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ABSTRACT 
 

The increase in demand and power transfer between utilities in the modern power system 

as well as penetration of distributed generations (DGs) which produce electricity 

sporadically in smart grids raise the voltage stability concerns in electric power networks. 

Noticeable challenges such as natural complexity and dynamics of the power system as well 

as sporadic generation of renewable energy sources (RESs) impose power grids to operate 

closer to the operating limit, which ultimately results in voltage instability issues. The driving 

force of voltage instability is generally loads and thus analyzing their effect on power system 

is of great importance in voltage stability assessments.  

This thesis developed an advanced assessment tools to predict and recover the power 

system voltage margin to the acceptable values during the occurrence of a disturbance in the 

network. First, the effect of disturbance in islanded microgrids are analyzed using power 

factor-based power-voltage curves and a comprehensive under voltage-frequency load 

shedding (UVFLS) method is proposed as a last resort in order to restore the system voltage 

and frequency. It is shown that by considering power factor of busbars and implementing 

proposed UVFLS technique, optimum load shedding can be achieved. 

Thereafter, the effect of disturbance in conventional power system is investigated by 

introducing a phenomenon called fault induced delayed voltage recovery (FIDVR) and 

comprehensive real-time FIDVR assessments are proposed to employ appropriate emergency 

control approaches i.e. load shedding as fast as possible to maintain the system voltage 

margins within the desired range. In the first step, linear and polynomial regression 

techniques have been used for predicting the FIDVR duration. In the next step, advanced 

FIDVR assessment is implemented which simultaneously predicts whether the event can be 

classified as FIDVR or not and also predicts the duration of FIDVR with high accuracy. 
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 : THESIS OVERVIEW 
 

 Thesis Overview 

The second chapter of this thesis deals with the effect of disturbances in microgrids and 

introduces simple and complete under voltage-frequency Load Shedding (UVFLS) 

schemes to achieve proper load shedding amounts (LSAs) in an islanded Inverter-Based 

MicroGrids (IBMGs) considering power and power factor (PF) of diverse load models 

such as constant power, constant current and constant impedance loads. The proposed 

method employs a fast time-step simulation approach, based on the complete state-space 

model of IBMG in order to obtain the transient and steady state responses of the system. 

PF-based power-voltage (P-V) curves are obtained considering loads PF. Ultimately, LSA 

is obtained according to the under-voltage LS (UVLS) and under frequency LS (UFLS) 

values. To demonstrate the effectiveness of the proposed simple and complete LS 

methods, the performances of the techniques are analyzed in a test islanded IBMG using 

MATLAB. The simulation results clearly show that the proposed LS methods are more 

accurate than the previous studies and they can provide optimum LSA according to the 

loads PF and enhance the power system stability considerably.  

The third chapter discusses the stalling of constant torque induction motor loads caused 

by system faults that may lead to a phenomenon known as fault induced delayed voltage 

recovery (FIDVR) which is a critical threat to modern power systems. FIDVR can cause 

significantly depressed local voltage for several seconds after the fault clearance and in 
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more severe situations can also lead to widely cascaded system failure. Hence, predicting 

the FIDVR duration after the system fault can play an essential role in maintaining the 

power system voltage stability. To have the real-time assessment and prediction of FIDVR 

phenomenon, this study presents a data-driven multi-variable machine learning (ML)-

based Decision-making method. Before building the model, a comprehensive feature 

analysis is accomplished and important features with high correlation with FIDVR 

duration are selected. The data of power quality recording devices (PQubes) are used for 

online ML model developing to rapidly predict the FIDVR duration following a system 

disturbance. To do so, linear regression and polynomial regression have been 

implemented in Python software along with power system data for online model 

developing. Using the developed model, FIDVR duration can accurately be obtained in 

real-time without using complicated load models. Aforementioned regression models 

result in simple programming and fast prediction and on the other hand, using multiple 

features for model development enhance the model accuracy. As a result, the FIDVR 

prediction can be accomplished very fast, yet with acceptable accuracy. Accurate and fast 

prediction provides the opportunity for consecutive last resort controls to restore the 

system voltage to the acceptable range.  

 The forth chapter proposes a probabilistic time-series data-driven multi-variable 

simultaneous classification and regression decision-making to assess the event and 

categorize it as FIDVR or non-FIDVR and predict the FIDVR duration if the event is 

classified as FIDVR. In real world, applying inaccurate prediction may result in false 

alarm which lead to unnecessary emergency control i.e. load shedding or missing an alarm 

which in severe cases may lead to voltage collapse.   In order to enhance the machine 
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learning assessment accuracy, a more advanced method is designed to improve the real-

time FIDVR assessment accuracy and speed. A robust validation technique is used to 

enhance the real-time prediction accuracy. In this chapter, an advanced feature analysis 

is accomplished and important features with high correlation with FIDVR duration are 

selected. The real-time data of power quality recording devices (PQubes) are used for 

online ML model developing to rapidly predict the FIDVR duration following a system 

disturbance. The proposed technique also tested in a test system modeled in EMTP-RV. 

Note that artificial intelligence algorithms have been used in different manners in chapter 

2 compared to chapter 3 and 4. In chapter 2, a automatic algorithm is proposed which can 

select the best PF-based P-V curve according to the characteristics of the system. In 

chapter 3 and 4, machine learning algorithms have been used for FIDVR prediction. 

However, all these algorithms are under the umbrella of artificial intelligence. 

 Ultimately, the fifth chapter summarizes the thesis contributions and identified future 

works. 
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  : VOLTAGE AND FREQUENCY 

RECOVERY IN AN ISLANDED INVERTER-BASED 

MICROGRID CONSIDERING LOAD TYPE AND 

POWER FACTOR 

 Introduction 

Ever growing electrical demand and penetration of distributed generations (DGs) which 

produce electricity sporadically, bring power systems closer to their stability limit. These 

issues result in an increasing risk of voltage and frequency instability in power system 

[1] -[2]. Aforementioned challenges are even of paramount importance in islanded 

microgrids (MGs) [3]. If disturbances such as sudden load increment and outages of DGs 

occur in such a way that the load demand exceeds the total generation and the available 

DGs operate at maximum power, the system will observe noticeable instabilities. The 

resulting active and reactive power imbalance can let the system voltages and frequency 

t o  deviate from their desired operating range. This issue may cause system collapse in 

such a way that standard system controls fail to stop this deviation. After applying all 

of the control measures, under voltage load shedding (UVLS) and under frequency load 

shedding (UFLS) would be the last inevitable efforts to maintain the stability of the system 

[4]. 

According to [5] and [6], traditional load shedding (LS) schemes are not capable of 

dealing with the combined instabilities. However, the majority of the existing studies are 

based on either frequency or voltage LS schemes. In UFLS approach, merely the 

frequency information is considered which may have adverse consequences on other 
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characteristics of the system. Similarly, UVLS utilizes local bus voltage values and may 

have unanticipated effects on the system characteristics [4]. In [7], [8], [9], frequency and 

its rate of change were used for UFLS calculation. Nonlinear mathematical 

programming and discretized differential-algebraic power system equations were 

combined to estimate the optimal LSA in [10]. In [11], a centralized adaptive UFLS 

scheme for smart grid has been investigated using synchronous phase measurement units. 

In [12], a distributed load shedding algorithm based on sub-gradient method via a wireless 

network was proposed for balancing the supply– demand and reducing the LS amount. 

[13] has proposed new scheme for frequency regulation by coordinating the operation of 

fast-responding inverter-based distributed energy resources (DERs) with the slow-acting 

gensets. The unequal transient LS between gensets and inverter-based DERs is 

redistributed to prevent system collapse as well as achieve desired frequency regulation. 

In [14], a two-level control method is presented to facilitate decentralized management of 

active power deficiencies in remote sustainable MGs. The primary level is responsible for 

fulfilling an UFLS action based on a developed multilayer droop structure. [15] has 

proposed a novel strategy for stand-alone multi-MGs operation considering flexible 

frequency operation in order to reduce the operation cost and the amount of LS. 

There are research works about UVLS in which the voltage information is used for 

calculating LSA [16], [17] . A UVLS algorithm based on the rate of voltage recovery 

and predicted time was proposed in [18]. [19] has come up with a response-based system 

integrity protection scheme for adaptive UVLS in large interconnected systems.  

While various papers utilized UFLS or UVLS for voltage and frequency recovery, 

there exist few studies such as [20], [21], [22], [23], [24], [25] which have proposed LS 
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for simultaneous voltage and frequency recovery. A multi-step hybrid islanding 

methodology was proposed in [20] for emergency operation of an industrial park. An 

under frequency/under voltage load shedding scheme is initiated, where a predetermined 

set of lower priority loads are shed in order to stabilize the individual islands.  In [21], the 

magnitude of sub-transmission bus voltages and also static voltage stability margins of 

the buses were utilized in order to select the load shedding amount (LSA). The method of 

[22] employs voltage information available through a synchrophasor-based wide area 

monitoring and control system so as to find proper LS locations. In [23], through the 

dynamic simulations of power system network, the sensitivity of power system voltage 

and frequency response to the disturbance location is incorporated. Reference [24]  

proposed decentralized LS in which the instantaneous voltage deviation of load buses was 

used to determine the frequency thresholds of LS relays. In [25], an under-voltage 

frequency LS (UVFLS) scheme was proposed based on the piecewise linear nose (PLN) 

curve. However, these methods [21], [22], [23], [24], [25] neither consider the effects of 

loads reactive power and PF nor take into account the impacts of load types on the 

calculated LSA. Moreover, these adaptive strategies are based on pre-disturbance 

sensitivity factors and, hence, do not take into account the dynamic changes due to a 

contingency or system configuration change. If the load power factor changes during the 

disturbance, no updated LSA is proposed and the load shedding is based on the pre-

disturbance LSA values.  

In view of the shortcomings of the existing LS schemes, this study proposes a new 

UVFLS strategy which simultaneously regulates frequency and bus voltages within the 

permissible values in an IBMG consisting of various load types and PFs. In this approach, 
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voltage and frequency are measured and LSA is determined based on the developed PF-

based P-V curves. In parallel, frequency droop characteristics are used for calculating 

the LSA obtained from UFLS.  In the first stage, a fast time-step simulation technique is 

utilized which provide online transient and steady-state responses of the IBMG before, 

during, and after the disturbance. Using the proposed UVFLS method with the fast time-

step simulation, the LSA computation time following contingencies will be decreased [26]. 

During the system operation, PF-based P-V curves are calculated at pre-specified time 

intervals, e.g. every minute, according to the characteristic of the load on each bus and 

the system configuration. In the simple LS method, PF-based P-V curves are derived 

before the disturbance and are used for UVLS. However, in the complete UVFLS, 

several PF-based P-V curves with different PFs are obtained, two closest PF-based P-V 

curves to loads PF are selected, and the LSA will be calculated according to the proposed 

algorithm. 

 IBMG Modeling 

This chapter studies the autonomous voltage source inverter-based microgrid (IBMG). 

In islanded operation of IBMGs, merely distributed generations (DGs) carry responsibility 

of maintaining voltage and frequency of the system within the desired ranges. During the 

islanded operation of IBMG, DGs must meet the demand without over-loading of 

inverters, and any load change must be controlled by DGs. This operating mode requires 

crucial control techniques since any malfunction in the system can deteriorate the overall 

performance of the IBMG [27]. This study employs real power/frequency and reactive 
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power/voltage droop control which is an extensively popular power sharing method and 

shares demand between DGs according to DGs droop characteristic.  A complete state-

space of the IBMG is obtained using the method of [27]. A linear state-space model for 

the islanded IBMG and a time-step simulation are utilized [26], in order to obtain 

operating point as well as transient response of the system at any time for making LS 

decisions. According to [27], state-space model of IBMG divides components of the 

system into three sub-systems which are inverters, network and loads. Each inverter is 

composed of power sharing controller, voltage and current controller, output filter and 

coupling inductor. Fig. 2-1 shows the block diagram of the complete model of a VSI-

based DG and its controllers. 

By developing a linear model for each subsystem of IBMG and utilizing Taylor 

expansion, the general state-space equation of the system can be linearized as follows 

[26]: 

UtBtxtAttx )()()()(

.

+=+  

 

(2-1) 
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Fig.  2-1. Block diagram of VSI connected to an Islanded IBMG 

 

where x and U are state and input vectors and A and B are system and input matrices. 

For n variables, matrix x is n×1, U is m×1, matrix A is n×n and B is n×m matrix. Matrix 

M, which is (n+m)×(n+m), is generated from A and B in order to create matrix 

exponential. 

m)+(n×m)+(n
00 





=

BA
M  

 

(2-2) 

 

Assuming M*∆t has a full set of eigenvectors V with corresponding eigenvalues D, 

then [V, D] = eig(M*∆t) where function eig returns diagonal matrix D of eigenvalues and 

matrix V whose columns are the corresponding right eigenvectors, so that M*∆t*V = V*D. 

∆t is time-step value. By deriving eigenvectors and eigenvalues of M, matrix exponential 

of M can be exploited by: 

VDdiagdiagVMtExmP /)))((exp(*)*( =   (2-3) 

 

where V is the eigenvectors with the corresponding eigenvalues D. diag (D) returns a 
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square diagonal matrix with the elements of vector D on the main diagonal. Matrix AP will 

be generated from column 1 to n and row 1 to n of matrix exponential of M*∆t and Matrix 

BP will be obtained from row 1 to n and column n+1 to n+m. Finally, the response of the 

system is obtained at each time from: 

Ut
P

Btxt
P

Attx )()()()( +=+  (2-4) 

Where AP is the system matrix and matrix BP is the input matrix. Using (2-4), time 

domain simulation is performed and all variables are obtained in each time instant. In 

other words, using this method not only the load flow solutions such as Newton-Raphson 

methods are not needed any more, but also transient response of the system can be derived 

at any time [28]. 

For having more realistic voltage stability investigation, it is necessary to have 

sufficiently proper models of the loads. In [26], [27] the relation between load active and 

reactive powers and the bus voltage are not included in the IBMG modeling. In this 

chapter, IBMG model contains various load models such as constant power loads (CPLs), 

constant current loads (CCLs) as well as constant impedance loads (CILs) with specified 

power factors (PFs) [2]. In CPLs, the active and reactive powers are independent of 

variations in the voltage magnitude. The voltage-power equation for this model can be 

written as (5) while n=0. 

)
0

(

0

,)
0

(

0 V

V
n

Q

Q

V

V
n

P

P
==  

 

(2-5) 

where P and Q are active and reactive power demand respectively, and P0 and Q0 are 

respectively active and reactive power demand at rated voltage V0.  In CCL model, the 

active and reactive powers vary directly with the voltage magnitude (n=1 in (2-5)). 
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Finally, by putting n=2 in (5), the powers vary with the square of the voltage magnitude 

which is the characteristic of the CILs. In this study, aforementioned models are included 

in linear state-space model of the IBMG and the proposed UVFLS technique. 

To illustrate more note that the proposed load shedding method utilizes state-space 

model and time-domain methods to derive responses of the system i.e. bus voltages [26]. 

Based on the system characteristics, state-space equation can be updated and system 

responses change accordingly. 

The complete state-space equation of the microgrid can be obtained according to the 

equation (1): 

U
sys

Bx
sys

Ax +=

.

 

 

(2-6) 

 

Where ASYS, BSYS, X and U can be obtained as follows: 

 

















+

+

+

=

M LOADRNCLOADALOADM NETRNCLOADDINVM INVRNCLOAD

M LOADRNC NETM NETRNC NETANETDINVM INVRNC NET

M LOADRNCINVM NETRNCINVDINVM INVRNINV
C

INV
A

sys
A

  

(2-7) 

 















=

0

0

BINV

sys
B

















=

i loadDQ

ilineDQ

X INV

X








=

n

n
V

U


 

 

(2-8) 

 

Where AINVi, BINVi, CINVi, DINVi, ANETi, CNETi, ALOADi and ALOADi are shown below: 
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The parameters used in (2-7)-(2-11) are shown in Table 2-3. All the matrixes are 

described and can be found in [26], [27]. MINV, MLOAD and MNET show the links 

among inverters, loads and lines with network buses, respectively. By applying a simple 

KCL in bus i, the elements of row i of these matrixes can be easily specified. Matrix MINV 

is of size 2m×2s which maps the (s) inverter connection points onto (m) network nodes. 

For example, if i-th inverter is connected at j-th node, the element MINV (j,i) will be 1 

and all the other elements in that row will be zero. Similarly, MLOAD is of size 2m×2p 

maps (p) load connection points onto the (m) network nodes with 1. Matrix MNET of size 

2m×2n maps the (n) connecting lines onto the (m) network nodes [26], [27]. Hence, if any 
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changes occur such as network size increase, variations on location of DGs/loads or 

scalability, the arrays of corresponding matrix will be changed and as a result, any 

connection between lines, loads and DGs will be implemented and the responses of the 

system will be updated accordingly. 

 Fundamentals of P-V Curve 

The relationship between the voltage and the active power is described via power 

voltage (P-V) nose curve which is widely used as a tool for voltage stability and 

calculation of network loading margin. The equation for P-V curves can be achieved by 

using power flow equations for the receiving end in the system [2], [28]: 

225.05.0 pqqV −−−=  

(2-17) 

 

where p and q are active and reactive power demands respectively. According to (6), 

bus voltage is related to both active and reactive powers. PV-curves illustrate the 

dependency of the voltage on real power of a composite load for different PFs.  Fig. 2-2 

demonstrates family of P-V curves with different PF values highlighting significant 

impact of PF on the deriving P-V curve. To investigate the impact of various load types 

on voltage stability, the load characteristics (5) should be considered along with the P-V 

curve.  
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Fig.  2-2.  P-V curve for PF=0.9 and PF=0.8 leading and lagging and PF=1 

 

In the event of small disturbances, deviation of the load PF in post-disturbance and pre-

disturbance may be negligible. As a result, post- and pre-disturbance P-V characteristics 

do not differ, noticeably. In this case, LSA can be calculated by analyzing proposed PF-

based P-V curve in the pre-disturbance. However, in the case of large disturbance, load 

PF in post-disturbance may deviate from its value in pre-disturbance operating condition. 

However, P-V curve in the post-disturbance regime may be different from the one in pre-

disturbance due to PF deviation. As a result, a precise procedure is required to derive 

accurate P-V curve.  

 Proposed Load Shedding Technique  

This study proposes an under voltage-frequency load shedding (UVFLS) approach to 

restore voltage and frequency of the islanded IBMG. In the first step, active power demand 

sensitivity to bus voltage is obtained considering loads PF. The result is utilized for UVLS. 

In parallel manner, droop characteristics are employed for calculating UFLS. In the final 

step, the load shedding amount (LSA) will be calculated. 
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2.4.1. Deriving P-V Curve considering Loads PF 

PLN curve algorithm was proposed in [25] in order to obtain P-V curve faster than 

conventional methods. In this algorithm adjustable value of the voltage difference 

between every two consecutive linear sections (ΔVdesired) is used. The deficiency of PLN 

method is that, it is based on the resistive loads and hence without taking into account the 

reactive power and PF. Moreover, the PLN based approach employs PLN curve of the 

pre-disturbance condition. Since a large disturbance may change P-V characteristic of a 

bus, the PLN method may overshed the loads. 
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Fig.  2-3. Flowchart of the proposed algorithm for deriving PF based P-V curve 
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In the proposed algorithm of this chapter, loads PF are considered and P-V curves are 

obtained with regard to reactive and active demands. The flowchart of the proposed 

algorithm including various load models is demonstrated in Fig. 2-3 which is the updated 

version of the one presented in [25]. In the proposed algorithm, the load active demand 

(which is written as D) and reactive powers (which is written as Q change in each step 

according to the load PF. The voltage of each bus is computed by solving the time-domain 

equations incorporating the load model at that bus. If the number of operating DG units 

and loads or their power demands are changed, the computed bus voltages will be updated, 

accordingly. Furthermore, the PF-based P-V curves are updated based on the new 

configuration of the MG, if required.  

As shown in Fig. 2-3, the PF-based P-V curve is obtained based on the load types. Due 

to relatively small size of MG compared with a bulk power system, it is possible to have 

a good estimation of the load types in the MG based on analyzing loads current, voltage 

and power behavior. According to the load’s behavior, one of the mentioned models on 

Fig. 2-3 which is closer to loads behavior will be selected for load shedding. By using an 

estimation of load types and the proposed method in Fig. 2-3, a more optimal amount of 

load shedding can be obtained compared to using one load model for whole system 

loading.  

