
Smart Resource Allocation in Internet-of-Things:

Perspectives of Network, Security, and Economics

by

Ruozhou Yu

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved June 2019 by the
Graduate Supervisory Committee:

Guoliang Xue, Chair
Dijiang Huang
Arunabha Sen
Yanchao Zhang

ARIZONA STATE UNIVERSITY

August 2019

ABSTRACT

Emerging from years of research and development, the Internet-of-Things (IoT)

has finally paved its way into our daily lives. From smart home to Industry 4.0, IoT

has been fundamentally transforming numerous domains with its unique superpower

of interconnecting world-wide devices. However, the capability of IoT is largely

constrained by the limited resources it can employ in various application scenarios,

including computing power, network resource, dedicated hardware, etc. The situation is

further exacerbated by the stringent quality-of-service (QoS) requirements of many IoT

applications, such as delay, bandwidth, security, reliability, and more. This mismatch

in resources and demands has greatly hindered the deployment and utilization of IoT

services in many resource-intense and QoS-sensitive scenarios like autonomous driving

and virtual reality.

I believe that the resource issue in IoT will persist in the near future due to

technological, economic and environmental factors. In this dissertation, I seek to

address this issue by means of smart resource allocation. I propose mathematical

models to formally describe various resource constraints and application scenarios in

IoT. Based on these, I design smart resource allocation algorithms and protocols to

maximize the system performance in face of resource restrictions. Different aspects

are tackled, including networking, security, and economics of the entire IoT ecosystem.

For different problems, different algorithmic solutions are devised, including optimal

algorithms, provable approximation algorithms, and distributed protocols. The so-

lutions are validated with rigorous theoretical analysis and/or extensive simulation

experiments.

i

Dedicated to my wife Rui Sun and my family

ii

ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my Ph.D. advisor, Dr.

Guoliang Xue, for his continuous support and guidance throughout my study at

Arizona State University, for his knowledge, patience, enthusiasm, and probity that

have deeply affected me, and most importantly, for his standing care and friendship

during my hard times. Having him as my advisor is one of the most fortunate things

in my life. This dissertation would not have been possible without the academic

guidance and freedom he has given me over the last six years.

My Ph.D. study has been supported by NSF grants 1461886, 1704092, and 1717197.

I would like to thank my dissertation committee members, Dr. Dijiang Huang,

Dr. Arunabha Sen, and Dr. Yanchao Zhang, for their advices and comments. I am

honored to have worked with an incredible group of co-authors and collaborators. I

am specially thankful to Dr. Jun Huang and Dr. Dan Li, who led me onto the path

of academic research. I want to thank my academic siblings, Jian Tang, Satyajayant

Misra, Xi Fang, Dejun Yang, Lingjun Li, Xinxin Zhao, and Xiang Zhang, for their

precious advices and support for my study, career and life. I am also very grateful

to my colleagues and friends: Jian Cai, Xinhui Hu, Yiming Jing, Vishnu Teja Kilari,

Bing Li, Liangyue Li, Yashu Liu, Jianqing Liu, Qiang Liu, Yaozhong Song, Yinxin

Wan, Siqi Wei, Haiqin Wu, Haitao Xu, Rui Zhang, Ziming Zhao, and Zhuoyang Zhou.

Their friendship and care are what have helped me survive over the years.

Finally and most importantly, none of my achievements would have been possible

without the love and patience from my wife and my family. My most sincere thanks

go to my wife Rui Sun, for her endless support and caring over the years. She is the

reason, the why, for which I have strived hard in the past and will keep on striving

iii

in the future. I am very thankful to my parents, Bing Yu and Lianna Xie, for their

unconditional and forbearing love and support throughout my life.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . xii

LIST OF FIGURES . xiii

CHAPTER

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Overview . 3

1.3 Summarized Contributions . 5

1.3.1 Part I: Network Resource Allocation in IoT 5

1.3.2 Part II: Robust Security Deployment in IoT 8

1.3.3 Part III: Micropayment Routing in Blockchain-based PCN. . 9

I NETWORK RESOURCE ALLOCATION IN IOT

2 QOS-AWARE AND RELIABLE TRAFFIC STEERING FOR SERVICE

FUNCTION CHAINING IN MOBILE NETWORKS 13

2.1 Introduction . 13

2.2 Background and Related Work . 16

2.2.1 NFV and SFC. 16

2.2.2 Software-defined Mobile Networks . 17

2.3 System Model . 18

2.3.1 Network Topology . 18

2.3.2 Service Functions . 19

2.3.3 Traffic Model . 20

2.3.4 Feasible Routing Graph . 21

2.3.5 Reliability . 23

v

CHAPTER Page

2.4 Problem Statement . 24

2.4.1 Problem Description and Formulation . 24

2.4.2 Computational Complexity . 25

2.4.3 Optimization Formulation . 25

2.5 Fully Polynomial-Time Approximation Scheme 27

2.5.1 Dual Analysis . 28

2.5.2 Primal-Dual Algorithm . 30

2.5.3 Approximating Shortest Feasible Paths . 32

2.5.4 Algorithm Analysis . 32

2.5.5 Feasibility and Demand Scaling . 35

2.5.6 Extension to Multiple QoS Requirements 38

2.6 Performance Evaluation . 38

2.6.1 Experiment Settings . 38

2.6.2 Evaluation Results . 40

2.6.2.1 Comparison with theoretical upper bound 40

2.6.2.2 Comparison with baseline heuristics 41

2.7 Conclusions . 44

3 PROVISIONING QOS-AWARE AND ROBUST APPLICATIONS IN

INTERNET-OF-THINGS: A NETWORK PERSPECTIVE 46

3.1 Introduction . 46

3.2 Background and Related Work . 49

3.2.1 Internet-of-Things and Fog Computing . 49

3.2.2 Network Service Provisioning . 50

3.2.3 Robustness Applications and Networks . 51

vi

CHAPTER Page

3.3 System Model . 52

3.3.1 Infrastructure Model . 52

3.3.2 Application Model . 52

3.3.3 Basic Provisioning Model . 53

3.3.4 Robustness Model . 55

3.3.5 Notations . 57

3.4 Problem Statement and Complexity . 58

3.5 Single-Application Provisioning . 60

3.6 Multi-Application Provisioning . 61

3.6.1 Problem Formulation for PO-MAP . 62

3.6.2 An FPTAS to PO-MAP . 64

3.6.3 NO-MAP Formulation and Randomized Algorithm. 73

3.7 Performance Evaluation . 76

3.7.1 Experiment Settings . 76

3.7.2 Evaluation Results . 78

3.7.2.1 Single-Application Scenario . 78

3.7.2.2 Multi-Application Scenario . 83

3.8 Conclusions . 87

4 LOAD BALANCING FOR INTERDEPENDENT IOT MICROSER-

VICES . 88

4.1 Introduction . 88

4.2 Background and Related Work . 91

4.2.1 Microservices and Application Graph Models 91

4.2.2 Application-level Load Balancing . 93

vii

CHAPTER Page

4.3 System Model and Basic Formulation . 94

4.3.1 Application Model . 94

4.3.2 Infrastructure Model . 95

4.3.3 Basic Load Balancing Model . 96

4.4 QoS-aware Load Balancing . 98

4.5 Approximation Scheme Design . 103

4.5.1 Pseudo-Polynomial Time Optimal Algorithm 104

4.5.2 Approximation Scheme for O-QLB. 106

4.5.3 Efficiency Enhancement . 110

4.6 Performance Evaluation . 112

4.7 Conclusions . 116

4.8 Appendix . 116

II ROBUST SECURITY DEPLOYMENT IN IOT

5 DEPLOYING ROBUST SECURITY IN INTERNET OF THINGS 120

5.1 Introduction . 120

5.2 Backbround and Related Work . 123

5.2.1 IoT Security Challenges and Approaches 123

5.2.2 Risk Management in Network Security . 125

5.2.3 Other Related Areas . 126

5.3 Problem Description and Formulation . 127

5.3.1 System Model . 127

5.3.2 Threat Model and Defense Mechanism . 128

5.3.3 Measuring Security Risk with Uncertainty 130

5.4 Security Deployment with Uncertainty . 132

viii

CHAPTER Page

5.4.1 Problem Description and Formulation . 132

5.4.2 Scenario-based Stochastic Optimization 134

5.4.3 Two-stage Optimization with Benders’ Decomposition 136

5.4.4 Speeding-up Per-iteration Optimization 139

5.5 Performance Evaluation . 140

5.5.1 CVaR vs. Expectation . 140

5.5.2 Optimality and Efficiency . 143

5.5.3 Comparison with Fast Baseline Heuristics 145

5.6 Discussions and Future Work . 147

5.7 Conclusions . 147

5.8 Appendix . 148

III MICROPAYMENT ROUTING IN BLOCKCHAIN-BASED PCN

6 COINEXPRESS: A FAST PAYMENT ROUTING MECHANISM IN

BLOCKCHAIN-BASED PAYMENT CHANNEL NETWORKS 151

6.1 Introduction . 151

6.2 Background and Overview . 154

6.2.1 System Overview . 154

6.2.2 Challenges in Routing Design . 158

6.2.3 Design Goals . 159

6.3 System Model . 161

6.3.1 Network Model . 161

6.3.2 Payment Model . 163

6.4 Dynamic Routing Design . 164

6.4.1 Network Flow Preliminaries . 165

ix

CHAPTER Page

6.4.2 Dynamic Routing Design . 166

6.4.3 Discussions . 171

6.5 Performance Evaluation . 172

6.5.1 Experiment Settings . 172

6.5.2 Comparison Algorithms . 173

6.5.3 Performance Metrics . 174

6.5.4 Evaluation Results . 175

6.5.4.1 Goodput . 176

6.5.4.2 Timeliness and Efficiency. 178

6.6 Related Work . 179

6.6.1 Blockchain Scalability . 179

6.6.2 PCN and Routing . 181

6.7 Conclusions . 182

7 P4PCN: PRIVACY-PRESERVING PATH PROBING FOR PAYMENT

CHANNEL NETWORKS . 183

7.1 Introduction . 183

7.2 System Model and Security Goals . 187

7.2.1 System Model . 187

7.2.2 Threat Model . 188

7.2.3 Security Goals . 189

7.3 Protocol Design . 190

7.3.1 Preliminaries . 190

7.3.2 Universal Re-encryption (URE). 191

7.3.3 Anonymous Probing with Unknown Paths 192

x

CHAPTER Page

7.3.3.1 Probing with a Single Path . 192

7.3.3.2 Probing with Multiple Next Hops 195

7.3.3.3 Length-based Inference Attacks and Padding 196

7.4 Security Analysis . 196

7.4.1 Correctness . 196

7.4.2 Data Integrity and Confidentiality . 197

7.4.3 Sender, Recipient, and Sender-Recipient Privacy 197

7.5 Performance Evaluation . 198

7.5.1 Modified Hybrid Universal Mixing [43] . 198

7.5.2 Analytical Comparison . 200

7.5.3 Simulation Experiments . 200

7.6 Discussions . 202

7.7 Conclusions . 203

8 CONCLUSIONS . 204

REFERENCES . 207

xi

LIST OF TABLES

Table Page

3.1 Implemented Algorithms . 77

5.1 Probability Distribution of Demands . 142

7.1 Overhead Comparison for One Probe. Computation Is Displayed as

(mod_exp,mod_inv), Denoting the Numbers of Modular Exponentiation

and Modular Inverse Operations Respectively; Communication Overhead

Is Measured by the Length of the Probe Header excluding Data Payloads

and MACs but Including the Path Information (Public Keys of Each Hop). 200

xii

LIST OF FIGURES

Figure Page

2.1 A TC’s Service Function Chain and Routing Graph. 22

2.2 Comparison with Upper Bound, with Varying Accuracy. 40

2.3 Traffic Scaling Ratio with Varying Delay Bounds, Reliability Requirements,

Number of Nodes, and Connectivity Parameters. 41

2.4 Running Time with Varying Delay Bounds, Reliability Requirements,

Number of Nodes, and Connectivity Parameters. 42

3.1 Single Application: Objective Value against Accuracy Parameter ω. 79

3.2 Single Application: Running Time vs. Accuracy Parameter ω. 80

3.3 Single Application: Objective Value vs. Robustness Parameter (Maximum

Tolerable Loss Ratio). 81

3.4 Single Application: Running Time vs. Robustness Parameter (Maximum

Tolerable Loss Ratio). 81

3.5 Multi-Application: Objective Value vs. Number of Nodes, Connectivity

(α, β), Bandwidth Demand, and Accuracy (ω). 84

3.6 Multi-Application: Running Time vs. Number of Nodes, Connectivity

(α, β), Bandwidth Demand, and Accuracy (ω). 85

3.7 Multi-Application: HD and DR with Varying Delay. 86

4.1 Graph Representation of a Smart Home Application. 89

4.2 App-Graph (a), Inf-Graph (b) and a Real-Graph (c) of an Example Appli-

cation with Load Bound Ψ = 1. Bold Links in (b) Show a Feasible Load

Balancing Solution with Max Delay of 13, Which Is Further Shown in (c)

as a Single Decomposed Real-Graph.. 99

4.3 Running Time vs. App-Graph Size . 113

xiii

Figure Page

4.4 Objective Value vs. App-Graph Size . 115

4.5 App-Graph Values Are Distribution Ratios. Delays of m1
i Nodes Are Shown

beside Them. Double Lined Nodes and All Links Have 0 Delay. All ni

Nodes Have Capacity of 2. All mj
i Nodes Have Capacity of 1. Ψ = 1.

D = (1/2)
∑κ

i=1 axi . 117

5.1 Simulation on Designated Topology. 141

5.2 Simulation Results with Varying Number of Fog Nodes over Total Nodes.

ITER (Optimal Algorithm) Exceeds the Time Limit (1800 s) When the Fog

Node Ratio Is 0.7, and Hence Is Terminated before Finishing All Iterations.144

5.3 CVaR of Risk on Synthesized Dartmouth Data. 146

6.1 PCN Overview and Hashed TimeLock Contract (HTLC) 155

6.2 Goodput (Higher the Better): Acceptance Ratio and Average Accepted

Value against Number of Nodes. 175

6.3 Timeliness and Efficiency (Lower the Better): Average Payment Delay,

Routing Time, Number of Messages, and Number of Paths. In (a), Dotted

Line DL Shows the Uniform 5-Minute Deadline for All Payment Requests. . 177

7.1 Probe Creation (Sender), Processing (Intermediate Node) and Decryption

(Recipient) Execution Times per Probe. 201

7.2 Probe Size vs. # Hops. 202

xiv

Chapter 1

INTRODUCTION

1.1 Motivation

Coming into the 50-th year after its birth1, the Internet has become just an

indispensable part of most of our lives. We rely on it for work, for leisure, and

for social activities; for making knowledge accessible to all, for building critical

infrastructures that support our lives, and even for global capitalism, freedom of

speech and digital democracy. The Internet is enabling fundamental transformations

deep within economics, science and education, communications, politics, arts, and

humanity. There has never been another invention that has such a direct yet profound

impact on all aspects of human lives.

For long, the Internet has been providing us with an abundant world of digital

services via our computing devices like servers, PCs, laptops, and mobile phones.

However, it is now prevailingly recognized that the boundary of the Internet will

not be constrained by only the computing devices. With the help of advanced and

low-power communication technologies, physical objects with little to no computing

capabilities are now remotely accessible and controllable via the Internet, comprising

what we call the Internet-of-Things (IoT). Through the interconnection of “things”, an

incredible number of amazing new applications are coming into our lives, such as smart

home, smart city, smart healthcare, smart industry, and many more. This technology

(IoT) will have an enormous impact on our society. As a piece of preliminary evidence,

1Counted from the first successful experiment of the ARPANET in Dec. 1969.

1

the annual global IoT market has reached over $700 billion in 2018, and will soon

surpass the one trillion mark in a few years (if not have already been so) [55]. But

this is just the beginning. In the end, IoT will be the key technology that enables the

merging of our digital and physical worlds.

While the big picture is bright and shining, if we take a closer look at this technology,

IoT is still in its infancy. Like when any new technology emerges, IoT is facing many

issues, challenges and concerns. These, especially the technical ones, are greatly

hindering the deployability, applicability and acceptance of this technology. Without

enumerating all the pros and cons of IoT, however, this dissertation is focused on one

of the most critical issues present: the resource issue. The core conflict here is between

the limited resources, in terms of computing, network, storage, power supply, etc.,

and the higher and higher resource demands of IoT-based applications. On one hand,

capacity of the IoT is limited by various practical factors, including technology, cost,

environmental concerns, regulations, etc. On the other hand, the fast growing IoT

applications have more and more stringent and heterogeneous resource requirements

in order to satisfy their performance goals, especially in terms of the quality-of-service

(QoS) received by their end-users. A representative example of such an application is

data analytics and utilization based on machine learning, The excessive computing

resources required by advanced machine learning algorithms have basically prevented

those from being used directly on commodity IoT devices. End-users are left with the

options of either utilizing cloud-based services provided by tech giants, which leads

to cost, reliability, security and privacy issues, or resorting to far less powerful local

algorithms that sacrifice accuracy and performance.

While in the long run, resolving such an issue relies on continuous investment into

infrastructure enhancement in IoT, such a solution will not fully resolve the issue in the

2

near future. In this dissertation, let us take a different and more practical approach.

By abstracting IoT systems using mathematical models, we enable the design of

different smart resource allocation algorithms that apply in various IoT scenarios.

Such algorithms aim to enhance system performance by improving resource utilization

in the IoT, while considering various constraints posed by both the infrastructure and

the applications.

1.2 Overview

In this dissertation, we investigate the resource issue in IoT along three basic

dimensions: network, security, and economics. We start from the most fundamental

problem: network resource allocation in IoT. Here, we concern the sharing of network

resource, notably bandwidth, among different competing entities. This includes

bandwidth allocation both among multiple data traffic flows, as well as among multiple

high-level applications each with a number of flows. However, network resource

allocation is more than pure bandwidth allocation, due to other requirements of the

applications. A typical one is the sensitivity of network delay, which is very common

in real-time IoT applications such as autonomous driving and virtual/augmented

reality. Another one is the reliability of the transmission, measured by the capability

of successful transmission in face of failures in the network. A third one is the

policy requirement, where data traffic must be pre-processed by one or multiple

intermediate processing services before reaching the application and/or the end-users,

which corresponds to security checks in security-sensitive applications or data pre-

processing in big data analytics. Further, the allocation of network bandwidth is

sometimes subject to the flexible deployment of the applications themselves. We

3

consider these requirements, and devise efficient optimization algorithms for different

concrete problems that fall into this category.

We next investigate the deployment of security resources in IoT. Deploying security

functions in the edge network can greatly strengthen system security, by preventing

most attacks close to their origins and/or targets. However, due to the high cost of

edge computing power and the limited budget of the IoT operator, we need a smart

deployment algorithm that can maximize the overall security of the system subject to

the budget bound. We formulate this problem as a security risk minimization problem.

Adopting models from economical risk estimation and stochastic optimization, we

address the simultaneous minimization of expected and worst-case security risks with

tunable trade-offs.

Finally, we look into the economics perspective of IoT, specifically, how users can

make fast and secure micropayments for using IoT services. Traditional payment

methods such as online transfer require a central platform for the recording and

charging of transactions, which leads to performance bottlenecks, security concerns

and excessive service fees. Using cryptocurrencies, users and providers can distributedly

settle micropayments for the use of IoT services, with minimal (and ideally no) third

party involvement. Unfortunately, mainstream cryptocurrencies such as Bitcoin and

Ether are still suffering from the scalability issue and the high transaction fees coming

from the expensive blockchain operations. Instead, off-chain payment channel networks

(PCNs) can achieve fast and economical payment settlement, while still retaining a

similar level of security as the blockchain, through the use of smart contracts that

minimize blockchain operations. We investigate the fundamental payment routing

problem in PCN, aiming to improve both the payment success ratio and the routing

efficiency over existing solutions. We first consider a simple scenario where users make

4

time-sensitive payment requests, and the network tries to satisfy as many payment

requests as possible. We further consider anonymous payment routing that does not

leak the user identities and/or transaction details.

1.3 Summarized Contributions

Addressing the aforementioned problems can be very challenging. Most of the

problems that we study are NP-hard, meaning that they basically do not admit

exact algorithms unless P=NP. Some problems also require fully distributed solutions

or a solution that considers extreme cases of the system. Fortunately, for most

decision making and/or optimization problems that we study, we were able to devise

efficient solutions that either closely approximate the optimal solution (within a given

bound), or converge to the optimal solution eventually. For problems that require

distributed solutions, we devise distributed protocols that always ensure the validity

of the solution based on our routing and security goals. This section summarizes our

main contributions. Note that the concrete definitions of terms used, such as problem

definitions, formulation and algorithm classes, are delegated to the corresponding

chapters.

1.3.1 Part I: Network Resource Allocation in IoT

In network resource allocation, we consider three problems concerning different

layers in the network stack. The first problem concerns the scenario where the network

provider wishes to optimize per-traffic flow routing and bandwidth allocation in terms

of network congestion minimization in the network layer. We consider different QoS

5

requirements of user traffic, including transmission bandwidth and delays for real-

time IoT applications, reliability for critical IoT applications, and policy routing for

security-sensitive IoT applications. Our contribution is three-fold [153], which will be

expanded in Chapter 2:

• We define the QoS-aware and Reliable Traffic Steering (QRTS) problem, incor-

porating the bandwidth, delay, reliability and policy routing requirements all

into the same formulation.

• We prove QRTS and its optimization version OQRTS to be NP-hard.

• We propose a fully polynomial-time approximation scheme (FPTAS) for OQRTS.

Based on the previous study, we further seek to jointly optimize the hosting of

applications and the routing of data traffic in IoT, aiming at a cross-layer design

combining network layer and application layer controls. In this problem, we specifically

consider real-time applications with bandwidth, delay and reliability requirements,

while the policy routing requirement can be easily added and hence is omitted for

simplicity. An application requires one or multiple data streams from different sources

in the network. The task here is to find one or multiple host nodes for each given

application, modeled as a singleton processing unit, as well as routing and bandwidth

allocation for all the data streams directing to each application’s host node(s). Based

on the characteristics of the applications, we divide them into parallelizable and

non-parallelizable applications, with the former being able to balance processing load

across multiple instances while the latter cannot. Depending on the network scenario,

we further respectively consider scenarios both with a single application, and with

multiple simultaneous applications. Combining the two application types with the

two provisioning scenarios, we have four variants of this problem. Our contribution to

this problem is also three-fold [151], [152], which will be expanded in Chapter 3:

6

• We define the Application Provisioning (AP) problem with four variants, namely

Parallelizable Single Application Provisioning (P-SAP), Non-parallelizable Single

Application Provisioning (N-SAP), Parallelizable Multi-Application Provisioning

(P-MAP), and Non-parallelizable Multi-Application Provisioning (N-MAP).

• We prove all variants of AP and their corresponding optimization versions to be

NP-hard.

• We propose FPTASs for the optimization versions of P-SAP, N-SAP and P-MAP,

respectively, and a randomized algorithm for the optimization version of N-MAP.

In the third study, we bring the problem to purely the application layer. Instead

of considering the simplified traffic patterns such as the basic traffic flow in the first

problem or the star-like data streams of a singleton application in the second problem,

we consider a complex distributed application scenario where the IoT application is

comprised of a set of IoT microservices with interdependencies. These interdependen-

cies among microservices, which define how data will flow across microservices for

this application, are modeled as a general directed acyclic graph (DAG). This is a

far more general model than a source-destination flow or a star-like application. The

microservices are distributed among different edge computing nodes in the IoT, with

each microservice having one or multiple deployed instances. Our substrate network

here is the overlay network consisting of all deployed instances of the microservices,

as well as the overlay links between these instances. The problem that we study here

is to balance the data transmission and processing load across microservice instances,

taking into account both the complex interdependencies among microservices and

the structure of the overlay network. Again, we need to consider the capacity of the

microservice instances, as well as the QoS of a given distributed application in terms

of both the transmission delay in the overlay network and the processing delay at

7

these microservice instances. Our contribution to this problem is also three-fold [147],

which will be expanded in Chapter 4:

• We define both the QoS-agnostic Basic Load Balancing (BLB) problem and the

QoS-aware Load Balancing (QLB) problem for IoT microservices, taking into

consideration the complex interdependencies among microservices modeled as a

DAG, as well as the QoS requirement of any given application.

• We prove the QLB problem to be NP-hard.

• We propose an optimal algorithm for the BLB problem, based on which we

further propose an FPTAS for the optimization version of the QLB problem,

utilizing our novel decomposition of a load balancing solution into realization

graphs (to be defined in Chapter 4).

1.3.2 Part II: Robust Security Deployment in IoT

Regarding IoT security, we mainly focus on the problem of deploying security

functions within the IoT edge network. The goal of the IoT operator is to ensure

the highest level of security in the network, by deploying these security functions

to process incoming traffic into the edge network. These functions can be deployed

on distributed edge computing nodes within the edge network. Ideally, deploying

security functions at every access point can ensure the maximum level of security,

since every piece of traffic is checked by a function before entering the edge network.

Unfortunately, due to both the limited budget of the IoT operator and the limited

availability of edge computing nodes, the operator can only deploy a small number

of security functions at designated locations. To find the best deployment plan, the

operator needs to both model the security status of the system, especially in face of

8

frequent system dynamics, and employ efficient optimization algorithms to find the

optimal deployment plan. Our contribution to this problem is three-fold [150], which

will be expanded in Chapter 5:

• We propose a stochastic model for the security risk of the IoT edge network.

Utilizing risk modeling techniques from economics, our model captures both the

expected security risk, and the worst-case security risk in terms of the rare cases

with the most unfavorable system dynamics.

• We formulate the robust security deployment problem minimizing the expected

and worst-case security risks, which is both stochastic and NP-hard.

• We propose an iterative algorithm to compute the optimal security deployment

plan based on the model. To improve its efficiency, we propose a novel analytical

solving technique based on the structure of this problem.

1.3.3 Part III: Micropayment Routing in Blockchain-based PCN

The ability to conduct service-to-service micropayments is the key to enable the

IoT ecosystem. PCN is a perfect match to this demand: it is automatic, with no

human intervention; it is secured by the blockchain; and finally it is fast in settling

transactions. The routing problem, however, is perhaps the most cumbersome task

in the current PCN. Due to the requirement of the underlying security protocol, a

payment route must both satisfy the balance (bandwidth) and the timelock (delay)

requirements. While this problem itself is already NP-hard as shown in Part I, PCN

routing is further complicated due to both that the network is fully distributed, and

that the balance information on channels are constantly changing with each on-going

9

transaction. These have driven us to design distributed protocols to solve this problem,

instead of centralized optimization algorithms as in the previous chapters.

We address two problems associated with PCN routing. The first one is to design

a basic routing protocol, which must both satisfy all requirements including delay

and balance (concurrency) and be as efficient and low-overhead as possible. The

challenge here is to both gather instantaneous network information and make balance

reservation at the same time. We make the following contribution [149], which will be

expanded in Chapter 6:

• We formulate the PCN routing problem with both balance/concurrency and

timelock/delay requirements.

• We propose an efficient distributed protocol which probes for network information

and makes balance reservation simultaneously in a one-round process, in the

case where a single payment path can be found to satisfy the payment request.

Multiple rounds may be needed if a single path cannot satisfy the request, in

which case our protocol uses as few payment paths as possible to reduce overhead

and limit the transaction fee paid by the sender of the payment.

The messages exchanged in the proposed protocol contain sensitive information

regarding the identity and/or location of the sender and recipient of a payment, as

well as the payment value. This can be a big issue in PCN, as often times users may

wish to hide their identity and other sensitive information from external observers

when making private transactions. To remedy the privacy issue, we further propose

an anonymous probing protocol, which complements the important probing phase of

the routing protocol to provide privacy guarantee. This, combined with conventional

privacy-preserving communication solutions such as Sphinx [26] and HORNET [18],

can ensure full privacy of the transacting users during the routing process, which

10

can further be used in conjunction with privacy-preserving payment protocols [80],

[81], making the entire PCN payment process privacy-preserving. Our contribution

regarding the privacy issue is summarized as follows [148], which will be expanded in

Chapter 7:

• We describe the privacy issue in distributed probing algorithms, and establish

the privacy goals.

• We propose an efficient and privacy-preserving probing protocol, which ensures

the anonymity of both the sender and the recipient, while still being able

to communicate sufficient information to establish a payment path should the

routing succeed, or to acknowledge a routing failure, without knowing in advance

which path(s) will be explored.

11

Part I

Network Resource Allocation in IoT

12

Chapter 2

QOS-AWARE AND RELIABLE TRAFFIC STEERING FOR SERVICE

FUNCTION CHAINING IN MOBILE NETWORKS

2.1 Introduction

The recent years have witnessed a drastic growth on global mobile traffic, due to

the prevalent use of personal mobile devices and the emergence of the internet-of-things

(IoT). Billions of devices are connected via mobile networks, posing a severe challenge

to current mobile infrastructures. Moreover, the greatly abundant mobile and IoT

applications have very heterogeneous requirements, including quality-of-service (QoS),

security, availability, etc. Satisfying these requirements is difficult for current mobile

networks, largely due to their hierarchical nature: most QoS and security features are

implemented at the gateway or in the cloud, in a centralized manner. The gateway,

with the need to both serve the huge amount of traffic and provide fine-grained network

control, becomes a severe performance bottleneck of the mobile network.

There have been many efforts in addressing this performance bottleneck. The key

idea is to resolve as much traffic as possible within the mobile network, alleviating the

load on the gateway. One promising method is to deploy capacity and performance

enhancing network services, also called middleboxes, to provide in-network traffic

processing before traffic reaches the gateway. These include security components

such as firewall, intrusion detection/prevention system (IDS/IPS) and deep packet

inspection (DPI), network optimization tools such as load balancer (LB) and TCP

optimizer, network address translator (NAT), etc. Deploying network services can

13

bring a lot of benefits, such as early resolution of useless or malicious traffic, load

balancing, security enhancement, etc.

Traditionally, each network service is implemented via dedicated hardware pieces,

hence can only be deployed at specific locations (most likely at the gateway) due to

cost issue. Thanks to the recent advances in network function virtualization (NFV),

many network services can now be implemented as software components hosted on

general-purpose computation platforms at the network edge, such as fog computing

nodes within the mobile network. Edge deployment of network services has several

advantages. First, this alleviates the excessive traffic load at the gateway. Second,

in-network processing can effectively reduce traffic size in many scenarios, e.g., data

preprocessing for big data analytics, or preventing distributed deny-of-service (DDoS)

attacks. Third, this reduces the delay experienced by mobile traffic, especially those

transmissions whose both end-points reside in the mobile network (e.g., machine-

to-machine communications). With the emergence of fog computing [11], network

services can be flexibly distributed in the network, which further helps in network

optimization to balance and resolve mobile traffic load.

Nevertheless, benefits often do not come without a cost. Along with the enhanced

performance and enriched flexibility, comes the increased complexity for service

function chaining (SFC). In SFC, each traffic class is assigned a service function

chain, which is a sequence of network services (also called service functions) that

the traffic needs to pass through before exiting the network. Different traffic classes

may have different service function chains, due to their various QoS, security and

reliability requirements. An important problem is to steer each class of traffic through

its required network services in the given order, wherein both routing and bandwidth

allocation need to be determined based on the traffic class’s requirements.

14

In this study, we study the traffic steering problem in mobile networks. We take

a software-defined approach, where a centralized controller collects global network

information, and makes joint routing and allocation decisions for all traffic classes

together. A software-defined approach commonly achieves better routing and resource

optimization, compared to distributed or local optimization approaches. We formulate

the QoS-aware and Reliable Traffic Steering (QRTS) problem in mobile networks,

considering heterogeneous requirements of traffic classes, including QoS (throughput

and delay), reliability, security and type-of-transmission constraints, etc. Both QRTS

and its optimization version (OQRTS) are proved to be NP-hard. We then propose a

Fully-Polynomial Time Approximation Scheme (FPTAS) for the optimization problem.

Through extensive simulation experiments, we validate that our proposed algorithm

produces near-optimal solutions, and greatly outperforms two baseline heuristic

algorithms.

Our main contributions are summarized as follows:

• To the best of our knowledge, we are the first to formulate the traffic steering

problem in mobile networks with QoS and reliability requirements, and prove

its NP-hardness.

• We develop a Fully-Polynomial Time Approximation Scheme for the optimization

problem.

• We evaluate the performance of our proposed algorithm via extensive simulation

experiments, which validates the near-optimal performance of our algorithm.

The rest of this study is organized as follows. In Section 2.2, we introduce existing

work related to this study. In Section 2.3, we present our network and service

model. In Section 2.4, we formally define and formulate the QRTS problem and its

optimization version, and prove that both problems are NP-hard. In Section 2.5, we

15

then propose our algorithm for the problem, and analyze its performance guarantee

and time complexity. In Section 2.6, we present our performance evaluation results.

In Section 2.7, we conclude this study.

2.2 Background and Related Work

2.2.1 NFV and SFC

NFV has been recognized as one of the enabling technologies to next-generation

mobile networks [51], [84]. Various network components can be implemented via

virtualization [51], including gateway, mobility support, charging, etc. In addition,

traditional services like firewall, IDS/IPS, network optimizer and NAT, can also

be implemented in mobile networks based on operator and user demands. Recent

advances in NFV enable flexible and cost-efficient deployment of various network

services in mobile networks [39], [62], [83].

SFC is a problem arisen in network management in the presence of network services.

Gember et al. [40] proposed a network orchestration layer, in which issues such as

elastic scaling, flexible placement and flow distribution are addressed. Zhang et al. [159]

studied SFC in the view of network protocols, and proposed a heuristic solution for

SFC-aware network service placement. Bari et al. [6] studied service chain embedding

(joint traffic steering and network service placement), and proposed another heuristic

solution. Rost et al. [109] proposed the first approximation algorithm for service

chain embedding, though the approximation is not constant-ratio. For solely the

traffic steering problem, Cao et al. [13] proposed an FPTAS, which is similar to the

result reported in this study. However, their problem does not consider traffic QoS,

16

hence is not NP-hard. Our problem considers the heterogeneous QoS requirements of

applications, and is NP-hard, hence an FPTAS is the best possible algorithm that

we can expect unless P=NP. Guo et al. [47] studied traffic steering with pre-defined

path sets, which are not assumed in our study. The applications of SFC in mobile

networks have been summarized in [49].

Failure of network services can be frequent and can have a large impact on the

performance of applications and services [99], hence is one of the major considerations

in this study. Rajagopalan et al. [103] proposed a Software-Defined Networking (SDN)

based replication framework for network services. Sherry et al. [114] proposed a log-

based recovery model for network services or middleboxes, which can be used to fast

recover failed network services. Fan et al. [34] and Ye et al. [144] studied the problem

of reliable service chain embedding, and proposed different heuristic algorithms based

on both dedicated backup and shared backup provisioning. Kanizo et al. [63] proposed

a network-agnostic solution for network service backups based on bipartite matching.

The above efforts all focus on providing full recovery of the failed network services.

On the contrary, we argue that this “all-or-nothing” protection is an overkill for many

applications, as shown in existing work [158]. Therefore we propose a “soft” reliability

mechanism, such that only a bounded portion of throughput is affected during an

arbitrary service failure.

2.2.2 Software-defined Mobile Networks

SDN has recently been applied to facilitate network configuration and management

in various network environments, including the mobile networks. Different usages of

SDN in mobile networks have been studied, including resource allocation in the Radio

17

Access Networks (RANs) [46], traffic control in the Mobile Core Networks (MCN) [59],

topology reconfiguration [86], etc. Our approach utilizes the centralized control as in

the above, but considers its application in QoS-aware and reliable traffic steering for

SFC in mobile networks.

2.3 System Model

2.3.1 Network Topology

The SDN controller aggregates global network information. The network is modeled

as a directed graph G = (V,E), where V is the set of nodes, and E is the set of

links. A mobile network consists of many heterogeneous nodes, including radio access

points (RAPs), core switches, standalone fog nodes, the central cloud, and the gateway

towards the Internet. The link set also consists of heterogeneous links, including

high-speed fronthaul/backhaul fibre, digital subscriber lines, wireless and satellite

channels, etc. Different links have different attributes including QoS, security, etc.,

and thus can carry different types of traffic. We consider two QoS parameters for each

link: bandwidth and delay. For each link e ∈ E, we denote be > 0 as its capacity, and

de > 0 as its transmission delay.

Note that either a physically centralized controller (e.g., at the mobile gateway)

or a logically centralized controller (with physically distributed controllers sharing

the global view) can be used. A hierarchical control plane is helpful in distributing

the computational load in the mobile network. Distributed implementation of our

proposed algorithm is out of the scope of this study, and hence is omitted due to page

limit.

18

2.3.2 Service Functions

The mobile network is deployed with heterogeneous network services, also called

service functions, for in-network processing of user traffic. For example, signal process-

ing may be virtualized and flexibly deployed on local fog nodes or in the cloud, due

to recent advances in Software-Defined Radio (SDR) [60] and NFV. Different signal

processing steps can be virtualized into independent functions, which can be deployed

on different nodes. As modern RANs employ heterogeneous radio access technologies

(RATs), different RATs may require different types and sequences of service functions

for signal processing. On the other hand, the network can offer other network services

for enhanced security and performance on the network edge [49], including firewall,

intrusion detection, load balancer, etc. Utilizing NFV, these network services can

also be implemented as virtualized software components, and flexibly deployed on

fog nodes. Deployment of service functions at the network edge benefits from its

low latency and high location flexibility, compared to the traditional cloud-based

deployment.

Formally, we use M = {m1, · · · ,m|M |} to denote the set of service functions

provided by all nodes in the RAN. Each service function may have multiple instances,

deployed at different locations. We use Vm ⊆ V to denote the set of nodes that are

deployed with service function m ∈M , and Mv ⊆M as the set of service functions

deployed on node v ∈ V . For each service function m ∈Mv deployed on node v, we

are concerned with two attributes: bv,m > 0 as its processing capacity, and dv,m > 0

as its processing delay.

We assume available service functions have already been deployed in the network.

19

Service function placement is out of the scope of this study, and will be studied in

future work.

2.3.3 Traffic Model

Traffic is aggregated and classified based on its access/exit points, QoS require-

ments, service function chain (service chain for short), types of traffic, and reliability

requirement. In mobile networks, two most important QoS attributes are band-

width and transmission delay. Denote all traffic classes (TCs) in the network as

C = {C1, · · · , C|C|}. Each TC is denoted as a 7-tuple Cj = (sj, tj, Bj, Dj,Πj, Tj, rj),

where sj, tj ∈ V denote the access and exit nodes respectively, Bj > 0 denotes the

bandwidth demand, Dj > 0 denotes the maximum delay bound, Πj denotes its service

chain, Tj denotes the per-stage traffic type for each traffic stage defined in the service

chain, and rj > 0 denotes the reliability requirement. Explanation of the reliability

requirement is deferred to Section 2.3.5.

Each TC’s service chain is defined as a sequence of service functions, Πj =

(πj1, · · · , πjκj), where each πjk ∈M denotes a service function required by the TC. The

service function chaining requirement specifies that each packet of the TC originates

from sj, passes through all required service functions in the order given in Πj, and

exits at tj. We assume each service chain contains only distinct service functions.

The chaining requirement splits transmission of the TC into (κj+1) stages: sj → πj1,

πjk → πjk+1 for k = 1, . . . , κj − 1, and πjκj → tj. Each stage of traffic may belong to a

different traffic type, and can be carried on only a subset of links. For example, in

Cloud-RANs, the uplink traffic enters the network as wireless radio signals; before

signal processing, such traffic can only be transmitted along high-speed fronthaul fibre

20

which supports the Common Public Radio Interface (CPRI). On the other hand, traffic

already through some security functions can no longer be transmitted via potentially

insecure links. These are expressed in Tj = {T j1 , · · · , T
j
κj+1}, where T

j
k ⊆ E is the

subset of links that can carry the stage-k traffic of Cj.

2.3.4 Feasible Routing Graph

We first define the feasible routing paths for TCs. Given network G and a TC Cj,

a path p in G is feasible for Cj iff

1. p originates from sj and ends at tj;

2. p visits all service functions Πj = (πj1, · · · , πjκj) in the given order; and

3. p has total transmission and processing delay within Dj.

To better establish the feasibility constraints of a routing path, we construct a

per-TC routing graph Gext
j = (V ext

j , Eext
j) from the original graph G, as shown in

Fig. 2.1. Gext
j has (κj + 1) layers, each layer k corresponding to one copy of the

subgraph of G that contains all nodes in V and all links in T jk ; this enforces the traffic

type constraints. We denote vjk ∈ V ext
j as the copy of node v ∈ V in layer-k of Gext

j ,

and ejk ∈ Eext
j as the copy of link e ∈ E in layer-k of Gext

j . We call link e the prototype

of ejk, denoted by proto(ejk); we also call ejk an extended link of e. Link ejk has the same

transmission delay de as its prototype. Further, we establish abstract links between

consecutive layers. For each service function πjk ∈ Πj, we establish an abstract link

from the copy of each node v ∈ Vπjk in the k-th layer, to its copy in the (k + 1)-th

layer. We denote this abstract link as ej,kv = (vjk, v
j
k+1), and let it have delay dv,πjk

21

Access
Switch

Firewall

Load
Balancer

Exit
Switch

TC's Service Chain Routing Graph

Abstract Links
(Firewall)

Abstract Links
(Load Balancer)

Layer 1

Layer 2

Layer 3

Figure 2.1: A TC’s service function chain and routing graph.

(processing delay of the instance). We use the pair (v, πjk) to denote the prototype of

link ej,kv , also denoted by proto(ej,kv); ej,kv is thus an extended link of prototype (v, πjk).

Let sj0 be node sj at layer 0 of Gext
j , and tjκj be tj at layer κj of G

ext
j . We assume

that each routing graph Gext
j is (sj0, t

j
κj

)-connected, meaning that there is a routing

path from sj0 to every node v ∈ V ext
j , and there is a routing path from every node

v ∈ V ext
j to tjκj . Nodes not satisfying this condition can be safely removed from the

routing graph, as it does not contribute to the connectivity between sj0 and tjκj .

For simplicity, we aggregate all TCs’ routing graphs into a giant one, denoted

as Gext = (V ext, Eext), where V ext =
⋃
Cj∈C V

ext
j , and Eext =

⋃
Cj∈C E

ext
j . Each TC’s

22

subgraph Gext
j is maximally (sj0, t

j
κj

)-connected in Gext, meaning that adding any node

v /∈ V ext
j makes it not (sj0, t

j
κj

)-connected.

Given Gext, the feasible path set of Cj is defined as all paths from sj0 to tjκj , each

with the sum of link delays no greater than Dj. Note that the processing delays of

service function instances have already been accounted for in their extended links’

delays. We use Pj to denote the feasible path set for Cj, and let P =
⋃
Cj∈C Pj.

Without loss of generality, we assume that each TC has a disjoint feasible path set Pj .

The following notations are defined for simplicity. We denote Eν = {(v,m) |m ∈

M, v ∈ Vm} as the set of all service function instances. E = E ∪ Eν , also called

the prototype set, denotes the set of all original physical links and service function

instances. We then use Eext(e) to denote all extended links of the same prototype

e ∈ E , i.e., all links that share the same capacity bound be. We also use E(p) and

Eν(p) = E(p) ∩ Eν to denote the sets of all prototypes and only service function

prototypes, respectively, used by path p. ηp(e) denotes the number of times for which

prototype e’s extended links appear in path p. Note that ηp(e) ≤ 1 if e ∈ Eν , as each

service function chain contains only distinct service functions.

2.3.5 Reliability

Network service failures can downgrade or even halt the transmission of user traffic,

which must be tackled to assure service continuity [99]. On the other hand, it has

been revealed that the traditional “all-or-nothing” protection is actually an overkill for

many data applications [158], due to the excessive resource consumption to provide

such protection.

