time that is higher

than two hours does not change the performance of our proposed LEWC-p policy.

In fact, using a trigger time that is more than two hours typically adds complexity

in assignment decisions without any significant change in performance measures. As

we noted earlier, our proposed LEWC-p policy improves the average boarding time
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by approximately 10 minutes per patient compared to the current practice. This

results in approximately 100 minutes of average boarding time and 29% of 2-hour

boarding rate in the improved system. Setting a trigger time that is lower than two

hours can affect more than 70% of the patient population (since 2-hour boarding rate

is 29%), which may result in improvements in the average boarding time and the

2-hour boarding rate. However, we find that adding trigger times to LEWC-p does

not lead to improvements in the aggregate cost measure, regardless of the level of the

trigger time. This further confirms that the proposed LEWC-p policy already strikes

a strong balance between concerns related to prolonged ED boarding times and those

related to overflows.

4.7 Conclusion

We study the dynamic assignment of ED admitted patients to hospital IWs. We

utilize a queueing framework and an MDP model to gain insights into effective mecha-

nisms to minimize the risk of adverse events (a patient safety concern) while reducing

the number of secondary inpatient unit assignments (a quality of care concern).

Our results for a simplified model with two patient classes and two IWs suggest

that the optimal policy is a threshold-type policy, where the threshold depends on the

number of patients boarded in the ED. Under this policy, the primary unit of Class

1 patients (i.e., patients that have a higher θµ value) typically works as a dedicated

unit that serves its primary patients whenever such a patient is boarded in the ED.

Moreover, the primary unit of Class 2 patients serves them before helping IW 1 on

Class 1 patients, and switches to serving Class 1 patients once the number of Class

1 patients boarded in the ED reaches a threshold. These suggest that patience in

transferring ED admitted patients to IWs is a virtue, but only up to a point. Contrary

to the prevalent perception among hospital administrators, we also find that idling
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IW beds can be beneficial. In particular, while idling is used in some hospitals and

some specific inpatient units, our results indicate evidence for wider implementation of

idling policies. We also show that, when the penalties that represent the reduction in

quality of care in secondary units are negligible, the optimal policy is a strict priority

rule in which both IWs prioritize serving Class 1 patients in order to myopically

decrease the risk of adverse of events for patients boarded in the ED.

Our analyses show that the optimal policy is complex in general, and may not be

suitable for implementation in practice. Therefore, we use the insights gained from

analyzing our simplified models to develop two heuristic policies that are easy to

implement. We first use a birth-and-death process to approximate the threshold level

that minimizes an aggregate measure of both patient safety and quality of care. Then,

we propose a modified version of the LEWC heuristic termed LEWC-p that enables

us to dynamically strike a balance between concerns of patient safety and quality of

care. The results show that LEWC-p significantly outperforms other policies, and is

also more robust than them in that it has a lower standard deviation of optimality

gap. Thus, an important contribution of this study is to introduce LEWC-p as a

simple but effective policy that can be implemented in hospitals.

We then investigate the achievable gains due to implementing LEWC-p by using

a simulation model that we calibrated with a year of data collected from our partner

hospital. By using this simulation model, we are able to reflect the realistic features

of the hospital patient flow, and test the insights gained from our analytical models.

To gain clear results, we focus on chest pain (CP) and congestive heart failure (CHF)

patients. Furthermore, by utilizing laboratory findings to separate patients based on

the level of Tn for CP patients and BNP for CHF patients, we classify these patients

as Type 1 and Type 2. Our analyses on CP and CHF patients indicate that LEWC-p

can yield significant improvements compared to the current practice by striking a
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better balance between patient safety and quality of care metrics. We also shed light

on various hospital characteristics that will make the use of our proposed policy more

beneficial.

We suspect that the proposed model and policy on patient flow from the ED to IWs

can be extended to other areas of the hospital. Similar to the bed-block phenomenon

in the ED, operating rooms (ORs) experience problems due to bed shortages in the

post-anesthesia care unit (PACU). Our model and analyses can be used in those areas

of a hospital to provide insights into the trade-off between waiting to be assigned to

an appropriate bed versus a quick overflow to a less appropriate bed.

Our model can be also extended in various other ways. First, our model focuses on

the patient flow between the ED to IWs without including the transfer between IWs

(the requirements for such a flow would be different from our focus in this chapter).

However, an extension of our model can be used to study patient flow between IWs,

and hence, may provide other ways to further reduce ED boarding times. Second, our

model considers IW beds as servers, although in the actual system the transfer process

from ED to IWs is more complicated. For instance, in many hospitals, the nurses’

availabilities often affect the patient flow, as nurses are responsible for transferring

patients from the ED to IWs. Future research can expand our study by considering

such more complex scenarios. Finally, in our objective function, we focus on the risk

of adverse events and quality of care of patients admitted through the ED. Future

research can extend our objective function by incorporating other concerns such as

the LOS and waiting times for ED patients who are discharged home after their ED

visit.
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Chapter 5

CONCLUSION

In this chapter, we summarize the contributions of the study presented in this dis-

sertation and list the possible directions for future research. The main contribution

of this dissertation is introducing access management concept and analyzing patient

access problem and providing guidelines to improve patient access to healthcare re-

sources considering the unique features of different healthcare settings. Each chapter

is motivated by real life problems associated with patient access and addresses those

problems by employing analytical and simulation models utilizing real life data. The

summary of all contributions with their associated chapters is presented below.

5.1 Summary of Contributions

In this dissertation, we focus on two different healthcare settings which are out-

patient appointment scheduling and ED. In each chapter, we analyze specific issues

regarding patient access. Our contributions in Chapters 2, 3, and 4 are summarized

as follows.

We analyze an outpatient appointment setting and introduce access management

in Chapter 2 and Chapter 3. Access management can be considered as a compre-

hensive approach that oversees the whole system and utilizes system specific char-

acteristics to improve patient experience. This framework considers either medically

determined or institution based priority classes along with patients’ sensitivity to

appointment delay and designs effective access protocols considering patient priority

and sensitivity to appointment delays.

In Chapter 2, we focus on developing statistical models to estimate patients’ sen-
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sitivity to the delays, willingness to wait behavior, that are offered to patients at

the time of appointment request from transactional appointment data. This study

is essential in improving patient access important since the behavior has a signifi-

cant impact on patients’ experience and is not possible to be observed directly from

the data. We introduce two statistical models, which are the survival model and

rank-based choice model, which both estimate patient WtW through estimating the

probability of realizing an appointment with a certain delay. This dissertation is the

first study that utilizes a survival model to explain patient behavior. We conduct

extensive numerical studies and show that both models are effective in identifying

patient behavior from data. We use the proposed models on data from a real hospital

clinic to gain managerial insights and suggest possible ways of utilizing those insights

in clinical practice.

When we consider patient access, it does not simply refers to ability to access

healthcare resources for all of the patients but acknowledging the differences in patient

needs and service level expectations. Prioritization is an essential tool for responding

these differences in patient needs and improving overall patient access by responding

the needs of “right” patients by offering them “right” appointment delay. In Chap-

ter 2, we show that patients’ sensitivity to wait can be estimated by using available

data. In Chapter 3, we introduce the idea of using appointment delay as a lever to

control patient demand to address the mismatch between available clinical capacity

and patient demand. We develop a time window based policy for patient access prob-

lem which is a unique approach in allocating available capacity to the patients from

different priority groups. To the best of our knowledge, none of the studies in the lit-

erature focus on controlling the patient demand and allocating the available capacity

considering patient behavior. Time window based policy is a practical approach that

utilizes prioritization and easy to implement in real life settings.
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The study presented in Chapter 4 is focusing on the second setting and consid-

ering an important problem in ED context. Bed block problem has been studied

extensively in the literature, unlike those studies, we generate insights into effective

ways of improving patient flow by analyzing the trade-off between patient safety and

quality of care by considering number of boarded ED patients, risk of adverse events,

and potential reduction of quality of care due to assignment to an alternative unit.

Additionally, by using a stylized model we are able to gain some insights into the

structure of the optimal policy and use those insights to develop easy to implement

heuristic policies that are effective for bed assignment. Lastly, we develop a detailed

simulation model calibrated with hospital data to assess the performance of our pro-

posed policy and conduct sensitivity analyses. We show that system performance

can be improved by utilizing overflow strategies that we suggested and we generate

managerial insights to help bed managers in giving bed assignment decisions.

5.2 Future Work

One direction for future research is extending the study that is presented in Chap-

ter 2 to include details on patients’ reactions to specific offered delays and cancellation

behavior in addition to WtW to fully characterize patient behavior along with specific

slot based expectations. Additionally, one important patient characteristics that can

be significant in patients’ appointment fulfilling behavior is patients’ location. Since

the focus of our study is a destination clinic, for some patients, the earliest appoint-

ment slot might not be the best option for the patient due to required travel time.

To able to conduct such analysis, detailed data collection and access to that data are

required. This study can lead to an accurate realization probability estimation and

let decision maker to decide on possible overbooks slots more effectively. This also

can help us to develop time windows in a more detailed way since they are directly
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associated with the estimated WtW distribution.

Our model in Chapter 3 is developed for a setting that focuses on serving patients

from different priorities in a hierarchical manner. The model can be extended to

cover alternative objectives such as minimizing the deviation from a targeted patient

mix under fixed average TtA targets. Alternatively, one can focus on identifying the

required minimum capacity to serve patients under certain fill rate expectations. The

settings under which time window based policies are possibly effective can be studied

under these alternative objectives as a possible future direction.

In Chapter 3, Section 3.5, we briefly introduce how to utilize trade-off curves

to develop a decision making framework. While we are constructing those trade-off

curves, we only consider two priority classes and mainly focus on fill rate as per-

formance measure. Our approach can be extended to cover alternative performance

measures simultaneously on the trade-off curves. The numerical results can be ex-

tended to gain more insights into effective strategies under different objectives when

more than two priority classes present.

In all of our analyses, we assume that there exists a tool or set of rules to identify

patient priorities. One way to prioritize patients is doing it based on medical needs

which is not easy to identify at the time of the appointment request. A direction

for future study can be developing prognostic tools by utilizing the clinical data

to identify patients’ conditions and prioritize them based on medical necessity and

urgency of each condition. These tools can be set of questions that can be answered

by the patients about their symptoms and medical history, and their previous test

and imaging results, if they are relevant in determining patient needs.
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Andradóttir, S., H. Ayhan and D. G. Down, “Compensating for failures with flexible
servers”, Operations Research 55, 4, 753–768 (2007).

Armony, M. and N. Bambos, “Queueing dynamics and maximal throughput schedul-
ing in switched processing systems”, Queueing systems 44, 3, 209–252 (2003).

Armony, M., S. Israelit, A. Mandelbaum, Y. N. Marmor, Y. Tseytlin and G. B. Yom-
Tov, “On patient flow in hospitals: A data-based queueing-science perspective”,
Stochastic Systems 5, 1, 146–194 (2015).

Armony, M. and A. R. Ward, “Fair dynamic routing in large-scale heterogeneous-
server systems”, Operations Research 58, 3, 624–637 (2010).