2.4.2. Simple LS method 

After employing proposed algorithm for deriving PF-based P-V curve in the IBMG 

system, the LSA can be calculated by computing under-voltage load shedding amount 

(UVA), under-frequency load shedding amount (UFA), and over-frequency load shedding 
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amount (OFA) [25]. Assuming i is the number of buses with the voltages under the 

desirable voltage level, UVA for bus number i can be calculated as follows: 

dd
S

ii
S

i
UVA  cos.cos. −=    (2-18) 

 

where Si is the load power at bus i which can be derived from load voltage using PF-

based P-V curve. cosφi is PF of the load after disturbance. In (2-7), Sd is the load power 

which can be obtained on the basis of lower limit of acceptable voltage and PF-based P-

V curve. The value of cosφd is PF of the bus i. It should be noted that PF-based P-V curve 

has been obtained before disturbance. Hence, cosφd is the PF of the bus before disturbance. 

The complete UVA matrix can be written as follows which consists of UVA of all i buses 

experiencing voltage decline: 

 

  T
UVAiUVA

itotal
UVA ]...1[

1
=


  (2-19) 

 

UVAtotal consists of i values, which one of them should be selected as LSA. By 

accomplishing the following steps, one element of UVAtotal will be selected.  

The voltage variation followed by UVA (∆VUVA) can be calculated by subtracting the 

load voltage and the lower and upper limits of the desired voltage. For a system with b 

buses, by calculating UVAi for one of i buses and implementing LS according to measured 

UVAi, voltage variation ∆VUVA of all b buses can be calculated. By employing this 

approach to all i buses, an i×b matrix of voltage variations will be obtained. Then, by 

selecting maximum voltage variation in each row an i×1 matrix (∆VUVAtotal) will be 
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derived.  Finally, in ∆VUVAtotal one row will be selected as LSA if its corresponding row in 

the obtained i×1 matrix has the minimum value of whole matrix.  

UFA is designed to restore the frequency of the system to lower limit of acceptable 

frequency. UFA can be obtained by using droop coefficient which is used as power control 

of the system [27]. 

  

By subtracting system frequency from lower limit of acceptable frequency and dividing 

it by droop coefficient, UFA will be obtained: 

m

ff
UFA il

i

−
=  

(2-20) 

 

where m is droop coefficient and fl is the lower limit of the desired frequency. UFAi is the 

power change needed to restore frequency from fi to fl.   

On the other hand, OFA is designed to prevent the occurrence of over frequency after 

LS, which is the maximum LSA to recover frequency of the system to upper limit of 

acceptable frequency. OFA can be derived by subtracting higher limit of acceptable 

frequency of the system from the system frequency and dividing it by droop coefficient. 

m

ff
OFA iu

i

−
=  

(2-21) 

 

Where m is droop coefficient and fu is the upper limit of the desired frequency. OFAi is 

the power change needed to restore frequency from fi to fu. The voltage variations 

followed by OFA and UFA are ∆VOFA and ∆VUFA, respectively. Finally, LSA will be equal 

to one of UVA, UFA, or OFA values which can be obtained by analyzing one of the nine 

modes M1-M9 presented in Table 2-1. Table 2-1 lists the possible modes of calculating 

LSA using the PF-based P-V curve [25]. 
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Table 2-1 

Obtaining LSA while using one PF-based P-V curve [26] 

 
MODES MIN(∆VOFA,∆VUFA,∆

VUVA) 

1ST 

CONDITIO

N 

2ND 

CONDITIO

N 

LSA 

M1 ∆VOFA=∆VUFA=∆VUV

A 

- - UFA 

M2 ∆VUFA=∆VUVA - - UFA 

M3 ∆VOFA=∆VUVA - - Min(UVA,OFA) 

M4 ∆VOFA=∆VUFA - - UFA 

M5 ∆VUFA - - UFA 

M6 ∆VOFA - - OFA 

M7 ∆VUVA UFA<UVA

<OFA 

- UVA 

M8 ∆VUVA OFA<UVA 

or 

UVA<UFA 

∆VUFA<∆VO

FA 

UFA 

M9 ∆VUVA OFA<UVA 

or 

UVA<UFA 

∆VUFA>∆VO

FA 

OFA 

 

2.4.3. Complete LS method 

The process of updating PF-based P-V curve is treated as an online approach since each 

P-V calculation can take a few minutes, depending on the size of the IBMG system. 

According to [25], if a contingency occurs between two P-V curve updates, the only 

solution is to exploit the P-V curve computed at the last online computation period. In 

[25], the PLN curves are assumed unchanged during post-disturbance and pre-disturbance 

periods since IBMG loads were resistive. Based on such an unrealistic assumption, LSA 

calculation using Table 2-1 is acceptable as PF equals one and the post-disturbance P-V 

curve does not deviate from its pre-disturbance curve. However, depending on the load 

type, the load active and reactive powers and therefore its PF can change following the 
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disturbance. As a result, the corresponding PLN curve may change, and the approach of 

PLN may lose credibility.  

In the proposed complete LS algorithm, for a load with the specified PF of PFL, several 

PF-based P-V curves with pre-specified margins such as ±0.1+PFL and ±0.2+PFL, are 

derived. By changing the number or margin of the curves, there is a trade-off between 

online processing time and the LS accuracy. The more the number of curves with pre-

specified margins, the higher the accuracy of the method; but the online processing time 

will be increased. However, margins of pre-specified curves have reverse relation with 

the method accuracy. The process of updating PF-based P-V curve is done following each 

system change and the algorithm is then ready to act on subsequent disturbances. Thus, 

the LS operating time is not affected by the curve updates and the algorithm can quickly 

respond in real-time operation based on simple calculations using lookup table 

interpolations.  

After the disturbance occurrence, the PF of the bus will be calculated. Afterwards, by 

analyzing the pre-calculated PF-based P-V curves, two closest curves which have the 

nearest upper and lower PF will be selected for obtaining the initial LSA value based on 

the 9 modes of Table 2-1. Thereafter, according to the mode of each condition, one of the 

81 probable arrays in Table 2-2 will be selected for LSA. It should be noted that in Table 

2-2, for instance M31 and M42 demonstrate mode M3 in the 1st and mode M4 in the 2nd 

selected PF-based P-V, respectively. By assuming that M31 and M42 are the modes 

obtained from the nearest PF-based PV curves to loads PF, the final LSA value will be 

M31 according to Table 2-2. By increasing the number of PF-based P-V curves, the method 

efficiency will be increased. However, generating higher number of PF-based P-V curves 
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will be more time consuming. Nevertheless, such P-V curves can be obtained offline and 

stored as lookup tables for fast calculation in real-time. 

It should be mentioned that due to the massive number of probable contingencies, only 

credible disturbances such as DG unit outage and/or load drastic changes are considered 

based on techniques and historical records such as contingency ranking or bounding [29]. 

These disturbances can cause voltage and frequency instability as well as load PF 

deviation. It should be noted that distribution of the LSA among buses is proportional to 

their loading at pre-disturbance condition. 

Table 2-2 

Obtaining LSA using two upper and lower P-V curves 

 
1st P-V 2nd P-V LSA 
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 Simulation and Case Studies  

In grid-connected operation mode of MG, the main utility maintains the voltage and 

frequency of the system. In this case, any active and reactive power imbalance can be 

compensated by the main grid. On the contrary, in islanded mode of MG, DGs have to 

maintain the voltage and frequency of the islanded MG into their acceptable values. Since 

the MG is more vulnerable to disturbances under islanded mode of operation, this 
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operating mode is the focus of this study to determine the required LSA, under the most 

severe scenarios.  

It does not matter if the MG operates in islanded mode or grid-connected mode, the 

sensitivity of bus voltage to the load power can be obtained based on the proposed PF-

based P-V curve. In both grid-connected or islanded operation, following an event and 

dropping the bus voltages or frequency below the acceptable values, if generation has 

enough power to compensate the power imbalance, the bus voltages and frequency 

recover to the acceptable values and LS is not needed. However, if generation is not 

sufficient to compensate the power imbalance, voltage and frequency will not recover and 

the proposed LS will be applied to the system as the last firewall to maintain the voltage 

and frequency within the acceptable ranges.  

In the proposed LS method, the voltage sensitivity to the system loading in each bus 

should be calculated, based on the load power factor. Such a sensitivity is demonstrated 

by the PF-based P-V curves. If any changes occur in the system parameters, topology, 

generation, or loads, the state-space equations will be updated and, as a result, the 

responses of the system and the PF-based P-V characteristics will be updated, accordingly. 

Based on the updated PF-based P-V curves and the frequency of the system, new LSA 

will be calculated.  

The test islanded IBMG, shown in Fig. 2-4, consisting of two DGs and three various 

load models is used to demonstrate the application of the proposed LS method. The 

parameters of the DG unit controllers are listed in Table 2-3. The complete state-space 

equations of the islanded IBMG is implemented in MATLAB software. The acceptable 

range of frequency and voltage are considered to be (49.9-50.1) Hz and (0.95-1.05) pu, 



 

24 

 

 

respectively [30]. In addition, ΔVdesired in the process of obtaining PF-based P-V curve is 

chosen to be 0.001 pu.  

Three different probable contingencies are considered as three scenarios. Three LS 

methods are exerted and compared to each other in each of three scenarios. 

Table 2-3 

Control Parameters of DGs [27] 

Parameter Value Parameter Value 

Switching frequency (fs)  

8 kHz 

 

Droop 

mp 10e-5 

 

 

Filter 

Lf 1.35 

mH 

nq 10e-5 

Cf 50 µF  

Voltage 

Controller 

Kpv 0.05 

rf 0.1Ω Kiv 390 

Lc 0.35 

mH 

F 0.75 

rLc 0.01 Ω  

Current 

Controller 

Kpc 10.5 

Grid frequency (f) 50 Hz Kic 16e3 

Power 

controller 

ωc 10π 

rad/s 

Inverter rated power 10 

KVA 

 

• PLN based LS: In the first LS technique, LSA is calculated using the PLN curves 

proposed in [25]. In this method P-V curves are derived by using only active power of the 

loads. It should be noted that by utilizing this LS approach, the reactive power will not be 

considered in the algorithm in Fig. 2-3. In addition, the P-V curve using for LS is obtained 

before  the contingency. 

 

• Simple LS technique: This method is based on the technique proposed in Fig. 2-3. In 

this analysis, PF-based P-V curves are derived considering load active power and PF. In 

this method, PF-based P-V curve is obtained from pre-disturbance condition for each bus 

and Table 2-1 is employed for calculating LSA. 

 

• Complete LS Technique: The complete LS approach considers load power and PF 
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similar to simple LS method. In addition, several PF-based P-V curves with various PFs 

such as ±0.1+PF and ±0.2+PF are derived as well. At the end, both Table 2-1 and Table 

2-2 are used for calculating accurate LSA. 

 

Fig.  2-4.  Test Islanded IBMG for validation of proposed LS method 

 

2.5.1. Scenario 1: Sudden Load Increment 

In this case study, three CILs are increased drastically where CPL and CCL are constant. 

Both DGs are operating in islanded IBMG and equipped with droop control. The test 

islanded IBMG is demonstrated in Fig. 2-4. DG control structure is according to Fig. 2-1 

and control parameter of voltage source inverters of the DGs are shown in Table 2-3. The 

pre-disturbance loading of the system is shown in Table 2-4. As it is demonstrated in Table 

2-4, load increment occurs in such a way that the load PF deviates from its value in pre-

disturbance condition. For instance, PF of load1 which was 0.8 lagging before the 

disturbance, is lagging 0.65 during the disturbance. 

To recover voltage and frequency, three aforementioned LS methods are exerted and 

DG1

DG2

RLine1=0.23 
XLine1=0.1 

Load 1

RLine2=0.35 
XLine2=0.58 RLine3=0.35 

XLine3=0.58 
RLine4=0.35 
XLine4=0.58 

Load 2

Load 3 Load 4 Load 5

Bus 1

Bus 2

Bus 3 Bus 4 Bus 5
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analyzed separately. The value of LSA in each method is shown in scenario 1 of Table 2-

8. It can be seen from Table 2-8 that voltage of buses 4 and 5 are below acceptable range. 

By using PLN method, LS is done considering active power of the loads. Hence, P-V 

curves are not classified according to the loads PF. Comparing the LSAs of Table 2-8 

reveals that LSA obtained from PLN method is higher than the other ones which implies 

that an over LS occurs.  

Simple LS technique considers load PF and derives PF-based P-V curve, according to 

the PF of the loads in the pre-disturbance conditions. As load PF in pre-disturbance is 

different from that of the post disturbance condition, the associated PF-based P-V curves 

are also different. Hence, LSA calculation is not accurate. Finally, by employing complete 

LS method, for each load having PF equal to PFL in pre-disturbance, four PF-based P-V 

curves with ±0.2+PFL and ±0.1+PFL are derived. Then, two PF-based P-V curves which 

have the nearest PF value to the loads PF during disturbance are selected and LSA and 

mode for each are calculated using Table 2-1. Afterwards, Table 2-2 is employed in such 

a way that respective mode for the first selected mode is inserted in the vertical matrix and 

respective mode for the second selected mode is inserted in the horizontal matrix and other 

elements in both matrices are assumed zero. The non-zero value in the square matrix is 

the LSA. As it can be seen from Table 2-8, LSA using the third method is 6.4% lower 

than the PLN-based LS methods. In addition, voltage restoration of buses 5 and 6 are 

achieved better than the previous methods. 

Fig. 2-5 demonstrates the difference between P-V curves obtaining from PLN method 

and the proposed PF-based PV curves. The dashed lines in Fig. 2-5 show PF-based P-V 

curves while the solid lines are P-V curves obtained from the PLN method considering 
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only the load active power. The PF of the curves associated with these PF-based P-V 

curves are 0.7, 0.6, 0.85, 0.7 and 0.8 for buses 1 to 5 respectively which are closest PF-

based P-V curves to loads PF during disturbance. In this scenario, the voltages of buses 4 

and 5 are more susceptible to load increment as illustrated in Fig. 2-5. Fig. 2-5 clearly 

demonstrates the effectiveness of using PF-based P-V curve in respect to PLN method. 

By considering a specific voltage drop at bus 5 for instance, the corresponding power 

change is lower with PF-based P-V curve than that of the non-PF-based P-V curves. This 

fact is illustrated in scenario 1 of Table 2-8 where LSA of PLN based LS method is higher 

than other LS methods. 

In addition, as shown in Fig. 2-5, the weakest bus (lowest stability index) is found at bus 

5. This is expected, since this is the farthest bus from the DGs. In Fig. 2-5, P-V curve of 

bus 5 has the highest slope which explains low voltage regulation of this bus. If, for 

instance, bus 4 becomes heavily loaded due to a specific spatial distribution, this bus may 

become the weakest bus of the system and in this condition the slope of P-V curve of bus 

4 will increase which means this bus will become more vulnerable to disturbances. 

Finally, the optimum LSA will be calculated according to the updated PF-based P-V 

curve to maintain each bus voltage to their lower acceptable limit in order to enhance the 

stability of the system. 

Table 2-4 

Loading of the System in Scenario 1 

 

Condition 

 Load1 

CPL 

Load2 

CIL 

Load3 

CCL 

Load4 

CIL 

Load5 

CIL 

Pre-disturbance P 3.39 kW 2.56 kW 8.1 kW 2.07 kW 3.35 kW 

PF 0.8 0.7 0.85 0.9 0.75 

During disturbance P 3.39 kW 5.12 kW 8.1 kW 4.14 kW 6.7 kW 

PF 0.65 0.61 0.85 0.72 0.78 
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Fig.  2-5.  Comparing PF-based P-V curve and P-V curve using PLN 

 

2.5.2. Scenario 2: DG2 trip 

In this analysis, it is assumed that DG2 in Fig. 2-4 is tripped and loads PFs are changed. 

Loads characteristics before and after the DG trip are shown in Table 2-5. 

Due to DG2 trip, voltages of buses 3, 4 and 5 are not in the desirable range and frequency 

drops to 49.8692 Hz. According to Table 2-8, by utilizing the complete LS technique, not 

only the voltage recovery is carried out effectively, but also LSA is respectively 36.68% 

and 30.2% lower than the first and second LS methods. 

Table 2-5 

Loading of the System in Scenario 2 

 

Condition 

 Load1 

CPL 

Load2 

CIL 

Load3 

CCL 

Load4 

CIL 

Load5 

CIL 

Pre-disturbance P 0.4 kW 1 kW 2.6 kW 1.2 kW 1.5 kW 

PF 0.8 0.7 0.85 0.9 0.75 

During disturbance P 0.4 kW 1 kW 2.6 kW 1.2 kW 1.5 kW 

PF 0.65 0.61 0.85 0.72 0.78 

 

2.5.3. Scenario 3: DG2 trip and loads increase 

In this case study, it has been assumed that both CIL increment and DG2 trip occur 
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simultaneously. Table 2-6 presents the simulated loads active power and PF in pre-

disturbance and during disturbance conditions. The effect of various LS methods on 

voltages and frequency are demonstrated in scenario 3 of Table 2-8. Simultaneous load 

increment and DG trip causes the voltage magnitudes of buses 3, 4, and 5 to decrease 

below 0.95 pu. In this case, PLN based LS method restores voltage of susceptible buses 

more effectively than the other methods. However, higher voltage magnitude in post-

disturbance is due to over LS. On the other hand, simple LS and complete LS methods 

both restore voltage to the acceptable value and the value of LS in these two methods are 

respectively 37.28% and 32.6% lower than the first method. Complete LS technique 

however results in the lowest LSA since it employs the PF-based PV data during the 

disturbance. 

 

Table 2-6 

Loading of the System in Scenario 3 

 

Condition 

 Load1 

CPL 

Load2 

CIL 

Load3 

CCL 

Load4 

CIL 

Load5 

CIL 

Pre-disturbance P 0.8 kW 0.5 kW 2.5 kW 0.5 kW 0.6 kW 

PF 0.8 0.7 0.85 0.9 0.75 

During disturbance P 0.8 kW 1 kW 2.5 kW 1 kW 1.2 kW 

PF 0.65 0.61 0.85 0.72 0.78 

 

 

Table 2-7 

Loading of the System in Scenario 4 

 

Condition 

 Load1 

CPL 

Load2 

CIL 

Load3 

CCL 

Load4 

CIL 

Load5 

CIL 

Pre-disturbance P 0.6 kW 0.5 kW 2.1 kW 0.5 kW 0.6 kW 

PF 0.8 0.7 0.85 0.9 0.75 

During disturbance P 0.6 kW 1 kW 2.1 kW 2 kW 1.5 kW 

PF 0.7 0.61 0.7 0.92 0.78 
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Table 2-8 

Comparison of LSAs obtained from three LS methods in Scenario 1, 2 and 3 – lowest 

bus voltages are shown 

 
 

Scenarios 

Indices During 

disturbance 

Method 1: Pervious LS 

method 

Method 2: Simple LS 

Technique 

Method 3: Complete LS 

Technique 

Post- disturbance Post- disturbance Post- disturbance 

 

Scenario1 

VB4(pu) 0.9074 0.9743 0.9728 0.9757 

VB5(pu) 0.8621 0.9658 0.9655 0.9665 

f (Hz) 49.7268 49.7765 49.8994 49.9155 

LSA(VA) 1.4547e+04 1.3715e+04 1.3615e+04 

 

 

Scenario2 

VB3(pu) 0.9433 0.9638 0.9608 0.9618 

VB4(pu) 0.9251 0.9562 0.9539 0.9524 

VB5(pu) 0.9159 0.9519 0.9500 0.9500 

f(Hz) 49.8692 49.9157 49.9083 49.9072 

LSA(VA) 1.5592e+03 1.4144e+03 987.1745 

 

 

Scenario3 

VB3(pu) 0.9444 0.9735 0.9643 0.9641 

VB4(pu) 0.9265 0.9687 0.9573 0.9569 

VB5(pu) 0.9169 0.9660 0.9534 0.9529 

f(Hz) 49.8711 49.9089    49.9106    49.9105 

LSA(VA) 2.0479e+03 1.3801e+03 1.2843e+03 

 

2.5.4. Scenario 4: Line 4 resistance increase 

In this case study, the effect of line resistance, as a sample of a possible change in the 

topology of the system and representing a distribution feeder is investigated. It has been 

assumed that the demand is increased and DG2 is tripped. To recover voltage and 

frequency of the system, complete LS technique is implemented.  

