UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS BIOLÓGICAS

Poliquetos (Annelida: Polychaeta) y esponjas (Porifera: Demospongiae) perforadores de la Almeja Mano de León (*Nodipecten subnodosus*) en la Laguna Ojo de Liebre, Guerrero Negro, Baja California Sur, México

Presenta

Laura González Ortiz

Para Obtener el Grado de Doctor en Ciencias con Acentuación en Manejo de Vida Silvestre y Desarrollo Sustentable

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS BIOLÓGICAS SUBDIRECCIÓN DE POSGRADO

Poliquetos (Annelida: Polychaeta) y Esponjas (Porifera: Demospongiae) perforadores de la Almeja Mano de León (*Nodipecten subnodosus*) en la Laguna Ojo de Liebre, Guerrero Negro, Baja California Sur, México.

M. en C. Laura González Ortiz

Como requisito parcial para obtener el Grado de Doctor en Ciencias con Acentuación en manejo de Vida Silvestre y Desarrollo Sustentable

Junio 2016

Poliquetos (Annelida: Polychaeta) y Esponjas (Porifera: Demospongiae) perforadores de la Almeja Mano de León (Nodipecten subnodosus) en la Laguna Ojo de Liebre, Guerrero Negro, Baja California Sur, México.

Comité de tesis. Dr. Jesús Ángel de León González Director de Tesis. Dr. Ricardo Vázquez Juárez. Director Externo. Dra. María Llena García Garza. Secretaria. Dr. An Dr. Gabino Adman Rodríguez- Almaraz Vocal 2.

> Dr. Carlos Solis Rojas Vocal 3.

AGRADECIMIENTOS

Este trabajo es el resultado de una parte muy importante en mi formación profesional, en donde se han culminado mis los esfuerzos, la tenacidad y el empeño de todos que participaron de una u otra forma.

Quiero agradecer a la Universidad Autónoma de Nuevo León por haberme permitido realizar mis estudios de Doctorado en Ciencias Biológicas con Acentuación en manejo de Vida Silvestre y Desarrollo Sustentable.

A la oportunidad de apoyarme en la realización de este proyecto al Dr. Jesús Ángel de León González del laboratorio de Biosistemática de esta universidad y al Doctor Ricardo Vázquez Juárez del CIBNOR La Paz gracias por esta oportunidad.

A CONACYT por la beca otorgada para llevar acabo mis estudios. Con clave 0016549.

Mis agradecimientos durante el desarrollo de este trabajo al CIBNOR unidad Guerrero Negro por facilitarme el Laboratorio en especial al Doctor Rogelio y la Bióloga Marina Gabriela Valle.

Al director de la reserva el Vizcaíno M. en C. Everardo Mariano Meléndez y al Ing. Jesús Porras Cisneros por el apoyo logístico.

Y al empeño y apoyo incondicional de la cooperativa pesquera de Guerrero negro y al buzo José Sáenz que sin ellos no se hubiera podido concretar el estudio realizado.

DEDICATORIA

A MI MADRE: Gloria Ortiz Espíndola por todo el apoyo brindado a lo largo de mi vida y por ser siempre un ejemplo de coraje, lucha y tenacidad ante cualquier adversidad en la vida que influyeron siempre en mi formación académica.

A MI PADRE: Francisco González Medrano por el ejemplo de su brillante carrera científica forjada de espíritus que me motivaron siempre a apasionarme por este arduo camino de la investigación.

A MIS HERMANOS: Velia, Beatriz, Gabriela, Lilian, Francisco, por su apoyo y confianza que en todo momento han depositado en mí, espero no defraudarlos nunca.

A LA MEMORIA DE MIS HERMANOS: Héctor y Francisco sé que donde quiera que te encuentres siempre estarás presente en una parte de mi corazón.

A TI MARIANA. Por los momentos que involuntariamente formaste parte del laboratorio de poliquetos compartiendo experiencias con los compañeros y amigos, gracias por tu apoyo y paciencia para que pudiera finalizar esta etapa de mi vida que tanto me apasiona.

INDICE

RESUMEN.

I. INTRODUCCIÓN.

- I.a) Descripción almeja mano de león
- I.b) Poliquetos perforadores
- I.c) Esponjas perforadoras de sustratos calcáreos

II. OBJETIVOS.

- II.a) Objetivo general
- II.b) Objetivos particulares
 - III. ANTECEDENTES.
 - IV. AREA DE ESTUDIO

V. MATERIAL Y MÉTODO

- V.a) Muestreos
- V.b) Manejo de las almejas post-muestreo
- V.c) Obtención de Polydoras
- V.d). Imágenes del microscopio electrónico de Polydoras
- V.e) Fotografia de las valvas
- V.f) Procedimiento para los porcentajes de ampollas de lodo.

VI. RESULTADOS

- VI.a) Diagnosis Polydora spp
- VI.b) Proceso de perforación de la concha y efecto en el hospedero.
- VI.c) Vista del daño causado por perforadores (Polydora Cliona) a través de rayos X en las valvas de la almeja mano de león.
- VI.d) Distribución de clase de tallas en las valvas de la almeja mano de león
- VI.e) Biomasa
 - VII. DISCUSIÓN
 - VIII. CONCLUSION
 - IX. LITERATURA CITADA

INDICE FIGURAS.

- Figura 1. Ejemplares de la almeja mano de león Nodipecten subnodosus.
- Figura 2. La ornamentación externa formada por nueve costillas en la valva.
- Figura 3. Anatomía interna de la almeja mano de león *Nodipecten subnodosus* (Arellano-Martínez, 2005).
- Figura 4. Ciclo de vida almeja Mano de León
- Figura 5. Semillas juveniles de la almeja (Nodipecten subnodosus)
- Figura 6. Distribución de *Nodipecten subnodosus* (Keen, 1971) y ubicación de los cultivos piloto-experimentales CIBNOR-Productores (Mazón-Suástegui *et al.*, 2003).
- Figura 7. Impacto socioeconómico producido por la pérdida de la almeja mano de león (imagen tomada del informe SAGARPA, 2014).
- Figura 8. Parte anterior de Polydora sp.
- Figura 9. Ciclo de vida de un poliqueto del género Polydora.
- Figura 10. Eventos de regeneración de segmentos de Polydora sp. nov. (Tinoco 2001).
- Figura 11. Estructura de las esponjas.
- Figura 12. Esponja de la familia Clionidae.
- Figura 13. Secuencia del proceso de bioerosión.
 - A) Tres células en contacto con el sustrato calcáreo a punto de comenzar el proceso,
- B) Penetración inicial de los pseudópodos durante el proceso celular por disolución química del sustrato.
- C) Englobamiento del sustrato como paso previo a su expulsión al medio
- D) Expulsión de la partícula calcárea al sistema acuífero de la esponja (Tomado de Ruppert 2003).
- Fig. 14. Ejemplo de la bioerosión de la esponja perforadora en la concha de la almeja.
- Figura 15. Área de estudio, detallando la posición de los cuatro bancos almejeros evaluados.
- Figura 16. Coordenadas de los bancos de estudio.
- Figura 17. Metodología de la recolecta en los bancos almejeros estudiados.
- Figura 18. Laboratorio (unidad Guerrero Negro).

Figura 19. Criterios morfométricos en las valvas de la almeja.

Figura 20. A) Altura.

- B) Espesor.
- C) Longitud.
- D) Disección.
- E) Peso total del cuerpo blando.
- F) Gónada.
- G) Glándula digestiva.
- H) Músculo abductor.

Figura 21. Extracción de poliquetos perforadores.

- Fig. 22. Fotografías de Polydoras obtenidas del microscopio electrónico de Barrido.
- Fig. 23. Fotografía de valvas presentando el daño producido.
- Fig. 24. Tabla de datos morfométricos.
- Fig. 25. Foto de la valva en el programa de Photoshop.
- Fig. 26. Programa imagen Pro- plus.
- Fig. 27. Tablas de los porcentajes de daño producido por las ampollas de lodo en las conchas.
- Fig. 28. Almeja infestada.
- A) Valva superior.
- B) valva inferior.
- C, D) Ampolla de lodo.
- E, F) Fragmentos de concha con Polydora y esponja.
- G, H) Esponja Cliona celata.

Fig. 29. Polydora sp.

- A) Parte anterior, vista dorsal.
- B) Parte anterior, vista lateral.
- C) Parte anterior, vista latero-dorsal.

- D) Parte anterior, mostrando carúncula.
- E) pápilas neuropodiales.
- F) Ganchos cubiertos neuropodiales.
- G, H) Setas modificadas del quinto setígero.
- Fig. 31. Proceso de infestación producido por la Polydora y Cliona celata.
- **Fig. 32.** Rayos X en las conchas mostrando la forma de las galerías de *Polydora* y la alteración en su forma.
- Fig. 33. Vista ampolla de lodo en las valvas de almeja del banco Zacatoso.

INDICE GRAFICAS.

- **Gráfica 1.** Distribución de clases de tallas de la almeja Mano de León en el banco Chocolatero.
- **Gráfica 2**. Distribución de clases de tallas y porcentajes de daño en el banco el Zacatoso.
- **Gráfica 3.** Distribución de clases de tallas y porcentajes de daño de las valvas en las almejas del banco La Concha.
- **Gráfica 4.** Distribución de clases de tallas y porcentajes de daño de las valvas en las almejas del banco el Dátil.
- **Gráfica 5.** Relación de la media del peso blando y el musculo abductor con el porcentaje de daño en la almeja.
- **Gráfica 6.** Relación de la media del peso blando y de la gónada con el porcentaje de daño en la almeja.
- **Gráfica** 7. Total, de ampollas de lodo en las valvas por muestreo.
- Gráfica 8. Porcentajes de ampollas de lodo en los cuatro bancos
- Gráfica 9. Porcentaje de daño en el banco el Chocolatero.
- Gráfica 10. Porcentaje de daño en el banco el Zacatoso.
- **Gráfica 11.** Porcentaje de daño en el banco la Concha.
- Gráfica 12. Porcentaje de daño en el banco el Dátil.
- **Gráfica 13.** Porcentaje de daño producido por la esponja (*Cliona celata*) en los bancos de la almeja mano de león.

INDICE TABLAS.

- Tabla 1. Presencia o ausencia de la esponja perforadora Cliona celata.
- Tabla 2. Banco el Chocolatero.
- Tabla 3. Banco el Zacatoso.
- Tabla 4. Banco La Concha.
- Tabla 5. Banco el Dátil.

RESUMEN

En este estudio evaluó el grado de infestación del poliqueto espiónido del género *Polydora* en la Almeja Mano de León (Nodipecten subnodosus), considerando como variables de respuesta el crecimiento en tallas de la concha, y el peso de la masa muscular. Asimismo, se evaluó el grado de infestación de la esponja perforadora de sustratos calcáreos Cliona celata sobre la almeja. Esta investigación se desarrolló en la laguna Ojo de Liebre, Baja California Sur, México. Se recolectaron 30 organismos de enero 2013 a octubre 2015, en cuatro bancos almejeros (El Zacatoso, El Chocolatero, El Dátil y La Concha). Los intervalos de clases de tallas en las conchas fueron cinco, alcanzando el Dátil las mayores tallas (19cm), mientras que las menores se presentaron en el banco el Chocolatero (4.5cm). En términos de biomasa, el promedio del peso blando fue de 295.59±3.45gr. Para estimar la tasa de infestación, se contabilizó el número de 'ampollas de lodo' (0-9) y se calculó su porcentaje en ambas valvas por cada individuo, siendo el Chocolatero el más afectado con el 40%. Una prueba de t-test demostró diferencias altamente significativas en la abundancia de ampollas entre valvas ($t_s = 1.330$, P < 0.001), siendo la valva derecha o plana, la mayormente infectada, debido a que esta última es la valva más expuesta y por lo tanto la más accesible a la larva del espiónido. En cuanto al grado de infestación producido por Cliona celata, éste se evaluó mediante la presencia o ausencia de la esponja, siendo el banco más afectado el Chocolatero, durante los meses de marzo, julio y agosto del 2015; el Zacatoso en el mes de noviembre y mayo 2013, y en La Concha, en mayo y agosto 2014.

Abstract

In this study it was evaluated the degree of infestation of *Polydora* in *Nodipecten* subnodosus (lion's paw scallop). Response variables were growth, shell sizes and weight. This research was carried out in Laguna Ojo de Liebre, en Baja California Sur, México. Twelve sampling dates conducted from January 2013 to October 2015. There were 30 organism in four banks of clams (El Zacatoso, El Chocolatero, El Dátil y La Concha). It was found that sizes of clams could be classified in five categories, finding that El Dátil had the biggest sizes recorded (19cm), whereas El Chocolatero exhibited the smallest sizes (4.5cm) as well as the smallest weight (295.59±3.45gr). The number of blisters mud was recorded (0-9) and the porcentaje of damage in the shells was registered, finding that El Chocolatero was the most affected site 40%. The abundance in galeries was compared and analysed statistically t-test ($t_S = 5,786$, P < 0,001), finding that the right valve was the most infected (\overline{X} =1,63± 2.11 blister-shell ⁻¹). Regarding the degree of infestation produced by Clione celata, evaluated by the presence or absence of the species, results indicated that El Chocolatero was the site most affected during March, July and August, 2015; El Zacatoso during November and May, 2013, and La Concha in May and August 2014.