Astaraky, D. and J. Patrick, “A simulation based approximate dynamic programming
approach to multi-class, multi-resource surgical scheduling”, European Journal of
Operational Research 245, 1, 309–319 (2015).

Ayvaz, N. and W. T. Huh, “Allocation of hospital capacity to multiple types of
patients”, Journal of Revenue and Pricing Management 9, 5, 386–398 (2010).

Baker, D. W., C. D. Stevens and R. H. Brook, “Patients who leave a public hospi-
tal emergency department without being seen by a physician: causes and conse-
quences”, Jama 266, 8, 1085–1090 (1991).

Batt, R. J. and C. Terwiesch, “Waiting patiently: An empirical study of queue aban-
donment in an emergency department”, Management Science 61, 1, 39–59 (2015).

Bell, S. L. and R. J. Williams, “Dynamic scheduling of a system with two parallel
servers in heavy traffic with resource pooling: asymptotic optimality of a threshold
policy”, Annals of Applied Probability pp. 608–649 (2001).

Belobaba, P. P., “Survey paperairline yield management an overview of seat inventory
control”, Transportation science 21, 2, 63–73 (1987).

163



Bernstein, S. L., D. Aronsky, R. Duseja, S. Epstein, D. Handel, U. Hwang, M. Mc-
Carthy, K. John McConnell, J. M. Pines, N. Rathlev et al., “The effect of emer-
gency department crowding on clinically oriented outcomes”, Academic Emergency
Medicine 16, 1, 1–10 (2009).

Berry Jaeker, J. A. and A. L. Tucker, “Past the point of speeding up: The nega-
tive effects of workload saturation on efficiency and patient severity”, Management
Science 63, 4, 1042–1062 (2016).

Brown, L., N. Gans, A. Mandelbaum, A. Sakov, H. Shen, S. Zeltyn and L. Zhao,
“Statistical analysis of a telephone call center: A queueing-science perspective”,
Journal of the American statistical association 100, 469, 36–50 (2005).

Brown, L. D., T. T. Cai and A. DasGupta, “Interval estimation for a binomial pro-
portion”, Statistical science pp. 101–117 (2001).

Buyukkoc, C., P. Variaya and J. Walrand, “c mu rule revisited.”, Adv. Appl. Prob.
17, 1, 237–238 (1985).

Carr, B. G., J. E. Hollander, W. G. Baxt, E. M. Datner and J. M. Pines, “Trends in
boarding of admitted patients in us emergency departments 2003–2005”, Journal
of Emergency Medicine 39, 4, 506–511 (2010).

Cayirli, T. and E. Veral, “Outpatient scheduling in health care: a review of literature”,
Production and operations management 12, 4, 519–549 (2003).

Cayirli, T., E. Veral and H. Rosen, “Assessment of patient classification in appoint-
ment system design”, Production and Operations Management 17, 3, 338–353
(2008).

Chan, C. W., V. F. Farias and G. J. Escobar, “The impact of delays on service times
in the intensive care unit”, Management Science 63, 7, 2049–2072 (2016).

CNN, U., “Tape shows woman dying on waiting room floor”, Updated July (2008).

Cox, D. R. and W. Smith, Queues, vol. 2 (CRC Press, 1991).

Dai, J. G. and W. Lin, “Maximum pressure policies in stochastic processing net-
works”, Operations Research 53, 2, 197–218 (2005).

De Véricourt, F. and Y.-P. Zhou, “Managing response time in a call-routing problem
with service failure”, Operations Research 53, 6, 968–981 (2005).

Defife, J. A., C. Z. Conklin, J. M. Smith and J. Poole, “Psychotherapy appoint-
ment no-shows: Rates and reasons.”, Psychotherapy: Theory, Research, Practice,
Training 47, 3, 413 (2010).

Dempster, A. P., N. M. Laird and D. B. Rubin, “Maximum likelihood from incom-
plete data via the em algorithm”, Journal of the royal statistical society. Series B
(methodological) pp. 1–38 (1977).

164



Dreiher, J., M. Froimovici, Y. Bibi, D. A. Vardy, A. Cicurel and A. D. Cohen, “Nonat-
tendance in obstetrics and gynecology patients”, Gynecologic and obstetric inves-
tigation 66, 1, 40–43 (2008).

Erdelyi, A. and H. Topaloglu, “Computing protection level policies for dynamic ca-
pacity allocation problems by using stochastic approximation methods”, Iie Trans-
actions 41, 6, 498–510 (2009).

Farias, V. F., S. Jagabathula and D. Shah, “A nonparametric approach to modeling
choice with limited data”, Management science 59, 2, 305–322 (2013).

Fleming, T. R. and D. Lin, “Survival analysis in clinical trials: past developments
and future directions”, Biometrics 56, 4, 971–983 (2000).

Gallucci, G., W. Swartz and F. Hackerman, “Impact of the wait for an initial ap-
pointment on the rate of kept appointments at a mental health center”, Psychiatric
Services 56, 3, 344–346 (2005).

Gans, N., G. Koole and A. Mandelbaum, “Telephone call centers: Tutorial, review,
and research prospects”, Manufacturing & Service Operations Management 5, 2,
79–141 (2003).

GAO, G. A. O., “Hospital emergency departments: crowding vary among hospitals
and communities”, URL http://www.gao.gov/new.items/d03460.pdf (2003).

GAO, G. A. O., “Hospital emergency departments: crowding continues to occur, and
some patients wait longer than recommended time frames”, URL http://www.gao.
gov/new.items/d09347.pdf (2009).

Garnett, O. and A. Mandelbaum, “An introduction to skills-based routing and its
operational complexities”, Teaching notes 114 (2000).

Gentleman, R. and C. J. Geyer, “Maximum likelihood for interval censored data:
Consistency and computation”, Biometrika 81, 3, 618–623 (1994).

Griffin, J. A., Improving health care delivery through multi-objective resource alloca-
tion, Ph.D. thesis, Georgia Institute of Technology (2012).

Gupta, D. and B. Denton, “Appointment scheduling in health care: Challenges and
opportunities”, IIE transactions 40, 9, 800–819 (2008).

Gurvich, I. and O. Perry, “Overflow networks: Approximations and implications to
call center outsourcing”, Operations research 60, 4, 996–1009 (2012).

Gurvich, I. and W. Whitt, “Scheduling flexible servers with convex delay costs in
many-server service systems”, Manufacturing & Service Operations Management
11, 2, 237–253 (2009).

Harrison, G. W., A. Shafer and M. Mackay, “Modelling variability in hospital bed
occupancy”, Health Care Management Science 8, 4, 325–334 (2005).

165

http://www.gao.gov/new.items/d03460.pdf
http://www.gao.gov/new.items/d09347.pdf
http://www.gao.gov/new.items/d09347.pdf


Hoot, N. R. and D. Aronsky, “Systematic review of emergency department crowding:
causes, effects, and solutions”, Annals of emergency medicine 52, 2, 126–136 (2008).

Kakalik, J. S. and J. D. Little, “Optimal service policy for the m/g/1 queue with
multiple classes of arrivals.”, Tech. rep., RAND CORP SANTA MONICA CALIF
(1971).

Kaplan, E. L. and P. Meier, “Nonparametric estimation from incomplete observa-
tions”, Journal of the American statistical association 53, 282, 457–481 (1958).

Kazemian, P., M. Y. Sir, M. P. Van Oyen, J. K. Lovely, D. W. Larson and K. S.
Pasupathy, “Coordinating clinic and surgery appointments to meet access service
levels for elective surgery”, Journal of biomedical informatics 66, 105–115 (2017).

Kessler, R. C., A. Sonnega, E. Bromet, M. Hughes and C. B. Nelson, “Posttraumatic
stress disorder in the national comorbidity survey”, Archives of general psychiatry
52, 12, 1048–1060 (1995).

Klassen, K. J. and T. R. Rohleder, “Scheduling outpatient appointments in a dynamic
environment”, Journal of operations Management 14, 2, 83–101 (1996).

Klassen, K. J. and T. R. Rohleder, “Outpatient appointment scheduling with urgent
clients in a dynamic, multi-period environment”, International Journal of Service
Industry Management 15, 2, 167–186 (2004).

Kuntz, L., R. Mennicken and S. Scholtes, “Stress on the ward: Evidence of safety
tipping points in hospitals”, Management Science 61, 4, 754–771 (2014).

LaGanga, L. R. and S. R. Lawrence, “Clinic overbooking to improve patient access
and increase provider productivity”, Decision Sciences 38, 2, 251–276 (2007).

Levesque, J.-F., M. F. Harris and G. Russell, “Patient-centred access to health care:
conceptualising access at the interface of health systems and populations”, Inter-
national journal for equity in health 12, 1, 18 (2013).

Lin, W. and P. Kumar, “Optimal control of a queueing system with two heterogeneous
servers”, IEEE Transactions on Automatic control 29, 8, 696–703 (1984).

Linn, I. S., “Stochastic dynamic programming and control of queueing systems”,
(1999).

Liu, N., S. R. Finkelstein, M. E. Kruk and D. Rosenthal, “When waiting to see a
doctor is less irritating: Understanding patient preferences and choice behavior in
appointment scheduling”, Management Science 64, 5, 1975–1996 (2017).

Liu, N. and S. Ziya, “Panel size and overbooking decisions for appointment-based
services under patient no-shows”, Production and Operations Management 23, 12,
2209–2223 (2014).

Liu, N., S. Ziya and V. G. Kulkarni, “Dynamic scheduling of outpatient appointments
under patient no-shows and cancellations”, Manufacturing & Service Operations
Management 12, 2, 347–364 (2010).

166



Lucas, J., R. J. Batt and O. A. Soremekun, “Setting wait times to achieve targeted
left-without-being-seen rates”, The American journal of emergency medicine 32, 4,
342–345 (2014).
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A.1 Expectation Maximization (EM) Algorithm

The EM method starts with an initial estimate of the p vector. We use 1/(Z + 1)

for each WtW group. Then, with each instance of appointment booking, we compute

the conditional expected value of the log-likelihood function by using the current

estimates (expectation step). This expected value is then maximized to generate

the new estimates (maximization step). The procedure is repeated until convergence

is achieved according to a given stopping criterion; we use difference between two

estimates of probabilities less than 10−4. We now describe the two steps of expectation

and maximization in further detail.

Expectation Step: In expectation step in iteration l+1, we calculate the expected

values of the number of encounters in each WtW group, m̂l+1
k , with the estimates of

probabilities of being in WtW group k denoted as p̂l+1
k . In order to calculate the

estimate for the number of arrivals for each patient WtW group k at iteration l + 1,

denoted as m̂l+1
k , we first need to calculate an estimate for at , which we denote as

âl+1
t , for the time buckets with no event (when t ∈ S ∪ A, at = 1.)

We denote the probability of a patient arriving in time bucket t belonging to WtW

group k considering the offered delay is wt and the appointment offered is fulfilled

as P (Gt = k|t ∈ S,Wt = w). Similarly, P (Gt = k|t ∈ A,Wt = w) is defined as the

probability of a patient arriving in time bucket t belonging to WtW group k given that

the booked appointment at t with delay Wt = w is not fulfilled. At each time bucket t,

we update the probability mass function (pmf) for each of these probabilities by using

Bayes theorem based on the data which shows the set that the time bucket belongs

to and the offered delay Wt at time bucket t, and current estimates of probabilities

from the previous iteration (estimates obtained as a result of iteration l), p̂l.