In this study, we follow existing work and seek a “milder” way for improving service

23

availability [158]. Instead of providing full recovery, we seek to bound the amount of

throughput loss due to an arbitrary single service function instance failure (single

service failure for short). Specifically, each TC Cj ∈ C has a reliability parameter

rj ∈ (0, Bj], denoting the maximum tolerable throughput loss that Cj may suffer from

any single service failure; rj = Bj means no protection for Cj.

2.4 Problem Statement

2.4.1 Problem Description and Formulation

In this study, we study the traffic steering problem in mobile networks. Specifically,

given the network G and the set of TCs C, the network operator’s goal is to find a

subset of feasible routing paths, as well as allocate bandwidth for each path, to fulfill

the bandwidth demand of each TC, meanwhile satisfying both capacity bounds and

reliability requirements.

Definition 2.1 (Bandwidth allocation). Let P ∈ P be a subset of feasible routing

paths. A bandwidth allocation of P is defined by a mapping L : P 7→ R+, where R+

is the positive real number set. We say that L is a feasible bandwidth allocation of P

iff for each prototype e ∈ E ,
∑

p∈P :e∈E(p) ηe(p)L(p) ≤ be. The aggregate bandwidth of

P , denoted by b(P), is the sum of bandwidth allocated on all paths in P :

b(P) =
∑
p∈P

L(p).

Definition 2.2 (QRTS). Given the network G = (V,E), and the TC set C, the

QoS-aware and Reliable Traffic Steering (QRTS) problem in mobile networks

24

is to find a tuple Γ = (P,L), where P ⊆ P is a subset of feasible routing paths, and L

is a feasible bandwidth allocation of P , such that

1. let Pj ⊆ P be the set of feasible routing paths of TC Cj in P , then b(Pj) ≥ Bj

for each TC Cj ∈ C; and

2. during an arbitrary single service failure, at most rj bandwidth is lost for each

Cj ∈ C.

2.4.2 Computational Complexity

Theorem 2.1. QRTS is NP-complete.

Proof. First, QRTS is in NP, as checking all constraints takes polynomial time.

Consider the special case of QRTS where there is only one TC with an empty service

chain, no link excluded from E in Tj, and no reliability requirement (rj = Bj).

Therefore, there is only one layer in its routing graph, which is the same as the original

topology. In this case, we obtain the Multi-Path routing with Bandwidth and Delay

constraints (MPBD) problem on a general graph, which has been proven NP-complete

in [85]. As a known NP-complete problem is a special case of QRTS, the theorem

follows.

2.4.3 Optimization Formulation

The QRTS problem is an NP-complete decision problem. We further define the

following optimization version of QRTS:

25

Definition 2.3 (OQRTS). Given the network G = (V,E), and the TC set C, the

Optimal QoS-aware and Reliable Traffic Steering (OQRTS) problem in mobile

networks is to find a tuple Γ = (P,L), where P ⊆ P is a subset of feasible routing

paths, and L is a feasible bandwidth allocation of P , such that

1. let Pj ⊆ P be the set of feasible routing paths of TC Cj in P , then b(Pj) ≥ ξ ·Bj

for each TC Cj ∈ C;

2. during an arbitrary single service failure, at most rj bandwidth is lost for each

Cj ∈ C; and

3. ξ is maximized.

In the OQRTS problem, the network operator aims to maximize the traffic scaling

ratio ξ, defined as the minimum ratio between the aggregate bandwidth and the

demand of any TC, subject to the feasible path set, feasibility of bandwidth allocation

and reliability constraints. If an OQRTS instance has an optimal solution of ξ∗ ≥ 1,

the corresponding QRTS instance is feasible, and vice versa.

With L(p) defined as the per-path variable of bandwidth allocation, and ξ as the

minimum scaling ratio, we formulate the OQRTS problem as the following linear

program (LP):

26

max ξ (2.1a)

s.t.
∑
p∈Pj

L(p) ≥ ξBj, ∀Cj ∈ C (2.1b)

∑
p∈P:e∈E(p)

ηp(e)L(p) ≤ be, ∀e ∈ E (2.1c)

∑
p∈Pj :e∈Eν(p)

L(p) ≤ rj, ∀Cj ∈ C, e ∈ Eν (2.1d)

L(p), ξ ≥ 0. ∀p ∈ P

Explanation: Objective (2.1a) is to maximize the traffic scaling ratio ξ. Con-

straint (2.1b) defines the scaling ratio for each TC: (
∑

p∈Pj L(p))/Bj ≥ ξ. Con-

straint (2.1c) enforces per-prototype capacities. Constraint (2.1d) enforces the reli-

ability for each TC Cj. Specifically, for each service instance e ∈ Eν , the amount

of traffic of Cj through e must not exceed the maximum tolerable throughput loss,

denoted by rj. By this constraint, any single function instance failure will affect at

most rj bandwidth, hence satisfying the reliability requirements.

While the above formulation is a linear program (LP), it can have an exponential

number of variables due to the potentially exponential number of feasible routing paths

in a given graph. This prevents solving the problem using standard LP techniques.

Note that since the decision problem QRTS is NP-hard, so is the optimization problem

OQRTS. In the next section, we propose our approximation algorithm for OQRTS.

2.5 Fully Polynomial-Time Approximation Scheme

In this section, we design an FPTAS for the OQRTS problem. Since the problem

is NP-hard, an FPTAS is the best algorithm one can hope for, unless P=NP.

27

Definition 2.4 (FPTAS). Given a maximization problem Ω, an algorithm A is said

to be a Fully-Polynomial Time Approximation Scheme (FPTAS) for Ω, iff for any

instance of Ω with optimal objective value ζ∗, given any ω ∈ (0, 1), A can produce a

feasible solution with objective value ζ ≥ (1− ω) · ζ∗, within time polynomial to both

the input size and 1/ω.

2.5.1 Dual Analysis

We first write the dual program of (2.1). Define dual variable z(j) for Con-

straint (2.1b) with each Cj ∈ C, l(e) for Constraint (2.1c) with each e ∈ E , and ϕ(j, e)

for Constraint (2.1d) with each Cj ∈ C and e ∈ Eν , the dual program is as follow:

min
∑
e∈E

bel(e) +
∑
Cj∈C

∑
e∈Eν

rjϕ(j, e) (2.2a)

s.t.
∑
e∈E(p)

ηp(e)l(e) +
∑

e∈Eν(p)

ϕ(j, e) ≥ z(j),

∀Cj ∈ C, p ∈ Pj (2.2b)∑
Cj∈C

Bjz(j) ≥ 1, (2.2c)

z(j), l(e), ϕ(j, e) ≥ 0. ∀Cj ∈ C, e ∈ E

Explanation: Objective (2.2a) accounts for the constants in Constraints (2.1c)

and (2.1d). Constraint (2.2b) is the dual constraint for primal variable L(p). Con-

straint (2.2c) is the dual constraint for primal variable ξ. For simplicity of notations,

although ϕ(j, e) is only defined for each Cj ∈ C and e ∈ Eν , we extend its definition

to include Cj ∈ C and any e ∈ E , and explicitly let ϕ(j, e) = 0 for e ∈ E \ Eν .

Based on an observation similar to the one in [38], we have the following two

lemmas:

28

Lemma 2.1. At any optimal solution of Program (2.2), Constraint (2.2c) is binding,

i.e., equality (rather than strict inequality) holds.

Lemma 2.2. At any optimal solution of Program (2.2), there exists at least one path

p ∈ Pj for any Cj ∈ C, such that Constraint (2.2b) with Cj and p is binding.

Proof. Assume that at an optimal solution, Constraint (2.2b) for any TC Cj ∈ C and

path p ∈ Pj is not binding. It is obvious that we can reduce the value of any l(e) or

ϕ(j, e) that has a positive value, by an arbitrarily small amount. The resulted solution

is still feasible, but has a strictly smaller objective value than the optimal solution,

leading to a contradiction. To prove Lemma 2.1, observe that if Constraint (2.2c)

is not binding, then we can reduce the value of z(j) for all Cj ∈ C by an arbitrarily

small amount, which will make every Constraint (2.2b) to be unbinding, leading to

the same contradiction. To prove Lemma 2.2, assume that there exists Cj ∈ C such

that Constraint (2.2b) is not binding for any p ∈ Pj, then we can increase the value

of z(j) by an arbitrarily small amount, which will make Constraint (2.2c) unbinding.

This leads to the same contradiction as above. Hence both lemmas follow.

Based on Lemma 2.2, it is now clear that at any optimal solution, z(j) =

minp∈Pj{
∑

e∈E(p) ηp(e)l(e) +
∑

e∈Eν(p) ϕ(j, e)}. In other words, z(j) is equal to the

shortest path length in Pj regarding the per-link length function ς(ε) = l(ε) + ϕ(j, ε)

for ε ∈ Eext, where l(ε) = l(proto(ε)), and ϕ(j, ε) = ϕ(j, proto(ε)), respectively.

Lemmas 2.1 and 2.2 help us refine the dual program into a more concise form, remov-

ing variables z(j). Define D(l, ϕ) =
∑

e∈E bel(e)+
∑

Cj∈C
∑

e∈Eν rjϕ(j, e) (the dual ob-

jective function), and α(l, ϕ) =
∑

Cj∈C Bjδj(l, ϕ), where δj(l, ϕ) = minp∈Pj{
∑

ε∈p ς(ε)}

is the shortest path length in Pj under length function ς . The dual problem is equiva-

29

lent to finding length functions l and ϕ that minimize D(l, ϕ)/α(l, ϕ):

min
l,ϕ≥0

D(l, ϕ)

α(l, ϕ)
. (2.3)

2.5.2 Primal-Dual Algorithm

Our approximation scheme is based on a similar design as in [35], [38]. The

intuitive is to greedily push flow along the dual-shortest feasible path for each TC,

meanwhile updating the lengths such that the length of each prototype increases

exponentially in the amount of its constraint violation. After a number of rounds, the

flow is distributed approximately evenly in the network. By scaling the final flow with

the bounded link lengths, we obtain a feasible solution that approximates the optimal.

The algorithm is shown in Algorithm 2.1.

Lines 1–2 of Algorithm 2.1 initialize the length of each prototype, where γ is

a value to be determined in Section 2.5.4. Pj and L denote the paths used by Cj

and the bandwidth allocation over all paths respectively, both initialized to empty.

After constructing the routing graph, we initialize the lengths of all extended links

the same as their prototypes. The algorithm proceeds in phases (Lines 6–19), each

phase consisting of |C| iterations (Lines 8–18). In the j-th iteration in each phase,

the algorithm pushes Bj units of flow for TC Tj, which is done in steps (Lines 10–

17). In each step, the algorithm finds the shortest feasible path p̃ for TC Tj under

length function ς, and pushes φ units of flow through p̃, where φ is defined by

the residual flow demand B′j, the bottleneck capacity mine∈E(p̃){be/ηp̃(e)}, and the

reliability requirement rj, whichever is the smallest. Since p̃ may pass through the

same prototype for multiple times, the capacity be of each e ∈ E(p) is divided by

ηp̃(e), the number of times that it appears in p̃. After updating Pj, L(p) and B′j,

30

Algorithm 2.1: Primal-Dual Algorithm for OQRTS
Input: Topology G, TCs C, tolerance ω
Output: Scaling ratio ξ, path sets {Pj}, bandwidth L

1 Initialize l(e)← γ/be for ∀e ∈ E ;
2 Initialize ϕ(j, e)← γ/rj for ∀Cj ∈ C, e ∈ Eν , and ϕ(j, e)← 0 for
∀Cj ∈ C, e ∈ E \ Eν ;

3 Initialize Pj ← ∅, L ← ∅;
4 Construct the routing graph Gext, and let l(ε)← l(e), ϕ(j, ε)← ϕ(j, e) and

cε = ce for ∀ε ∈ Eext, e = proto(ε);
5 ρ← 0;
6 while D(l, ϕ) < 1 do
7 ρ← ρ+ 1;
8 for each TC Cj ∈ C do
9 B′j ← Bj;

10 while B′j > 0 do
11 p̃← arg min

p∈Pj
{
∑
ε∈p

ς(ε)};

12 φ← min{B′j, min
e∈E(p̃)

{ be
ηp̃(e)
}, rj};

13 Pj ← Pj ∪ {p̃};
14 L(p̃)← L(p̃) + φ, B′j ← B′j − φ;
15 l(e)← l(e)(1 + ε · φηp̃(e)

be
) ∀e ∈ E(p̃), and l(ε)← l(e) for ∀ε ∈ Eext(e);

16 ϕ(j, e)← ϕ(j, e)(1 + ε φ
rj

) ∀e ∈ Eν(p̃), and ϕ(j, ε)← ϕ(j, e) for
∀ε ∈ Eext(e);

17 end
18 end
19 end
20 ξ ← (ρ− 1)/ log1+ε 1/γ;
21 L(p)← L(p)/ log1+ε 1/γ for ∀Cj ∈ C, p ∈ Pj;
22 return (ξ, {Pj},L).

31

the algorithm updates the per-prototype lengths l(e) and the per-TC per-function

instance lengths ϕ(j, e), in Line 15–16. The value of ε is also to be determined in

Section 2.5.4. The lengths of all extended links in the routing graph are then updated

to reflect the change of lengths of their prototypes. Note that the resulting flow may

exceed the capacity of each prototype. However, as we will show in Section 2.5.4,

scaling the flow on each link by log1+ε 1/γ yields a feasible solution.

2.5.3 Approximating Shortest Feasible Paths

Algorithm 2.1 relies on finding the shortest feasible path for each TC under length

function ς. However, since the feasible path set of each TC only contains delay-

bounded paths, this task is non-trivial. In fact, finding the shortest delay-bounded

path is known as the Delay Constrained Least Cost path (DCLC) problem, which is

also NP-hard [139]. Nevertheless, there exist FPTASs for the DCLC problem, which

output a path within (1 + ω′) of the shortest delay-bounded path [75], [139]. In the

next subsection, we will show that for the purpose of our algorithm, it is sufficient to

find a (1 + ω′)-approximate ς-shortest path with strictly bounded delay.

2.5.4 Algorithm Analysis

Theorem 2.2. Given G, C and ω, let ω′ = ε = ω
4
, and γ =

(
1−(1+ω′)ε
|E|+|Eν ||C|

) 1+ε(1+ω′)
ε(1+ω′) , then

Algorithm 2.1 outputs a feasible solution that is within (1− ω) times of the optimal

solution, if the dual optimal objective value ∆ ≥ 1.

Proof. We prove by bounding the primal-dual ratio for the solutions derived in the

algorithm. The basic idea is that the primal value increases linearly with the flow

32

pushed in each phase, but each link’s dual lengths increase exponentially with the

flow through it. After a polynomial number of phases, the primal-dual ratio is then

within the desired bound.

We first define some notations. For any symbol υ (including l, ϕ, φ, p̃), we use

υsρ,τ to denote its value after phase-ρ, iteration-τ , and step-s of the algorithm, υρ,τ

to denote its value after phase-ρ and iteration-τ , and υρ to denote its value after

phase-ρ. For symbols in the form of υ(l, ϕ) (including D,α, δj), we use υsρ,τ to denote

υ(lsρ,τ , ϕ
s
ρ,τ), and similarly υρ,τ and υρ. We then have

Ds
ρ,τ ≤

∑
e∈E

bel
s−1
ρ,τ (e) +

∑
Cj∈C

∑
e∈Eν

rjϕ
s−1
ρ,τ (j, e)

+ εφsρ,τ (1 + ω′) · δs−1
j,ρ,τ

≤ Ds−1
ρ,τ + εφsρ,τ (1 + ω′) · δsj,ρ,τ ,

where j = τ due to that in iteration-τ of each phase we only consider TC Cj = Cτ ;

the first inequality is because path p̃ found in each step is a (1 + ω′)-approximation

of the shortest feasible routing path; the second inequality is due to that shortest

feasible path length is monotonically non-decreasing. Summing up the flow pushed in

all steps of iteration-τ where we push Bj flow in total, we have

Dρ,τ ≤ Dρ,τ−1 + εBj(1 + ω′) · δj,ρ,τ ,

and hence

Dρ ≤ Dρ−1 + ε(1 + ω′)
∑|C|

j=1
Bj · δj,ρ

≤ Dρ−1 + ε(1 + ω′)αρ.

Let the optimal dual solution be ∆ = min
l,ϕ≥0
{D(l,ϕ)
α(l,ϕ)

}, we know that Dρ
αρ
≥ ∆. Since

33

we assume that ∆ ≥ 1, we have

Dρ ≤
Dρ−1

1− ε(1+ω′)
∆

≤ D0(
1− ε(1+ω′)

∆

)ρ
≤ D0

1− ε(1 + ω′)
e

(ρ−1)ε(1+ω′)
∆(1−ε(1+ω′)) ,

where the initial objective D0 = (|E|+ |Eν ||C|)γ due to the initial value of l(e) and

φ(j, e). The last inequality is due to (1+x) ≤ ex, where x = ε(1+ω′)
∆−ε(1+ω′)

in the inequality.

Now, assume the algorithm stops at phase ρ∗, hence Dρ∗ ≥ 1 yet Dρ∗−1 < 1.

Taking it into the above inequality, we have

∆

(ρ∗ − 1)
≤ ε(1 + ω′)

(1− ε(1 + ω′)) ln 1−ε(1+ω′)
(|E|+|Eν ||C|)γ

.

On the other hand, by the way we update lengths l(e) and ϕ(j, e) at Lines 15–

16, each dual variable has its value increased by at least (1 + ε) times when the

corresponding primal constraint is filled for once, i.e., when the flow through prototype

e ∈ E increases by be, or when the flow for TC Cj through a function instance

e ∈ Eν increases by rj, respectively. Since Dρ∗−1 < 1, we have lρ∗−1(e) < 1/be and

ϕρ∗−1(j, e) < 1/rj. Therefore, the flow after phase (ρ∗ − 1) scaled by 1/ log1+ε 1/γ is

strictly feasible, which means the final scaling ratio ξ = (ρ∗− 1)/ log1+ε 1/γ is feasible.

The primal-dual ratio is then bounded by

ξ

∆
≥

(1− ε(1 + ω′)) · ln 1−ε(1+ω′)
(|E|+|Eν ||C|)γ

ε(1 + ω′) · log1+ε
1
γ

.

Given the selection of ε, ω′ and γ, we have ξ
∆
≥ 1− ω.

For time complexity, we define O∗(f) = O(f logO(1)(L)), where f is a function of

the input size, and L is the number of values in the input (independent of each value’s

magnitude).

34

Theorem 2.3. The worst-case time complexity of Algorithm 2.1 is O∗(∆
ω3 |V ||E|(|E|+

|Eν ||C|)κ2
max), where κmax = maxj{κj} is the maximum service chain length of any

TC.

Proof. As above, we have ξ∗

∆
> ξ

∆
≥ (ρ∗−1)

∆ log1+ε 1/γ
. By strong duality of linear

programming, we have ξ∗

∆
= 1. Therefore, the number of phases is bounded

by ρ∗ ≤ d∆ log1+ε 1/γe. The number of iterations is |C| times the number of

phases. In each iteration, every but the last step increases the length of at

least one l(e) or φ(j, e) by (1 + ε) times, hence the number of steps exceeds the

number of iterations by at most (|E| + |Eν ||C|) log1+ε
1+ε
γ
. Thus totally there are

O∗(∆
ω2 (|C|+ |E|+ |Eν ||C|)) = O∗(∆

ω2 (|E|+ |Eν ||C|)) steps by the choices of ε, ω′ and

γ. Each step incurs one approximate shortest feasible path computation, which

by Xue et al. [139] is computed in O(|V ext
j ||Eext

j |(1
ω′

+ log log log |V ext
j |)) time in

each TC’s routing graph Gext
j . Both the node set and the link set are bounded by

|V ext
j | = O(|V | ·κmax) and |Eext

j | = O(|E| ·κmax) respectively. The theorem follows.

2.5.5 Feasibility and Demand Scaling

Theorem 2.2 relies on two facts: 1) the QRTS instance has a non-zero feasible

solution, and 2) the optimal dual objective value ∆ ≥ 1. On the other hand, the time

complexity of Algorithm 2.1 is proportional to ∆, hence it should not be too large. In

practice, these conditions may not be satisfied. Below we propose methods to tackle

these issues.

Feasibility Checking: We first propose a method to check instance feasibility.

Observe that as long as there is at least one feasible routing path p ∈ Pj for any TC

Cj ∈ C, the problem instance has a non-zero optimal objective value, as a multi-TC

35

flow with 0 < ξ ≤ minj
rj
Bj

always exists. Therefore, as a feasibility check before

running the algorithm, we first run a shortest path algorithm (regarding link delays)

for each TC on the routing graph. If any TC Cj has the shortest path with delay

larger than its delay bound Dj, we return that no feasible solution exists; otherwise,

we proceed to the next step.

Demand scaling: The next step is to ensure ∆ ≥ 1; otherwise the algorithm may

not achieve the desired bound. Note that we can scale the demands of all TCs by

a common factor in order to scale ξ∗, and equivalently ∆. Hence if we can derive a

lower bound on ξ∗, we can scale all demands such that ∆ ≥ 1.

Following the method proposed by Garg and Könemann [38] and later on improved

by Fleischer [35], we derive both a pair of lower and upper bounds on ∆, by finding

the feasible routing path with maximum per-prototype capacity, denoted by p∗j , for

each TC Cj, using a binary search on the per-prototype capacity. Given a capacity

threshold b > 0, the computation first prunes all prototypes with capacity less

than b, and then find a delay-shortest path in the remaining graph; if the path

delay is bounded by Dj, we increase the threshold b; otherwise we decrease b. As

there are at most |E| distinct capacity values, the binary search takes O(log(|E|))

shortest path computations. The time complexity of finding paths for all TCs

is O(|C| log(|E|)(|E| + |V | log(|V |κmax))κmax) if the Dijkstra’s algorithm is used for

shortest path computations. When |C| is large, this can be further reduced by

computing a single round of all-pair shortest paths on the pruned original graph for

each of the binary search iterations, and then utilize the auxiliary graph in [13] to

compute the paths for all TCs.

Let bj = mine∈E(p̃j){be} be the bottleneck prototype capacity of path p∗j . Since a

flow can saturate all prototypes at its maximum, an upper bound on the single-TC

36

flow value is given by |E|min{bj, rj}, taking into account the reliability requirement

of each TC. Hence an upper bound of the optimal objective value ∆ is given by

∆ = minCj∈C{b̄j/Bj}. On the other hand, given the bottleneck prototype capacity

bj, a flow that only contains path p∗j and assigns bj/(κj + 1) bandwidth to the path,

is feasible for the TC itself, as a prototype can be used for at most κj + 1 times.

Since there are |C| TCs sharing the network, bj = min{bj/(κj + 1)|C|, rj} yields a

lower bound on the throughput received by Cj . Hence a lower bound of ∆ is given by

∆ = minCj∈C{bj/Bj}.

Given these bounds, we can scale all TCs’ demands by a factor of ∆ (thus ∆ by

a factor of 1/∆), which ensures that the scaled dual optimal objective value ∆ ≥ 1.

But now ∆ can be as large as ∆̃ = ∆/∆. We then use the same technique as in [38]:

if Algorithm 2.1 does not terminate after d2 log1+ε 1/γe phases, then we know that

∆ ≥ 2. In this case, we double all demands Bj (thus halving the optimal solution ∆),

and re-run Algorithm 2.1. Given the upper bound on ∆, this takes O(log(∆̃)) rounds

of demand scaling.

Combined with Theorem 2.3, we have our main theorem:

Theorem 2.4. Algorithm 2.1 (combined with feasibility checking and demand scaling)

produces a (1−ω)-approximation in time O∗(1
ω3 |V ||E|(|E|+ |Eν ||C|)κ2

max + |C||E|κmax),

and hence is an FPTAS for OQRTS.

Proof. To compute the initial bounds, it takesO(|C| log(|E|)(|E|+|V | log |V |)κmax log(κmax|V |))

time. By the values of ∆ and ∆, we have ∆̃ ≤ |E||C|κmax. Hence the number of

demand scaling rounds is O(log(|E||C|κmax)). Each round consists of at most

d2 log1+ε 1/γe phases in Algorithm 2.1. By Theorem 2.3, each round runs in

O∗(1
ω3 |V ||E|(|E| + |Eν ||C|)κ2

max) time. Combining the above and omitting the

logarithm terms, the final time complexity follows.

37

2.5.6 Extension to Multiple QoS Requirements

Our proposed model and algorithm can be extended to incorporate other QoS

requirements than delay, such as jitter, packet drop rate, etc. In general, assume each

TC considers up to Q additive QoS parameters. We can simply replace the DCLC

FPTAS in Section 2.5.3 with a Multi-Constrained Path (MCP) FPTAS [139]. The

resulting algorithm is able to enforce one QoS requirement strictly, while approximating

the other Q− 1 requirements within a factor of (1 + ω′), as shown in [139].

2.6 Performance Evaluation

2.6.1 Experiment Settings

We implemented the following algorithms for comparison:

• PDA: Our primal-dual FPTAS (Algorithm 2.1). The accuracy parameter ω = 0.5

by default. PDA has two variants, PDA-ND and PDA-NR, denoting the algorithms

without delay and reliability requirements respectively.

• OND: An optimal algorithm for solving the OQRTS problem without considera-

tion of TC delay constraints, obtained by solving an edge-flow multi-commodity

flow LP. This yields an upper bound on the optimal solution.

• MPBDH: A flow-based heuristic which first computes a (delay-agnostic) maxi-

mum concurrent flow for all TCs, and then keeps finding feasible (delay-bounded)

paths for each TC until no feasible path is left; extended from [85].

38

• SP: A baseline heuristic that decides the traffic scaling ratio based on shortest-

path routing for each TC. As SP is a single-path routing algorithm, its solution

can never exceed the minimum reliability ratio of any TC.

We randomly generated networks for evaluation. Topologies were generated based

on the Waxman model [32]. By default, the network had 20 nodes. The network

offered 10 types of service functions, each having 3 instances randomly deployed on

nodes. Each instance had a random capacity within [50, 100] Mbps, and a random

delay within [3, 30] ms. Connectivity parameters were set as α = β = 0.6 in the

Waxman model. Each link had a random capacity within [10, 100] Mbps, and a random

delay within [1, 10] ms. In each experiment, we generated 20 TCs with random sources

and destinations. Each TC had a random service chain with length within [1, 5], a

bandwidth demand within [3, 30] Mbps, a delay bound within [125, 250] ms, and a

reliability requirement within [0.35, 0.65] of its bandwidth demand. The above were

the default parameters. In each set of experiments, we varied one control parameter

for evaluation under different scenarios.

Two metrics were used to evaluate each algorithm. The traffic scaling ratio (ob-

jective function value) evaluates the algorithm’s performance. The average running

time evaluates the algorithm’s overhead for producing the result.

We developed a C++-based simulator implementing all the above algorithms.

For OND and MPBDH, we used the Gurobi optimizer [48] to solve the LPs. Each

experiment was conducted on a Ubuntu Linux PC with Quad-Core 3.4GHz CPU and

16GB memory. Experiments were repeated for 20 times under the same settings to

average out random noises. Each experiment was repeated for 20 times under the

same setting, and results were averaged over all runs.

39

2.6.2 Evaluation Results

2.6.2.1 Comparison with theoretical upper bound

Fig. 2.2 shows the comparison between PDA and OND. Note that the error bars

show the 95% confidence intervals around the mean. Since OND is delay-agnostic,

its optimal value yields an upper bound on the optimal value of OQRTS. As shown

in Fig. 2.2(a), the solution produced by PDA is extremely close to the upper bound

produced by OND, much higher than the theoretical guarantee (1− ω). Also, though

the solution degrades with looser accuracy parameter ω, the degradation is minor. The

observed optimality gap is within 1%. The running time of PDA, shown in Fig. 2.2(b),

is decreasing polynomially to 1/ω. In conclusion, a loose accuracy parameter ω, such

as no less than 0.5, is typically sufficient for practical use.

0.3 0.4 0.5 0.6 0.7 0.8
Accuracy parameter ω

0.00

0.25

0.50

0.75

1.00

T
r
a
f
f
i
c

s
c
a
l
i
n
g

r
a
t
i
o

PDA OND

0.3 0.4 0.5 0.6 0.7 0.8

0.96

1.00

1.04

1.08

(a) Traffic scaling ratio vs. ω

0.3 0.4 0.5 0.6 0.7 0.8
Accuracy parameter ω

400

800

1200

1600

R
u
n
n
i
n
g

t
i
m
e

(
s
)

PDA

(b) Running time vs. ω

Figure 2.2: Comparison with upper bound, with varying accuracy.

40

112.5127.5142.5157.5172.5187.5
Average delay bound

0.25

0.50

0.75

1.00

T
r
a
f
f
i
c

s
c
a
l
i
n
g

r
a
t
i
o

PDA

SP

PDA-ND

MPBDH

(a) Objective vs. delay bounds

0.3 0.4 0.5 0.6 0.7 0.8
Average reliability para.

0.0

0.5

1.0

1.5

T
r
a
f
f
i
c

s
c
a
l
i
n
g

r
a
t
i
o

PDA

SP

PDA-NR

MPBDH

(b) Objective vs. reliability

5 10 15 20 25 30
nodes

1

2

3

4

T
r
a
f
f
i
c

s
c
a
l
i
n
g

r
a
t
i
o

PDA

SP

PDA-NR

MPBDH

(c) Objective vs. # nodes

0.2 0.4 0.6 0.8 1.0
Connectivity (α and β)

0.0

0.5

1.0

1.5

T
r
a
f
f
i
c

s
c
a
l
i
n
g

r
a
t
i
o

PDA

SP

PDA-NR

MPBDH

(d) Objective vs. connectivity

Figure 2.3: Traffic scaling ratio with varying delay bounds, reliability requirements,
number of nodes, and connectivity parameters.

2.6.2.2 Comparison with baseline heuristics

Figs. 2.3 and 2.4 show the comparison of PDA (including PDA-ND or PDA-NR)

with the two baselines, MPBDH and SP, under various scenarios.

Figs. 2.3(a) and 2.4(a) show the objective values and running times respectively

41

112.5127.5142.5157.5172.5187.5
Average delay bound

80

160

240

320

R
u
n
n
i
n
g

t
i
m
e

(
s
)

PDA

SP

PDA-ND

MPBDH

112.5127.5142.5157.5172.5187.5
0.0
0.2
0.4
0.6
0.8

(a) Running time vs. delay bounds

0.3 0.4 0.5 0.6 0.7 0.8
Average reliability para.

100

200

300

400

R
u
n
n
i
n
g

t
i
m
e

(
s
)

PDA

SP

PDA-NR

MPBDH

0.3 0.4 0.5 0.6 0.7 0.8
0.00

0.15

0.30

0.45

(b) Running time vs. reliability

5 10 15 20 25 30
nodes

500

1000

1500

2000

R
u
n
n
i
n
g

t
i
m
e

(
s
)

PDA

SP

PDA-NR

MPBDH

5 10 15 20 25 30
0.0
0.3
0.6
0.9
1.2

(c) Running time vs. # nodes

0.2 0.4 0.6 0.8 1.0
Connectivity (α and β)

100

200

300

400

R
u
n
n
i
n
g

t
i
m
e

(
s
)

PDA

SP

PDA-NR

MPBDH

0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8

(d) Running time vs. connectivity

Figure 2.4: Running time with varying delay bounds, reliability requirements, number
of nodes, and connectivity parameters.

with varying TC delay bounds. With increasing delay bounds, both PDA and MPBDH

achieve better traffic scaling ratio. SP has consistent performance with varying delay

bounds as it only considers the shortest path. However, PDA outperforms both

heuristics drastically, with an average improvement of 5.9× compared to MPBDH and

7.9× compared to SP. The enhanced performance indeed comes with increased time

42

complexity, as shown in Fig. 2.4(a). The delay bounds have limited impact on time

complexity in Fig. 2.4(a). Finally, comparing PDA and PDA-ND, the delay constraints

lead to both degraded throughput and much larger time complexity, the latter due to

the computation of a delay constrained least cost path instead of a simple shortest

path.

Figs. 2.3(b) and 2.4(b) show the objective values and running times respectively

with varying TC reliability parameter (the average ratio of maximum tolerable loss

over bandwidth demand). Increased tolerable loss results in increased traffic scaling

ratio in general, due to more bandwidth available to each TC’s traffic at each service

function instance. PDA again outperforms both heuristics in terms of throughput, with

an average improvement of 6.1× and 8.5× compared to MPBDH and SP respectively.

Comparing PDA and PDA-NR, the latter has a better throughput due to the relaxation

of the reliability requirements, and a lower time complexity due to the less number of

constraints (thus the number of dual variables) when reliability is not considered.

Figs. 2.3(c) and 2.4(c) show experiments with varying number of nodes in the

network. Increasing number of nodes leads to increased traffic scaling ratios. However,

after a certain threshold, the scaling ratio derived by PDA saturates. This is because

the number of instances of each service function remains the same, and hence the

the scaling ratios are constrained by the reliability requirements instead of the link

capacities when the number of nodes become large. The throughput achieved by PDA

surpasses MPBDH and SP significantly, with an average improvement of 3.7× and

8.2× compared to MPBDH and SP respectively. The running times increase with the

number of nodes, due to the increased number of links.

Figs. 2.3(d) and 2.4(d) show experiments with varying network connectivity, which

is controlled by parameters α and β in the Waxman model. Increased connectivity

43

leads to increased throughput. Comparisons among algorithms are similar to the

above. On average, PDA outperforms MPBDH and SP by 6.5× and 5.4×, respectively.

MPBDH performs worse than SP, again due to the increased bandwidth on infeasible

paths. The running times increase with network connectivity, due to the increase in

both the problem size and the time for finding (approximate) shortest feasible paths.

To summarize, our findings are as follows:

• Our algorithm achieves near-optimal solutions even when the accuracy parameter

is relatively loose. In general, the optimality gap is within 1%. Thus a loosely

selected accuracy parameter is sufficient for most practical uses.

• Our algorithm outperforms both baseline heuristics (MPBDH and SP) signifi-

cantly.

• The running time overhead of our algorithm is acceptable in practice, as network

planning typically happens in much longer periods, for example, once per several

hours.

2.7 Conclusions

In this study, we studied the QoS-aware and Reliable Traffic Steering problem

for service function chaining in mobile networks. We formulated the problem in a

software-defined approach, considering various requirements of different classes of

traffic, including service chaining, QoS, reliability, and type-of-transmission constraints.

The problem, along with its optimization version, was proved to be NP-hard. We

then proposed an FPTAS for the optimization problem, which produces a (1 − ω)-

approximate solution within time polynomial to the input size and 1/ω. We evaluated

our algorithm through extensive simulation experiments, which validated that our

44

algorithm has near-optimal performance, and achieves much better throughput than

the baseline heuristics.

45

Chapter 3

PROVISIONING QOS-AWARE AND ROBUST APPLICATIONS IN

INTERNET-OF-THINGS: A NETWORK PERSPECTIVE

3.1 Introduction

Designed to connect the digital world and the real world, the Internet-of-Things

(IoT) has been recognized as one of the enabling technologies of the next era of

computing. Numerous applications have been developed utilizing IoT functionalities,

enabling advances in a number of areas including smart cities, smart health, connected

cars, etc. It has been anticipated that the global IoT market will exceed $250B by

2020 [56].

One common type of IoT application is real-time processing applications, which

process continuous data streams generated by IoT devices for pre-processing or

analysis. These applications commonly have more stringent quality-of-service (QoS)

requirements than traditional applications, including delay, throughput, etc., in order

to ensure on-time delivery and analysis of real-time data and hence fast response

to the users. An example is real-time sports analysis applications [44], [122], which

analyze the status of live sports games, based on real-time data from cameras and/or

other sensors.

Unfortunately, current IoT infrastructures are not built specifically for real-time

processing applications. Current infrastructures use cloud computing as the underlying

computing support. While cloud computing offers abundant and inexpensive com-

puting power, it suffers from long end-to-end delay and high bandwidth usage, which

46

greatly affect the performance of real-time processing applications. This situation is

further aggravated by commonly used communication technologies in IoT, such as

cellular networks and/or low-power wide-area networks (LPWANs), which offer only

limited bandwidth for transmission.

Fog computing is one of the emerging technologies aiming to address these issues

in current IoT. With fog nodes deployed near the IoT devices and end users, fog

computing can reduce both the propagational delay and the bandwidth usage. However,

ubiquitous fog node deployment is still unrealistic within the near future due to cost

issues. Combined with the limited capacity of the IoT networks, this raises the problem

of resource allocation in fog-enabled IoT. In particular, an infrastructure needs to

allocate computing and network resources to support each application with proper

QoS guarantees.

In this study, we study this problem from a network perspective, extending from

our previous conference version [151]. Given a real-time processing IoT application,

the infrastructure needs to decide both the fog node to host this application, and the

channels along which the application’s data streams will be transmitted. The channels

must satisfy the QoS requirement of the application, including both the bandwidth

demand of each data source, and the delay bound of the application. Compared to

our conference version [151], we further consider the robustness requirement of each

data source: how could the application survive an arbitrary network failure. We

propose a robustness technique where given an arbitrary network failure, either a

link, a network node or a host node, the data loss incurred on each data stream is

bounded by a portion of the total data. This, combined with existing error correction

coding schemes [25], can achieve lossless data transmission and processing for IoT

47

applications, which is crucial for many critical application scenarios such as emergency

handling.

Two types of applications are considered in this study. A parallelizable application

is one that can be deployed as multiple distributed instances, possibly with certain data

restrictions. A non-parallelizable application is one that must be centrally implemented

on one host node. We further consider two provisioning scenarios: single-application

provisioning, and multi-application provisioning. Combining the two types with the

two provisioning scenarios, we have four versions of the provisioning problem. We

formally define these problems, and prove that they are all NP-hard. We then propose

fully polynomial-time approximation schemes (FPTASs) for three of the four versions,

and a randomized algorithm for the last one. To validate our algorithms, we have

conducted extensive simulations, comparing our proposed algorithms both to the

theoretical upper bound and to several heuristic solutions. It has been shown that our

algorithms achieve close-to-optimal performance, and largely outperform the heuristics

in terms of both bandwidth and delay.

Our contributions are summarized as follows:

• To the best of our knowledge, we are the first to study the problem of IoT

application provisioning with both QoS and robustness requirements.

• We formulate four versions of the provisioning problem, and proved all of them

to be NP-hard.

• We propose FPTASs for three of the four versions, and a randomized algorithm

for the last one.

• We use extensive simulations to evaluate the performance of our algorithms

against both the theoretical bound and several practical heuristics.

The rest of this study is organized as follows. In Section 3.2, we introduce

48

background and related work. In Section 3.3, we present our system model. In

Section 3.4, we formally define the four provisioning problems we study, and present

their complexity result. In Sections 3.5 and 3.6, we propose our algorithms for

single application provisioning and multi-application provisioning, respectively. In

Section 3.7, we present our performance evaluation results. In Section 3.8, we conclude

this study.

3.2 Background and Related Work

3.2.1 Internet-of-Things and Fog Computing

While the concept of the “Internet-of-Things” can trace back to the last century2,

its power has barely been unleashed until recently, when several enabling technologies,

including wireless networks, cloud computing, and data science, have witnessed drastic

advances. Since then, extensive efforts have been put into IoT-related areas, including

computing architectures [11], communications [122], radio-frequency identification

(RFID) [19], etc. A survey on IoT can be found in [73].

Fog computing has been regarded as one of the key technologies that enable

IoT [11]. Extending from cloud computing, fog computing deploys geographically

distributed fog nodes in the edge network, providing computing power closer to both

the IoT devices and end users. Fog computing can improve the performance and

energy efficiency in many IoT applications, including crowdsensing [7], smart cities [41],

etc.

The limited resources in IoT and fog have urged efforts on new resource allo-

1The term dates back to a talk by Kevin Ashton in 1999 [73].

49

cation methods. Zeng et al. [155] studied task scheduling and data placement to

minimize I/O time, computing time and transmission delay in fog platforms. Many

have studied workload offloading in edge/fog-cloud systems with different objectives,

including power consumption [28], [136], delay minimization [28], [120], [123], quality-

of-experience [136], etc. However, most of these do not consider the complex structure

and limited capacity of the edge network; while Deng et al. [28] indeed considered

network bandwidth constraints, they assumed that the transmission of each appli-

cation’s data will not interfere with each other, which does not capture the sharing

nature of the IoT networks, and hence does not apply in many cases. Due to lack of

existing work on network resource allocation in fog-enabled IoT, we study application

provisioning from a network perspective, where we aim to guarantee the QoS of

applications in terms of both transmission delay and bandwidth.

3.2.2 Network Service Provisioning

Stepping out of the IoT and fog computing domain, some related resource

allocation problems have also been studied in different contexts, such as virtual

network/infrastructure embedding (VNE/VIE) [21] and service function chaining

(SFC) [70], [109]. The VNE/VIE problems aim to find an embedding of a virtual

service topology onto the physical topology, which respects resource capacities in the

substrate. The difference is that VIE allows virtual node consolidation while VNE

does not. While these two problems can be viewed as a generalization of ours, they

are harder to solve. To the best of our knowledge, there has yet been any non-trivial

approximation ratio for VNE/VIE on general graphs. Assumptions on topologies

50

and/or service models help in providing performance bounds [162], but are commonly

too restrictive to handle the complex structures of the IoT networks.

SFC is another special case of the general VNE/VIE problems, where the virtual

topology is restricted to line graphs. In this case, certain approximation bounds can

be obtained, as shown by Rost et al. [109] and Kuo et al. [70]. In this study, we

consider a different service model than SFC, where the virtual topologies are star

graphs. We also propose solutions with non-trivial performance guarantees.

3.2.3 Robustness Applications and Networks

Robustness of computing and network services has long been studied in the

literature. There are commonly two approaches for building and/or maintaining robust

services. One is to provide fault resilience through redundancy, i.e., provisioning

redundant resources (computing, path, bandwidth, etc.) as backups to quickly recover

a service when failure happens. For example, restoration based routing, bandwidth

allocation and network embedding have been studied in [58], [101], [137], [138]. Similar

approaches have also been used for service, application and virtual machine backups,

such as [10], [63], [142], [146], [154]. Due to the need for redundancy, this approach

commonly results in excessively reserved backup resources that remain idle during

normal operations.

The second approach is to rather leverage the fault tolerance of the services

themselves, and to minimize either the fault probability or the fault impact incurred on

the services. Zhang et al. [157] modeled the fault probability of a virtual infrastructure

based on the availability of all its physical components, and sought to minimize

this probability during the embedding. Acharya et al. [1], Zhang et al. [158] and

51

Yallouz et al. [140] explored bounding the impact of a failure on the overall throughput

of the system. This was termed tunable survivability in [140]. This idea was further

leveraged in [141] and [153]. Compared to the redundancy-based approach, this

approach results in much less resource consumption, yet providing reasonably good

protection in practice. We therefore take this approach in our study, specifically due

to the already scarce resources in the IoT environment.

3.3 System Model

3.3.1 Infrastructure Model

The IoT infrastructure is modeled as a directed graph G = (V , E), where V is

the node set, and E is the link set. The node set consists of both facility nodes

(general-purpose servers, fog-enabled switches/routers, etc.) and network nodes

(switches/routers). We use F ⊆ V to denote the set of facility nodes, and N ⊆ V to

denote the set of network nodes. Note that these two sets are not necessarily disjoint,

as some network nodes may also have computing capabilities [22]. Each link e ∈ E

has a capacity, denoted by ce > 0, and a transmission delay, denoted by de > 0. For

simplicity, we use Ev to denote all links adjacent to node v ∈ V , regardless of direction.