INTRODUCCIÓN

Los moluscos tienen un alto valor comercial por constituir una de las principales pesquerías de las zonas costeras, sin embargo, la explotación sin gestión adecuada para algunas especies, ha originado que los bancos naturales experimenten pérdidas disminuyendo desastrosamente en las últimas décadas (Ramírez- Castillo 2003).

En el ámbito mundial, los pectínidos representan un recurso pesquero muy importante, tanto en la zona templada como en la tropical (Morales-Hernández y Cáceres-Martínez 1996). Debido al preciado sabor y al alto contenido de nutrientes de su músculo abductor o "callo" (González-Anativia, 2002), su producción mundial se ha incrementado considerablemente en los pasados años (Uddin *et al.* 2007), principalmente como resultado de la actividad acuícola, que contribuye con más de 65% de la producción total (Fao 2010).

Los pectínidos son moluscos bivalvos generalmente conocidos como almejas, ostras o escalopas. Constan de una concha calcárea formada por dos valvas unidas dorsalmente por una charnela que encierra su cuerpo suave. Existen alrededor de 35 especies de interés comercial distribuidas en diversas partes del mundo (Ramírez-Castillo 2003).

De las especies de pectínidos que se distribuyen en el Pacífico mexicano, sólo tres son consideradas de importancia comercial: la almeja voladora *Pecten vogdesi*, la almeja Catarina, *Argopecten ventricosus* y la almeja mano de león *Nodipecten subnodosus* (Keen y Coan 1974). Esta última es una de las especies más grandes y de mayor interés comercial de esta familia de bivalvos de la región iberoamericana (Roldan-Carrillo, 2007)

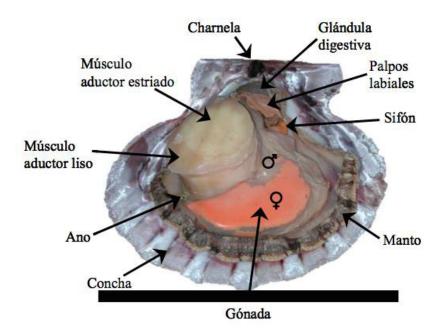
I a). CARACTERÍSTICAS DE ALMEJA MANO DE LEÓN

La almeja mano o garra de león, es la especie más grande de la familia Pectinidae en aguas tropicales del oeste americano (Roldan-Carrillo 2007). Anteriormente estaba comprendida dentro del género *Lyropecten* con el subgénero *Nodipecten* (Keen 1971, Abbott 1974). Sin embargo, después de una revisión taxonómica se encontró que el género *Lyropecten* ya sólo tiene una especie viviente *L. magnificus* en las islas Galápagos (Smith 1991, Skoglund 1991). Por tanto, el nombre científico válido de la almeja mano de león es *Nodipecten subnodosus* (Sowerby, 1835).

Esta especie se caracteriza por poseer grandes branquias adaptadas para la filtroalimentación y por ser un consumidor primario (Maeda-Martínez, *et al.* 2001; González-Estrada, 2003). Presenta una concha muy grande, fuerte, gruesa, convexa, sólida, y equivalva. Su coloración externa es variada e incluye tonos del marrón, crema con líneas o remiendos en púrpura hasta los tonos naranja, rojo ladrillo, púrpura o gris (Ruppert, *et al.* 2011) .(Fig. 1)

Fig. 1. Ejemplares de la almeja mano de león Nodipecten subnodosus.

La ornamentación externa del disco está formada por costillas radiales anchas en forma redondeada-rectangular y uniformemente espaciadas, con nueve costillas en la valva izquierda, donde se alternan una o más series de nódulos, mientras que la valva derecha carece de nódulos (Peña, 2001). Algunos organismos alcanzan una longitud de 218 mm (Félix-Pico *et al.*1999) y un peso con concha de 1 900 g (Reinecke-Reyes 1996). La talla más grande observada en la Laguna Ojo de Liebre es de 225 mm de longitud, 1900 g de peso total húmedo y 20 g de peso de músculo abductor (Maeda-Martínez, *et al.*, 2001).


Fig. 2. La ornamentación externa formada por nueve costillas en la valva.

Las caracteristicas morfológicas con mayor importancia para la identificación rápida de la especie son tres: (1) su tamaño, ya que se le considera la especie más grande y pesada de América tropical, debido a que su concha puede alcanzar una longitud de 218 mm (Reinecke, 1981) (2) las orejas, que son inequilteras ya que la anterior es más larga que la posterior, y (3) los nódulos huecos que representan alternativamente sobre costillas (9 a 10), de donde deriva su nombre común, porque que tiene semejanza a la garra de león (Félix-Pico, 1991).(Fig. 2).

MORFOLOGÍA.

Esta almeja posee alto grado de diferenciación anatómica, por lo que sus órganos se identifican fácilmente. Carece del músculo abductor anterior, pero tiene un gran músculo abductor posterior situado cerca del centro, que le sirve a los pectínidos para cerrar las valvas con fuerza e impulsar su nado (Benninger y Le Pennec, 1991).

El músculo abductor es de color blanco-cremosa, su función es la de locomoción y almacenamiento de reservas metabólicas en forma de glucógeno muscular y es precisamente esta sustancia lo que le confiere un especial consistencia y sabor al músculo o callo. (Fig. 3)

Fig. 3. Anatomía interna de la almeja mano de león *Nodipecten subnodosus* (Arellano-Martínez, 2005).

Reproducción.

Esta especie es hermafrodita funcional de rápido crecimiento, alcanzando 220 mm de longitud máxima (González- Estrada, 2003). Esto es, presenta una porción de ovario de color naranja, que ocupa la mayor parte de la gónada (Román *et al.*, 2001), cuya función es la formación de células germinales, utilizando para ello la energía almacenada en ciertos órganos, entre ellos el músculo abductor, lo que se traduce en variaciones en el rendimiento muscular relacionados con el ciclo reproductivo (Raccotta *et al.*, 2003) y otra de macho de color beige cuya intensidad varía con el grado de madurez (Fig. 4).

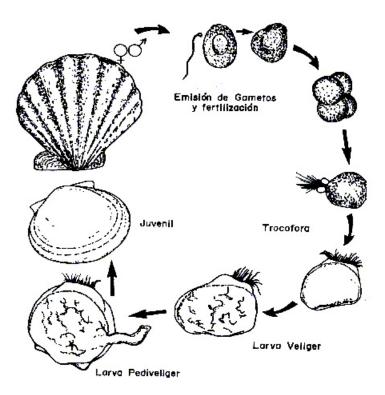


Fig. 4. Ciclo de vida almeja Mano de León.

No obstante que se producen ambos tipos de células sexuales (ovocitos y espermatozoides) al mismo tiempo no son liberadas simultáneamente con lo que se evita la autofertilización; por lo regular liberan primero el esperma y más tarde los ovocitos (Arellano-Martínez *et al.* 2004a).

En la actualidad no hay registros que determinen la longevidad en condiciones naturales (González-Estrada, 2003).

En los pectínidos como en la mayoría de los invertebrados, el almacenamiento y utilización de las reservas energéticas está relacionado con el ciclo reproductivo anual. Este ciclo a su vez está regido por los cambios estacionales de alimento. El incremento por una acumulación de lípidos y proteínas en la gónada ha sido frecuentemente asociado con el decremento de proteína del músculo, glicógeno y lípidos de la glándula digestiva (Ramírez-Castillo, 2003).

El ciclo reproductivo fue descrito por primera vez por Reinecke-Reyes (1996) en las poblaciones de Laguna Ojo de Liebre, y a pesar todo el año, y estableciéndose un periodo reproductivo de agosto a enero con máximas frecuencias de desove en octubre y diciembre. Posteriormente, en un estudio más exhaustivo, se determinó que el ciclo reproductivo muestra una clara estacionalidad relacionada con la temperatura del agua (Arellano-Martínez *et al.* 2004a). En un contexto general, el periodo de inactividad (estadios indiferenciados y desovados) se presentan desde diciembre a marzo, con bajos valores de temperatura del agua (16 °C a 17.5 °C) y un índice gonadosomático (igs) entre (6.4- 9.2). La gametogénesis inicia en abril cuando la temperatura del agua alcanza 18°C y continúa durante los meses cálidos. La máxima madurez gonádica (90% organismos) fue alcanzada en agosto cuando la temperatura (23.5 °C).

Por otro lado, el desove ocurre en septiembre cuando la temperatura del agua registra los (24 °C) y continúa a través de noviembre. Esto está en concordancia con las más altas concentraciones de semillas encontradas dentro de este periodo por García-Domínguez *et al.* (1992).

Además de la temperatura, la disponibilidad de alimento también juega un papel importante en la maduración gonádica (Arellano-Martínez *et al.* 2004b). Existen pocos datos sobre la talla de primera madurez, considerada como aquella a la que 50% de los individuos de una población ha alcanzado la madurez sexual (han dejado de ser juveniles) (Somerton, 1980).

Crecimiento de la almeja mano de león.

En el noroeste del Pacífico mexicano se han llevado a cabo estudios sobre el crecimiento de almeja mano de león en condiciones de cultivo; no obstante, los resultados de estos experimentos son contrastantes. Además de las variaciones en las tasas de crecimiento de un sitio a otro dentro de una misma región (Pacífico y Golfo de California)

La longitud de primera madurez de la especie se ha observado a una talla de 8.5 cm aproximadamente al año de vida y corresponden al tercer periodo de desove de la especie. Una almeja adulta alcanza 22 cm de altura, peso húmedo total de 1 900 gr. y el callo hasta 250 gr. (Maeda-Martínez *et al.*, 2001). (Fig. 5)

Fig. 5. Semillas juveniles de la almeja (Nodipecten subnodosus)

Distribución.

La distribución geográfica de *N. subnodosus* comprende desde la Laguna Manuela, B. C., México, hasta Paita Perú, (Rombouts, 1991). La especie también está registrada en el Golfo de California y se distribuye desde la isla Espíritu Santo hasta la isla Ángel de la Guarda en el estado de Baja California. Se distribuye en lagunas, bahías y canales profundos de más de 6m donde ocurre fuertes corrientes de mareas, con corrientes de agua elevadas (Maeda-Martínez *et al.* 2001; González-Estrada, 2003).(Fig. 6).

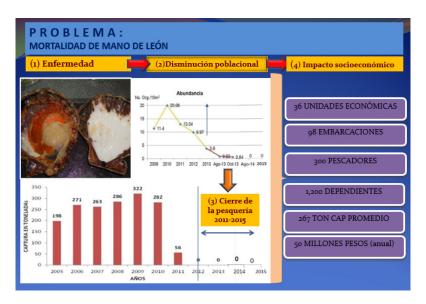
Fig. 6. Distribución de *Nodipecten subnodosus* (Keen, 1971) y ubicación de los cultivos piloto-experimentales CIBNOR-Productores (Mazón-Suástegui *et al.*, 2003).

Al igual que otros pectínidos, la almeja mano de león normalmente reposa en el fondo marino sobre su valva izquierda, principalmente en sustratos arenosos o areno-gravosos (Smith 1991), pero no son sésiles, ya que como algunos de este grupo pueden desplazarse nadando mediante la acción de corrientes enérgicas de igual que salen por las aurículas y que son provocadas por la contracción brusca del músculo abductor y al correspondiente cierre de las valvas. Por esto en algunos países son también conocidos como almejas peregrinas (Osuna 2004).

Si bien no hay estudios sobre las causas que originan los movimientos masivos de las poblaciones de esta almeja, algunos reportes sugieren que el fenómeno se presenta en la Laguna Ojo de Liebre (Gómez del Prado 1984; Massó-Rojas 1993, 1996).

Estudios como el de (Orensanz 1988) sugieren que en estos organismos el ciclo de vida es largo (siete a ocho años), la talla de los individuos se ve afectada por condiciones medioambientales, como la temperatura y la disponibilidad de alimento; concluyendo que las altas densidades pueden reducir la proporción del crecimiento individual y el rendimiento reproductor, debido principalmente a un limitado suministro de alimento, que aumenta el riesgo de mortalidad por tensión fisiológica.

TEMPERATURA.


Los intervalos de resistencia y tolerancia térmica, así como la temperatura óptima para el crecimiento de la almeja mano de león en juveniles de 7.29 + 0.42 mm de altura. Y se encontró una correlación positiva entre los indicadores fisiológicos (eficiencia de irrigación, aclareamiento, respiración, tasa de ingestión y desechos nitrogenados), con el crecimiento y que la temperatura optima en esta especie es de 22°C, lo cual se confirma con el incremento en peso. Y que el crecimiento de la concha a diferentes temperaturas no refleja las condiciones óptimas para el crecimiento de la especie. Mientras que el balance energético y la tasa de ingestión, son indicadores fisiológicos que reflejan los niveles óptimos para el crecimiento de los organismos a diferentes temperaturas (González-Estrada 2003).

SALINIDAD.

La almeja mano de león, son organismos epibentónicos que a diferencia de otros bivalvos, carecen de la capacidad de cerrar herméticamente las valvas para aislarse del medio externo ante condiciones adversas. Roldan – Carrillo (2007), afirma que *N. subnodosus* es una especie que tolera un amplio intervalo de salinidades con gran potencial para ser cultivada en zonas hipersalinas como las lagunas someras de Baja California, Guerrero Negro y laguna Ojo de Liebre y también en zonas normosalinas.