In the first condition of this scenario, it is assumed that X/R ratio of line 4 is 1.67. In the 

second condition, X/R ratio of line 4 is assumed 0.89. In addition, loads PF are assumed 

to be different from previous scenarios. System loading in this scenario is demonstrated 

in Table 2-7. PF-based P-V curves for both conditions have been obtained according to 

the proposed algorithm in Fig. 2-3 and the curves are shown in Fig. 2-6. Fig. 2-6 shows 

that the slope of PF-based P-V curve related to bus 5 is higher for X/R ratio of 0.89. For 

a specific voltage drop, the higher the slope of P-V curve, the lower amount load shedding 

is needed to maintain the voltage to its acceptable range. Therefore, the amount of load 
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curtailment should be lower for the second condition compared to the first condition due 

to the higher slope to P-V curve in the second condition. 

It should be noted that, since the characteristics of lines 1-3 are similar and loads PF 

during both conditions are unchanged, only PF-based P-V curve of bus 5 is changed and 

other PF-based P-V curves related to buses 1-4 do not have any deviation in the second 

condition compared with the first condition. 

Table 2-9 demonstrates the effect of the feeder resistance resulting in the different X/R 

ratios on the LSA. Table 2-9 shows that the LSA in condition-2 is lower than that of 

condition-1. This is due to the fact that the obtained PF-based P-V curve of bus 5 has 

higher slope and thus, lower load shedding is needed to enhance the voltage magnitude to 

its acceptable value.  

This scenario has been implemented in order to illustrate the applicability of the 

proposed LS technique to various systems with different feeder characteristics. The 

change in line resistance results in the change in PF-based P-V curve of the bus connected 

to the line. Therefore, PF-based P-V curve of prospective line has been updated and the 

LSA is changed accordingly. Any change in the topology of the system also results in the 

updated PF-based P-V curves and LSA will be calculated without dependency to the 

topology of the system.  

Hence, no matter what the topology of the system is, responses of the system can be 

obtained and LSA will be updated. 

 

Table 2-9 

Comparison of LSA of two conditions with different line resistances 

 

 Indices 

 

During disturbance 

Complete load shedding technique 

Condition 1: X/R of line 4=1.67 Condition 2: X/R of line 4=0.98 
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Post- disturbance Post- disturbance 

VB3(pu) 0.9422 0.9745 0.9745 

VB4(pu) 0.9237 0.9738 0.9732 

VB5(pu) 0.9141 0.9734 0.9712 

f (Hz) 49.872 49.9432 49.9410 

LSA (VA) 1.3761e+03 1.1416e+03 

 

 

Fig.  2-6.  Comparing PF-based P-V curves for different X/R ratios of line 4 

 

2.5.5. Stability Analysis during disturbance and after 

load shedding 

As it is mentioned in [26], by using the mentioned linear state-space model as well as 

the time-step simulation, eigenvalues and responses of the system can be obtained at each 

time. In addition, both small-signal stability and large-signal stability analysis is 

applicable [26].  

The eigenvalues of the system in each iteration can be obtained using A(t) in (1). Fig. 2-

7 shows the effective eigenvalues of the system during contingency and after the load 

shedding. Fig. 2-8 illustrates that after the contingency, the bus voltages have been 
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reduced and the system became closer to instability. In Fig. 2-7, effective system 

eigenvalues, 20 iterations after the occurrence of disturbance in scenario 3, are 

demonstrated in blue and effective system eigenvalues after load shedding and in steady-

state are shown in red. The move of the eigenvalues to the left in Fig. 2-7 shows that the 

system stability is enhanced after the load shedding.  

2.5.6. Transient response in pre-disturbance, during 

disturbance and post-disturbance 

As mentioned before, this study is based on the time- domain simulation approach which 

provides transient response of the system before, during and after disturbance. Transient 

responses of the system in scenario 3 while using complete LS calculation are 

demonstrated in Figs. 2-8 to 13. At 0.45 s, DG2 trips and loads 2, 4 and 5 increase. Active 

power demand increment is demonstrated in Fig. 2-12 and reactive power is changed 

according to loads PF. Due to the increase in loads power and the DG2 trip, power of DG1 

increases drastically to meet the demand, as shown in Fig. 2-11. Due to this disturbance, 

frequency is decreased and reaches below acceptable value in less than 20 ms as shown in 

Fig. 2-10. Based on Fig. 2-8, the voltage of buses 3 to 5 are lower than the acceptable 

value.  In order to validate the proposed state-space-based method, scenario 3 has been 

simulated in PSCAD program and the results are shown in Fig. 2-9 which illustrate a close 

agreement with the bus voltages of Fig. 2-8. The PSCAD results are based on the 10 µsec 

time-step, whereas with the time step of 100 µsec (10 times larger), the proposed method 

results are almost identical to those of the PSCAD. Based on several case studies and the 

high-frequency transients which can be observed in IBMG [27], the time-step of 100 µsec 
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can ensure enough accuracy of the proposed simulation in order to have a fast response. 

However, there is a trade-off between time-step size and accuracy of transient response. 

In pre-disturbance condition (before t=0.45 s), various PF-based P-V curves were 

derived for all the system buses. After t=0.45 s, two closest PF-based P-V curves to loads 

PF are selected and according to Table 2-1, two of 9 modes are selected and inserted in 

Table 2-2. Finally, LSA is calculated through one of 81 modes in Table 2-2. LSA is sent 

to relays and LS is accomplished after approximately 70 ms. As a result, the generated 

power of DG1 decreases as demonstrated in Fig. 2-11. Based on Figs. 2-8 and 2-10, the 

bus voltages and system frequency are restored to the desirable levels. Since load 1 is 

constant power load, its active power does not deviate from its value in this scenario (Fig. 

2-12). In addition, as shown in Fig. 2-13, the current of load 3 is not changed during the 

events in this scenario as it is a CCL. 

The main goal of the proposed load shedding method is to find the voltage sensitivity to 

the system loading at each bus according to the loads power factor. This sensitivity has 

been demonstrated by PF-based P-V curves. The sensitivity of bus voltages to the loads 

power can be obtained regardless of the impedances of the loads, location of DGs/loads, 

or size or type of the DGs. Based on the obtained PF-based P-V curves and the frequency 

of the system, load shedding amount can be obtained according to the technique proposed 

in the chapter. The proposed UVFLS method takes into account the system topology and 

it is based on simple mathematical computations such as maximum and minimum 

operators, algebraic operations and rule-based decision makings. 



 

35 

 

 

 

Fig.  2-7. Effective eigenvalues of the system in scenario 3 during the contingency and after the load shedding 

 

Fig.  2-8.  Bus Voltages in pre-disturbance, during disturbance and post-disturbance in scenario 3 – obtained from 

the proposed state-space-based load shedding technique 

 

Fig.  2-9. Validation of bus voltages of Fig. 8 based on PSCAD time-domain simulation 
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Fig.  2-10.  Frequency in pre-disturbance, during disturbance and post-disturbance in scenario 3 

 

 

 

Fig.  2-11.   DGs active and reactive power in pre-disturbance, during disturbance and post-disturbance in scenario 

3 

 

 

Fig.  2-12.  Loads active power in pre-disturbance, during disturbance and post-disturbance in scenario 3 
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Fig.  2-13. Load currents in pre-disturbance, during disturbance and post-disturbance in scenario 3 

 

 Conclusion 

Two LS techniques are developed in this chapter, i) a simplified LS technique and ii) a 

complete LS approach. The simplified LS technique derives PF-based P-V curve 

according to the type, size, and the power factor of the system loads. The obtained PF-

based P-V curve as well as the frequency droop characteristics are used for calculating 

UVA, UFA and OFA and the final LSA is calculated.  The complete LS method is based 

on the sensitivity factors in pre-disturbance conditions to address the dynamic changes of 

the operating conditions subsequent to the disturbance. In this method, several PF-based 

P-V curves are generated and two PF-based P-V curves, i.e., upper and lower PF values, 

closest to the loads are selected and the LSA is calculated. The proposed LS approach is 

validated based on the detailed time-domain simulation in the PSCAD program.  

A comparative analysis in an islanded IBMG based on the time-domain simulation and 

taking into account various load models is carried out to investigate the effectiveness of 

the proposed LS techniques, compared with a previously published method. Three 
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possible disturbances are considered in the study system. The study reveals that the 

proposed complete LS technique results in the lowest LSA and effectively restores both 

voltage and frequency of the islanded IBMG to the desired values. Moreover, the system 

stability during disturbance and after the LS has been investigated which demonstrates the 

effectiveness of UVFLS in enhancing the system stability.  
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    : A DATA-DRIVEN MULTI-

VARIABLE REGRESSION ANALYSIS FOR REAL-

TIME FAULT-INDUCED DELAYED VOLTAGE 

RECOVERY PREDICTION 
 

 Introduction 

3.1.1. Background and Motivation 

 

In the modern power system, the increase in demand and power transfer between utilities 

raise the voltage stability concerns in electric power networks. Noticeable challenges such 

as natural complexity and dynamics of the power system as well as sporadic generation 

of renewable energy sources (RESs), transmission facilities in locations with a high 

concentration of industrial, commercial or residential induction motor loads and the 

environmental and political resistance to install or upgrade transmission lines are 

enforcing the power grid to rely on existing generation and transmission facilities. 

Aforementioned reasons impose power grids to operate closer to the operating limit, 

which ultimately results in voltage instability issues [31]. The ability of a power system 

to maintain acceptable bus voltages in the system under normal operating conditions, and 

after being subjected to a disturbance from a given initial operating state is called voltage 

stability [32]. The loss of load is a possible outcome of voltage instability where the 

reactive power imbalance, which in severe conditions may potentially lead to cascading 

outages. The driving force of voltage instability is generally loads and thus analyzing their 
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effect on power system is of great importance in voltage stability assessments [33]. 

A low voltages associated with system faults in transmission, sub-transmission or 

distribution feeders in a system with high penetration of induction motors may lead to 

significant depressed system voltage level for several seconds which is known as Fault 

Induced Delayed Voltage Recovery (FIDVR) [34]. FIDVR phenomena occurrs and is 

aggravated by the presence of large amounts of single-phase air conditioning (A/C) 

induction motor loads. This type of load plays main role in FIDVR events due to its low 

inertia and hence its predisposition to stall. These motors can stall for nearly all faults 

greater than five cycles as a result of fault voltages less than 60% to 70% nominal value 

[35]. Once a single-phase A/C compressor stalls, it will draw excessive current and reactive 

power from the grid that are in the range of four to six times its nominal steady-state value 

which further aggravating the initial fault voltage depression [34].  

 

Fig.  3-1  A typical FIDVR event waveform 

 

This situation makes it more difficult for the power system and its reactive power 
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resources to recover the voltages to acceptable levels in post-disturbance conditions [36]. 

As a result, the power system voltage remains at a significantly low level for a long time 

[34]. Eventually, the stalled motors will trip by thermal protection with an inverse time-

overcurrent characteristic which can take from 3 to 30 seconds. A typical FIDVR event 

waveform is shown in Fig. 3-1. When FIDVR events affect the bulk power system, the 

situation becomes one of elevated risk, as it can trigger further losses of load and generation 

and even cascaded stalling of induction motors in the same or nearby feeders and 

potentially leading to system voltage collapse [34], [35]. 

 The North American Electric Reliability Corporation (NERC) Transmission Issues 

Subcommittee defines FIDVR as a voltage condition initiated by a fault and characterized 

by stalling of induction motors where initial voltage recovery after the clearing of a fault 

is less than 90% of pre-contingency voltage and slow voltage recovery occur more than 2 

seconds to expected post-contingency steady-state voltage level [34]. 

Tens of FIDVR cases were reported but not documented in available literature. Southern 

California Edison (SCE) experienced a great number of FIDVR cases since 1990. Some 

of the extreme FIDVR events happened due to the hot and humid weather conditions 

(which result in high increase of air-conditioning load) along with a large number of 

system faults [37]. In another case, the fault resulted in a voltage depression over hundreds 

of square miles, including the metro Atlanta, GA, area [38]. The initial fault-induced 

voltage sag was exacerbated by the presence of numerous large industrial and small 

residential induction motor loads. Note that the voltage recovery period was prolonged 

due to the reactive demand increase caused by slow down motor loads in response to a 

reduced supply voltage. Approximately 1900 MW of load was lost as a result of the 
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disturbance [39]. These observations demonstrate the significance of investigating and 

more importantly predicting FIDVR phenomenon. Aforementioned consequences of 

FIDVR could be mitigated if the duration of voltage sag could be predicted in the very 

first cycles after the fault. 

3.1.2. Literature Review 

Literature studying FIDVR can mainly be categorized as: 1) creation of time domain 

simulation models or dynamic stability tools to represent the motor load in a fashion that 

accurately replicates field-observed FIDVR phenomenon; However, the inherent 

uncertainty, complexity, and diversity of power system loads make dynamic load 

modeling very complicated and challenging and the user-defined parameters in the 

aggregate induction motor load model, makes these methods case sensitive [40].  2) 

Proposing a method to prevent, and/or mitigate the impact of induction motor stalling and 

FIDVR.  

To mitigate the impact of FIDVR and prevent cascading failure, NERC Transmission 

Issues Subcommittee [34], proposes two solutions, grid (Planning stage) level and unit 

(End user) level solutions. End user level solutions propose upgraded A/C units with 

equipment control devices to remove induction motor loads from the grid prior to stalling 

caused by under voltage conditions. This method is a long-term solution since A/C 

standards necessary to achieve this will not be enacted overnight. Grid level (Planning 

stage) solutions, on the other hand, can mainly be listed as two methods. One is reinforcing 

the power network with dynamic VAR compensation devices, such as SVC and 

STATCOM [41], [42], [43]. However, such devices remain very expensive, and their wide 

installation is usually limited by the investment budget and substation space. The second 
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solution at the grid-level planning stage is to deploy fast detection of FIDVR and 

emergency control e.g., load shedding (LS) [37], [44], [45] at post-fault control stage.  

Among all aforementioned methods, deploying fast FIDVR detection and implementing 

appropriate LS is more applicable. Some of FIDVR detection methods are investigating 

the FIDVR via off-line time domain simulation, which can be accomplished for a pre-

defined contingency set. These methods are usually computationally demanding and not 

suitable for real-time application; and it can only support event-based emergency control, 

which is less robust and accurate [46].  

Real-time post-fault system characteristics measurement can be achieved by employing 

wide area measurement systems and the consecutive data-driven control methods can be 

implemented using obtained data [47]. The data-driven methods proposed in the literature 

for voltage stability assessment can be grouped into analytical methods and machine 

learning methods. Some of the analytical methods in the literature are a slope-based 

method proposed in [17], [44], and [45] which assessed the recovery time of motor 

rotation speed, voltage instability predictor [37], Lyapunov exponent [48] which these 

methods only work for voltage collapse detection. A fixed post-fault time window has 

been used in [17]-[45] to assess FIDVR. The deficiency of analytical methods is that they 

are  not fast enough for the subsequent LS [46]. On the contrary, in machine learning 

(ML)-based techniques, a fast real-time decision making can be achieved by 

implementing an online machine training using the system database. Less data 

requirement, less computation time, smart decision making and ability to upgrade the 

model based on updated dataset are some noticeable merits of ML-base methods [49] 

compared to analytical methods. ML-based techniques have been utilized for various 
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power system stability challenges by implementing data-driven stability assessment 

methods [50]- [22]. Decision tree [50], ensemble learning [51], fuzzy decision tree [52]-

[53], shapelet classification [54] and imbalanced learning [55] techniques have been used 

in the literature to investigate steady-state voltage stability assessment, real-time rotor-

angle stability assessment and real-time voltage collapse detection, respectively. 

However, very few works focused on ML-based FIDVR assessment methods. Some 

recent works which proposed valuable ML-based FIDVR prediction methods worked on 

linear regression [46], ensemble learning [56] and extreme learning machine [57] 

techniques for predicting FIDVR duration. However, these methods are either not accurate 

enough or too computationally complicated and do not use several features for ML model 

development. 

3.1.3. Contribution of This Chapter 

This chapter at first focuses on investigating FIDVR duration dependency on the system 

characteristic based on a comprehensive sensitivity analysis. The most important features 

are used for ML training in the next step.  A comprehensive data-driven measurement-

based ML-based technique for real-time FIDVR prediction is proposed which employs 

several power system data as an input for online ML design. The proposed method 

guarantees fast and accurate decision making for the consecutive LS methods. The novel 

contribution of the proposed method is summarized as follows:  

1) A comprehensive feature selection to investigate the relation of each power 

system data with FIDVR prediction. 

2) Instead of using complicated method which may reduce the real-time prediction 

speed and increase computational programming, simple regression methods are employed 
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to enhance the processing speed along with several important power system features to 

increase the accuracy of the model. 

3) An online ML training is accomplished to build a model for real-time FIDVR 

assessment. Linear and polynomial regression models are used and compared. 

4) Validation methods have been proposed and used for analysing the proposed 

FIDVR prediction accuracy.  

5) The FIDVR duration is assessed in a continuous manner. The real-time FIDVR 

prediction is executed as a regression method. 

6) Since the model is simple, the real-time FIDVR prediction processing is fast 

enough which provides enough time for subsequent LS. 

 Proposed FIDVR Assessment Features 

Although the characteristics of induction motors are critical for developing an accurate 

A/C load model, detailed power system data provides the tools needed to investigate 

FIDVR event characteristics. In this section, the relation of several power system data 

with FIDVR duration is analyzed. 

 

3.2.1. Feature Analysis for FIDVR Prediction 

 

To investigate the detailed characteristics of FIDVR events in distribution circuits, 

Southern California Edison (SCE) installed 22 power quality recording devices (PQubes) 

on 17 of its Valley Substation’s 24 sub-transmission circuits that serve the utility’s 
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residential and commercial customers [58][59][38]. By recording these data, lots of 

information can be obtained such as the understanding of how FIDVR events evolve and 

impact local residential and commercial customers. The data saves by PQubes can be used 

for building, validating and tuning ML models for FIDVR studies.  

According to the recorded data, the majority of FIDVR events occurred during the 

summer seasons in hot climate areas when the weather temperature is high and also there 

is high penetration of operating residential A/C units. In this condition, a fault in the 

distribution network can decay the system voltage below the acceptable threshold and as 

a result of the voltage sag, A/C motors may stall. Hence, the weather condition could be 

considered as a possible feature which can be recorded and employed for FIDVR 

prediction.  

The heat accumulation in the machine is the main reason for the operation of A/C unit’s 

thermal protections and the heat mainly comes from several factors such as the stalling 

currents of stalled A/C units, the weather condition, duration of A/C units use prior to the 

contingency, the settings of A/C manufacturers, etc. This is impossible to use element-

based approach to calculate FIDVR duration, since there are lots of uncertainties such as 

the number of A/C units, the manufacturing models of the machines, the settings of A/C 

units, initial conditions when stalling, accessibility of A/C units for doing the analysis, etc. 

Therefore, a power system data-driven based method should be used for FIDVR 

assessment. By analyzing the recorded FIDVR events occurred in the SCE system, 

following important observations are achieved [58][59][38]: 

✓ The deeper the initial voltage sag, the greater the increase in the motor load 

reactive power demand. 
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✓ Voltage recovery is affected by the ability of the system to supply reactive 

power to the area of depressed voltage. 

The first point clearly suggests that the degree to which voltage deviates from normal 

must be considered as a factor in FIDVR analysis method developed. The second point 

indicates that the reactive power deviations of the system in the area of depressed voltage 

must also be considered in any model development [42]. 

As a result of the SCE observations and deficiency of element-based methods, a ML-

based power system data-driven decision-making process is presented in this chapter to 

predict FIDVR duration. To do so, several system characteristics have been selected to 

analyze their impact on FIDVR phenomenon duration. The selected features are voltage 

magnitude at the fault, post-fault voltage magnitude, active power and reactive power 

values injected to the loads before the fault. Active power value is added to the features 

to analyze its relationship with FIDVR and compare it to reactive power value. The 

aforementioned features can be obtained in real-time from the system measurements 

installed in the distribution network. In addition to these power system data, local weather 

temperature has been added as a potential feature which affects FIDVR. Note that post-

fault voltage magnitude refers to the voltage when the system goes to quasi-static state 

after the fault is cleared. This feature selection is consistent with the test results in  [60]. 