3.3.2 Application Model

An application receives continuous data from one or more data sources, and per-

forms joint analysis of all received data. We assume each source generates data in a

constant rate, e.g., a video camera generating video footages. Given the application,

52

the infrastructure needs to both find a facility node to host it, and establish trans-

mission channels from each source to the host. Each application may require certain

hardware resources, e.g., video processing commonly requires strong GPU for efficient

computation. Hence in many cases, only a subset of the facility nodes can host an

application. The established channels need to satisfy at least two QoS requirements:

1) each source should receive bandwidth that meets its data generation rate, and 2)

the transmission delay of each channel should be within the delay tolerance of the

application.

Formally, an IoT application is denoted by a triple, Γ = (S,B, D), where S ⊆ V

denotes the set of data sources of Γ, B = {Bs ∈ R+ | s ∈ S} denotes the corresponding

data generation rate of each data source in S (R+ is the set of positive real numbers),

and D > 0 is the delay bound that must be enforced for transmission from each data

source. Given an application Γ, we further use FΓ ⊆ F to denote its candidate host

set, where each v ∈ FΓ satisfies the hardware requirement of Γ.

3.3.3 Basic Provisioning Model

As aforementioned, application provisioning involves both finding the host node and

data routing. Before defining the provisioning problems, we first make the following

definitions.

Definition 3.1 (Feasible path set). Given network G and an application Γ, let v ∈ FΓ

be a candidate host of Γ and s ∈ S be a data source of Γ, the feasible path set of Γ

regarding v and s, denoted by PΓ
v,s, is defined as the subset of all (s, v)-paths in G such

that for each path p ∈ PΓ
v,s, ∑

e∈p
de ≤ D. (3.1)

53

We use PΓ
v =

⋃
s∈S PΓ

v,s to denote the feasible path set from all data sources of Γ to

candidate host v, and PΓ =
⋃
v∈FΓ
PΓ
v the feasible path set towards all candidate hosts

of Γ.

Definition 3.2 (Bandwidth allocation). Let P be an arbitrary set of paths in G. A

bandwidth allocation of P is defined as a mapping L : P 7→ R∗ (R∗ denotes the set of

nonnegative real numbers), where L(p) denotes the bandwidth allocated on path p for

any p ∈ P . We say that a bandwidth allocation L is feasible, iff for any link e ∈ E,∑
p∈P :e∈p

L(p) ≤ ce. (3.2)

We use b(P) =
∑

p∈P L(p) to denote the aggregate bandwidth of L over path set P .

Before defining the expected outcome of application provisioning, we first dis-

tinguish between two types of applications. A non-parallelizable application has no

parallelism capability, hence its logic must be centrally implemented on exactly one

facility node. On the contrary, a parallelizable application can have its logic split

over multiple distributed instances, with each instance processing a portion of the

incoming data. However, implementing parallelism may require certain data splitting

restrictions to be enforced during provisioning, such as data synchronization among

data sources. An example of a parallelizable application is stateless sensor data

fusion [30], where each instance can process an arbitrary portion of the incoming data

as long as the same portion is received synchronously from every data source. We

formalize the provisioning of these two types of applications in the following.

Definition 3.3 (Provisioning scheme). Given network G and an application Γ, a

provisioning scheme is defined as a triple Π = (x, P Γ
x ,LΓ

x), where x = {xv | v ∈ F} is a

decision variable vector with xv denoting the fraction of data incoming to an instance

54

of Γ on candidate host v, P Γ
x ⊆ PΓ is a subset of feasible paths of Γ towards each

candidate host v ∈ F with xv > 0, and LΓ
x is a feasible bandwidth allocation of P Γ

x .

We say that a provisioning scheme Π is feasible iff

1.
∑

v∈F xv = 1,

2. for ∀v ∈ F , if Γ is non-parallelizable, then xv ∈ {0, 1}, otherwise xv ∈ [0, 1],

and

3. for ∀s ∈ S and ∀v ∈ F , the aggregate bandwidth b(P Γ
v,s) ≥ B(s) · xv, where

P Γ
v,s = P Γ

x ∪ PΓ
v,s is the subset of selected paths from s to v.

The last requirement of feasibility in Definition 3.3 ensures that the same portion

of data generated by all data sources are received at the same instance, which can be

used to enforce data synchronization for applications such as stateless sensor fusion.

For simplicity, we assume that the processing results are consumed locally at the

application host. However, it is trivial to add channels that transmit the results, and

hence is omitted for simplicity.

3.3.4 Robustness Model

Robustness refers to the ability of an application to provide uninterrupted service

when facing different types of failures in the physical infrastructure. Some failures

have inevitable effects in service quality, such as failures at data sources; some other

failures, however, can be avoided or at least alleviated by proper load and redundancy

management. In this study, we focus on tackling failures that can be alleviated,

including both link failures and node failures.

55

As stated before, instead of using a traditional “all-or-nothing” protection, we use a

“soft” mechanism for robustness [153], [158], which ensures that each application incurs

only bounded data loss due to an arbitrary single failure in the network. Specifically,

each data source s ∈ S has a reliability parameter rs ∈ (0, 1], which denotes the

maximum tolerable data loss ratio for correct processing of the data from source s.

The idea is to ensure that the load is properly distributed such that the application

incurs no more than rs · Bs data loss from s due to any single link or node failure.

We call this approach robustness through load balancing. This can be coupled with a

proper application- or network-level coding technique [25] to achieve loss-resistance in

failure scenarios.

Given the above, we can extend Definition 3.3 to incorporate robustness. We start

with the definition of a link-robust provisioning scheme, which protects against a single

link failure:

Definition 3.4 (Link-robust provisioning scheme). Given network G and an appli-

cation Γ, a link-robust provisioning scheme is a provisioning scheme Π for Γ that

satisfies: for ∀s ∈ S and ∀e ∈ E,
∑

p∈PΓ
x :e∈p L(p) ≤ rs ·Bs.

The idea behind Definition 3.5 is that the data loss for data source s due to a

single link failure is essentially bounded by the amount of data transmitted on all

paths through link e. Similarly, we can define a node-robust provisioning scheme:

Definition 3.5 (Node-robust provisioning scheme). Given network G and an appli-

cation Γ, a node-robust provisioning scheme is a provisioning scheme Π for Γ that

satisfies: for ∀s ∈ S and ∀u ∈ V \ {s},
∑

p∈PΓ
x :u∈p L(p) ≤ rs ·Bs.

The source node s of each data stream is excluded from the protection, as failure

56

of the source node will cause full blockage of data transmission, and hence cannot be

alleviated through load balancing.

Before diving into the concrete problem definition, we want to highlight the

different robustness capabilities of the two types of applications. Note that node-

robustness is more difficult to achieve than link-robustness, as the former automatically

guarantees the latter. For a non-parallelizable application, only link-robustness can

be achieved. This is because a non-parallelizable application requires that its logic

to be centrally implemented, which becomes a single point of failure. In this case,

protection over node failures must be implemented in the form of redundancy rather

than load balancing, and hence is out of the scope of this study. On the other

hand, a parallelizable application can achieve node-robustness, due to its capability of

balancing load across multiple instances. In the following of this study, we use the term

“robust” to denote node-robustness for parallelizable applications, and link-robustness

for non-parallelizable applications, depending on the context. It should be noted

that rs = 1 means no protection for data source s, hence the problem we study is a

generalization of the problem studied in [151].

3.3.5 Notations

We define the following notations to facilitate illustration. V = |V| is the number

of nodes. E = |E| is the number of links. FΓ = |FΓ| is the number of candidate hosts

for application Γ, and F = |F| is the total number of facility nodes. SΓ = |SΓ| is the

number of data sources for application Γ, and S =
∑

Γ∈Γ SΓ is the total number of

data sources for a set of applications Γ.

57

3.4 Problem Statement and Complexity

We separately consider the provisioning for the two types of applications: par-

allelizable and non-parallelizable. As stated before, we consider two provisioning

scenarios. In the first scenario, we consider the provisioning of a single application at a

time, which can be applied, for example, when processing arriving application requests

in an online manner. In the second scenario, we consider the joint provisioning of

multiple applications (of the same type) at the same time. This can be useful both

for batch provisioning of queued application requests, and for provisioning multiple

inter-related application components. Combining the two types of applications with

the two provisioning scenarios, we arrive at four versions of the provisioning problem,

which are formally defined in the following.

Definition 3.6 (SAP). Given network G and an application Γ, the Single-

Application Provisioning (SAP) problem is to find a feasible and robust pro-

visioning scheme Π for Γ.

Its optimization version, named O-SAP, is to find a robust provisioning scheme Π,

such that for every data source s ∈ S, its aggregate bandwidth satisfies b(P Γ
x,s) ≥ λ·B(s),

and the traffic scaling ratio λ is maximized.

We use P-SAP/PO-SAP to denote the corresponding problem with a parallelizable

application and node-robustness, and N-SAP/NO-SAP to denote the corresponding

problem with a non-parallelizable application and link-robustness.

Definition 3.7 (MAP). Given network G and an application set Γ = {Γ1, . . . ,ΓK},

the Multi-Application Provisioning (MAP) problem is to find a set of feasible

and robust provisioning schemes Π = {Π1, . . . ,ΠK}, where Πk = (xk, Pk,Lk) is the

provisioning scheme for Γk for k = 1, . . . , K, such that the shared capacity constraint

58

is satisfied for any link e ∈ E:

∑K

k=1

∑
p∈Pk
Lk(p) ≤ ce.

Its optimization version, named O-MAP, is to find a set of robust provisioning

schemes Π for Γ, such that the minimum traffic scaling ratio λ of all applications, as

defined in Definition 3.6, is maximized.

We use Pk,s = Pk ∩PΓk
xk,s

to denote the subset of selected paths for data source s of

application Γk.

We use P-MAP/PO-MAP to denote the corresponding problem with parallelizable

applications and node-robustness, and N-MAP/NO-MAP to denote the corresponding

problem with non-parallelizable applications and link-robustness.

Theorem 3.1. All problems defined above are NP-hard.

Proof. Since SAP problems are special cases of the corresponding MAP problems,

it suffices to prove that P-SAP and N-SAP are NP-hard. Consider a special case

of either P-SAP or N-SAP where Γ has one data source s, one candidate host t,

and no protection (rs = 1). In this case, SAP becomes finding a set of (s, t)-paths

and a bandwidth allocation that satisfy the bandwidth demand B(s) and the delay

bound D. This turns out to be the Multi-Path routing with Bandwidth and Delay

constraints (MPBD) problem, which is NP-hard [85]. Hence SAP is NP-hard, and the

NP-hardness of the rest follows.

Due to the NP-hardness of the above problems, we seek to design approximation

schemes for the optimization problems, in order to provide as accurate judgements for

the decision problems as possible. In the following sections, we show that three over

four of the optimization problems admit FPTASs.

59

3.5 Single-Application Provisioning

We start with the problem of provisioning one application at a time. Due to the

two types of applications, parallelizable or non-parallelizable, we have two versions

of this problem (PO-SAP and NO-SAP). In this section, we focus on the NO-SAP

problem, and propose an FPTAS. We leave the parallelizable case to Section 3.6,

where we propose an FPTAS for solving both PO-SAP and PO-MAP. In the rest of

this section, we omit the term “non-parallelizable” without ambiguity.

Our algorithm to NO-SAP is based on the decomposition of NO-SAP into two

subproblems: Host Designation (HD) that decides the host node of application Γ, and

Data Routing (DR) that decides the routing paths and bandwidth from each data

source to the host. For simplicity, we extend this decomposition method throughout

the rest of this study, with HD denoting determination of the decision vector x, and

DR denoting the routing process, i.e., determining P Γ
x and LΓ

x. For the NO-SAP

problem, the relationship between this problem and its DR subproblem is stated in

the following lemma.

Lemma 3.1. If the DR subproblem admits a polynomial-time a-approximation algo-

rithm, so does NO-SAP.

Proof. We construct an a-approximation algorithm to NO-SAP (ANO-SAP) out of an

a-approximation algorithm to DR (ADR), as shown in Algorithm 3.1. The algorithm

iterates over all candidate hosts to find the best solution for the application, using

the a-approximation ADR. To prove Algorithm 3.1 is an a-approximation to NO-SAP,

let Π∗ = (x∗, P ∗,L∗) be an optimal solution to NO-SAP with objective value λ∗

and x∗v∗ = 1. Then (P ∗,L∗) is indeed a feasible solution of DR given host node v∗.

Let λ∗v∗ be the optimal DR solution with v∗, we have λ∗ ≤ λ∗v∗ . The DR solution

60

Algorithm 3.1: Approximation Algorithm ANO-SAP

Input: Network G, application Γ
Output: Traffic scaling ratio λ, provisioning scheme Π

1 λ← 0, x← 0;
2 for each candidate host v ∈ FΓ do
3 (λv, P

Γ
v ,LΓ

v)← ADR(G,Γ, v);
4 if λv > λ then
5 λ← λv, x← 0, xv ← 1;
6 Π← (x, P Γ

v ,LΓ
v);

7 end
8 end
9 return (λ,Π).

picked in Algorithm 3.1 during iteration v∗, denoted by (P Γ
v∗ ,LΓ

v∗), has scaling ratio

λv∗ ≥ aλ∗v∗ ≥ aλ∗. This leads to λ ≥ λv∗ ≥ aλ∗. The lemma follows.

It remains to solve the DR subproblem, which is still NP-hard due to the same

argument as in the proof of Theorem 3.1. Yet, the DR subproblem turns out to be

a special case of the Maximum Concurrent Flow (MCF) problem with delay bound

and robustness requirement. It is not hard to see that this is a special case of the

QoS-aware and Reliable Traffic Steering (QRTS) problem studied in [153], for which

an FPTAS exists. Combining the FPTAS proposed in [153] with Lemma 3.1 leads to

our final theorem for NO-SAP:

Theorem 3.2. NO-SAP admits an FPTAS, as shown in Algorithm 3.1 combined

with the FPTAS in [153].

3.6 Multi-Application Provisioning

In this section, we study the more general problem where multiple applications

seek to share the IoT infrastructure. Again, the problem has two versions, one for

61

parallelizable applications (PO-MAP), and one for non-parallelizable applications

(NO-MAP). Note that PO-MAP is a generalization of PO-SAP, hence an FPTAS to

the former automatically yields an FPTAS to the latter. However, we do not have an

FPTAS for NO-MAP. We thus propose a randomized algorithm at the end of this

section.

3.6.1 Problem Formulation for PO-MAP

Below, we first give an exact formulation of PO-MAP. For simplicity, we use k to

denote Γk if no ambiguity is introduced. We use P =
⋃K
k=1Pk to denote the set of

all feasible paths of all applications3. We further use Pks ⊆ P to denote all feasible

paths for application k’s data source s. For consistency of notation, we define variable

x(k, v)
∆
= xkv as the fraction of application k hosted on candidate host v ∈ Fk, variable

L(p) to denote the bandwidth allocation on path p ∈ P, and variable λ still as the

62

traffic scaling ratio. Then NO-MAP is formulated as follows:

max λ (3.3a)

s.t.
∑
p∈Pkv,s

L(p) ≥ Bk
s · λ · x(k, v), ∀k, v ∈ Fk, s; (3.3b)

∑
v∈Fk

x(k, v) = 1, ∀k; (3.3c)

∑
p∈P:e∈p

L(p) ≤ ce, ∀e ∈ E ; (3.3d)

∑
p∈Pks :u∈p\{s}

L(p) ≤ rks ·Bk
s , ∀k, s, u ∈ V \ {s}; (3.3e)

x(k, v) ∈ [0, 1],L(p), λ ≥ 0, ∀k, v ∈ Fk, p. (3.3f)

Explanation: Constraint (3.3b) couples bandwidth allocation with the demands,

the host designation, and the scaling ratio. Constraint (3.3c) ensures that each

application is hosted on exactly one node. Constraint (3.3d) enforces link capacities.

Constraint (3.3e) enforces the node-robustness requirement, such that the throughput

over each node u ∈ V \ {s} is bounded by rks · Bk
s for each data source s of each

application k.

Program (3.3) seems like a Quadratic Program (QP) due to Constraint (3.3b).

However, with a simple transformation shown below, it can be transformed into an

3W.l.o.g., if two applications have an overlapping feasible routing path, we still regard the same
path for two different applications as two different paths.

63

equivalent Linear Program (LP). Define new variables y(k, v) = λ · x(k, v), we have

max λ (3.4a)

s.t.
∑
p∈Pkv,s

L(p) ≥ Bk
s · y(k, v), ∀k, v ∈ Fk, s; (3.4b)

∑
v∈Fk

y(k, v) ≥ λ, ∀k; (3.4c)

∑
p∈P:e∈p

L(p) ≤ ce, ∀e ∈ E ; (3.4d)

∑
p∈Pks :u∈p

L(p) ≤ rks ·Bk
s , ∀k, s, u ∈ V \ {s}; (3.4e)

y(k, v),L(p), λ ≥ 0, ∀k, v ∈ Fk, p. (3.4f)

It is easy to observe that Programs (3.3) and (3.4) are equivalent. However,

Program (3.4) may still have an exponential size due to the possibly exponential

number of feasible paths in a graph, and hence it cannot be solved directly using

standard LP techniques. Therefore, we next propose an FPTAS.

3.6.2 An FPTAS to PO-MAP

Our FPTAS to PO-MAP extends the ones to MCF reported in [12], [35], [38].

However, PO-MAP is more difficult than the above, due to the need for (fractional)

host designation as well as the node-robustness constraint. We first write the dual of

Program (3.4), where we define z(k, v, s) ≥ 0 as the dual variable of Constraint (3.4b)

for ∀k, v ∈ Fk, s ∈ Sk, ϕ(k) ≥ 0 as the dual variable of Constraint (3.4c) for ∀k, l(e)

as the dual variable of Constraint (3.4d) for ∀e ∈ E , and σ(k, s, u) as the dual variable

64

of Constraint (3.4e) for ∀k, s ∈ Sk, u ∈ V \ {s}:

min ∆(l, σ) =
∑
e∈E

cel(e) +
K∑
k=1

∑
s∈Sk

u6=s∑
u∈V

rks ·Bk
s · σ(k, s, u) (3.5a)

s.t.
∑
e∈p

l(e)+
∑
w∈p

σ(k, s, w)≥z(k, v, s), ∀k, v, s, p ∈ Pkv,s; (3.5b)

∑
s∈Sk

Bk
s · z(k, v, s) ≥ ϕ(k), ∀k, v; (3.5c)

K∑
k=1

ϕ(k) ≥ 1; (3.5d)

z(k, v, s), ϕ(k), l(e) ≥ 0, ∀k, v, s, e. (3.5e)

Since the primal and dual are intrinsically different from the above references, we

provide our full analysis for completeness of this study, starting from the observations

below:

Lemma 3.2. Constraint (3.5b) is binding, i.e., equality holds instead of inequality

at optimality, for at least one combination of k, v, s, p, where k = 1 . . . K, v ∈ Fk, s ∈

Sk, p ∈ Pkv,s.

Lemma 3.3. Constraint (3.5d) is binding.

Lemma 3.4. For ∀k, Constraint (3.5c) is binding for at least one candidate host

v ∈ Fk.

Lemma 3.5. For ∀k,∀v ∈ Fk,∀s ∈ Sk, Constraint (3.5b) is binding for at least one

feasible routing path p ∈ Pkv,s.

Proof. Let ε be an arbitrarily small positive amount. If Lemma 3.2 is false, Con-

straint (3.5b) is not binding for every combination of k, v, s, p. Then we can reduce the

value of l(e) for an arbitrary e where l(e) > 0 by ε, and obtain a feasible dual solution

65

with a strictly smaller objective value, contradicting our optimality assumption. If

Lemma 3.3 is false, then we can reduce the value of ϕ(k) for every k by ε. This will

make every Constraint (3.5c) unbinding. Then we can reduce the value of z(k, v, s)

for every combination of k, v, s, which makes every Constraint (3.5b) to be unbinding,

contradicting Lemma 3.2. If Lemma 3.4 is false for some k, then we can increase the

value of ϕ(k) by ε, which makes Constraint (3.5d) unbinding, contradicting Lemma 3.3.

If Lemma 3.5 is false for some combination of k, v, s, then we can increase the value

of z(k, v, s) by ε, which makes Constraint (3.5c) unbinding for the corresponding

k, contradicting Lemma 3.4. Therefore, we conclude that Lemmas 3.2–3.5 are all

true.

Based on Lemmas 3.2–3.5, we have the following facts.

1. At optimality, z(k, v, s) = minp∈Pkv,s{
∑

e∈p l(e) +
∑

u∈p\{s} σ(k, s, u)}, i.e.,

z(k, v, s) equals the shortest feasible routing path length in Pkv,s regarding

length functions l(·) for links and σ(k, s, ·) for nodes;

2. At optimality, ϕ(k) = minv∈Fk{
∑

s∈Sk B
k
s z(k, v, s)}, i.e., ϕ(k) equals the mini-

mum (over all possible candidate hosts v ∈ Fk) weighted (by Bk
s) sum (over all

sources s ∈ Sk) of shortest feasible routing path lengths in Pk regarding length

functions l and σ.

Let ζk,v,s(l, σ) = min
p∈Pkv,s

{
∑

e∈p l(e) +
∑

u∈p\{s} σ(k, s, u)} be the shortest path length

in Pkv,s regarding length functions l and σ, and ψk(l, σ) = minv∈Fk{
∑

s∈Sk B
k
s ζk,v,s(l, σ)}

be the minimum weighted sum of shortest path lengths of all data sources of k over

any candidate host v. Further define α(l, σ) =
∑K

k=1 ψk(l, σ). Then, Program (3.5) is

equivalent to minl,σ≥0 ∆(l, σ)/α(l, σ), i.e., finding l and σ minimizing ∆(l, σ)/α(l, σ).

Our FPTAS to PO-MAP is presented in Algorithm 3.2. A bold symbol denotes

a vector of normal symbols hereafter. In the process, the algorithm keeps track of

66

Algorithm 3.2: Approximation Scheme APO-MAP

Input: Network G, application set Γ, tolerance ω
Output: Scaling ratio λ, decisions y = {y(k, v)}k,v, path sets P = {P k

v,s}k,v,s,
bandwidth allocation L

1 Initialize ε = ω′ = ω
4
, γ =

(
1+ε(1+ω′)
E+(V−1)S

)1+ 1
ε(1+ω′) , l(e) = γ

ce
for ∀e ∈ E ,

σ(k, s, u) = γ
rksB

k
s
for ∀k, s, u ∈ V \ {s}, P k

v,s = ∅ for ∀k, v, s, L = ∅;
2 ρ← 0;
3 while ∆(l, σ) < 1 do // phase
4 ρ← ρ+ 1;
5 for k = 1 . . . K do // iteration
6 η ← 1.0;
7 while η > 0 do // step
8 (p̃,φ, ṽ, η̃)← PrimUpdt(G,Γ, k, l, σ, ω′);
9 if η̃ > η then

10 φ← ηφ/η̃; η̃ ← η;
11 end
12 y(k, v)← y(k, v) + η̃; η ← η − η̃;
13 for s ∈ Sk do
14 P k

v,s ← P k
v,s ∪ {p̃s};

15 L(p̃s)← L(p̃s) + φs;
16 end
17 l(e)← l(e)(1 + εφe

ce
) for ∀e ∈ Ep̃, where Ep̃ =

⋃
s∈Sk p̃s, and

φe =
∑

s∈Sk:e∈p̃s φs;
18 σ(k, s, u)← σ(k, s, u)(1 + εφu

rksB
k
s
) for ∀s ∈ Sk, u ∈ Vp̃ \ {s}, where

Vp̃ =
⋃
s∈Sk{v ∈ p̃s}, and φu =

∑
s∈Sk:u∈p̃s\{s} φs;

19 end
20 end
21 end
22 Scale L and y after phase ρ− 1 by 1/ log1+ε 1/γ;
23 λ← (ρ− 1)/ log1+ε 1/γ;
24 return (λ,y,P,L).

both a primal solution, denoted by variables (y,L) (note that λ can be computed

based on L), and a dual solution, denoted by the length functions (l, σ) (note that

both variables z and ϕ can be computed based on l and σ). Both solutions will be

gradually updated. Initially, each link e’s dual length is initialized to γ/ce, and each

67

Algorithm 3.3: Algorithm PrimUpdt(G,Γ, k, l, σ, ω′)
Input: Network G, application set Γ, index k, length functions l and σ,

tolerance ω′
Output: Paths p̃ = (p̃s)

T
s∈Sk , bandwidth φ = (φs)

T
s∈Sk , selected node ṽ,

fraction of flow η̃
// path computation

1 for ∀v ∈ Fk do
2 for ∀s ∈ Sk do
3 p̃v,s ← arg min

p∈Pkv,s
{
∑
e∈p

l(e) +
∑

u∈p\{s}
σ(k, s, u)};

4 end
5 end
6 ṽ ← arg minv∈Fk{

∑
s∈Sk B

k
s ζk,v,s(l, σ)};

7 p̃s ← p̃ṽ,s for ∀s ∈ Sk;
// bandwidth allocation

8 Υe ← 0 for ∀e ∈ E ;
9 Υs,u ← 0 for ∀s ∈ Sk, u ∈ V \ {s};

10 for ∀s ∈ Sk do
11 for link ∀e ∈ p̃s do
12 Υe ← Υe +Bk

s ;
13 end
14 for node ∀u ∈ p̃s \ {s} do
15 Υs,u ← Υs,u +Bk

s ;
16 end
17 end
18 Υ1

max ← maxe∈E{Υe/ce};
19 Υ2

max ← maxs∈Sk,u∈V\{s}{Υs,u/r
k
sB

k
s };

20 η̃ ← 1/max{Υ1
max,Υ

2
max}, φs ← Bk

s · η̃ for ∀s;
21 return (p̃,φ, ṽ, η̃).

node u’s dual length (regarding application k’s data source s) is initialized to γ/rksBk
s .

The algorithm runs in phases (Lines 3–21), in each phase going through an iteration

for each application k (Lines 5–20). In each iteration, the algorithm tries to push

exactly Bk
s amount of flow for each data source s of application k. This is done in

steps (Lines 7–19), where in each step, we push the same fraction of flow (η̃) to the

same candidate host (ṽ) from all data sources. This ensures that when we update the

68

primal solution, the increment in variable y(k, v) is proportional to the flow pushed

to v from any data source s ∈ Sk, thus satisfying both Constraints (3.4b) and (3.4c).

This is achieved by first calling the PrimUpdt subroutine to get a feasible primal

update, denoted by (p̃,φ, ṽ, η̃), and then updating the primal solution in Lines 9–16.

After primal update, the algorithm then updates the dual lengths l(e) based on the

bandwidth φe pushed along each link e, in Line 17; it also updates σ(k, s, u) based

on the bandwidth at each node, in Line 18. It stops when ∆(l, σ) ≥ 1, after which it

then scales the obtained flows to enforce the link capacity constraints in Lines 22–23.

A key building block is the PrimUpdt subroutine, which produces a primal update

for application k that will be incorporated into the current primal solution. Its

algorithm is shown in Algorithm 3.3. It starts from finding the dual-shortest feasible

path from every data source s ∈ Sk to every candidate host v ∈ Fk, denoted as p̃v,s.

The candidate host ṽ corresponding to the minimum value ψk(l) is picked, along with

the corresponding paths to ṽ, denoted as p̃. Next, it derives a bandwidth allocation,

such that 1) each data source s’s bandwidth (φs) is proportional to its demand Bk
s ,

2) total bandwidth on every link e does not exceed e’s capacity ce, 3) the robustness

requirement is also satisfied at each node u for each application’s each data source,

and 4) the minimum ratio (η̃) between any source’s bandwidth and its demand is

maximized. This is done in Lines 8–20 of Algorithm 3.3. Node ṽ, paths p̃ and

bandwidth allocation φ are then returned along with the resulting scaling ratio η̃.

PrimUpdt relies on finding the dual-shortest feasible routing paths, as in Line 12.

However, this task itself is non-trivial, as it is equivalent to the Delay Constrained

Least Cost path (DCLC) problem, which itself is NP-hard. Nevertheless, there exist

FPTASs for DCLC [139], which can output a (1 + ω′)-approximation of the dual-

shortest feasible path within time polynomial to the input size and 1/ω′. Combined

69

with the selection of ε, ω′ and γ, we can prove that such an approximation is sufficient

for obtaining our desired performance guarantee. The performance of APO-MAP is

summarized in Theorem 3.3.

Theorem 3.3. Given G, Γ, and ω ∈ (0, 1), APO-MAP (with Line 3 of the PrimUpdt

subroutine replaced by a DCLC FPTAS) can compute a (1− ω)-approximation of the

optimal PO-MAP solution, within time polynomial to both the input size and 1/ω, and

hence is an FPTAS to PO-MAP.

Proof. We first prove the approximation ratio of APO-MAP, and then prove its time

complexity.

Part I (Approximation Ratio): We first assume the optimal primal objective

λ∗ ≥ 1; this assumption will be removed later on. Due to the strong duality of

LP, the optimal dual objective ∆∗ is equal to λ∗. Let (ρ, k, τ) denote step τ of

iteration k of phase ρ in the algorithm. Given a symbol used in the algorithm,

ν ∈ {l, σ, ζk,v,s, ψk, α,∆, φs, ṽ, p̃s}k,v,s,e, we use νρ,k,τ , νρ,k and νρ to denote the corre-

sponding values in/after the corresponding step, iteration and phase, respectively. We

also use ν to denote ν(l, σ) if no ambiguity is introduced.

Based on the primal-dual updates, we have the following:

∆ρ,k,τ =
∑
e∈E

cel
ρ,k,τ−1(e) + ε

∑
s∈Sk

φρ,k,τs

∑
e∈p̃ρ,k,τs

lρ,k,τ−1(e)

+ ε
∑
s∈Sk

φρ,k,τs

∑
u∈p̃ρ,k,τs \{s}

σρ,k,τ−1(k, s, u)

≤ ∆ρ,k,τ−1 + ε(1 + ω′)
∑

s∈Sk
φρ,k,τs ζρ,k,τ

k,ṽρ,k,τ ,s
,

due to that each path p̃ρ,k,τs is a (1 + ω′)-approximation of the dual-shortest feasible

(s, ṽρ,k,τ)-path, and the dual-shortest feasible path lengths are non-decreasing during

the algorithm.

70

As in each iteration k, we push exactly Bk
s flow for ∀s ∈ Sk, we have the following

by summing up for all steps:

∆ρ,k ≤ ∆ρ,k−1 + ε(1 + ω′) min
v∈Fk

∑
s∈Sk

Bk
s ζ

ρ,k
k,v,s

≤ ∆ρ,k−1 + ε(1 + ω′)ψρ,kk .

Summing up for all applications (iterations), we then have:

∆ρ ≤ ∆ρ−1 + ε(1 + ω′)αρ.

Since we know that ∆ρ

αρ
≥ ∆∗ ≥ 1, we further have:

∆ρ ≤ ∆ρ−1

1− ε(1+ω′)
∆∗

≤ ∆0(
1− ε(1+ω′)

∆∗

)ρ
≤ ∆0

(1− ε(1 + ω′))
exp

(
(ρ− 1)ε(1 + ω′)

∆∗(1− ε(1 + ω′))

)
,

where the last inequality is due to that (1 + x) ≤ exp(x).

The initial dual objective value is ∆0 = (E + (V − 1)S)γ given the initial l and

σ. Let ρ∗ be the last phase before the algorithm stops. We know that ∆ρ∗ ≥ 1 and

∆ρ∗−1 < 1. Then we can bound the optimal dual objective value ∆∗ as follows:

∆∗ ≤ (ρ∗ − 1) · ε(1 + ω′)

(1− ε(1 + ω′)) ln 1−ε(1+ω′)
(E+(V−1)S)γ

.

To bound the optimal primal objective value λ∗, first observe that each primal

update only increases the bandwidth on each link e by at most ce, and the bandwidth

at each node u by rksB
k
s for application k’s data source s. Therefore, when the

flow through a link e increases by exactly ce, its dual length l(e) is increased by

at least (1 + ε) times, due to the dual update in Line 17; similarly, when the flow

of (k, s) through a node u increases by rksB
k
s , the node’s dual length σ(k, s, u) is

increased by at least (1 + ε) times, due to the dual update in Line 18. Now, as

71

∆ρ∗−1 < 1, we have lρ∗−1(e) < 1/ce for ∀e ∈ E , and σρ
∗−1(k, s, u) < 1/rksB

k
s for ∀k, s, u.

Therefore, the final flow after phase ρ∗− 1 scaled by a factor of 1/ log1+ε 1/γ is strictly

feasible. Since in each phase we push exactly Bk
s flow for each data stream, the scaling

ratio after ρ∗ − 1 phases is exactly ρ∗ − 1. Scaled by 1/ log1+ε 1/γ, the scaling ratio

λ = (ρ∗ − 1)/ log1+ε 1/γ is strictly feasible.

Based on these, the primal-dual ratio is bounded as follows:

λ

∆∗
≥

(1− ε(1 + ω′)) · ln 1−ε(1+ω′)
mγ

ε(1 + ω′) · log1+ε
1
γ

.

Given our selection of ε, ω′ and γ, we have λ
∆∗
≥ 1− ω.

It remains to remove our assumption that λ∗ ≥ 1. Based on [38], if we can obtain

a pair of bounds (λLB, λUB) such that λ∗ ∈ [λLB, λUB], then we can guarantee λ∗ ≥ 1

by scaling all demands by 1/λLB. Following [35], we use a path-based method to

find λLB and λUB. For each data stream (k, s), we use a binary search to find a

maximum-capacity feasible routing path p̄kv,s to each candidate host v ∈ Fk. Given v,

the search sets a threshold β, and then finds a shortest (s, v)-path (w.r.t. delay) in

Gβ, a subgraph of G that has all links in {e : ce < β} pruned. If the path has delay

no more than Dk, β is increased; otherwise it is decreased. Let b̄kv,s = mine∈p̄kv,s{ce}

be the capacity of p̄kv,s, and λ̄kv = mins∈Sk{b̄kv,s/Bk
s , r

k
s}. For each k, we then select

candidate host v̄k = arg maxv∈Fk{λ̄kv}, and let λ̄k = λ̄kv̄k . Then, our upper bound is

λUB = Emink{λ̄k}, as each flow can be decomposed into up to E paths, with no

contention among each other. A lower bound is λLB = mink{λ̄k}/S, by scaling using

the maximum number of competing flows.

Part II (Time Complexity): For simplicity, we define notation O∗(f) =

O(f logO(1) L), where f is a function of the input size L. Based on [35], [38], the number

of phases is bounded by ρ∗ ≤ d∆∗ log1+ε
1
γ
e = O∗(∆∗

ω2), each with K iterations, and the

total number of steps is bounded by (E+(V −1)S) log1+ε
1+ε
γ

= O∗((E+(V −1)S)∆∗

ω2)

72

plus the total number of iterations. Each step incurs one PrimUpdt call, which both

finds (approximate) dual-shortest feasible paths for every (v, s) pair, and allocates

bandwidth. According to Xue et al. [139], each path is found in O∗(1
ω′
V E) time.

Bandwidth allocation in PrimUpdt takes O(SV) time, as each path consists of at

most V − 1 links. Combining the above, the time complexity of APO-MAP is given by

O∗(∆∗

ω3 SFV E(E + (V − 1)S +K)).

To remove the dependency on ∆∗, we employ the demand scaling technique in [38].

If the algorithm does not stop after d2 log1+ε
1
γ
e phases, we know that ∆∗ ≥ 2. We then

double all demands, hence halving ∆∗, and then re-run Algorithm 3.2. Now, we have

∆∗ ∈ [1, SE] after the initial scaling in Part I. Hence at most O(log2(SE)) demand

scaling rounds are needed to bring ∆∗ within [1, 2], each spending O∗(1
ω3SFV E(E+K))

time. Omitting the logarithm terms, the final complexity is O∗(1
ω3SFV E(E + (V −

1)S +K)) combined with the initial scaling. The theorem follows.

3.6.3 NO-MAP Formulation and Randomized Algorithm

We now turn to the NO-MAP problem, which is the hardest among the four

provisioning problems. Though the hardness of NO-MAP follows from that of NO-

SAP, there are O(FK) possible HD solutions in the worst case for NO-MAP, instead

of the linear number in NO-SAP. This prevents us from iterating over all possible

HD combinations as in the last section. Below, we first give an exact formulation of

NO-MAP. Similar as in the previous subsections, we define x(k, v) ∈ {0, 1} as the

indicator of whether an application k is hosted on node v ∈ Fk, L(p) ≥ 0 as the

bandwidth allocation on p ∈ P , and λ ≥ 0 as the traffic scaling ratio. Then NO-MAP

73

is formulated as follows:

max λ (3.6a)

s.t.
∑
p∈Pkv,s

L(p) ≥ Bs · λ · x(k, v), ∀k, v, s; (3.6b)

∑
v∈Fk

x(k, v) = 1, ∀k; (3.6c)

∑
p∈P:e∈p

L(p) ≤ ce, ∀e ∈ E ; (3.6d)

∑
p∈Pks :e∈p

L(p) ≤ rks ·Bk
s , ∀k, s, e ∈ E ; (3.6e)

x(k, v) ∈ {0, 1},L(p), λ ≥ 0, ∀k, v, p. (3.6f)

Explanation: Program (3.6) basically has the same form as Program (3.3). The

only exception is Constraint (3.6e), which enforces the link-robustness requirement for

each link e instead of the node-robustness for each node u. This is because NO-MAP

cannot support node-robustness: its final selected host is always a single point of

failure when the host node fails.

Due to binary variables x(k, v) and Constraint (3.6b), Program (3.6) is a Mixed

Integer Quadratic Program (MIQP), which is generally hard to solve. However, by

relaxing the integer constraints on variables x(k, v), we arrive at an QP that has almost

the same structure as Program (3.3). We can then apply the same transformation as

from Program (3.3) to Program (3.4), which also generates an LP, in other words, the

74

linear relaxation of Program (3.6). The linear relaxation is written as follows:

max λ (3.7a)

s.t.
∑
p∈Pkv,s

L(p) ≥ Bs · y(k, v), ∀k, v, s; (3.7b)

∑
v∈Fk

y(k, v) ≥ λ, ∀k; (3.7c)

∑
p∈P:e∈p

L(p) ≤ ce, ∀e ∈ E ; (3.7d)

∑
p∈Pks :e∈p

L(p) ≤ rks ·Bk
s , ∀k, s, e ∈ E ; (3.7e)

y(k, v),L(p), λ ≥ 0, ∀k, v, p. (3.7f)

Due to the similar structure of Program (3.7) and Program (3.4), we can basically

adopt the same method as in Algorithms 3.2 and 3.3 to obtain an FPTAS to Pro-

gram (3.7), for which the details are omitted. Based on the FPTAS, we then propose

a randomized algorithm to NO-MAP, as shown in Algorithm 3.4. It starts by solving

Program (3.7) using a modified version of Algorithm 3.3. With the fractional solution,

it then randomly selects a host v ∈ Fk with probability equal to ỹ(k, v) (normalized

y(k, v)) for each application. After that, it solves the original NO-MAP program with

fixed hosts v = {vk}k to ensure solution feasibility. This turns out to be a trivial

generalization of the DR subproblem of NO-SAP, and hence can be solved using the

FPTAS in [153].

The time complexity of Algorithm 3.4 is dominated by the complexity of the

FPTAS to PO-MAP and the FPTAS for solving the DR subproblem with fixed HD.

Therefore, it also runs in time polynomial to the input size and 1
ω
. Unfortunately, the

randomized algorithm does not have a constant approximation ratio. Non-constant

performance bound can be obtained via conventional stochastic theorems such as the

75

Algorithm 3.4: Randomized Algorithm ANO-MAP

Input: Network G, application set Γ, tolerance ω
Output: Scaling ratio λ, host selections v, path sets P, bandwidth allocation

L
1 (λ,y,P ,L)← APO-MAP(G,Γ, ω);
2 for k = 1 to K do
3 ỹ(k, v)← y(k, v)/

∑
v∈Fk y(k, v) for ∀v ∈ Fk;

4 Select v ∈ Fk with probability ỹ(k, v) as vk;
5 end
6 Solve NO-MAP (Program (3.6)) with fixed HD solution v = {vk}k, with

accuracy ω;
7 return (λ, {vk}k, {P k

s }k,s,L).

Chernoff bound. Such a result, however, is far from providing a realistic performance

bound that could be useful in practical settings. We thus omit the theoretical analysis

of Algorithm 3.4 for sake of simplicity.

3.7 Performance Evaluation

3.7.1 Experiment Settings

We used randomly generated topologies and applications for performance evalua-

tion. The random topologies were generated using the Waxman model [130]. Each

random topology has 20 nodes, where 20% of all nodes were randomly selected as

facility nodes. Links were created using parameters α and β in the Waxman model,

where α = β = 0.6. Link capacities were randomly generated in [10, 100] Mbps, and

delays were randomly generated in [1, 10] ms. In each experiment, we generated 5

IoT applications. An application had [3, 10] data streams, each from a different data

source. Application delay bounds were randomly generated in [15, 25] ms. For each

data stream, its bandwidth demand were randomly generated in [1, 25] Mbps. The

76

default robustness (maximum tolerable data loss ratio) was 0.5 for all data streams.

We set accuracy ω = 0.5 for the approximation algorithms. Above were the default

parameters. We varied one control parameter in each set of experiments in order for

evaluation under various scenarios.

SAP Our SAP algorithm. For parallelizable appli-
cations, this is our FPTAS to PO-MAP (Algo-
rithm 3.2). For non-parallelizable applications,
this is our FPTAS to NO-SAP (Algorithm 3.1).

MAP Our MAP algorithm. For parallelizable appli-
cations, this is our FPTAS to PO-MAP (Algo-
rithm 3.2). For non-parallelizable applications,
this is our randomized algorithm to NO-MAP
(Algorithm 3.4).

ODA Optimal Delay-Agnostic algorithm. For paralleliz-
able applications, this directly solves an edge-
flow multi-commodity flow (MCF) LP. For non-
parallelizable applications, this attempts all com-
binations of application HD, and for each combi-
nation solves an edge-flow MCF LP that neglects
applications’ delay bounds. ODA yields an upper
bound on the optimal delay-bounded solution.

NS (HD) Nearest Selection HD heuristic. For each appli-
cation, this selects the host with minimum maxi-
mum delay from all data sources.

RS (HD) Random Selection HD heuristic. For each appli-
cation, a random candidate host is selected that
is within the delay bound from every data source.

GH (DR) Greedy Heuristic for DR. This works in rounds
where in each round, the delay-shortest path
with positive capacity is found for every data
stream, and then bandwidth allocation is done as
in Lines 8–20 of Algorithm 3.3; it stops when any
data stream’s shortest path exceeds the applica-
tion’s delay bound.

DA (DR) Delay-Agnostic optimal DR solution. An edge-
flow MCF LP, which neglects application delay
bounds, is solved. This yields an upper bound on
DR.

Table 3.1: Implemented Algorithms

77

Our comparison algorithms are shown in Table 3.1. Note that we proposed

algorithms to solve HD and DR both jointly (SAP, MAP, ODA) and separately (NS

and RS for HD, and GH and DA for DR). In the experiments, we further decomposed

the entire MAP algorithm (Algorithm 3.4 for the non-parallelizable case) into its

subroutines for solving HD (Lines 1–5) and DR (Line 6) respectively. Each combination

of HD and DR algorithms was denoted by {HD}+{DR}, e.g., NS+GH uses NS for

HD and GH for DR.

We used the following metrics in performance evaluation. Traffic scaling ratio is the

optimization objective λ, which is the minimum ratio between the allocated bandwidth

and the demand of every data stream. Maximum delay ratio is the average ratio

between the maximum transmission delay received by any application and its delay

bound. Running time is the average running time of an algorithm in an experiment.

We developed a C++-based simulator which implements all the above algorithms.

The Gurobi optimizer [48] was used to solve the LPs. Experiments were conducted

on a Ubuntu Linux PC with Quad-Core 3.4GHz CPU and 16GB memory. Each

experiment was repeated for 50 times under the same setting, and results were taken

as the average over all runs.