CONTEXTO ECONÓMICO

En mayo de 2011, fue reportada por los pescadores la mortandad masiva de esta almeja en la Laguna Ojo de Liebre. Este reporte de los pescadores venía acompañado por una solicitud de reducción de la talla mínima legal, ya que las almejas mayores a 14.0 cm de longitud de concha eran escasas. Por esta razón, en mayo de ese mismo año se realizó un reconocimiento en el interior de la laguna, que constató el fenómeno de mortandad masiva de individuos. (Fig. 7).

Fig.7. Impacto socioeconómico producido por la pérdida de la almeja mano de león (imagen tomada del informe SAGARPA, 2014).

Sobre las causas que originaron esta mortandad, que no sólo redujo el tamaño poblacional de forma importante, sino que también afectó el estado de salud de los organismos sobrevivientes, hubo varias versiones; empero, ninguna fue confirmada por la Comisión Federal para la Protección contra Riesgos Sanitarios (cofepris), que fue la autoridad, que se encargó de realizar los análisis bacteriológicos y parasitológicos necesarios para concluir con las causas de este evento.

Así que la pesquería en el medio natural de la almeja mano de león como consecuencia ha venido en decremento, y aunque no hay una causa aparente de tal fenómeno, se puede inferir que una sobreexplotación de la especie y su probable baja tasa de reproducción, puedan representar el principal motivo, sin embargo, son muchos los factores que podrían actuar, y pueden ir desde un repentino cambio en la temperatura media del agua, hasta la infestación de otros invertebrados a tal grado que se declaró una veda permanente.

I b). Poliquetos perforadores.

Existe una gran cantidad de especies de invertebrados que comúnmente coexisten con moluscos bivalvos explotados en el medio natural, o bien cultivados para su consumo. Estos pueden ser tipificados en dos grupos dependiendo de sus hábitos, por una parte, la fauna epibionte, la cual en ocasiones construye madrigueras en el exterior de ambas valvas, o bien, viven deambulando entre organismos fijos a las mismas valvas.

Por otra parte, se encuentran los gusanos poliquetos que perforan el carbonato de calcio y son denominados excavadores o perforadores como los de la familia Spionidae que es una de las más diversas y abundantes, contiene unas 1000 especies nominales en las comunidades bénticas. La mayoría de los espiónidos presentan diferentes tipos de hábitat en el medio marino, dominan en fondos blandos de aguas someras, aunque también se encuentran en aguas profundas incluso sus poblaciones frecuentemente forman masas densas que estabilizan el sedimento y ayudan en los procesos de colonización de otros organismos (Blake 1996). Son pequeños de (1mm a 5cm) y se alimentan arrastrando los palpos peristomiales sobre el sedimento, transportan las partículas de detritus hacia la boca, en ocasiones, con sus palpos capturan plancton y partículas suspendidas (Johnson 1984). Esta familia se considera como consumidores selectivos de depósitos superficiales, consumidores de partículas en suspensión o con ambas estrategias de alimentación (Dauer et al. 1981). La habilidad de los espiónidos de alternar entre estas dos formas de alimentación va a depender de la presencia o ausencia de los flujos de partículas suspendidas en la columna de agua (Taghon et al. 1980). Esta flexibilidad en su comportamiento alimenticio, se ve ligado a la plasticidad demostrada en la reproducción y desarrollo de muchas especies, dando como resultado una amplia distribución en los ecosistemas costeros (Blake 1996).

Cuando las partículas son muy grandes, se utilizan para construir tubos, los cuales son reforzados por secreciones mucosas, las partículas que utilizan para la construcción del tubo que capturan cuando las especies están en modo de alimentadores suspensívoros (Taghon *et al.* 1980).

Otra explicación en cuanto a su amplia distribución de los espiónidos, se presenta al estudiar su larva pelágica que vive largos períodos y es capaz de dispersarse por corrientes oceánicas. Sin embargo, para muchas especies, hay evidencia creciente de que su dispersión geográfica se debe al transporte en el lastre de agua de algunas embarcaciones (Carlton 1985; Carlton & Geller 1993). Así, como considerar la introducción de especies exóticas en bivalvos de importancia comercial como es el caso del ostión japonés (*Crassostrea gigas*), que pudiera servir como un camino a la introducción de poliquetos perforadores como es el caso de *Pseudopolydora kempi* y *P. paucibranchiata* (Blake & Woodwick 1975; Carlton 1975).

Complejo Polydora-Boccardia.

Este grupo de espiónidos está conformado por una amplia variedad de especies estrechamente relacionadas, ya que todas se caracterizan por poseer el 4° ó 5° setígero modificado (Fig.8). Dentro de los géneros *Polydor*a y *Boccardia* hay un gran número de especies que son capaces de perforar sustratos calcáreos, incluyendo las conchas de los moluscos bivalvos y gasterópodos de importancia comercial, (Ambariyanto and Seed 1991; Bailey- Brock 2000; Sato-Okoshi 2000; Sato-Okoshi and Takatsuka 2001, Sato-Okoshi *et al.* 1990, 2008; Walker 2011).

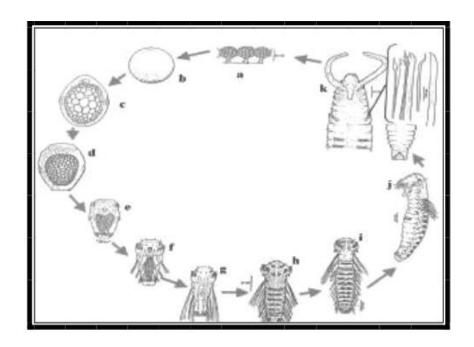

Tales como ostiones, (Handley & Bergquist 1997), escalopas (Evans 1969; Mortensen *et al.* 2000; Sato- Okoshi 1996; Sato- Okoshi *et al.* 2000), mejillones (Kent 1979), ostra perlera (Mohammad 1972) y abulones (Kojima and Imajima 1982; Lleonart *et al.* 2003; Sato – Okoshi *et al.* 2008; Simon *et al.* 2006). Estos poliquetos, que pueden alcanzar una talla de entre 5 a 40 mm y de 0.5 a 2 mm de ancho, viven en un tubo dentro de un orificio perforado en la concha del hospedero con dos aberturas al exterior.

Fig. 8. Parte anterior de *Polydora sp.*

Reproducción y ciclo de vida

Los polidóridos perforadores tienen reproducción sexual y asexual, la reproducción sexual es gonocórica, aunque el hermafroditismo se ha registrado para algunas especies de Polydora (Schroeder & Hermans 1975), ocurre en primavera y verano cuando hay incrementos de temperatura, la duración del período reproductivo varía dependiendo de la especie y la zona geográfica donde se encuentre y algunas especies se pueden reproducir varias veces por estación. Las hembras pueden producir de 8 a 45 cápsulas ovígeras que llegan a contener de 40 a 100 embriones dependiendo de la especie. El macho libera paquetes de esperma que la hembra introduce dentro del tubo en donde se libera y se realiza la fecundación, en otros casos el esperma es liberado cerca de los túbulos de las hembras hacia donde es arrastrado por las corrientes respiratorias para la fecundación (Blake 1996). La vida sexual de los polidóridos puede ser de uno a dos años.

Fig. 9. Ciclo de vida de un poliqueto del género Polydora. a) Cápsulas con huevecillos, b) Huevecillo, c) Larva sin setígeros vista ventral, d) Larva tardía sin setígeros, e) Larva temprana con un setígero, f) Larva temprana con tres setígeros, g) Larva tardía con tres setígeros, h) Larva con nueve setígeros, i) Larva con doce setígeros, j) Larva con catorce setígeros, k) Juvenil metamorfizado, pigidio y seta del quinto setígero modificado (Blake 1969).

Regeneración

Los polidóridos poseen capacidad de regeneración de segmentos de su cuerpo, a este proceso de reproducción asexual se le conoce como, arquitomía cuando segmentos individuales de un organismo pueden regenerar al organismo completamente, esta reproducción se ha reportado en laboratorio para *Polydora sociales* (Schmarda 1861; Blake & Arnofsky 1999) y la paratomía se desarrolla con la división de la mitad cuerpo y estas mitades se regeneran, en este caso, una de las mitades del cuerpo puede permanecer unida a la primera mientras se da la regeneración. Se ha observado experimentalmente que *Polydora websteri* regenera las setas del quinto segmento con facilidad y justamente son estas setas las que ayudan a la perforación de la concha del hospedero. Por otro lado, los estudios realizados por el laboratorio se ha observado que *Polydora sp.* nov. asociado a la

almeja arenera *Chione fluctifraga* es capaz de regenerar un organismo completo a partir de la parte anterior o cabeza, la parte media o tronco y de la parte posterior o pigidio (Fig. 10) el organismo se regenera completamente en un período de 32 a 40 días. Esta extraordinaria capacidad de regeneración tiene un efecto dramático en la supervivencia de la especie y en la recolonización de sustratos, sobre todo en condiciones de cultivo y manejo inadecuado del mismo como se verá más adelante.

Sección	Cicatrización	Aparición de protuberan- cia	Estructura regenerada	Estructura regenerada tamaño normal
Anterior (Cabeza)	2 – 3 días	4 días	6 - 7 días	32 - 36 días
Media Cabeza	2 - 3 días	9 – 12 días	21 – 26 días	34 - 40 días
Tronco Pigidio	2 – 3 días	4 días	6 - 7 días	32 - 36 días
Posterior (Pigidio)	2 - 3 días	9 – 12 días	21 - 26 días	34 - 40 días

Fig. 10. Eventos de regeneración de segmentos de *Polydora* sp. nov. (Tinoco 2001).

Algunas especies de este grupo tienen varios modos de desarrollo en su ámbito geográfico, o época del año; esto es un fenómeno que se conoce como peciligonia, y algunas de estas características son: vida planctónica más larga y presencia de huevos no fertilizados en las cápsulas que influyen en la nutrición de la larva (Blake & Arnofsky 1999), éste fenómeno se ha observado en especies como *Boccardia* (Gibson *et al.* 1999; Morgan *et al.* 1999). Estos espiónidos exhiben una considerable variabilidad en la selección del hábitat, modos de vida, métodos de alimentación, reproducción y patrones de desarrollo; esto probablemente ha influido en su capacidad de adaptarse a varios procesos biológicos que contribuyen a la existencia de especies de amplia distribución y el eventual establecimiento de nuevas especies.

La infestación por espiónidos poliquetos perforadores, particularmente los pertenecientes al complejo Polydora, constituyen un serio problema para los moluscos tanto en el medio natural como en las pesquerías (Ambariyanto y Seed 1991; Bailey-Brock 2000; Blake 1996; Blake and Evans 1973; Cremonte 2011; Lauckner 1983; Radashevsky 1993; Radashevky et al. 2006; Read 1975; Sato-Okoshi, 1999, 2000; Sato-Okoshi and Okoshi, 1997; Sato Okoshi y Takatsuka 2001; Sato-Okoshi et al. 1990, 2008 Walker 2011). Cuando la intensidad de la infestación es alta, es asociada frecuentemente a períodos de condición pobre en bivalvos suspensivoros (Silina & Zhukova 2009), provocando daño en la concha y reduciendo su rango de crecimiento (Silina 2006), hasta incrementar su mortalidad (Bergman et al. 1982). Existe un alto riesgo de infestación ya que estos perforadores inician su colonización con la fijación en la fase juvenil a las valvas de la almeja y con la construcción de tubos de lodo para refugiarse, posteriormente construyen túneles (Martin & Britayev 1998) y los sitios de elección son aquellos principalmente ricos en fitoplancton y materia orgánica proveen el alimento para su rápida colonización.

El daño de la almeja mano de león se produce cuando el poliqueto perforador penetra en la superficie interna de la concha y el contacto con el molusco estimula la secreción de conquiolina para mantenerlo aislado, creando una "ampolla de lodo", Asimismo, se cree que el gasto energético durante la secreción de conquiolina retarda el crecimiento, aumenta la mortalidad (Almeida *et al.* 1996) y reduce la capacidad para acumular reservas nutricionales debilitando la condición fisiológica del bivalvo haciéndose vulnerable a las enfermedades (Wargo & Ford 1993). De tal manera que el entendimiento integral del proceso de infestación permitirá la oportuna aplicación de estrategias de control del problema.

I c). Esponjas perforadoras de sustratos calcáreos.

Las conchas de los moluscos también pueden ser invadidas mediante el asentamiento de larvas o gémulas, o bien, mediante el contacto directo con esponjas adultas (Warburton 1958; Rosell 1993, 1996). Éste último mecanismo acelera significativamente la invasión de

la concha, sobre todo cuando el molusco se desarrolla sobre sustratos calcáreos invadidos, ya sean algas calcáreas o restos de conchas de otros moluscos (Rosell *et al.* 1999).