If the patient fulfills an appointment that is booked in time bucket t, we update
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the pmf for any k ∈ {k ∈ {w, . . . , Z}:

P (Gt = k|t ∈ S,Wt = w, p̂l) =
P(k|p̂l)

P (t ∈ S|Wt = w, p̂l)
=

p̂lk∑Z
i=w p̂

l
i

, (A.1)

where P (t ∈ S|Wt = w, p̂l) is the conditional probability that the appointment

that is offered at time t being fulfilled with given delay Wt = w and current probability

estimates p̂l and indicator 1k∈{w,...,Z} shows whether the appointment is offered to

from a patient with WtW group k that has WtW greater than or equal to the offered

delay. Similarly, if the booked appointment is C/RS/NS, we update the pmf for any

k ∈ {0, . . . , w − 1}:

P (Gt = k|t ∈ A,Wt = w, p̂l) =
P(k|p̂l)

P (t ∈ A|Wt = w, p̂l)
=

p̂lk∑w−1
i=0 p̂li

. (A.2)

On the other hand, a time bucket t ∈ B, we update the estimate âl+1
t for the time

bucket considering the appointment delay Wt = w that can be offered were an an

arrival to occur.

âl+1
t = P (at = 1|t ∈ B,Wt = w, p̂l) (A.3)

=
P (t ∈ B|Wt = w, at = 1, p̂l)P (at = 1)

P (t ∈ B|Wt = w, p̂l)

=
P (t ∈ W|Wt = w, p̂l)λ

P(t ∈ W|Wt = w, p̂l)λ+ (1− λ)

=
α
∑w−1

i=0 p̂liλ

α
∑w−1

i=0 p̂liλ+ (1− λ)
.

Notice that the probability that an appointment request occurs at a time bucket

t is recorded as a no event bucket is the probability that an appointment request

arrives at t with probability λ and patient decides to PLWBA. Then similar to (A.2),

we calculate the probability P (Gt = k|t ∈ B,Wt = w, p̂), an arriving patient at a

no event time bucket being from group k ∈ {0, . . . , w − 1}:

P(Gt = k|t ∈ B,Wt = w, p̂l) =
p̂lk∑w−1
i=0 p̂li

. (A.4)
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since an arriving patient decides to PLWBA since the offered delay at t, Wt = w is

exceeding patient’s WtW. We then calculate the estimates of m̂k from (A.3) as:

m̂l+1
k =

∑
t∈S

P (Gt = k|Wt = w, p̂l) +
∑
t∈A

P (Gt = k|Wt = w, p̂l) (A.5)

+
∑
t∈B

âl+1
t P (Gt = k|Wt = w, p̂l).

Then the expected log-likelihood function becomes:

E
[
L(p)|p̂l

]
=

Z∑
i=0

m̂l+1
i log pl+1

i . (A.6)

Maximization Step: We calculate the maximizer p̂l+1
k from:

p̂l+1
k =

m̂l+1
k∑Z

i=0 m̂
l+1
i

. (A.7)

We repeat this procedure until p̂l+1 − p̂l < 10−4.
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A.1.1 Pseudocode for EM algorithm

Algorithm 1 EM algorithm for estimating realization probabilities

1: Input data: Maximum WtW T , number of time-buckets H, λ is estimated as

dividing the total number of time buckets that an appointment request occurs

to total number of time buckets, H, imputed booked appointment data matrix

I − BADt for each time-bucket t showing whether a booking occurred in the

time-bucket I −BADt(1) = 1 or I −BADt(1) = 0 for no bookings, if the booked

appointment is realized I − BADt(2) = 1, I − BADt(2) = 0, otherwise, and

offered appointment delay I −BADt(3) = wt, (1-α) is the misclassification error

estimated from data.

2: Initialization: Set pk = 1/(Z + 1), at = 0 ∀t ∈ {1, 2, . . . , H}

3: Repeat:

4: mk := 0, pkt := 0 ∀t ∈ {1, 2, . . . , H}, k ∈ {0, 1, . . . , Z}

5: Expectation Step:

6: for t ∈ {1, 2, . . . , H} do

7: if I −BADt(1) = 1 then

8: Set at = 1.

9: if I −BADt(2) = 1 then

10: for k ∈ {wt, . . . , Z} do

11: Set pkt = pk/
∑Z

i=wt
pi.

12: else

13: for k ∈ {0, . . . , wt − 1} do

14: Set pkt = pk/
∑wt−1

i=0 pi.
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15: else

16: Set at =
λα
∑wt−1

i=0 pi

(1− λ) + λα
∑wt−1

i=0 pi

17: Update estimates for mk

18: for k ∈ {0, 1, . . . , T} do

19: for t ∈ {1, 2, . . . , H} do

20: mk = mk + atpkt

21: Maximization Step

22: for k ∈ {0, 1, . . . , Z} do

23: pk = mk/(
∑H

t=1 at)

24: Until Stopping defined criterion is met.
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B.1 Pseudocode for the Solution Approach

Algorithm 2 Algorithm for calculating time windows

1: Input data: Number of priority classes N , Tmin, Tmax, length of the booking

horizon T and daily capacity C. Case specific inputs λi for all patient classes

i ∈ {1, 2, . . . , N}, overbook capacity θmax, and set of realization probabilities pik

for all patient classes i ∈ {1, 2, . . . , N} and for all delay values k ∈ {0, 1, . . . , T}.

2: Construct Dilution Tables:

3: Create a matrix DTi to store the results.

4: Calculation of possible [Bi, Ei] pairs and set count of possible time windows

ci = 0 ∀ i ∈ {1, 2, . . . , N}:

5: for i ∈ {1, 2, . . . , N} do

6: for Bi ∈ {1, 2, . . . , T − Tmin} do

7: Increase window count by 1: ci = ci + 1

8: Set Ei to any Bi + Tmin − 1 ≤ Ei ≤ Bi + Tmax − 1

9: Set TtAci = Bi+Ei
2

10: Set DTi[ci, 1] = Bi,DTi[ci, 2] = Ei,DTi[ci, 3] = TtAci .

11: Return DTi.

12: Initialize dominating solutions matrix DSi having size 2(T − Tmin) + 1 × 4

where DSi[, 1] lists all possible TtA ∈ {Tmin

2
, Tmin+1

2
, . . . , 2T−Tmin

2
} and rest as 0.

13: Calculate dilution DLj for each window j ∈ {1, 2, . . . , length of DTi}:

14: for j ∈ {1, 2, . . . , length of DTi} do
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15: Set DLj = 1
Ej−Bj+1

∑Ej
k=Bj

pik.

16: DTi[j, 4] = DLj

17: Find l where DTi[j, 3] = DSi[l, 1] and l ∈ {1, 2, . . . , 2(T − Tmin) + 1}

18: if DTi[j, 3] > DSi[l, 4] then

19: Set DSi[l, 2] = DTi[j, 1],DSi[l, 3] = DTi[j, 2] and DSi[l, 4] = DTi[j, 3]

20: Construct a table for possible Λ along with associated expected number of over-

books from expression (3.9) under capacity C and identify Λ∗ for overbook ca-

pacity θmax. Assign Λremaining = Λ∗.

21: for i ∈ {1, 2, . . . , N} do

22: if min(DSi[, 4])λi ≥ Λremaining then

23: Patient priority classes q ∈ {i, i+ 1, . . . , N} cannot be served with available

capacity.

24: BREAK

25: else

26: Λ∗i = arg minDSi[,4](Λremaining − (DSi[, 4])λi)λi

27: Λremaining = Λremaining − Λ∗i

28: Find index, x, where DSi[x, 4] = arg minDSi[,4](Λremaining − (DSi[, 4])λi)

29: B∗i = DSi[x, 2], E∗i = DSi[x, 3]
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B.2 Simulation Results on Additional Cases
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(f) Utilization of Overbook

Figure B.1: Simulation Results for WtW Case I, Arrival Case L1 (θmax = 5)
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Figure B.2: Simulation Results for WtW Case I, Arrival Case E2 (θmax = 5)
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Figure B.3: Simulation Results for WtW Case I, Arrival Case H2 (θmax = 5)
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Figure B.4: Simulation Results for WtW Case A, Arrival Case L1 (θmax = 5)
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Figure B.5: Simulation Results for WtW Case A, Arrival Case E2 (θmax = 5)
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Figure B.6: Simulation Results for WtW Case A, Arrival Case H2 (θmax = 5)
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B.3 Additional Analysis on Compromise Prioritization

For our numerical experiments, we consider four alternative WtW distributions

that are Uniform, Triangular, Exponential, and Weibull distributions. For each un-

derlying WtW distribution, we assume patients from lower priority classes are less

sensitive to access delays compared to patients from higher priority classes which is

again creating the worse case for us since lower priority patients being less sensitive to

appointment delays limits the improvement due to implementing TWP. Alternative

WtW cases are illustrated in Figure B.7.

In addition to alternative WtW cases, we consider alternative arrival regimes

where we only consider the cases with λ1 + λ2 ≥ C since for the cases that the

total regular capacity can serve the total arriving demand, each priority class can be

served with natural dilution. We consider three main regimes where in regime 1 (R1);

λ1 ≥ C and λ2 ≤ C (λ1=30, λ2=5), in regime 2 (R2); λ1 ≤ C and λ2 ≥ C (λ1=5,

λ2=30), and λ1 ≤ C and λ2 ≤ C (λ1=15, λ2=15). While these cases do not cover

all possible arrivals, they serve our purpose of testing the performance of the model

under different parameter settings.

For our numerical experiments, we set C = 20, , T = 75 , Tmin = 10, and

Tmax = 20 and a set of θmax values, (0, 1, . . . , 10), for each arrival regime and WtW

distribution. Instead of θmax = 0, we actually use 0.1 since θmax = 0 leads no demand

satisfied under the cases we consider.

The parameters that we pick are similar to the values that we observe from real

life cases. Exploring the fill rates over a set of different θmax allows us to observe the

trade-off between increasing the available capacity and serving more patients. Based

on decision makers’ preferences, an ideal level for the total capacity can be determined

to serve patients with the targeted service levels.
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Figure B.7: WtW Cases for Numerical Analysis

We plot the trade-off curves as follows. We generate all possible time windows

for priority 1 patients and with the service level provided to priority 1 patients with

each time window, we fill the remaining effective capacity with priority 2 patients as

we note in Section 3.5. In trade-off curves, we basically plot the inequality,

2∑
n=1

βnλn ≤ Λ∗, (B.1)

in terms of β1 and β2 where Λ∗ is a function of the available capacity.