3.7.2 Evaluation Results

3.7.2.1 Single-Application Scenario

We use our single application experiments to show 1) that our algorithms are

close-to-optimal through comparison with the theoretical upper bound (ODA), 2)

78

0.80.70.60.50.40.3
Accuracy parameter ω

0.0

0.4

0.8

1.2

1.6
T
r
a
f
f
i
c

s
c
a
l
i
n
g

r
a
t
i
o

ODA MAP SAP

(a) Parallelizable w/ robustness

0.80.70.60.50.40.3
Accuracy parameter ω

0.0

0.4

0.8

1.2

1.6

T
r
a
f
f
i
c

s
c
a
l
i
n
g

r
a
t
i
o

ODA MAP SAP

(b) Non-parallelizable w/ robustness

0.80.70.60.50.40.3
Accuracy parameter ω

0.0

2.5

5.0

7.5

10.0

T
r
a
f
f
i
c

s
c
a
l
i
n
g

r
a
t
i
o

ODA MAP SAP

(c) Parallelizable w/o robustness

0.80.70.60.50.40.3
Accuracy parameter ω

0.0

1.5

3.0

4.5

6.0
T
r
a
f
f
i
c

s
c
a
l
i
n
g

r
a
t
i
o

ODA MAP SAP

(d) Non-parallelizable w/o robustness

Figure 3.1: Single application: objective value against accuracy parameter ω.

the impact of robustness on the provisioning performance, and 3) the impact of

parallelizability on our algorithms. The results are shown in Figs. 3.1–3.4. Note that

for a single parallelizable application, SAP and MAP are essentially the same algorithm

(Algorithm 3.2), and hence they have exactly the same performance.

Figs. 3.1 and 3.2 show the experiments in four combination scenarios: parallelizable

application with robustness, non-parallelizable application with robustness, paral-

lelizable application without robustness, and non-parallelizable application without

robustness. First, we can see that our SAP FPTASs (MAP in Figs. 3.1(a) and 3.1(c)

79

0.80.70.60.50.40.3
Accuracy parameter ω

0

30

60

90

120
R
u
n
n
i
n
g

t
i
m
e

(
s
)

ODA MAP SAP

(a) Parallelizable w/ robustness

0.80.70.60.50.40.3
Accuracy parameter ω

0

60

120

180

240

R
u
n
n
i
n
g

t
i
m
e

(
s
)

ODA MAP SAP

(b) Non-parallelizable w/ robustness

0.80.70.60.50.40.3
Accuracy parameter ω

0

250

500

750

1000

R
u
n
n
i
n
g

t
i
m
e

(
s
)

ODA MAP SAP

(c) Parallelizable w/o robustness

0.80.70.60.50.40.3
Accuracy parameter ω

0

250

500

750

1000
R
u
n
n
i
n
g

t
i
m
e

(
s
)

ODA MAP SAP

(d) Non-parallelizable w/o robustness

Figure 3.2: Single application: running time vs. accuracy parameter ω.

and SAP in Figs. 3.1(b) and 3.1(d)) achieve objective values extremely close to the

upper bound ODA, much greater than their theoretical performance bounds ((1− ω)

times the optimal). In Figs. 3.1(b) and 3.1(d), the MAP randomized algorithm

achieves slightly worse performance than the FPTASs, yet its performance is still

pretty close to ODA and even higher than (1− ω) times the optimal (although this is

not theoretically guaranteed). On the other hand, we can observe that with decreasing

accuracy parameter ω, little changes can be observed on the objective value, while

great reduction in running time can be observed in Figs. 3.2(a)–3.2(d). This shows

80

0.2 0.3 0.4 0.5 0.6 0.7
Tolerable loss ratio

0.0

0.5

1.0

1.5

2.0

2.5
T
r
a
f
f
i
c

s
c
a
l
i
n
g

r
a
t
i
o

ODA MAP SAP

(a) Parallelizable (w/ robustness)

0.2 0.3 0.4 0.5 0.6 0.7
Tolerable loss ratio

0.0

0.5

1.0

1.5

2.0

2.5

T
r
a
f
f
i
c

s
c
a
l
i
n
g

r
a
t
i
o

ODA MAP SAP

(b) Non-parallelizable (w/ robustness)

Figure 3.3: Single application: objective value vs. robustness parameter (maximum
tolerable loss ratio).

0.2 0.3 0.4 0.5 0.6 0.7
Tolerable loss ratio

0

10

20

30

40

R
u
n
n
i
n
g

t
i
m
e

(
s
)

ODA MAP SAP

(a) Parallelizable (w/ robustness)

0.2 0.3 0.4 0.5 0.6 0.7
Tolerable loss ratio

0

20

40

60

80

R
u
n
n
i
n
g

t
i
m
e

(
s
)

ODA MAP SAP

(b) Non-parallelizable (w/ robustness)

Figure 3.4: Single application: running time vs. robustness parameter (maximum
tolerable loss ratio).

that the proved theoretical bounds are pretty conservative in practice. An empirical

setting of ω ≥ 0.5 can be used in practice to achieve close-to-optimal performance

with reasonable computational overhead.

Comparing Figs. 3.1(a) and 3.1(c) (and similarly Figs. 3.1(b) and 3.1(d)), we can

observe the impact of robustness. Enforcing robustness clearly reduces the objective

81

value by great amounts. This shows that in practice, applications with robustness

requirements can find it much harder to get accommodated when the system has

limited resources. Looking at Fig. 3.2, running time increases when robustness is

removed, which is due to that the complexity depends on the objective value, matching

our previous analysis. Note that we did not use the polynomial-time demand scaling

technique in our experiments, in order to better present this correlation.

Comparing Figs. 3.1(a) and 3.1(b), we can see the impact of parallelizability when

robustness is enforced. Both ODA and SAP show that parallelizability reduces the

objective value. This is because with parallelizability, the applications were able to

enjoy the more strict node-robustness, while without parallelizability, the applications

can only achieve link-robustness; clearly the former consumes more resources, as it

guarantees the latter while providing additional protection. On the contrary, when

robustness is not enforced, we see the opposite comparison in Figs. 3.1(c) and 3.1(d).

Applications with parallelizability achieve better scaling ratios than those without.

This is because without the restriction of robustness, the parallelizable problem is now

an LP relaxation of the non-parallelizable problem, and hence the former represents an

upper bound on the latter. Looking at the running times in Figs. 3.2(a) and 3.2(b), the

time for the non-parallelizable case approximately doubles that for the parallelizable

case. This is because in the non-parallelizable case, the same formulation is solved for

two times, one for HD and one for DR; in the parallelizable case, both HD and DR

can be solved in one round. Note that Algorithm 3.1 (SAP in Fig. 3.2(b)) is much

faster than both Algorithm 3.2 (SAP/MAP in Fig. 3.2(a)) and Algorithm 3.4 (MAP

in Fig. 3.2(b)), because Algorithm 3.1 solves a formulation that has fewer variables.

Figs. 3.2(c) and 3.2(d) show similar comparisons, and the reason why the running time

of MAP does not double in Fig. 3.2(d) is that the optimal objective value decreases

82

greatly due to the non-parallelizability, and hence the running time of DR solving is

dominated by the time of HD solving.

We further show in Figs. 3.3 and 3.4 the impact of different robustness parameters

on the performance. With our formulation, the objective value should increase with

the tolerable loss ratio of each application when the resources are relatively abundant,

which is validated in Fig. 3.3. Figs. 3.3(a) and 3.3(b) show the same comparison

as in Figs. 3.1(a) and 3.1(b), i.e., parallelizable applications achieve worse scaling

ratios than non-parallelizable ones due to the enforcement of node-based instead of

link-based protection. The running time basically increases with increased objective

value due to the relaxation of robustness requirement (larger tolerable loss ratio).

3.7.2.2 Multi-Application Scenario

In the following experiments, we omitted the applications’ robustness requirements,

and focused on the non-parallelizable application case which is more common in

practice. Figs. 3.5 and 3.6 show experiment results for multi-application provisioning,

with varying number of nodes, connectivity, average bandwidth demand, and accuracy

ω. First, MAP outperforms both RS+GH and NS+GH in relatively large scales.

Specifically, MAP can serve up to 2× the traffic that can be served by RS+GH or

NS+GH in a majority of the experiments. The cost of its superior performance is its

higher running time. MAP is slower than ODA mainly because the latter does not

consider application delay bounds. Also, with more applications, the running time of

MAP will soon beat that of ODA, as the former is a polynomial-time algorithm, while

the latter’s time complexity is exponential to the number of applications. The shown

trends basically match our intuition, e.g., increased nodes or links lead to increased

83

10 12 14 16 18 20
nodes

0.0

0.5

1.0

1.5

2.0

2.5
T
r
a
f
f
i
c

s
c
a
l
i
n
g

r
a
t
i
o

MAP

NS+GH

RS+GH

ODA

(a) Scaling ratio vs. # nodes

0.3 0.4 0.5 0.6 0.7 0.8
α|β in Waxman model

0

1

2

3

4

T
r
a
f
f
i
c

s
c
a
l
i
n
g

r
a
t
i
o

MAP

NS+GH

RS+GH

ODA

(b) Scaling ratio vs. connectivity

3.0 5.5 8.0 10.5 13.0 15.5
Avg. data src. demand

0.0

2.5

5.0

7.5

10.0

T
r
a
f
f
i
c

s
c
a
l
i
n
g

r
a
t
i
o

MAP

NS+GH

RS+GH

ODA

(c) Scaling ratio vs. demand

0.80.70.60.50.40.3
Accuracy parameter ω

1.0

1.5

2.0

T
r
a
f
f
i
c

s
c
a
l
i
n
g

r
a
t
i
o

MAP

NS+GH

RS+GH

ODA

(d) Scaling ratio vs. ω

Figure 3.5: Multi-application: objective value vs. number of nodes, connectivity
(α, β), bandwidth demand, and accuracy (ω).

scaling ratios and running times, while larger bandwidth demands of the applications

lead to smaller scaling ratios. In Fig. 3.6(c), the running time of MAP decreases with

the scaling ratio. This matches their correlation described in the proof of Theorem 3.3.

This correlation can be removed by the demand scaling technique illustrated in the

proof. Finally, Figs. 3.5(d) and 3.6(d) show similar results as in Figs. 3.1 and 3.2 for

84

10 12 14 16 18 20
nodes

0

15

30

45

60

R
u
n
n
i
n
g

t
i
m
e

(
s
)

MAP

NS+GH

RS+GH

ODA

10 12 14 16 18 20
0.0
0.3
0.6
0.9
1.2

m
s

(a) Running time vs. # nodes

0.3 0.4 0.5 0.6 0.7 0.8
α|β in Waxman model

0

30

60

90

120

R
u
n
n
i
n
g

t
i
m
e

(
s
)

MAP

NS+GH

RS+GH

ODA

0.30.40.50.60.70.8
0.0

0.8

1.6

2.4

m
s

(b) Running time vs. connectivity

3.0 5.5 8.0 10.5 13.0 15.5
Avg. data src. demand

0

25

50

75

100

R
u
n
n
i
n
g

t
i
m
e

(
s
)

MAP

NS+GH

RS+GH

ODA

5.5 10.5 15.5
0.0
0.3
0.6
0.9
1.2

m
s

(c) Running time vs. demand

0.80.70.60.50.40.3
Accuracy parameter ω

0

50

100

150

200

250

R
u
n
n
i
n
g

t
i
m
e

(
s
)

MAP

NS+GH

RS+GH

ODA

0.80.70.60.50.40.3
0.0
0.3
0.6
0.9
1.2

m
s

(d) Running time vs. ω

Figure 3.6: Multi-application: running time vs. number of nodes, connectivity (α, β),
bandwidth demand, and accuracy (ω).

MAP, where a looser accuracy parameter ω does not lead to noticeable performance

loss, but greatly reduces its running time.

The above experiments show the superior performance of our joint algorithm

MAP. In Figs. 3.7, we further analyze its performance for HD and DR separately,

85

16 18 20 22 24 26
Avg. app. delay bound

0.0

0.6

1.2

1.8

2.4

T
r
a
f
f
i
c

s
c
a
l
i
n
g

r
a
t
i
o

MAP

NS+MAP

RS+MAP

ODA

MAP+GH

MAP+DA

(a) HD comparisons

16 18 20 22 24 26
Avg. app. delay bound

0.0

0.5

1.0

1.5

2.0

M
a
x

d
e
l
a
y

r
a
t
i
o

MAP

NS+MAP

RS+MAP

ODA

MAP+GH

MAP+DA

(b) DR comparisons

Figure 3.7: Multi-application: HD and DR with varying delay.

where we combined MAP’s subroutines with different heuristics respectively. Shown

in Fig. 3.7(a), delay-aware DR solutions (GH and MAP’s DR subroutine) achieve

better scaling ratios with larger delay bounds, while delay-agnostic solutions do not.

Comparing different HD algorithms, MAP’s HD subroutine still achieves much better

traffic scaling ratios than either NS or RS. Interestingly, RS outperforms NS, which is

because NS can lead to congestion when a host is significantly closer to most data

sources than the others. Comparing different DR algorithms, MAP’s DR subroutine

also outperforms GH. On the other hand, since given fixed HD, the DA algorithm

is optimal for delay-agnostic DR, we can see that MAP’s DR subroutine is near the

optimal when delay bounds are large. In Fig. 3.7(b), with MAP’s DR subroutine, the

maximum delay ratio is always bounded by but close to 1, meaning it utilizes paths

of various delays, yet strictly sticks to the application delay bounds. GH also respects

the delay bounds, yet it uses shorter paths, which leads to its low traffic scaling ratios

in Fig. 3.7(a). Both ODA and DA are delay-agnostic, hence they can result in delays

86

more than 2× the bounds, violating application QoS requirements. In summary, the

superior performance of the MAP algorithm comes from the advantages of both its

HD and DR subroutines, compared to the heuristic algorithms.

3.8 Conclusions

In this study, we studied the provisioning of real-time processing applications in

IoT. For each application, we considered both the QoS and the robustness requirements.

We considered two types of applications: parallelizable and non-parallelizable. For

either type, we further studied both the provisioning of a single application, and the

joint provisioning of multiple applications. We proved all four versions of the problem

NP-hard. We then showed that three of the four versions admit FPTASs. For the

last version, we proposed a randomized algorithm. We validated the advantages of

our proposed algorithms over several heuristic solutions through extensive simulation

experiments.

87

Chapter 4

LOAD BALANCING FOR INTERDEPENDENT IOT MICROSERVICES

4.1 Introduction

The Internet-of-Things (IoT) has drastically grown in size and capability in the

recent years, owing to advances in broadband access networks, cloud/edge computing,

big data analytics, machine learning, etc. In the near future, the global IoT can

expand to tens of billions of devices, powering up numerous applications such as smart

city, smart home, smart health, connected vehicles, etc. The global economic impact

of IoT can be more than several trillion dollars in early 2020s [56].

Due to IoT’s rapid development, the traditional monolithic architecture is no longer

suitable for IoT applications. Instead, the microservice architecture is gaining support

from both industry and academia. The architecture is built upon loosely coupled

microservices, each with compact logic and well-defined interfaces. An IoT application

is built as a collection of microservices with inter-microservice communications. In

real deployment, an application can employ multiple instances of each microservice to

achieve elasticity and robustness.

A key difficulty in microservice management is the interdependencies among

microservices. Specifically, the input data to one microservice may depend on the

output data of other microservices. To capture this, existing works adopt a graph-

based approach, modeling an application as a directed graph where vertices represent

microservices, and edges represent data flows between microservices. Fig. 4.1 shows

an example.

88

Cloud
Storage
Cloud

Storage

Video
Proc.
Video
Proc.

Motion
Detect.
Motion
Detect.

Anomaly
Detect.

Anomaly
Detect.

Smart
Home

Control

Smart
Home

Control

Data
Proc.
Data
Proc.

Cmd.
Center
Cmd.

Center

Security Cameras

Motion Sensors

Ambient Sensors

Data InputData Input API CallAPI CallMicroserviceMicroserviceMicroserviceData Input API CallMicroservice

Figure 4.1: Graph representation of a smart home application.

In this study, we study an important problem in microservice management: load

balancing across microservice instances. Lower load on instances can lead to bet-

ter robustness and elasticity when facing instance failures or demand changes. Yet

microservice load balancing is a complex problem due to the interdependencies. Specif-

ically, changing the load distribution at one microservice instance could cause changes

to the load on many other microservice instances. This situation is aggravated by the

heterogeneous connectivity between microservice instances, which are distributed in

the edge network.

Existing efforts have adopted simplified models to make the load balancing problem

tractable, e.g., by abstracting the application’s processing logic as a chain of microser-

vices [90]. Such a model, however, is insufficient to capture the rich interdependencies

in modern IoT applications. In this study, we aim to provide a general solution to

load balancing for interdependent microservices. We start with a directed acyclic

graph (DAG)-based model for describing microservice interdependencies, which is

rich enough to abstract a majority of IoT applications. We then propose a linear

89

program formulation for the basic load balancing problem, where the application aims

to minimize the maximum load among all instances.

The basic model neglects the quality-of-service (QoS) goal of the application, and

may result in arbitrarily large end-to-end delay when answering user requests. This

motivates us to study the more complex QoS-aware load balancing problem, where

the application aims to optimize the end-to-end QoS while satisfying a desired load

balancing goal. We first present a method to characterize the QoS of a load balancing

solution, by abstracting a realization structure for the application graph. We show

through a decomposition theorem that the realization structure can precisely represent

QoS-aware load balancing solutions. Unfortunately, the QoS-aware problem is NP-

hard. Hence we propose a fully polynomial-time approximation scheme (FPTAS) for

the problem. We show through simulation experiments that our proposed algorithm

indeed outperforms heuristic solutions in terms of QoS of the application.

Our main contributions are summarized as follows:

• To our knowledge, we are the first to study microservice load balancing with

DAG-based interdependencies.

• We formulate both a basic and a QoS-aware load balancing problem. We prove

the latter to be NP-hard.

• We show that the basic problem can be solved optimally, while the QoS-aware

problem admits an FPTAS.

• Simulation experiments have shown that our algorithm can improve application

QoS compared to baselines.

The rest of this study is organized as follows. In Section 4.2, we introduce

background and related work. In Section 4.3, we present system model and the basic

load balancing model. In Section 4.4, we describe our QoS-aware model, a formal

90

statement of the problem, and its complexity. In Section 4.5, we propose the FPTAS

for QoS-aware load balancing. In Section 4.6, we show our simulation results. In

Section 4.7, we conclude this study.

4.2 Background and Related Work

4.2.1 Microservices and Application Graph Models

The microservice architecture, originally proposed for complex business applications

in enterprises such as Amazon [131] and Netflix [132], has rapidly gained attention

in the IoT domain, where it can largely reduce the cost and complexity of building

IoT applications. With the help of distributed edge computing, a microservice-based

application can achieve a number of benefits over a monolithic application, including

robustness [68], elasticity [125], security [76], evolvability [33], and many more.

Graph-based approaches are commonly adopted to model and manage such decom-

posed IoT applications. Belli et al. [8] proposed an application architecture, which uses

the processing graph to characterize QoS and improve infrastructure usage efficiency.

Akkermans et al. [2] built a system for application orchestration based on application

graphs. Erbs et al. [31] built another graph-based distributed processing system, which,

in addition to orchestration across logical components, also considers the chronological

dependencies among components. Lee et al. [71] used tenant application graphs to

model cloud applications, and proposed bandwidth-aware application embedding in

tree-like cloud networks.

Resource allocation for application graphs can be hard due to the complex struc-

tures of such graphs. Many heuristic solutions exist without performance bound [5],

91

[50]. To address this, existing approaches used simplified graph models. For example,

Li et al. [72] and Niu et al. [90] used a chain-based model. Li et al. [72] proposed a

heuristic for bandwidth-aware application chain deployment. Niu et al. [90] proposed

a game theoretical approach to coordinate resources among competing application

chains, in order to minimize their response times. A related area considers the em-

bedding of service function chains (SFC), where similarly one or multiple chains of

service functions are to be deployed in the network. Approximation algorithms exist,

e.g., due to Cao et al. [13], Kuo et al. [70], and Yu et al. [153]. Yu et al. [151] studied a

different model where the application has a star structure, and proposed an FPTAS for

network load balancing. Yet these simplified models greatly limit the expressiveness

of this approach, and hence are not suitable for general IoT applications.

Outside of the IoT domain, there are problems with similar abstractions. An early

area of research is virtual network embedding (VNE), where a request is given as a

virtual network graph that is to be embedded on a physical network [21]. A related

area is data center virtualization, where a tenant request is also given as a graph,

which is to be embedded in the physical cloud network [157]. Since these problems are

mainly studied in the network domain, they are different from resource allocation for

application graphs. As an example, these problems commonly request that a virtual

node is mapped to one and only one physical node, while a vertex (microservice) in

an application graph can be implemented by a number of distributed instances at the

same time.

92

4.2.2 Application-level Load Balancing

The load balancing problem has been studied in many different contexts, such

as parallel computing [133], web applications [14], cloud applications [94], network

load [3], [52], [121], microservices [90], etc. Due to the large body of work, we only do

a brief review on the methods used.

Many existing works are based on the principle of randomized load balancing, where

in-coming load is randomly assigned to different entities based on load information.

For example, Equal-Cost Multi-Path (ECMP) [121] is one of the most widely used

Layer-3 load balancing technique that has a lot of variants. In the computing domain,

it has also been shown that using randomized load balancing can reduce the queueing

delay at servers [145]. A drawback of the randomized approach is that it is difficult

to consider the load interdependencies among entities, hence it may result in skewed

load distributions at entities that significantly depend on others.

Contrary to randomized load balancing, deterministic load balancing can make

decisions based on many different factors, such as entity interdependencies [5], [50],

[90], QoS information [90], [151], energy consumption [94], failures and network asym-

metry [52], etc. These solutions differ from the randomized ones in that commonly

the former need global coordination to obtain system-wide information and to enforce

load balancing policies. In network, this either requires a centralized network con-

troller [52], or complex peer-to-peer information aggregation and dissemination [3].

In the computing domain, the task is easier, as most computing platforms already

employ hypervisors to make centrally coordinated decisions. Among problems with

different considerations, load balancing with complex interdependencies seems to be

one of the most difficult, where only heuristic solutions exist [5], [50].

93

4.3 System Model and Basic Formulation

4.3.1 Application Model

An IoT application is built by selecting a number of microservices, and establishing

proper inter-connections between their output and input APIs. Specifically, an

application is modeled as a directed acyclic graph (DAG), denoted as G = (V,E),

where V is the set of vertices denoting microservices, and E is the set of edges

denoting direct API calls between microservices. A microservice v is called a successor

of microservice u if there is a directed edge (u, v) ∈ E; v is a predecessor of u if

the opposite edge (v, u) ∈ E exists. A microservice with no successor is called a

sink microservice. For simplicity, we use Vin(v) and Vout(v) to denote the subsets of

predecessors and successors of microservice v, respectively. G is called the application

graph (app-graph) hereafter.

The set E defines how IoT data flow across microservices. For load balancing,

it is important to capture how data are distributed at each microservice. For each

edge e = (u, v) ∈ E, a data distribution ratio re is defined, which denotes the input

data volume that microservice v would receive from u if u is fed with 1 unit of input

data. The input data of a microservice thus depends on both the external data it

directly receives, and the data distributed from its predecessors. re can be obtained

via analysis of historical measurements. An app-graph example is shown in Fig. 4.2(a).

94

4.3.2 Infrastructure Model

The IoT application must be instantiated with microservice instances in the

network. For each microservice v ∈ V , we define Nv as the set of nodes (microservice

instances) that implement v. The physical connectivities between instances of a pair

of microservices (u, v) ∈ E are defined by link set Luv ⊆ Nu ×Nv. Since we only care

about connectivities between microservices that have direct API calls, the set Luv

is only well-defined for (u, v) ∈ E. The infrastructure graph (inf-graph) is denoted

as Γ = (N,L), where N =
⋃
v∈V Nv and L =

⋃
(u,v)∈E Luv. For simplicity, we let

vn ∈ V be the microservice that node n belongs to; we then use the same notation,

“predecessor/successor” of node n, to denote the corresponding predecessor/successor

microservice of vn. We further let Lin(n) or Lout(n) be the subset of links in-coming

or out-going node n, respectively, and Lout(n, v) be the subset of out-going links of

node n that point to nodes belonging to microservice v. The inf-graph is also a DAG.

We next define a number of attributes for the inf-graph. First, each node n ∈ N

has a capacity cn, which is the maximum load it can process to avoid congestion. In

stream-analysis applications, cn is commonly measured in terms of input data volume.

Second, each node may have a processing delay dn. The delay values can be obtained,

e.g., using the method outlined in [57]. Each link l ∈ L may also have a delay dl,

denoting the data transmission latency between the two instances. For a path p, its

delay is defined as the sum of node and link delays on p: d(p) =
∑

n∈p dn +
∑

l∈p dl.

The application receives input data from external sources such as IoT devices, and the

data may be fed into a certain node based on the data source locations, types of data,

frontend distribution policies, etc. We use δext
n to denote the volume of external data

fed into node n, also called its external demand. A node with δext
n > 0 is called a source

95

node. Note that node n may also receive input data from other nodes through API

calls, which is different from its external demand, and is called the internal demand

instead. An inf-graph example is shown in Fig. 4.2(b), corresponding to the app-graph

in Fig. 4.2(a).

Note that for clarity of illustration, we use different terms for different graphs. We

use “vertex” and “edge” for entities in the app-graph. We use “node” and “link” for

entities in the inf-graph. In the next section, we will use “point” and “arc” for entities

in the realization graph, to be explained later.

4.3.3 Basic Load Balancing Model

In our scenario, an application is instantiated by allocating external and internal

demands to the microservice instances. In choosing how to instantiate the application,

its owner aims to balance the load across different microservice instances, in order to

achieve the best performance as well as to leave room for elastic scaling in the future.

As a first step, we establish a formal model for the basic load balancing problem,

which neglects the QoS requirement of the application.

Let δn be the total demand into node n ∈ N , which is the summation of both its

external and internal demands: δn = δext
n + δint

n . The external demand δext
n is regarded

as a constant value, but the internal demand δint
n depends on the demands distributed

from predecessor microservice instances of n, which in turn depends on the input

demands of the predecessor instances, their corresponding data distribution ratios,

and how they allocate their own output demands. Define f(n1, n2) as the demand

allocation from n1 to n2 if (n1, n2) ∈ L. We then have δint
n =

∑
l∈Lin(n) f(l), and hence:

δn = δext
n +

∑
l∈Lin(n)

f(l), ∀n ∈ N. (4.1)

96

For a demand allocation function f : L 7→ R∗ (R∗ is the non-negative real number

set) to be feasible, it must satisfy the following two constraints:

1. The total demand at each node should not exceed its desired capacity multiplied

by a load factor ψ:

δn ≤ ψ · cn, ∀n ∈ N. (4.2)

2. The demand distributed from a node to all nodes of a successor microservice

should satisfy the data distribution ratio between the two microservices:

∑
l∈Lout(n,w)

f(l) = r(vn,w)δn, ∀n,w ∈ Vout(vn). (4.3)

The load factor ψ essentially specifies the maximum load of any microservice instance.

Commonly, the application would have a desired bound Ψ, such that the load on any

instance does not exceed this bound. We then define the following problem:

Definition 4.1. Given app-graph G with inf-graph Γ, and load bound Ψ > 0, the

Basic Load Balancing (BLB) problem seeks for a demand allocation function

f : L 7→ R∗, which satisfies Eqs. (4.1), (4.2) and (4.3) while ensuring ψ ≤ Ψ. Its

optimization version, instead of giving a load bound Ψ, is to minimize ψ, and is named

O-BLB hereafter.

The following linear program (LP) formulates O-BLB:

min
f≥0

ψ (4.4)

s.t. (4.1), (4.2) and (4.3).

Theorem 4.1. O-BLB can be solved in O(|L|3 · L) time.

Proof. Program (4.4) is an LP with (|L|+ 1) variables. Based on [143], the LP can

be solved optimally in O(|L|3 · L) time (L is the input size).

97

In Fig. 4.2(b), we also show a feasible solution to the load balancing problem.

Bold links show links with positive demand allocation, and each bold link’s allocation

is equal to the cumulative load imposed on the link. For example, link A1 →

B1 has an allocation of δ · 0.5 = 1.0, while link D1 → E1 has an allocation of

δ · (0.5 · 1.0 + 0.5 · 1.0) · 1.0 = 2.0 with the first half of demand coming from the path

A1 → B1 → D1, and the second half from A1 → C1 → D1. A clearer view of the

solution is shown in Fig. 4.2(c), which will be detailed using the real-graph abstraction

in the next section. This basic model, however, neglects the QoS of the application,

and may lead to arbitrarily long delay for serving user demands. In the next section,

we propose a novel model for characterizing QoS.

4.4 QoS-aware Load Balancing

The above outlines a basic formulation of the load balancing problem. The

model, however, merely reflects the numerical relationship between different instances,

without describing the richer structural relationship in the app-graph. It is therefore

intrinsically difficult to incorporate QoS information into the formulation. In this

section, we model the QoS of an application through a novel realization graph

abstraction.

We consider the following QoS goal of the application. In IoT, users usually ask

for a guaranteed response time to ensure timely reception and handling of IoT events,

such as traffic status or emergency events. We hence assume that the application’s

QoS goal is to bound or minimize the maximum end-to-end delay that any external

demand would experience. To characterize this, we propose the following abstraction:

Definition 4.2 (Real-graph). Given app-graph G = (V,E), inf-graph Γ = (N,L)

98

AA

BB

CC

DD EE

0.5

0.5

1.0

1.0

1.0

1.0

(a) App-graph G = (V,E) (Sec-
tion 4.3). Symbols in circles are mi-
croservices. Values on lines are dis-
tribution ratios.

A1A1

B1B1

C1C1

D1D1 E1E1

D2D2 E2E2
δ=2.0

(2, 1)

(1, 5)

(1, 4)

(2, 3)

(2, 6)

(2, 4)

(2, 6)

A1

B1

C1

D1 E1

D2 E2
δ=2.0

(2, 1)

(1, 5)

(1, 4)

(2, 3)

(2, 6)

(2, 4)

(2, 6)

(b) Inf-graph Γ = (N,L) (Section 4.3).
Symbols in circles are microservice in-
stances. Values beside circles are (capac-
ity, delay). Links have 0 delay. Bold links
show a feasible load balancing solution.

A1

B1

C1 D1 E1

D2 E2

(1, 1)

(0.5, 6)

(0.5, 5)

(1, 9)

(1, 13)

(1, 7) (1, 13)

φ=2.0
A1

B1

C1 D1 E1

D2 E2

(1, 1)

(0.5, 6)

(0.5, 5)

(1, 9)

(1, 13)

(1, 7) (1, 13)

φ=2.0

(c) Real-graph π = (Xπ, Aπ) (Section 4.4).
Symbols in circles are instances mapped
from the corresponding points. Values be-
side circles are (impact ratio, max cumu-
lative delay).

Figure 4.2: App-graph (a), inf-graph (b) and a real-graph (c) of an example application
with load bound Ψ = 1. Bold links in (b) show a feasible load balancing solution with
max delay of 13, which is further shown in (c) as a single decomposed real-graph.

and a source node n ∈ N , a realization graph (real-graph) is defined as a DAG

π = (Xπ, Aπ), coupled with a mapping σ : Xπ 7→ N , which satisfies that:

1) xπ with σ(xπ) = n is the only point with 0 in-degree;

2) ∀x ∈ Xπ and ∀v ∈ Vout(vσ(x)), there is exactly one y ∈ Xπ, such that σ(y) ∈ Nv,

(σ(x), σ(y)) ∈ L, and (x, y) ∈ Aπ.

Xπ is the set of points in π, and Aπ is the set of arcs. We call xπ the root point of

real-graph π. Real-graphs with roots mapped to source node n ∈ N are denoted by set

Πn, and real-graphs of all source nodes are denoted by set Π =
⋃
n Πn. For simplicity,

we use the same notation σ to map entities (nodes, links, paths or subgraphs) in π to

99

the corresponding entities in Γ. We also use a point x to represent the node σ(x) ∈ N

when no ambiguity is introduced. Nπ ⊆ N and Lπ ⊆ L denote the subsets of nodes

and links that are mapped from some points and arcs in π, respectively.

We now explain the intuition behind Definition 4.2. A real-graph can be viewed

as a unitary structure that realizes every possible processing path starting with a

source microservice (a microservice that has source nodes) in the app-graph. Each

path is realized by a sequence of physical instances. To do this, we start from a source

node, and recursively instantiate every successor microservice of the current node by

assigning an instance to it, until we reach the sinks. Note that in this process, we

may choose different instances of the same microservice, each as the successor of a

different predecessor instance. Hence there can be multiple points in the real-graph

mapped to the same node. We show an example of a real-graph in Fig. 4.2(c), which

will be explained later.

We can define a number of attributes for π. First, each point/arc inherits the delay

of its mapped node/link in Γ. Second, since each point x has exactly one neighbor y

for each successor v ∈ Vout(vx), we can define the distribution ratio rx,y = r(vσ(x),vσ(y))

for (x, y) ∈ Aπ. We can further derive the impact ratio ρπx for each point x ∈ Xπ,

defined as the demand on x when one unit of demand is input at root xπ. This can be

computed by initially letting ρπxπ = 1, and then traversing π from xπ, with each point

adding its own impact ratio times the distribution ratio of each out-going arc to the

impact ratio of the corresponding out-going neighbor. Similarly, the impact ratio ρπa

for each arc a ∈ Aπ can be computed. Then, we sum the impact ratios of all points

mapped to a node m ∈ Nπ to compute the impact ratio ρπm imposed on m by π, and

similarly the impact ratio ρπl on each link l ∈ Lπ. The unitarity of π is guaranteed by

100

assigning exactly one instance to every point’s every successor microservice; in other

words, each processing path in the app-graph corresponds to exactly one path in π.

Based on these, we can define a source demand allocation function φ : Π 7→ R∗.

For π ∈ Πn, the value φ(π) denotes the external demand at the source node n that is

allocated to be carried on real-graph π. Each node/link’s demand under π can then

be computed by multiplying φ(π) with the node/link’s impact ratio. We highlight

the importance of this real-graph abstraction in the following theorem, which is an

analogy to the Flow Decomposition theorem for traditional network flow:

Theorem 4.2. Any demand allocation f satisfying Eqs. (4.1) and (4.3) can be de-

composed into at most |N | + |L| real-graphs Πsel with φ(π) > 0 for ∀π ∈ Πsel, such

that the total demand incurred by φ on any link l ∈ L is no more than f(l).

Proof. We decompose f as follows. We first find an arbitrary real-graph π ∈ Πn for

n ∈ N with δext
n > 0, such that f(l) > 0 for ∀l ∈ Lπ. We then calculate the maximum

acceptable demand of π as δ(π) = min{δext
n , f(l)/ρπl for ∀l ∈ Lπ}, i.e., the minimum

among δext
n , and the total allocated demand on every link l that appears in π factored

by the inverse of its impact ratio 1/ρπl . We let φ(π) = δ(π). We then visit every

link l ∈ Lπ, deducting δ(π) · ρπl from f(l); we also deduct δ(π) from δext
n . After the

deduction, the remaining f and demands still satisfy Eqs. (4.1) and (4.3), since we

deduct the same amount from the lefthand and righthand sides of Eqs. (4.1) and (4.3).

Due to our calculation of δ(π), at least one link’s allocated demand is fully taken away

during the deduction, or the total demand at a source node is deducted. We need at

most |N | + |L| steps to deduct all allocations from f . Also, we never deduct more

than the demand allocated on any link, hence any capacity constraint satisfied by f is

also satisfied by φ.

101

We now prove that we can always find a π with f(l) > 0 for ∀l ∈ Lπ, if f is feasible

and ∃n ∈ N s.t. δext
n > 0. Let n be a node with δn > 0 where δn comes from either

external or internal demands. By Eq. (4.3), there exists m ∈ Nv for ∀v ∈ Vout(vn)

such that f(n,m) > 0, and hence δm > 0. Therefore, we can start from any n with

positive external demand, arbitrarily select a node m ∈ Nv with f(n,m) > 0 for each

successor microservice v of vn, and then follow this process at each selected m until

no successor to work on. This clearly generates a real-graph whenever f is feasible

and has positive external demand, which completes our proof.

Fig. 4.2(c) shows a real-graph, which is also a decomposition of the load balancing

solution shown in Fig. 4.2(b) (in practice, a solution may be decomposed into multiple

real-graphs; in our example, only one is needed). We compute both the impact ratio

and the cumulative delay for each point as shown in the figure. For example, the

point mapped to D1 has impact ratio (rAB · rBD+rAC · rCD) = 1.0. Delay is computed

as the maximum delay from the root, e.g., the delay at the point mapped to D1 is

dA1+max{dB1 , dC1}+dD1 = 9. Note that although the real-graph realizes the app-graph,

it may not be isomorphic to the app-graph, as it allows instantiating a microservice

by multiple instances, such as microservice D instantiated by D1 and D2.

Theorem 4.2 is fundamental, as it enables us to use real-graphs as a basic structure

for characterizing a load balancing solution. In other words, instead of defining a

per-link allocation function f , we can define the allocation φ over the real-graphs from

each source node, with the end-to-end delay of the application defined as the maximum

delay from the source point to the leaf points of any real-graph with positive allocation.

We can then define the QoS-aware load balancing problem. Let D be the application’s

delay bound. Define d(π) as the maximum path delay from root xπ to any leaf point

102

in π: d(π) = max{d(p) | p ∈ π}. For brevity, we let Πm = {π ∈ Π |m ∈ Nπ} be the

subset of all real-graphs that include points mapped to node m.

Definition 4.3. Given app-graph G, inf-graph Γ, load bound Ψ > 0, and delay bound

D > 0, the QoS-aware Load Balancing (QLB) problem seeks for a subset of

real-graphs Πsel
n for each source node n, with Πsel =

⋃
n∈N Πsel

n , and a source demand

allocation function φ : Πsel 7→ R∗, s.t.:

1) ψ ≤ Ψ,

2) for node ∀m ∈ N ,
∑

π∈Πm ρ
π
m · φ(π) ≤ ψ · cm,

3) for source node ∀n ∈ N ,
∑

π∈Πsel
n
φ(π) = δext

n , and

4) for real-graph ∀π ∈ Πsel, d(π) ≤ D.

The optimization version, denoted as O-QLB hereafter, is to minimize the maximum

delay of all selected real-graphs.

Proof of the following theorem is deferred to the appendix.

Theorem 4.3. Both QLB and O-QLB are NP-hard.

4.5 Approximation Scheme Design

Due to the NP-hardness of O-QLB, we seek to develop an approximation algorithm.

Below, we first show that if all delay values are positive integers, the QLB problem

can be solved in pseudo-polynomial time. Such a problem is defined as Integral QLB

(IQLB), with O-IQLB being its optimization version to minimize maximum delay.

The pseudo-polynomial time algorithm is then used as a building block in the design

of an approximation scheme for the general non-integral problem.

103

4.5.1 Pseudo-Polynomial Time Optimal Algorithm

Our pseudo-polynomial time algorithm for IQLB is based on a layered graph

technique [85], [139]. Given inf-graph Γ and an integral delay bound D, we define an

auxiliary inf-graph ΓD = (ND, LD). The node set ND = {n0, n1, . . . , nD |n ∈ N}, i.e.,

a node has (D + 1) copies each belonging to a layer. For source node n ∈ N , we let

δext
ndn

= δext
n ; all other nodes have 0 external demand. Let d+

nm = dn+d(n,m) be the delay

of link (n,m) ∈ L plus the delay of m. The link set LD = {(ni,mi+d+
nm) | (n,m) ∈

L, i = 0, 1, . . . , D − d+
nm}, i.e., each original link in L has (D − d+

nm + 1) copies. Each

link copy inherits the distribution ratio of the original link. Due to page limit, we

refer the reader to [85] (p. 4, Fig. 4) for an illustrative figure of the layered graph

technique.

It is easy to see that each path or real-graph in ΓD corresponds to exactly one path

or real-graph in Γ, respectively. On the opposite direction, each path or real-graph

starting with one source node n in Γ also corresponds to exactly one path or real-graph

in ΓD (since the external demand of each source node in Γ enters at exactly one node

in ΓD). As our focus is only on paths or real-graphs starting with source nodes, we

use p or π to denote both a path or real-graph in Γ, and its correspondence in ΓD,

without introducing ambiguity.

The intuition behind this construction is to enforce that going through a node

n or link l in Γ is equivalent to “climbing” dn or dl layers in the auxiliary inf-graph,

respectively. The processing delay of source node n is encoded such that its external

demand enters in the respective dn-th layer. Since only (D + 1) layers (from 0 to D)

present, any processing path must reach a sink node within D layers, thus bounding

the maximum delay. Formally, we have the following observation:

104

Observation 1. Any path p or real-graph π in ΓD has delay d(p) ≤ D or d(π) ≤ D

in Γ, respectively.

Combining Theorem 4.2 and Observation 1, we are motivated to study the basic

load balancing problem on the auxiliary inf-graph, which is formulated as the following

LP:

min
f≥0

ψ (4.5a)

s.t. δn=
∑

l∈LDin(n)
f(l) + δext

n , ∀n ∈ ND; (4.5b)∑D

i=0
δn≤ψ · cn, ∀n ∈ N ; (4.5c)∑

l∈LDout(n,w)

f(l)=r(vn,w)δn,∀n∈ND, w∈Vout(vn). (4.5d)

Program (4.5) is almost the same as Program (4.4), except that the capacity con-

straint (4.5c) now considers the demands entering all copies of the same node n. We

then have the following:

Theorem 4.4. IQLB can be solved in O(D4|L|3L) time.

Proof. Program (4.5) is an LP with at most D|L| variables and input size of O(DL),

and hence it can be solved in O(D4|L|3L) time. By Theorem 4.2, the feasible solution

to Program (4.5) can be decomposed into at most D(|N |+ |L|) real-graphs on ΓD. By

Observation 1, each real-graph has delay bounded by D, thus the solution is feasible

to IQLB if the optimal value of Program (4.5) satisfies ψ ≤ Ψ. Now, assume IQLB

has a feasible solution, by reversing the decomposition, we can construct a demand

allocation f that satisfies all constraints in Program (4.5). The theorem follows.

105

4.5.2 Approximation Scheme for O-QLB

The basic idea of our algorithm is to find a sufficiently fine-grained discretization

of the real-valued delays, such that the discretized solution is a good approximation

of the optimal solution, and yet the time complexity is polynomial to the input size

(and the inverse of an approximation factor ε). For this reason, we use a factor α

to represent the granularity of discretization. We then define the discretized delay

values given α: dαn = bα · dnc+ 1 for n ∈ N , and dαl = bα · dlc+ 1 for l ∈ L; we use

similar symbols dα(p) or dα(π) to denote the delay of a path or a real-graph after

discretization, respectively. The discretized delays satisfy the following lemma:

Lemma 4.1. For any path p in Γ, we have

α · d(p) ≤ dα(p) ≤ α · d(p) + 2|N | − 1.

Proof. The left inequality is clear. The right one is because each path has at most

|N | nodes and |N | − 1 links.

By selecting a proper factor α, we discretize the O-QLB problem to have only

integral delay values. We want to solve the resulting O-IQLB problem to obtain an

approximation to the original O-QLB problem. Let ∆O-QLB be the optimal value

to the original O-QLB problem, and let (UB,LB) be a pair of bounds such that

UB ≥ ∆O-QLB ≥ LB. We define the discretization factor as α = 2|N |−1
εLB , given a

small approximation factor ε. Let ∆O-IQLB be the optimal value to the corresponding

O-IQLB instance. We have the following:

Lemma 4.2. α · LB ≤ ∆O-IQLB ≤ bα · UBc+ 2|N | − 1.