Para prevenir la penetración de la esponja, los bivalvos incrementan la deposición de carbonato en la concha, perdiendo una importante cantidad de energía necesaria para crecer (Wilbur & Saleuddin 1983; Stefaniak *et al.* 2005). Cuando los moluscos son preparados para su venta, las conchas se rompen con facilidad al intentar abrirlas, o bien el bivalvo adquiere un fuerte olor desagradable provocado por la esponja, que muere después de que la concha es extraída del agua (Warburton 1958). Como consecuencia, disminuye significativamente el valor comercial del molusco, si es que antes no lo mata debido al estrés (Alagarswami & Chellam 1978), o por la destrucción completa de la concha (Guida 1976). Al perforar la región donde se sujeta el músculo abductor, también se disminuye la efectividad del mecanismo de cierre de la concha (Thomas 1981), y aumenta la posibilidad del molusco de ser depredado (Guida 1976; Pomponi & Merit 1985).

Clasificación taxónomica.

Phylum Porifera Clase Demospongiae Familia Clionaidae d'Orbigny, 1851

Características Generales.

Las esponjas pertenecientes al Phylum Porifera son organismos acuáticos muticelulares más primitivos y simples que se conocen y es un grupo clave para entender la evolución de los metazoarios (Erpenbek y Worheide 2007).

Su nombre deriva del latín porus (poro) y del griego phor sis (que posee).

Su organización estructural está conformada generalmente de un sistema con diferentes niveles de complejidad de canales acuíferos. En esencia, una esponja es una agrupación de células que funcionan juntas, pero con poca integración y control de sus actividades celulares. Carecen de órganos o tejidos, pero presentan células con un grado muy alto de independencia. Una de las células típicas de las esponjas son los coanocitos, células

flageladas que se encargan de crear el flujo interno de agua, de atrapar y digerir las partículas de alimento, de absorber el oxígeno y de expulsar sustancias de desecho. No obstante, su gran éxito se debe probablemente a que poseen un tipo de células llamadas arqueocitos, con una habilidad única en el reino animal ya que tienen la capacidad de transformarse en cualquier otro tipo de célula que la esponja necesite, además de servir como un sistema único de reparación celular. Este diseño estructural, aunque aparentemente simple, les ha permitido sobrevivir a muchas crisis y extinciones durante los últimos 600 millones de años.

Estructura de las esponjas.

De acuerdo a la complejidad de su estructura interna, las esponjas se clasifican en asconoides, siconoides y leuconoides. Entre las características que comparten en general hay una cavidad interna llamada ESPONGOCELE, que se comunica al exterior mediante poros pequeños llamados OSTIOLOS, que funcionan como poros inhalantes y por los OSCULOS (uno solo en las esponjas asconoides), que funcionan como poros exhalantes. Ambos tipos de poros, están formados por una única célula llamada porocito, que se extiende desde el exterior hasta el espongocele. (Fig. 11).

Fig.11. Estructura de las esponjas.

Reproducción de Esponjas Perforadoras.

Este grupo particular de esponjas pueden reproducirse tanto asexual como sexualmente (Shirley & Donald 1985, Pomponi & Meritt 1985), pero tanto la biología reproductiva, como el desarrollo larvario de las esponjas perforadoras, son temas desconocidos.

La reproducción asexual puede llevarse a cabo por fragmentación, gemación y gemulación. La fragmentación se ha observado únicamente en algunas especies masivas, como *Cliona celata*, en la cual se producen fragmentos de la esponja por la acción de olas o las corrientes, o incluso por la depredación. La gemación es una división desigual, que consiste en la formación de prominencias o yemas sobre el individuo progenitor, que al crecer y desarrollarse origina nuevos seres que pueden separarse del organismo parental o quedar unidos a él, iniciando así un nuevo individuo o colonia. La formación de yemas es un método reproductivo común entre las esponjas marinas, sin embargo, en el grupo de las perforadoras solo se ha observado ocasionalmente. Este tipo de reproducción se ha registrado en algunas especies como *Cliona viridis*, la cual, produce yemas durante los meses de agosto y octubre respectivamente (Rosell & Uriz 2002). Los fragmentos desprendidos ambos tipos de reproducción no presentan una clara organización.

Algunas especies pueden ser hermafroditas como *Cliona viridis* (Mariani 2001), o dioicas (Pomponi & Merit 1985), e incluso un mismo individuo puede alternar la producción óvulos y espermatozoides en diferentes épocas del año. Al igual que en muchas demosponjas, el origen de los gametos no está claramente establecido, sin embargo, se cree que estos derivan de coanocitos y arqueocitos (Pomponi & Merit 1985).

El desarrollo y la maduración de estos elementos reproductivos están estrechamente vinculados con la temperatura del agua de mar, y se sabe que algunas especies como *Cliona vermifera y C. viridis* inician su actividad reproductiva cuando la temperatura del agua se incrementa (frecuentemente al inicio del verano), y algunas otras incrementan su actividad cuando la temperatura desciende.

Las larvas presentan una capacidad muy limitada para nadar. Al parecer, los pocos casos conocidos, éstas se desplazan arrastrándose sobre el fondo mediante un ligero movimiento frontal, acompañado de rotaciones continuas alrededor de su eje longitudinal.

En condiciones de laboratorio, se ha demostrado que el establecimiento de la larva de *Cliona viridis* tiene lugar dentro de las 24 hrs después de su liberación, desarrollándose en esponjas juveniles entre los 10 y 15 días posteriores a la fijación (Mariani *et al.* 2001).

Características de la familia Clionaidae.

Los miembros de esta familia desempeñan un papel muy importante en la erosión de los sustratos calcáreos marinos, como conchas de moluscos, corales, algas calcáreas tienen la habilidad de excavar substratos de carbonato de calcio creando galerías conectadas por túneles entre el sustrato que van ocupando (Rutzler 1975; Calcinai et al. 2004). Los elementos esqueléticos principales en esta familia incluyen tilostilos como espículas principales, con presencia de oxas en algunas especies. Las espículas accesorias microescleras pueden estar ausentes, en algunas especies o poblaciones localizadas. están presentes incluyen tipos de espirásteres, anfiásteres, microoxas o Los microráfides pueden ser lisos o microespinados, rectos, ondulados ráfides. espiralados. Los géneros presentes en el Pacífico mexicano para esta familia incluyen Cliona, Cliotosa, Thoosa, Pione y Spheciospongia. (Fig. 12)

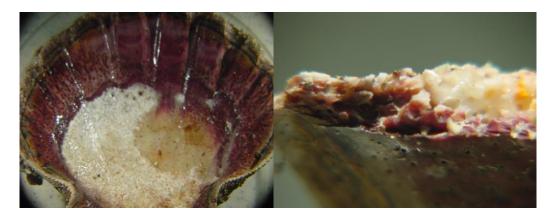
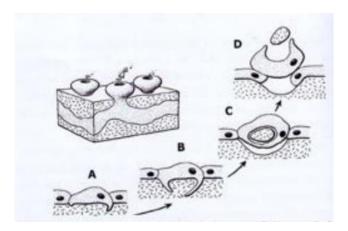



Fig. 12. Esponja de la familia *Clionidae*.

Fisiología de la Bioerosión.

Desde el primer registro de una esponja perforadora de material calcáreo (*Cliona celata* Grant, 1826), dio comienzo una controversia sobre el procedimiento empleado por estos organismos para excavar sustratos calcáreos. A partir de este descubrimiento se propusieron varios mecanismos para explicar la naturaleza de este fenómeno, que incluían procesos tanto químicos como mecánicos.

Una de las primeras contribuciones la hizo Nassonov en 1883, cuando estableció que el proceso ocurría a nivel celular, y que el sustrato era extraído mecánicamente en forma de partículas hemiesféricas. Posteriormente, se sugirió que en este proceso mecánico estaban involucradas células contráctiles con pseudópodos (Topsent 1887), y con capacidad de diluir químicamente el carbonato mediante la secreción de enzimas (Cotte 1902) (fig.13).

Fig. 13. Secuencia del proceso de bioerosión. A) Tres células en contacto con el sustrato calcáreo a punto de comenzar el proceso, B) Penetración inicial de los pseudópodos durante el proceso celular por disolución química del sustrato. Esta sustancia es secretada a través de pseudópodos los cuales disuelven el carbonato y se abren paso a través del sustrato. C) Englobamiento del sustrato como paso previo a su expulsión al medio D) Expulsión de la partícula calcárea al sistema acuífero de la esponja (Tomado de Ruppert 2003).

Hoy, se sabe que el proceso de bioerosión por esponjas incluye una fase mecánica y una química, que involucra células especializadas (arqueocitos) que secretan anhidrasa carbónica y fosfatasa, que permiten a estas células extraer partículas de carbonato de calcio,

disolviendo una parte significativa del carbonato en el proceso. La posterior remoción de los fragmentos desprendidos del sustrato principal, incluye la fase mecánica, en la cual, los restos del material calcáreo son transportados por el sistema acuífero de la esponja, y posteriormente son expelidos al exterior a través de sus papilas excurrentes (Rutzler & Rieger 1973).

El resultado final de la bioerosión es la formación de un complejo sistema de galerías y cámaras interconectadas dentro del sustrato calcáreo donde habita la esponja. La comunicación con el ambiente externo se mantiene a través de papilas inhalantes y exhalantes que se extienden desde las cavidades internas a la superficie del sustrato (Fig. 14).

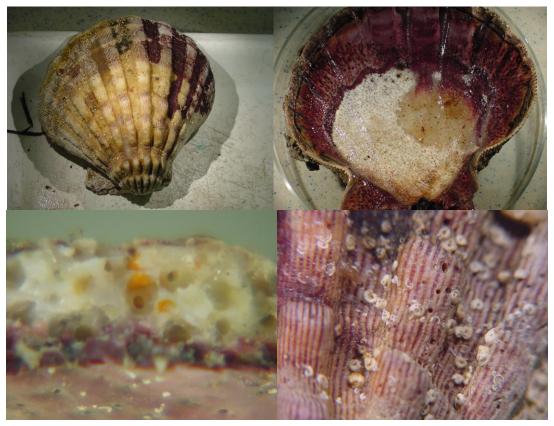


Fig. 14. Ejemplo de la bioerosión de la esponja perforadora en la concha de la almeja.

Las cámaras varían en forma y tamaño según la especie. En general son pequeñas (de 0.5 a 1.5 mm de diámetro), y con el eje mayor paralelo a la superficie del sustrato. Las paredes internas de las galerías presentan superficies erosionadas con formas muy características que pueden ser utilizadas como un elemento diagnóstico en la evaluación de registros fósiles (Rutzler & Rieger 1973), o como un elemento taxonómico adicional para diferenciar géneros de esponjas perforadoras (Calcinai *et al.* 2003).

Efectos en los cultivos de moluscos.

La causante de la mayoría de los problemas en los cultivos de moluscos de importancia comercial es la especie *Cliona celata* Grant 1826. Esta, es una de las especies distribuidas más ampliamente por el mundo, ya que ha sido encontrada en cultivos de ostras en Louisiana (Turner 1985), en diversas zonas del Caribe (Thomas 1981), Sydney (Australia) (Wesche *et al.* 1997), y en los cultivos de abulones en Francia (Clavier 1992). Otra de las especies perjudiciales para los cultivos de moluscos de importancia comercial es *Cliona truitti*, que puede causar hasta el 75% de las pérdidas de los cultivos de *Crassostrea virginica* (Pomponi & Merit 1990). De hecho, el 90% de los moluscos en cultivo en la Bahía de Chesapeake, E.U.A., estaban invadidos por la esponja *C. trutti* (Pomponi & Merit 1990).

II. OBJETIVO

Evaluar el impacto de los organismos perforadores sobre la almeja Mano de León en la Laguna Ojo de Liebre, Baja California Sur.

II. a). OBJETIVOS PARTICULARES

- Establecer las especies de anélidos poliquetos y esponjas que perforan la almeja Mano de León (*Nodipecten subnodosus*) en la Laguna Ojo de Liebre, Guerrero Negro, Baja California Sur.
- Analizar la variación espacial y temporal de los organismos perforadores de la almeja mano de León en la zona de estudio.
- Evaluar el grado de daño producido a las valvas de la almeja Mano de León en la zona de estudio.

II.b). Justificación.

El grado de incidencia de organismos perforadores está dado por cambios climáticos y físicoquímicos que afectaron el estado de salud de la almeja *Nodipecten subnodosus* por lo que la infestación de organismos perforadores deterioro esta especie en la laguna Ojo de liebre jugando un papel importante el hacer una evaluación del daño producido en ellas.

III. ANTECEDENTES

Los estudios de los organismos perforadores de moluscos de importancia comercial se han realizado principalmente en maricultivos (Baxter 1984; Boscolo & Giovanardi 2002; Lleonart *et al.* 2003; Mazurie *et al.* 1985; Mortesen *et al.* 1999; 2000), ya que es ahí es donde se evidencia y cuantifica el daño causado por estos pequeños invertebrados. La infestación de estos bivalvos de importancia comercial por poliquetos de la familia Spionidae, principalmente son de los géneros *Polydora, Dipolydora, Carazziella* se han documentado en muchas ocasiones, por lo general en las especies del género *Crassostrea* (Diez *et al.* 2011).

Por esta razón, se podrían separar las aportaciones por especie bajo cultivo, predominando los estudios sobre ostiones del género *Crassostrea* entre los que se pueden mencionar:

Wargo & Ford (1993), investigaron el efecto de infestación en la concha de *C. virginica* producida por *Polydora sp.* en la bahía de Delaware, E.U.A.

Handley (1995,1998), evalúa en el ostión del Pacífico (*C. gigas*), el daño producido por seis especies de espiónidos perforadores (*P. websteri, P. hoplura, Boccardia acus y B. atokuica, y B. chilensis*), en Nueva Zelandia.