Notice that we can represent the relationship between the average TtA and fill
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rate is many-to-many since the time windows with same average TtA can result in

different fill rates. For instance, in WtW Case 1 where patient WtW is uniformly

distributed, P (WtW ≤ x) = x−a
b−a , we write the expression for βn as

1

En −Bn + 1

En∑
k=Bn

(
1− k − 1− a

b− a

)
=

1

En −Bn + 1

(En −Bn + 1)(En +Bn − 2b− 2)

2(b− a)
(B.2)

which indicates that for the [Bi, Ei] pairs that results in the same average TtA (same

Ei + Bi), there exists alternative time windows that results in same performance

measures since there is one-to-one relationship between average TtA and fill rate

under Uniform WtW. Therefore, under WtW case 1, for the average TtA target,

time window pair [B,E] is determined based on setting dependent preferences. Notice

that for the time windows that result in same average TtA, some windows are wider

with a lesser minimum TtA can be achieved while the narrower ones result in lesser

maximum TtA possible. Some decision makers might prefer narrower intervals to

reduce the variance of TtA among the patients while some choose to continue with

time windows that start earlier in the booking horizon. When we are plotting the

trade-off curves, we only pick the time windows with the highest fill rate among

the ones that with the same average TtA value and refer them as dominating time

windows.

We illustrate the trade-off curves under each WtW case in Figure B.8 and Fig-

ure B.9 under arrival regimes R1 and R2 separately. Maximum possible fill rates

under different WtW case are shown in the figures with a vertical and a horizontal

line for priority 1 and priority 2, respectively.

Trade-off curves that are presented in Figure B.8 and Figure B.9 give a complete

picture of the performance measures and trade-off between these performance mea-

sures under different arrival regimes and WtW cases. Under any WtW case, the
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(d) WtW Case 4

Figure B.8: Trade-off Curves Under R1 and Different WtW Cases

trade-off curves can be used to identify the possible service levels that can be reached

with the available capacity or the required capacity for providing the targeted service

levels for the patients.

The first observation that we can make from trade-off curves is that as we in-

crease the available overbook slots, we observe relative improvement in performance

measures diminish which is supporting our observation in Section 3.5. Considering

that overbooks can result in additional direct waiting times for patients and reduction
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(d) WtW Case 4

Figure B.9: Trade-off Curves Under R2 and Different WtW Cases

in provider satisfaction, it is expected that we observe a reduction in total system

performance after a certain level of available overbooks. If cost parameters associ-

ated with overbooks and serving an additional patient is available, one can decide

the optimal capacity to maximize the return. This capacity can be either in terms

of overbook capacity or additional regular capacity that can be provided by hiring

additional medical professionals.

In some settings, decision makers can focus on providing a service level in terms
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of fill rates for all patient classes. This case can be considered as a setting where

priorities exist but there is no distinct differences between the priority classes. For

instance, for the case depicted in Figure B.8(a), instead of serving priority 1 patients

with 90% fill rate and not serving priority 2 patients, one can choose to reduce the

fill rate for priority 1 to 85% and serve priority 2 with 47.5% when θmax is set to 8.

While this shift does not result any change in total number of patients served since

the capacity is fixed, it allows us to provide care to an additional patient class with

a minor reduction in fill rate for priority 1 patients.

In the cases in Figure B.8(a), it is not possible to serve both classes of patients

while serving priority 1 with natural dilution without increasing the available capacity

significantly and it is not even possible to serve priority 1 patients with natural

dilution since the number of patients requesting appointments from priority 1 patients

are significantly higher than the available capacity. In cases like these, the first task

of the decision makers should be determining the ideal capacity that can respond

to patients’ needs. However, if increasing the capacity is costly or not possible due

to physical limitations, an appropriate capacity allocation can be either rejecting all

priority patients or use compromise prioritization, serving priority 1 patients given

that the priority 2 patients should be served with maximum dilution.

Alternative set of time windows can be set by adjusting our three levers. We can

analyze a specific setting to observe how the levers are associated. We examine the

case that strict prioritization is used with the parameters where appointment requests

arrive with R2, θmax is set to 4 slots, and patient behavior can be represented with

WtW Case 3, and the goal of the decision maker is to improve the fill rate for priority

2 patients by 0.05. The results show that we can serve priority 1 patient with the

earliest time window [1, 10] with fill rate of 76.7% while serving priority 2 with [11, 29]

with fill rate 64.6% under θmax = 4 case. To achieve the goal, we can serve priority 1
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with time window [6, 25] with fill rate 48% and serve priority 2 with the time window

[8, 25] with 69.8% fill rate or we can increase θmax to 5 and serve priority 2 with the

time window [8, 25] with 69.8% fill rate while serving priority 1 with 71.7% fill rate

with time window [1, 13]. In this example, for the same θmax value, one needs to

decrease the fill rate for priority 1 patients by 28% or increase the overbook capacity

to be able to increase service level priority 2 patients by 0.05 with reducing fill rate for

priority 1 patients by 0.05. Depending on cost parameters or any parameter that can

capture the trade-off between serving priority 1 patients and increasing the expected

overbooks, one can decide on the best action to increase the fill rate for priority 2

patients.

Depending on the underlying WtW distribution, the trade-off can be more or less.

For instance, for the same objective and parameters under WtW Case 2, we observe

that with strict prioritization, we serve priority 1 patients with 98.1% fill rate while

serving priority 2 at 61.2% fill rate with time window [32, 51]. Again, to increase fill

rate for priority 2 by by 0.05, we can decrease the fill rate for priority 1 patients to

68.6% with time window [21, 31] or increase the overbook capacity to 5, and serve

priority 1 patients with 72.4% fill rate with the time window [15, 33].

Compared to results from WtW Case 3, we observe that under WtW Case 2,

we need to compromise the average TtA of priority 1 patient more to reach the

desired target fill rate for priority 2 patient even with increasing the overbook capacity.

The difference between the required compromise from the average TtA is due to the

apparent differences in WtW distributions. From Figures B.7(b) and B.7(c), we can

see that patients are more sensitive to delay values under WtW Case 3, therefore,

desired reduction in fill rate is observed for lower delay values compared to WtW Case

2. Notice that for both cases, we need to reduce the fill rate for priority 1 patients

approximately by 0.3 to increase fill rate for priority 2 patients by by 0.05. This is
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due to the slope of the trade-off curve being the same for the same arrival regime

which is − 1

6
under R2.

Similar to what we did for the real life data, we show alternative results under

average TtA targets where τ1 is determined as 15 days and τ2 is 30 days for priority

class 1 and priority class 2, respectively. We mark the associated area on the trade-off

curves that contains the alternative possible fill rate combinations for each WtW case

with solid box in Figure B.10. One observation that we can make from the figure is

that for each WtW case we cover a different level of fill rate combinations. Addition-

ally, due to the differences in WtW distributions, the dominating time windows to

hit the target TtA varies. For instance, for Uniform WtW, any B1 + E1 = 30, and

any B2 + E2 = 60 combinations are possible time windows that can be used to hit

average TtA targets where for Exponential and Weibull WtW it is [6, 24] for priority

1 and [21, 39] for priority 2 patients and for Triangular WtW, [10, 20] and [25, 35]

for priority 1 and priority 2, respectively. These time windows listed are the ones to

satisfy the targets at minimum.

Another example that we examine is a fill rate target on priority 1 patients while

keeping average TtA for priority 2 patients under a certain level. The dotted box

marked on Figures B.10(a)-B.10(d) show the alternative fill rates possible that satisfy

target on 60% service level for priority 1 patients and 45 days average TtA target for

priority 2. The figures show that the required total capacity varies for each WtW

case. For instance, in a WtW case where patients are highly sensitive to appointment

delays such as Exponential WtW case, higher number of overbooks is not required

compared to less sensitive WtW cases such as Uniform since for the same TtA value

more patients are abandoning the system in Exponential WtW case.

It is possible include more details in the trade-off curves to observe both fill rates

and certain ranges of average TtA values by marking the trade-off curves with different
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Figure B.10: Target Areas on Trade-off Curves

colors to express alternative combinations of average TtAs. Including average TtA on

trade-off curves can help us to give decision makers a single tool that they let them

observe three main components, average TtA, fill rate, expected number of overbooks,

at the same time. Notice that fill rate and average TtA are similar performance

measures since we assume that patient abandonments increase with the offered delay.

In some cases, target fill rates can be more limiting than the average TtA target.

For instance, in a highly competitive environment or in a setting where patients are
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impatient like the WtW case 3 in FigureB.8(c), patients can be served with relatively

shorter TtA metric with a moderate level of overbooks. However, the achievable fill

rate is low since those patients tend to abandon the system even when the offered

delay is low or they are mostly searching for same-day appointments.
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C.1 Definition of the Functional Operators

In this part, we define the operators T uij , which defines the cost function J(·)

after a decision uij is taken at state X̃. Below, we explicitly define this operator for

each state X̃.

When the system state is X̃ = (X1 ≥ 1, X2 ≥ 1, a1 6= 0, a2 = 0):

T (ui1=,ui2=0)J(X̃) =J(X1, X2, a1 6= 0, a2 = 0)

T (ui1=,u12=1)J(X̃) =J(X1 − 1, X2, a1 6= 0, a2 = e1) + p12

T (ui1=,u22=1)J(X̃) =J(X1, X2 − 1, a1 6= 0, a2 = e2)

When the state is X̃ = (X1 ≥ 2, X2 ≥ 2, a1 = 0, a2 6= 0):

T (ui1=0,ui2=0)J(X̃) =J(X1, X2, a1 = 0, a2 6= 0)

T (u11=1,ui2=0)J(X̃) =J(X1 − 1, X2, a1 = e1, a2 6= 0)

T (u21=1,ui2=0)J(X̃) =J(X1, X2 − 1, a1 = e2, a2 6= 0) + p21

When the system state is X̃ = (X1 ≥ 2, X2 ≥ 2, a1 = 0, a2 = 0):

T uij=0J(X̃) =J(X1, X2, a1 = 0, a2 = 0)

T (u11=1,u22=1)J(X̃) =J(X1 − 1, X2 − 1, a1 = e1, a2 = e2)

T (u11=1,u12=1)J(X̃) =J(X1 − 2, X2, a1 = e1, a2 = e1) + p12

T (u11=1,ui2=0)J(X̃) =J(X1 − 1, X2, a1 = e1, a2 = 0)

T (ui1=0,u12=1)J(X̃) =J(X1 − 1, X2, a1 = 0, a2 = e1) + p12

T (ui1=0,u22=1)J(X̃) =J(X1, X2 − 1, a1 = 0, a2 = e2)

T (u21=1,ui2=0)J(X̃) =J(X1, X2 − 1, a1 = e2, a2 = 0) + p21

T (u21=1,u22=1)J(X̃) =J(X1, X2 − 2, a1 = e2, a2 = e2) + p21

T (u12=1,u21=1)J(X̃) =J(X1 − 1, X2 − 1, a1 = e2, a2 = e1) + p12 + p21
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When the state is X̃ = (X1 = 0, X2 ≥ 2, a1 = 0, a2 = 0):

T uij=0J(X̃) =J(X1, X2, a1 = 0, a2 = 0)

T (ui1=0,u22=0)J(X̃) =J(X1, X2 − 1, a1 = 0, a2 = e2)

T (u21=1,ui2=0)J(X̃) =J(X1, X2 − 1, a1 = e2, a2 = 0) + p21

T (u21=1,u22=1)J(X̃) =J(X1, X2 − 2, a1 = e2, a2 = e2) + p21

When the state is X̃ = (X1 ≥ 2, X2 = 0, a1 = 0, a2 = 0):