Post-fault voltage and fault voltage indices can be calculated as follows: 
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Where V fPost−
 is post-fault voltage, V f

 is fault voltage and V 0
is pre-fault steady-state 

voltage magnitude. 

3.2.2. Feature Sensitivity Analysis  

To have an accurate prediction, analyzing the correlation between the selected features 

and FIDVR duration is necessary.  A straightforward data visualization can highly help in 

having valuable data analysis. Thus, the following data visualization methods are used in 

this study to demonstrate data correlations.  

3.2.2.1. Heatmap 

Heatmap plots are used to show the data dependency on two or more variables as a color 

coded image plot. Heat maps can be obtained by using multivariate functional outlier 

detection based on halfspace depth. The halfspace depth method is used to measure the 

centrality of a point relative to a multivariate sample. The halfspace depth of any point x 

∈ Rp relative to PY is defined as the minimal probability mass contained in a closed 

halfspace with boundary through x [61]: 
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(3-3) 

Where Y is a random variable on Rp with distribution PY. Halfspace depth satisfies the 

requirements of a statistical depth function. For any statistical depth function D and for 

any α   [0, 1], the α-depth region contains the points whose depth is at least α:  
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Where the α-depth contour is the boundary of Dα. The halfspace depth regions are 

closed, convex and nested for increasing α [61]. To construct a heatmap, the cross-

sectional depth values should be obtained. Each cell of this map is colored according to 

HD values with the biggest positive value shown as white and the highest negative depth 

value colored dark in Fig. 3-2. Fig. 3-2 is the heatmap of the SCE FIDVR data 

[58][59][38]. Fig. 3-2 is a two-dimensional graphical representation which demonstrates 

the dependency of the data to the selected variables. As mentioned in previous section and 

shown in Fig.3- 2, the variables of features are weather temperature, fault voltage, post-

fault voltage, pre-fault active power and pre-fault reactive power. These variables are the 

inputs of ML method and are shown in the first five columns and rows of the heatmap 

matrix. The last column and row is the FIDVR duration which is the output of the ML 

technique. The individual values that are contained in the matrix are the correlation values 

which are represented as color coded image. As shown in Fig 3-2, the heatmap is a 

symmetric matrix. Features relation with FIDVR duration can be seen by analyzing the 

last column. In terms of feature importance, post-fault voltage (-0.92), weather 

temperature (0.72), pre-fault reactive power (0.64), fault voltage (-0.43) and pre-fault 

active power (0.35) were sorted from highest to lowest correlation number as shown in 

Fig. 3-2. Note that the seaborn package has been used in this study to create the annotated 

heatmap. 
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Fig.  3-2. Heat Map of the dataset 

 

3.2.2.2. PairGrids 

Pair grids are powerful tools to quickly explore distributions and relationships in a 

dataset. These plots use different pair of variables for each subplot and forms a matrix of 

sub-plots. Pair grid is used to understand the best set of features to explain a relationship 

between more than three variables in the dataset. In this study, five features are considered 

for FIDVR analysis and pair grid plots have been used to illustrate the relation between 

these features and FIDVR duration.  



 

51 

 

 

The pair grid shown in Fig. 3-3 maps each variable of the dataset onto a column and row 

in a grid of multiple axes. Each one of axes-level plotting functions are being used to draw 

bivariate (scatter) plots in the upper and lower triangles which provide the relationship 

between every two features of the dataset. These upper and lower triangles are the mirror 

image of each other. The diagonal plot showcases the histogram which demonstrates the 

distribution of a single variable.  

 

Fig.  3-3. Pair Grid plot of the features 
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Fig.  3-4. Pair Grid plot of the features categorized according to the FIDVR duration. 

The higher triangle shows the bivariate kernel density estimation 

 

In Fig. 3-4, a more detailed level of conditionalization has been demonstrated to 

differentiate various subsets of data in different colors. The hue parameter has been used 

for this purpose. By implementing this method, colors are being used to resolve elements 

on higher dimensions, but only draws subsets on top of each other. Valuable information 

is provided by coloring the data based on FIDVR duration margin as a categorical 

variable. The FIDVR cases which their duration are lower than 10 s, between 10 and 20 s 

and more than 20 s are colored red, green and blue respectively. Suppose pair grid matrix 

is called PG. As it can be seen from element PG61, FIDVR cases with lower duration occur 

in lower weather temperatures. Element PG62 and PG63 show that lower voltage magnitude 

results in higher FIDVR duration. According to PG64, the pre-fault active power index is 

not an appropriate feature for FIDVR duration analysis since the relation of FIDVR 
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duration margins and the values of the feature are indistinctable. Element PG65 shows that 

higher pre-fault reactive power result in higher FIDVR duration. On the top triangle, 

bivariate kernel density estimation of each two feature of the dataset has been 

demonstrated to visualize the distribution of the dataset. Elements of the 6th column of PG 

demonstrate the kernel density estimation of each of the features and the FIDVR duration. 

By looking at this column, it can be seen that the fault-voltage and post-fault voltage have 

inverse relation with the FIDVR duration, while weather condition and pre-fault reactive 

power have direct relation. Pre-fault active power also has a slightly direct relation with 

the FIDVR duration. 

After analyzing the features, it can be concluded that weather temperature, fault-voltage, 

post-fault voltage and pre-fault relative power could be selected as important features for 

assessment of FIDVR duration which can possibly enhance the prediction accuracy. More 

analysis will be accomplished in the following sections.  

3.2.2.3. Feature Scaling 

By analyzing the dataset, one can notice that the data consists of features highly varying 

in units, ranges and magnitudes, i.e. voltage magnitude in p.u., reactive power in kVAR 

and weather temperature in oF. ML algorithms use Euclidean distance method for training 

the data [62]. The measured length of the segment connecting two points in the space is 

the Euclidean distance. If only magnitude of features take into account (units neglected), 

the result will differ between various units and as a result, the weight of features with high 

magnitude will be more than low magnitude features in the distance calculations. To 

mitigate this issue, Min Max Scaler has been used in this study to bring the features to the 
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same magnitude level [63]. This method shrinks the range of data between -1 and 1. The 

data has been normalized according to the following equation: 
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(3-5) 

where xi is the for the i-th case of the dependent variable X. 

3.2.3. Partitioning data 

An issue when fitting a ML model is its performance behavior while applying it to a 

new data. To address this issue, the data set is split to three partitions as shown in Fig. 3-

5: a training partition which is used to train the model, a validation partition which is 

considered to test the performance of the model and test partition which is used for 

analyzing the efficiency of the model. Partitioning in this study is performed randomly to 

protect against a biased partition. 

 

Fig.  3-5. Splitting the data for training, validation and testing 

 

Training Validation Testing

Total number of observations
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3.2.3.1. Training Set 

The Training Set is used to build the ML model. The training set contains known outputs 

and the model learns on this data in order to be generalized to other data later on. In this 

chapter, the training set is used to fit the regression model and compute the regression 

coefficients. After fitting the model on the Training Set, the next step would be testing the 

performance of the model on the Validation Set.  

3.2.3.2. Validation Set 

The validation set is a new set of data which is used for validating the performance of 

the model, once a model is built using the training set. The validation set is a part of 

training data which are not used for model fitting. If the accuracy of the model computed 

using the training set, the result would be a highly optimistic estimate of model accuracy. 

It is due to the fact that the model is specifically suited to the training data and the fitting 

process is set based on the training data to guarantee that the accuracy of the model for 

training set is high enough. To overcome this issue, a part of original data is set aside as 

validation set and is not included in training process in order to obtain more realistic 

estimation of the model performance with unseen data. The discrepancy between the 

actual observed values and the predicted value of the observation are measured to validate 

the performance of the model. The discrepancy is known as the error in prediction and is 

used to measure the overall accuracy of the model. 

Holding back a validation dataset is a valuable method in machine learning for 

estimating model accuracy on unseen data before implementing the model on test dataset. 
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3.2.3.3. Test Set 

As mentioned above, the validation set is often used to fine-tune models. The test set is 

another portion of the data which is used to estimate the realistic performance of the model 

on completely unseen data. In other words, test set is used in order to evaluate model’s 

prediction. 

There are two approaches to partitioning: user-defined partitioning and random 

partitioning which is used for data splitting in this study.  

3.2.3.4. Random Partitioning 

In simple random sampling, every observation in the main data set has equal probability 

of being selected for the partition data set. If P% is set for train set, the P% of total 

observations are randomly selected for training set which means each observation has P% 

chance of being selected as training set. The same random selection is considered for 

Validation and Test sets.   

 Supervised Regression Algorithms 

3.3.1. Linear Regression Algorithm 

Regression analysis consists of identifying the relationship between a dependent 

variable and one or more independent variables. To implement the model, the relationship 

between input and output will be hypothesized, and the parameter values which are used 

to develop an estimated regression equation will be calculated. As discussed in the 

previous section, model validation is an important step in the modelling process which 



 

57 

 

 

helps in assessing the reliability of models before they can be used in decision making. 

Finally, various tests are employed to determine if the model is satisfactory.  

 

3.3.2. Multiple Linear Regression Algorithm 

 

Multiple linear regression method consists of more than one independent variables. The 

basic multiple regression model of a dependent variable Y on a set of k independent 

variables (xk) can be expressed as [64]: 
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Hence: 

niforexxy iikkii
,,2,1

110
 =++++=   (3-7) 

 

where yi is the i-th case of the dependent variable Y , xij is the value of the j-th 

independent variable (Xj) for the i-th case of the dependent variable, β0 is the Y-intercept 

of the regression surface, each βj is the slope of the regression surface with respect to 

variable Xj and finally ei is the random error component for the i-th case. In basic equations 

(1) we have n observations and k predictors (n> k+1). For each observation the errors (ei) 

is distributed with mean zero and standard deviation σ (ei~N(0,σ2)) and is independent of 

the error terms associated with all other observations. The errors are uncorrelated with 

each other. The error is independent of other errors. 
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The variables (xj) are fixed quantities which means the only randomness in Y comes 

from the error term. However in the context of correlation analysis, input variables are 

considered to be random variables. In any case, xj are independent of the error term.  In 

matrix notation, we can rewrite (1) as [64]: 
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(3-9) 

Where Y is the target vector and e is the error vector which is a column vector of length 

n, β is the vector of parameters which is a column vector of length k+1. Matrix X is the 

input matrix which is n by k+1 matrix. The first column of X has all elements equal to 1 

and the rest of the columns are filled by the observed values of X1, X2, etc. to do prediction, 

β and e should be calculated. 
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3.3.3. Polynomial Regression Model  

Polynomial regression is a special case of   multiple regression in which dependent 

variables are regressed on powers of the independent variables. A polynomial regression 

model can be expressed as [64]: 
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where k is the degree of the polynomial. Effectively, this is the same as having a multiple 

model with Xk=Xk etc. 

 

3.3.4. Accuracy Evaluation Indices 

Least squares method is utilized to estimate the regression parameters. It measures the 

total deviation of the response values from the fit to the response values. The sum of the 

squared error or residuals sum of squares can be measured by: 
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where yi are observed values and y^
i  are the fitted values of the dependent variable Y for 

the i-th case. 

The mean squared error (MSE) is an unbiased estimator of the variance (σ2) of the 

random error term and is defined as follows: 



 

60 

 

 

)1(

)(

)1(

1

2ˆ
+−

−
=

+−
=

 =

knkn

SSE
MSE

n

i ii
yy

 

 

(3-12) 

  MSE is a measure of how well the regression fits the data.  

By obtaining the square root of MSE, the standard deviation (σ) of the random error 

term can be estimated.  

Root mean squared error ( MSERMSE = ) or also called the standard error of the 

regression is an estimate of the standard deviation of the random component in the data. 

The RMSE and MSE are in the range of the size of the regression errors and do not provide 

an indication about the explained component of the regression fit [65]. 

Mean absolute percentage error (MAPE) is a measure to compare the accuracy of 

predictions since it measures relative performance [66], [67]. MAPE can be measured as 

follows: 
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The smaller the MAPE, the better the prediction [66].  

The R-squared coefficient of determination (R2) is defined as: 
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where y  is the arithmetic mean of the Y variable which is used for calculating the total 

sum of squares (SST). R2 is an important measure of how well the regression model fits 

the data since it measures the percentage of variation in the response variable Y explained 
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by the explanatory variable X. In other words, it is the square of the correlation between 

the response values and the predicted response values. Note that the value of R2 is between 

zero and one (0≤ R2≤1). The closer it is to 1, the better the prediction [65], [66], [67].  

The advantage of R2 over MSE and RMSE is that it is scale-free. However, R2 has some 

problems that Adjusted R-squared is designed to overcome these issues. The first issue is 

that by adding predictor to a model, the R2 increases. Consequently, a complex model may 

fallaciously appear to have a better result only by analyzing the R2 value. The other issue 

is that an over fitted model may produce misleadingly high R2 value which result in 

inaccurate predictions. Overfitting may occur by increasing model predictors (i.e. higher 

order polynomials), which result in modeling the random noise in the data. Adjusted R-

squared is computed by: 
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Adjusted R-squared (R*2) is always smaller than R2. R*2 is adjusted for the number of 

variables included in the regression equation. If the value of R*2 is much lower than R2 

value, it is an indication that the regression method may be over-fitted [65], [66]. R*2 is a 

great measure to compare models with different numbers of predictors. By adding useless 

(useful) variable which has low correlation with output to the model, R*2 will be decreased 

(increased).  
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 Study System  

This chapter studies the SCE Valley system which appears to be a susceptible network 

to FIDVR events. 

The valley network consists of a transmission system which contains of two 115 kV 

busses (section A&B and section C&D) as shown in Fig. 3-6. Each of the 115 kV 

substation busses feeds a meshed sub-transmission system.  

 

Fig.  3-6. Valley distribution system and PQubes Locations Diagram [38] 

 

There are 24 meshed sub-transmission 115 kV substations in the network. Sub-

transmission 115 kV substations contain two types of distribution circuits 33 kV and 12 

kV, most of which are 12 kV. 12 kV distribution circuits used for both commercial and 

residential circuits with pad-mount and pole-mount transformers to serve customers. 

Longer distribution circuits are mainly rural which use 33 kV circuits instead of the 12 kV 
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distribution circuits. The PQube devices were installed in the pad-mount transformer's 

secondary (240 V) side that fed to customers.  For each distribution circuit, the device 

installations were located either at the middle or the end of the line. These data recording 

devices were also placed on different phases of the circuits to acquire a diverse collection 

of event data.  

 

3.4.1. Power Quality Recording Device specifications 

The power quality recording devices (PQubes) installed in valley’s network can record 

up to five voltages and five currents during steady-state conditions as well as during 

system events. These devices were programmed to record both root mean square (RMS) 

and sinusoidal waveforms when an event is triggered. RMS event data captured at 1 

sample/cycle and sinusoidal waveform event data captured at 32 samples/cycle. Every 

device was equipped with an uninterruptible power supply (UPS) for up to nine minutes 

so that will record during events of low voltage without compromising the data. Each SCE 

PQube contains components such as PQube module, current module, power supply, 

circuit breaker, current transformers, din rail and enclosure. 

 Numerical Results 

3.5.1. A. Database  

Based on a comprehensive literature review, several single-variable regression and 

Multi-linear regression and polynomial regression models built using real FIDVR data 
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collected from SCE valley network [58]-[59]-[38]. The mentioned features in section III 

have been used for training the ML algorithms. Linear regression and polynomial 

regression techniques are robust and easy to implement ML models which can guarantee 

fast prediction of FIDVR events. However, these models may not have acceptable result 

based on single feature training. By using multiple features proposed in this study, the 

method accuracy can be improved, while the model simplicity can assure the fast 

prediction.  

The goal is to train linear regression and polynomial regression on four features selected 

in section III. The features are weather temperature, fault voltage, post-fault voltage and 

pre-fault reactive power. The relation of these four features with FIDVR duration is a 5-

dimension problem which cannot be shown in a 2-D plane.  

3.5.2. Single Variable Regression  

To demonstrate the behavior of each feature on FIDVR duration, four single-variable 

linear regression, polynomial with order of 2 and polynomial with order of 3 are analyzed 

respectively.  

Fig. 3-7 demonstrates the mentioned regression methods when the input is historical 

weather temperature. As it can be seen, weather temperature has direct relation with the 

FIDVR duration. This result is similar to the one obtained by heatmap in Fig. 3-2 where 

the weather temperature and FIDVR duration correlation is +0.72. This relation is due to 

the fact that when weather temperature increases, more A/C motor loads are connected to 

the grid. The more the number of constant torque induction motors, the higher the risk of 

delayed voltage recovery. Hence, FIDVR duration increases by increase of induction 

loads. According to Fig. 3-7, polynomial regression with order of two and three has a 
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better fit to the data compared to linear regression. Since order two and three are 

approximately similar in fitting the data, it is better to use order two to reduce the model 

complexity. 

Dependency of FIDVR duration on fault voltage is shown in Fig. 3-8. As it can be seen, 

lower fault voltage results in higher FIDVR duration. This result is confirming the 

correlation value (-0.43) obtained from heatmap on Fig. 3-2. The effect of this feature can 

be explained by the fact that low fault resistance results in high fault current which lead 

to voltage drop. The lower the voltage drop, the higher the possibility of stalling a greater 

number of induction motors. The higher the number of motors stall, the more time is 

needed to recover the dropped voltage. According to Fig. 3-8, second order and third order 

polynomial regression result in quite similar data fitting while the third order is more 

complex.  

 

Fig.  3-7. The relation of the FIDVR duration and local weather 
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Fig.  3-8. The relation of the FIDVR duration and voltage magnitude at fault 

 

 

 

Fig. 3-9 demonstrates the post-fault voltage magnitude’s impact on FIDVR duration. As 

mentioned before, post-fault voltage magnitude refers to the voltage when the system goes 

to quasi-static state after the fault is cleared. Based on the fitted curves in Fig. 3-9, linear 

regression and second and third orders of polynomial regression have similar behavior. It 

can be seen that the slope of the curves fitting the post-fault voltage are higher than other 

features which means that the post-fault voltage has a better fit to the data compared to 

other features; meaning that it has stronger relation with the output which verifies the 

previous conclusion in the heatmap on Fig. 3-2 (correlation= -0.92). The reason why post-

fault voltage has higher impact on FIDVR duration compared to fault voltage can be 

explained by the fact that the fault voltage is a transient value which may change when 
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the fault is cleared. However, post-fault is a slow varying quantity. In addition, it can be 

seen that the effect of post-fault voltage on the voltage delay duration is higher than 

weather temperature. This can be explained by the fact that the internal heat generated by 

stalling current is more crucial than external temperature.  

Fig. 3-10 shows the pre-fault active power relationship with FIDVR duration. As it can 

be seen it has direct relation with the output. However, the fitting curve slopes are not high 

which demonstrates its low correlation with the duration. This is also shown in the 

heatmap on Fig. 3-2 where the pre-fault active power correlation with FIDVR duration is 

0.35 which is the lowest correlation among the features. 

The relation of pre-fault reactive power with FIDVR duration is plotted in Fig. 3-11. 

The data fitting using this feature has best performance after post-fault voltage and 

weather temperature. The correlation factor for this feature is 0.64 as shown in Fig. 3-2. 

The slope of the curves, fitting the pre-fault reactive power data, are higher than those of 

pre-fault active power data.  This, shows the importance of pre-fault reactive power data 

in FIDVR analysis.  
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Fig.  3-9. The relation of the FIDVR duration and post-fault voltage magnitude 

 

Fig.  3-10. The relation of the FIDVR duration and pre-fault active power magnitude 
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Fig.  3-11. The relation of the FIDVR duration and pre-fault reactive power magnitude 

 

The pre-fault active power is eliminated as the features in multi-variable regression 

analysis due to its high variance and its low correlation with FIDVR duration. In addition, 

this feature is dependent on pre-fault reactive power, while the selected features for ML 

training should be independent.  