Handley & Berquist (1997), estudian el daño en *Crassostrea gigas* por *Polydora websteri*, *P. hoplura*, *Boccardia. acus*, *B. knoxi y B. chilensis* en el norte de Nueva Zelandia.

Bower (2001), realizan una sinopsis de la enfermedad producida por esponjas (*Cliona celata*) y poliquetos perforadores de los ostiones de importancia comercial (*C. virginica y C. gigas*) en el oeste de Australia.

Radashevsky *et al.* (2006), investigan la biología y morfología de cuatro especies de poliquetos perforadores de especies introducidas (*Polydora ecuadoriana*, *P. rickettsi*, *P. cf. haswelli y Polydora carinhosa*) en cultivos de *Crasssostrea gigas*, *C, virginica*, *C, websteri* en costas de Sudamérica, Brazil.

Sato-Okoshi *et al.* 2012, estudian siete especies de espiónidos perforadores asociadas a las conchas de cultivos de *Crassotrea gigas* en aguas de Corea.

En México, existen pocos reportes de infestaciones principalmente en cultivos de ostiones:

Cáceres-Martínez *et al.* 1998, describen el daño producido por la *Polydora sp.* en cultivos del ostión del Pacífico (*C. gigas*) en Baja California al noroeste de México.

Gallo-García *et al.* 2001a, 2007, determinaron la prevalescencia e intensidad de espiónidos perforadores asociados a las valvas del ostión del Pacífico (*Crassostrea gigas*) cultivado en la Laguna de Barra de Navidad, Jalisco.

Gallo-García *et al.* 2004. Evalúan los tratamientos en la intensidad de poliquetos a las valvas de ostión *Crassostrea gigas* en la Laguna de Barra de Navidad, Jalisco.

Gallo-García y García-Ulloa 2005. Estudian la presencia de *Boccardia sp.* (Polychaeta: Spionidae) en el ostión *C. gigas* en la costa media del Pacífico mexicano.

Han causado considerables pérdidas económicas también en otros cultivos de importancia comercial como:

Bivalvos

Beltran *et al.* 2005, estudia las conchas de Crepidula fecunda en relación a la infestación de Polydora rickettsi en Yaldad Bay, Chiloe, Chile.

Boscolo & Giovanardi, (2002), realizan un estudio sobre la infestación producida por la *Polydora ciliata* en la almeja *Tapesphilippinarum manila* en el océano Adriático, Italia.

Díaz-Díaz & Liñero-Arana (2003), analiza los poliquetos asociados al bivalvo de la familia: Isogmonidae en la costa nororiental de Venezuela.

Tinoco-Orta y Cáceres-Martínez (2003), investigan la infestación del poliqueto perforador de *Polydora sp. nov.* en cultivos de la almeja *Chione fluctifraga*.

Simon (2009, 2011), describe dos nuevas especies de *Polydora* y *Dipolydora* asociadas con moluscos en el sur de las costas de Sudáfrica.

Silina y Zhukova (2009), estudian la relación trófica en un cultivo de escalopas japonesas (*Mizuhopecten yessoensis*) y los poliquetos perforadores (*Polydora brevipalpa*) en la Bahía Peter del mar de Japón.

Abulón.

Kojima & Imajima 1982, estudian los poliquetos perforadores de la concha de abulón (*Haliotis diversicolor aquatilis*) en Japón.

Clavier (1992), analiza la infestación de la concha de abulón (*Haliotis tuberculata*) producido por la esponja *C.celata* y la *Polydora* en la costa norte de Bretaña.

Lleonart *et al* (2001, 2003 a,b), realiza estudios con el espiónido perforador *Boccardia knoxi* en cultivos de abulón (*Haliotis sp.*) de Australia.

Radashevsky *et al.* (2005), estudian en un cultivo de *Halotis discus hannai* el daño del poliqueto perforador (*Polydora uncinata*), transportado como larva de Japón a un estanque de cultivo en Coquimbo, Chile.

Simon (2006, 2007, 2011), estudia el proceso de infestación producido por espiónidos (*P. hoplura, Boccardia proboscidea, B. polybranchia*) en cultivos de *Haliotis midae*, en el sur de las costas de Sudáfrica.

Sato-Okoshi *et al.* (2012), investiga el efecto producido por siete especies de espiónidos (*P. haswelli, P. aura, P, uncinata, P. limícola, Dipolydora giardi, D,alborectalis, Boccardiella hamata*) en cultivos de *Haliotis discus, discus* en Corea.

Pocos han sido hasta el momento los estudios con los que se cuentan de la infestación producida en las conchas en los bancos naturales de Bivalvos:

Ciocco *et al.* (1990, 2005), estudian la infestación de la escalopa, *Chlamys tehuelcha*, producida por la *P.websteri* en el Golfo de San José, (Chubut, Argentina): un enfoque cuantitativo.

Olivares Varas C. (2006), determina la relación del poliqueto perforador Polydora bioccipitalis en el Bivalvo (*Mesodesma donacium*) en Bahia Tongoy, Coquimbo, Chile.

Silina (2006), evalúa la infestación producida por *Polydora* en las conchas de la escalopa japonesa *Patinopecten yessoensis* en diferentes sustratos y edades en el noroeste del mar de Japón.

Díaz-Díaz y Liñero-Arana (2009), evalúa el porcentaje del grado de infestación de *Polydora cf. websteri* por clase de talla de *Crassostrea rhizhophorae* de la Laguna La Restinga (Isla Margarita, Venezuela).

Diez et al. (2011), investigan el daño producido por los poliquetos espiónidos perforadores en las conchas de seis bivalvos de importancia comercial (Aequipecten tehuelchus, Mytilus sp., Aulacomya atra, Ostrea puelchana, Prothothaca antiqua, Pododesmus rudis) al norte de la Patagonia, Argentina.

Diez et al. (2013), estudian la infestación en la concha de Aequipecten tehuelchus causado por la Polydora rickettsi en la Patagonia, Argentina.

IV. ÁREA DE ESTUDIO.

Este estudio se llevó a cabo en la Laguna Ojo de Liebre, Guerrero Negro al noroeste de Baja California Sur, entre los 27°55'N y 27°35'N y 114°20 113°50'W, siendo parte importante del complejo lagunar de la bahía Sebastian. Esta laguna cuenta con una superficie de 366 km² se caracteriza por un sistema complejo de canales ramificados con profundidades mayores de 3m, y cuya área es de 171 km². (Sánchez 1991) (Fig. 15).

Fig.15. Área de estudio, detallando la posición de los cuatro bancos almejeros evaluados.

En estas zonas de canales están separados por grandes áreas de ``bajos´´ donde abunda el pasto marino (Reinecke- Reyes 1996). La mayoría del sedimento es fino a muy fino, con arena media en los canales, los limos y arcillas se presentan en el interior de la laguna (Phleger y Ewing 1962).

La temperatura varía entre 16°C y 24°C y la salinidad se presenta con gradientes hipersalinos (Lankford 1977), con valores en la parte interna de laguna de hasta 47 ups (Contreras 1985).

El clima del área es seco y árido, del tipo desértico. La precipitación anual es de 180 mm, y es ocasionada principalmente por las lluvias de las tormentas tropicales que se presentan verano y otoño. La evaporación anual es de 215 mm al año excede la precipitación anual (Obeso-Nieblas y Jiménez- Illescas 1989).

Las corrientes predominantes no sobrepasan los 4k/h pero pueden ser muy turbulentas, la altura de mareas esta 1,2 y 2.7m. las profundidades máximas de la laguna es de tipo con

barreras arenosas, sin desembocadura de ríos poco frecuentes forma y batimetría variable modificadas por procesos costeros; energía generada principalmente por corrientes de marea en sus canales y boca, reducida en los bajos y bancos de arena (Lankford 1977).

Los bancos estudiados (el Zacatoso, El Chocolatero, El Dátil y la Concha) se encuentran ubicados en la laguna Ojo de Liebre con las siguientes coordenadas geográficas.(Fig. 16).

Banco El Zacatoso	27°51'45''N	114°12'19''W	
Banco Chocolatero	27°53'04''N	114°15'06''W	
Banco El Dátil	27°48'43''N	114°15'06''W	
Banco La Concha	27°50'35''N	114°16'22''W	

Fig. 16. Coordenadas de los bancos de estudio.

V. MATERIAL Y MÉTODO.

V.a). Muestreos.

Las colectas se realizaron mediante apoyo logístico de una cooperativa pesquera de la zona, utilizando para tal efecto una panga con motor fuera de borda y un buzo que obtuvo las muestras. En cada banco de almejas se recolectaron de 16 a 30 organismos, posteriormente se colocaron en bolsas de polietileno selladas de manera independiente para evitar la pérdida o mezcla de organismos epibiontes. Se registraron los datos de cada banco y los ejemplares fueron llevados al laboratorio. (Fig. 17)

Fig. 17. Metodología de la recolecta en los bancos almejeros estudiados.

V b.) Laboratorio.

Una vez que se obtuvieron las muestras, se hicieron los análisis biológicos de los ejemplares en el laboratorio del Centro de Investigaciones Biológicas del Noroeste en Guerrero Negro para ser procesadas CIBNOR (**Fig.** 18).

Fig. 18. Laboratorio (unidad Guerrero Negro).

Crecimiento y talla.

Para la obtención de los datos de crecimiento en talla de la concha, se realizó la medición de al menos 30 individuos tomados al azar de cada banco experimental, estableciendo la distancia máxima entre la parte anterior y posterior de la valva (Longitud antero-posterior = L), la distancia entre el ápice y la comisura o margen inferior de la valva (Altura dorso-ventral = A) y la distancia máxima de la parte externa entre valvas derecha e izquierda cerradas (espesor = E), utilizando un vernier digital de 0 a 152 mm con una precisión de ± 0.01 mm, (Osuna 2004).

Fig. 19. Criterios morfométricos en las valvas de la almeja.

V b). MANEJO POSTMUESTREO.

La biometría de las almejas se realizó con la ayuda de un vernier de 0.01 mm de precisión midiendo: altura, longitud y espesor; así mismo, con el apoyo de una balanza analítica se tomó el peso blando, glándula digestiva y callo.

La biometría de las almejas se realizó con la ayuda de un vernier de 0.01 mm de precisión registrando los datos de altura, longitud y espesor en centímetros. Asimismo, con el apoyo de una balanza analítica se pesó el total del cuerpo blando, así como la glándula digestiva, el músculo abductor y la gónada en gramos. (Fig. 20)

Fig. 20. A) Altura; B) Espesor; C) Longitud; D) Disección; E) Peso total del cuerpo blando; F) Gónada; G) Glándula digestiva; H) Músculo abductor.

V.c). Obtención de espiónidos (Polydora).

Se contabilizo el número de ampollas (tanto en la valva superior como en la inferior), y el número *Polydoras* después de fragmentar ambas valvas para cada espécimen y posteriormente se preservarón al 70% en alcohol. Se observaron con un microscopio estereoscópico y se etiquetaron para su identificación con claves especializadas hasta el nivel taxonómico de especie (Fig. 21).

Fig.21. Extracción de poliquetos perforadores.

V.d). Imágenes del microscopio electrónico.

Con el apoyo de las fotografías del microscopio de barrido, se encontró con una especie de poliqueto perforador del género *Polydora* aparentemente nuevo para la ciencia, el cual pertenece al grupo de especies que poseen manchas obscuras en la parte anterior y palpos anillados. Además de contabilizarlos se está trabajando con la descripción taxonómica de la nueva especie (Fig. 22).

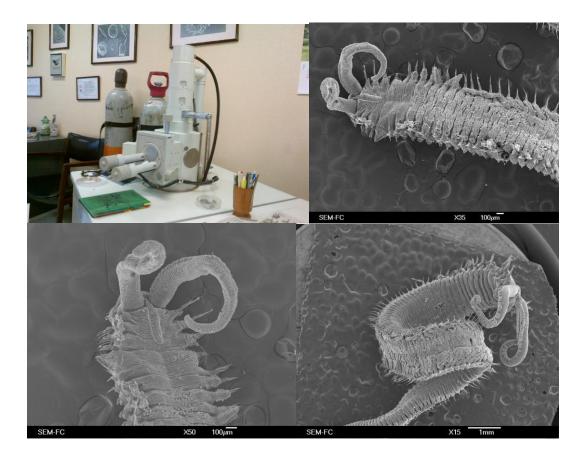


Fig. 22. Fotografías de *Polydoras* obtenidas del microscopio electrónico de Barrido.

V e). Fotografía de las valvas.

Se obtuvieron fotografías de cada una de las almejas con el fin de documentar el grado de afectación, se separaron los poliquetos perforadores, con ayuda de un microscopio estereoscópico y se contabilizaron el número de ampollas por valva, así como la presencia y ausencia de la esponja *Cliona celata*. (Fig. 23)

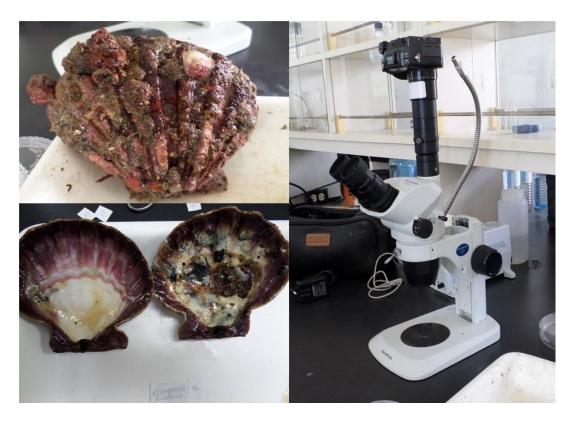


Fig. 23. Fotografía de valvas presentando el daño producido.