T uij=0J(X̃) =J(X1, X2, a1 = 0, a2 = 0)

T (u11=1,u12=1)J(X̃) =J(X1 − 2, X2, a1 = e1, a2 = e1) + p12

T (u11=1,ui2=0)J(X̃) =J(X1 − 1, X2, a1 = e1, a2 = 0)

T (ui1=0,u12=1)J(X̃) =J(X1 − 1, X2, a1 = 0, a2 = e1) + p12

When the state is X̃ = (X1 ≥ 2, X2 = 1, a1 = 0, a2 = 0):

T uij=0J(X̃) =J(X1, X2, a1 = 0, a2 = 0)

T (u11=1,u22=1)J(X̃) =J(X1 − 1, X2 − 1, a1 = e1, a2 = e2)

T (u11=1,u12=1)J(X̃) =J(X1 − 2, X2, a1 = e1, a2 = e1) + p12

T (u11=1,ui2=0)J(X̃) =J(X1 − 1, X2, a1 = e1, a2 = 0)

T (ui1=0,u12=1)J(X̃) =J(X1 − 1, X2, a1 = 0, a2 = e1) + p12

T (ui1=0,u22=1)J(X̃) =J(X1, X2 − 1, a1 = 0, a2 = e2)

T (u21=1,ui2=0)J(X̃) =J(X1, X2 − 1, a1 = e2, a2 = 0) + p21

T (u12=1,u21=1)J(X̃) =J(X1 − 1, X2 − 1, a1 = e2, a2 = e1) + p12 + p21
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When the state is X̃ = (X1 = 1, X2 ≥ 2, a1 = 0, a2 = 0):

T uij=0J(X̃) =J(X1, X2, a1 = 0, a2 = 0)

T (u11=1,u22=1)J(X̃) =J(X1 − 1, X2 − 1, a1 = e1, a2 = e2)

T (u11=1,ui2=0)J(X̃) =J(X1 − 1, X2, a1 = e1, a2 = 0)

T (ui1=0,u12=1)J(X̃) =J(X1 − 1, X2, a1 = 0, a2 = e1) + p12

T (ui1=0,u22=1)J(X̃) =J(X1, X2 − 1, a1 = 0, a2 = e2)

T (u21=1,ui2=0)J(X̃) =J(X1, X2 − 1, a1 = e2, a2 = 0) + p21

T (u21=1,u22=1)J(X̃) =J(X1, X2 − 2, a1 = e2, a2 = e2) + p21

T (u12=1,u21=1)J(X̃) =J(X1 − 1, X2 − 1, a1 = e2, a2 = e1) + p12 + p21

When the state is X̃ = (X1 ≥ 2, X2 = 2, a1 6= 0, a2 = 0):

T uij=0J(X̃) =J(X1, X2, a1 6= 0, a2 = 0)

T (ui1,u12=1)J(X̃) =J(X1 − 1, X2, a1 6= 0, a2 = e1) + p12

When the state is X̃ = (X1 = 0, X2 ≥ 2, a1 6= 0, a2 = 0):

T uij=0J(X̃) =J(X1, X2, a1 6= 0, a2 = 0)

T (ui1,u22=1)J(X̃) =J(X1, X2 − 1, a1 6= 0, a2 = e2)

When the state is X̃ = (X1 ≥ 2, X2 = 0, a1 = 0, a2 6= 0):

T uij=0J(X̃) =J(X1, X2, a1 = 0, a2 6= 0)

T (u11=1,ui2=0)J(X̃) =J(X1 − 1, X2, a1 = e1, a2 6= 0)

When the state is X̃ = (X1 = 0, X2 ≥ 2, a1 = 0, a2 6= 0):

T uij=0J(X̃) =J(X1, X2, a1 = 0, a2 6= 0)

T (u21=1,ui2=0)J(X̃) =J(X1, X2 − 1, a1 = e2, a2 6= 0) + p12
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C.2 Proofs

C.2.1 Non-Idling Policy

In this section, we show that IW j should not be idled when a patient of class j

(i.e., a patient whose primary IW is j) is boarded in the ED. We first establish the

following monotonicity result.

Lemma 2 (Monotonicity) For any X̃ ∈ S, n ∈ Z+, β ∈ [0, 1), and k ∈ Np:

Vn,β(X + ek, a1, a2) ≥ Vn,β(X, a1, a2), where Vn,β(·) represents the n-period discounted

cost when the discount factor is β.

Proof of Lemma 2

Similar to (4.4), the finite-horizon discounted cost optimality equation can be

written as:

Vn+1,β(X̃) =
1

ψ

[
θ XT + β min

u=uij∈U(X̃)

{∑
i∈Np

∑
j∈Ns

λiT
uijVn,β(X + ei, aj)

+
∑
i∈Np

∑
j∈Ns

∑
l∈Np

aljµlT
uijVn,β(X, aj − ek)

+

ψ −∑
i∈Np

λi −
∑
k∈Np

akjµk

∑
j∈Ns

Vn,β(X̃)

}]
, (C.1)

where Vn,β(X̃) is the optimal cost of the n-period problem starting at state X̃, along

with terminal condition V0,β(X̃) = 0 for every X̃ ∈ S. We prove this lemma by

induction on n. For n = 0, we have V0,β(X̃)=0. Hence, V0,β(X + ek, a1, a2) =

V0,β(X, a1, a2) = 0 (∀X̃ ∈ S, ∀β ∈ [0, 1),∀k ∈ Np). Assume that, for some n ∈ Z+,

the required condition holds: Vn,β(X + ek, a1, a2) ≥ Vn,β(X, a1, a2) for any X̃ ∈ S,

β ∈ [0, 1) and k ∈ Np. We now show that the same condition holds for n + 1. From
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(C.1), we have:

Vn+1,β(X + ek, a1, a2) =

1

ψ

[
θ(X + ek)

T + β

{∑
j∈Ns

(
λ1T

u1jVn(X + e1 + ek, a1, a2)

+ λ2T
u2jVn(X + e2 + ek, a1, a2)

)
+
∑
i∈Np

∑
j∈Ns

∑
l∈Np

ajl

(
pij + µlVn(X + ek − ei, aj − el + ei)

)

+

ψ − λ1 − λ2 −
∑
j∈Ns

∑
l∈Np

ajlµl

Vn(X + ek, a1, a2)

}]
. (C.2)

If the set of admissible actions are the same for both of the states (X+ ek, a1, a2) and

(X, a1, a2), the proof is straightforward, and follows directly from (C.2). However,

since U(X + ek, a1, a2) can be a larger admissible set than U(X, a1, a2), the optimal

action u∗ ∈ U(X + ek, a1, a2) may not belong to U(X, a1, a2). If u∗ /∈ U(X, a1, a2),

WLOG assume that k = 1, and observe that the only possibility for u∗ /∈ U(X, a1, a2)

is that queue 1 is empty at state (X, a1, a2). We show that, if the same allocation

policy u∗ is used at this state but the IW that is assigned to Class 1 patients under

u∗ (say IW 1) is idled, and X + e1 is swapped with X, a lower (or equal) value than

Vn+1,β(X + ek, a1, a2) can be obtained. That is, following a suboptimal policy at at

state (X, a1, a2) yields a cost that is not higher than Vn+1,β(X+ ek, a1, a2). The proof

is then established, because Vn+1,β(X, a1, a2) is the optimal cost at state (X, a1, a2).
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First, rewrite the formulation by separating the action related to Class 1.

Vn+1,β(X + e1, a1, a2) =
1

ψ

[
θ(X + e1)T

+ β

{∑
j∈Ns

(
λ1T

u1jVn(X + e1 + e1, aj)

+ λ2T
u2jVn(X + e2 + e1, aj)

)
+
∑
i∈Np

∑
k∈Np

a1k (pi1 + µk(Vn

−Vn(X + e1, a1, a2))
)

+
∑
i∈Np

a2l

(
pi2 + µlVn(X + e1 − ei, a1, a2 − el + ei)

)
+

ψ − λ1 − λ2 −
∑
l∈Np

ajlµl

Vn(X + e1, a1, a2)

}]
(C.3)

From the induction assumption, we have:
(
ψ − λ1 − λ2 −

∑
l∈Np ajlµl

)
× [Vn(X +

e1, a1, a2) − Vn(X, a1, a2)] ≥ 0. Now, subtracting this positive term from (C.3), we

have:

Vn+1,β(X + e1, a1, a2) ≥ 1

ψ

[
θ(X + e1)T

+ β

{∑
j∈Ns

(
λ1T

u1jVn(X + e1 + e1, aj)

+ λ2T
u2jVn(X + e2 + e1, aj)

)
+
∑
i∈Np

∑
k∈Np

a1k

(
pi1 + µk(Vn(X + e1 − ei, a1 − ek + ei, a2)

−Vn(X + e1, a1, a2))
)

+
∑
i∈Np

∑
l∈Np

a2l

(
pi2 + µlVn(X + e1 − ei, a1, a2 − el + ei)

)
+

ψ − λ1 − λ2 −
∑
l∈Np

ajlµl

Vn(X, a1, a2)

}]
(C.4)

201



From the induction assumption, we can write:

Vn+1,β(X + e1, a1, a2) ≥ 1

ψ

[
θXT + β

{∑
j∈Ns

(
λ1T

u1jVn(X + e1, aj)

+ λ2T
u2jVn(X + e2, aj)

)
+
∑
i∈Np

∑
k∈Np

1(a1k = 1)
(
pi1 + µk(Vn(X − ei, a1 − ek + ei, a2))

−Vn(X + e1, a1, a2)
)

+
∑
i∈Np

∑
l∈Np

a2l

(
pi2 + µlVn(X − ei, a1, a2 − el + ei))

)
+

ψ − λ1 − λ2 −
∑
l∈Np

ajl = 1µl

Vn(X, a1, a2)

}]
. (C.5)

Next, we show that (C.5) provides an upper bound for Vn+1,β(X, a1, a2). To observe

this, consider an admissible (but not necessarily optimal) policy that idles the server

allocated to Class 1, and use the same allocation as u∗ for Class 2. This yields:

Vn+1,β(X + e1, a1, a2) ≥

1

ψ

[
θXT + β

{∑
j∈Ns

(
λ1T

u1jVn(X + e1, aj) + λ2T
u2jVn(X + e2, aj)

)
+
∑
i∈Np

∑
k∈Np

a1kµk
(
Vn(X, 0, a2)− Vn(X + e1, a1, a2)

)
+
∑
i∈Np

∑
l∈Np

a2l

(
pi2 + µlVn(X − ei, a1, a2 − el + ei)

)
+

ψ − λ1 − λ2 −
∑
l∈Np

ajlµl

Vn(X, a1, a2)

}]
. (C.6)

Since this policy is an admissible (but not necessarily optimal) policy, it provides an

upper bound for Vn+1,β(X, a1, a2), which completes the proof.