Lemma 4.3. α ·∆O-QLB ≤ ∆O-IQLB ≤ α · (1 + ε) ·∆O-QLB.

106

Proof of Lemmas 4.2 and 4.3. Let (Πsel, φ) be an optimal solution to O-QLB. Since

it is also feasible to O-IQLB, with Lemma 4.1, we have

∆O-IQLB ≤ max{dα(p) | π ∈ Πsel, p ∈ π}

≤ α ·max{d(p) |π ∈ Πsel, p ∈ π}+ 2|N | − 1

≤ α ·∆O-QLB + 2|N | − 1

≤ α · UB + 2|N | − 1.

(4.6)

This implies the right inequality in Lemma 4.2, as ∆O-IQLB is always an integer due

to the discretization. From the third inequality in Eq. (4.6), we have

∆O-IQLB ≤ α · (∆O-QLB +
2|N | − 1

α
)

= α ·
(
∆O-QLB + ε · LB

)
≤ α · (1 + ε) ·∆O-QLB

(4.7)

Based on the left inequality of Lemma 4.1, we have the left inequality in Lemma 4.3,

which implies the left inequality in Lemma 4.2. This proves Lemmas 4.2 and 4.3.

We now talk about the implications of Lemmas 4.2 and 4.3. Lemma 4.3 states

that ∆O-IQLB divided by α provides a (1 + ε)-approximation to the value ∆O-QLB.

Lemma 4.2 further provides a method to compute the value ∆O-IQLB, given a pair of

bounds (UB,LB) on ∆O-QLB. A bisection method can be used to search the space

[α ·LB, bα ·UBc+2|N |−1] for the delay value ∆O-IQLB, each time solving an instance of

IQLB by Program (4.5). The entire search requires O(log bα·UBc+2|N |−1
α·LB) = O(log |N |UB

εLB)

runs, each with time complexity of O(|L|3(|N |UB
εLB)4L). To summarize, Lemmas 4.2

and 4.3 give us a method for computing a (1+ε)-approximation of the optimal solution

to O-QLB within time polynomial to the input size, the parameter 1/ε, and the ratio

UB
LB between the upper and lower bounds.

107

To establish a polynomial-time algorithm, our next step is to find a pair of bounds

(UB,LB) that is within a polynomial factor of each other. This can be done by finding

a bottleneck delay that “determines” the feasibility of the problem instance. Let Γ−d

be the sub-graph of Γ where all nodes and links with delays larger than d are pruned.

We wish to find the minimum value dbot such that Γ−dbot still admits a feasible BLB

solution satisfying the load bound Ψ. Note that a source node n having delay dn > d

directly eliminates the existence of a feasible solution in Γ−d. Naturally, if the original

O-QLB instance is feasible, which can be checked by solving Program (4.4) on the

original Γ, then dbot exists. Since there are at most |N | + |L| distinct delay values,

dbot can be found also using bisection in O(log(|N |+ |L|)) iterations, each spending

O(|L|3 · L) time solving Program (4.4). We then have the following:

Lemma 4.4. (2|N | − 1) · dbot ≥ ∆O-QLB ≥ dbot.

Proof. By the definition of dbot, it follows that the QLB instance is feasible on Γ−dbot

but is infeasible on Γ−dbot with all nodes/links with delay equal to dbot removed. This

means that any feasible solution to QLB includes at least one node/link with delay no

less than dbot, which means dbot is a lower bound of ∆O-QLB. On the other hand, since

there is a feasible solution in Γ−dbot , and any path in Γ−dbot has at most |N | nodes

and (|N | − 1) links, the longest path delay in the feasible solution cannot exceed

(2|N | − 1) · dbot. Hence (2|N | − 1) · dbot is an upper bound of ∆O-QLB. This completes

the proof.

Lemma 4.4 provides us a pair of bounds UB = (2|N | − 1) · dbot and LB = dbot

with UB/LB = 2|N | − 1. Putting together the bounds with Lemmas 4.2 and 4.3, we

now have an approximation scheme for O-QLB, shown in Algorithm 4.1.

108

Algorithm 4.1: FPTAS-O-QLB(G,Γ,Ψ)

1 Solve Program (4.4) on Γ to test feasibility;
2 Ascendingly sort all delay values as d = (d0, . . . , dK);
3 lo← 0, hi← K;
4 while lo < hi− 1 do
5 mi← b(hi+ lo)/2c;
6 Construct sub-graph Γ−dmi ;
7 Solve Program (4.4) on Γ−dmi for optimal load ψ;
8 if ψ > Ψ then lo← mi;
9 else hi← mi;

10 end
11 dbot ← dhi,LB← dbot,UB← (2|N | − 1)dbot;
12 Discretize delays with α = (2|N | − 1)/εLB;
13 Dlo ← bα · LBc, Dhi ← bα · UBc+ 2|N | − 1;
14 while Dlo < Dhi − 1 do
15 Dmi ← b(Dlo +Dhi)/2c;
16 Construct auxiliary inf-graph ΓDmi ;
17 Solve Program (4.5) on ΓDmi for optimal load ψ;
18 if ψ > Ψ then Dlo ← Dmi;
19 else Dhi ← Dmi;
20 end
21 Do real-graph decomposition on the solution for ΓDhi ;
22 return (Πsel, φ) obtained by decomposition.

Lemma 4.5. Given any ε > 0, Algorithm 4.1 outputs a (1 + ε)-approximation of the

optimal O-QLB solution, within O(1
ε4
|L|3|N |8L log |N |

ε
+ |L|3L log |N |) time.

Proof. The approximation ratio is due to Lemma 4.3. The dominant time complexity

comes from the two bisection searches along with an LP solving per search iteration.

The first search takes O(log(|N |+ |L|)) iterations each with O(|L|3 ·L) time complexity.

The second search takesO(log |N |
ε

) iterations each withO(1
ε4
|L|3|N |8L) time complexity.

Since |L| < |N |2, we have the final complexity by adding them together.

109

4.5.3 Efficiency Enhancement

While Algorithm 4.1 runs in time polynomial to input size and 1/ε, it has a time

complexity as high as O(|N |12 log |N |) assuming |L| = Ω(|N |) and ε is a constant.

Observe that the high complexity mainly comes from solving LPs with D|L| variables

and input size DL, where D = Dmi is in the order of |N |UB
εLB and UB/LB is in the order

of |N |. If we can reduce UB/LB to a constant, a reduction of order |N | can be achieved

on the program size, resulting in orders of reduction in the overall time complexity.

We use a technique called approximate testing to achieve such a reduction [85].

Specifically, we define a test procedure TESTω(D). Given ω > 0 and D > 0, we

define a new discretization factor α = 2|N |−1
ωD and discretize all delay values in Γ. We

then define an instance of IQLB as (G,Γ,Ψ, D′) where D′ = b2|N |−1
ω
c+ 2|N | − 1 and

all delay values in Γ are discretized by α. Let TESTω(D) = True if the discretized

IQLB instance (G,Γ,Ψ, D′) has a feasible solution, and TESTω(D) = False otherwise.

We then have the following lemma:

Lemma 4.6. Given any ω > 0 and D > 0, we have

TESTω(D) = True ⇒ ∆O-QLB ≤ (1 + ω) · D;

TESTω(D) = False ⇒ ∆O-QLB > D.

Proof. Assume TESTω(D) = True, then we have a feasible solution (Πsel, φ) for

discretized IQLB(G,Γ,Ψ, D′), which also translates to a feasible solution for O-

QLB(G,Γ,Ψ). Let p be any processing path in any π ∈ Πsel, we have dα(p) ≤ D′.

110

Based on Lemma 4.1, we then have

d(p) ≤ dα(p)/α ≤ D′/α

≤
(

2|N | − 1

ω
+ 2|N | − 1

)
· D · ω

2|N | − 1

= D(1 + ω)

(4.8)

Since ∆O-QLB ≤ maxπ∈Πsel,p∈π{d(p)} (as the solution is feasible to O-QLB), we have

∆O-QLB ≤ (1 + ω) · D.

To prove the second statement, we can prove its contraposition, i.e., if ∆O-QLB ≤ D

then TESTω(D) must output True. Let π be any real-graph in the optimal O-QLB

solution, and let p be any path in π. Based on Lemma 4.1, we then have

dα(p) ≤ α · d(p) + 2|N | − 1

≤ 2|N | − 1

ωD
∆O-QLB + 2|N | − 1

≤ 2|N | − 1

ω
+ 2|N | − 1.

(4.9)

This implies that dα(p) ≤ b2|N |−1
ω
c+ 2|N | − 1 since again the delays are discretized

to be integers. Therefore the optimal solution to O-QLB also translates to a feasible

solution to the discretized IQLB instance, and hence TESTω(D) must output True

based on Theorem 4.4. This completes the proof.

Based on Lemma 4.6, we can use TESTω with ω = 1 as a test procedure for

carrying out a bisection search on the pair (UB,LB). Given an initial pair with

UB/LB = 2|N |− 1 (after Line 11 of Algorithm 4.1), we insert the procedure described

in Algorithm 4.2, to obtain a pair of bounds within a constant factor of each other,

before proceeding to Line 12 of Algorithm 4.1.

Theorem 4.5. Given any ε > 0, Algorithm 4.1 plus Algorithm 4.2 outputs a (1 + ε)-

approximation for O-QLB within time O(1
ε4
|L|3|N |4L log |N |

ε
+ |L|3|N |4L log log |N |).

111

Algorithm 4.2: RefineBound(G,Γ,Ψ,LB,UB)

// Between Lines 11 and 12 in Algo. 4.1
1 while UB > 4 · LB do

2 D ←
√

UB·LB
2

;
3 if TEST1(D) = True then UB← 2 · D;
4 else LB← D;
5 end
6 return (LB,UB).

Proof. First, observe that in Lines 3–4 of Algorithm 4.2, if TEST1(D) outputs True,

then 2 · D is still a valid upper bound; if TEST1(D) outputs False, then D is still a

valid lower bound; both due to Lemma 4.6. By the choice of D, it satisfies that UB
D =

2·D
LB =

√
2UB
LB in each iteration. Let β = UB

LB , and let β[i] be the value of β after the i-th

iteration. It is clear that β[i]=
√

2β[i− 1]= · · ·=21/2+1/4+···+1/2iβ[0]1/2
i≤2 · β[0]1/2

i .

Therefore Algorithm 4.2 needs O(log log β[0]) = O(log log |N |) iterations, each solving

an IQLB instance with D′ = b |N |
1
c+ |N | = 2|N |. It follows that Algorithm 4.2 has a

time complexity of O(|N |4|L|3L log log |N |). Since we reduce UB/LB to be within 4

after Algorithm 4.2, the complexity of the second bisection search in Algorithm 4.1

now becomes O(1
ε4
|L|3|N |4L log |N |

ε
). Combining these with the time complexity of

the first bisection search in Algorithm 4.1, we have the claimed time complexity.

4.6 Performance Evaluation

In this section, we present performance evaluation of our proposed algorithm with

simulation experiments. Our algorithm is denoted as QLB. We implemented two

heuristic algorithms. In the first algorithm denoted as BLB, the BLB formulation in

Program (4.4) is solved, followed by a simple decomposition as in Theorem 4.2. In the

112

second algorithm denoted as QHU (QoS-aware Heuristic), we solve a modified version

of Program (4.4) where the objective is changed to minimizing the demand-weighted

sum of delays of all nodes and links, meanwhile the load factor ψ has to be bounded

by Ψ; we then use the same decomposition method. Therefore the first heuristic

corresponds to load balancing that neglects QoS at all, and the second corresponds to

a heuristic formulation where the total delay instead of the maximum delay of the

solution is minimized in the modified LP.

We used randomly generated app-graphs and inf-graphs. The app-graph was

organized as a random 5-layer DAG, with the lowest layer having 10% of the vertices

and the other layers sharing the rest. Edges were generated from lower layers to all

upper layers, with each vertex in the upper four layers having 4 in-coming edges on

average. Distribution ratios of edges were also randomly generated, such that all

out-going edges of a vertex had their ratios sum to 1. The inf-graph was generated such

that each lowest-layer microservice had only one instance, as a source node, while each

microservice in other layers had [5, 15] instances. Links were built between instances

of interconnected microservices with a base probability of 0.3, while additional links

10 20 30 40 50 60 70
app-graph microservices

0

50

100

150

200

R
u

n
n

in
g

 t
im

e
 (

s)

QLB

BLB

QHU

Figure 4.3: Running time vs. app-graph size

113

were added to ensure that each instance could find at least one out-going neighbor for

every successor microservice. Each source node had a random demand in [100, 900]

and a large capacity such that it would not be a load balancing bottleneck. For all

other nodes, capacities were generated in [10, 90]. Node and link delays were generated

in [0, 1000] ms and [0, 500] ms respectively. Finally, we assigned the load bound Ψ to

be one of the two values: it was either the optimal value ψ∗ to BLB (Program (4.4))

or 2 · ψ∗. We used them to test the delay performance in heavy- or moderate-load

scenarios respectively.

We set the accuracy parameter ε = 0.5. Experiments were run on a Ubuntu PC

with i7-2600 CPU and 16GB memory. To average-out random noise, we conducted 20

random experiments under each setting and took their average.

Fig. 4.3 shows the running time of the implemented algorithms with growth in the

app-graph size. The running time of QLB is longer than the heuristics as expected.

The growth in the running time is nevertheless polynomial to the growth in app-graph

size (and hence the inf-graph size).

Fig. 4.4 shows the comparison of the delay values achieved by all three algorithms.

We show the comparisons under two settings: heavy load (Ψ = ψ∗) and moderate load

(Ψ = 2ψ∗). We note that QLB achieves the lowest delay in all scenarios, regardless

of load. The QoS-aware heuristic QHU can improve delay performance over QoS-

agnostic load balancing BLB, but cannot achieve an improvement as significant as

QLB. Comparing Figs. 4.4(a) and 4.4(b), QLB has a larger advantage in terms of delay

when the load is less (Fig. 4.4(b)). This is partly because when the load is moderate,

QLB has more room for selecting nodes and links with lower delays, and thus it can

further improve QoS. On the other hand, the results for BLB and QHU are almost

the same with different loads, since their formulations commonly generate the same

114

10 20 30 40 50 60 70
app-graph microservices

0

1000

2000

3000

4000

5000

6000

M
a
x

d
e
la

y
(m

s)
QLB

BLB

QHU

(a) End-to-end delay with Ψ = ψ∗

10 20 30 40 50 60 70
app-graph microservices

0

1000

2000

3000

4000

5000

6000

M
a
x

d
e
la

y
(m

s)

QLB

BLB

QHU

(b) End-to-end delay with Ψ = 2ψ∗

Figure 4.4: Objective value vs. app-graph size

solutions. Differences may result from the decomposition process, which, as shown in

the results, has little impact on the QoS of the final solutions.

To summarize, our algorithm always achieves advantageous QoS performance over

the heuristics, with a polynomially bounded complexity. This supports our theoretical

analysis that QLB has guaranteed performance while both heuristics do not.

115

4.7 Conclusions

In this study, we studied basic and QoS-aware load balancing across interdependent

IoT microservices. A DAG-based model was used to abstract microservice interdepen-

dencies. We proposed an LP formulation for the basic problem, which can be solved

in polynomial time. For the QoS-aware problem, we proposed a decomposition-based

model where a realization of the application is expressed as a realization graph. Since

the QoS-aware problem is NP-hard, we proposed an FPTAS, along with an efficiency

enhancement technique that achieves several orders of speed-up. Simulations showed

that our algorithm achieves enhanced QoS compared to heuristic solutions. We believe

that the proposed method, aside from making theoretical contribution to the problem

studied, more importantly provides insight in extending chain- or star-based applica-

tion models to the more general DAG-based model, which is much more expressive

and flexible in real-world scenarios.

4.8 Appendix

Proof of Theorem 4.3. We derive a reduction from the Partition problem to QLB,

the former of which is a well-known NP-hard problem [37]. Given a set of objects

X = {x1, . . . , xκ} and a positive integer ax for ∀x ∈ X, the Partition problem seeks for

a subset Y ⊂ X such that
∑

x∈Y ax =
∑

x∈X\Y ax. Given an instance X of Partition,

we construct an instance (G,Γ,Ψ, D) of QLB as follows. G = (V,E) has the vertex set

V = {v0, u1, v1, u2, v2, . . . , uκ, vκ}, and edge set E = {(vi−1, ui), (ui, vi) | i = 1, . . . , κ}.

Γ = (N,L) has the node set N = {ni | ∀vi ∈ V } ∪ {m0
i ,m

1
i | ∀ui ∈ V }, and link set

L = {(ni−1,m
0
i), (ni−1,m

1
i), (m

0
i , ni), (m

1
i , ni) | i = 1, . . . , κ}. In summary, the app-

116

graph is a line graph with (2κ+1) vertices and 2κ edges, and the inf-graph has (3κ+1)

nodes and 4κ links. For the attributes, all edges in E have distribution ratio of 1.

Node n0 has external demand of 2, while all other nodes have no external demand.

All ni nodes have capacity of 2, while all mj
i nodes have capacity of 1. All links, all

ni nodes and all m0
i nodes have delay of 0, while each m1

i node has delay dm1
i

= axi ,

for i = 1, . . . , κ. Finally, we set the application delay bound D = 1
2

∑κ
i=1 axi , and the

load bound Ψ = 1. An example is shown in Fig. 4.5.

v0v0 u1u1 v1v1
1.0 1.0

u2u2 v2v2 uκuκ vκvκ
1.0 1.0 1.0

vκ-1vκ-1
1.0

v0 u1 v1
1.0 1.0

u2 v2 uκ vκ
1.0 1.0 1.0

vκ-1
1.0

n0n0

m1m1

m1m1

n1n1

m2m2

m2m2

n2n2

mκmκ

mκmκ

nκnκ

0

1

0 0

1 1

δ=2.0

nκ-1nκ-1n0

m1

m1

n1

m2

m2

n2

mκ

mκ

nκ

0

1

0 0

1 1

δ=2.0

nκ-1

d=axκd=axκd=ax2d=ax2d=ax1d=ax1

App-graph:

Inf-graph:

Figure 4.5: App-graph values are distribution ratios. Delays of m1
i nodes are shown

beside them. Double lined nodes and all links have 0 delay. All ni nodes have capacity
of 2. All mj

i nodes have capacity of 1. Ψ = 1. D = (1/2)
∑κ

i=1 axi .

Since the app-graph G is a line graph, every real-graph of n0 is also a line graph

from n0 to nκ, and hence its delay is precisely the sum of delays of m1
i nodes included

in the path. Now, suppose instance X of Partition has feasible solution Y . Then

instance (G,Γ,Ψ, D) of QLB also has a feasible solution, which has two paths, one

taking m1
i for xi ∈ Y and m0

i for xi ∈ X \ Y , and the other taking the opposite

mj
i nodes, both having a demand allocation of 1. On the reverse direction, suppose

instance (G,Γ,Ψ, D) has a feasible solution. The solution must also contain two paths

since each mj
i node can only accept half of the demands coming from the predecessor

ni−1 node. A feasible solution to Partition instance X is then constructed by picking xi

117

corresponding to all m1
i nodes taken by one of the paths. This proves the NP-hardness

of QLB, and the NP-hardness of O-QLB follows.

118

Part II

Robust Security Deployment in IoT

119

Chapter 5

DEPLOYING ROBUST SECURITY IN INTERNET OF THINGS

5.1 Introduction

Despite its powerfulness and popularity, the current IoT is facing many challenges,

among which a major one is the emerging concern on IoT security and privacy. In

regard to security, the massive number of connected smart devices in IoT, which is

indeed its biggest strength, is also a huge potential threat. On one hand, providing fine-

grained security to a large number of geo-distributed devices is non-trivial, especially

given the limited resources on each of these devices. On the other hand, these massive

devices, once compromised, can be used as a powerful weapon against the system itself,

for example, by launching large-scale distributed denial-of-service (DDoS) attacks. In

fact, the digital world has already witnessed the devastating effect of such attacks in

several recent incidents [126]. Privacy becomes part of the concern when IoT-connected

devices infiltrate various private spaces, including homes, factories, and hospitals.

Enforcing security and privacy in IoT is difficult. The main reason, as aforemen-

tioned, is the limited resources (computing resource, memory, battery) on connected

devices. Due to this, IoT devices can hardly run conventional cryptographic al-

gorithms. Currently, there are two directions that deal with this issue. The first

direction is to develop lightweight yet strong-enough cryptographic algorithms for

IoT devices. Unfortunately, current advances along this direction is yet enough to

conquer the overhead issue of cryptography in constrained environments [124]. The

second direction is to offload security to the cloud [20], [161]. This is based on recent

120

advances in network function virtualization (NFV), which can virtualize security

mechanisms as software components to be run on general-purpose platforms [83].

However, cloud-based offloading has several drawbacks. First, cloud-based security

leaves data transmission as a major vulnerability. In other words, the traffic from IoT

devices to the cloud is unprotected, leaving room for data interception, manipulation

and injection attacks, especially when the traffic needs to traverse the Internet before

reaching the cloud. Second, cloud-based security cannot prevent saturation attacks

at the early stage, such as DDoS attacks from IoT devices. In fact, a DDoS attack

may even invalidate the cloud by saturating its bandwidth, rendering the whole

security system unusable. Third, the cloud suffers from high latency which increases

the probability of device-oriented oppotunistic attacks, for instance, the recently

revealed Meltdown and Spectre hardware attacks [54] that can affect an extremely

wide spectrum of IoT devices. The cloud is not capable of responding in real-time

to incidents on IoT devices. Last but not least, the cloud becomes a single point of

failure in the system. An attack compromising the cloud itself can have control over

all the devices, including those in private spaces like homes or factories.

Powered by fog computing, a new approach to IoT security emerges. Fog com-

puting offers in-network computing hardware in the edge network, which enables

edge offloading of security mechanisms near the end devices. Hence it can largely

realize fine-grained and real-time security, while avoiding high latency, high bandwidth

usage and a single point of failure. That being said, fog-based security also has its

limitations. First of all, the cost of using fog computing is generally higher than

that of using the cloud. This is because fog nodes are commonly deployed in areas

that are already dense with other devices, and hence will have higher deployment,

operation and energy costs. Due to this, fog resources are still limited in each area,

121

though much more abundant than IoT devices. Second, fog-based security still leaves

some vulnerabilities in the early stage of data transmission. The unprotected and/or

unmonitored traffic can cause various threats to the devices and the system, as we

detail in Section 5.3.2.

An ideal architecture for IoT security should jointly make use of end device-, cloud-

and fog-based security. Among these, fog-based security has the highest flexibility in

the trade-off between security and cost, and hence should be carefully optimized by

the IoT operator. In this work we focus on modeling and formulating the security

offloading problem from the perspective of fog computing. Given a limited cost budget,

the operator would want to deploy security functions on distributed fog nodes, in order

to minimize the security risk experienced by the end devices. We mathematically

formulate the security risk of the system in terms of the distance from each device

to the nearest deployed security function, which is general enough to incorporate a

wide range of risk measures in practice; see Section 5.3.2. A major challenge in the

deployment problem is the dynamic nature of IoT, where both infrastructure and

demand fluctuations could happen frequently, such as device mobility, maintenance,

interference, failures, etc. To address this challenge, we propose a stochastic model

to capture the uncertainties caused by dynamics. Leveraging a relevant concept in

economics, our model can account for both the expected and the worst-case risks of

the system, which is more robust than traditional stochastic models solely based on

expectations. We then propose a novel decomposition-based framework, along with

an efficiency-enhancement technique, to achieve accurate and efficient optimization

of system security risk in the dynamic IoT environment. We evaluated our proposed

model and optimization framework in extensive simulation experiments, and the

results have shown the superb performance and efficiency of our proposed approach.

122

To summarize, our main contributions are as follows:

• To the best of our knowledge, we are the first to study, quantitatively model,

and optimize the security risk in fog computing-based IoT security offloading.

The problem is of both theoretical and practical importance.

• We propose a stochastic model to account for both the expected and the worst-

case security risks of the IoT system with uncertainties, which is more robust

than traditional stochastic models solely based on expectations, and is more

suitable for security-related use cases.

• We propose a decomposition-based optimization framework, along with an

efficiency-enhancement method that addresses the large overhead of stochastic

programming.

• We conducted extensive simulations which show the superb performance of our

approach compared to several other approaches.

5.2 Backbround and Related Work

5.2.1 IoT Security Challenges and Approaches

IoT security has yet attracted a lot of attentions, at least not until several recent

attacks based on IoT devices [126]. It has then been recognized that security breaches

in IoT can be as dominating and devastating as, if not more so than, any other known

type of security incidents. Since then, more efforts have been put into addressing

security challenges in IoT, which can be viewed roughly in two perspectives.

The first perspective is on protecting the IoT devices. The main challenge here

is the limited resources on IoT devices, including computing power, memory, power

123

supply, etc. Currently, there are two approaches to address the resource issue. The first

one is lightweight cryptography and security, which aims to develop mechanisms that

can provide good-enough security on resource-constrained devices, such as [61], [82].

Unfortunately, the current lightweight methods still can only be deployed on devices

like smartphones or tablets, but can hardly be used on smaller devices like radio

frequency identification (RFID) tags, largely due to the stringent power constraint

on these devices [124]. Another approach is to offload security mechanisms to other

platforms, including in-network fog nodes or the cloud [20], [66], [74], [135]. This

approach addresses the overhead issue, but inevitably introduces some risk associated

with the transmission to the offloaded security mechanisms, as detailed in the next

section.

The second perspective is to protect the broader IoT system rather than only

the end devices. An IoT system includes the end devices, network infrastructures

in different levels, applications and their hosting fog or cloud nodes, and users of

the IoT services. There are several challenges in this perspective, including the

huge number of IoT devices, the heterogeneous and dynamic network environment,

various requirements and characteristics of applications, etc. The de facto approach

here is cloud-based security [111], which again has several issues. The cloud is

generally far away from the IoT edge network, and hence is difficult to adapt to

the fast changing environment of IoT; it is also vulnerable to saturation attacks like

DDoS [119]. NFV [115] is a promising approach to addressing this issue, by enabling

implementation of security mechanisms as in-network software components to resolve

threats before they reach the cloud, other devices or the users.

It can be seen that both perspectives call for deployment of security mechanisms

in the network. In both cases, security can be largely guaranteed when traffic

124

has passed certain security functions, while the part of transmission before is not

protected/monitored. Therefore, what we address in this study is to minimize the

risk associated with the transmission before the security functions, by deploying these

functions at optimal locations. A recent survey on IoT security is in [156].

5.2.2 Risk Management in Network Security

Traditionally, network security is mainly a 0–1 problem: a system is either secure or

insecure. Recently, however, there has been a transition to providing best-effort network

security, due to the enormous number and variety of attacks and the impractical

amount of resources to prevent them all. The goal is either to make the difficulty or

cost of launching an attack unacceptable to the attackers, or to make the probability

or potential loss of undergoing an attack acceptable to the system.

Our work follows a number of existing works along the second direction. A major

series of works have focused on modeling and optimizing network security risk using

Attack Graphs (AG) [4], [95], [113]. An AG is a graph representation of all the possible

attack paths into the system, and is used to derive various security risk measures via

Bayesian theory [95], node ranking [113], or other mathematical tools [4]. The derived

measures are then used to guide the deployment of security functions to harden the

system [29], [91]. A main drawback of the AG representation is its scalability. The

size of the AG can grow exponentially with the size of the network, and is further

increased if each node have multiple vulnerabilities. Hence it is most suitable for

simple and small-size environments like home networks, but is hardly applicable to

IoT networks with even a few hundred devices. Furthermore, AG cannot handle fast

125

dynamics in the network: it needs to be modified each time a new device joins or an

old device leaves.

In face of these issues, some researchers have been seeking for simpler and more

practical security measures for large-scale and dynamic environments like IoT. Rullo,

Serra, Bertino, and Lobo [110] have proposed a novel model for security risk when

monitoring geo-distributed IoT devices in an area. They considered the robustness

of the system when facing dynamic user densities, an approach similar to what we

use to address demand and topology fluctuations in the IoT network. In this study,

we propose a security risk measure based on distances in the network, as well as an

efficient optimization framework to minimize the security risk by flexibly deploying

security functions on fog nodes.

5.2.3 Other Related Areas

Mobile Offloading (MO): The idea of offloading dates back to mobile cloud com-

puting, where users offload their mobile applications to the cloud [69]. Yet security

offloading differs from MO in two ways. First, MO is mostly ad hoc where each user

makes its own decisions; however, security offloading is centrally controlled by the

operator, who optimally coordinates the offloading for all users. Second, MO does not

consider the network, since the destination is commonly the cloud. Security offloading

needs to consider the edge network topology, and to minimize the risk associated with

the offloading decisions.

NFV and Service Function Chaining (SFC): SFC is arisen in the context of

NFV. SFC considers the interplay between different network services or security

functions, modeling them as a chain of virtual functions. Existing work has focused

126

on embedding service chains for each traffic flow [13], [70], [109]. Unfortunately,

this method is neither scalable for the massive IoT devices, nor robust to the high

dynamics. A good method should account for both the expected scenarios, and

possible unfavorable scenarios due to system fluctuations.

Security with Robustness: Our work uses a stochastic approach to ensure system

robustness. Similar methods have also been used in other security scenarios [110], [134].

Another potential approach is robust optimization, which deterministically optimizes

the worst possible performance of the system, such as [17]. This approach has two

drawbacks. First, it is hard to represent all unfavorable scenarios deterministically.

Second, it only plans for the worst possible performance of the solution, which is

commonly an overkill and wastes precious resources. A good approach should be able

to balance the expected and worst-case performances, and give operator the flexibility

to specify the desired objective.

5.3 Problem Description and Formulation

5.3.1 System Model

The IoT network is modeled as a directed graph G = (V,E). V is the set of

network nodes, including access points (APs), switches, routers, gateways, and various

fog nodes. We use F ⊆ V to denote the set of fog nodes, each being able to host

security functions. E is the set of links between nodes.

The IoT faces two types of uncertainties. The first one is demand uncertainty, which

comes from dynamics such as device deployment, maintenance, user load variation,

device and user mobility, etc. Let A ⊆ V be the set of APs of the IoT. To model

127

demand uncertainty, each AP a ∈ A is associated with a random variable da ∈ R∗

(R∗ is the non-negative real number set), denoting the amount of demand at a. We

use D = {da | a ∈ A} to denote the demand uncertainty set, and dsum =
∑

a∈A da to

denote the total demand in the IoT. In practice, the demand can refer to (but is not

limited to) the number of devices, number of flows, traffic volumes, etc.

The second type is topology uncertainty due to unexpected failures, maintenance,

interference, etc. To model it, we associate each link e ∈ E also with a random

variable ye ∈ {0, 1}, where ye = 1 means e is operational, and ye = 0 means e is down.

This model is also able to account for node dynamics: if a node fails, all its adjacent

links have ye = 0. We use Y = {ye | e ∈ E} to denote the topology uncertainty set.

Let D={da} and Y ={ye} be a specific realization of the demand and topology

uncertainty sets, respectively. We define a realization of the system (called a scenario)

as Π=(D, Y).

5.3.2 Threat Model and Defense Mechanism

In an IoT network with security offloading, data is first transmitted from IoT

device to the offloaded security function before heading to its final destination. Below,

we analyze the threat associated with such transmission in several scenarios:

• Highly constrained devices: these devices cannot run any cryptographic pro-

cedure, hence offload all procedures to the network. All transmitted data is

unprotected before passing the security functions, which is subject to leakage,

manipulation, injection and other types of attacks.

• Moderately constrained devices: these devices can run lightweight cryptographic

procedures such as secure computation outsourcing [20], [66], which only offloads

128

computation-intensive operations but keeps the data private. Yet in this case,

the data stays unprotected in device memory until encryption is complete, during

which it can be compromised by opportunistic attacks leveraging vulnerabilities

of the devices themselves, such as the recent Meltdown and Spectre hardware

attacks [54]. Probability of an attack is determined by the latency between

device and the offloaded location, as the process can involve multiple rounds of

back-and-force messaging [66].

• IoT network: the operator may deploy security functions (e.g., intrusion de-

tection, firewall, deep packet inspection) to protect the system from mali-

cious/compromised devices. However, traffic not processed by certain security

functions can be a threat to the network. For example, a DDoS attack may still

overwhelm some of the nodes before being tackled by a detection and resolution

function.

It can be seen that in these various scenarios, it is essential that the operator

can flexibly deploy security functions to minimize the threats brought by the unpro-

tected/unmonitored transmission of offloading. Unfortunately, the operator may have

a tight budget for deploying the functions. We next define the operator’s deployment

plan to optimize such threats.

We consider the deployment of a single type of security function to prevent a

specific type of attacks. Formally, we use binary variable set X={xv | v∈F} to denote

a deployment plan, where xv=1 means a security function is deployed at node v and

0 otherwise. Let cv ∈ R+ be the deployment cost at node v ∈ F . A deployment plan

is said to be feasible, iff it satisfies the operator’s budget b:

∑
v∈F

cvxv ≤ b. (5.1)

129

Definition 5.1 (Security risk). Given network G = (V,E), the security risk of a

deployment plan X is the average distance that a unit of demand has to traverse before

reaching the nearest security function from its AP, denoted as R(X,D, Y). In other

words, the security risk is a function of the deployment plan X and the uncertainty

sets D and Y .

In Definition 5.1, the distance is a cumulative measure that can be selected based

on different use cases. For instance, it can be as simple as the number of hops

(vulnerable links or nodes) or transmission latency (time window of possible attacks),

or as complex as the negative logarithm of the “safe” probability of traversed links or

nodes (the “safe” probability is one minus the probability that a node/link/path is

attacked; it is cumulated multiplicatively along the transmission path but is to be

maximized instead of minimized). We do not assume a specific distance measure for

sake of generality. We focus on the average distance of demands for ease of illustration,

although our approach can be trivially extended to minimizing the maximum distance

of demands. Note that the average distance is the average over demands from all

APs in a fixed scenario, rather than over all possible scenarios of the system. For

measurement over scenarios, we use both the expectation and a worst case-oriented

metric, as detailed next.

5.3.3 Measuring Security Risk with Uncertainty

Given a fixed scenario Π, measuring the security risk of deployment plan X is as

simple as finding shortest paths between AP-fog node pairs; minimizing it with flexible

deployment plans, though, is NP-hard due to a reduction from the facility location

problem [53]. Furthermore, the IoT environment is rather volatile, with uncertainties

130

in both the demands and the topology. One approach is to measure and minimize

the expected risk, which reflects the average level of threat of the system. However,

such an approach is not robust enough when applied in security, as the system may

experience arbitrarily high security risk in unfortunate scenarios.

To account for the worst-case performance, we adopt the concept of Conditional

Value-at-Risk (CVaR), a risk measure widely used in economics and finance. The

concept has been applied in several security-related use cases [110], [134]. Here “risk”

refers to the investment risk an investor encounters when facing market variations,

i.e., potential loss due to unfavorable market trends. Formally, let random variable R

be the loss of an investment. The following terms are defined:

VaRα(R) = min{c |P (R ≤ c) ≥ α}, (5.2)

CVaRα(R) = E[R |R ≥ VaRα(R)]. (5.3)

Here E[·] is the expected value of a random variable. VaRα(R) (Value-at-Risk, also

called α-VaR) is the minimum value such that the actual loss will not exceed it with α

confidence, while CVaRα(R) (also called α-CVaR) is the expected loss of all scenarios

where the loss can actually exceed VaRα(R). In other words, CVaRα(R) denotes the

expected loss of the worst (1− α) percent scenarios in terms of investment loss.

Given uncertainty sets D and Y , R(X,D, Y) is the security risk of deployment plan

X, which is also a random variable. We use R to denote R(X,D, Y) if no ambiguity

is introduced. Next, we formally model and minimize the security risk of security

offloading, utilizing the CVaR definition.

131

5.4 Security Deployment with Uncertainty

5.4.1 Problem Description and Formulation

Given the network and a limited budget, the IoT operator wants to ensure system

security to the best extent. This includes both the overall system security in expecta-

tion, as well as the potential security risk in the (1 − α) percent most unfavorable

scenarios. We model these two goals as a multi-objective optimization problem as

follows:

min
X∈X

E[R], CVaRα(R), (5.4)

where X is the feasible deployment plan set satisfying Eq. (5.1).

Optimizing two objectives can be hard, as they may conflict with each other in their

own optimality points respectively. A common technique is to scalarize the multiple

objective functions into a single objective function. We scalarize Program (5.4) as the

following single-objective program:

min
X∈X

E[R] + ρ · CVaRα(R). (5.5)

where ρ is a chosen balancing parameter.

In Eq. (5.3), the formulation of α-CVaR requires the computation of α-VaR be-

forehand, which is hard to incorporate in the above program. Fortunately, Rockafellar

and Uryasev proved in [106] that the α-CVaR can be computed as follows without

knowing the α-VaR beforehand:

CVaRα(R) = min
c∈R

{
c+

1

1− α
E
[
(R− c)+

]}
, (5.6)

where R is the real number set, and (z)+ = max{z, 0}. Therefore, Program (5.5) can

132

be re-written, by incorporating Eq. (5.6), as the following program:

min
X∈X
c∈R

E[R] + ρ

(
c+

1

1− α
E
[
(R− c)+

])
. (5.7)

The random variable R is a function of the deployment plan X and random variable

sets D and Y . Unfortunately, writing it as a closed-form equation is also a difficult

task. Instead, we formulate it as the following program:

R(X,D, Y) =

min
t

1

dsum

∑
a∈A

da
∑
v∈F

dista(v)ta(v) (5.8a)

s.t.
∑
v

ta(v) = 1, ∀a; (5.8b)

ta(v) ≤ xv, ∀a, v; (5.8c)

ta(v) ∈ [0, 1], ∀a, v. (5.8d)

In Program (5.8), dista(v) is a random variable, denoting the distance between AP

a and node v. It is determined by the distance metric used (number of hops, latency,

safe probability, etc.), as well as the topology uncertainty set Y . Objective (5.8a)

is to minimize the demand-weighted average security risk (distance) of all APs.

Constraint (5.8b) bounds the node selection variable ta(v). Constraint (5.8c) defines

the relationship between the deployment variable xv and the node selection variable

ta(v). Note that ta(v), which can be viewed as the probability of selecting v for AP a,

is a continuous variable in [0, 1]; its upper bound 1 is explicitly expressed in (5.8d)

for clarity, but can be omitted due to Constraint (5.8b) when solving the program. If

multiple nodes have the same minimum distance from a, the node selection can be

arbitrarily split among them without affecting the objective value.

133

5.4.2 Scenario-based Stochastic Optimization

Program (5.7) is a stochastic optimization problem. Even with the characteristic

functions of D and Y , the problem is still hard to solve since R(X,D, Y) cannot

be written in a closed form (and is not even convex as Y is discrete). A common

approach is to approximate the expectations using sampling. Specifically, N sample

scenarios are obtained from the underlying distributions of D and Y , denoted as

Π = {Π1, . . . ,ΠN}. Let Ri
∆
= R(X,D

i
, Y

i
) be the security risk in scenario Πi, which

can still be expressed by Program (5.8) with the random variables replaced by the

deterministic values in Πi. The expected security risk E[R] is then approximated

by the sample average function 1
N

∑N
i=1Ri, while the α-CVaR is approximated by

min
c∈R

{
c+ 1

1−α
1
N

∑N
i=1(Ri − c)+

}
.

Program (5.7) is then approximated by the following:

min
X∈X
c∈R

1

N

N∑
i=1

Ri + ρ

(
c+

1

1− α
1

N

N∑
i=1

(
Ri − c

)+

)
. (5.9)

We next re-write Program (5.9) to resolve (·)+, Ri and X . To resolve (·)+, we

introduce additional variable zi ∈ R∗ for i = 1 . . . N , and constrain the inner term

of (·)+ using zi. To resolve Ri, note that both Program (5.8) and Program (5.9) are

minimization programs, and hence can be merged. X is resolved by bringing Eq. (5.1)

into the program. We then arrive at the following Mixed Integer Linear Program

134

(MILP):

min
1

N

N∑
i=1

1

d
i

sum

∑
a∈A

d
i

a

∑
v∈F

distia(v)tia(v)+

ρ

(
c+

1

1− α
1

N

N∑
i=1

zi

)
(5.10a)

s.t.
1

d
i

sum

∑
a∈A

d
i

a

∑
v∈F

distia(v)tia(v)− c ≤ zi, ∀i; (5.10b)

∑
v

tia(v) = 1, ∀i, a; (5.10c)

tia(v) ≤ xv, ∀i, a, v; (5.10d)∑
v∈F

cvxv ≤ b; (5.10e)

xv∈{0, 1}, tia(v)∈ [0, 1], zi≥0, c∈R, ∀i, a, v. (5.10f)

In Program (5.10), note that the random variable distances dista(v) are also instanti-

ated by the deterministic distances distia(v), which can be computed beforehand for

all scenarios. There may be scenarios where an AP cannot reach all the fog nodes due

to disconnectivity. In this case, we set the distance to the disconnected nodes to a

large value, in order to prefer security function deployment at other fog nodes instead.

Program (5.10) can be solved using optimization solvers such as Gurobi [48]. Yet,

there are two reasons that Program (5.10) is extremely hard to solve in practice. First,

the program is non-convex due to integer variables xv. Second, the program size is

linear to N . To get a good approximation of the distributions of D and Y , the number

of samples needed is commonly at least thousands. An MILP of such size is largely

unsolvable in practice. Therefore, we resort to some optimization techniques, which

can drastically reduce the complexity of solving Program (5.10) to a practical level.

135

5.4.3 Two-stage Optimization with Benders’ Decomposition

At a closer look, Program (5.10) can be viewed as a typical two-stage optimization

problem, with a small number of master variables but a huge number of slave variables.

In the first stage, the program seeks to fix deployment plan X, which is called the

master problem. In the second stage, given fixed deployment plan, it then computes

the security risk of all scenarios by selecting the optimal fog nodes that actually

deploy the security functions; this stage is called the slave problem. A difficulty in

solving a two-stage program is that when fixing the first-stage master solution, there

is no clue on how such decisions will affect the second-stage slave solution, until

the slave problem is actually solved. A natural choice is thus an iterative algorithm

that progressively solves both the master and the slave, until an optimal solution is

found. In this subsection, we apply a well-known algorithm of such kind: the Benders’

decomposition due to Benders [9].

Formally, Program (5.10) can be re-written as follows:

min
X,c

ρ · c+Q(X, c) (5.11a)

s.t. (5.10e),

xv ∈ {0, 1}, c ∈ R, ∀v. (5.11b)

where the slave problem Q(X, c) is given by

Q(X, c) =

min
z,t

1

N

N∑
i=1

(
1

d
i

sum

∑
a∈A

d
i

a

∑
v∈F

distia(v)tia(v) +
ρ

1− α
zi

)
(5.12a)

s.t (5.10b), (5.10c), (5.10d),

tia(v) ∈ [0, 1], zi ≥ 0, ∀i, a, v. (5.12b)

136

An intriguing property of the slave is that it is further decomposable regarding

each scenario Πi, as there are no coupling variables or constraints over i. Hence the

slave problem can also be written as Q(X, c) = 1
N

∑N
i=1Qi(X, c), where Qi(X, c) is

the slave subproblem for each scenario Πi, defined by the inner term of the objective

function and all the constraints for the specific i in Program (5.12).

To employ Benders’ decomposition, we further need to study the dual program of

Qi(X, c), defined as follows:

∆i(x, c) =

max
λ,φ,µ

∑
a∈A

(
φi(a)−

∑
v∈F

xvµi(a, v)

)
− c · λi (5.13a)

s.t. λi ≤
ρ

1− α
; (5.13b)

φi(a)−µi(a, v)≤ d
i

adist
i
a(v)

d
i

sum

(1 + λi),∀a, v; (5.13c)

λi, µi(a, v) ≥ 0, φi(a) unbounded, ∀a, v. (5.13d)

In Program (5.13), dual variables λ, φ and µ correspond to primal con-

straints (5.10b), (5.10c) and (5.10d), respectively.