V f) Captura de datos morfométricos.

Se registraron los siguientes datos para cada banco de estudio y por salida: el nombre, fecha, número de almeja (altura, longitud, espesor, peso blando total, gónada, glándula digestiva, músculo abductor), número de ampollas de lodo en la valva superior e inferior, presencia o ausencia de la esponja *Cliona celata*, número de *Polydora* por valva y observaciones tales como: deformaciones en la concha, coloración negra orilla de la concha, etc. (Fig. 24).

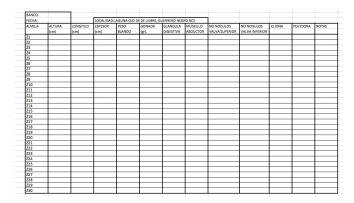



Fig. 24. Tabla de datos morfométricos.

V g). Procedimientos para la obtención de los porcentajes de ampollas de lodo.

PHOTOSHOP.

Se utilizó este programa con el objetivo de delimitar el perímetro de ambas valvas y las ampollas de lodo en las almejas, con el propósito de calcular así las áreas de cada una de ellas. (Fig. 25).

Fig. 25. Foto de la valva en el programa de Photoshop.

IMAGEN PRO-PLUS

Una vez obtenido el contorno de las conchas y de las ampollas de lodo se utilizó el programa imagen pro-plus para calcular el área total de las mismas.

Posteriormente con la herramienta **Create Polygon feature**, automáticamente arrojo el área total de la concha y de cada una de las ampollas. Y por último se calculó el porcentaje de daño de cada una de las ampollas

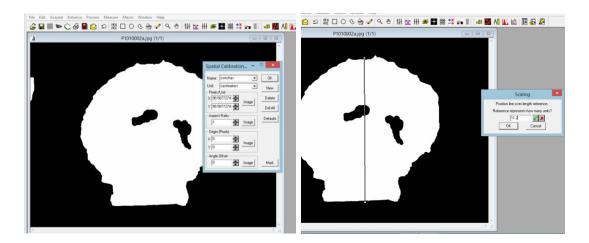


Fig. 26. Programa imagen Pro- plus.

Una vez obtenidos los resultados de las áreas se registraron los siguientes datos: número de almeja dañada y banco al que pertenece; área de la valva; número de ampollas; área de ampollas; porcentaje de daño total producido por las ampollas de lodo en la valva superior e inferior. (Fig. 27)

AZ-1	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	Ktotal de ampollas		datos de la valva superior de la concha
valva superior	141.1783		1 1.546274			0.51%		datos de la valva inferior de la concha
valva inferior	163.4006		0 0					Area total de daño
						1.546274		Area total de la concha las 2 valvas
						304.5789		% de daño total de la concha
AZ-2	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas		
valva superior	101.6724		5 0.5781662			0.64%		
varva superior	101.0724		0.0948018		1.17957676	0.04%	1.3009764	
	+		0.3174791				1.2002709	
	+	 	0.1541242					
			0.1564051					
valva inferior	101,9039		0					
			•			1.3009764		
						203,5763		
AZ-3	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas		
valva superior	71.1869		3 1.50941	2.12034799	2.9800962	1.49%		
			0.139975	0.19663028			2.1214381	
			0.4720531	0.66311793		2.1214381		
valva inferior	71.06782		0 0		0	142.25472		
AZ-4	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas		
valva superior	95.08473		6 1.058785		2.61744478	1.31%		
			0.0448099				2.4887903	
			0.0479018					
			0.7029339					
			0.5109979					
			0.1233618	0.12973881		2.4887903		
valva inferior	95.12343					190,20816		

Fig. 27. Tablas de los porcentajes de daño producido por las ampollas de lodo en las conchas.

V h). Estudio Rayos X en las valvas.

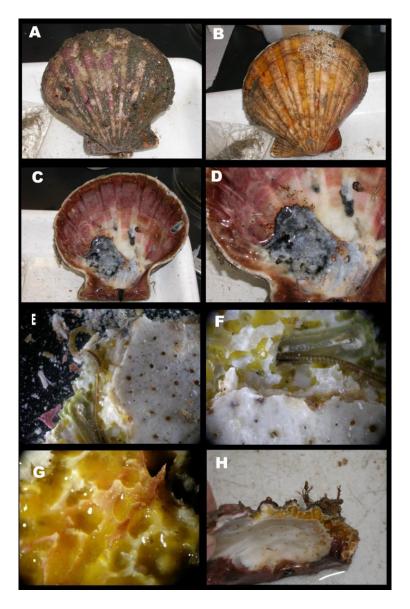
El propósito de este estudio fue observar la forma de las galerías y el tipo de daño producido por las *polydoras* en las conchas de las almejas basándose en estudios anteriores como los reportados por Diez *et al.*, (2013).

V i). Análisis de Difracción y Fluorescencia por Rayos X para el análisis del contenido cámaras de ampollas de lodo.

Este estudio se realizó con el objeto de analizar la microestructura y composición calcárea y sedimentológica de las ampollas para determinar las alteraciones de la concha.

La Difracción de Rayos X.

La drx puede realizarse sometiendo la muestra a un programa de T controlado. De esta manera es posiblerealizar estudios como los siguientes: seguimiento del grado de avance de una reacción química; seguimiento de transiciones de fase; estudio de disoluciones sólidas; determinación de coeficientes de expansión térmica; estudios de crecimiento de grano.


V j). Tratamiento de datos

El análisis estadístico de los datos consiste en una t-test a fin de comparar las abundancias de galerías entre las valvas. Para comparar el número de galerías por bivalvo entre salidas, así como para las tallas y las biomasas entre muestreos se utilizando una ANOVA previo análisis de normalidad y homogeneidad. Para tal efecto, estas pruebas serán realizadas empleando el paquete estadístico SPSS 11.0

VI. RESULTADOS.

Se examinaron 1185 almejas, en los cuales se contabilizaron un total de 2170 "ampollas de lodo" en cada valva, con un intervalo de 0-9 ampollas.

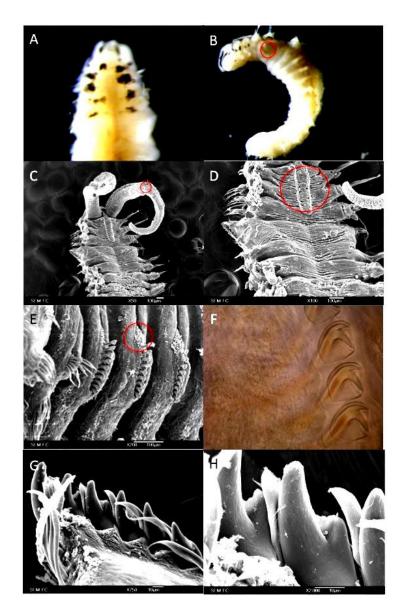

En el proceso de infestación producido por la Polydora y la Esponja el mecanismo de defensa de la almeja Mano de León en producir secreciones de conquiolina y formar lo que se conoce como ampollas de lodo. (Fig. 28)

Fig. 28. Almeja infestada. A) Valva superior; B) valva inferior: C, D) Ampolla de lodo; E, F) Fragmentos de concha con *Polydora* y esponja; G, H) Esponja *Cliona celata*.

VI a). Identificación del Poliqueto perforador.

Se encontró con una especie de poliqueto perforador del género *Polydora* aparentemente nuevo para la ciencia, el cual pertenece al grupo de especies que poseen manchas obscuras en la parte anterior y palpos anillados. Además de contabilizarlos, se procedió a la captura de imágenes de la especie en microscopía electrónica de barrido. (Fig. 29)

Fig. 29. Polydora sp. A) Parte anterior, vista dorsal; B) Parte anterior, vista lateral; C) Parte anterior, vista latero-dorsal; D) Parte anterior, mostrando carúncula; E) pápilas neuropodiales; F) Ganchos cubiertos neuropodiales; G,H) Setas modificadas del quinto setígero.

VI b). Proceso de perforación de la concha y efecto en el hospedero

La actividad perforadora de la *Polydora* sobre las conchas de los moluscos puede ser realizada mediante dos mecanismos:

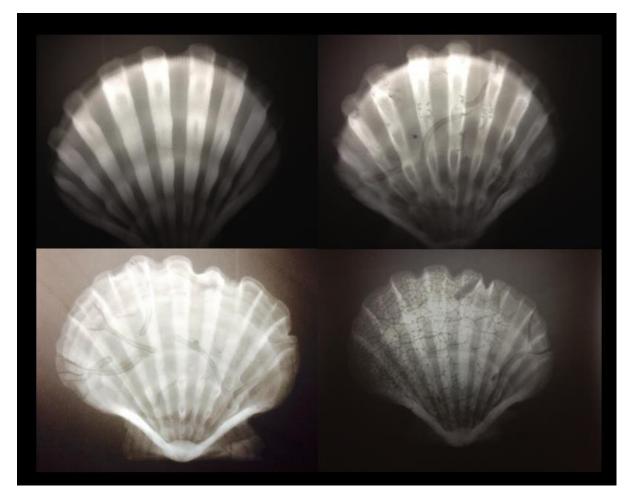

a) químico, mediante la secreción de fosfatasas acidas y anhídridas carbónicas las cuales disuelven o debilitan la matriz cálcica y b) mecánicos, utilizando las setas especializadas del quinto setígero. La combinación de ambos mecanismos permite la construcción de galerías en las cuales acumula lodo alcanzando la cavidad del manto. Los bivalvos, ante esta irritación químico mecánica, tienden a secretar mayor cantidad de conquiolina aislando el lodo de la cavidad del manto. Todo ello implica un gasto energético que debilita la condición fisiológica y nutricional del bivalvo haciéndose vulnerable a enfermedades. (Cáceres- Martínez 2003) (Fig. 31)

Fig. 31. Proceso de infestación producido por la *Polydora* y *Cliona celata*.

VI. c). Vista Rayos X en las valvas.

Se observaron tres tipos de daño; 1) Manchas localizadas en la capa interna de la concha; 2) calcáreos (que consiste en alteraciones microestructurales y laminares por la secreción de conquiolina provocando manchas y una serie de capas intercaladas con diferentes grados de calcificación formando una diferente morfología en la superficie interna de la concha conocidas como "ampollas de lodo" observándose capas de materia orgánica. El daño fue localizado principalmente a lo largo de los anillos de crecimiento concéntrico, coincidiendo con la ubicación de la mayoría de las madrigueras; 3) En el análisis mineralógico se mostró alteraciones en la calcita cuyo componente fue el carbonato de calcio principalmente, mostrando un crecimiento alométrico de las valvas. (Fig. 32)

Fig. 32. Rayos X en las conchas mostrando la forma de las galerías de *Polydora* y la alteraciones en su forma.

Composición de las ampollas o cámaras de lodo en las almejas.

Mediante un análisis estadístico t-test se comparó la abundancia de "ampollas de lodo" entre las valvas encontrándose diferencias altamente significativas en la abundancia de ampollas entre valvas (t_s =1,330, P<0.001) siendo la valva derecha o superior, la mayormente infectada (\overline{X} =1,63 ± 2,11 ampollas valva⁻¹), debido a que esta última es la valva más expuesta y por lo tanto la más accesible a la larva del espiónido.

Se hizó un análisis del contenido de materia orgánica de la cámara o ampollas de la almeja mediante el metodo de difracción y fluorescencia de rayos X, encontrándose principalmente carbono (48%) y oxígeno (29%), silicio (12%) y pequeñas cantidades de calcio (11%). (Fig. 33)

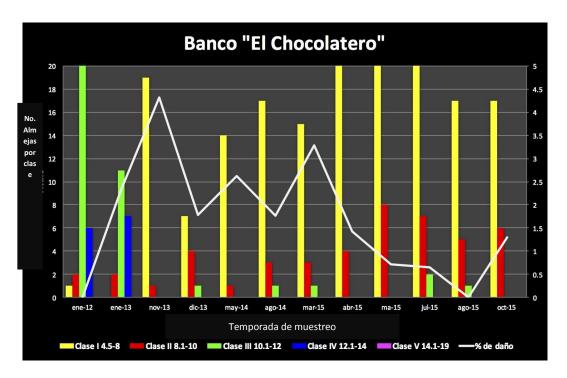
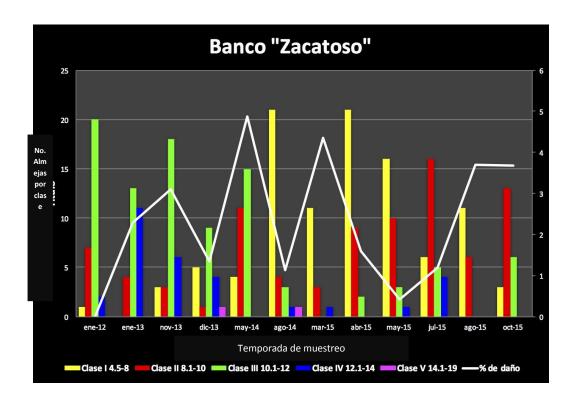
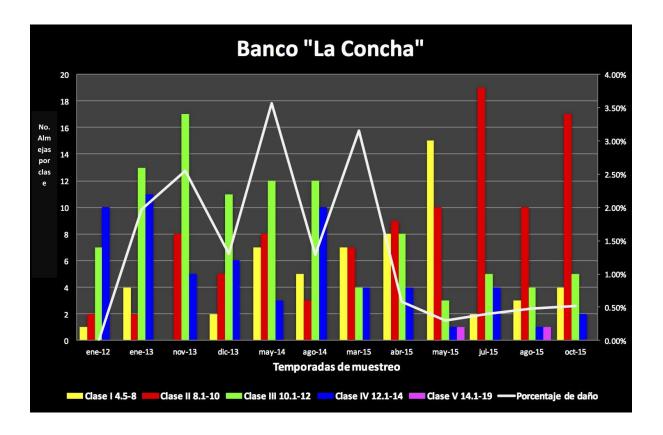


Fig. 33. Vista ampolla de lodo en las valvas de almeja del banco Zacatoso.