Proposition 2 (Non-idling) There exists an optimal policy which does not allow

idling any IW j when there is a patient of class j boarded in the ED.
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Proof of Proposition 2

Let π
′

be a policy that allows idling IW j when IW j is available, and the queue

of Class j patients is not empty. Construct another policy π∗ that follows the same

allocation strategy as π
′
, but assigns patients of class j to IW j whenever IW j is

available and the queue of Class j patients is not empty. We need to show that cost

of policy π∗ is higher than π∗. This requires us to show that the following property

holds for every n and every state:

V π∗

n,β(X − e2, a1, a2 = e2) ≤ V π
′

n,β(X, a1, 0), (C.7)

or

V π∗

n,β(X − e1, a1 = e1, a2) ≤ V π
′

n,β(X, 0, a2). (C.8)

WLOG assume that j = 1. Since for n = 0 we have V π∗

0,β(X̃)=V π
′

0,β(X̃)=0, V π∗

0,β(X −

e1, a1 = e1, a2) = V π
′

0,β(X, 0, a2) = 0 ∀X̃ ∈ S. Assume that, for some n ∈ Z+, property

(C.8) holds for all X̃ ∈ S, β ∈ [0, 1) and k ∈ Np. We now show that the same

condition holds for n+1. From (C.1) we have the following equations:

V π∗

n+1,β(X − e1, a1 = e1, a2) =

1

ψ

[
θ(X − e1)T + β

{∑
j∈Ns

(
λ1T

u1jV π∗

n (X, a1 = e1, a2)

+ λ2T
u2jV π∗

n (X − e1 + e2, a1 = e1, a2)
)

+ µ1V
π∗

n (X − 2e1, a1 = e1, a2)

+
∑
i∈Np

∑
l∈Np

a2l

(
pi2 + µlV

π∗

n (X − e1 − ei, a1 = e1, a2 − el + ei)
)

+

ψ − λ1 − λ2 − µ1 −
∑
l∈Np

a2lµl

V π∗

n (X − e1, a1 = e1, a2)

}]
, (C.9)
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V π
′

n+1,β(X, 0, a2) =
1

ψ

[
θXT + β

{∑
j∈Ns

(
λ1T

u1jV π
′

n (X, 0, a2)

+ λ2T
u2jV π

′

n (X + e2, 0, a2)
)

+
∑
i∈Np

∑
l∈Np

a2l

(
pi2 + µlV

π
′

n (X − ei, 0, a2 − el + ei)
)

+

ψ − λ1 − λ2 −
∑
l∈Np

a2lµl

V π
′

n (X, 0, a2)

}]
. (C.10)

Rewriting (C.9) by separating the actions related to Class 1 departure, and subtract-

ing the result from (C.10), we have:

V π
′

n+1,β(X, 0, a2)− V π∗

n+1,β(X − e1, a1 = e1, a2) =

1

ψ

[
θ1 + β

{
µl

(
V π
′

n (X1, X2 − 1, 0, a2)

−V π∗

n (X1 − 1, X2 − 1, a1 = e1, a2)
)

+ µ1

(
V π∗

n (X1 − 1, X2, a1 = e1, a2)− V π∗

n (X1 − 2, X2, a1 = e1, a2)
)

(C.11)

+

ψ − λ1 − λ2 −
∑
l∈Np

ajlµl

(V π
′

n (X1, X2, 0, a2)

−V π∗

n (X1 − 1, X2, a1 = e1, a2)
)}]

≥ 0 (C.12)

The inequality follows from the induction assumption as well as the monotonicity of

the value function, and shows that (C.8) holds for n+ 1.

Proof of Proposition 1

Consider a primary-secondary patient and IW pair say IW 1 and IW 2. WLOG

assume that µ1 ≥ µ2. We prove the claim for time/period T+1 assuming that it

holds for all t≤T. For T=0, the claim trivially holds. Consider the case that the

expended service time of all patient types are equal to 0 at time t=1. Suppose that
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there are patients of both classes waiting in the ED at t=1. Let π be an optimal

policy. Then, by the induction hypothesis, we assume that π follows the θµ rule from

t=2 on. Now suppose that π selects a patient of Class 2 at t=1. Since the service

discipline is non-preemptive, π may select a of patient Class 1 only after the service

completion of the patient of Class 2. Let π̄ be the policy that is identical to π except

that it interchanges the first time the Class 1 and Class 2 patients are served. The

rest of the decisions of π̄ are the same as those of π. From those defined above, when

pij = 0 ∀i ∈ Np, j ∈ Ns:

Jπ(X̃, T )− Jπ̄(X̃, T ) = θ1µ1 − θ2µ2. (C.13)

If θ1µ1 ≥ θ2µ2, the equation contradicts the assumption that π is an optimal policy.

Proof of Theorem 1

For the case where X1 > 0, the result is straightforward since assigning primary

type patients to IW 1 does not incur any penalty cost. From Proposition 1, we know

that under no penalty cost, it is optimal to follow the cµ priority policy. Hence, when

we include the penalty costs only assignment of Class 2 patients becomes more costly.

Therefore, it is optimal to assign Class 1 patients to IW 1 whenever they are boarded

in ED.

To prove the optimality of a threshold policy for IW 1 when X1 = 0, we need to

show that the difference Vn(0, X2− 1, a1 = e2, a2)−Vn(0, X2, a1 = 0, a2) is decreasing

in X2, so that assigning Class 2 patients to IW 1 becomes desirable at some level of

Class 2 queue length, in spite of the associated penalty cost. Notice that whenever
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X1 > 0, IW 1 serves Class 1 patients. Observe that

Vn(0, X2 − 1, a1 = e2, a2)− Vn(0, X2, a1 = 0, a2)

≥ Vn(0, X2, a1 = e2, a2)− Vn(0, X2 + 1, a1 = 0, a2). (C.14)

We can rewrite the system state by dropping a2, since our focus is on times when

there is no Class 1 patient boarded in the ED and IW 1 is available. Thus, we rewrite

the above inequality as:

Vn,β(X, 0)− Vn,β(X − e2, e2) ≤ Vn,β(X + e2, 0)− Vn,β(X, e2), (C.15)

which is the same structure that is introduced in Koole G (1995) 1 . Following the

proof in Koole G (1995), we define a set of functions F that satisfy:

f(X, 0) + f(X, e2) ≤ f(X + e2, 0) + f(X − e2, e2),

where f ∈ F for all X > 0. Now, we assume that Vn,β ∈ F , and show that Vn+1,β ∈ F

(note that trivially V0 ∈ F). Define minu∈U(X̃)(T
ui1Vn,β(X̃)) as Wn,β(X̃) and observe

that Wn,β ∈ F . Assume that the optimal action at state (X+e2, 0) is assigning Class

2 to IW 1. We have:

Wn,β(X, 0) +Wn,β(X, e2) ≤ Vn,β(X − e2, e2) + Vn,β(X, e2)

= Wn,β(X − e2, 0) +Wn,β(X + e2, e2),

since action of assigning Class 2 to IW 1 is suboptimal at state (X, e2). Now assume

that the optimal action at state (X + e2, 0) is keeping IW 1 idle. We have:

Wn,β(X, 0) +Wn,β(X, e2) ≤ Vn,β(X, 0) + Vn,β(X, e2)

≤ Vn,β(X + e2, 0) + Vn,β(X − e2, e2),

1Koole G (1995). A simple proof of the optimality of a threshold policy in a two-server queueing
system. Systems & Control Letters 26(5):301–303.
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since Vn ∈ F . Notice that since idleness is the optimal action at state(X + e2, 0), we

can rewrite the last part of the inequality as Wn(X + e2, 0) +Wn(X − e2, e2), which

in turn shows that Wn ∈ F . If we rewrite Vn+1 as:

Vn+1,β(X̃) =
1

ψ

[
θXT + λ1Wn,β(X + e1, a1) + λ2Wn,β(X + e2, a1) (C.16)

+
∑
k∈Np

∑
i∈Np

ak1µkWn,β(X, a1 − ek) + (ψ −
∑
i∈Np

λi −
∑
k∈Np

ak1µk)Vn,β(X̃)
]
,

we can conclude that Vn+1,β ∈ F from the induction assumption and the fact that

Wn,β ∈ F .

Proof of Lemma 1

We need to show that if J ∈ F then TJ ∈ F where TJ(Y ) = TθJ(Y ) +

β (TaJ(Y ) + T∗J(Y )). Note that Tθ and Ta trivially satisfy properties (4.14) and

(4.15). Thus, it is sufficient to show that operator T∗ preserves properties (4.14) and

(4.15). Assume J ∈ F , θ1µ1 ≥ θ2µ2 and µ2 ≥ µ1 hold. To show the preservation of

property (i), we need to examine all possible actions at states (Y ), (Y −e1), (Y −e2),

(Y + e1), and (Y + e1− e2) by using the induction assumption. Notice that there are

25 possible cases; however, properties (4.14) and (4.15) restrict several cases, which

leave us with the cases shown in Table C.1. This table also shows the patient class

that is assigned to IW 2. We next consider each of the case shown in Table C.1

separately.

Case 1 Note that the set of actions that are defined in Case 1 are feasible when

Y1 ≥ 2. Consider the state Y1 = 1, Y2 ≥ 1, and u22 = 1 as a feasible (not necessarily

optimal) action for state Y − e1. See Case 7 for the action where patient Class 2 is
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Table C.1: Possible Actions

Cases Y + e1 Y Y − e2 Y − e1 Y + e1 − e2

Case 1 1 1 1 1 1

Case 2 2 2 2 2 2

Case 3 1 2 1 2 1

Case 4 1 2 2 2 1

Case 5 2 2 2 2 1

Case 6 2 2 1 2 1

Case 7 1 1 1 2 1

assigned to IW 2 at state Y − e1. We have

[µ̃1∆1T∗J(Y )− µ̃2∆2T∗J(Y + e1 − e2)]− [µ̃1∆1T∗J(Y − e1)− µ̃2∆2T∗J(Y − e2)]

= (1− Λ− µ̃1) ([µ̃1∆1T∗J(Y )− µ̃2∆2T∗J(Y + e1 − e2)]

− [µ̃1∆1T∗J(Y − e1)− µ̃2∆2T∗J(Y − e2)])

+ µ̃1 [µ̃1∆1T∗J(Y − 2e1)− µ̃2∆2T∗J(Y − e1 − e2)] ≥ 0.

The inequality in the first line follows from nonnegativity of the term (1 − Λ − µ̃1)

and the induction assumptions. The second line follows from the optimality of cµ

rule when pij = 0.

Case 2 The proof of Case 2 can be established similar to that of Case 1 by replacing

µ̃1 by µ̃2. Again, similar to Case 1, assigning Class 2 patients to IW 2 is feasible when

Y2 ≥ 2. If the state is Y1 ≥ 1, Y2 = 1, the action of assigning Class 2 patients to IW 2

is not feasible for the states Y − e2 and Y + e1− e2. However, the action of assigning

Class 1 patients to IW 2 is a feasible (not necessarily optimal) at these states (see

Case 6 for case of assigning Class 1 patients at states Y − e2 and Y + e1 − e2).
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Case 3 Note that

µ̃1∆1T∗J(Y )−µ̃2∆2T∗J(Y + e1 − e2) =

(1− Λ) [µ̃1∆1J(Y )− µ̃2∆2J(Y + e1 − e2)]

− µ1 [µ̃1∆1J(Y )− µ̃2∆2J(Y + e1 − e2)− p12]

≥ (1− Λ) [µ̃1∆1J(Y )− µ̃2∆2J(Y + e1 − e2)]

− µ̃2 [µ̃1∆1J(Y )− µ̃2∆2J(Y + e1 − e2)− p12]

[µ̃1∆1T∗J(Y − e1)− µ̃2∆2T∗J(Y − e2)]

= (1− Λ) [µ̃1∆1J(Y − e1)− µ̃2∆2J(Y − e2)]

− µ̃2 [µ̃1∆1J(Y − e1)− µ̃2∆2J(Y − e2)− p12] .