Given the above, the key idea of Benders’ decomposition is to, instead of considering

all constraints as a whole, progressively add constraints (also called cuts) that may

help in approaching the optimal solution in an iterative manner, thus avoiding to

consider the large number of constraints together. The algorithm starts with a feasible

master solution (e.g., with all xv = 0 and c = 0 in our problem), a pair of lower and

upper bounds LB = −∞ and UB =∞, and the master problem that contains only

the master constraints (in our case, Constraint (5.10e) is the only master constraint).

In each iteration, the algorithm first solves the dual slave problem given the current

137

master solution. It then updates the master problem by adding cuts based on the

dual slave problem solution. The updated master problem is then solved to optimality

to obtain a new master solution. Note that although the master problem is still an

MILP, it has a much smaller size compared to the original, and hence can be efficiently

solved using a standard solver. The LB and UB are updated based on the master and

slave solutions, respectively. The whole algorithm is shown in Algorithm 5.1.

Algorithm 5.1: Benders’ Decomposition for Program (5.10)
Input: Network G, scenarios Π, quantile α, tolerance ε
Output: Deployment plan X

1 X ← {xv = 0| v ∈ F}, c← 0, LB← −∞, UB←∞;
2 while UB− LB > ε do
3 Solve dual slave problem ∆i(x, c) for ∀Πi;
4 if ∆i(x, c) is unbounded then
5 Get unbounded ray (λ̃, φ̃, µ̃);
6 Add feasibility cut to the master problem:

N∑
i=1

(∑
a∈A

(
φ̃i(a)−

∑
v∈F

xvµ̃i(a, v)

)
−cλ̃i

)
≤0;

7 else
8 Get optimal point (λ∗, φ∗, µ∗);
9 UB← min{UB,∆(x, c)};

10 Add optimality cut to the master problem:

σ≥
N∑
i=1

(∑
a∈A

(
φ∗i (a)−

∑
v∈F

xvµ
∗
i (a, v)

)
−cλ∗i

)
;

11 end
12 Solve master problem min{σ + ρ · c | cuts, x ∈ X};
13 LB← σ + ρ · c;
14 end
15 return X.

In the algorithm, an unbounded ray (λ̃, φ̃, µ̃) in Line 5 is essentially a direction

(in other words, a solution vector) to which the dual objective value goes to infinity.

If the dual slave problem is unbounded, the primal slave problem is infeasible, and

hence a feasibility cut is added in Line 6 to drive the master problem back into the

138

feasible domain. If the dual slave has an optimal solution, the optimal dual point is

incorporated into the master by adding an optimality cut, which drives the algorithm to

search for master solutions with higher objective values. By adding cuts progressively,

the algorithm avoids considering all the slave constraints together, but instead only

considers those “promising” constraints that are likely to be active in the optimal

solution. This can drastically reduce the overhead, especially for scenario-based

optimization where a huge number of scenarios are considered. The UB is updated

as the best feasible solution ever found, while the LB is updated when a new master

solution is obtained. Optimality can be claimed when LB and UB converge.

5.4.4 Speeding-up Per-iteration Optimization

Even with the decomposition technique, Algorithm 5.1 is not efficient enough. The

main reason is that it needs to solve a large number of dual slave linear programs

(LPs) in each iteration, which is a slow process due to the cubical complexity for

solving LPs [143]. In this subsection, we revisit the dual slave subproblems ∆i(x, c)

in (5.13), and show that they can be solved analytically due to their special structure.

Without loss of generality, we assume that the dual slave problem is feasible and

bounded, i.e., the corresponding primal slave problem is also feasible and bounded.

Note that the primal problem is infeasible (hence the dual is unbounded) only when

some AP is disconnected from any fog node in a certain scenario, which can be detected

in the shortest path pre-computation phase. In the disconnected case, the security

risk is ill-defined, as the AP cannot even communicate with the Internet. To tackle

this, one way is to simply assign a uniform distance for all fog nodes, meaning that in

139

this scenario it has no effect on the node selection. The primal problem cannot be

unbounded (security risk is lower bounded by 0).

For scenario Πi and AP a, let via[1] and via[2] be the two fog nodes with xv = 1 and

with the minimum distances from a, and let distia[1] and distia[2] be the corresponding

distances respectively (with distia[1] ≤ distia[2]). Also let δia = d
i

a/d
i

sum. We then have

the following optimal solution:

λi=

ρ

1− α
if
∑
a

δiadist
i
a[1] ≥ c

0 otherwise
(5.14a)

φi(a)=δiadist
i
a[2](1 + λi) (5.14b)

µi(a, v)=

δia(dist

i
a[2]−distia(v))(1+λi)

if v = via[1]
or xv = 0

0 otherwise
(5.14c)

The following theorem states the optimality of the above solution, whose proof is

delegated to the appendix.

Theorem 5.1. If the dual slave problem has bounded optimal value, Eq. (5.14) is an

optimal solution to Program (5.13), and can be computed in linear time.

5.5 Performance Evaluation

5.5.1 CVaR vs. Expectation

In this subsection, we show simulation results on comparing the expected case and

the worst case up to a small tail probability. Our topology is in Fig. 5.1(a), which is

based on the IoT framework in [89]. The topology had four types of nodes representing

different street blocks: residential (R), work (W), business (B) and entertainment (E).

140

R R

R

RR

R

R

R

B

B

W B

W

W

W E E

E

E

(a) Simulation topology
1.
0

5.
0

10
.0

20
.0

40
.0

80
.0

Quantile (1−α) in percentage

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

R
i
s
k

CVaR (ρ=100k)

CVaR (ρ=0)

Mean (ρ=100k)

Mean (ρ=0)

(b) CVaR and expectation with ρ = 100k (min CVaR) and ρ = 0 (min
expectation) respectively

Figure 5.1: Simulation on designated topology.

Each node was both an AP and a fog node with uniform cost. The operator had a

30% budget over the sum of fog node costs. The scenarios were generated from a

3-month time period sliced into 15-minute intervals. Each link had an independent

reliability of 99%. Depending on time and day of week, demand at each node was

drawn from a Gamma distribution Γ(a, b) where a is the shape and b is the scale, as

shown in Table 5.1.

141

Mon. – Fri. Sat. & Sun. Other (Sleep)
8am–6pm 12pm–6pm 6pm–10pm

R Γ(0.5, 1.5) Γ(0.5, 1.5) Γ(0.5, 0.5) Γ(0.5, 3.0)

W Γ(0.5, 2.0) Γ(0.5, 0.2) Γ(0.5, 0.2) Γ(0.5, 0.8)

B Γ(0.5, 0.5) Γ(0.5, 2.0) Γ(0.5, 1.0) Γ(0.5, 0.3)

E Γ(0.5, 0.2) Γ(0.5, 0.5) Γ(0.5, 2.5) Γ(0.5, 0.1)

Table 5.1: Probability Distribution of Demands

We compared between using Algorithm 5.1 with a large enough ρ value (where only

CVaR is considered) and with ρ = 0 (where only the expectation of risk is considered).

We varied the quantile α to see the CVaR of different confidence levels. For example,

a large quantile α = 99% means we only look at the 1% most unfavorable scenarios,

while α = 0% means that we are looking at all the scenarios in CVaR, which by

definition is equivalent to the expectation itself. To solve the MILP master problem,

we used the Gurobi solver [48].

Fig. 5.1(b) shows the optimal solutions (with error tolerance of ε = 10−5, same

hereinafter) obtained by Benders’ decomposition. The quantile (1−α) is the percentage

of scenarios included in the computation of CVaR. We can see that optimizing CVaR

and optimizing expectation indeed achieves different solutions in most of the cases.

With increase in (1− α), more scenarios are included in the CVaR, hence the CVaR

value approaches the mean. However, with (1−α) = 1%, there is a great difference in

minimizing CVaR (ρ = 100k) and minimizing expectation (ρ = 0), where the CVaR

of security risk can be almost 1.5× larger in the latter case than in the former. This

suggests that in security systems where a few worst cases need to be carefully tackled,

it is important to apply CVaR-aware optimization to account for the worst-case

performance rather than for the average case alone.

142

5.5.2 Optimality and Efficiency

Next, we used randomly generated network to show how our proposed algorithm

was able to achieve vast speed-up compared to the brute-force approach. Each topology

had 30 nodes, and was generated using the Waxman model [32] with parameters

α = β = 0.3. We randomly picked half of the nodes to be APs, and ψ of the nodes to

be fog nodes where ψ ∈ [0, 1] is the fog node ratio. Deployment costs were generated

uniformly from [10, 100], while the operator had a budget of 50% of the sum of costs. In

total 10k scenarios where generated for each experiment. Link reliability was uniformly

99%. The demands at APs were generated from an Erlang(1, 2) distribution. We set

quantile α = 95%. To average out noise of topology randomization, we generated 20

different topologies for each experiment setting, and took the average over all runs.

Simulations were conducted on a Linux PC with 3.4GHz Quad-Core CPU and 16GB

memory.

Fig. 5.2 shows the results of our algorithm over a brute-force algorithm. BENS is

our proposed algorithm with our analytical model, while BENS-LP is our proposed

algorithm with dual slave LPs solved by the Gurobi solver [48]. Brute-force algorithm

ITER iterates over all possible deployment plans X∈X , and returns the best solution

found after all iterations or after a running time limit of 1800 seconds; ITER returns

the optimal solution unless exceeding the time limit. Fig. 5.2(a) shows the optimality

of our algorithm. Note that when the fog node ratio exceeds 0.7, ITER could not

iterate over all possible solutions in the time limit, and hence returns suboptimal

solutions. Fig. 5.2(b) shows the overall running times. Our BENS algorithm is the

fastest in most cases. ITER is faster than BENS when the fog nodes are few, but

then its time grows and quickly tops-up the pre-set time limit of 1800 seconds, due

143

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Ratio of fog nodes

1.5

3.0

4.5

6.0
C
V
a
R
[
r
i
s
k
]

BENS

BENS-LP

ITER

(a) CVaR vs. fog nodes

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Ratio of fog nodes

0

400

800

1200

1600

2000

R
u
n
n
i
n
g

t
i
m
e

(
s
) BENS

BENS-LP

ITER

0.2 0.4 0.6
0
5
10
15
20

(b) Running time vs. fog nodes

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Ratio of fog nodes

0.00

0.04

0.08

0.12

0.16

M
a
s
t
e
r

t
i
m
e

p
e
r

i
t
e
r
.

(
s
)

BENS

BENS-LP

(c) Master time vs. fog nodes

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Ratio of fog nodes

0

4

8

12

16

20

S
l
a
v
e

t
i
m
e

p
e
r

i
t
e
r
.

(
s
)

BENS

BENS-LP

0.2 0.4 0.6
0
80
160
240
320

m
s

(d) Slave time vs. fog nodes

Figure 5.2: Simulation results with varying number of fog nodes over total nodes.
ITER (optimal algorithm) exceeds the time limit (1800 s) when the fog node ratio is
0.7, and hence is terminated before finishing all iterations.

to the exponential increase in the solution space. Comparing BENS and BENS-LP,

the former achieves a drastic speed-up. We further plot the average master and

slave solving times per iteration in Figs. 5.2(c) and 5.2(d), respectively. It can be

seen that BENS and BENS-LP do not differ much in master solving time. However,

BENS achieves several orders of speed-up in slave solving time, further validating the

effectiveness of our analytical model. Finally, an interesting finding is that, although

144

the master problem is an MILP, it actually solves faster than the slave problem, due

to its small size compared to the large number of scenarios.

5.5.3 Comparison with Fast Baseline Heuristics

In the last set of experiments, we show the performance of our algorithm compared

to fast heuristics. For this comparison, we used a synthesized dataset derived from

real IoT device traces collected in the Dartmouth College [67]. The original dataset

contained the location data of over 600 APs and the connectivity data of over 13000

user devices for more than 5 years. We synthesized the dataset as follows. First, we

aggregated APs based on buildings, and regarded each building as a single AP. Second,

we further divided buildings into street blocks based on a publicly available map of

the campus. Due to lack of campus network topology, we adopted a topology where

each building’s AP is directly connected to a central node within each block, and all

blocks are connected in a ring topology. All block nodes and 10% of the buildings

were selected as fog nodes, with deployment costs of 100 and 10, respectively. Finally,

since the entire data set contains many intervals that have unstable and erroneous

measurements, we only used a one-year subset of data (09/2002–08/2003) that is

relatively stable according to the collectors [67].

To characterize the demand distribution, we regarded the user connectivity data

as samples from the underlying realistic distribution. We used 4 months of data

(09/2002–12/2002) as training set, and the next 8 months of data (01/2003–08/2003)

as the test set, both sliced into intervals of 15-minute length. We used the training

data to deploy the security functions, and then calculated the security risks of the

deployed security functions on both the training set and the test set. The number of

145

devices were aggregated and averaged over every 15-minute interval for each building

AP. All links had 99% reliability. We again set ρ to a large value, and let α = 95%.

150 175 200 225 250 275 300
Operator cost budget

2.4

2.8

3.2

3.6

4.0

C
V
a
R
[
r
i
s
k
]

(
t
r
a
i
n
)

BENS

GRDY

RNDA

(a) Training set performance

150 175 200 225 250 275 300
Operator cost budget

2.4

2.8

3.2

3.6

4.0

C
V
a
R
[
r
i
s
k
]

(
t
e
s
t
) BENS

GRDY

RNDA

(b) Test set performance

Figure 5.3: CVaR of risk on synthesized Dartmouth data.

Fig. 5.3 shows the training and testing security risks using the synthesized data.

We compared our proposed algorithm to two heuristics: RNDA and GRDY. RNDA is

a random algorithm which randomly picks fog nodes to deploy the security function,

until the budget is exceeded. GRDY is a greedy algorithm which iteratively selects

fog nodes that result in the maximum reduction in the objective function, until the

budget is exceeded. From the figure, we can see that our algorithm outperforms both

GRDY and RNDA. The greedy heuristic generally achieves better performance than

RNDA, but may result in poor performance with certain budget values such as a

budget of 200. Also, it is interesting to see that an optimal training solution may not

be optimal on the test set. For example, when the budget increases from 275 to 300,

the training CVaR of BENS (the optimal) decreases, but the test CVaR increases.

This is commonly due to changes in the underlying distribution, and should be tackled

by periodically re-optimizing the deployment decisions based on new inputs.

146

5.6 Discussions and Future Work

Advanced deployment and risk measurement: Our current distance-based risk

measure can be extended to more complex cases. For example, each link may have

a routing capacity and each security function may have a processing capacity in

practice. In this case, demands may be split over multiple paths and/or security

functions if some are overloaded. Also, different links and/or nodes may have different

contributions to the security risks, as some may be more vulnerable to others. These

considerations can mostly be integrated with minimal modifications into our CVaR-

based and scenario-based optimization framework. Derivation of efficient solutions in

these more complex cases is delegated to our future work.

Further optimization speed-ups: The proposed algorithm uses the basic Benders’

decomposition, with the only speedup being the problem-specific analytical model for

the dual slaves. Other techniques may also improve the efficiency of Benders’ decompo-

sition, such as enhanced cuts [24], the three-phase method [24], trust regions [78], etc.

While these techniques can hardly beat the speed-up achieved by our analytical model

(and most of them are not trivially compatible with our analytical model), they are

helpful in general when our model and framework are extended to other more complex

cases as aforementioned. An orthogonal technique is to employ parallelization in each

iteration, which is natural through the dual slave decomposition in our algorithm.

5.7 Conclusions

In this study, we studied the security risk associated with offloading security from

IoT devices to fog or cloud nodes in the network. To maximize system security

147

and robustness, the operator would want to deploy in-network security functions

to minimize the security risk of all users, given various scenarios including varying

demands and network failures. We made the following contributions. First, we

proposed a stochastic model for uncertainties in IoT. Second, we used an economic

model (CVaR) to capture the worst-case security risk of the system, in addition to

the conventional expectation-based model. Third, we developed a decomposition-

based optimization framework for optimizing both the expected security risk and

the its CVaR in scenario-based stochastic programming. We then enhanced the

framework with an analytical model tailored to drastically reduce its optimization

overhead. Finally, we showed, through simulations, that the proposed model well

captures system security risk up to a small tail probability, and that the proposed

framework achieves optimal security deployment with limited overhead compared to

other algorithms.

5.8 Appendix

Proof of Theorem 5.1. For simplicity, we omit subscript i, since the dual slave sub-

problem is independent for each scenario. We call a node active if it has xv = 1 in

the current iteration, otherwise it is inactive. First, for any inactive node v, we can

assume that µ(a, v) takes an arbitrarily large value to enforce Constraint (5.13c), as

it has a zero coefficient in the objective function. For each AP a, a node v can have

a positive µ(a, v) only when the corresponding Constraint (5.13c) is binding, i.e.,

equality holds instead of inequality at any optimal point, for this node; otherwise,

the objective value can be solely increased by decreasing µ(a, v) without violating

Constraint (5.13c). We claim that there is at most one active node v with positive

148

µ(a, v); if multiple active nodes have positive µ(a, v), then we can reduce φ(a) along

with all the positive µ(a, v)s by a small amount, reducing objective value without

violating Constraint (5.13c) for any node. Further, we claim that the node with

positive µ(a, v) must be the one and only one active node v∗ who has the minimum

distance from a; if more than one node has the same minimum distance, they must all

have µ(a, v) = 0. Otherwise, say if an active node v′ with non-minimum distance has

a positive µ(a, v′) and the corresponding Constraint (5.13c) is binding, then clearly

µ(a, v∗) > µ(a, v′) > 0, because dista(v∗) < dista)(v′). Then we have two positive

µ(a, v) values, which conflicts with the above. In the case of a single minimum-distance

active node v∗ = via[1], both φ(a) and µ(a, v∗) can take positive values up to the

values specified in Eq. (5.14), without violating Constraint (5.13c) for the second

minimum-distance node, via[2]. We pick the upper bounds to motivate the master

problem to search for new solutions in each iteration.

Now, for the inactive nodes, though they can take arbitrarily large values, we pick

their lower bounds, such that reducing any µ value in this class will lead to constraint

violation. This gives Eq. (5.14) for xv = 0. This choice is for simplicity of the equation,

but can also help in numerical stability in practice.

Based on the above, we know that in the optimal solution, the first term of the

objective function is always equal to ξ(1 + λ) where ξ =
∑

a δadista[1]. Then, it is

clear that the λ value is based on the comparison between ξ and c. If ξ ≥ c, we set λ

to the maximum value ρ
1−α as bounded by Constraint (5.13b); otherwise, we set λ to

0. This completes the proof.

149

Part III

Micropayment Routing in

Blockchain-based PCN

150

Chapter 6

COINEXPRESS: A FAST PAYMENT ROUTING MECHANISM IN

BLOCKCHAIN-BASED PAYMENT CHANNEL NETWORKS

6.1 Introduction

Ever since the invention of Bitcoin by Satoshi Nakamoto in 2008 [88], we have well

witnessed the blooming of thousands of altcoins4, which (along with Bitcoin) jointly

support a digital payment market with over $800B of capitalization at its peak5. It is

envisioned that, in addition to the digital world where digital payments already prevail,

sectors such as banking, international trading, manufacturing, healthcare, taxation

and many more will also enjoy extensive benefits from this trend. Furthermore, the

underlying blockchain technology has inspired (and will continue to do so to) numerous

innovations, fundamentally transforming the business models of internet-of-things,

supply chain, auditing etc., and even exerts political and human right influences with

applications in governance transparency, democratic voting and freedom of speech.

However, current mainstream cryptocurrencies such as Bitcoin and Ethereum,

although achieving strong security through decentralization, bear some severe limita-

tions that greatly hinder their applications in our daily life. A significant one is the

scalability issue brought by the requirement of global consensus and the large-overhead

of security assurance through expensive consensus algorithms. Both Bitcoin and

Ethereum employs the Proof-of-Work consensus algorithm, which can only generate

1Altcoin refers to cryptocurrencies that are alternative to Bitcoin.

2Data is based on CoinMarketCap (https://coinmarketcap.com/).

151

https://coinmarketcap.com/

blocks in a pre-specified speed, and each block can only include a limited number of

transactions to avoid centralization. As a consequence, the Bitcoin blockchain can

only process up to 7 transactions per second (tps) [97], while the number for Ethereum

is around 15 tps [23], compared to over 45000 peak tps handled by Visa [97].

Facing this issue, there have been extensive efforts on improving blockchain

scalability in several orthogonal directions. Among them, a promising proposal is

to construct off-chain payment channels, which carry out transactions with minimal

involvement of the blockchain itself. Specifically, users build peer-to-peer (P2P)

channels with pre-deposit funds, and transfer values by re-adjusting fund allocation

on the channels for each on-going transaction. Each transaction is protected by a

smart contract, such that any non-cooperative behavior will be punished by granting

all fund on the channel to the counter-party. In such a scenario, all transactions via

a channel are stacked, and will be jointly published to the public blockchain upon

channel expiration. Therefore the involvement of expensive blockchain operations

is limited to only channel establishment, close-out, and the rare events of dispute

arbitration in case of non-cooperative behaviors.

It has been envisioned that a distributed network comprised of these payment

channels, namely a payment channel network (PCN), can take most of the transactions

off-chain, hence drastically reducing payment overhead and increasing scalability of

the payment system [97]. Both leading cryptocurrencies are actively seeking the

deployment of PCNs alongside their main blockchains; see Section 6.6. However,

PCN has its own problems to be addressed. Maintaining a payment channel basically

requires locking a certain amount of funds within the channel for an extended amount

of time. Hence each normal user only has the capability to maintain a small number

of channels with closely related parties. When paying to an arbitrary recipient in

152

the world, most likely an indirect payment is needed, which spans multiple channels

in the network. Such indirect payments can cause a number of problems. First,

one or multiple payment paths from sender to recipient need to be provisioned

before the payment starts. In network terminology, the payment must be routed

before going through. Second, a contract is needed to guarantee non-repudiation at

each intermediate node. Other issues include denial-of-service attacks, privacy, node

availability, transaction fees, etc.

In this study, we investigate routing for indirect payments in PCN. PCN routing

has a number of distinct characteristics, which renders it intrinsically different from

routing in traditional computer networks. First, PCN routing focuses on finding

routes with sufficient capacity (fund) to serve a payment, rather than finding the

shortest transmission paths as in traditional network routing. Second, PCN routing is

fully distributed, as no central administrative operator exists in PCN; even if such

an operator exists, it would not be trusted by any user, since its existence already

defeats the spirit of decentralization that has set the foundation of cryptocurrencies.

Third, PCN routing is more sensitive to dynamics in the network, due to the unique

property of payment channels that the fund in a channel is commonly consumptive

and non-recoverable unless other events happen; see Section 6.2. Last but not least,

privacy plays an important role; minimizing privacy leaks of the payer/payee (and

possibly the involved nodes) can be a priority task in certain scenarios.

In face of these challenges, we propose CoinExpress, a routing mechanism that

efficiently finds “express lanes” for cryptocurrency-based digital payments in PCNs.

As a first step in PCN routing, CoinExpress focuses on high-performance and efficient

payment routing, while leaving the privacy issue as an orthogonal enhancement to be

addressed in the next chapter. We make the following contributions:

153

• We investigate important design goals of routing in PCN, and propose a practical

model for PCN routing based on network flow and concurrent flows.

• We propose a distributed approach for PCN routing, which, in addition to

finding routes that fulfill the payment, providing guarantee to the timeliness

and availability regarding user’s payment deadline and the expiration times of

the underlying channels, respectively.

• We have shown, through simulations, that CoinExpress not only achieves superior

payment successful ratio, but also drastically reduces overhead over existing

work.

The rest of this study is organized as follows. In Section 6.2, we introduce the

background of PCN and routing, and state the design goals. In Section 6.3, we present

our system model. In Section 6.4, we propose our distributed PCN routing design,

and describe the detailed algorithms for each involved party in routing. In Section 6.5,

we show performance evaluation results of our design compared to a state-of-the-art

PCN routing scheme and other baselines. In Section 6.6, we review existing work in

related areas. In Section 6.7, we conclude this study.

6.2 Background and Overview

6.2.1 System Overview

A PCN consists of several components, as shown in Fig. 6.1(a). Their detailed

functions are explained below.

In PCN, a user is identified by a unique account address, usually also the public

key of the account. A payment channel can be viewed as a temporary joint account

154

A B

C D

E
A→E
!0.5

in 4 min

Public
Blockchain

Payment Channel
Network

(a) In a PCN, user A requests payment of 0.5 Bitcoin to E within 4 minutes. A finds payment path
A→B→C→D→E which has sufficient balance and can settle within 4 minutes. A sends initiate
payment to B for forwarding. Each hop forwards payment. If intermediate node D wants to steal the
payment by not forwarding the payment, C will then publish this situation to the public blockchain,
who will judge on D’s dishonesty and grant all funds on channel C→D to C as a punishment to D.
Assuming all parties are honest, no blockchain operation is involved.

A

B

C

D

E R

H

Secret

Hash
H

Send hash H

 Forward payment with H

Backward confirmation with R

H

H

H

R

R

R

R

4 min

2 min

1 min

3 min
H

HTLC:

(b) For request A→E, recipient E generates secret R and its hash H, and sends H
to A. A encodes H and deadline 4 minutes into its contract with B, such that B
cannot spend the payment without providing R to A within 4 minutes. Each node
forwards payment similarly, and employs a decreasing deadline. Upon reception,
E will provide R to D to spend D’s payment, while D and so forth will do the
same to previous hops, until A receives R.

Figure 6.1: PCN overview and Hashed TimeLock Contract (HTLC)

155

between two users, whose balance is divided by the two parties and the division can be

adjusted based on agreement of both users. A channel is established by both parties

each depositing a certain amount into the joint account. The total deposit amount is

called the channel capacity, which defines the maximum amount of value that can be

transferred via this channel. A unidirectional channel only allows monotone balance

adjustments, while a bidirectional channel allows adjustments in both directions.

In PCN, a transaction is essentially a channel balance update agreed upon by

both parties. A channel is protected by multi-signature smart contracts, which ensure

validity, non-equivocality and non-repudiation of the on-going transactions. When one

party publishes obsolete balance history to reverse settled transactions or to double-

spend, the contract guarantees that the dishonest party is punished by granting all

its remaining channel balance to the other party. This economically prevents an

adversary from utility gain via dishonest behaviors.

A payment from sender to recipient is performed via a number of transactions

in different channels, organized as either a payment path or a payment flow. A

direct payment can be made between two parties who share a channel, and is settled

immediately after the corresponding transaction is completed. If two parties do not

share a channel, an indirect payment is needed, which requires balance updates on

multiple channels. This, however, can lead to issues if an intermediate node denies

performing a subsequent transfer after receiving a preceding one, or the recipient

denies receiving the payment.

Hashed TimeLock Contract (HTLC) [97] is introduced to solve the multi-hop

problem, as shown in Fig. 6.1(b). An HTLC consists of both a hash lock and a

time lock. In the hash lock, recipient generates a random value R with hash value

H, and sends H to the sender. Sender, as well as any intermediate node, includes

156

H in the transaction contract, such that the transferred fund is spendable by the

transferee only when the secret R used to generate H is provided to the transferor.

This ensures non-repudiation of transfer reception, as no one can spend its received

amount without acknowledging the reception. In the time lock, each transaction is

restricted by a completion deadline, such that if the transferor does not receive R by

the deadline, the transferred fund will be refunded to the transferor. In an indirect

payment, each forward hop employs a decreasing deadline, taking into account the

time for completing its own balance update as well as the time the two parties wish

to wait to tolerate delay fluctuations in other hops. Any non-cooperative behavior

will cause the corresponding transaction to be published on the public blockchain,

which will grant all funds in the channel to the counter-party as a punishment to

the non-cooperative party. By employing a sequence of time-outs in the opposite

direction of the payment path, it is guaranteed that no transferee or recipient can

hold up a channel until any preceding channel expires (in which case it can repudiate

the reception and steal the fund).

From the above discussion, the key in performing a successful indirect payment is

to find a route with sufficient balance, in the form of a path or a set of paths (a flow),

such that an end-to-end time lock can be established in each path that respects the

expiration time of each channel in the path. Next, we elaborate a number of unique

challenges of routing in PCN, and a set of desired design goals of any routing solution.

157

6.2.2 Challenges in Routing Design

At a first glance, routing in PCN is just a variant of the widest path problem or

the maximum flow problem, for which many efficient algorithms exist. Unfortunately,

the problem is not as simple as it seems due to many practical constraints.

First, due to the time lock in HTLC, each payment path needs to satisfy a sequence

of time delay constraints. For example, the last hop’s channel expiration time needs

to be lower bounded by the cumulative update and transmission delay of all hops

in the path; the second last hop’s expiration time needs to be lower bounded by the

same cumulative delay plus the backward delay of the last hop; so on and so forth.

Moreover, a user may require fast payment settlement, by specifying a deadline before

which the payment needs to be settled. For the payment flow problem, it is well-known

that the Multi-Path routing with Bandwidth and Delay constraints problem (MPBD)

is NP-hard, corresponding to our routing problem that only considers the last hop’s

expiration time.

Second, the remaining balance on each directional payment channel is non-

interfering monotone. Here, a directional payment channel refers to either a unidi-

rectional channel, or one direction of a bidirectional channel. For each directional

payment channel, its remaining balance is consumed after each transaction. Non-

interfering monotonicity means that unless the channel is explicitly interfered with,

e.g., is recharged via external funding or opposite-direction transactions, the consumed

balance cannot be used by other transactions on the same direction. We use the term

monotonicity for abbreviation.

One consequence of channel monotonicity is the unpredictability of balances in

the network, which is due to the highly dynamic nature of the network. The available

158

balance of each channel is constantly changing with every transaction. Thus it is

impractical or even impossible for every node to keep track of the real-time balances

of all channels in the network, especially when modern payment networks typically

scale to billions of nodes [97], [104]. To find a route with sufficient balance, the sender

could either estimate channel balances based on empirical data, but with a high risk of

payment failure due to estimation inaccuracy, or actively probe for available balances,

which incurs probing overhead.

Moreover, high network dynamics and channel monotonicity can cause concurrency

issues. When multiple concurrent payments compete on one or more channels, they

may block each other from progressing. In the worst case, deadlocks could happen,

locking up funds on all involved channels [80].

6.2.3 Design Goals

Addressing these challenges require routing mechanisms that satisfy a set of design

goals, which we elaborate below.

• Timelock-compatibility: In an HTLC-guarded PCN, a major requirement

of payment routing is to ensure that a feasible end-to-end time lock can be

successfully established along each path, which guarantees the commitment of

honest processing at any involved node.

• Distributedness: The routing mechanism must not rely on a centralized

trusted party. Centralized routing is subject to single point of failure upon

external attacks, and hence cannot be trusted by users. Instead, nodes need to

communicate with each other and conduct local computations to find routes for

payments.

159

• Concurrency: A routing mechanism should be non-blocking in that at any

time, at least one payment can progress without waiting for concurrent payments.

• Goodput: The mechanism should maximize system goodput, measured by the

number or total value of successful payments in a given time window. This is

not equivalent to maximizing system throughput, which is the total value that

can be delivered in the period. A partially fulfilled payment is viewed as failed

if the recipient does not receive the full amount within the deadline.

• Efficiency: First the mechanism should minimize the routing and payment

latency incurred by users. In more time-sensitive scenarios, the mechanism

should guarantee payment settlement within a user-specified deadline. Second,

the mechanism should only incur limited overhead on both the end-points and

the intermediate nodes.

• Privacy: The mechanism should preserve secrecy of various information in the

network, which is distinguished into the following types:

– Sender/Recipient Privacy: An adversary should not be able to determine

the sender/recipient of any payment between non-compromised parties.

– Value Privacy: An adversary should not be able to learn the exact value

of any payment. Moreover, the adversary should learn as little information

as possible about the range of value of any payment.

– Path Privacy: An adversary should not be able to learn the path(s) of any

payment, other than the nodes it has already compromised.

– Channel Balance Privacy: An adversary should not be able to learn the

exact balance of a payment channel at any given time, unless the channel

connects to a node it has already compromised.

– Channel Load Privacy: An adversary should not be able infer the load on

160

a payment channel connecting non-compromised nodes, from sources such

as the settlement delay of the channel.

As a first step, in this study we aim to achieve the first five goals: timelock-

compatibility, distributedness, concurrency, goodput and efficiency. We address privacy

preservation as a separate and orthogonal task in the next chapter.

6.3 System Model

6.3.1 Network Model

A distributed PCN is modeled as a weighted directed graph G = (V,E). V is the

set of nodes, i.e., users each of whom has established at least one payment channel with

a peer user. E is the set of links. A link denotes either a unidirectional channel from

one user (the transferor) to another (the transferee), or one direction of a bi-directional

channel between two users.

Each link has several attributes. First, each link e ∈ E has a channel capacity ce,

denoting the total amount of value deposit into the underlying payment channel by

both parties. Second, each link e ∈ E also has a current balance be. For a unidirectional

channel (represented by a single link in G), the capacity ce is the maximum amount

of value that the transferor can send to the transferee before the channel expires,

while the balance be is the remaining amount of value that the transferor can send.

For a bidirectional channel (two collateral links in opposite directions between two

users), the two links have the same capacity, equal to the sum of their balances, i.e.,

b(u,v) +b(v,u) = c(u,v) = c(v,u). A link e always has be ≤ ce. For simplicity, we assume the

set E only contains links with positive balances at any time. A link with zero balance

161

is temporarily removed from the graph (i.e., the views of the nodes it connects), until

its balance gets recharged by new deposits or payment transactions on the opposite

direction.

Payment through a channel is not instant. First, each channel needs to complete

arriving payments sequentially. Second, it requires time for the two parties to agree

on the balance update, which is the forward processing time of the current hop.

Third, due to the time lock in HTLC, the channel further needs to release the locked

transferred value after receiving acknowledgement from the next hop, which requires

a certain amount of waiting plus backward processing time. For simplicity, we omit

the transmission delay between parties, which can be incorporated into the forward

and backward processing times. We use d1
e to denote the forward wait time plus the

forward processing time of a link e, and d2
e to denote the backward wait time plus the

backward processing time, at any given time. We let de = d1
e + d2

e. Each link further

has an expiration time ηe, denoting the time when the underlying channel becomes

unavailable. For a payment via e to be successful, it must settle before the channel

expires.

We assume that each user only has local knowledge on all its in-coming and

out-going links, including their capacities, expiration times, as well as instantaneous

balances and delays. Each sender/recipient additionally knows the other party’s

address, but does not know the other party’s location in the network. In general,

each node may have rough estimation of the overall network status based on local

information, but cannot know the instantaneous balance or delay of any remote link,

due to network asynchrony and dynamics.

162

6.3.2 Payment Model

A payment request is denoted by a quintuple R = (s, t, a, st, dl), where s and t are

the sender and recipient respectively, a is the amount to be paid, and st and dl are

the start time and deadline respectively. Let P be the set of all paths in the PCN. A

payment request R is realized by a payment plan, i.e., a set of paths PR ∈ P , where

each p ∈ PR is an (s, t)-path in the network. Each path p ∈ PR is associated with a

payment value, denoted by vp. For a payment plan PR to be successful, it needs to

satisfy the following conditions:

• PR is feasible, iff for any link e ∈ E where PR(e) ⊆ PR is the set of paths

through e, we have ∑
p∈PR(e)

vp ≤ be. (6.1)

• PR is available, iff for any p ∈ PR and e ∈ p, let p+
e ⊆ p be links including and

after e in p, then we have

st+
∑

e∈p
d1
e +

∑
e∈p+

e

d2
e ≤ ηe. (6.2)

• PR is timely, iff for any path p ∈ PR, we have

st+
∑

e∈p
de ≤ dl. (6.3)

• PR is fulfilling, iff ∑
p∈PR

vp ≥ a. (6.4)

Based on the above definition, a payment plan that is feasible, available, timely

and fulfilling is able to transfer a amount of value from sender s to recipient t within

the deadline dl, and we call it a realizing payment plan for request R. In this study,

we are interested in finding a realizing payment plan for each payment request, while

satisfying as many design goals as possible.

163

6.4 Dynamic Routing Design

Most existing bandwidth-aware routing algorithms cannot be applied in our sce-

nario, due to the frequently changing link balances and delays. A naive approach

is to empirically estimate the channel statuses and route accordingly, yet such an

approach is subject to poor accuracy and can lead to low goodput. We propose

CoinExpress, a novel probing-based dynamic routing mechanism. In CoinExpress, the

sender probes for channel statuses before payment, and reserves balances in advance.

CoinExpress is fully distributed, adaptive to network dynamics and concurrent, and

achieves high goodput. Unfortunately it does not provide privacy guarantee, which

we aim to address in future work.

It should be noted that due to the availability and timeliness constraints, the

problem of finding a realizing payment plan is NP-hard, even when the sender has

full knowledge of the network. With only the timeliness constraint, the problem is

equivalent to the MultiPath routing with Bandwidth and Delay constraints problem

(MPBD), which has been proved to be NP-hard in [85], and the best centralized

algorithm one can expect is an expensive fully polynomial-time approximation scheme

(FPTAS) [85]. Instead, our approach is a distributed algorithm derived from the

Ford-Fulkerson algorithm for maximum flow [36], and applies a locking technique to

resolve concurrency among multiple simultaneous requests. Before diving into our

algorithm, we first define some basic concepts on network flow.

164

6.4.1 Network Flow Preliminaries

To avoid ambiguity, we use balance to replace the term capacity that is commonly

used in flow networks. For simplicity, for u, v ∈ V such that (u, v) /∈ E, we assume

b(u,v) = 0.

Definition 6.1 (Network flow). Given network G with balances {be}, source s and

destination t, an (s, t)-flow is defined as a mapping f : V ×V 7→ R∗, with the following

properties:

1) Flow conservation: for ∀v ∈ V, v 6= s, t,

∑
(u,v)∈E

f(u, v) =
∑

(v,u)∈E

f(v, u);

2) Balance constraint: f(u, v) ≤ b(u,v).

We define b(f)=
∑

(s,v)∈E f(s, v)−
∑

(v,s)∈E f(v, s) as the flow value of f .

Definition 6.2 (Concurrent network flows). Given network G and a set of flows

F = {f}, we say that the flows are concurrent iff they satisfy the joint balance

constraint:
∑

f∈F f(u, v) ≤ b(u,v).

Definition 6.3 (Residual network). Given network G with balances {b(u,v)}, and

a flow f , the residual balance bf(u,v) of each pair of u, v ∈ V is defined as follows:

bf(u,v) =

b(u,v) − f(u, v) + f(v, u), (u, v) or (v, u) ∈ E;

0, otherwise.

The residual network Gf regarding f is the network with the residual balances.

Note that the residual network may contain more links than the original one, due

to the addition of backward links (v, u) when only the forward link (u, v) exists in

165

the original network. For simplicity, we assume that each flow contains no loop with

positive flow value, hence f(u, v) and f(v, u) cannot both be positive for ∀u, v ∈ V .

For completeness, we show the Ford-Fulkerson algorithm in Algorithm 6.1.

Algorithm 6.1: Ford-Fulkerson max-flow algorithm [36]
Input: network G = (V,E), source s, destination t
Initialize : start with an empty flow f and Gf = G

1 repeat
2 Find (s, t)-path p in Gf with positive balance fp;
3 Add p to f , and update Gf ;
4 until no augmenting (s, t)-path can be found ;
5 return f .

6.4.2 Dynamic Routing Design

To apply the Ford-Fulkerson algorithm, we need to address several challenges. The

first one is to transform Algorithm 6.1 into a distributed algorithm where each node

only has local knowledge. Second, the timeliness and availability constraints need to

be taken into account. Third, the concurrency issues needs to be tackled to ensure no

harmful racing between concurrent requests. We address these in the following.

Our CoinExpress algorithm is jointly shown in Algorithms 6.2, 6.3 and 6.4. Note

that when we say “send a message along a link e”, we essentially mean one party

sending message to the other through a secure communication channel, rather than

actually sending fund through the payment channel.

Our algorithm employs a distributed breadth-first-search (BFS) to search for

augmenting paths. For the request, each node maintains a local view of the residual

network, with residual balances initialized to the initial link balances. In each round,

the sender sends a forward probe ρ = (R, β, δ,Π) to each neighbor who has a link e with

166

Algorithm 6.2: Sender algorithm
Input: local links of G, request R = (s, t, a, st, dl)
Initialize : empty flow f , residual balances {bfe}

1 while b(f) < a do
2 for any out-going link e of s such that bfe > 0 do
3 Construct probe ρ = (R,min{a− b(f), bfe}, d1

e, [(e, ηe, d
2
e)]) ;

4 Send ρ along e;
5 end
6 Wait for current-round confirmation for time Tconf;
7 if confirmation γ = (R, p, β) is received from e then
8 if bfe ≥ β then
9 Add path p to f with value β;

10 Update residual bfe ;
11 else
12 Send cancellation κ=(R, p, β, cancel) via p;
13 end
14 else
15 Send cancellation along all paths;
16 Retry within time T ;
17 end
18 end
19 return flow f with b(f) = a.

positive residual balance from the sender, with starting balance β = min{a− b(f), bfe}

and delay δ = d1
e; the parameter Π is an ordered list of all links, their expiration times

and their backward delays along the path, and is initialized as Π = [(e, ηe, d
2
e)]. Each

node, upon reception of the probe, also sends out a probe along each out-going link e

with positive residual balance (except to the receiving neighbor), with updated probe

ρ′ = (R, β′, δ′,Π′) where β′ = min{β, bfe}, δ′ = δ′+d1
e and Π′ = Π ‖ (e, ηe, d

2
e) (‖ means

appending). When the recipient receives a probe, first it checks for the timeliness

constraint, i.e., whether st+ δ+
∑

e∈p d
2
e ≤ dl; second, it checks for availability of each

link, i.e., whether st+ δ +
∑

e∈p+
e
d2
e ≤ ηe. If either check fails, the recipient drops the

probe and waits for the next one. Otherwise, the recipient returns a confirmation

167

γ = (R, p, β) backward along p, to confirm the new augmenting path p and flow value

β. Each node then updates its residual balances, and waits for the next round. The

algorithm stops when the sender has collected sufficient flow value for the request. If

the recipient cannot find an augmenting path in the current round, it informs the

sender, who cancels all reserved flows and retry later. If the sender does not receive

confirmation within Tconf of sending the probe, it also cancels all flows and retry later.

There are two things worth mentioning. First, the asynchrony of the network can

affect the algorithm’s performance. Ideally, we want each node to forward the probe

that has the lowest cumulative processing time, in order to better meet the timeliness

and availability constraints. However, such a probe may not be the first to reach an

intermediate node or the recipient; probes from paths with longer processing times but

shorter transmission delays may arrive first. To account for this, each intermediate

node can wait for a certain period τ after receiving the first probe of the current

round, before forwarding the probe with the lowest cumulative delay ever seen; the

recipient can also wait before making a decision on path selection. The choice of τ

is subject to each node’s estimation of the network status, as well as the urgency of

the request. On the other hand, probes may arrive out-of-order (w.r.t. rounds) in

asynchronous networks. The sender can attach a round number rnd in each probe.

Each node should discard probes in earlier rounds after a probe with higher rnd is

received, because the recipient has already made a decision on the augmenting paths

in the previous rounds.

The second thing is about concurrency. When multiple requests are jointly probing

in the residual network, they may steal each other’s flow by pushing flow through

backward links that have reversed flow of other requests, a problem defined as capacity

stealing by Rohrer et al. [107]. To address this, we apply their locking technique.