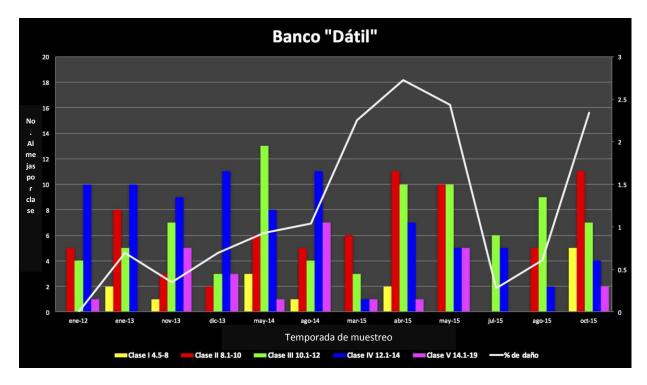
VI d). Distribución de clases de tallas en las conchas.


La distribución de clases de tallas de la almeja Mano de León en el banco Chocolatero se mantuvo durante la mayoría de los muestreos representado principalmente por las tallas de la clase I (4.5-8 cm) en los meses de abril, mayo y julio del 2015 siendo 67% del total de los bivalvos y solo en enero 2012 ocuparon la clase III (10.1-12 cm). Los más altos porcentajes de daño se presentaron en los meses de noviembre 2013, marzo 2015 y mayo 2014. (Gráfica 1)

Se calculó el porcentaje de daño de acuerdo al número de ampollas de ambas valvas (Tabla 1)


Gráfica 1. Distribución de clases de tallas de la almeja Mano de León en el banco Chocolatero.

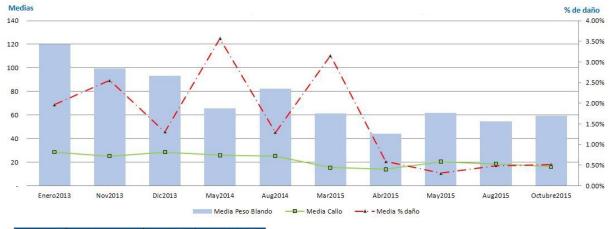
El Zacatoso en invierno de 2012-2013 y mayo del 2014 fueron las tallas de la clase III (10.1-12 cm) las mejores representadas, mientras que a partir de agosto 2014 la clase I (4.5-8 cm) principalmente y la clase II (8.1-10 cm) se encontraron en verano 2015 y en octubre aparecen algunas nuevamente de la clase III (10.1-12 cm) siendo este después del banco chocolatero el que presenta los tamaños menores de valvas en las almejas. Los porcentajes de daño más altos se presentaron en mayo del 2014, marzo y agosto del 2015. (Grafica 2)


Gráfica 2. Distribución de clases de tallas y porcentajes de daño en el banco el Zacatoso.

En el banco La Concha las principales tallas para invierno 2013 y verano 2014 se mantuvieron en la clase III (10.1-12 cm), mientras que en verano del 2015 disminuyeron de talla a la clase II (8.1-10 cm). Los porcentajes de infestación más altos se presentaron en los meses de noviembre 2013, Mayo 2014 y marzo 2015. (Grafica 3)

Gráfica 3. Distribución de clases de tallas y porcentajes de daño de las valvas en las almejas del banco La Concha.

Y por último el banco el Dátil fue el más heterogéneo ocupando el rango mayor de tallas que van desde la clase IV (12.1-14 cm) en invierno 2013 y verano 2014 y la clase II (8.1-10 cm) a la IV (12.1-14 cm) y también se registraron en la clase V (14.1-19 cm). Los porcentajes de daño más altos se presentaron en los meses de abril, mayo, marzo y octubre 2015. (Fig. 37)

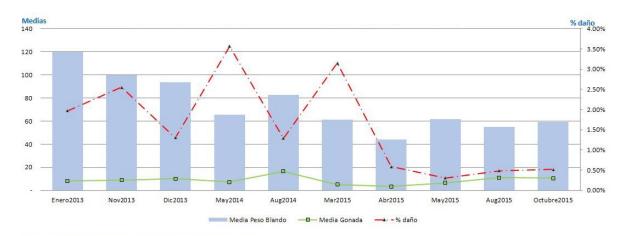

Gráfica 4. Distribución de clases de tallas y porcentajes de daño de las valvas en las almejas del banco el Dátil.

VI e). Biomasa.

La biomasa de la almeja Mano de León la media del peso blando se mantuvieron altos en invierno (119.96 gr \pm 93.42 gr), mientras que en el período de primavera-verano la media del peso blando se mantuvo bajo (65.39 gr -43.9 gr) y en abril-mayo 2014 - 2015 fueron aun los más bajos (61.54 gr -43.9 gr).

La media del peso del músculo abductor más altos (28.47 gr.), se presentaron en los meses de enero y diciembre 2013y la media de los pesos bajos se registraron en los meses de marzo-abril 2015 (15.35 gr - 13.90 gr) y en el mes de octubre 2015 (16.22 gr).

Las medias de los porcentajes de infestación producido por las ampollas de lodo se presentaron en los meses mayo del 2014 (35.7%) y marzo del 2015 (31.5%). (Gráfica 5)

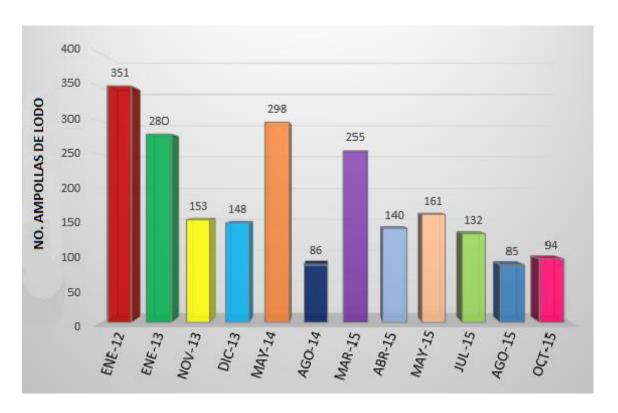


Salida	Media Peso Blando	Media Callo	Media % daño	
Enero2013	119.96	28.42	1.97%	
Nov2013	99.66	25.05	2.55%	
Dic2013	93.42	28.47	1.30% 3.57% 1.29% 3.15% 0.59% 0.30% 0.49%	
May2014	65.39	25.81		
Aug2014	82.46 61.15	25.05 15.35		
Mar2015				
Abr2015	43.90	13.90		
May2015	61.54	20.43		
Aug2015	54.75	18.40		
Octubre2015	59.48	16.22	0.52%	

Gráfica 5. Relación de la media del peso blando y el musculo abductor con el porcentaje de daño en la almeja.

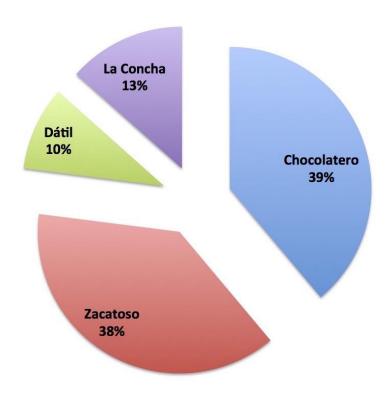
La media del peso de la gónada (16.40gr), se presentó el más alto durante el mes de agosto (2014), mientras los más bajos (5.04-3.30 gr.), en los meses de mayo (2014-2015) y abril (2015).

Los valores de las medias del peso de la gónada coinciden con el período de reproducción y desove en las almejas (Arellano- Martínez 2005) y también con los promedios de porcentajes de infestación de las valvas. (Gráfica 6)

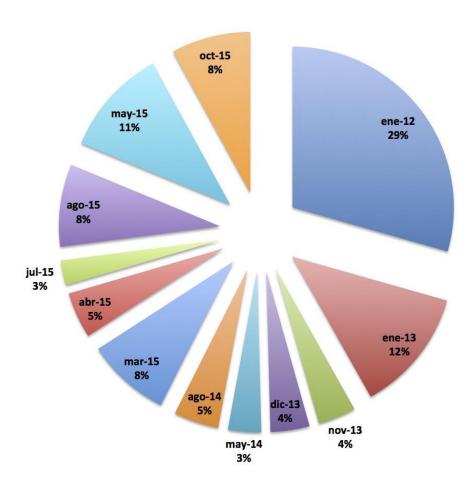


Salida	Media Peso Blando	Media Gonada	% daño	
Enero2013	119.96	8.09	0.02	
Nov2013	99.66	8.89	0.03	
Dic2013	93.42	9.96	0.01 0.04 0.01 0.03 0.01 0.00	
May2014	65.39	7.14		
Aug2014	82.46	16.40		
Mar2015	61.15	5.04		
Abr2015	43.90	3.30		
May2015	61.54	6.42		
Aug2015	54.75	10.98	0.00	
Octubre2015	59.48	10.50	0.01	

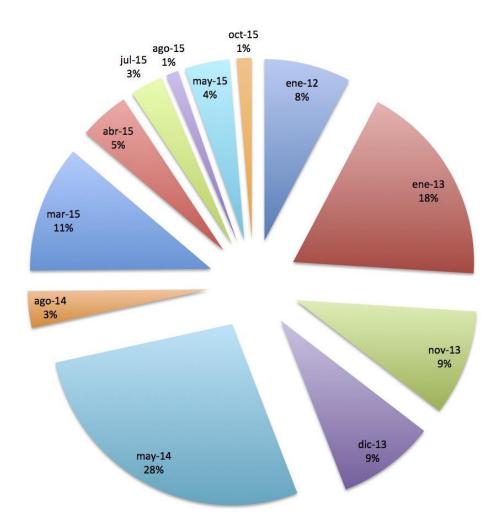
Gráfica 6. Relación de la media del peso blando y de la gónada con el porcentaje de daño en la almeja.


El número total de ampollas de lodo que se contabilizo en las almejas fueron 2183, en donde se observó que en el mes de enero (2012), se presentó el mayor número con un total de 351 ampollas; mayo (2014) con 298 ampollas y enero (2013) con 280 ampollas considerándose los valores más elevados. (Gráfica 7)

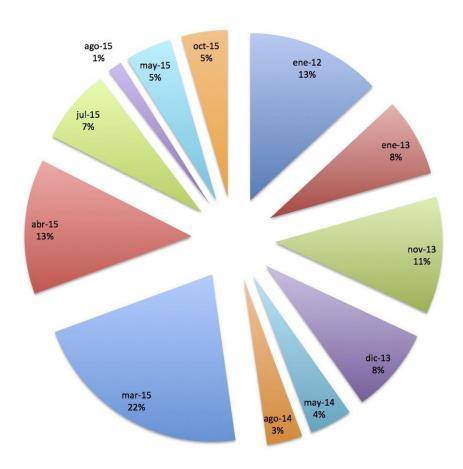
Con el número de ampolla de lodo en cada una de las conchas se calculó el área de cada una de las valvas y el porcentaje de daño que representa por cada una de las almejas en los muestreos. (Ver tabla 1)


Gráfica 7. Total de ampollas de lodo en las valvas por muestreo.

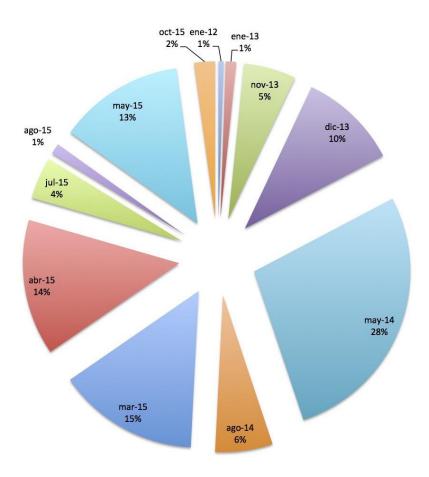
De acuerdo con el grado de infestación producido por las ampollas de lodo, el 39 % se presentó en el banco el Chocolatero (844 ampollas) principalmente en los meses de Mayo 2014 y Marzo 2015; seguido del banco el Zacatoso con el 38 % (827 ampollas) en los meses de Enero 2013, Mayo 2014 y 2015, mientras que en el banco la Concha un 18 % (291 ampollas) en los meses de Marzo y Abril 2015 y por último en el banco el Dátil con un 9% (208 ampollas) en los meses de Mayo 2014 y marzo 2015. (Gráfica 8)


Gráfica 8. Porcentajes de ampollas de lodo en los cuatro bancos

Banco el Chocolatero presento un total de (844) ampollas de lodo, siendo el más infestado en los meses de enero 2012 (29%); enero2013 (12%) y mayo (11%). (Gráfica 9)


Gráfica 9. Porcentaje de daño en el banco el Chocolatero.