Figs. 3-7 - 3-11 show the regression analysis verifying the correlation values shown in 

the heatmap in Fig. 3-2. Table 3-1 shows all conditions of single-variable linear, second 

order, third order and forth order polynomial regressions. F1-F5 features are weather 

temperature, fault voltage, post-fault voltage, pre-fault active power and pre-fault reactive 

power magnitudes, respectively. As shown, linear regression (LR) has only one 

coefficient, while second, third and fourth order polynomial has 2, 3 and 4 coefficient or 

parameters. It can be seen that the best model is the fourth order polynomial regression 

which uses post-fault voltage magnitude as the feature. MSE, RMSE and MAPE in this 
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case are 13.65, 3.6949 and 27.2079 respectively which are the lowest values and R2 and 

R*2 are the highest values (0.873, 0.795) compared to other cases. Note that closer R2 value 

to 1 indicated that a greater proportion of variance is accounted for by the model. R2 equal 

to 0.837 means that the fit introduces 83.7% of the total variation in the data. 

Table 3-1 

SINGLE-VARIABLE REGRESSION MODELS VALIDATION 

 
Feature ML 

Model 

Intercept Coefficients MSE RMSE MAPE R2 R*2 

 

 

F1 

LR 13.0716 7.429 52.33448 7.2342 113.76 0.513 0.215 

Poly=2 10.174 9.838, 2.897 35.109 5.925 78.473 0.673 0.474 

Poly=3 10.0 9.309, 3.25, 

0.22 

34.9568 5.912 74.526 0.6749 0.476 

Poly=4 8.6647 17.3595, 7.418, 

-4.5108, -1.806 

27.782 5.2708 68.5024 0.7416 0.5837 

 

 

F2 

LR 13.07166 -4.41705 88.0185 9.38182 113.3746 0.18144 -0.318 

Poly=2 10.53871 -4.9089, 

2.5329 

79.194 8.899 97.5764 0.2635 -

0.1865 

Poly=3 10.4779 -6.8105, 2.439, 

0.7956 

78.045 8.8343 92.7 0.274 -0.169 

Poly=4 10.8889 -7.0353, 1.245,  

0.87619, 0.318 

77.8267 8.8219 92.0285 0.2762 -0.166 

 

 

 

F3 

LR 13.07 -9.574 15.8638 3.9829 33.696 0.852 0.762 

Poly=2 11.784 -8.953, 1.287 14.6026 3.82 27.2719 0.864 0.78 

Poly=3 11.633 -9.895, 1.716, 

0.576 

14.449 3.8012 

 

28.631 0.865 0.783 

Poly=4 10.75 -8.295, 5.075, -

1.067, -1.64 

13.65 3.6949 27.2079 0.873 0.795 

 

 

 

F4 

LR 13.071 3.596 94.5955 9.726 121.568 0.1202 -

0.4173 

Poly=2 13.201 3.6175, -

0.12997 

94.57467 9.72495 121.5749 0.12 -0.417 

Poly=3 13.253 2.7239, -0.247 

0.4035 

94.3235 9.712 121.3176 0.1228 -

0.4132 

Poly=4 11.73 2.189, 3.981, 

0.819, -1.226 

91.71336 9.5767 123.519 0.147 -0.374 

 

 

 

F5 

LR 13.071 6.6215 63.684 7.98024 99.5429 0.4077 0.0458 

Poly=2 12.8515 6.4717, 0.22 63.555 7.9721 99.0865 0.4089 0.0477 

Poly=3 12.0716 8.4218, 1.46, -

0.6767 

61.9498 7.8708 94.9849 0.4238 0.0718 

Poly=4 12.001 8.0843, 1.775, 

-0.4515, -0.096 

61.916 7.8686 95.042 0.424 0.072 
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Table 3-1 also shows that R2 values of regression methods on F2 and F4 increases by 

model complexity. However, the R*2 values are negative. The negative R*2 may appear 

when SSE approaches to the SST. This condition occurs when the explanation towards 

response is very low or negligible. Hence, negative R*2 is the result of insignificance 

explanatory variables. R*2 value can be improved by increasing the variables or sample 

size or eliminating correlated independent variables. According to Table 3-1, except some 

mentioned conditions, by model complexity, MSE, RMSE and MAPE of all conditions 

decreased while R2 and R*2 of all conditions increased. This means that with higher model 

complexity; the model fits the data better. On the other hand, the processing time increases 

with model complexity. 

In the next section, the result of these single-variable regression methods will be 

compared to multi-variable methods. 

3.5.3. Multi-variable Regression  

In the previous section, five single variable regression methods have been used in order 

to demonstrate the effect of each feature on FIDVR duration. To enhance the prediction 

accuracy, features F1, F2, F3 and F5 are used for multi-variable ML algorithm training 

and the feature F4 is eliminated.  

Table 3-2 demonstrates the value of validation indices for multi-variable linear 

regression, second order and third order polynomial using the four mentioned features as 

input data. MSE and RMSE of all multi-variable ML approaches are lower than single-

variable regressions. In addition, R2 and R*2 values are improved compare to Table 3-1. 

However, the increase of R2 is not a reliable measure for comparing the results, since R2 

would not decrease when more variables are added to the model. Therefore, R*2 should be 
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used as a measure.  Note that both R² and the R*2 provide the number of data points fall 

within the regression equation. However, R² assumes that every single variable presents 

the variation in the dependent variable. R*², on the other hand, provides the percentage of 

variation explained by only the independent variables that actually affect the dependent 

variable. In the process of comparing regression models that use the same dependent 

variable and the same estimation period, the RMSE decreases as adjusted R-squared 

increases. Hence, the model with the highest R2 will have the lowest RMSE, and R2 can 

be used as a measure. However, when comparing regression models in which the 

dependent variables are not the same, or different sets of observations are used, R2 is not 

a reliable guide to model quality. As shown in Table 3-2, both R2 and R*2 have higher 

values compared to Table 3-1. R*2 of second order polynomial regression shows that 95% 

of variation explained by the important selected features which is an acceptable value for 

FIDVR prediction. The results of third order polynomial regression demonstrates 

overfitting of this model since R2 and R*2 are equal to 1 and MSE, RMSE and MAPE are 

approximately zero. This result is too accurate and shows that the model is fit too precise 

for dataset but may lose credibility for a new dataset. 

Figs. 3-12, 3-13 and 3-14 show the prediction vs the real test output value using multi-

variable linear regression, second order polynomial and third order polynomial regression, 

respectively. Note that by using four features, the total number of parameters for linear 

regression, second order polynomial and third order polynomial are 5, 9 and 13, 

respectively. X-axis is the real FIDVR duration and Y-axis is the predicted duration. The 

closer the points to the diagonal line, the more accurate the prediction is. It can be seen 
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from Fig. 3-12 that the prediction error using second order polynomial regression is lower 

than linear regression. 

 

Table 3-2 

MULTI-VARIABLE REGRESSION MODELS VALIDATION 

 
 

 

Validation 

 

Line

ar 

Regres

sion 

Polynomial Regression 

Polyn

omial 

degree=

2 

 

Polyno

mial 

degree=3 

 

MSE 13.0

65369 

1.925

118 

3.0715

7e-21 

RMSE 3.61

4605 

1.387

486 

5.5421

7e-11 

MAPE 35.6

0462 

15.46

2729 

6.5084

9e-10 

R Squared 0.87

8494 

0.952

096 

1 

Adjusted-R 

Squared 

0.80

4240 

0.941

155 

1 

 

Fig.  3-12. Real value (Real FIDVR duration) vs predicted value (predicted FIDVR 

duration) using linear regression 
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Fig.  3-13. Real value (Real FIDVR duration) vs predicted value (predicted FIDVR 

duration) using polynomial regression with degree of 2 

Fig. 3-14 shows that the prediction is too accurate which is overfitting modeling error. 

When a function is too closely fit to the set of data points, overfitting occurs. The reason 

of overfitting is that the model becomes too complex to explain idiosyncrasies in the data. 

The measured data always has some degree of random error or noise within it which is 

ineluctable. Thus, attempting to design a model which conform too closely to the 

measured data can reduce the prediction power and infect the model with errors. Over 

time, when more data is added to the data set, model error on training data decreases and 

so does the error in the test data. If the model trains too much, the model error on train 

data still decreases while the model error on test dataset increases at one point. The reason 

behind continuous decrease in train data error is that the model in overfitting and learning 

irrelevant details and noise. The error of the test data set, on the other hand, rises due to 

the fact that the model loses the ability to generalize. The most appropriate model is when 
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the model error for both train and test datasets are in acceptable range. In this case, the 

second order polynomial model has good performance in predicting unseen test datasets. 

According to Table 3-2, the performance of second order polynomial regression on both 

training and test sets are acceptable, while the accuracy of linear regression is lower than 

the second order polynomial model and the third order polynomial model is overfit. This 

means that the model is trained only on the training data too much in such a way that will 

have noticeable error on new dataset. 

 

 

Fig.  3-14. Real value (Real FIDVR duration) vs predicted value (predicted FIDVR 

duration) using polynomial regression with degree of 3 

 

The main purpose of FIDVR prediction is to employ appropriate LS approach to 

enhance the system voltage stability. Hence the prediction speed plays an important role 

in having proper voltage recovery. Late FIDVR duration prediction results in late LS 
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action which in severe cases may increase the risk of voltage collapse. The tests are 

performed on a computer Core i5 with 2.6 GHz CPU and 4 GB RAM. The process of ML 

training For second order polynomial regression, the average online training time of four 

probabilistic features is 2.1 s, while the average testing time is only 6.29 ms. Note that 

although real-time testing time is more important than the online training time, in case of 

multiple FIDVR events happening in a few minutes, it is important to have a fast online 

training in order to update the dataset based on the new data. According to a FIDVR event 

reported by [38], on July 29, 2014  a FIDVR event happens at 15:15:11 PDT and after 16 

seconds another fault result in the next FIDVR. Another FIDVR event on August 12, 2012 

at 15:51 PDT was observed and recorded by the PMU and after 8 minutes (15:59 PDT) 

another event was recorded. These data can be used for developing a more robust ML 

model and can be used for following real-time FIDVR prediction, if the training process 

becomes fast enough. To compare the method testing speed note that the FIDVR 

assessment time in the literature [46], [17], [44], [45] are 0.14, 1.5 s, 0.35 s, and 0.5 s, 

respectively. Although more complicated ML methods can be used for enhancing the 

FIDVR prediction accuracy, the simplicity and fast processing of polynomial and linear 

regression approaches can be beneficial in the view of online training and testing time. In 

addition, the accuracy of the model can be increased by adding more features to the model.  

 Fig. 3-15 shows the relation of FIDVR duration and fault voltage and post-fault 

voltage indices in a 3D demonstration. As it can be seen, the FIDVR duration increases 

by decrease of selected features. Fig. 3-16 shows the relation of FIDVR duration and 

weather temperature and pre-fault reactive power indices in a 3D demonstration. As it can 

be seen, the FIDVR duration increases by the increase of selected features. 
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Fig.  3-15. 3D demonstration of the real value vs predicted value using multi-variable 

second order polynomial regression  

 

Fig.  3-16. 3D demonstration of the real value vs predicted value using multi-variable 

second order polynomial regression 
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 Conclusion 

This chapter proposed a data-driven multi-variable machine learning-based Decision-

making model for prediction of FIDVR duration. Relation of several power system data 

with FIDVR duration has been investigated. Selected features have been utilized for 

online machine learning model development. The stored data of power quality recording 

devices (PQubes) are used for online machine learning model developing. Several simple 

regression models such as single-variable and multi-variable regression models i.e. linear 

regression and polynomial regression models have been developed and compared. The 

real-time PQubes data can be used for rapid real-time prediction of the FIDVR duration 

following a system disturbance. By using the developed model, FIDVR duration can be 

obtained using real-time data without using complicated load modeling. Simple regression 

models result in simple programming and fast prediction and on the other hand, using 

multiple features for model development enhance the model accuracy. As a result, the 

FIDVR prediction can be accomplished very fast, yet with acceptable accuracy. 
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  : CLASSIFICATION AND 

REGRESSION DECISION-MAKING FOR REAL-

TIME FAULT-INDUCED DELAYED VOLTAGE 

RECOVERY ASSESSMENT BASED ON A 

PROBABILISTIC TIME-SERIES DATA-DRIVEN 

MULTI-VARIABLE APPROACH 
 

 Introduction 

As it has been explained in section 3.1.1 and 3.1.2, FIDVR events occur frequently since 

the density of induction motors is increasing with continuing market penetration of low-

inertia air conditioning (A/C) loads which are not equipped with compressor under voltage 

protection. A comprehensive literature review has been done. Among all the methods 

available in the literature, employing a fast FIDVR detection and implementing 

appropriate emergency control i.e. load shedding seems to be the best approach for 

enhancing the power system stability margins. Wide area measurement systems and the 

subsequent data-driven control methods provide real-time post-fault system 

characteristics measurement  [47] which can be used for FIDVR detection. By taking 

benefit from machine learning methods for FIDVR analysis, a fast real-time decision 

making along with less data requirement and less computation time can be achieved while 

analytical data-driven methods did not guarantee fast computation for FIDVR analysis. 

Chapter 3 focused on FIDVR duration analysis using simple machine learning methods. 

In chapter 3, several features have been introduced and a comprehensive sensitivity 



 

80 

 

 

analysis has been implemented to demonstrate the relation of each feature with FIDVR 

duration. A data-driven single variable and multi-variable linear and polynomial 

regression method has been proposed to predict the duration of FIDVR. In this chapter, a 

time-series data-driven multi-variable simultaneous classification and regression decision 

making method is proposed which can operate in the first milliseconds after the system 

fault to simultaneously predicts whether the event can be categorized as FIDVR or not; if 

yes, assesses the FIDVR duration.  

 

 

4.1.1. Problem Identification 

 

In real world, applying inaccurate prediction may result in false alarm which lead to 

unnecessary emergency control i.e. load shedding or missing as alarm which in severe 

cases may lead to voltage collapse.   In order to enhance the machine learning assessment 

accuracy, reference [68] evaluates the credibility of the decisions made by the learning 

model and reference [69] designs a time-series classifier for MG islanding detection 

however, this model only focuses on binary classification problems, which is not 

applicable to FIDVR duration assessment. Therefore, a more advanced method needs to 

be specially designed to improve the real-time FIDVR assessment speed. To overcome 

the aforementioned issues, this study proposes a robust validation technique to enhance 

the real-time prediction accuracy and presents a time-series probabilistic decision making 

approach to simultaneously predict the possibility of the FIDVR event occurrence and 

predict the duration of the event in the case of classifying it as FIDVR.  
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4.1.2. Contribution 

 

In this chapter a simultaneous classification and regression assessment is proposed using 

a time-series measurement-based machine learning technique for real-time FIDVR 

prediction. The proposed method employs the same features similar to the explained 

features in section 3.3. In addition to the mentioned features, new indices will be proposed 

and their correlation with FIDVR duration will be investigated. These indices are active 

power deviation index (PDI), reactive power deviation indices (QDI), active power 

increment slope index (PISI) and reactive power increment slope index (QISI). The novel 

contributions of the proposed method are summarized as follows:  

1) An advanced feature analysis is performed to investigate the effectiveness of power 

system data on FIDVR phenomenon. 

2)   A probabilistic k-fold validation method is employed for enhancing the proposed 

FIDVR prediction accuracy. 

3) A real-time probability assessment of FIDVR phenomenon occurrence is 

accomplished as a time-series classification machine learning decision making algorithm.  

4) The FIDVR duration is assessed in a continuous manner. The real-time FIDVR 

prediction is executed as a time-series regression method. 

5) An ensemble machine learning approach has been utilized in each step of both time-

series classification and regression decision making models which guarantees the test 

score improvement in real power system event. 
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The proposed method has been tested on SCE system and demonstrated higher accuracy 

and speed compared to other state-of-the-art methods.  

 Advanced feature analysis 

To further investigate the relation of power system data and FIDVR duration, several 

indices are proposed and compared to each other in this section. Note that the accuracy of 

machine learning methods can be improved by increasing the features which have high 

correlation with the output variable. Therefore, feature analysis and feature selection can 

play an essential role in FIDVR assessment.  

4.2.1. Proposed indices 

Dynamic behavior of induction motor loads is the major cause for FIDVR events. These 

motors decelerate and stall following a large disturbance, resulting in low voltages in a 

significant portion of the power system. The stalling results the subsequent increase of 

reactive power demand of the induction motors and the subsequent reactive power 

increase prevents quick voltage recovery. According to the recorded FIDVR events 

occurred in SCE power network [58], [59], [38], the reactive power deviations of the 

system in the area of depressed voltage is an important feature which can be used in model 

development [42]. Some sample FIDVR events are listed below to illustrate the 

importance of investigating the relation of active power and reactive power deviation and 

FIDVR event.  
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The RMS data of a FIDVR event occurred at 14:14 PDT on August 10, 2012 is shown 

in Fig.4-1. This FIDVR event occurred as a result of a lightning strike in the SCE network 

and as it can be seen, the event lasted for approximately 12 seconds. It can be seen that a 

noticeable active power and reactive power jump occurs in the very beginning of the 

event. In another event happened at 17:02 PDT on August 30, 2013, active power and 

reactive power deviation in one second after the fault is 2.7 and 4.3 times their pre-fault 

values. According to the recorded data shown in Fig. 4-2, the FIDVR event lasted 

approximately 3 seconds before reaching pre-event voltage. The reason behind this 

behavior could be explained by the fact that huge reactive power deviation in the 

beginning of the event is due to the high stalling current drawn by the motors. High current 

flowing in the line leads to higher possibility of thermal protection trip. As a result, motors 

disconnect from the network faster and the FIDVR duration decreases.   

On the other hand, a fault at 15:51 PDT on August 12, 2012 caused voltage to dip to 

35% of nominal, resulting in a severe FIDVR event. As demonstrated in Fig. 4-3, the slope 

of FIDVR increment is very low at the beginning. The FIDVR event duration was 

approximately 32 seconds until the voltage recovered to the pre-fault value (after the over-

voltage clearance).  The relation behind power deviation slope and FIDVR can be 

explained similar to the aforementioned events. Low active power and reactive power 

increment slope in the first milliseconds of the fault is due to the fact that the motors 

stalling current is not high or very few motors are stalled. These element-based reasons 

cannot be measured for FIDVR analysis since there are lots of uncertainties such as the 

number of A/C units, the manufacturing models of the machines, the settings of A/C units, 

initial conditions when stalling, accessibility of A/C units for doing the analysis, etc. 
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Therefore, the power system data (active power and reactive power values) can be used for 

FIDVR assessment.  

Analyzing the FIDVR events occurred in SCE shows that slow power increment slope 

results in late thermal protection trip which is due to the inverse time-overcurrent 

characteristic of thermal protections explained in section 3.1.1. The lower the stalling 

current, the higher the tripping time.  

To take advantage of this important feature analysis, four indices, active power deviation 

index (PDI), reactive power deviation indices (QDI), active power increment slope index 

(PISI) and reactive power increment slope index (QISI) are proposed and their correlation 

with FIDVR is investigated. 

 

Fig.  4-1 RMS data of voltage, active power and reactive power of an FIDVR event occurred at 14:14 PDT on August 

10, 2012 in the SCE network [58] 
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Fig.  4-2 RMS data of voltage, active power and reactive power of an FIDVR event occurred at 17:02 PDT on August 

30, 2013 in the SCE network [59] 
 

 

 

Fig.  4-3 RMS data of voltage, active power and reactive power of an FIDVR event occurred at 15:51 PDT on August 

12, 2012 in the SCE network [58] 

 

 



 

86 

 

 

4.2.1.1. Active power deviation Index (PDI) 

According to the analysis in section 4.2.1, active power deviates by increase in stalling 

current of the motors. Active power deviation index (PDI) is defined as a numerical index to 

quantify the active power deviation due to the FIDVR event. PDI is defined as a continuous 

index and can be obtained as follows:  

 

{
𝑃𝐷𝐼𝑡 =

𝑃𝑡 − 𝑃𝑡𝑓

𝑃𝑡𝑓

, 𝑖𝑓  |
𝑃𝑡 − 𝑃𝑡𝑝𝑟𝑒−𝑓

𝑃𝑡𝑝𝑟𝑒−𝑓

| > 𝛿 

0,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  ∀ 𝑡 ∈ [𝑡𝑓 , 𝑇] 

 

(4-1) 

 

where 𝑃𝑡 is the active power at time t and 𝑃𝑡𝑓
 denotes the pre-fault active power magnitude 

and T is the considered voltage recovery time frame. 𝛿 = 20% is adopted in this study. 