168

Algorithm 6.3: Intermediate node algorithm
– Forward direction operation:
Input: probe ρ = (R, β, δ,Π), incoming link ein
Initialize : request list R, flow fR, residuals {bfe (R)}, current BFS round last

hop elast(R)
1 if R /∈ R then
2 Add R to R, and create empty flow fR and bfe (R);
3 end
4 for any out-going link e 6= ein such that bfe (R) > 0 do
5 Update probe ρ = (R, β, δ,Π) such that

β = min{β, bfe (R)},
δ = δ + d1

e, and
Π = Π ‖ (e, ηe, d

2
e) (‖ means appending);

6 Send ρ to neighbor along e;
7 Store last hop: elast(R)← ein;
8 end

– Backward direction operation:
Input: confirmation γ = (R, p, β), incoming link e

9 if residual balance bfe (R) ≥ β then
10 Add path p to fR with value β;
11 Update residual bfe (R) based on Eq. (6.5);
12 Send γ backward along link elast(R);
13 else
14 Send cancellation κ=(R, p, β, cancel) to t along p;
15 end

– Cancellation operation:
Input: cancellation κ = (R, p, β, cancel)

16 Cancel previous update of β of residual balance;
17 Send κ to next hop along p;

169

Algorithm 6.4: Recipient algorithm
– Upon receiving probe:
Input: probe ρ = (R, β, δ,Π)

1 Form path p from list Π;
2 if δ +

∑
e∈p d

2
e > dl − st then drop ρ and wait;

3 for e ∈ p do
4 if δ +

∑
e∈p+

e
d2
e > ηe − st then drop ρ and wait;

5 end
6 Construct confirmation γ = (R, p, β);
7 Send γ backward along p;
8 For subsequent probes of the same round who also pass Lines 2–5, save them

into ρlist until a next-round probe is received;

– Upon receiving cancellation:
9 if there is subsequent probe in ρlist then

10 Pop the next probe ρ with path p and value β;
11 Construct confirmation γ = (R, p, β);
12 Send γ backward along p;
13 else
14 Inform sender s of the failure.
15 end

Specifically, each node maintains a residual network for each request R, with flow fR

and residual balances bf(u,v)(R) for u, v ∈ V . For each (u, v), the amount fR(v, u) is

locked for request R only, while the rest bf(u,v)(R)− fR(v, u) can be shared by other

requests. Therefore the residual balance in the concurrent case is defined as

bf(u,v)(R)=

b(u,v)−

∑
R′∈R

fR′(u, v)+fR(v, u),

if (u, v) or (v, u) ∈ E;

0, otherwise.

(6.5)

When a new augmenting path goes through a link with locked balance, it first consumes

the locked balance before consuming any remaining link balance, thus allowing other

requests to come through. Another race condition that may happen is when two or

more requests find augmenting paths that share the same link simultaneously, in which

170

case their joint augmented flow may exceed the link balance. In this case, each node

will serve confirmations in a first-come first-serve (FCFS) manner; when a subsequent

confirmation arrives that cannot be served, the node will send a cancellation to reverse

all updated residual capacities at intermediate nodes and inform the recipient. The

recipient can then select another path to augment, or if no path can be found, inform

the sender to either initiate a new round of BFS or abort and retry later.

Hence, the only race condition that may happen is when multiple requests are

simultaneously confirming paths that block each other, in which case each path’s

confirmation is cancelled. The algorithm resolves this by two methods. First, the

recipient can select another path to confirm, until all received paths are simultaneously

blocked by others, which is very rare under normal network conditions. Second, in

the rare event of all paths being blocked, the recipient will inform the sender, who

will cancel its reserved balances on all confirmed paths to let pass other requests,

meanwhile employing random back-off to retry in a later time (before its start time).

In summary, through flow locking, each request will enjoy dedicated balance once

enough confirmations are received. Therefore no single request will block the network

from progressing at any stage of the actual payments.

6.4.3 Discussions

Here we highlight a few things that should be considered when implementing the

above mechanism.

Criterion for path selection: In the proposed mechanism, the sender initiates each

probing round, while the recipient is responsible for selecting paths to confirm in

each round. One thing that may affect the algorithm’s performance is the criterion

171

of selecting paths to confirm. In general, selecting short paths over long paths can

reduce payment settlement time. On the other hand, selecting paths with larger

balance can reduce the number of paths per payment, hence reducing the number of

routing rounds, as well as the overhead and transaction fees during actual payment.

Choosing the right criterion depends on the specific quality-of-service requirement

of the actual use cases [128]. For example, requests with larger amounts may prefer

widest paths to avoid long waiting time for routing and large fees, while smaller and

more time-sensitive requests may prefer shortest paths to reduce settlement time.

Flooding avoidance in large networks: In large-scale networks, using BFS can

lead to large flooding overhead. A common alleviating technique is to limit the hop

count of each probe, i.e., encoding a time-to-live (TTL) field in the message. The

sender specifics the maximum TTL in the initial probe. Each node, upon reception of

a forward probe, deducts the TTL by 1. If the TTL of a probe becomes 0, it will be

dropped by the node that receives it. Advanced techniques can be employed to find

the best TTL value to use in practice [16].

6.5 Performance Evaluation

6.5.1 Experiment Settings

To realistically evaluate our distributed mechanism, we developed a simulation

tool based on network simulator ns-3 [92]. The tool was developed as an application

module in ns-3, which agrees with the actual standing of PCN protocol in real-world

networks.

We used mesh topologies between users to model a PCN overlay network, where

172

each node is connected to its PCN neighbors via direct communication links. Users

were deployed in randomly generated Watts-Strogatz graphs [129]. The number of

nodes varied from 50 to 250. Each node had a degree of 10, and each link had a

re-wiring probability of 0.2 in the Watts-Strogatz model. We generated bi-directional

payment channels with a uniform capacity of 100. However, each channel’s initial

balances on both directions were uniformly divided. Each channel’s settlement times

were uniformly generated in [10, 50] seconds. Since our approach guarantees path

availability, we assumed an arbitrarily large expiration time for all channels, to

simulate the PCN in a static period of time; we focused on the timeliness constraint

in our evaluation. We considered the transmission delays between nodes, which were

uniformly generated in [50, 200] ms. The data rate of the communication links were

100 Mbps.

In each simulation, we generated 1000 Poisson arriving requests between random

nodes with mean arrival of 30 seconds. Requests had amounts uniformly generated in

[25, 75]. We allowed 5 minutes for routing before the payment start time, and also a

5 minute payment deadline after start. Requests not routed before start time were

cancelled and aborted.

6.5.2 Comparison Algorithms

CoinExpress has two versions: CnExp-W with widest path selection, and CnExp-S

with shortest path selection.

We compared our algorithm to a state-of-the-art routing algorithm proposed by

Rohrer et al. [107], which is based on the push-relabel algorithm for network flow.

Before heading to the results, we first elaborate on a few issues of their algorithm.

173

First, their algorithm is delay-agnostic. Unlike our augmenting path algorithm where

path lengths can be easily bounded, the push-relabel algorithm cannot encode delay

information during flow updates. Second, their algorithm requires an additional step

of flow decomposition after obtaining a flow, which incurs extra overhead and routing

time. Our algorithm directly derives payment paths during probing. Later on, we also

show that their algorithm results in an excessive number of paths using a standard flow

decomposition (Edmonds-Karp algorithm). This greatly increases system overhead

during the payment process, and leads to high transaction fees in pay-for-use PCNs.

We denote their algorithm as PR-A, which stands for Push-Relabel in delay-

Agnostic mode. For reference, we also implemented PR-D (Push-Relabel in Delay-

aware mode), where we enforced strict delay bound to paths generated by the standard

flow decomposition. In addition, two more baselines were implemented: WP for

one-round widest path routing, and SP for one-round shortest path routing. Both

baselines used confirmation after probing to assure non-blockingness.

6.5.3 Performance Metrics

All algorithms achieve timelock-compatibility (except PR-A), distributedness and

concurrency. We therefore mainly evaluated the goodput and efficiency of the algo-

rithms. The following metrics were used:

• Acceptance ratio: number of accepted payments over all submitted requests.

• Average accepted value: the average amount of values of each accepted

payment.

• Payment delay: the average payment delay of each accepted payment.

174

• Routing time: the average time consumed for routing for each accepted

payment.

• Number of messages: the average number of network-wide messages for

successfully routing a payment.

• Number of paths: the average number of payment paths for each accepted

payment.

6.5.4 Evaluation Results

50 100 150 200 250
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

P
a
y
m
e
n
t

a
c
c
.

r
a
t
i
o

CnExp-W

CnExp-S

PR-A

PR-D

WP

SP

(a) Acceptance ratio

50 100 150 200 250
Number of nodes

40

42

44

46

48

50

52

A
v
g
.

a
c
c
.

v
a
l
u
e

CnExp-W

CnExp-S

PR-A

WP

SP

(b) Average accepted value

Figure 6.2: Goodput (higher the better): acceptance ratio and average accepted value
against number of nodes.

175

6.5.4.1 Goodput

Fig. 6.2 shows the acceptance ratios and average accepted values of the algorithms.

From Fig. 6.2(a), CoinExpress algorithms achieve almost the highest goodput, except

when compared to PR-A. This is because PR-A does not consider the timeliness

constraints, hence although it achieves higher acceptance ratio, most accepted pay-

ments will fail due to deadline violation, as shown later. CnExp-W achieves slightly

better goodput than CnExp-S, because the latter in general needs more paths due to

each path carrying less value, where there may not be sufficient number of paths in

some cases. All algorithms (except PR-A) has decreasing acceptance with increasing

nodes. This is because although the nodes increase, the rewiring probability does

not, which means longer paths between arbitrary node pairs. In other words, less

paths that satisfy the timeliness constraints exist. PR-A has increasing acceptance

because it neglects the deadlines. When enforcing timeliness on PR-A, we get the

PR-D algorithm, which has extremely low acceptance. Less than 1% of the payments

can be successfully settled using PR-D. Hence we neglect PR-D in the rest of our

analysis due to insufficient samples for average analysis. The overhead of PR-D is

very similar to PR-A, as their only difference is in the flow decomposition, which has

a low overhead compared to the push-relabeling process.

In Fig. 6.2(b), our algorithms not only accept more payments, but also accept

payments with larger amounts, compared to WP and SP. CoinExpress achieve near-

optimal average accepted values (the average is 50 based on our experiment setting),

very close to the delay-agnostic PR-A algorithm.

176

50 100 150 200 250
Number of nodes

0
5

10
15
20
25
30
35
40

A
v
g
.

p
a
y
m
e
n
t

d
e
l
a
y

(
m
i
n
)

CnExp-W

CnExp-S

PR-A

WP

SP

DL

(a) Average payment delay

50 100 150 200 250
Number of nodes

0

20

40

60

80

100

120

140

A
v
g
.

r
o
u
t
i
n
g

t
i
m
e

(
s
)

CnExp-W

CnExp-S

PR-A

WP

SP

50 150 250
0
2
4

(b) Average routing time

50 100 150 200 250
Number of nodes

0
2000
4000
6000
8000

10000
12000
14000
16000

A
v
g
.

m
s
g
s

CnExp-W

CnExp-S

PR-A

WP

SP

(c) Average number of messages

50 100 150 200 250
Number of nodes

0

5

10

15

20

25

A
v
g
.

p
a
t
h
s

CnExp-W

CnExp-S

PR-A

WP

SP

(d) Average number of paths

Figure 6.3: Timeliness and efficiency (lower the better): average payment delay,
routing time, number of messages, and number of paths. In (a), dotted line DL shows
the uniform 5-minute deadline for all payment requests.

177

6.5.4.2 Timeliness and Efficiency

Fig. 6.3 further shows the timeliness status and efficiency metrics of the compared

algorithms. First, in Fig. 6.3(a), we can observe the important timeliness measure

of the algorithms. We can see that all algorithms except PR-A respect timeliness

constraints (below DL). PR-A can result in payment delays of 8× the deadline, severely

violating users’ fast payment requirements.

Fig. 6.3(b) shows the routing time of the algorithms. PR-A has extremely long

routing times compared to the other algorithms. This may be a little counter-intuitive:

Push-Relabel is regarded as a faster algorithm for maximum flow than Ford-Fulkerson.

The reason is that here we are interested in finding a fulfilling flow rather than a

max-flow, in which case Push-Relabel is slower due to its non-greedy pushing of flow in

each step. Meanwhile, all others algorithms employed the flooding avoidance technique

by setting a fixed TTL, hence their efficiency grows very slowly with increasing network

size, demonstrating the great scalability of our algorithms.

Fig. 6.3(c) further shows the routing overhead in terms of the total number of

routing messages per request. We can see that PR-A has a much larger overhead than

CoinExpress, not to mention WP and SP. One reason is the flooding avoidance tech-

nique, which greatly restricts the overhead of our algorithms; however, Push-Relabel

is hard to employ such techniques, resulting in large overhead for flow operations.

Fig. 6.3(d) shows the average number of payment paths output by each algorithm.

As a baseline, both WP and SP have only one path. We can see that both CnExp-W

and CnExp-S result in very few payment paths, typically around 2–3. Meanwhile,

PR-A can result in as many as 25 different payment paths for a single payment.

This reflects two things. First, this further explains why the routing overhead of

178

CoinExpress is much lower than PR-A: our algorithms require much fewer paths to

be probed. Second, our algorithms have much lower payment overhead by employing

only a few paths, which can result in much lower transaction fees in practice.

To summarize, our algorithm achieves very impressive acceptance goodput per-

formance compared to all algorithms that consider user timeliness constraints, while

achieving much lower overhead than the state-of-the-art Push-Relabel routing.

6.6 Related Work

6.6.1 Blockchain Scalability

Since the invention of blockchain in Bitcoin [88], extensive efforts have been

devoted to improving the scalability of blockchain-based cryptocurrencies. Existing

efforts can be divided into on-chain solutions and off-chain solutions. On-chain

solutions focus on improving scalability by modifying existing blockchain design. A

few promising techniques include increasing block size, using lightweight consensus

algorithms, sharding [77], using Directed Acyclic Graph (DAG) instead of chain

to store blocks [98], etc. Increasing block size directly increases a blockchain’s

capability to store and process more transactions, yet its direct threat is the fear of

centralization. Lightweight consensus, such as Delegated Proof-of-Stake (DPoS) [65]

or Practical Byzantine Fault-Tolerance (PBFT) [15], can greatly reduce overhead and

increase scalability over the original Proof-of-Work (PoW) algorithm in Bitcoin and

Ethereum. However, they either sacrifice decentralization (e.g., DPoS) or require trust

relationship between users (e.g., PBFT). Sharding alleviates the scalability issue by

dividing transactions into shards that are stored and processed at different nodes [77].

179

Block DAGs use weaker consensus where each transaction is only confirmed by a few

instead of all up-coming blocks, which lowers block security.

Off-chain solutions seem more promising in solving blockchain scalability with

limited compromise to its decentralization and security. One approach is to run

multiple parallel blockchains that support cross-chain communications. Currently, the

difficulty in this direction lies in the design of cross-chain communication protocols.

Exchange-based protocols are the most popular at present, which uses one or multiple

chains as cryptocurrency exchanges that bridge between all other chains; for example,

see [117]. The problem is that the exchanges can be more vulnerable to attacks,

which may endanger the entire exchanging system. Another proposal is a hierarchy

of blockchains organized as a blockchain tree, where child chains are supervised and

secured by parent chains [96]. It does not solve the attacks on chains, but instead

constrains the loss due to attacks to the local chain only.

PCN is possibly the only mechanism that are totally off-chain for now. Here, most

transactions are carried in the off-chain payment network, and does not involve the

blockchain at all. The only involvement of the blockchain is either when opening or

closing the channels, or when parties are non-cooperative in channel updates, when the

blockchain is used as arbitration. Through protocols such as HTLC, PCN guarantees

almost the same security as the original blockchain, while dramatically increasing its

scalability. Moreover, PCN technology is among the most mature over all the above,

since the leading two cryptocurrencies are already on the edge of deploying PCN for

their global chains: the Lightning Network for Bitcoin [97], and the Raiden Network

for Ethereum [102].

180

6.6.2 PCN and Routing

The PCN concept originates from the credit/payment networks in economics and

finance [27]. Early credit networks do not have blockchains, hence they commonly rely

on the trust relationship between peers to establish and maintain channel states [27].

Ripple [104] and Stellar [118] are among the first to employ blockchain technology

in credit networks. Much like in PCN, routing in credit networks can only be

done in a distributed manner due to decentralization. Malavolta et al. [79] studied

privacy-preserving routing in credit networks, where they designed a landmark-based

routing scheme for privacy-preserving distributed routing. This idea is extended by

Roos et al. [108] to provide enhanced routing capability. However, landmark routing

assumes a small set of trusted landmark users who controls the entire routing process,

an assumption that is commonly not true, and if true can lead to centralization of the

P2P network. For PCN, Prehodko et al. [100] first proposed a beacon-based routing

scheme in the Lightning Network, borrowing from existing ideas in mobile ad hoc

networks. Their proposal is a path-based routing scheme, and does not guarantee the

fulfillment of the payment. Rohrer et al. [107] proposed a distributed push-relabel

algorithm for PCN routing with guaranteed concurrency.

Aside from the routing problem, some related efforts in PCN include automatic

channel re-balancing [64], privacy-preserving contracts [45], [80], etc. In general, PCN

is a promising area of research, where extensive efforts are in need to address its

performance, security and privacy issues.

181

6.7 Conclusions

In this study, we studied the routing problem in PCN. We distinguished a number

of important design goals for PCN routing, and proposed a mathematical model to

capture these goals. As a first step, we designed a distributed routing mechanism,

which achieved all but the privacy goals. We showed through extensive simulations

that the proposed mechanism achieves outstanding goodput performance and very

small overhead compared to the state-of-the-art routing design. In our future work,

we will further address the privacy issue in PCN routing, as well as other possible

issues.

182

Chapter 7

P4PCN: PRIVACY-PRESERVING PATH PROBING FOR PAYMENT CHANNEL

NETWORKS

7.1 Introduction

Blockchain is a cryptographic mechanism that achieves security through decentral-

ization. Designed to implement a distributed ledger, blockchain ensures data security

through the consensus of distributed blockchain maintainers, so that no one can

manipulate the ledger data without breaking a significant portion of the maintainers.

Security of the blockchain largely depends on the size of the maintainer set. For

this reason, cryptocurrency has been introduced both as a killer application and as

the incentive mechanism, driving the general crowd to participate in maintaining

the blockchain. Since the invention of the blockchain, thousands of cryptocurrencies

have been developed, supporting numerous novel applications such as smart contract,

supply chain, etc. The total capitalization of the cryptocurrency market tops at over

$800B, with even far more implicit economic impact in all business sectors.

As a basic functionality of cryptocurrency, however, digital payments are encoun-

tering a seemingly conflicting situation. On one hand, our conventional centralized

financial infrastructure is efficient enough to handle billions of transactions every day,

but suffers from the intrinsic financial risks and the lack of security and transparency.

On the other hand, blockchain enhances security and eliminates the financial risk,

at the cost of severely degraded efficiency and scalability due to the need for global

183

consensus. This issue has drawn significant interests from both the academia and the

industry.

The payment channel network (PCN) has emerged as a very promising solution to

this problem, which combines the blockchain technology with the conventional credit

network in economics [79], [87]. Specifically, users establish peer-to-peer channels

with deposits, and transfer funds by adjusting the deposit allocation on the channels.

Honest transactions are thus stacked in each channel, while only the final results are

published onto the blockchain when the channels are closed. For security, each channel

is protected by an on-chain smart contract, such that a dishonest off-chain behavior will

be punished through on-chain arbitration. Therefore, expensive blockchain operations

are limited to the establishment, close-out, and rare dispute arbitration for each

off-chain channel. A well-connected network of payment channels can enable off-

chain transactions for most payment scenarios, drastically improving the efficiency

and scalability of the blockchain itself. Bitcoin and Ethereum, the two leading

cryptocurrencies, are both deploying PCNs to scale their main blockchains [97], [102].

At its core, a PCN relies on routing to find payment paths with sufficient fund

balances, and employs a multi-hop payment contract to secure indirect payments

through the network [97]. The biggest challenge for PCN routing is the distributed

and dynamic nature of the PCN, where channel balances are constantly changing

with each on-going transaction. To improve routing success, many algorithms have

employed probing-based techniques, which actively gathers up-to-date information

from the network before making routing decisions [116], [127], [149]. It has been

shown that probing-based solutions lead to significantly improved routing success rate

compared to algorithms based on static or periodically updated information [116],

[127].

184

A practical concern of digital payment users is the privacy of their transac-

tions. Due to the transparency of the blockchain, it is intrinsically difficult to ensure

strong anonymity for on-chain transactions. As a result, existing privacy-preserving

blockchains only ensure pseudonymity of the transactions but not unlinkability [112].

PCN has a natural advantage over the blockchain for privacy, as most transactions

are stacked within channels without being published. With the newly developed

privacy-preserving payment contracts, information such as the identity and location

of transacting users, as well as the transaction value, can be hidden from external

adversaries and curious intermediate nodes [81], [93], [160]. Yet this does not solve the

whole problem, as such information may also be leaked in the routing process. For

example, many routing algorithms, such as the Spider network [116], Flash [127] and

CoinExpress [149], rely on probing to improve routing performance over algorithms

based on static information [79], [108], but does not have the anonymity properties of

the latter ones.

In this study, we aim to resolve this one last piece of puzzle for privacy-preserving

PCN. We propose P4PCN, an anonymous path probing protocol for probing-based

routing algorithms, which can be combined with the privacy-preserving payment

contracts to construct a full protocol stack for privacy-preserving payments through

the PCN. Compared to existing anonymous communication protocols such as onion

routing [42], the biggest challenge for anonymous path probing is that the sender

may not know the path(s) that the probe will traverse in advance. This violates the

conventional requirement of knowing all the public keys of nodes on the path in

anonymous communications, rendering all such protocols inapplicable, including but

not limited to [18], [26], [42]. We address this by designing a novel cryptographic

protocol. The key idea is to allow each intermediate node to both derive a symmetric

185

key with the sender, and encrypt the queried data as well as necessary information

for later decryption at the recipient, at the same time. A core technique in our

construction is the Universal Re-encryption protocol used to re-encrypt the probe

at each hop [43], while the symmetric key derivation is inspired by Sphinx [26] and

HORNET [18]. Our protocol is both lightweight and scalable. We validated its

efficiency and scalability via implementations and contrast experiments against a

naive construction based on the hybrid universal mixing (HUM) protocol in [43].

Our main contributions are summarized as follows:

• To our best knowledge, no existing work has studied or addressed the anonymous

probing problem in networking. We are the first to study and address this

problem.

• We design a cryptographic protocol for anonymous probing that preserves sender

and recipient anonymity, and ensures the integrity and confidentiality of queried

data.

• We thoroughly analyze the security of our protocol, and validate its efficiency

and scalability through implementation and contrast experiments.

The rest of this study is organized as follows. Section 7.2 presents our system

model and security goals. Section 7.3 presents the detailed design of our protocol.

Section 7.4 presents the security analysis of our protocol. Section 7.5 presents our

performance evaluation results. Section 7.6 discusses how this protocol affects the

routing algorithm design, as well as other potential applications of this protocol.

Section 7.7 concludes this study.

186

7.2 System Model and Security Goals

7.2.1 System Model

We consider a fully distributed PCN denoted by G = (V,E), where V is the set

of user accounts that constitute the network, and E denotes the set of directional

payment channels between nodes. Each channel e ∈ E is associated with a set of

channel status attributes, attre = {balancee, delaye, expiratione, feee, . . . }. Due to the

dynamic nature of the network, some of the attributes, notably the balance of each

channel, are constantly changing with on-going payment requests and transactions.

As a result, each node only has up-to-date information regarding all the channels

adjacent to it, while it has no knowledge of the instantaneous channel status of any

remote channel.

A payment request is comprised as (src, dst, val), where src and dst are the sender

and recipient respectively, and val is the amount to be transferred. Some requests may

have additional constraints, for example, a deadline dl, a fee budget cost, etc. Due

to the primary constraint on val as well as these secondary constraints, the sender

commonly needs to gather instantaneous information from the network to decide on

its actual payment paths. Both information gathering and path selection are part

of the payment routing process. If a guaranteed payment success is preferred, the

sender can also reserve the balances on the path(s) until the payment is done, to avoid

concurrency issues [149].

In this study, we primarily focus on the information gathering process, which we

call path probing. In path probing, the sender sends out probing messages to gather

information from network nodes. Each node attaches the queried information onto

187

the probe, and then forwards the probe to one or multiple next hops, until each

probe reaches the intended recipient. Note that since the sender has no knowledge

of the remote channels, we assume that the actual choice of next hops is at the

discretion of each forwarding node. For example, a node may either choose a simple

broadcast-based method [149], or guide the selection of forwarding nodes with its local

information, such as in imbalance-aware routing [116] or coordinate-based routing [108].

For generality, we do not rely on a specific probing algorithm, and assume that each

node v independently decides the set of neighbors Nv to forward a received probe. We

use datav to denote the data that node v attaches to an on-going probe. Based on

the request, datav may contain balance, congestion, delay, fee, etc. Each node reports

data of the same length ldata.

7.2.2 Threat Model

Existing probing-based routing algorithms do not consider the privacy of the sender

and/or the recipient. For example, CoinExpress [149] explicitly involves the sender

and recipient nodes in its probes. In this study, we focus on an adversary who tries to

infer the payment patterns of senders and/or recipients in the network. For example,

observing a sender sending out a probe that passes through several (corrupted) nodes,

an adversary can link this action with a future anonymous payment transaction that

goes through the same set of nodes. The popularity of a recipient may also be inferred

by observing how many probes are targeting a recipient during a period.

We consider a local adversary that controls a subset of nodes by either inserting

malicious nodes or compromising existing nodes. We assume the non-existence of a

global adversary that can observe all network traffic, as all communications between

188

peers are conducted via secure and anonymous channels. The adversary can access all

the stored secrets and past communications on the compromised nodes, but cannot

access such information on non-compromised nodes. For any privacy-concerning

user, we assume that the adversary cannot compromise (or does not know if it has

compromised) all the adjacent nodes of the user; otherwise, the sender/recipient’s

privacy can be trivially broken since the adversary can access all the user’s in-

coming/out-going channels. Note that this assumption realistically holds in PCNs

that support private channels [105]. The goal of the adversary is to undermine user

privacy instead of launching denial-of-service attacks. Defense against denial-of-service

attacks is mainly through detection and prevention, which is out of the scope of this

study.

7.2.3 Security Goals

We expect our protocol (or any other anonymous probing protocol) to fulfill the

following security goals.

• Correctness: Correctness means that a cryptographic protocol correctly imple-

ments all the functions of a normal non-cryptographic protocol. In our probing

problem, this means that 1) each node (both intermediate node and recipient)

can identify its role regarding a received probe, 2) each intermediate node is able

to attach queried information onto the probe, and 3) the recipient can obtain

all the attached information from the probe.

• Data Integrity: The adversary cannot break the integrity of the queried

data attached by a non-compromised node without being detected by the

sender/recipient.

189

• Data Confidentiality: The adversary cannot access the information attached

by a non-compromised node, except for the knowledge that it already has access

to, e.g., statuses of channels adjacent to a compromised node.

• Sender Privacy: For any payment request between non-compromised users,

the adversary cannot infer the identity or location of the sender. It also cannot

decide if a non-compromised node is the sender of any request.

• Recipient Privacy: For any payment request between non-compromised users,

the adversary cannot infer the identity or location of the recipient. It also cannot

decide if a non-compromised node is the recipient of any request.

• Sender-Recipient Privacy: The adversary cannot decide whether there is

any on-going request between any users.

7.3 Protocol Design

7.3.1 Preliminaries

Let G be a cyclic group of prime order q (with length lkey), satisfying the Decisional

Diffie-Hellman (DDH) assumption. Let g be a published generator of G. We omit

writing the modulus operation for brevity. We use the symbol ⊥ to denote an empty

string, group element or identifier of an arbitrary size. The following cryptographic

primitives are used in our protocol:

• E(pk,m): encryption of message m with public key pk.

• D(sk, ξ): decryption of ciphertext ξ with private key sk.

• PRG(s): a secure pseudorandom generator with key s.

190

• MAC(k,m): the Message Authentication Code (MAC) of message m under key k,

with length lMAC.

• HM(·), HE(·): two cryptographic hash functions.

7.3.2 Universal Re-encryption (URE)

Universal Re-encryption (URE) is a cryptographic protocol for mixnets proposed

by Golle et al. [43]. In plain words, URE enables mix nodes to re-encrypt an encrypted

message without knowing the public key used for encryption. The original construction

of URE was built upon the ElGamal cryptosystem, utilizing the homomorphic property

of ElGamal. Let (x, y = gx) be a private-public key pair for ElGamal encryption

where x is the private key. The ciphertext of message m ∈ [1 . . . q−1] is ξ = E(y,m) =

(m · yk, gk) where k ∈ [1 . . . q − 1] is a secret random number, and the decryption

algorithm runs as m = D(x, ξ) = ξ[0] · (ξ[1]x)−1. Given two ciphertexts E(pk, a) and

E(pk, b) encrypted under the same key pk, the ElGamal cryptosystem satisfies that

E(pk, a)× E(pk, b) = E(pk, a× b) for a group operator ×. Based on this, a ciphertext

in the URE protocol has two components, E(pk,m) and E(pk, 1), where the latter can

be used to re-encrypt the former without knowing the public key initially used to

encrypt it.

Note that the task of the original URE protocol is the opposite of ours. The

original URE aims to anonymously transmit a message from sender to receiver through

a sequence of known mix nodes, such that no mix node has the knowledge of the

sender, the receiver, or any node other than itself and its neighbors on the route. The

message itself stays fixed and encrypted through the entire transmission. In our task,

not only the path that a probe will traverse is undetermined before probing, but each

191

intermediate node also needs to attach data (local channel information) queried by

the sender. Each node’s data must be kept secret so that other nodes cannot infer

whether this node is on the probed path or not. On the other hand, each node needs

to provide enough information for the sender/recipient to decrypt the attached data.

To address these, we must modify the original URE protocol to fit our needs.

7.3.3 Anonymous Probing with Unknown Paths

Our insight is that, besides using URE for re-anonymization as in mixnets, we

can also use part of the URE protocol to carry out a Diffie-Hellman Key Exchange

(DHKE) with each node that the probe traverses. The derived key can then be

used to encrypt the attached data of the intermediate node, while the node can

provide necessary DH-value to help the recipient decrypt the encrypted data. To

ensure anonymity, decryption-related information and the data are encrypted within

a reversed onion: each node wraps a layer of encryption over the received payload

plus the newly attached DH-value and data. The recipient gradually derives all the

symmetric keys, and uses the corresponding key to “peel off” each encryption layer,

revealing all the attached data layer-by-layer.

7.3.3.1 Probing with a Single Path

For simplicity, let us first consider the case where probing is done through just one

(unknown) path. Here, each node knows which exact neighbor it will forward a given

probe to as next hop. But the sender does not know the public key of any node on this

path. Assume this path is represented by (src = v0, v1, v2, ..., vn−1, vn = dst). We also

192

assume that the sender and the recipient securely share any information that either

of them uses in the protocol. We thus do not distinguish between the cryptographic

operations by the sender or the recipient. The probing protocol works as follows:

Algorithm 7.1: Create Probe (Sender)
Input: Probe ID I.
Output: Initial probe message ρ0.

1 Generate random x, κ, kβ, kγ ∈U Zq; let y ← gx;
2 s0 ← gκkβ ;
3 m← (pk0,⊥,⊥);
4 pl0←(ξ0,MAC(HM(s0), ξ0), ζ0), where

ξ0 = m⊕ PRG(HE(s0)), ζ0 = ⊥⊕ PRG(HE(s0));
5 Generate probe ρ0 = (a0, b0, c0, d0, pl0), where

a0 = ykβkγ , b0 = gkβkγ , c0 = gkγ , d0 = gκ;
return ρ0.

Create Probe: The sender generates secrets (x, κ, kβ, kγ) that are shared with

the recipient via a secure channel. The probe contains the ElGamal ciphertext

(a0, b0) = E(y, 1), an element c0 containing part of b0, a random element d0, and the

payload pl0. Besides being part of the ciphertext, b0 acts as the DH-value of the

sender, used to establish a DH symmetric key with each hop. c0 and d0 are both used

for per-hop DHKE, so that the recipient can derive the symmetric keys. Specifically,

c0 is used to pass the common part of the per-hop DH-value to the next hop for

constructing the next hop’s own DH-value, while d0 is used to pass the current node’s

DH-value to the next hop for encryption into the payload. The DHKE with vi is

based on secret keys kβ and xi (and common randomizing terms), and for sender,

though purely for formality, x0 = κ. Both kγ and κ are to make the initial probe

indistinguishable from the ones that have already passed some hop(s). Note that both

the symmetric key encryption using PRG and the encrypted empty string ζ0 are to

facilitate padding, discussed later on.

193

Algorithm 7.2: Process Probe (Intermediate Node)
Input: Node vi, probe (a, b, c, d, pl), data.
Output: Next probe message ρi.

1 Decrypt (a, b) using its own key pair to see if it is the recipient, and jump to
Algorithm 7.3 if so;

2 Generate random ki, xi ∈U Zq;
3 si ← bxi ;
4 m← (pki, d, data);
5 pli ← (ξi,MAC(HM(si), ξi), ζi), where

ξi = m⊕ PRG(HE(si)), ζi = pl⊕ PRG(HE(si));
6 Construct probe ρi = (ai, bi, ci, di, pli), where

ai = aki , bi = bki , ci = cki , di = cxi ;
return ρi.

Process Probe: Each intermediate node’s procedure starts from checking if it is the

recipient. This is done by trying to decrypt the ciphertext (a, b) = E(y, 1) using its

own set of private keys whose corresponding requests are expecting in-coming probes.

If the node is not the recipient, it proceeds to generate the next probe to be forwarded.

The first step is to derive its shared DH key si using b as the DH value of the sender.

si is then used to encrypt a new payload, which contains the previous payload, the

old element d as the DH-value of the previous hop (which is essential for the recipient

to decrypt the previous payload), and the queried data to be attached. Next is to

update all the group elements. The ciphertext (a, b) is re-encrypted using new key ki.

The common part of the DH-value, c, is also updated by key ki to reflect the update

on b. di stores the DH-value of the current node, which will be either wrapped within

the payload at the next hop if the next hop is still intermediate, or used for decryption

if the next hop is the recipient.

Decrypt Probe: Once a recipient receives a probe targeting itself, it starts decrypting

the onion-encrypted payload to obtain all the data. For each layer, the secret key is

derived by combining the corresponding node’s DH-value, either directly transmitted

194

Algorithm 7.3: Decrypt Probe (Recipient)
Input: Probe (a, b, c, d, pl), shared keys x, kβ.
Output: Path p, per-hop data data = {data}.

1 while sizeof(pl) ≥ valid payload segment length do
2 s← dkβ ;
3 (ξ, ν, ζ)← pl;
4 Check if ν is a valid MAC of ξ under s; abort if not;
5 (pk, d′, data, pl′)← (ξ, ζ)⊕ PRG(HE(s));
6 Add pk to p, and add data to data;
7 d← d′, pl← pl′;
8 end
9 return (p,data).

from the last hop or obtained from the last layer (for previous hops), with the secret kβ

of the sender/recipient. The secret key is then used to decrypt the payload, revealing

the next layer of payload and DH-value, and the attached data of this layer. Eventually,

the path is reconstructed from the attached public keys, and all data are decrypted

layer-by-layer.

7.3.3.2 Probing with Multiple Next Hops

Now, let us consider the case where each node can forward a probe to multiple

neighbors to increase the probing success probability and path diversity. Forwarding

the same probe message to multiple neighbors would enable linkable attacks, if two

colluding nodes both receive the same message. For this reason, a new pair of (ki, xi)

should be generated for every neighbor that the probe is sent to. Due to the re-

encryption and the onion encryption at every hop, even if colluding nodes receive the

probe sent by the same sender, they cannot relate them or distinguish them from any

other probe in the network.

195

7.3.3.3 Length-based Inference Attacks and Padding

One issue with the original onion routing protocol is that an intermediate node

can infer its relative location along the path by observing the length of the encrypted

message, if it knows or can estimate the length of the original message and/or the

size of each layer. To prevent such an attack, padding is commonly used to keep

all encrypted messages of constant length. In our scenario, padding can serve an

additional purpose. In payment routing, commonly the sender/recipient has a limit

on the length of an acceptable payment path. If a path is too long, both the risk

of a failed payment is high, and it may incur a high transaction fee at the sender.

For this reason, the sender can pad the onion-encrypted payload up to a pre-defined

limit. Each node attaches information by dropping the last π bits of the previous

onion, where π is the size of a layer of the payload and is known based on the message

format. The recipient can then detect paths exceeding the pre-defined length, if the

last layer of encryption does not contain the initial payload sent by the sender, and

discard such paths accordingly.

7.4 Security Analysis

7.4.1 Correctness

First, each node vi can identify whether it is the recipient of a given probe by trying

to decrypt the URE ciphertext (a, b) against its own set of key pairs that are awaiting

probes. If the decrypted value for any of the key pairs is 1, the probe belongs to the

corresponding probing request. During probing, each node attaches its local data

196

onto the probe by encrypting it with the secret key si derived using DHKE with the

sender’s provided DH-value (element b in the URE ciphertext). Finally, the recipient

opens each layer of the onion by deriving si. Note that for the i-th hop (i > 0), it

satisfies that bi = c
kβ
i as well as di = cxii−1. Therefore, we have si = bxii−1 = c

kβxi
i−1 = d

kβ
i .

Since di is always encrypted in the onion of the next hop (or directly transmitted

to recipient at last hop), the recipient (knowing the shared secret kβ) can gradually

derive the secret keys to decrypt all layers and obtain all the data. Note that the

recipient does not need to decrypt the innermost layer, as any information there can

be directly shared between the sender and the recipient, and hence s0 is purely used

to achieve indistinguishability.

7.4.2 Data Integrity and Confidentiality

Since each piece of data attached to the probe is MACed and onion-encrypted, it

suffices to show that the secret key si of a non-compromised node cannot be obtained

by an adversary if both the sender and the recipient are non-compromised. Note that

the secret key si contains two secret components, the xi held by the non-compromised

node vi, and the kβkγ initially embedded by the sender. Without either of these two

pieces or the key itself (which is discarded after use), no adversary can derive si based

on the DDH assumption.

7.4.3 Sender, Recipient, and Sender-Recipient Privacy

Regarding sender and recipient privacy, we consider several cases. First, a com-

promised node not adjacent to either the sender or the recipient can only see some

197

probe passing through, but cannot link it to either the sender or the recipient due to

the encryption. A node adjacent to the sender may try to infer if the previous hop

is the sender, but cannot tell since some other node that connects to the last hop

directly or via a path may have originated the probe. Similarly, a node adjacent to the

recipient cannot tell whether the probe is targeted to the next hop or some other node

afterwards. Furthermore, a node cannot know its own location with regard to either

the sender or the recipient in the network, since all probes are of the same length and

are re-randomized at every hop. Finally, since the adversary cannot tell whether any

probe can be linked to any sender or recipient, he also cannot tell whether a pair of

sender and recipient is communicating or not.

7.5 Performance Evaluation

In this section, we evaluate the performance of our protocol. Since we are the

first to propose a protocol for the anonymous probing problem in networks, our only

reference solution is a modified version of the hybrid universal mixing (HUM) protocol

described in the original URE paper [43], which uses a different way for establishing

symmetric keys used for encryption. Below, we first describe the modified HUM

protocol, and then analyze the performance of these two protocols.

7.5.1 Modified Hybrid Universal Mixing [43]

In the HUM protocol, the authors proposed to use symmetric key encryption to

encrypt and re-encrypt the initial message, while using the URE protocol to deliver the

symmetric keys used by each hop for final decryption. This protocol can be modified

198

to additionally use the symmetric keys to encrypt and re-encrypt the data each node

attaches to the probe. Assume that the maximum path length is L. The sender sends

out the following message as the initial probe:

ρ0 = (pl,E(pk, 1), vec),

where pl = (ξ,MAC(HM(s0), ξ),mrand), ξ = (pk0,⊥)⊕PRG(HE(s0)), mrand is a random

filler string of length (L− 1) · lseg with lseg = ldata + lkey + lMAC, and

vec = (E(pk, 1), . . . ,E(pk, 1),E(pk, s0))

contains (L− 1) copies of the encrypted value 1 plus an encrypted copy of the initial

secret key s0.

When a node vi receives a probe, it attaches its pki and data to the head of the

payload while dropping the last lseg bits, picks a new key si, and then encrypts the new

payload with si; the MAC is also computed and attached. It then encrypts si with

the help of the value E(pk, 1) at the head of vec (if the path does not exceed length

L), and then left-rotates all the components in vec. This can be done by multiplying

the first element of E(pk, 1) with si in ElGamal encryption. Finally, it re-encrypts

the middle component E(pk, 1) in the probe, as well as all the other components in

vec, using a new random key ki. If there are more than one next hop, then as in our

protocol, new keys need to be generated, and the entire message re-randomized, for

each of the next hops of the current node.

Identification of the recipient is also done by decrypting the middle component

E(pk, 1). After that, the recipient decrypts all the secret keys stored in vec from the

back, and uses all the keys to gradually decrypt the payload and obtain all the data.

199

7.5.2 Analytical Comparison

Here we analytically compare the overheads of our protocol and the modified HUM

protocol. We assume that the network has a path length limit of L intermediate nodes,

and each probe has traversed a path of length P ≤ L on average. Size of a group

element including public/private keys is lkey = K bytes. We focus on the overhead for

processing 1 probe at each node, as the number of probes a node receives/forwards is

determined by the actual probing algorithm employed, which is out of the scope of

this study. We omit the generation of all public/private key pairs. Table 7.1 shows an

analytical comparison between the two protocols.

Scheme Our Protocol Modified HUM

Comp.
Sender (5, 0) (2L+ 2, 0)
Interm. (6, 1) (2L+ 3, 1)
Recipient (P + 1, 1) (P + 1, P)

Communications (2L+ 4)K (3L+ 2)K

Table 7.1: Overhead comparison for one probe. Computation is displayed as
(mod_exp,mod_inv), denoting the numbers of modular exponentiation and mod-
ular inverse operations respectively; communication overhead is measured by the
length of the probe header excluding data payloads and MACs but including the path
information (public keys of each hop).

7.5.3 Simulation Experiments

We implemented both protocols in Java. The ElGamal key size was 1024 bits

(128 bytes). A data segment contained 4 bytes of data and a 128-byte public key

identifying this hop. The MAC of a data query was 20 bytes using the HMAC-SHA-1

implementation of Java. The SHA1PRNG implementation of Java is used for the

200

keyed PRG in order for reproducibility of the experiments. Each probe traversed the

maximum allowed hops before reaching the recipient. We ran our experiments on a

Linux PC with Quad-Core 3.4GHz CPU and 16GB of memory, and repeated each

experiment for 10, 000 times.

2 3 4 5 6 7 8 9 10 11
Hops

2

4

6

8

10

12

14

16

18

C
re

a
ti

o
n
 t

im
e
 (

m
s)

P4PCN

HUM

(a) Probe creation time vs. # hops.

2 3 4 5 6 7 8 9 10 11
Hops

2

4

6

8

10

12

14

16

18

P
ro

ce
ss

in
g
 t

im
e
 (

m
s) P4PCN

HUM

(b) Probe processing time vs. # hops.

2 3 4 5 6 7 8 9 10 11
Hops

0
1
2
3
4
5
6
7
8
9

D
e
cr

y
p
ti

o
n
 t

im
e
 (

m
s) P4PCN

HUM

(c) Probe decryption time vs. # hops.

Figure 7.1: Probe creation (sender), processing (intermediate node) and decryption
(recipient) execution times per probe.

Fig. 7.1 shows the average execution times for the creation, processing and de-

cryption of a probe, respectively. Clearly, the creation and processing times of our

protocol remain constant with increasing number of hops the probe can explore, while

those of HUM increase linearly. For decryption, both protocols have an increasing

201

execution time, but ours is faster than HUM due to less number of modular inverse

operations.