Subtract the last term from the second term, we observe that

(1− Λ− µ̃2) [(µ̃1∆1J(Y )− µ̃2∆2J(Y + e1 − e2))

− (µ̃1∆1J(Y − e1)− µ̃2∆2J(Y − e2))] ≥ 0,

since J ∈ F and the fact that (1− Λ− µ̃2) is nonnegative.

Case 4 Assigning Class 2 patients to IW 2 is feasible when Y2 ≥ 2. If the state is

Y1 ≥ 1, Y2 = 1, the action of assigning Class 2 patients to IW 2 is not feasible for the

state Y −e2. However, the action of assigning Class 1 patients to IW 2 is feasible (not

necessarily optimal) at this state (see Case 3 for case of assigning Class 1 patients at
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state Y − e2). We have

µ̃1∆1T∗J(Y )− µ̃2∆2T∗J(Y + e1 − e2)

≤ (1− Λ− µ̃2) [µ̃1∆1J(Y )− µ̃2∆2J(Y + e1 − e2)]

+ µ̃1p12µ̃1∆1T∗J(Y − e1)− µ̃2∆2T∗J(Y − e2)

= (1− Λ− µ̃2) [µ1∆1J(Y − e1)− µ̃2∆2J(Y − e2)]

+ µ̃2 [µ̃1∆1J(Y − e1 − e2)− µ̃2∆2J(Y − 2e2)− p12]

= (1− Λ− µ̃2) [[µ̃1∆1J(Y )− µ̃2∆2J(Y + e1 − e2)]

− [µ̃1∆1J(Y − e1)− µ̃2∆2J(Y − e2)]] + p12µ̃1

≥ µ2 [µ̃1∆1J(Y − e1 − e2)− µ̃2∆2J(Y − 2e2)− p12] ,

where the inequality follows from J ∈ F , nonnegativity of term p12µ1, and optimality

of assigning patient Class 2 at state (Y − e2).

Case 5 Assigning Class 2 patients to IW 2 is feasible when Y2 ≥ 2. If the state is

Y1 ≥ 1, Y2 = 1, the action of assigning Class 2 patients to IW 2 is not feasible at state

Y − e2. However, the action of assigning Class 1 patients to IW 2 is a feasible (not

necessarily optimal) at this state (see Case 6 for case of assigning Class 1 patients for
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the state Y − e2). We have

µ̃1∆1T∗J(Y )− µ̃2∆2T∗J(Y + e1 − e2) =

(1− Λ− µ̃2) [µ̃1∆1J(Y )− µ̃2∆2J(Y + e1 − e2)]

+ µ̃2p12µ̃1∆1T∗J(Y − e1)− µ̃2∆2T∗J(Y − e2) =

(1− Λ− µ̃2) [µ̃1∆1J(Y − e1)− µ̃2∆2J(Y − e2)]

+ µ̃2(µ̃1∆1J(Y − e1 − e2)− µ̃2∆2J(Y − 2e2))

[µ̃1∆1T∗J(Y )− µ̃2∆2T∗J(Y + e1 − e2)]

− [µ̃1∆1T∗J(Y − e1)− µ̃2∆2T∗J(Y − e2)]

= (1− Λ− µ̃2) [[µ̃1∆1J(Y )− µ̃2∆2J(Y + e1 − e2)]

− [µ̃1∆1J(Y − e1)− µ̃2∆2J(Y − e2)]]

− µ̃2 [µ̃1∆1J(Y − e1 − e2)− µ̃2∆2J(Y − 2e2)− p12] ≥ 0,

where the last inequality follows from the optimality of assignment of patient Class

2 at state (Y − e2).

Case 6 In this case, we have

µ̃1∆1T∗J(Y )−µ̃2∆2T∗J(Y + e1 − e2) =

(1− Λ− µ̃2) [µ̃1∆1J(Y )− µ̃2∆2J(Y + e1 − e2)]

+ µ̃2p12µ̃1∆1T∗J(Y − e1)− µ̃2∆2T∗J(Y − e2)

= (1− Λ− µ̃2) [µ̃1∆1J(Y − e1)− µ̃2∆2J(Y − e2)]

+ µ̃2p12 [µ̃1∆1T∗J(Y )− µ̃2∆2T∗J(Y + e1 − e2)]

− [µ̃1∆1T∗J(Y − e1)− µ̃2∆2T∗J(Y − e2)]

= (1− Λ− µ̃2) [[µ̃1∆1J(Y )− µ̃2∆2J(Y + e1 − e2)]

− [µ̃1∆1T∗J(Y − e1)− µ̃2∆2T∗J(Y − e2)]] ≥ 0,
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since J ∈ F .

Case 7 In this case, we have

[µ̃1∆1T∗J(Y )− µ̃2∆2T∗J(Y + e1 − e2)]− [µ̃1∆1T∗J(Y − e1)

−µ̃2∆2T∗J(Y − e2)] = (1− Λ− µ̃1) [[µ̃1∆1J(Y )− µ̃2∆2J(Y + e1 − e2)]

− [µ̃1∆1T∗J(Y − e1)− µ̃2∆2T∗J(Y − e2)]] + µ̃1 [µ̃1∆1J(Y − e1)

−µ̃2∆2J(Y − e2)− p12] ≥ 0,

where the inequality follows from J ∈ F and optimality of assigning the IW to Class

1 at state (Y ).

To show the preservation of the second property, we need to consider all possible

actions at the states (Y ), (Y −e1), (Y +e2). Again properties (4.14) and (4.15) restrict

several cases, which leave us with the cases presented in Table C.2:

Table C.2: Possible Actions

Cases Y + e2 Y Y − e1 Y − e1 + e2 Y − e2

Case 1 1 1 1 1 1

Case 2 2 2 2 2 2

Case 3 1 1 1 2 1

Case 4 1 1 2 2 1

Case 5 2 1 1 2 1

Case 6 2 1 2 2 1

Case 7 2 2 2 2 1

Case 1

Assigning Class 1 patients to IW 2 is feasible when Y1 ≥ 2. If the state is Y1=1, Y2 ≥ 1,
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the action of assigning Class 1 patients to IW 2 is not feasible at states Y − e1 and

Y −e1 +e2. However, the action of assigning Class 2 patients to IW 2 is a feasible (not

necessarily optimal) at these states (see Case 4 for case of assigning Class 2 patients

for the states Y − e1 and Y − e1 + e2). We have

[µ̃1∆1T∗J(Y − e1)− µ̃2∆2T∗J(Y − e2)]− [µ̃1∆1T∗J(Y − e1 + e2)

−µ̃2∆2T∗J(Y )] = (1− Λ− µ̃1) [(µ̃1∆1J(Y − e1)− µ̃2∆2J(Y − e2))

− (µ̃1∆1J(Y − e1 + e2)− µ̃2∆2J(Y ))]

+ µ̃1 [(µ̃1∆1J(Y − 2e2)− µ̃2∆2J(Y − e1 − e2))

− (µ̃1∆1J(Y − 2e1 + e2)− µ̃2∆2J(Y − e1))] ≥ 0.

The inequality follows from nonnegativity of the term (1−Λ− µ̃1) and the fact that

J ∈ F .

Case 2

The proof of Case 2 can be shown similar to that of Case 1 by replacing µ̃1 by

µ̃2, and by assigning Class 2 to the IW. Similar to Case 1, assigning Class 2

patients to IW 2 is feasible when Y2 ≥ 2. If the state is Y1 ≥ 1, Y2 = 1, the action

of assigning Class 2 patients to IW 2 is not feasible at state Y − e2. However,

the action of assigning Class 1 patients to IW 2 is feasible (not necessarily opti-

mal) at this state (see Case 7 for case of assigning Class 1 patients for the state Y −e2).

Case 3

Assigning Class 1 patients to IW 2 is feasible when Y1 ≥ 2. If the state is Y1=1, Y2 ≥ 1,

the action of assigning Class 1 patients to IW 2 is not feasible at state Y −e1. However,

the action of assigning Class 2 patients to IW 2 is feasible (not necessarily optimal)

in this state (see Case 4 for case of assigning Class 2 patients for the state Y − e1).
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We have

[µ̃1∆1T∗J(Y − e1)− µ̃2∆2T∗J(Y − e2)]− [µ̃1∆1T∗J(Y − e1 + e2)

−µ̃2∆2T∗J(Y )] ≥ (1− Λ− µ̃1) [(µ̃1∆1J(Y − e1)− µ̃2∆2J(Y − e2))

− (µ̃1∆1J(Y − e1 + e2)− µ̃2∆2J(Y ))]

+ µ̃1 [µ̃1∆1J(Y − 2e2)− µ̃2∆2J(Y − e1 − e2)− p12] ≥ 0,

where he inequality follows from the fact that J ∈ F and the optimality of assigning

Class 1 at state (Y − e1).

Case 4

We have

[µ1∆1T∗J(Y − e1)− µ2∆2T∗J(Y − e2)]− [µ1∆1T∗J(Y − e1 + e2)

−µ2∆2T∗J(Y )] ≥ (ψ̄ − Λ− µ1) [(µ1∆1J(Y − e1)− µ2∆2J(Y − e2))

− (µ1∆1J(Y − e1 + e2)− µ2∆2J(Y ))] ≥ 0.

The inequality follows nonnegativity of the term (1−Λ− µ̃1) and the fact that J ∈ F .

Case 5

Assigning Class 1 patients to IW 2 is feasible when Y1 ≥ 2. If the state is Y1=1, Y2 ≥ 1,

the action of assigning Class 1 patients to IW 2 is not feasible at state Y −e1. However,

the action of assigning Class 2 patients to IW 2 is feasible (not necessarily optimal)

at this state (see Case 6 for case of assigning Class 2 patients for the state Y − e1).

We have

[µ̃1∆1T∗J(Y − e1)− µ̃2∆2T∗J(Y − e2)]− [µ̃1∆1T∗J(Y − e1 + e2)

−µ̃2∆2T∗J(Y )] ≥ (1− Λ) [(µ̃1∆1J(Y − e1)− µ̃2∆2J(Y − e2))

− (µ̃1∆1J(Y − e1 + e2)− µ̃2∆2J(Y ))]

− µ̃2 [µ̃1∆1J(Y − e1 + e2)− µ̃2∆2J(Y )− p12] ≥ 0,
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where he inequality follows from the fact that J ∈ F and from the optimality of

assigning the IW to Class 2 at state (Y + e2).

Case 6

We have

[µ̃1∆1T∗J(Y − e1)− µ̃2∆2T∗J(Y − e2)]− [µ̃1∆1T∗J(Y − e1 + e2)

−µ̃2∆2T∗J(Y )] ≥ (1− Λ− µ̃2) [(µ̃1∆1J(Y − e1)− µ̃2∆2J(Y − e2))

− (µ̃1∆1J(Y − e1 + e2)− µ̃2∆2J(Y ))] ≥ 0,

where the inequality follows from nonnegativity of the term (1 − Λ − µ̃2) and the

fact that J ∈ F .