The value of 𝛿 can be adjusted depending on the practical problem requirement, but a 

different 𝛿 value will not affect the effectiveness of the proposed FIDVR assessment 

method. 

To illustrate the relation of PDIt and FIDVR, the average of PDI (APDI) is defined as 

follows: 

𝐴𝑃𝐷𝐼 =
∑  𝑃𝐷𝐼𝑡

𝑇
𝑡=𝑡𝑓

𝑁
      ∀ 𝑡 ∈ [𝑡𝑓, 𝑇] 

 

(4-2) 

 

where N is the number of time steps from tf  to T. Linear regression, second and third order 

polynomial regression are used to demonstrate the relation of APDI and FIDVR with the 

result shown in Fig. 4-4. As it can be seen, the correlation is poor. 
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Fig.  4-4. The relation of the FIDVR duration and average active power deviation index using 

polynomial regression 

 

4.2.1.2. Reactive power deviation Index (QDI) 

Stalling induction motors absorb huge amount of reactive power from the grid. Reactive 

power deviation index (QDI) is defined as a numerical index to quantify the reactive power 

deviation due to the FIDVR event. QDI is defined as a continuous index and can be obtained 

as follows:  

{
𝑄𝐷𝐼𝑡 =

𝑄𝑡 − 𝑄𝑡𝑓

𝑄𝑡𝑓

, 𝑖𝑓  |
𝑄𝑡 − 𝑄𝑡𝑝𝑟𝑒−𝑓

𝑄𝑡𝑝𝑟𝑒−𝑓

| > 𝛿 

0,                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  ∀ 𝑡 ∈ [𝑡𝑓 , 𝑇] 

 

(4-3) 

 

where 𝑄𝑡  is the active power at time t and 𝑄𝑡𝑓
 denotes the pre-fault active power 

magnitude and T is the considered voltage recovery time. Similarly, 𝛿 = 20% is adopted 

for QDI.  
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The average of QDIt (AQDI) is defined as follows: 

𝐴𝑄𝐷𝐼 =
∑  𝑃𝑄𝐼𝑡

𝑇
𝑡=𝑡𝑓

𝑁
      ∀ 𝑡 ∈ [𝑡𝑓, 𝑇] 

 

(4-4) 

 

To illustrate the relation of AQDI and FIDVR, linear regression, second and third order 

polynomial regression are used. Corresponding is the result shown in Fig. 4-5. As it can 

be seen, the correlation of QDI and FIDVR is better than FDI and FIDVR. However, the 

variance of the data shows that this feature could not be an appropriate feature for FIDVR 

analysis. 

 

Fig.  4-5. The relation of the FIDVR duration and reactive power deviation index using polynomial 

regression 

4.2.1.3. Active Power Increment Slope Index (PISI) 

As explained in 4.2.1.1, PDI was not successful in representing a proper correlation with 

FIDVR. Hence, a new numerical index, called active power increment slope index (PISI), 

is defined to help the algorithm in better assessing FIDVR. 

𝑃𝐼𝑆𝐼𝑡 =
𝑃𝐷𝐼

𝑉𝑡  × (𝑡 − 𝑡𝑓)
        ∀ 𝑡 ∈ [𝑡𝑓 , 𝑇] 

 

(4-5) 
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The average of PISIt (APISI) can be calculated as: 

𝐴𝑃𝐼𝑆𝐼 =
∑  𝑃𝐼𝑆𝐼𝑡

𝑇
𝑡=𝑡𝑓

𝑁
      ∀ 𝑡 ∈ [𝑡𝑓 , 𝑇] 

 

(4-6) 

 

To better demonstrate the relation of APSIS and FIDVR, the result of linear regression, 

second and third order of polynomial regression are shown in Fig. 4-6. According to Fig. 

4-6, PISI and FIDVR has inverse relation with each other.  

 

Fig.  4-6. The relation of the FIDVR duration and active power increment slope index using polynomial 

regression 
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4.2.1.4. Reactive Power Increment Slope Index 

(QISI) 

As explained in 4.2.1.2, QDI was not successful in having a proper correlation with 

FIDVR. Hence, a new numerical index, called reactive power increment slope index 

(QISI), is defined to help the algorithm in better assessing FIDVR. 

𝑄𝐼𝑆𝐼𝑡 =
𝑄𝐷𝐼

𝑉𝑡  × (𝑡 − 𝑡𝑓)
      ∀ 𝑡 ∈ [𝑡𝑓, 𝑇] 

 

(4-7) 

 

 

The average of QISIt (AQISI) can be calculated as: 

𝐴𝑄𝐼𝑆𝐼 =
∑  𝑄𝐼𝑆𝐼𝑡

𝑇
𝑡=𝑡𝑓

𝑁
      ∀ 𝑡 ∈ [𝑡𝑓, 𝑇] 

 

(4-8) 

 

To better demonstrate the relation of AQISI and FIDVR, the result of linear regression, 

second and third order of polynomial regression are shown in Fig. 4-7. According to Fig. 

4-7, QISI and FIDVR has inverse relation with each other.  

 
Fig.  4-7. The relation of the FIDVR duration and reactive power increment slope index using 

polynomial regression 
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4.2.2. Proposed Feature Sensitivity Analysis 

As it has been mentioned in section 3.3.2, a straightforward data visualization can highly 

help in having valuable correlation analysis between the selected features and FIDVR. 

The FIDVR data in this section is extracted from a comprehensive literature review on the 

recorded data in SCE PQubes.  

4.2.2.1. HeatMap 

Heatmaps are used to show the data dependency on two or more variables as a color-

coded image plot. As it can be seen in Fig. 4-8, the correlation of PDI and QDI with 

FIDVRD is -0.11 and 0.14 which is very low. On the other hand, APISI and AQISI have 

high correlation with FIDVRD which shows that the proposed feature can be effective in 

assessing the FIDVR. 
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Fig.  4-8. Heat Map of the dataset which demonstrates the correlation between selected features and 

FIDVRD 
 

4.2.2.2. PairGrids 

As explained in section 3.2.2.2, pair plots use different pair of variables for each subplot 

and forms a matrix of sub-plots. Pair grid is used to understand the best set of features to 

explain a relationship between more than three variables in the dataset. 

The distributions and relationships in a dataset can be seen in Fig.4-9 where each 

variable of the dataset is mapped onto a column and row in a grid of multiple axes. The 

diagonal plots showcase the histograms which demonstrate the distribution of a single 

variable. 
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Fig.  4-9. Pair Grid plot of the selected features 

  

 

More detailed pairplots are shown in Fig. 4-10 where the FIDVR cases which their 

duration are lower than 10 s, between 10 and 20 s and more than 20 s are colored blue, 

orange and green respectively. Suppose pair grid matrix is called PG. As it can be seen 

from element PG51 and PG52, APDI and AQDI distribution do not provide valuable 

information for FIDVR analysis since approximately all three FIDVRD margins occur for 

APDI and AQDI values of 1-2.5 and 0-3, respectively. On the other hand, by analyzing 

PG53 and PG54 one can conclude that with lower APISI and AQISI, FIDVRD will be 

higher. On the top triangle, bivariate kernel density estimation of each two feature of the 

dataset has been demonstrated to visualize the distribution of the dataset. Blue, red and 

green kernel density estimations demonstrate FIDVR events of less than 10s, between 10 

s and 20 s and more than 20 s, respectively. Elements of the 6th column of PG demonstrate 

the kernel density estimation of each of the features and the FIDVR duration.  
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Fig.  4-10. Pair Grid plot of the features categorized according to the FIDVR duration. The higher 

triangle shows the bivariate kernel density estimation 
 

 

4.2.3. Partitioning data 

 

An issue when fitting a ML model is its performance behavior while applying it to a 

new data. To address this issue, the data set has been split into three partitions of test, train 

and validation in section 3.3.3. In this chapter, a powerful and popular resampling 

technique is used which is called k-fold validation technique.  

 

4.2.3.1. K-Fold Cross Validation 

K-fold validation is a useful method in ML which allows training and testing the model 

for k times on different subsets of data and generate the skill and performance estimation 

of the ML model on unseen data. The method has a parameter k that refers to the number 

of subsets that the data is split into. K-Folds Cross Validation splits the data into k different 
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subsets or folds while k-1 subsets are selected for training the model and the last fold as 

test data. The model is trained on k-1 folds and after finalizing the model, the model is 

tested on the test set. This step is repeated for k times until all the k fold experience being 

a test set. Finally, the accuracy of the model can be calculated by taking average of all 

folds [63], [70], [62], [71].  

The process of the algorithm is demonstrated in Fig. 4-11. The procedure is as follows: 

1) The dataset is shuffled randomly 

2) The dataset is split to k subsets 

3) For each unique group take one subset as test set 

4) For each group take the remaining subsets as training set 

5) For each group fit the model on training set (for either random forest classifier (RFC) 

or random forest regressor (RFR)) 

6) For each group evaluate model on the test set (for either RFC or RFR) 

7) For each group store the evaluation score and discard the model 

8) Aggregate the evaluation scores of all the groups 

9) Calculate the model’s final validation score by taking average of validation score of 

all groups 
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Fig.  4-11  Offline training and model creation using K-fold cross validation procedure 
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One of the most important tasks in k-fold cross validation is that each observation in the 

data sample should be assigned to an individual group and stays in that group for the 

duration of the procedure. This process gives the opportunity to each sample to be used in 

the test set 1 time and used to train the model k-1 times. 

Some of the advantages of cross validation are: 

1) It is a great out-of-sample estimator since it provides the opportunity for each sample 

to participate in test and train subsets. 

2) The variance of the resulting estimate is reduced as k increases. 

3) The algorithm generally results in a less biased (less optimistic) estimate of the 

model skill compared to train/test split method. 

The only challenge of cross validation is that the computation time of training algorithm 

increases as the number of k folds increases since the algorithm has to be rerun from 

scratch k times. 

A poorly chosen value for k may result in a mis-representative idea of the skill of the 

model, such as a score with a high variance which may change a lot based on the data 

used to fit the model, or a high bias such as an overestimate of the skill of the model. In 

this study, the value for k is fixed to 10, a value that has been found through 

experimentation to generally result in a model skill estimate with low bias a modest 

variance. 
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 Ensemble Learning 

Ensemble machine learning methods use multiple learning models so that final error 

from the aggregated output can be reduced and finally gain better predictive results. In the 

literature, ensemble learning has been applied to power system stability analysis. In [72] 

an artificial neural network ensemble is proposed for transient stability assessment and 

decision tree-based ensembles are developed in [73], [74], [75] for dynamic security 

assessment. 

The proposed FIDVR assessment is explained in section 4.4. This method is a time-

series data-driven decision making for real-time FIDVR prediction. The proposed 

technique needs separate classifier/regressors to be trained for each time step, hence its 

overall training burden can become higher than a single classifier/regressors. In addition, 

each of the classifier/regressors in the ensemble learning consists of a number of features 

and single learners. Therefore, the overall model training time can be increased which is 

not suitable for real world applications since it diminishes the reliability of the model for 

online or real-time applications. In this case, since the fast learning capability of random 

forest (RF) can significantly reduce the overall training burden, RF can be an ideal 

algorithm as an ensemble learning method for FIDVR analysis. In this study, each RF in 

an ensemble in each-time step is trained by a random portion of the training samples 

according to the proposed k-fold cross validation technique [76], [63], [70], [62]. 
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4.3.1. Decision Tree-Based Ensemble Learning  

4.3.1.1. Background 

RFs, also known as random decision forests, are a popular ensemble method that can be 

used to build predictive models for both classification and regression problems. RF model 

creates an entire forest of random uncorrelated decision trees (DTs) to arrive at the best 

possible answer [76], [63].  

DTs are simple models that employ top-down approach in which the root node splits the 

data until a certain criterion is met. The continuous splitting of nodes results in predicting 

values in final nodes based on the values of interior nodes. Although DTs are intuitive 

methods, they have some imitations that prevent them from being useful in ML 

applications. Some of these issues are their tendency to have high variance when they 

utilize different training and test sets of the same data which result in overfitting on 

training data. This leads to poor performance on unseen data which limits the usage of 

DTs in predictive modeling. A single DT typically has less predictive capability than an 

NNET or SVM [77], [78]. Another disturbing issue of the DT model is that it is not stable 

to small changes in the learning data since the selection of the splitting variable depends 

on the particular distribution of observations in the learning sample [73]. Thus, the entire 

tree structure could be altered if the first splitting variable is chosen differently due to a 

small change in the learning data and results in a high variability of DT predictions.  

However, by using RF learning model of Breiman [79] as a DT-based ensemble method, 

models can be created that utilize underlying DTs as a foundation for producing powerful 

results. RFs choose a subsample of the feature space at each split which aims to make the 
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trees de-correlated and prune the trees by setting a stopping criterion for node splits. 

Random forests are not the only way to ensemble DT learning, but they have the great 

advantage of fast tuning with almost no user input, except for the number of trees in the 

ensemble [76], [63], [70], [62]. 

Fig. 4-12 demonstrates the RF algorithm. 

 

Decisoin 

Tree T1

Features Features

......

Decisoin 

Tree T2

  

Random Forest
 

Fig.  4-12. Random Forest topology 
 

 

4.3.1.2. Random Forest 

Suppose that we are given a training sample Dn = {(X1, Y1), ... , (Xn, Yn)} of independent 

and identically distributed (i.i.d.) [0, 1]d × R-valued random variables (d ≥ 2) with the 

same distribution as an independent generic pair (X,Y) satisfying EY2 < ∞. The space [0, 

1]d is equipped with the standard Euclidean metric. For fixed x ∈ [0,1]d, the goal is to 

estimate the regression function r(x) = 𝔼 [Y |X = x] using the data Dn. In this respect, we 
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say that a regression function estimate rn is consistent if E[rn(X) − r(X)]2 → 0 as n → ∞ 

[79], [80].  

A random forest is a predictor consisting of a collection of randomized base regression 

trees {rn(x, Θm, Dn), m ≥ 1}, where Θ1, Θ2, . . . are i.i.d. outputs of a randomizing variable 

Θ. These random trees are combined to form the aggregated regression estimate: 

�̅�𝑛(𝑋, 𝐷𝑛) = 𝔼𝜃[𝑟𝑛(𝑋, 𝜃, 𝐷𝑛)]  (4-9) 

 

where EΘ denotes expectation with respect to the random parameter, conditionally on X 

and the data set Dn. Note that, in practice, the above expectation is evaluated by Monte 

Carlo, i.e., by generating M (usually large) random trees, and taking the average of the 

individual outcomes. The randomizing variable Θ is used to determine how the successive 

cuts are performed when building the individual trees, such as selection of the coordinate 

to split and position of the split. 

In the model, the variable Θ is assumed to be independent of X and the training sample 

Dn which excludes in particular any bootstrapping or resampling step in the training set 

and rules out any data-dependent strategy to build the trees, such as searching for optimal 

splits by optimizing some criterion on the actual observations. However,  Θ is allowed to 

be based on a second sample, independent of, but distributed as, Dn.  

Each individual random tree is constructed as follows [79], [80]: 

All nodes of the tree are associated with rectangular cells such that at each step of the 

construction of the tree, the collection of cells associated with the leaves of the tree forms 

a partition of [0,1]d and the root of the tree is [0,1]d itself. The following procedure is then 

repeated ⌈log2 kn⌉ times, where kn ≥ 2 is a deterministic parameter, fixed beforehand by 

the user, and possibly depending on n. At each node, a coordinate of X = (X(1),...,X(d)) is 
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selected, with the j-th feature having a probability pnj ∈ (0, 1) of being selected. At each 

node, once the coordinate is selected, the split is at the mid-point of the chosen side. 

Each randomized tree rn(X, Θ) outputs the average over all Yi for which the 

corresponding vectors Xi fall in the same cell of the random partition as X. In other words, 

letting An(X,Θ) be the rectangular cell of the random partition containing X [79], [80]: 

 

𝑟𝑛(𝑋, 𝜃) =
∑ 𝑌𝑖1[𝑋𝑖𝜖𝐴𝑛(𝑋,𝜃)]

𝑛
𝑖=1

∑ 1[𝑋𝑖𝜖𝐴𝑛(𝑋,𝜃)]
𝑛
𝑖=1

1휀𝑛(𝑋, 𝜃) 
 (4-10) 

 

where the event 휀𝑛(𝑋, 𝜃) is defined by 

 

휀𝑛(𝑋, 𝜃) = [∑ 1[𝑋𝑖𝜖𝐴𝑛(𝑋,𝜃)]

𝑛

𝑖=1

≠ 0] 
 (4-11) 

 

Hence, by convention, the estimate is set to 0 on empty cells. Taking finally expectation 

with respect to the parameter Θ, the random forests regression estimate takes the form 

[79], [80]: 

 

�̅�𝑛(𝑋, 𝐷𝑛) = 𝔼[𝑟𝑛(𝑋, 𝜃)] = 𝔼 [
∑ 𝑌𝑖1[𝑋𝑖𝜖𝐴𝑛(𝑋,𝜃)]

𝑛
𝑖=1

∑ 1[𝑋𝑖𝜖𝐴𝑛(𝑋,𝜃)]
𝑛
𝑖=1

1휀𝑛(𝑋, 𝜃)] 
 (4-12) 

 

Note that, by construction, each individual tree has exactly 2[𝑙𝑜𝑔2𝑘𝑛] (≈ 𝑘𝑛) terminal 

nodes, and each leaf has Lebesgue measure 2−[𝑙𝑜𝑔2𝑘𝑛] (≈ 1/𝑘𝑛). Thus, if X has uniform 

distribution on [0,1]d, there will be on average about n/kn observations per terminal node. 

In particular, the choice kn = n induces a very small number of cases in the final leaves, 

in accordance with the idea that the single trees should not be pruned. During the 
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construction of the tree, at each node, each candidate coordinates X(j) may be chosen with 

probability pnj ∈ (0, 1). This implies in particular ∑ 𝑝𝑛𝑗 = 1𝑑
𝑗=1  [79], [80].  

To have better understanding about random forest classifier suppose our training data 

set is represented by Dn and suppose data set has M features (or attributes or variables). 

Dn = {(X1, Y1), ... , (Xn, Yn)} and Xi is input vector {Xi1, Xi2, ... XiM} and yi is the label or 

output. Suppose the number of trees in our forest is S then S datasets should be created 

from random resampling of data in Dn with-replacement (n times for each dataset). This 

will result in {T1, T2, ... TS} datasets. RF creates S trees and uses m (=sqrt(M) or 

=floor(lnM+1)) random sub-features out of M possible features to create any tree (random 

subspace method. So, for each Ti bootstrap dataset a tree Ki is created. To classify some 

input data D = {x1, x2, ..., xM}, it pass through each tree and produce S outputs (one for 

each tree) which can be denoted by Y = {y1, y2, ..., ys}. Final prediction is a majority vote 

on this set [79], [80].  

4.3.1.3. Random Forest Tuning  

RF has nearly the same hyper-parameters as a decision tree or a bagging classifier. RF 

adds additional randomness to the model, while growing the trees. RF searches for the 

best feature among a random subset of features, instead of searching for the most 

important feature while splitting a node. Adding randomness to the model lead to a wide 

diversity that generally results in a better model. Hence, in RF, only a random subset of 

the features is taken into consideration by the algorithm for splitting a node. Deep decision 

trees might suffer from overfitting, while RF prevents overfitting most of the time, by 

creating random subsets of the features and building smaller trees using these subsets. 

Afterwards, it combines the subtrees [63], [70], [62], [79] , [80].  
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The Hyperparameters in random forest are either used to increase the predictive strength 

of the model or to make the model faster. Some of the important hyperparameters of 

sklearns built-in RFs are as follows  [79] , [80]: 

• Number of estimators 

This hyperparameters is the number of trees the algorithm builds before taking the 

maximum voting or taking averages of predictions. Higher number of trees increases the 

performance of the model which makes the predictions more stable, however it also slows 

down the computation. 

• Max depth 

Max depth represents the depth of each tree in the forest. The deeper the tree, the more 

splits it has which captures more information about the data.  

• Max features 

This hyperparameters is the maximum number of features RF considers to split a node. 