2 3 4 5 6 7 8 9 10 11
Hops

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

P
ro

b
e
 s

iz
e
 (

K
B

y
te

) P4PCN

HUM

Figure 7.2: Probe size vs. # hops.

Fig. 7.2 shows the probe size versus the number of hops. HUM has a larger probe

size over ours due to the more number of ElGamal ciphertexts used to store all the

encryption keys, resulting in higher communication overhead in practice.

7.6 Discussions

Probing with anonymity: With our protocol, now the intermediate nodes will have

no way of knowing the sender and/or the recipient. Unfortunately, this complicates the

probing algorithm design, because each node now has limited information in deciding

where to forward a probe. For instance, simple broadcasting can lead to the case where

every copy of a probe will wander in the network until reaching the recipient, and

all the probes generated by a request will most likely overwhelm the entire network.

Two promising solutions are probabilistic forwarding and coordinate-based routing.

The former naturally preserves privacy, while the latter can be implemented using

202

a privacy-preserving coordinate system to avoid breaking user anonymity [108]. We

plan to investigate these in our future work.

Other applications: Beyond PCN, our protocol may also find applications in a

wide range of other scenarios. For example, this protocol can be used to anonymously

construct a communication path towards a remote location through a dynamic sensor

network or a vehicular network, or to find a trust path in a trust-based social network.

7.7 Conclusions

In this study, we studied the problem of anonymous probing in PCN routing, the

last piece in building a fully privacy-preserving PCN payment protocol stack. We

proposed a cryptographic protocol to ensure both data security and user privacy

during probing-based network information gathering. Combined with existing probing-

based dynamic routing algorithms and privacy-preserving payment protocols, this can

achieve efficient payments with high success probability and full privacy preservation

for PCN. Our protocol is both lightweight and scalable. Comparing our protocol

with another possible protocol derived from hybrid universal mixing, our protocol

has constant probe creation and processing overheads, lower (although linear) probe

decryption overhead, and smaller communication overhead. Though we specifically

targeted the PCN, our protocol can be used in a broad range of other domains, such as

for anonymous data querying in vehicular networks, sensor networks, social networks,

and beyond.

203

Chapter 8

CONCLUSIONS

There is no doubt that IoT will transform the world. However, challenges exist

towards such a goal. At this time, the resource mismatch between IoT infrastructure

and applications is greatly hindering the applicability and acceptance of this entire

technology. In this dissertation, we studied smart resource allocation as an imme-

diate remedy to the resource issue in IoT, enabling best utilization of the existing

resources to provide performance improvements and guarantees for the IoT operator,

applications and users. In general, we explored three different dimensions of smart

resource allocation: 1) network resource allocation, 2) security deployment, and 3)

micropayment transactions.

Specifically, for the network resource allocation problem, we studied different

problems involving different layers in the network stack. The first problem considered

routing and engineering IoT data traffic in the network layer. We addressed the

challenge of using existing resources to meet all the traffic flows’ bandwidth, delay, reli-

ability and policy routing requirements. Since the problem was NP-hard, we proposed

an FPTAS which enforces all above requirements, while approximating the minimum

load factor on the links. The second problem considered both application hosting

and traffic routing and engineering. We considered one or multiple IoT applications

receiving data streams from distributed data sources. Each application could be par-

allelizable or non-parallelizable, and we considered either one or multiple applications.

We still considered the QoS (bandwidth, delay and reliability) requirements of the

applications. This problem was a generalization over the previous one, and we again

204

proved its NP-hardness. Since there were four variants, we proposed FPTASs for three

of the variants, while for the forth one we proposed a randomized algorithm based on

one of the FPTASs. The third problem considered a distributed application scenario

with edge-deployed IoT microservices and an overlay network interconnecting these

microservices. We studied the microservice load balancing problem within this overlay

network, featuring a general model that abstracts the complex interdependencies

among microservices using a DAG. Of course, this problem was still NP-hard, and

hence we proposed another FPTAS for this problem, this time enforcing the load

balancing goal while approximating the worst-case QoS of the distributed application.

We used extensive simulation experiments to validate the superior performance of all

our proposed algorithms, compared to other heuristic solutions for each problem.

For the security problem, we studied how the IoT provider can optimally deploy

security functions given a limited cost budget. We used a stochastic model to capture

the dynamics in the IoT edge network, and used the CVaR abstraction to capture

the worst-case security risk of the system in face of the dynamics. An optimization

framework was proposed for the robust security deployment problem. We further

proposed optimization techniques to efficiently find the optimal deployment plan.

While we focused on optimizing the security risk under a simple static risk model and

based on shortest path routing, our optimization framework in general can incorporate

many other risk models and routing algorithms, and hence has much wider applications

than this specific context.

For the micropayment problem, we made two major contributions. The first

one was a distributed routing protocol that efficiently finds payment paths in a

blockchain-based PCN. This could enable fast and cost efficient transactions that

could support machine-to-machine payment transactions in IoT. We further proposed

205

an anonymous protocol for path probing in PCN. This protocol novelly combined

Universal Re-encryption with the HORNET packet format, in order for a probe

message to anonymously carry sufficient information submitted by intermediate nodes

to establish a payment path. These two contributions, combined with the anonymous

payment processing protocol in PCN, can yield a high-performance and privacy-

preserving payment stack for machine-to-machine IoT micropayment transactions,

which is crucial in constructing a fully automated IoT ecosystem.

While the above contributions tackle different aspects of IoT, jointly they show

that smart resource allocation is a genuine and practical approach to addressing the

resource issue within the entire IoT ecosystem, specifically those network-related ones.

Continuous investment into the IoT infrastructure is the eventual solution to the

resource issue. However, these algorithms will still be crucially useful in addressing

the specific performance demands of future applications. The goal of this dissertation,

in addition to providing algorithmic solutions to specific problems in certain contexts,

is also to propose general and extensible models and frameworks that are able to

handle changes in the infrastructure, the applications, and the user patterns. On the

other hand, more work also needs to be done along the line, as more complicated

infrastructural technologies and applications are constantly being developed in IoT.

In the future work, part of our focus will be on extending our existing solutions

to new infrastructures and applications, including but not limited to hierarchical

edge networks, mobile augmented/virtual reality, and machine learning-based IoT

applications.

206

REFERENCES

[1] S. Acharya, B. Gupta, P. Risbood, and A. Srivastava, “PESO: Low Overhead
Protection for Ethernet over SONET Transport,” in Proc. IEEE INFOCOM,
2004, pp. 165–175.

[2] S. Akkermans, N. Small, W. Joosen, and D. Hughes, “Demo: Niflheim: End-to-
End Middleware for Applications Across All Tiers of the IoT,” in Proc. ACM
SenSys, 2017, pp. 1–2.

[3] M. Alizadeh, N. Yadav, G. Varghese, T. Edsall, S. Dharmapurikar, R.
Vaidyanathan, K. Chu, A. Fingerhut, V. T. Lam, F. Matus, and R. Pan,
“CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,” in
Proc. ACM SIGCOMM, 2014, pp. 503–514.

[4] H. M. Almohr, L. T. Watson, D. Yao, and X. Ou, “Security Optimization of Dy-
namic Networks with Probabilistic Graph Modeling and Linear Programming,”
Tech. Rep., 2014.

[5] G. Attiya and Y. Hamam, “Two Phase Algorithm for Load Balancing in
Heterogeneous Distributed Systems,” in Proc. IEEE EMPDP, 2004, pp. 434–
439.

[6] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On Orchestrating
Virtual Network Functions,” in Proc. IEEE CNSM, 2015, pp. 50–56.

[7] S. Basudan, X. Lin, and K. Sankaranarayanan, “A Privacy-Preserving Vehicular
Crowdsensing-Based Road Surface Condition Monitoring System Using Fog
Computing,” IEEE Internet Things J., vol. 4, no. 3, pp. 772–782, Jun. 2017.

[8] L. Belli, S. Cirani, G. Ferrari, L. Melegari, and M. Picone, “A Graph-Based
Cloud Architecture for Big Stream Real-Time Applications in the Internet of
Things,” in Proc. ESOCC, 2014, pp. 91–105.

[9] J. F. Benders, “Partitioning Procedures for Solving Mixed-Variables Program-
ming Problems,” Numer. Math., vol. 4, no. 1, pp. 238–252, Dec. 1962.

[10] E. Bin, O. Biran, O. Boni, E. Hadad, E. K. Kolodner, Y. Moatti, and D. H.
Lorenz, “Guaranteeing High Availability Goals for Virtual Machine Placement,”
in Proc. IEEE ICDCS, 2011, pp. 700–709.

[11] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and Its Role
in the Internet of Things,” in Proc. ACM MCC, 2012, pp. 13–16.

207

[12] Z. Cao, P. Claisse, R. J. Essiambre, M. Kodialam, and T. V. Lakshman,
“Optimizing Throughput in Optical Networks: The Joint Routing and Power
Control Problem,” in Proc. IEEE INFOCOM, 2015, pp. 1921–1929.

[13] Z. Cao, M. Kodialam, and T. V. Lakshman, “Traffic Steering in Software
Defined Networks: Planning and Online Routing,” in Proc. ACM DCC, 2014,
pp. 65–70.

[14] V. Cardellini, M. Colajanni, and P. Yu, “Dynamic Load Balancing on Web-
server Systems,” IEEE Internet Comput., vol. 3, no. 3, pp. 28–39, 1999.

[15] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance and Proactive
Recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 398–461, Nov. 2002.

[16] N. Chang and M. Liu, “Revisiting the TTL-based Controlled Flooding Search,”
in Proc. ACM MobiCom, 2004, pp. 85–99.

[17] Y. Chang, S. Rao, and M. Tawarmalani, “Robust Validation of Network Designs
under Uncertain Demands and Failures,” in Proc. USENIX NSDI, 2017, pp. 347–
362.

[18] C. Chen, D. E. Asoni, D. Barrera, G. Danezis, and A. Perrig, “HORNET:
High-speed Onion Routing at the Network Layer,” in Proc. ACM CCS, 2015,
pp. 1441–1454.

[19] H. Chen, G. Xue, and Z. Wang, “Efficient and Reliable Missing Tag Identifi-
cation for Large-Scale RFID Systems With Unknown Tags,” IEEE Internet
Things J., vol. 4, no. 3, pp. 736–748, Jun. 2017.

[20] X. Chen, J. Li, J. Ma, Q. Tang, and W. Lou, “New Algorithms for Secure
Outsourcing of Modular Exponentiations,” IEEE Trans. Parallel Distrib. Syst.,
vol. 25, no. 9, pp. 2386–2396, Sep. 2014.

[21] N. M. M. K. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual Net-
work Embedding with Coordinated Node and Link Mapping,” in Proc. IEEE
INFOCOM, 2009, pp. 783–791.

[22] Cisco, Cisco IOx. [Online]. Available: http://www.cisco.com/c/en/us/products/
cloud-systems-management/iox/index.html (Last accessed on 05/03/2019).

[23] CoinDesk, How Will Ethereum Scale? [Online]. Available: https : / /www .
coindesk.com/information/will-ethereum-scale/ (Last accessed on 05/03/2019).

208

http://www.cisco.com/c/en/us/products/cloud-systems-management/iox/index.html
http://www.cisco.com/c/en/us/products/cloud-systems-management/iox/index.html
https://www.coindesk.com/information/will-ethereum-scale/
https://www.coindesk.com/information/will-ethereum-scale/

[24] J.-F. Cordeau, G. Stojković, F. Soumis, and J. Desrosiers, “Benders Decompo-
sition for Simultaneous Aircraft Routing and Crew Scheduling,” Transp. Sci.,
vol. 35, no. 4, pp. 375–388, Nov. 2001.

[25] Y. Cui, L. Wang, X. Wang, H. Wang, and Y. Wang, “FMTCP: A Fountain
Code-Based Multipath Transmission Control Protocol,” IEEE/ACM Trans.
Netw., vol. 23, no. 2, pp. 465–478, Apr. 2015.

[26] G. Danezis and I. Goldberg, “Sphinx: A Compact and Provably Secure Mix
Format,” in Proc. IEEE S&P, 2009, pp. 269–282.

[27] D. Delli Gatti, M. Gallegati, B. Greenwald, A. Russo, and J. E. Stiglitz, “The
Financial Accelerator in an Evolving Credit Network,” J. Econ. Dyn. Control,
vol. 34, no. 9, pp. 1627–1650, Sep. 2010.

[28] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal Workload
Allocation in Fog-Cloud Computing Towards Balanced Delay and Power Con-
sumption,” IEEE Internet Things J., vol. 3, no. 6, pp. 1171–1181, 2016.

[29] R. Dewri, N. Poolsappasit, I. Ray, and D. Whitley, “Optimal Security Hardening
Using Multi-Objective Optimization on Attack Tree Models of Networks,” in
Proc. ACM CCS, 2007, pp. 204–213.

[30] W. Elmenreich, “Fusion of Continuous-valued Sensor Measurements Using
Confidence-weighted Averaging,” J. Vib. Control, vol. 13, no. 9-10, pp. 1303–
1312, Sep. 2007.

[31] B. Erb, D. Meißner, J. Pietron, and F. Kargl, “Chronograph–A Distributed
Processing Platform for Online and Batch Computations on Event-sourced
Graphs,” in Proc. ACM DEBS, 2017, pp. 78–87.

[32] M. Faloutsos, C. Faloutsos, and C. Faloutsos, “On Power-Law Relationships of
the Internet Topology,” in Proc. ACM SIGCOMM, 1999, pp. 251–262.

[33] B. Familiar,Microservices, IoT and Azure: Leveraging DevOps and Microservice.
2015.

[34] J. Fan, Z. Ye, C. Guan, X. Gao, K. Ren, and C. Qiao, “GREP: Guaranteeing
Reliability with Enhanced Protection in NFV,” in Proc. ACM HotMiddlebox,
2015, pp. 13–18.

209

[35] L. K. Fleischer, “Approximating Fractional Multicommodity Flow Independent
of the Number of Commodities,” SIAM J. Discret. Math., vol. 13, no. 4, pp. 505–
520, 2000.

[36] L. R. Ford and D. R. Fulkerson, “Maximal Flow Through a Network,” Can. J.
Math., vol. 8, pp. 399–404, Jan. 1956.

[37] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. 1990.

[38] N. Garg and J. Konemann, “Faster and Simpler Algorithms for Multicommodity
Flow and Other Fractional Packing Problems,” in Proc. ACM FOCS, 1998,
pp. 300–309.

[39] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “OpenNF: Enabling Innovation in Network Function
Control,” in Proc. ACM SIGCOMM, 2014, pp. 163–174.

[40] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao, A. Anand,
T. Benson, V. Sekar, and A. Akella, “Stratos: A Network-Aware Orchestration
Layer for Virtual Middleboxes in Clouds,” arXiv: 1305.0209, 2013.

[41] A. Giordano, G. Spezzano, and A. Vinci, “Smart Agents and Fog Computing
for Smart City Applications,” in Smart-CT, 2016, pp. 137–146.

[42] D. Goldschlag, M. Reed, and P. Syverson, “Onion Routing for Anonymous and
Private Internet Connections,” Commun. ACM, vol. 42, no. 2, pp. 39–41, 1999.

[43] P. Golle, M. Jakobsson, A. Juels, and P. Syverson, “Universal Re-encryption
for Mixnets,” in Proc. CT-RSA, 2004, pp. 163–178.

[44] M. Gowda, A. Dhekne, S. Shen, R. R. Choudhury, L. Yang, S. Golwalkar, and
A. Essanian, “Bringing IoT to Sports Analytics,” in Proc. USENIX NSDI, 2017,
pp. 499–513.

[45] M. Green and I. Miers, “Bolt: Anonymous Payment Channels for Decentralized
Currencies,” in Proc. ACM CCS, 2017, pp. 473–489.

[46] A. Gudipati, D. Perry, L. E. Li, S. Katti, and B. Labs, “SoftRAN: Software
Defined Radio Access Network,” in Proc. ACM HotSDN, 2013, pp. 25–30.

[47] L. Guo, J. Pang, and A. Walid, “Dynamic Service Function Chaining in SDN-
enabled Networks with Middleboxes,” in Proc. IEEE ICNP, 2016, pp. 1–10.

210

[48] Gurobi, Gurobi Optimizer. [Online]. Available: http ://www.gurobi . com/
products/gurobi-optimizer (Last accessed on 05/03/2019).

[49] W. Haeffner, J. Napper, M. Stiemerling, D. Lopez, and J. Uttaro, Service
Function Chaining Use Cases in Mobile Networks, 2017. [Online]. Available:
https://tools.ietf .org/pdf /draft- ietf - sfc-use- case-mobility-07.pdf (Last
accessed on 05/03/2019).

[50] T. Hagras and J. Janecek, “A High Performance, Low Complexity Algorithm
for Compile-Time Task Scheduling in Heterogeneous Systems,” in Proc. IEEE
IPDPS, 2004.

[51] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, “NFV: State of the Art,
Challenges, and Implementation in Next Generation Mobile Networks (vEPC),”
IEEE Netw., vol. 28, no. 6, pp. 18–26, Nov. 2014.

[52] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella, “Presto:
Edge-based Load Balancing for Fast Datacenter Networks,” in Proc. ACM
SIGCOMM, 2015, pp. 465–478.

[53] D. S. Hochbaum, “Heuristics for the Fixed Cost Median Problem,” Math.
Program., vol. 22, no. 1, pp. 148–162, Dec. 1982.

[54] J. Horn and et. al, Meltdown and Spectre. [Online]. Available: https://spectrea
ttack.com/ (Last accessed on 05/03/2019).

[55] IDC, IDC Forecasts Worldwide Spending on the Internet of Things to Reach
$745 Billion in 2019, Led by the Manufacturing, Consumer, Transportation,
and Utilities Sectors. [Online]. Available: https://www.idc.com/getdoc.jsp?
containerId=prUS44596319 (Last accessed on 05/03/2019).

[56] IoT Market Forecasts. [Online]. Available: https ://www.postscapes .com/
internet-of-things-market-size/ (Last accessed on 05/03/2019).

[57] Y. Jiang, L. R. Sivalingam, S. Nath, and R. Govindan, “WebPerf: Evaluat-
ing What-If Scenarios for Cloud-hosted Web Applications,” in Proc. ACM
SIGCOMM, 2016, pp. 258–271.

[58] Jiaqi Zheng, Hong Xu, Xiaojun Zhu, Guihai Chen, and Yanhui Geng, “We’ve
Got You Covered: Failure Recovery with Backup Tunnels in Traffic Engineer-
ing,” in Proc. IEEE ICNP, 2016, pp. 1–10.

211

http://www.gurobi.com/products/gurobi-optimizer
http://www.gurobi.com/products/gurobi-optimizer
https://tools.ietf.org/pdf/draft-ietf-sfc-use-case-mobility-07.pdf
https://spectreattack.com/
https://spectreattack.com/
https://www.idc.com/getdoc.jsp?containerId=prUS44596319
https://www.idc.com/getdoc.jsp?containerId=prUS44596319
https://www.postscapes.com/internet-of-things-market-size/
https://www.postscapes.com/internet-of-things-market-size/

[59] X. Jin, L. E. Li, L. Vanbever, and J. Rexford, “SoftCell: Scalable and Flexible
Cellular Core Network Architecture,” in Proc. ACM CoNEXT, 2013, pp. 163–
174.

[60] F. K. Jondral, “Software-Defined Radio: Basics and Evolution to Cognitive
Radio,” EURASIP J. Wirel. Commun. Netw., vol. 2005, no. 3, pp. 275–283,
2005.

[61] W. Jung, S. Hong, M. Ha, Y.-J. Kim, and D. Kim, “SSL-Based Lightweight
Security of IP-Based Wireless Sensor Networks,” in Proc. IEEE WAINA, 2009,
pp. 1112–1117.

[62] M. Kablan, B. Caldwell, R. Han, H. Jamjoom, and E. Keller, “Stateless Network
Functions,” in Proc. ACM HotMiddlebox, 2015, pp. 49–54.

[63] Y. Kanizo, O. Rottenstreich, I. Segall, and J. Yallouz, “Optimizing Virtual
Backup Allocation for Middleboxes,” in Proc. IEEE ICNP, 2016, pp. 1–10.

[64] R. Khalil and A. Gervais, “Revive: Rebalancing Off-Blockchain Payment Net-
works,” in Proc. ACM CCS, 2017, pp. 439–453.

[65] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A Provably
Secure Proof-of-Stake Blockchain Protocol,” in Proc. CRYPTO, 2017, pp. 357–
388.

[66] M. S. Kiraz and O. Uzunkol, “Efficient and Verifiable Algorithms for Secure
Outsourcing of Cryptographic Computations,” Int. J. Inf. Secur., vol. 15, no. 5,
pp. 519–537, Oct. 2016.

[67] D. Kotz, T. Henderson, I. Abyzov, and J. Yeo, CRAWDAD Dataset Dart-
mouth/Campus (V. 2009-09-09). [Online]. Available: https://crawdad.org/
dartmouth/campus/20090909 (Last accessed on 05/03/2019).

[68] A. Krylovskiy, M. Jahn, and E. Patti, “Designing a Smart City Internet of
Things Platform with Microservice Architecture,” in Proc. IEEE FiCloud, 2015,
pp. 25–30.

[69] K. Kumar and Y.-H. Lu, “Cloud Computing for Mobile Users: Can Offloading
Computation Save Energy?” Computer (Long. Beach. Calif)., vol. 43, no. 4,
pp. 51–56, Apr. 2010.

[70] J.-J. Kuo, S.-H. Shen, H.-Y. Kang, D.-N. Yang, M.-J. Tsai, and W.-T. Chen,
“Service Chain Embedding with Maximum Flow in Software Defined Network

212

https://crawdad.org/dartmouth/campus/20090909
https://crawdad.org/dartmouth/campus/20090909

and Application to the Next-Generation Cellular Network Architecture,” in
Proc. IEEE INFOCOM, 2017.

[71] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J.-M. Kang, and P. Sharma,
“Application-driven Bandwidth Guarantees in Datacenters,” in Proc. ACM
SIGCOMM, 2014, pp. 467–478.

[72] L. E. Li, V. Liaghat, H. Zhao, M. Hajiaghayi, D. Li, G. Wilfong, Y. R. Yang,
and C. Guo, “PACE: Policy-Aware Application Cloud Embedding,” in Proc.
IEEE INFOCOM, 2013, pp. 638–646.

[73] S. Li, L. D. Xu, and S. Zhao, “The Internet of Things: A Survey,” Inf. Syst.
Front., vol. 17, no. 2, pp. 243–259, Apr. 2015.

[74] A. Lioy, A. Pastor, F. Risso, R. Sassu, and A. L. Shaw, “Offloading Security
Applications into the Network,” Proc. IEEE eChallenges, 2014.

[75] D. H. Lorenz and D. Raz, “A Simple Efficient Approximation Scheme for the
Restricted Shortest Path Problem,” Oper. Res. Lett., vol. 28, no. 5, pp. 213–219,
Jun. 2001.

[76] D. Lu, D. Huang, A. Walenstein, and D. Medhi, “A Secure Microservice
Framework for IoT,” in Proc. IEEE SOSE, 2017, pp. 9–18.

[77] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena, “A
Secure Sharding Protocol For Open Blockchains,” in Proc. ACM CCS, 2016,
pp. 17–30.

[78] S. J. Maher, G. Desaulniers, and F. Soumis, “Recoverable Robust Single Day
Aircraft Maintenance Routing Problem,” Comput. Oper. Res., vol. 51, pp. 130–
145, Nov. 2014.

[79] G. Malavolta, P. Moreno-Sanchez, A. Kate, and M. Maffei, “SilentWhispers:
Enforcing Security and Privacy in Decentralized Credit Networks,” in Proc.
ISOC NDSS, 2017.

[80] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi, “Concur-
rency and Privacy with Payment-Channel Networks,” in Proc. ACM CCS, 2017,
pp. 455–471.

[81] G. Malavolta, P. Moreno-sanchez, C. Schneidewind, A. Kate, and M. Maffei,
“Anonymous Multi-Hop Locks for Blockchain Scalability and Interoperability,”
in Proc. ISOC NDSS, 2019.

213

[82] C. Manifavas, G. Hatzivasilis, K. Fysarakis, and K. Rantos, “Lightweight
Cryptography for Embedded Systems – A Comparative Analysis,” in Data
Priv. Manag. Auton. Spontaneous Secur. 2014, pp. 333–349.

[83] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and
F. Huici, “ClickOS and the Art of Network Function Virtualization,” in Proc.
USENIX NSDI, 2014, pp. 459–473.

[84] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba,
“Network Function Virtualization: State-of-the-Art and Research Challenges,”
IEEE Commun. Surv. Tutorials, vol. 18, no. 1, pp. 236–262, 2016.

[85] S. Misra, G. Xue, and D. Yang, “Polynomial Time Approximations for Multi-
Path Routing with Bandwidth and Delay Constraints,” in Proc. IEEE INFO-
COM, 2009, pp. 558–566.

[86] M. Moradi, W. Wu, L. E. Li, and Z. M. Mao, “SoftMoW: Recursive and
Reconfigurable Cellular WAN Architecture,” in Proc. ACM CoNEXT, 2014,
pp. 377–390.

[87] P. Moreno-Sanchez, A. Kate, M. Maffei, and K. Pecina, “Privacy Preserv-
ing Payments in Credit Networks: Enabling Trust with Privacy in Online
Marketplaces,” in Proc. ISOC NDSS, 2015, pp. 8–11.

[88] S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, 2008. [Online].
Available: https://bitcoin.org/bitcoin.pdf (Last accessed on 05/03/2019).

[89] H. Ning and Z. Wang, “Future Internet of Things Architecture: Like Mankind
Neural System or Social Organization Framework?” IEEE Commun. Lett.,
vol. 15, no. 4, pp. 461–463, Apr. 2011.

[90] Y. Niu, F. Liu, and Z. Li, “Load Balancing Across Microservices,” in Proc.
IEEE INFOCOM, 2018, pp. 1–9.

[91] S. Noel and S. Jajodia, “Optimal IDS Sensor Placement and Alert Prioritization
Using Attack Graphs,” J. Netw. Syst. Manag., vol. 16, no. 3, pp. 259–275, Sep.
2008.

[92] NS-3 Network Simulator. [Online]. Available: https://www.nsnam.org/ (Last
accessed on 05/03/2019).

214

https://bitcoin.org/bitcoin.pdf
https://www.nsnam.org/

[93] O. Osuntokun, AMP: Atomic Multi-Path Payments over Lightning, 2018.
[Online]. Available: https://lists.linuxfoundation.org/pipermail/lightning-
dev/2018-February/000993.html (Last accessed on 05/03/2019).

[94] A. Paya and D. C. Marinescu, “Energy-Aware Load Balancing and Application
Scaling for the Cloud Ecosystem,” IEEE Trans. Cloud Comput., vol. 5, no. 1,
pp. 15–27, Jan. 2017.

[95] N. Poolsappasit, R. Dewri, and I. Ray, “Dynamic Security Risk Management
Using Bayesian Attack Graphs,” IEEE Trans. Dependable Secur. Comput.,
vol. 9, no. 1, pp. 61–74, Jan. 2012.

[96] J. Poon and V. Buterin, Plasma: Scalable Autonomous Smart Contracts,
2017. [Online]. Available: http://plasma.io/plasma.pdf (Last accessed on
05/03/2019).

[97] J. Poon and T. Dryja, The Bitcoin Lightning Network: Scalable Off-Chain
Instant Payments, 2016. [Online]. Available: https://www.bitcoinlightning.
com/wp-content/uploads/2018/03/lightning-network-paper.pdf (Last accessed
on 05/03/2019).

[98] S. Popov, The Tangle, 2017. [Online]. Available: https://www.iota.org/IOTA_
Whitepaper.pdf (Last accessed on 05/03/2019).

[99] R. Potharaju and N. Jain, “Demystifying the Dark Side of the Middle: A
Field Study of Middlebox Failures in Datacenters,” in Proc. ACM IMC, 2013,
pp. 9–22.

[100] P. Prihodko, S. Zhigulin, M. Sahno, and A. Ostrovskiy, Flare: An Approach
to Routing in Lightning Network, 2016. [Online]. Available: http://bitfury.
com/content/5-white-papers-research/whitepaper_flare_an_approach_
to_routing_ in_ lightning_network_7_7_2016 .pdf (Last accessed on
05/03/2019).

[101] M. R. Rahman and R. Boutaba, “SVNE: Survivable Virtual Network Embed-
ding Algorithms for Network Virtualization,” IEEE Trans. Netw. Serv. Manag.,
vol. 10, no. 2, pp. 105–118, Jun. 2013.

[102] Raiden Network. [Online]. Available: https://raiden.network/ (Last accessed
on 05/03/2019).

[103] S. Rajagopalan, D. Williams, and H. Jamjoom, “Pico Replication: A High
Availability Framework for Middleboxes,” in Proc. ACM SOCC, 2013.

215

https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-February/000993.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-February/000993.html
http://plasma.io/plasma.pdf
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://www.iota.org/IOTA_Whitepaper.pdf
https://www.iota.org/IOTA_Whitepaper.pdf
http://bitfury.com/content/5-white-papers-research/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
http://bitfury.com/content/5-white-papers-research/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
http://bitfury.com/content/5-white-papers-research/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
https://raiden.network/

[104] Ripple. [Online]. Available: https : / /www . ripple . com/ (Last accessed on
05/03/2019).

[105] P. Rochard, Lightning Routing Node Starter Pack, 2019. [Online]. Available:
https://medium.com/lightning-power-users/lightning-routing-node-starter-
pack-704c0e7d79cb (Last accessed on 05/03/2019).

[106] R. T. Rockafellar and S. Uryasev, “Optimization of Conditional Value-at-Risk,”
J. Risk, vol. 2, pp. 21–41, 2000.

[107] E. Rohrer, J.-F. Laß, and F. Tschorsch, “Towards a Concurrent and Distributed
Route Selection for Payment Channel Networks,” in Proc. ESORICS Workshop–
CBT, 2017, pp. 411–419.

[108] S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg, “Settling Payments Fast
and Private: Efficient Decentralized Routing for Path-Based Transactions,” in
Proc. ISOC NDSS, 2018.

[109] M. Rost and S. Schmid, “Service Chain and Virtual Network Embeddings:
Approximations Using Randomized Rounding,” arXiv:1604.02180, 2016.

[110] A. Rullo, E. Serra, E. Bertino, and J. Lobo, “Shortfall-Based Optimal Placement
of Security Resources for Mobile IoT Scenarios,” in Proc. ESORICS, 2017,
pp. 419–436.

[111] A. Sajid, H. Abbas, and K. Saleem, “Cloud-Assisted IoT-Based SCADA Systems
Security: A Review of the State of the Art and Future Challenges,” IEEE
Access, vol. 4, pp. 1375–1384, 2016.

[112] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M.
Virza, “Zerocash: Decentralized Anonymous Payments From Bitcoin,” in Proc.
IEEE S&P, 2014, pp. 459–474.

[113] R. E. Sawilla and X. Ou, “Identifying Critical Attack Assets in Dependency
Attack Graphs,” in Proc. ESORICS, 2008, pp. 18–34.

[114] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Maciocco,
M. Manesh, J. Martins, S. Ratnasamy, L. Rizzo, and S. Shenker, “Rollback-
Recovery for Middleboxes,” in Proc. ACM SIGCOMM, 2015, pp. 227–240.

[115] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, M. Tyson, A. Texas,
C. Station, and M. Park, “FRESCO: Modular Composable Security Services
for Software-Defined Networks,” in Proc. USENIX NDSS, 2013.

216

https://www.ripple.com/
https://medium.com/lightning-power-users/lightning-routing-node-starter-pack-704c0e7d79cb
https://medium.com/lightning-power-users/lightning-routing-node-starter-pack-704c0e7d79cb

[116] V. Sivaraman, S. B. Venkatakrishnan, M. Alizadeh, G. Fanti, and P. Viswanath,
“Routing Cryptocurrency with the Spider Network,” arXiv:1809.05088, 2018.

[117] M. Spoke and Nuco Engineering Team, Aion: The Third-Generation Blockchain
Network, 2017. [Online]. Available: https://aion.network/downloads/aion.
network_technical-introduction_en.pdf (Last accessed on 05/03/2019).

[118] Stellar. [Online]. Available: https : / /www . stellar . org/ (Last accessed on
05/03/2019).

[119] S. Subashini and V. Kavitha, “A Survey on Security Issues in Service Delivery
Models of Cloud Computing,” J. Netw. Comput. Appl., vol. 34, no. 1, pp. 1–11,
Jan. 2011.

[120] H. Tan, Z. Han, X.-Y. Li, and F. C. M. Lau, “Online Job Dispatching and
Scheduling in Edge-Clouds,” in Proc. IEEE INFOCOM, 2017, pp. 1–9.

[121] O. Tilmans, S. Vissicchio, L. Vanbever, and J. Rexford, “Fibbing in Action: On-
demand Load-Balancing for Better Video Delivery,” in Proc. ACM SIGCOMM,
2016, pp. 619–620.

[122] L. Toka, B. Lajtha, E. Hosszu, B. Formanek, D. Gehberger, and J. Tapolcai, “A
Resource-Aware and Time-Critical IoT Framework,” in Proc. IEEE INFOCOM,
2017, pp. 1–9.

[123] L. Tong, Y. Li, and W. Gao, “A Hierarchical Edge Cloud Architecture for
Mobile Computing,” in Proc. IEEE INFOCOM, 2016, pp. 1–9.

[124] W. Trappe, R. Howard, and R. S. Moore, “Low-Energy Security: Limits and
Opportunities in the Internet of Things,” IEEE Secur. Priv., vol. 13, no. 1,
pp. 14–21, Jan. 2015.

[125] M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan, “Osmotic Computing:
A New Paradigm for Edge/Cloud Integration,” IEEE Cloud Comput., vol. 3,
no. 6, pp. 76–83, Nov. 2016.

[126] J. Wallen, Five Nightmarish Attacks That Show the Risks of IoT Security.
[Online]. Available: http://www.zdnet.com/article/5-nightmarish-attacks-that-
show-the-risks-of-iot-security/ (Last accessed on 05/03/2019).

[127] P. Wang, H. Xu, X. Jin, and T. Wang, “Flash: Efficient Dynamic Routing for
Offchain Networks,” arXiv:1902.05260v1, 2019.

217

https://aion.network/downloads/aion.network_technical-introduction_en.pdf
https://aion.network/downloads/aion.network_technical-introduction_en.pdf
https://www.stellar.org/
http://www.zdnet.com/article/5-nightmarish-attacks-that-show-the-risks-of-iot-security/
http://www.zdnet.com/article/5-nightmarish-attacks-that-show-the-risks-of-iot-security/

[128] Z. Wang and J. Crowcroft, “Quality-of-Service Routing for Supporting Multime-
dia Applications,” IEEE J. Sel. Areas Commun., vol. 14, no. 7, pp. 1228–1234,
1996.

[129] D. J. Watts and S. H. Strogatz, “Collective Dynamics of ‘Small-World’ Net-
works,” Nature, vol. 393, no. 6684, pp. 440–442, Jun. 1998.

[130] B. M. Waxman, “Routing of Multipoint Connections,” IEEE J. Sel. Areas
Commun., vol. 6, no. 9, pp. 1617–1622, 1988.

[131] What Led Amazon to Its Own Microservices Architecture. [Online]. Available:
https://thenewstack.io/led-amazon-microservices-architecture/ (Last accessed
on 05/03/2019).

[132] Why You Can’t Talk About Microservices Without Mentioning Netflix. [Online].
Available: https://smartbear.com/blog/develop/why-you-cant-talk-about-
microservices-without-ment/ (Last accessed on 05/03/2019).

[133] M. Willebeek-LeMair and A. Reeves, “Strategies for Dynamic Load Balancing
on Highly Parallel Computers,” IEEE Trans. Parallel Distrib. Syst., vol. 4,
no. 9, pp. 979–993, 1993.

[134] L. Wu, M. Shahidehpour, and T. Li, “Stochastic Security-Constrained Unit
Commitment,” IEEE Trans. Power Syst., vol. 22, no. 2, pp. 800–811, May
2007.

[135] Y. Xia, Y. Liu, C. Tan, M. Ma, H. Guan, B. Zang, and H. Chen, “TinMan: Elim-
inating Confidential Mobile Data Exposure with Security Oriented Offloading,”
in Proc. ACM EuroSys, 2015, pp. 1–16.

[136] Y. Xiao and M. Krunz, “QoE and Power Efficiency Tradeoff for Fog Computing
Networks with Fog Node Cooperation,” in Proc. IEEE INFOCOM, 2017, pp. 1–
9.

[137] J. Xu, J. Tang, K. Kwiat, W. Zhang, and G. Xue, “Enhancing Survivability
in Virtualized Data Centers: A Service-Aware Approach,” IEEE J. Sel. Areas
Commun., vol. 31, no. 12, pp. 2610–2619, Dec. 2013.

[138] G. Xue, L. Chen, and K. Thulasiraman, “Quality-of-service and Quality-Of-
Protection Issues in Preplanned Recovery Schemes Using Redundant Trees,”
IEEE J. Sel. Areas Commun., vol. 21, no. 8, pp. 1332–1345, Oct. 2003.

218

https://thenewstack.io/led-amazon-microservices-architecture/
https://smartbear.com/blog/develop/why-you-cant-talk-about-microservices-without-ment/
https://smartbear.com/blog/develop/why-you-cant-talk-about-microservices-without-ment/

[139] G. Xue, W. Zhang, J. Tang, and K. Thulasiraman, “Polynomial Time Approxi-
mation Algorithms for Multi-Constrained QoS Routing,” IEEE/ACM Trans.
Netw., vol. 16, no. 3, pp. 656–669, Jun. 2008.

[140] J. Yallouz and A. Orda, “Tunable QoS-Aware Network Survivability,”
IEEE/ACM Trans. Netw., vol. 25, no. 1, pp. 139–149, Feb. 2017.

[141] J. Yallouz, O. Rottenstreich, and A. Orda, “Tunable Survivable Spanning
Trees,” IEEE/ACM Trans. Netw., vol. 24, no. 3, pp. 1853–1866, Jun. 2016.

[142] H. Yanagisawa, T. Osogami, and R. Raymond, “Dependable Virtual Machine
Allocation,” in Proc. IEEE INFOCOM, 2013, pp. 629–637.

[143] Y. Ye, “An O(n3L) Potential Reduction Algorithm for Linear Programming,”
Math. Program., vol. 50, no. 1-3, pp. 239–258, Mar. 1991.

[144] Z. Ye, X. Cao, J. Wang, H. Yu, and C. Qiao, “Joint Topology Design and Map-
ping of Service Function Chains for Efficient, Scalable, and Reliable Network
Functions Virtualization,” IEEE Netw., vol. 30, no. 3, pp. 81–87, May 2016.

[145] L. Ying, R. Srikant, and X. Kang, “The Power of Slightly More Than One
Sample in Randomized Load Balancing,” in Proc. IEEE INFOCOM, 2015,
pp. 1131–1139.

[146] H. Yu, C. Qiao, V. Anand, X. Liu, H. Di, and G. Sun, “Survivable Virtual
Infrastructure Mapping in a Federated Computing and Networking System
under Single Regional Failures,” in Proc. IEEE GLOBECOM, 2010, pp. 1–6.

[147] R. Yu, V. T. Kilari, G. Xue, and J. Tang, “Load Balancing for Interdependent
IoT Microservices,” in Proc. IEEE INFOCOM, 2019.

[148] R. Yu, Y. Wan, V. T. Kilari, G. Xue, J. Tang, and D. Yang, “P4PCN : Privacy-
Preserving Path Probing for Payment Channel Networks,” submitted to IEEE
GLOBECOM, 2019.

[149] R. Yu, G. Xue, V. T. Kilari, D. Yang, and J. Tang, “CoinExpress: A Fast
Payment Routing Mechanism in Blockchain-based Payment Channel Networks,”
in Proc. IEEE ICCCN, 2018.

[150] R. Yu, G. Xue, V. T. Kilari, and X. Zhang, “Deploying Robust Security in
Internet of Things,” in Proc. IEEE CNS, 2018.

219

[151] R. Yu, G. Xue, and X. Zhang, “Application Provisioning in Fog Computing-
enabled Internet-of-Things: A Network Perspective,” in Proc. IEEE INFOCOM,
2018, pp. 1–9.

[152] ——, “Provisioning QoS-aware and Robust Applications in Internet-of-Things:
A Network Perspective,” submitted to IEEE/ACM Trans. Netw.

[153] ——, “QoS-Aware and Reliable Traffic Steering for Service Function Chaining
in Mobile Networks,” IEEE J. Sel. Areas Commun., vol. 35, no. 11, pp. 2522–
2531, Nov. 2017.

[154] R. Yu, G. Xue, X. Zhang, and D. Li, “Survivable and Bandwidth-Guaranteed
Embedding of Virtual Clusters in Cloud Data Centers,” in Proc. IEEE INFO-
COM, 2017, pp. 1–9.

[155] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint Optimization of Task
Scheduling and Image Placement in Fog Computing Supported Software-
Defined Embedded System,” IEEE Trans. Comput., vol. 65, no. 12, pp. 3702–
3712, Dec. 2016.

[156] N. Zhang, S. Demetriou, X. Mi, W. Diao, K. Yuan, P. Zong, F. Qian, X.
Wang, K. Chen, Y. Tian, C. A. Gunter, K. Zhang, P. Tague, and Y.-H. Lin,
“Understanding IoT Security Through the Data Crystal Ball: Where We Are
Now and Where We Are Going to Be,” arXiv:1703.09809, 2017.

[157] Q. Zhang, M. F. Zhani, M. Jabri, and R. Boutaba, “Venice: Reliable Virtual
Data Center Embedding in Clouds,” in Proc. IEEE INFOCOM, 2014, pp. 289–
297.

[158] W. Zhang, J. Tang, C. Wang, and S. de Soysa, “Reliable Adaptive Multipath
Provisioning with Bandwidth and Differential Delay Constraints,” in Proc.
IEEE INFOCOM, 2010, pp. 1–9.

[159] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani, R. Mishra,
R. Patneyt, M. Shirazipour, R. Subrahmaniam, C. Truchan, and M. Tatipamula,
“StEERING: A Software-Defined Networking for Inline Service Chaining,” in
Proc. IEEE ICNP, 2013, pp. 1–10.

[160] Y. Zhang, Y. Long, Z. Liu, Z. Liu, and D. Gu, “Z-Channel: Scalable and
Efficient Scheme in Zerocash,” in Proc. ACISP, 2018, pp. 687–705.

220

[161] J. Zhou, Z. Cao, X. Dong, and A. V. Vasilakos, “Security and Privacy for
Cloud-Based IoT: Challenges,” IEEE Commun. Mag., vol. 55, no. 1, pp. 26–33,
Jan. 2017.

[162] J. Zhu, D. Li, J. Wu, H. Liu, Y. Zhang, and J. Zhang, “Towards Bandwidth
Guarantee in Multi-Tenancy Cloud Computing Networks,” in Proc. IEEE
ICNP, 2012, pp. 1–10.

221

	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 Introduction

	I Network Resource Allocation in IoT
	2 QoS-aware and Reliable Traffic Steering for Service Function Chaining in Mobile Networks
	3 Provisioning QoS-aware and Robust Applications in Internet-of-Things: A Network Perspective
	4 Load Balancing for Interdependent IoT Microservices

	II Robust Security Deployment in IoT
	5 Deploying Robust Security in Internet of Things

	III Micropayment Routing in Blockchain-based PCN
	6 CoinExpress: A Fast Payment Routing Mechanism in Blockchain-based Payment Channel Networks
	7 P4PCN: Privacy-Preserving Path Probing for Payment Channel Networks
	8 Conclusions
	References