Case 7

We have:

[µ̃1∆1T∗J(Y − e1)− µ̃2∆2T∗J(Y − e2)]− [µ̃1∆1T∗J(Y − e1 + e2)

−µ̃2∆2T∗J(Y )] = (1− Λ− µ̃2) [(µ̃1∆1J(Y − e1)− µ̃2∆2J(Y − e2))

− (µ̃1∆1J(Y − e1 + e2)− µ̃2∆2J(Y ))]

− µ̃2 [µ̃1∆1J(Y − e1)− µ̃2∆1J(Y − e2)− p12] ≥ 0,

where the inequality follows from the fact that J ∈ F and from the optimality of

assigning the IW to Class 2 at state (Y ).

Additionally, we can gain further insights by using Lemma 1. The results above show

that the threshold level depends on the model parameters, since the threshold can

be defined as min{Y1 : [µ̃1∆1T∗J(Y − e1)− µ̃2∆2T∗J(Y − e2)] ≥ p12}. Using this, we

can identify how the threshold level changes as the model parameters change. From

Lemma 1, we observe that the difference [µ̃1∆1T∗J(Y − e1)− µ̃2∆2T∗J(Y − e2)] is

nondecreasing in the number of Class 1 patients in the queue. Also, consider p̂12
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where p̂12 ≥ p12. We can conclude that the threshold level increases as p12 increases,

since

min{Y1 : [µ̃1∆1T∗J(Y − e1)− µ̃2∆2T∗J(Y − e2)] ≥ p̂12} ≥

min{Y1 : [µ̃1∆1T∗J(Y − e1)− µ̃2∆2T∗J(Y − e2)] ≥ p12}.

Similar to the above results, the threshold level also depends the service rates µ1 and

µ2. It can be observed that the difference [µ1∆1T∗J(Y − e1)− µ2∆2T∗J(Y − e2)]

is nondecreasing in µ1 (nonincreasing in µ2), which means that the threshold level

increases (decrease) as these parameter increase. Proof of Theorem 2 directly follows

from Lemma 1.

Computational Results

To gain insights into the structure of the optimal policy, we first generate a set

of test cases. Table C.3 presents these cases. For each case, we solve our MDP

numerically using a convergence criteria of 10−4, and truncate the queue lengths at

X1 = X2 = 70. To avoid the “boundary effects,” i.e., when the number in each queue

gets close to the boundary of the state space under consideration, we only present

the optimal policy for states in which the number in queues are no more than 30.

Table C.3: Numerical Test Cases

Cases λ1 λ2 µ1 µ2 θ1 θ2 p1 p2

1 1 1 2 1 1 1 1 1

2 1 1 2 1 1 1 1000 1000

3 1 1 2 1 1000 1000 1 1

4 1 1 2 1 1 1 10 1

5 1 1 2 1 1 1 1 10
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In the Figures C.1-C.5 green (dark gray) color represents serving Class 1 patients,

yellow (light gray) color represent serving Class 2 patients, and dark blue (black)

represents idling the server. In Case 1, the effect of differences in the service rates is

analyzed (Figure C.1). In Case 2, the effect of high penalty costs, and in Case 3, the

effect of high holding costs is analyzed. In cases 4 and 5 (Figures C.4-C.5), the effect

of the penalty cost on the optimal policy structure is analyzed. Our MDP-based

 

IW1         IW2 

Figure C.1: Case 1

numerical results show that when θ1µ1 ≥ θ2µ2, the structure of the optimal control

policy is a state-dependent threshold-type policy, where IW 1 serves Class 1 when

X1 > 0, and IW 2 performs as a dedicated server, and switches to the cµ rule after

the threshold. When pij � θi (∀i ∈ Np, j ∈ Ns) (see, e.g., Case 2), both of the

 IW1         IW2 

Figure C.2: Case 2

units start to work as dedicated units. Moreover, when their primary queue is empty,

they idle, even if there is a patient in the non-primary queue waiting for assignment.

Under θi � pij (∀i ∈ Np, j ∈ Ns) (see, e.g., Case 3) the well-known cµ rule becomes

the optimal policy. This policy gives strict priority to Class 1 patients whenever there
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 IW1         IW2 

Figure C.3: Case 3

is a Class 1 patient waiting in the ED. We also observe that, when p12 increases, (a)

 

IW 1 IW 2 

Figure C.4: Case 4

 
IW 1 IW 2 

Figure C.5: Case 5

IW 2 delays serving Class 1 patients, (b) the threshold level increases, and (c) IW 1

still serves as a dedicated unit when X1 > 0, and switches to serves Class 2 patients

when X1 = 0. When p21 increases IW 1 serves Class 2 patients when X1 = 0 and

X2 > T2, where T2 is some threshold level on number of Class 2 patients boarded in

the ED. In addition, as the threshold on Class 2 patients increase, we observe that

the threshold for Class 1 patients in IW 2 increases.

218



C.3 Birth-and-Death Processes

In this appendix we present the illustrations of the birth-and-death processes used

to construct the BDT heuristic policy discussed in the main body.

0 T1 T+1

λ1 λ1 λ1 λ1 λ1

µ1 µ1 µ1
2µ1 2µ1

Figure C.6: Birth-and-Death Process Approximation for Class 1 Patients

0 i1 i+1

λ2 λ2 λ2 λ2 λ2

P2(T)µ2 P2(T)µ2 P2(T)µ2 P2(T)µ2 P2(T)µ2

Figure C.7: Birth-and-Death Process Approximation for Class 2 Patients

C.4 Numerical Cases

We generate 216 problem instances. These problem instances cover various cost

and arrival rate combinations. Tables C.4-C.6 provide a summary of the related

information. More details are available upon request.

C.5 Data Analyses

In Tables C.7-C.8, we present a summary of some of the main results from our

data analyses. More details are available upon request.
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Table C.4: ROAE Cost (Per Time Unit)

Combinations

θ1 θ2

1 1

2 1

1 2

Table C.5: Penalty Cost Combinations

p12 p21

0 0

1 1

10 10

100 100

Table C.6: Arrival Rate Combinations in the Test Suite

λ1/µ1 λ2 µ2

0.1-0.9 0.4 1

0.1-0.9 0.8 1

Table C.7: p-values for Comparison of Service Times for Primary and Secondary IWs

Patient Type p-value

Type 1-CP 0.750

Type 2-CP 0.216

Type 1-CHF 0.601

Type 2-CHF 0.218

Table C.8: Average Service Time (in Days)

IW ED admits Direct admits OR admits

4 West 3.57 7.41 4.05

5 West 3.60 4.38 2.93
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C.6 Simulation Model

C.6.1 Cost Cases for Simulation

In our simulation model, we assume that the cost associated with the risk of

adverse events that may occur while a patient is boarded in the ED is the same for

both patient classes (patients requiring a bed from 4 West or 5 West). The reason

behind this assumption is the similarity between the ESI distribution among 4 West

and 5 West ED admit patients. Our data analyses show that 30% of ED patients

that require a bed from 4 West are ESI 2 patients, and 69% of them are ESI 3

patients, while these proportions for 5 West patients are 28% and 70%, respectively.

Since patients with similar severity are subject to similar levels of adverse events, we

assume that the cost associated with the risk of adverse events are the same for 4

West and 5 West patients admitted through the ED.

Table C.9: ROAE Cost (per Hour) Cases

Cases θ

Case 1 1

Case 2 5

Case 3 10

Table C.10: Penalty Cost Parameters

Cases Type1 Type2

Case 1 1 0.5

Case 2 5 2.5

Case 3 10 5

C.7 An Extended Simulation Model

In the simulation model that is described in Section 4.6, we use the data that is

obtained from our partner hospital. Due to limitations in data, we cannot have the

exact patient flow that is described in Figure 4.3, and instead model the patient flow

as described in Figure 4.6. In this section, we generate a simulation model that does

not use the exact hospital data we have collected but models the patient flow that is
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described in Figure 4.3 with additional characteristics that is obtained from the data

analyses. Additionally, we model 5 p.m. discharge rounds to include a well-known

concept used in some hospitals.

In the extended model, we model 8 IWs and 8 patient classes, and model the

patient flow as it is described in Figure 4.3. Since we do not have exact data on

the primary-secondary unit pairs, we randomly group the IWs as 2W-3W, 3E-7E,

4W-5W (which is the case for CP and CHF patients), and 4E-7W. Notice that IW 2

West is the ICU which is not an eligible unit for accepting patients from other IWs

or assigning its primary patient to other IWs. Therefore, we drop 2W-3E pair from

our analyses to fairly compare alternative policies with LEWC-p, and continue the

simulation model with 6 IWs (3 primary-secondary pairs). As it is depicted in Figure

4.3, patients can only be assigned to their primary or secondary IW and there is no

patient flow between different pairs. We include 5 p.m. discharge rounds by assuming

that the patients who have discharge times earlier during the same day have to wait

until 5 p.m. to leave the hospital.

We compare the performance of the proposed LEWC-p policy with alternative

flow policies such as dedicated service policy, cµ, and overflow trigger times. The

results of the simulation model are shown in Table C.11, where we report the results

for each policy as the proportion of that under LEWC-p (i.e., performance measure

of the policy divided by the performance measure of LEWC-p) based on various cost

combinations. LEWC-p policy reflects the trade-off between ROAE and quality of

care: it is not as conservative as the dedicated policy in secondary IW assignments,

and yet not as aggressive as cµ in making use of such assignments. When the cost

associated to ROAE is relatively high compared to the cost of overflows, we observe

that LEWC-p performs closer to cµ. Another policy that we simulate is the overflow

trigger times. Under this policy, patients can be overflowed to a secondary IW only
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Table C.11: Performance Measures as a Proportion of Those Under LEWC-p

Cost Performance

Measure

Dedicated cµ Ovrflw.

Trig.(2hr)

Ovrflw.

Trig.(4hr)

L. θ-H. p

Avg. no. of pa-

tients boarded

1.03 0.62 0.80 0.99

Overflow prop. 0.00 2.07 1.71 1.02

Avg. boarding

time

1.17 0.59 0.86 0.99

2-hour boarding

rate

1.10 0.76 0.91 1.01

M.θ-M.p

Avg. no. of pa-

tients boarded

2.65 0.78 1.20 1.35

Overflow prop. 0.00 1.81 0.97 0.73

Avg. boarding

time

1.81 0.79 1.14 1.26

2-hour boarding

rate

1.29 0.60 1.02 1.13

H. θ-L. p

Avg. no. of pa-

tients boarded

5.14 0.98 2.08 2.63

Overflow prop. 0.00 1.03 0.82 0.68

Avg. boarding

time

3.21 0.99 1.23 1.39

2-hour boarding

rate

2.75 1.01 1.17 1.28
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when they wait longer than a predetermined value. This policy prevents excessive

boarding times, but is insensitive to system state since it is a static policy. The nature

of our system requires dynamic decisions such as LEWC-p instead of static ones.
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