The number of features to consider when looking for the best split are as follows: 

• If int, then consider max_features features at each split. 

• If float, then max_features is a fraction and int(max_features × n_features) features 

are considered at each split. 

• If “sqrt”, then max_features=sqrt(n_features) (same as “auto”). 

• If “log2”, then max_features=log2(n_features). 

 

• Min Sample Leaf 
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It determines the minimum required number of leaves to split an internal node which is 

similar to min samples splits, except this describe the minimum number of samples at the 

leaves. 

• N jobs 

This parameter informs the engine the number of processors it is allowed to use. The 

value of 1 indicates that it can only use one processor, while a value of -1 means that there 

is no limit which increases the Model’s Speed. 

• Random state 

This hyperparameters makes the model’s output replicable. 

• Out Of Bag Score 

It is a RF cross validation method. In this sampling, about one-third of the data is not 

used to train the model and can be used to evaluate its performance which are called the 

out of bag (OOB) samples. OOB samples or OOB error is very similar to the leave-one-

out cross-validation method, however almost no additional computational burden goes 

along with it. 

• Min samples split 

Min samples split represents the minimum number of samples required to split an 

internal node which can vary between considering at least one sample at each node to 

considering all of the samples at each node. When we increase this parameter, each tree 

in the forest becomes more constrained as it has to consider more samples at each node.  

One of the big issues in ML is overfitting. However, most of the times, RFs are immune 

to overfitting since there are enough trees in the forest to protect the classifier/regressor 

from overfitting.  
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 Proposed RFC/RFR based decision 

making model 

In the literature, the ML methods use a pre-selected input vectors to classify/predict the 

system’s stability status [50], [52], [53], [51], [54], [55]. To decide whether an event can 

be categorized as FIDVR or not or to predict the duration of FIDVR, a basic ML method 

can implement the assessment on real-time system data of a specific time after the fault 

and the final decision can be made by simply using this data. However, since the system 

has transient behavior after the fault and during the FIDVR, if the event is considered as 

FIDVR, it is unacceptable to only use the data of one glance. If the transient behavior of 

the system after the prediction analysis causes the model to categorize an event as an 

FIDVR fallaciously and/or predict a higher/lower FIDVR duration, subsequent 

emergency control methods may not be triggered in the appropriate time and the system 

operator fails to ensure the stability of the system. However, the error existing in ML 

prediction process cannot be properly captured and controlled, therefore by having higher 

assessment accuracy, system stability can be guaranteed.  

To improve the decision-making accuracy and speed, this study proposes a probabilistic 

time-series FIDVR assessment method which progressively and simultaneously decides 

the possibility of occurring of FIDVR event and predicts the FIDVR duration, if the event 

categorized as FIDVR. Before explaining the real-time prediction algorithm, note that to 

have a real-time assessment, the proposed random forest classification (RFC) and random 

forest regression (RFR) models are trained for each time window according to the 

proposed k-fold cross validation technique proposed in section 4.2.3. The training is 
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accomplished based on the input feature values of each time step captured by event 

recorder. The features are weather temperature, voltage trajectory, pre-fault reactive 

power and QISI, where pre-fault reactive power is a fixed value during the analysis and 

other features change during the real-time FIDVR assessment. Once the RFR and RFC 

models are built, they can be used in real-time prediction. 

The proposed FIDVR assessment method is illustrated in Fig. 4-13 where the curves at 

the top represent the post-fault voltage values collected in real-time from the installed 

meters and tf is the fault time. 𝑡𝑓 , 𝑡𝑓 + ∆𝑡, 𝑡𝑓 + 2∆𝑡, … , 𝑡𝑓 + 𝑁∆𝑡  are the time points 

when the FIDVR assessment action is progressively executed, and 𝑡𝑓 + 𝑁∆𝑡   is the latest 

decision time after which the load shedding actions must be taken to be effective. T=𝑁∆𝑡 

is the considered voltage recovery time explained in section 4.2.1. Based on the N time 

points, N sliding time-windows are defined as the time period between each two 

consecutive time points. The process is implemented as follows:  

At each time step, snapshots of selected features are collected within the time-step (∆𝑡) 

between current and the previous time points, and the voltage magnitudes are transformed 

into voltage deviation and PISI is calculated. The principle is to assess the FIDVR event 

and predict the FIDVR duration simultaneously in each time step. To do so, the features 

are given to RFC to probabilistically decide whether the event can be categorized as 

FIDVR or not. The prediction result comes in the form of the binary value which 

categorizes the event either as FIDVR or non-FIDVR. In the proposed mode, the 

probabilistic prediction not only predicts the possibility of FIDVR happening, but also 

predicts the FIDVR duration. To do so, if the event categorized as FIDVR, the data will 

be given to RFR to predict the FIDVR duration based on the features in the snapshot. If 
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the event is not considered as FIDVR by RFC, the decision will be saved, and the 

probabilistic prediction will be progressed at the next time point with the updated feature 

snapshots. In practice, a maximum decision time 𝑡𝑓 + 𝑁∆𝑡 is needed, at which time the 

FIDVR assessment decision must be delivered. Since N time windows are defined, N 

probabilistic predictors (RFC and RFR) should be prepared respectively for different time 

windows. The final FIDVR assessment decision is made once sufficient decision 

probability criterion is achieved. Using the proposed method, the assessment decision can 

be reliably delivered as early as possible without impairing the accuracy. Thus, overall 

decision-making speed will be significantly improved. 

 

 

 

 
 

Fig.  4-13. Real-time application of the proposed RFC/RFR predictor 

 Numerical Studies 

The proposed model is built and tested in SCE valley network [58] which appears to be 

a susceptible network to FIDVR events. In the first part of numerical studies real FIDVR 

data is used collected from a comprehensive literature review on SCE valley network [38]. 
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To investigate the detailed characteristics of FIDVR events in distribution circuits, SCE 

installed 22 power quality meters (PQubes) on 17 of its Valley Substation’s 24 sub-

transmission circuits that serve the utility’s residential and commercial customers. By 

recording these data, lots of information can be obtained such as the understanding of how 

FIDVR events evolve and impact local residential and commercial customers [58]-[59]-

[38]. 

In the second part of numerical study, several FIDVR events are created using WECC 

composite load model, air conditioner load model and thermal protection model as well 

as random load disconnection model. By modeling the system in EMTP-RV, several 

FIDVR events created and used for investigating FIDVR duration prediction. 

 

4.5.1. Numerical Studies Using SCE Network 

The proposed model built using real FIDVR data collected from SCE valley network 

[58]-[59]-[38]. The mentioned features in section 4.4. have been used for training the ML 

algorithm. The goal of real-time investigating FIDVR is to employ appropriate emergency 

control approach when it is needed. Hence, having a precise FIDVR assessment is 

necessary for consecutive emergency control. 

 

4.5.1.2. Test System 

As shown in Fig. 4-14, the valley network consists of a transmission system which 

contains of two 115 kV busses (section A&B and section C&D). Each of the 115 kV 

substation busses feeds a meshed sub-transmission system.  
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Fig.  4-14. Valley distribution system and PQubes Locations Diagram [38] 

There are 24 meshed sub-transmission 115 kV substations in the network. Sub-

transmission 115 kV substations contain two types of distribution circuits 33 kV and 12 

kV, most of which are 12 kV. 12 kV distribution circuits supply both commercial and 

residential circuits with pad-mount and pole-mount transformers to serve customers. 

Longer distribution circuits are mainly rural which use 33 kV circuits instead of the 12 kV 

distribution circuits. The PQube devices were installed in the pad-mount transformer's 

secondary (240 V) side supplying customers.  For each distribution circuit, the device 

installations were located either at the middle or the end of the line. These data recording 

devices were also placed on different phases of the circuits to acquire a diverse collection 

of event data.  



 

111 

 

 

4.5.1.3. Offline and Real-time train/test procedure 

The power quality recording devices (PQubes) installed in valley’s network can record 

up to five voltages and five currents during steady-state conditions as well as during 

system events. These devices were programmed to record both root mean square (RMS) 

and sinusoidal waveforms when an event is triggered. RMS event data captured at 1 

sample/cycle and sinusoidal waveform event data captured at 32 samples/cycle. Every 

device was equipped with an uninterruptible power supply (UPS) for up to nine minutes 

so that will record during events of low voltage without compromising the data. Each SCE 

PQube contains components such as PQube module, current module, power supply, 

circuit breaker, current transformers, din rail and enclosure [38]. 

Based on the 1 sample/cycle (0.01667 s step size) of PQubes data sampling, the time 

window width Δt is set to 0.1 s, so each time window consists of 6 points of each feature. 

As mentioned, the features are voltage deviation and QISI (pre-fault reactive power is a 

fixed number feature). Hence, in each time window, the number of training features is 13 

for each busbar (2 features×6 trajectory points+1 pre-fault reactive power). The latest 

decision time NΔt is set to 1 s. Thus, N = 10 RFR and RFC probabilistic predictors are 

needed. 

The computational time efficiency of the 10 probabilistic predictors is listed in Table 4-

1 where all the tests are performed on a Laptop Core i5 with 2.6 GHz CPU and 4 GB 

RAM. Benefiting from the fast learning speed of RFR and RFC, the total offline training 

time of 10 probabilistic predictors is only 563 s, although the computation process in each 

time frame includes RFR and RFC of 620 trees using 10-fold validation for each 

RFR/RFC. For online testing, the computational performance requirement for each 
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RFR/RFC is that the computation time consumed by each probabilistic predictor must be 

shorter than the time window width Δt to make sure there is no overlap between two 

successive predictions. In Table 4-1, the average and the longest computation time of the 

probabilistic prediction on a trajectory snapshot are both listed. It can be seen that the 

longest testing time 12.31 ms is much shorter than Δt (100 ms), meaning the proposed 

probabilistic prediction method is fully compatible with the proposed time-series 

application. 

Table 4-1 

FIDVR Assessment Time Efficiency 

 

Offline Time Real-Time 

RFC/RFR 

Offline 

Training 

Time (s) 

Average 

Aggregation 

Performance (10-

fold) Validation 

Time (s) 

Total Average 

offline 

Computation 

Time (s) 

Average Testing 

Time on a 

Trajectory 

Snapshots (ms) 

Longest Testing 

Time 

on a Trajectory 

Snapshot (ms) 

 

449.39 

 

63.644 

 

563.034 

 

11.22 

 

12.31 

 

Following the training process in Fig. 4-13, RFR and RFC ensembles are simultaneously 

trained as a classifier to select the event as FIDVR and a FIDVR duration predictor using 

the features in each time window, respectively. The number of trees in each ensemble 

RFC/RFR is set to 620. For the probabilistic prediction performed at each time point, the 

number of estimators (trees) of the RFRs is separately tuned, and the tuning result is shown 

in Fig. 4-15 where the different colors refer to the tuning results for different time points. 

The number of estimators’ range with the lowest testing MSE is empirically selected and 

as it can been, the RFR trained for a later time point result in a lower MSE. Such 

phenomenon coincides with the initial thought, i.e., higher prediction accuracy is at the 

cost of slower decision speed. 
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Fig.  4-15.  Number of estimators tuning results for ten time-steps 

 

The proposed simultaneous RFR/RFC based FIDVR assessment method is applied on 

the testing samples to verify its performance. For the probabilistic prediction performed, 

the accuracy of the k-fold RFC/RFR for each time point and also the average accuracy is 

calculated and shown in Table 4-2. Score provides the coefficient of determination for the 

trained model on the given data. By analyzing the data used for training, the training score 

can be obtained, while by analyzing unseen test-data, the validation accuracy can be 

calculated.  Note that the results of Table 4-2 is based on 620 number of estimator. As it 

can be seen, in the first time-step, the test result of RFR/RFC are below 99%. The results 

of 5th time step -10th time step demonstrates high efficiency of the model. For most time 

points, the misclassification rates achieve below 1%. The overall misclassification rate is 

as low as 0.987%, demonstrating high accuracy in FIDVR detection. Such short 

assessment time in both RFR and RFC verifies the exceptional early assessment capability 

of the proposed method. Another aspect of the simultaneous RFR/RFC assessment 
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performance to be considered is how early the unstable samples can be successfully 

detected even in the first five time-steps. 

 

Table 4-2 

RFR/RFC Testing and Testing Results 

 
  Accuracy Average 

Accuracy  Time points 1 2 3 4 5 6 7 8 9 10 

 

RFR 

Training 

accuracy 

0.991 0.921 0.993 0.992 0.9929 0.9956 0.9967 0.9955 0.996 0.9972 0.9942 

Validation 

accuracy 
 

0.989 0.988 0.99 0.989 0.9854 0.991 0.9926 0.9919 0.9921 0.992 0.9901 

 

RFC 

Training 

accuracy 

0.989 0.9899 0.993 0.942 0.9974 0.9959 0.9964 0.9959 0.9971 0.9962 0.9945 

Validation 

accuracy 
 

0.977 0.979 0.984 0.989 0.996 0.994 0.9956 0.9949 0.9962 0.9954 0.99013 

 

To obtain the relation of number of estimators and average of training and validation 

accuracy of RFR, the number of estimators (trees) of the RFRs are separately tuned, and 

the tuning result is shown in Fig. 4-16 where the accuracy score is average score of all 

time points. The blue curve and green curve are respectively the average training and 

validation score (R squared) of the proposed prediction method for different value of 

number of trees. It can be seen that the best result is obtained when the number of 

estimators is equal 620. 
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Fig.  4-16.  Predictor’s training and validation average score based on tuning the number of estimators 

 

 

Fig.  4-17.  Predictor’s training and validation average score based on tuning the max depth 

 

The same analysis is accomplished by changing the max depth of RFRs while number 

of estimators are set to 620. It can be seen from Fig. 4-17 that the best value for max depth 

is 27. 
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Figs. 4-18 and 4-19 demonstrate the average OOB error at the addition of each new tree 

during training of RFRs and RFCs, respectively. The resulting plot allows a practitioner 

to approximate a suitable value of number of estimators at which the error stabilizes. The 

RFR/RFC is trained using bootstrap aggregation, where each new tree is fit from a 

bootstrap sample of the training observations. The OOB error is the average error for each 

calculated using predictions from the trees that do not contain in their respective bootstrap 

sample. This allows the RFC to be fit and validated whilst being trained [81]. OOB error 

provides the coefficient of determination using OOB method. 

 

 

Fig.  4-18. RFR Predictor’s training and validation average OOB rate based on tuning the number of 

estimators 
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Fig.  4-19. RFC estimator’s training and validation average OOB rate based on tuning the number of 

estimators 
 

4.5.2. Numerical Studies Using Test System 

To demonstrate the effectiveness of the proposed time-series simultaneous classification 

regression FIDVR assessment on a bigger dataset, 90 events are created in a test system 

using EMTP-RV and the features are collected from each event to build the proposed 

time-series RFC/RFR prediction model.  

WECC load modeling approach has been utilized to create FIDVR event. In section 

4.5.2.1, load modeling is explained and in the next chapters the result of RFR/RFC are 

demonstrated. 
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4.5.2.1. Load Modeling 

4.5.2.1.1. Various load models 

The dynamic load model structures for measurement-based load modeling in the 

literature are i) static constant impedance-current-power (ZIP) component and a dynamic 

induction motor (IM) component [82], [83], ii) complex load model (CLOD) developed 

by PSS/E [84] and iii) Western Electricity Coordinating Council (WECC) composite load 

model. ZIP+IM model has been widely used due to its simple structure and CLOD model 

has several more components including two IMs of different torque-speed and current-

speed curves. However, these models were not successful in modeling FIDVR 

phenomenon [24], [25]. To overcome the drawbacks of mentioned modeling techniques, 

the WECC composite load model has been developed [85], which includes a single-phase 

IM component among other enhancements.  

The WECC has been investigated FIDVR events on 27 air-conditioner (A/C) units 

during voltage and frequency deviations. According to these studies, it has been noticed 

that A/C units typically stall within 3 cycles. Their stalling voltage with the outdoor 

temperature of 80°F, 100°F and 115°F are 60%, 65% and 70% respectively. Operation 

time of thermal overload protection switches has inverse relation with the stall current. 

Depending on the stall current, thermal protection switches open to disconnect the A/C 

units within 2 to 24 seconds depending on the stalling current. As shown in Table 4-3, the 

WECC load model has an extensive list of 121 parameters used to describe its static and 

dynamic behaviors under disturbances [85], while a simple load model such as ZIP+IM 

model only has 13 parameters [86]. See [85] for more details. These parameters can be 



 

119 

 

 

categorized to represent the WECC composite load model as a model consist of substation 

and feeder, load model components and the fraction for each load component. Fig. 4-20 

illustrates the structure of the WECC composite load model which consists of a substation 

transformer model, a feeder equivalent model, and six load model components [85]. The 

load components include three three-phase motors (A, B and C), one single-phase motor 

(air conditioner D), one static ZIP load, and an electronic load, all connected in parallel. 

Among all aforementioned load components, the high penetration of single-phase 

induction motors in power systems results in FIDVR phenomenon and single-phase A/C 

units represent a significant fraction of the summer on-peak load in WECC and are 

considered to be contributing to dynamic performance issues in WECC [85]. 

 

Table 4-3 

List of WECC Composite Load Model Parameters and Values 

Motor A 

 

Ftr2A 0.47 TrclB 0.6 TtrlC 0.02 VrstD 0.9 Static Load Feeder 

FMA 0.16

7 

Vrc2

A 

0.639 Vtr2B 0.7 FtrlC 0.2 TrstD 0.4 Pfs -0.99 Bss 0 

Mtyp

A 

3 Trc2

A 

0.73 Ttr2B 0.02 VrclC 0.65 FuvrD 0.17 P1e 2 Rfdr 0.04 

LFm

A 

0.7 Motor B Ftr2B 0.3 TrclC 0.6 Vtr1D 0.65 P1c 0.5454

6 

Xfdr 0.05 

RsA 

 

0.04 FMB 0.167 Vrc2B 0.85 Vtr2C 0.7 Ttr1D 0.02 P2e 1 Fc 0.75 

LsA 1.8 Mtyp

B 

3 Trc2B inf Ttr2C 0.02 Vtr2D 0.9 P2c 0.4545
4 

Xxf 0.08 

LpA 0.1 LFm

B 

0.8 Motor C Ftr2C 0.3 Ttr2D 5 Pfrq -1 Tfixhs 1 

LppA 0.08

3 

RsB 0.34 FMC 0.167 Vrc2C 0.85 Vc1off

D 

0.4 Q1e 2 Tfixls 1 

TpoA 0.09

2 

LsB 1.8 Mtyp

C 

3 Trc2C inf Vc2off

D 

0.4 Q1c -0.5 LTC 1 

Tppo

A 

0.00

2 

LpB 0.16 LFm

C 

0.8 Motor D Vc1on

D 

0.45 Q2e 1 Tmin 0.9 

HA 0.05 LppB 0.12 RsC 0.34 FmD 0.16
7 

Vc2on

D 

0.45 Q2c 1.5 Tmax 1.1 

EtrqA 0 TpoB 0.1 LsC 1.8 MtypD 1 VthD 30 Qfrq -1 Step 0.0062

5 

Vtr1A 0.75 Tppo

B 

0.002

6 

LpC 0.16 LFmD 1 Th1tD 0.3 MBas

e 

0 Vmin 1 

TtrlA Inf HB 1 LppC 0.12 CompPF

D 

0.97 Th2tD 2.05 Electronic Load Vmax 1.02 

FtrlA 0.2 EtrqB 2 TpoC 0.1 VstallD 0.6 TvD 0.02

5 

Fel 0.167 Tdel 30 

VrclA 0.9 Vtr1B 0.5 Tppo

C 

0.002
6 

RstallD 0.1   Pfel 1 Tdelste

p 

5 
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TrclA 

 

Inf TtrlB 0.02 HC 1 CstallD 0.1   Vd1 0.75 Rcmp 0 

Vtr2A 

 

0.5 FtrlB 0.2 EtrqC 2 TstallD 0.02   Vd2 0.65 Xcmp 0 

Ttr2A 

 

0.02 VrclB 0.65 Vtr1C 0.5 FrstD 0   Frcel 0.25   

 

 

 

 

Fig.  4-20. Schematic of the WECC composite load model [87]. 

 

4.5.2.1.2. Single-phase air-conditioner modeling  

Most single-phase compressor motors are capacitor-run capacitor-start motors.  As 

shown in Fig. 4-21, the motor actually has two windings: main or run winding (R), and 

auxiliary or start winding (S) which are T connected to a common terminal. The single-

phase induction motor model in EMTP-RV is shown in Fig. 4-22. The supply voltage and 

the capacitor in series with the winding creates the auxiliary winding voltage. There is an 

internal thermal relay located in the common wire. A large number of single-phase 

residential A/C units were tested by Bonneville Power Administration,  
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Fig.  4-21  Schematic of a single-phase compressor motor diagram [85] 

 

 

Fig.  4-22. Schematic of a single-phase compressor motor in EMTP-RV 

 

Southern California Edison and EPRI investigated the dynamic behavior of these loads. 

The Voltage and frequency oscillations, frequency ramps and steps, voltage ramps, 

voltage sags and faults of various magnitude, duration and recovery have been analyzed 

in these studies [85]. 

To demonstrate the real and reactive power sensitivity with respect to voltage, slow 

voltage ramp down tests are performed. Fig. 4-23 shows trajectories of compressor real 

and reactive power versus supply voltage at temperatures of 80 °F in the lower line, middle 

lines at 100 °F and upper lines at 115 °F. As shown, the motor stalls at approximately 60-

65% voltage. The higher the voltage, the higher temperature. Once the motor is stalled, 
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even if the voltage recovers, it remains stalled since the compressor is unable to restart 

against the full head of pressure. It takes one to five minutes to restart since the pressure 

has to be equalized. 

 

 

Fig.  4-23. Compressor motor real and reactive power versus supply voltage (voltage ramp down test). 

 

A.   Thermal Protection modeling 

The WECC model contains four explicit motor models representing high and low inertia 

motors. In addition, two constant torque and torque varying with speed squared models 
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are also considered. The low inertia, constant torque model which are mainly air 

conditioner units has thermal protection element. 

 

Thermal protection determines the amount of stalled air conditioners trip over time. The 

delay in thermal protection provides the delay in delayed voltage recovery. Since this 

characteristic is critical for FIDVR analysis, it is reasonable to implement appropriate 

motor protection model to better simulate FIDVR phenomenon [60].  

Fig. 4-24 shows the experimental data for thermal protection operation as a function of 

stalled voltage for each of the tested air conditioner units. As it can be seen, stalled voltage 

has inverse relation with thermal protection tripping time since the stall current increase 

as the stall voltage increase. With the increase of stall current, the thermal protection 

would operate faster. As it can be seen in Fig. 4-24, when exposed to a fault which cause 

delayed voltage recovery, most of the tested A/C units stalled from 1.0 to 20 seconds 

before the thermal protection switch tripped to protect the compressor. The right end of 

each plot is where the unit started stalling (stall threshold) and the left end is where the 

contactor opens (contactor dropout voltage) [60]. 
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Fig.  4-24. Relation between thermal protection switch tripping time and voltage [60] 

 

Thermal relay plays a critical role in the simulating voltage stability events which is 

protecting the motor from overheating due to extended stall currents. Without the thermal 

protection switch, the motor might overheat and fail as a result of absorbing high currents 

for long periods. The inverse relation between time delay in operation of thermal 

protection and stall current is typical for these protective devices. The higher the current 

the faster the operation.  A block diagram model for a thermal relay is presented in Fig. 

4-25. The transfer function in delays the response in the operation of the thermal relay. 

The delay decreases with increased stall current. The input of the model (R(IC)2) is the 

heat produced by the compressor motor current. The current at which the temperature 

stays at the equilibrium is shown by IE. An integrator has been used and its input is the 

heat to estimate the compressor winding temperature raise (θ). A feedback K is used to 

model heat dissipation. Once the temperature exceeds the threshold (θTRIP), the 

compressor motor will trip [85]. 
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Fig.  4-25. Thermal protection relay model [60] 

 

Finally, by utilizing aforementioned load modeling, a 9-bus system is modeled in 

EMTP-RV to create FIDVR and non-FIDVR events. The system topology is shown in 

Fig. 4-26. 

 

Fig.  4-26. The 9-Bus test system  
 

4.5.2.1.3. Random Load Disconnection 

Small motors with thermal protection may take from 1 to 20 s to trip after stall [60], 

[34], [5], while larger motors with under voltage protection trip typically from 0.4 to 1.2 

seconds [47]. 
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These motors trip before they stall while the system voltage drops below the protection 

threshold (between 50% and 90% typically). To implement a random thermal protection 

relay trip, a random disconnection is modeled as a normal distribution with a mean value 

and standard deviation are considered for both thermal protection and under voltage 

protection elements. The assumption for the under-voltage protection trip is between 0 

and 2 s and that the thermal protection trip is between 1 and 30 s. Note that the FIDVR 

duration is considered to be the duration between the fault and the time over voltage 

finishes. For each FIDVR case, the portion of motor loads are also randomly selected 

between 0% and 80%. 

 

4.5.2.2. Feature Analysis 

As it has been explained, feature analysis basically explains which features are more 

important in training of model. The selected features for training the proposed time series 

RFC/RFR algorithms are voltage deviations, pre-fault reactive power and QISI, 

respectively. In order to demonstrate the effect of selected features, average of voltage 

deviations and average of QISI (AQISI) are used and shown in Fig. 4-27 –Fig. 4-29. As 

it can be seen the most important feature is voltage deviation which is similar to the result 

obtained from SCE network (see Fig. 4-14). The next important feature is AQISI and 

finally Pre-fault reactive power feature correlation with FIDVR is 0.64. The results are 

quite similar to those of SCE dataset. Pair grid plot of the selected features are shown in 

Fig. 4-28 and the categorized pair grid plot of the features can be seen in Fig. 4-29. 

According to the expectations, average voltage deviation and AQISI have inverse 
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relationship with FIDVR while pre-fault reactive power has direct relation with the 

delayed voltage. 

 

Fig.  4-27. Heat Map of the dataset which demonstrates the correlation between selected features and FIDVRD 
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Fig.  4-28. Pair Grid plot of the selected features 
 

 

 

Fig.  4-29. Pair Grid plot of the features categorized according to the FIDVR duration. The higher triangle shows the 

bivariate kernel density estimation 
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4.5.2.3. RFC/RFR Result Analysis 

After modeling the loads and implementing it in the system, FIDVR events have been 

created by triggering faults in the transmission lines. The time window width Δt is set to 

0.1 s and each 0.01 s a snapshot of the system features is stored, so each snapshot of the 

selected features consists of 10 points. Considering all the buses in the system, the number 

of training features is 189 (9 buses ×2 features× 10 trajectory points+9 pre-fault reactive 

power for each bus). The latest decision time NΔt is set to 1 s. Thus N = 10 probabilistic 

predictors are needed. 

Following the training process, RFR and RFC ensembles are simultaneously trained as 

a classifier to select the event as FIDVR and a FIDVR duration predictor using the features 

in each time window, respectively. The number of trees in each ensemble RFC/RFR is set 

to 620. For the probabilistic prediction performed at each time point, the number of 

estimators (trees) of the RFRs is separately tuned, and the tuning result is shown in Fig. 

4-30 where the different colors refer to the tuning results for different time points. The 

number of estimator’s range with the lowest testing MSE is empirically selected and as it 

can been, the RFR trained for a later time point result in a lower MSE. Such phenomenon 

coincides with the initial thought, i.e., higher prediction accuracy is at the cost of slower 

decision speed. 
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Fig.  4-30. Number of estimators tuning results for ten time-steps 
 

The result of RFC classification is compared to some widely used classification 

approaches to demonstrate the effectiveness of the proposed methodology. However, 

since the numbers of features are more than two, the results cannot be shown in a plane. 

Therefore, a mathematical procedure named principal component analysis (PCA) 

methodology is used to transforms a number of features into small number of uncorrelated 

variables called principal components. The first principal component accounts for as much 

of the variability in the data as possible, and each succeeding component accounts for as 

much of the remaining variability as possible. The number of principal components are 

selected to be two in order to plot the results in the plane.  

According to the North American Electric Reliability Corporation (NERC) 

Transmission Issues Subcommittee, an event is FIDVR if a voltage condition initiated by 

a fault and characterized by stalling of induction motors where initial voltage recovery 

after the clearing of a fault is less than 90% of pre-contingency voltage and slow voltage 

recovery occur more than 2 seconds to expected post-contingency steady-state voltage 
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level [34]. According to NERC definition, events can be classified as FIDVR or non-

FIDVR.   

The classification methods are Logistic Regression, Linear Kernel, Sigmoid Kernel, 

KNN, Gaussian Naive Bayes and Decision Tree and their classification results are shown 

in Figs. 4-31 to 4-36, respectively. As it can be seen, all aforementioned method have 

noticeable errors in classifying FIDVR events and non-FIDVR events.  

  
Fig.  4-31. Classification result using Logistic Regression classifier 
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Fig.  4-32. Classification result using Linear Kernel classifier 
 

 

 

 

 

Fig.  4-33. Classification result using Sigmoid Kernel classifier 
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Fig.  4-34. Classification result using KNN classifier 
 

 

Fig.  4-35. Classification result using Gaussian Naive Bayes classifier 
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Fig.  4-36. Classification result using Decision Tree classifier 
 

In RFC method, multiple estimators are combined to reduce the effect of this overfitting 

and increase the classification accuracy. In the proposed time-series RFC method, the 

performance of the RFCs in each time step is calculated and the final decision is based on 

the average of all time-steps. By using the bagging (RFC) method which makes use of an 

ensemble of parallel estimators, and using time-step method, the estimator can find a 

better classification. In this study, optimized ensemble of randomized decision trees is 

implemented in the RFC estimator of Scikit-Learn package. The results of the 

classification using proposed time-series RFC based method is shown in Fig. 4-37 where 

the classification accuracy is much better than the Fig. 4-31 –Fig. 4-36. The red and purple 

dot are the data points showing the Non-FIDVR and FIDVR events, respectively. The 

yellow and blue areas are the classified by the classifier. Note that X-axis and Y-axis are 

the X and Y values created by using PCA method and does not represent the value of 

selected features. 
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Fig.  4-37. Classification result using proposed time-series RFC classifier 

 

 Conclusion 

This chapter proposed a probabilistic time-series simultaneous RFR/RFC-based FIDVR 

assessment method based on pre-fault reactive power, post-fault real-time voltage 

trajectories and post-fault reactive power increment slope index (QISI). The assessment 

decision can be made as early as possible without impairing its accuracy. To achieve this, 

voltage magnitude and QISI, as time-series features for FIDVR analysis, are measured at 

each sliding time window using PQubes, and the assessment decision is made in such a 

way that the event is analyzed using RFCs to categorize event either as FIDVR or non-

FIDVR and if selected as FIDVR, the delayed voltage duration is predicted using RFR. In 

doing so, the assessment speed is significantly high along with high decision accuracy 

which can be reliably obtained at each time window. The final decision is based on the 

majority vote of all the time steps. The excellent performance of the proposed method has 



 

136 

 

 

been demonstrated on SCE network real data and on a test power system. By utilizing the 

proposed fast and highly accurate FIDVR detection and prediction, the subsequent load 

shedding approaches can be employed not only faster, but also with the most optimum 

amount of load to be shed.  
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 : THESIS SUMMARY AND FUTURE 

WOKS 
 

 Thesis summary  

Two LS techniques were developed in the second chapter, i) a simplified LS technique 

and ii) a complete LS approach. The simplified LS technique derives PF-based P-V curve 

according to the type, size, and the power factor of the system loads. The obtained PF-

based P-V curve as well as the frequency droop characteristics are used for calculating 

UVA, UFA and OFA and the final LSA is calculated.  The complete LS method is based 

on the sensitivity factors in pre-disturbance conditions to address the dynamic changes of 

the operating conditions subsequent to the disturbance. In this method, several PF-based 

P-V curves are generated and two PF-based P-V curves, i.e., upper and lower PF values, 

closest to the loads are selected and the LSA is calculated. The proposed LS approach is 

validated based on the detailed time-domain simulation in the PSCAD program.  

A comparative analysis in an islanded IBMG based on the time-domain simulation and 

taking into account various load models is carried out to investigate the effectiveness of 

the proposed LS techniques, compared with a previously published method. Three 

possible disturbances are considered in the study system. The study reveals that the 

proposed complete LS technique results in the lowest LSA and effectively restores both 

voltage and frequency of the islanded IBMG to the desired values. Moreover, the system 

stability during disturbance and after the LS has been investigated which demonstrates the 
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effectiveness of UVFLS in enhancing the system stability.  

The third chapter proposed a data-driven multi-variable machine learning-based 

Decision-making model for prediction of FIDVR duration. Relation of several power 

system data with FIDVR duration has been investigated. Selected features have been 

utilized for online machine learning model development. The stored data of power quality 

recording devices (PQubes) are used for online machine learning model developing. 

Several simple regression models such as single-variable and multi-variable regression 

models i.e. linear regression and polynomial regression models have been developed and 

compared. The real-time PQubes data can be used for rapid real-time prediction of the 

FIDVR duration following a system disturbance. By using the developed model, FIDVR 

duration can be obtained using real-time data without using complicated load modeling. 

Simple regression models result in simple programming and fast prediction and on the 

other hand, using multiple features for model development enhance the model accuracy. 

As a result, the FIDVR prediction can be accomplished very fast, yet with acceptable 

accuracy. 

The forth chapter proposed a probabilistic time-series simultaneous RFR/RFC-based 

FIDVR assessment method based on pre-fault reactive power, post-fault real-time voltage 

trajectories and post-fault reactive power increment slope index (QISI). The assessment 

decision can be made as early as possible without impairing its accuracy. To achieve this, 

voltage magnitude and QISI, as time-series features for FIDVR analysis, are measured at 

each sliding time window using PQubes, and the assessment decision is made in such a 

way that the event is analyzed using RFCs to categorize event either as FIDVR or non-

FIDVR and if selected as FIDVR, the delayed voltage duration is predicted using RFR. In 



 

139 

 

 

doing so, the assessment speed is significantly high along with high decision accuracy 

which can be reliably obtained at each time window. The final decision is based on the 

majority vote of all the time steps. The excellent performance of the proposed method has 

been demonstrated on SCE network real data and on a test power system. By utilizing the 

proposed fast and highly accurate FIDVR detection and prediction, the subsequent load 

shedding approaches can be employed not only faster, but also with the most optimum 

amount of load to be shed.  

 Contributions 

The second chapter of this thesis proposed an enhanced method for deriving P-V curves 

according to load PF and two simple and complete load shedding techniques to recover 

bus voltages and frequency of the system. In the simple load shedding method, last pre-

disturbance PF-based P-V curves are utilized for calculating load shedding amount. 

However, in complete load shedding method, an algorithm has been proposed which 

calculates several PF-based P-V curves for each load bus and selects two of these curves 

according to loads PF in post-disturbance. Finally, one of these two PF-based P-V curve 

which results in the optimum load shedding amount and maintains both bus voltage and 

frequency into desired values is used for load shedding.  By implementing this procedure, 

the closest PF-based P-V curve to the loads PF in post-disturbance will be chosen. 

There is not any literature which studies loads PF and load type on P-V curves in 

microgrids to analyze the load shedding amount according to load model. In addition, the 

available load shedding strategies are typically based on pre-fault sensitivity factors and, 
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hence, do not address the dynamic changes due to a contingency. For instance, if loads 

power factor changes during the disturbance, the pre-disturbance values are used for 

obtaining load shedding amount. In the complete load shedding method, the load shedding 

is accomplished according to the load PF during the disturbance. In addition, microgrid is 

modeled based on state-space equation. All the loads, lines and inverters are modeled in 

state-space equation and any change in the system characteristics can be done by changing 

the corresponding matrixes. Hence, if any changes occur in the system configuration such 

as change in load/line/DG sizing/type/locations, the state-space equations will be updated 

accordingly and, as a result, the responses of the system will be updated correspondingly. 

For instance, if the resistance of a line increases, the corresponding matrix related to the 

respective line will be changed and voltage of respective bus connected to the line will 

drop and the slope of respective PF-based P-V curve of that bus will increase. Whatever 

the topology of the system is, the value of bus voltages and therefore PF-based P-V curves 

can be obtained by using state-space equation and time-step simulation. Based on the 

obtained PF-based P-V curves and the frequency of the system, load shedding amount can 

be obtained according to the technique proposed in the second chapter. The proposed 

method is independent of the topology of the system since it is based on simple 

mathematical computations such as algebraic operations, maximum and minimum 

operators, and rule-based decision makings. 

To encapsulate, the contributions of this study are as follows: 

1. Comprehensive investigation on loads type and power factor of P-V curves in 

microgrid. 
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2. Proposing the algorithm for obtaining PF-based P-V curve which considers 

load type and power factor. 

3. Proposing under voltage-frequency load shedding strategy based on the fault 

sensitivity factors so as to address the dynamic changes due to a contingency. 

4. Implementing under voltage-frequency load shedding method based on 

complete state-space model of microgrid 

5.  The LSA using simple LS and complete LS methods are respectively 32.6% 

and 37.28% lower than the LSA using the existing method in the literature. 

 

The third chapter focused on investigating FIDVR duration dependency on the system 

characteristic as a comprehensive sensitivity analysis. The most important features are 

used for ML training in the next step.  A comprehensive data-driven measurement-based 

ML-based technique for real-time FIDVR prediction is proposed which employs several 

power system data as an input for online ML design. The proposed method guarantees 

fast and accurate decision making for the consecutive LS methods. The novel contribution 

of the proposed method is summarized as follows:  

1) A comprehensive feature selection to investigate the relation of each power 

system data with FIDVR prediction. 

2) Instead of using complicated method which may reduce the real-time prediction 

speed and increase computational programming, simple regression methods are employed 

to enhance the processing speed along with several important power system features to 

increase the accuracy of the model. 
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3) An online ML training is accomplished to build a model for real-time FIDVR 

assessment. Linear and polynomial regression models are used and compared. 

4) Validation methods have been proposed and used for analysing the proposed 

FIDVR prediction accuracy.  

5) The FIDVR duration is assessed in a continuous manner. The real-time FIDVR 

prediction is executed as a regression method. 

6) Since the model is simple, the real-time FIDVR prediction processing is fast 

enough which provides enough time for consecutive LS. 

 

In the fourth chapter a simultaneous classification and regression assessment is proposed 

using a time-series measurement-based machine learning technique for real-time FIDVR 

prediction. The proposed method employs pre-fault reactive power, post-fault voltage 

magnitudes for the model training. In addition to the mentioned features, new indices were 

proposed and their correlation with FIDVR duration will be investigated. These indices are 

active power deviation index (PDI), reactive power deviation indices (QDI), active power 

increment slope index (PISI) and reactive power increment slope index (QISI). Finally, 

QISI was utilized for training the proposed time-series data-driven simultaneous RFC/RFR 

prediction method. The novel contribution of the proposed method is summarized as 

follows:  

1) An advanced feature analysis to investigate the effectiveness of power system data 

on FIDVR phenomenon. 

2)   A probabilistic k-fold validation methods has been utilized for enhancing the 

proposed FIDVR prediction accuracy. 
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3) A real-time probability assessment of FIDVR phenomenon occurrence is 

accomplished as a time-series classification machine learning decision making algorithm.  

4) The FIDVR duration is assessed in a continuous manner. The real-time FIDVR 

prediction is executed as a time-series regression method. 

5) An ensemble machine learning approach has been utilized in each step of both time-

series classification and regression decision making models which guarantees the test 

score improvement in real power system event. 

 Future works 

As future work on under-voltage frequency load shedding, the effect of more 

complicated loads i.e. voltage and frequency dependent loads and active loads on PF-

based P-V curves and load shedding of islanded microgrids can be analyzed.  

With regard to assessing FIDVR events in power systems, more complicated methods 

i.e. neural networks can be utilized for building a machine learning model and predict 

FIDVR more accurately. However, there is a trade-off between the model accuracy and 

computation time. More features can also be analyzed and employed in building the model 

according to their relationship with FIDVR. The researches in this study focuses on 

assessing the FIDVR and predicting its duration. As future study, more complicated AI 

algorithms such as sequential neural networks can be employed in order to predict the 

voltage curve. When the delayed voltage curve is predicted, high information would be 

available for subsequent remedial control techniques.  
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