Banco el Zacatoso con un total de (827) ampollas de lodo, encontrándose los mayores porcentajes de daño en los meses de mayo 2014 (28%); enero 2013 (18%) y marzo 2015 (11%). (Gráfica 10)

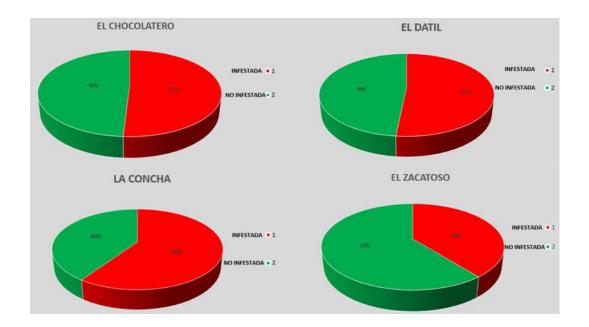

Gráfica 10. Porcentaje de daño en el banco el Zacatoso.

Banco la Concha registra un total de (291) ampollas de lodo, los meses que presento los mayores porcentajes de daño fueron; marzo 2015 con el (22%); enero 2013 (13%); abril 2015 (13%) y noviembre 2013 (11%). (Gráfica 11)

Gráfica 11. Porcentaje de daño en el banco la Concha.

Banco el Dátil con un total de (208) ampollas de lodo, presentándose principalmente en los meses de mayo 2014 (28%); marzo 2015 (15%); abril 2015 (14%) y mayo 2015 (13%). (Gráfica 12)

Gráfica 12. Porcentaje de daño en el banco el Dátil.


AUSENCIA Y PRESENCIA DE LA ESPONJA CLIONA EN LA ALMEJA MANO DE LEÓN

En el banco el Chocolatero los meses en que se presentó el mayor número de almejas infestadas fueron en julio (24 almejas), marzo y agosto (19 almejas) en 2015. En el banco el Zacatoso también se registró en mayor daño en los meses de mayo 2013 (25 almejas) y noviembre 2013 (21 almejas). En el banco la Concha los meses con más presencia de infestación fueron julio 2015(25 almejas), mayo y agosto 2014 (22 almejas) y por último en el banco el Dátil el mes de mayo y octubre se presentaron las infestaciones de esponjas en los meses de mayo y octubre 2015 (22 almejas) y mayo 2014 con (21 almejas). Como se observó en todos los bancos se presentó *Cliona celata* principalmente en los meses de invierno y verano. (Tabla 1)

Tabla 1. Presencia o ausencia de la esponja perforadora *Cliona celata*.

La presencia de *Cliona celata* se presentó en todos los bancos siendo el Zacatoso menos infestado con el 39% con respecto a los demás bancos que presentaron altos porcentajes de infestación. (Gráfica 13)

Gráfica 13. Porcentaje de daño producido por la esponja (*Cliona celata*) en los bancos de la almeja mano de león.

DISCUSIÓN.

El banco que registra el menor intervalo de clases de tallas (4.5-8 cm) en sus valvas fue el Chocolatero donde también se presentó uno de los más altos porcentajes de ampollas lodo (39%) en sus valvas después del Zacatoso (38%). De acuerdo con los resultados de otras investigaciones, los porcentajes de daño producidas por las ampollas de lodo son similares a los reportados para otros bivalvos como los reportados por Wargo y Ford (1993) el 30% en Crassostrea virginica, en Carolina del Sur y cerca del 50% en la Bahía de Delaware (EUA); Handley (1995) el 57% en C. gigas producida por P.websteri en Nueva Zelandia estaban infestados; Handley & Bergquist (1997), C. gigas el 69.4% en Nueva Zelandia; Gallo-García et al.(2007) el 60% de infestación en C. gigas por P. websteri, en Barra de Navidad, Jalisco; Díaz & Liñero-Arana (2009) reportan el 64.57% en C. rizhophorae en la laguna Restinga en Venezuela, infestados por P. websteri; Diez et al. (2011), en seis bivalvos de importancia comercial registran un 54% de infestación por P. rickettsi en la Patagonia, Argentina. Los casos antes citados señalan una pérdida importante de su condición nutricional de las almejas en función del nivel de infestación y un incremento en la mortalidad que estaría además condicionado por la depredación y por la marcada estacionalidad de las localidades señaladas.

Mediante un análisis estadístico T-test se comparó la abundancia de "ampollas de lodo" entre las valvas encontrándose diferencias altamente significativas en la abundancia de ampollas entre valvas (ts= 1, 330, P<0,001) siendo la valva derecha o superior, la mayormente infestada (\bar{x} = 1.63 ±2.11 ampolla valva⁻¹), debido a que ésta última es la valva más expuesta y por lo tanto la más accesible a la larva del espiónido. Díaz y Liñero (2009), reportaron la preferencia por la valva derecha o superior para ser infestada, en su trabajo realizado con *Crassostrea rhizhophorae* en la laguna Restinga en Venezuela, sin embargo, otros autores como Ciocco (1990) y Diez *et al.* (2013) encontraron preferencia por la valva izquierda o inferior para ser infestada por *P. rickettsi*.

En cuanto a los Rayos X de las valvas en las almejas se observó en este estudio que las galerías de las *Polydoras* presentaron forma de ramificaciones múltiples como en los estudios reportados por Blake y Evans, (1973), así como Cáceres-Martínez, (2003), en

donde señalan que las formas de los tubos de los poliquetos pueden ser diagnosticas de algún tipo de especies.

El análisis de difracción y fluorescencia por rayos X se hizo con el objetivo de hacer un análisis mineralógico del contenido de las cámaras de ampollas de las valvas de las almejas a pesar de ser pocos los estudios se comparó con los estudios de Diez *et al.* (2013), se observó que las valvas presentaron

Alteraciones calcáreas y morfológicas formando dos capas diferentes, la primera estaba compuesta principalmente de carbono, oxígeno, calcio y silicio. La cantidad de calcio fue menor en la capa 2 mientras que el carbono fue superior al (50%).

Los ciclos de almacenamiento y utilización de energía están fuertemente ligados a los ciclos reproductivos de los bivalvos y a la disponibilidad de alimento (Sastry 1979, Gabbott 1983).

Se pudo observar en este estudio que el peso total blando y el músculo abductor de la almeja fueron más altos en los meses de enero (2012-2013); noviembre- diciembre de (2013) esto coincide con el período reproductivo en donde presenta una inactividad y los porcentajes de infestación no fueron altos, en contraste con los meses de abril-agosto cuando se inicia su actividad reproductiva y de desove el peso del músculo abductor es bajo y los niveles de infestación son altos, debido a su condición nutricional pobre y el gasto de energía que representa siendo más expuesta a ser infestada por estos organismos perforadores.

En donde la gametogénesis es un proceso que demanda energía y ésta puede ser obtenida directamente del alimento disponible (seston) o de órganos de almacenamiento como la glándula digestiva (donde se almacenan lípidos) y del músculo abductor (donde se almacenan principalmente carbohidratos en forma de glucógeno y proteínas (Barber y Blake 1983). La fluctuación del peso del músculo abductor o "callo" es ocasionada por el almacenamiento y utilización de sustancias energéticas durante la gametogénesis, madurez y desove, afectando directamente la tasa de crecimiento en peso del callo.

En cuanto a la esponja perforadora *Cliona celata* se refiere se presentó principalmente en el banco Chocolatero en los meses de marzo a agosto 2015, aunque en el mes de julio de 30 almejas del muestreo 24 fueron las más infestadas; en el banco la concha se presentó una situación similar se presentaron 25 almejas infestadas en el mismo mes (julio 2015) y en mayo y agosto 2014, 22 almejas; en los bancos el zacatoso, en mayo 2013 con 25 almejas infestadas y el dátil en mayo 2015, presentó 23 almejas.

En ambos organismos la *Polydora* y la *Cliona* son perforadores oportunistas y se ha observado que existe una relación en la infestación en las valvas de moluscos en donde procesos químicos para disolver los estratos calcáreos son similares como se ha citado en algunos trabajos de Clavier (1989); Martin & Britayev 1998 en donde se establecen como una relación simbiótica al ocupando el mismo sustrato.

El efecto negativo de estos perforadores sobre su hospedero, se manifiesta cuando la cantidad de estos es elevada, su efecto puede pasar desapercibido como el de cualquier otro epibionte (esponjas, algas calcáreas, briozoarios, etc). Como se ha visto la formación de canales en la concha puede llegar a ser la quebradiza, aún sin alcanzar la cara interna de la misma, es entonces cuando el hospedero queda más vulnerable a la acción de depredadores y a cambios medio ambientales.

CONCLUSION

- Se examinaron 1,185 almejas de las cuales se contabilizaron un total de 2,170
 "ampollas de lodo" construidas por los poliquetos en ambas valvas, con un intervalo entre 0 9 galerías.
- Los intervalos de tallas para estos bivalvos se establecieron cinco clases: clase I (4.5-8 cm); clase II (8.1-10.0 cm); clase III (10.1-12.0 cm); clase IV (12.1-14.0 cm) clase V (14.1 19.0 cm), mientras que en la biomasa se encontró que los pesos totales oscilaron entre (295.59 ± 3.45 gr.).
- De acuerdo con el grado de infestación producido por la *Polydora spp.*, el 39 % se presentó en el banco el Chocolatero (844 ampollas) principalmente en los meses de mayo 2014 y marzo 2015; seguido del banco el Zacatoso con el 38 % (827 ampollas) en los meses de enero 2013, mayo 2014 y 2015, mientras que en el banco la Concha un 13 % (291 ampollas) en los meses de Marzo y Abril 2015 y por último en el banco el Dátil con un 10% (208 ampollas) en los meses de Mayo 2014 y Marzo 2015.
- Mediante el análisis estadístico SPSS 1.1, se comparó la abundancia de ampollas de lodo entre las valvas encontrándose diferencias altamente significativas (t_s =1,330, P<0,001) siendo la valva derecha o plana, la mayormente infectada, debido a que ésta última es la valva más expuesta y por lo tanto la más accesible a la larva del espiónido.
- En cuanto al grado de infestación producido por *Cliona celata*, este se evaluó mediante la presencia o ausencia de la esponja, siendo el banco más afectado el Chocolatero, durante los meses de marzo, julio y agosto del 2015; el Zacatoso en el mes de noviembre y mayo 2013 la Concha en mayo y Agosto del 2014 y Julio del 2015 y el Dátil en Mayo de 2014 -2015 y Octubre del 2015 presentándose en todos los bancos siendo el menos infestado el banco el Zacatoso.

Tabla 1. El Chocolatero, Laguna Ojo de Liebre, Guerrero Negro. Enero 2013.

ACH-4	Area de valva	No. Ampollas	Area de Ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	112.1039	1	0.7456252	0.665119768	0.665119768	0.671297434
Valva Inferior	117.8299	1	0.7979145	0.677174894	0.677174894	1.5435397
						229.9338

datos valva superior de la concha
datos valva inferior de la concha
Area total de daño
Area total de la concha las 2 valvas
% de daño total de la concha

ACH-9	Area de valva	No. Ampollas	Area de Ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	95.93968	1	0.9342278	0.973765808	0.973765808	0.978212356
Valva Inferior	90.1222	1	0.8858525	0.982945933	0.982945933	1.8200803
Si .						400 00400
						186.06188
ACH-12	Area de valva	No. Ampollas	Area de Ampollas	% C/U	% de valva	%total de ampollas
ACH-12 Valva Superior	Area de valva 100.5982		Area de Ampollas 1.474818		15-5 The Control of t	%total de ampollas
	(C.), 20115-2015-2015-31-31-31-31-31-31-31-31-31-31-31-31-31-	1			15-5 The Control of t	%total de ampollas

ACH-13	Area de valva	No. Ampollas	Area de Ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	85.23557	1	3.084575	3.618882352	3.618882352	1.846958661
Valva Inferior	81.77277	0	0	0	0	3.084575
						167.00834

El Zacatoso, Laguna Ojo de Liebre, Guerrero Negro. Enero 2013

AZ_1	Area de valva	No. Ampollas	Area de Ampollas	% C/U	% de valva	%total de ampollas
Valva Suerior	119.4429	1	1.491027	1.248317815	1.248317815	1.157377666
Valva Inferior	113.9324	2	1.025144	0.899782678	1.062039069	2.7010336
			0.1848626	0.162256391		233.3753

AZ-3	Area de valva	No. Ampollas	Area de Ampollas	% C/U	% de valva	%total de ampollas
Valva Suerior	86.6019	2	0.3098383	0.357773097	1.227743964	0.611520715
			0.7534113	0.869970867		1.0632496
Valva Inferior	87.26786	0	0	0	0	173.86976

AZ-4	Area de valva	No. Ampollas	Area de Ampollas	% C/U	% de valva	%total de ampollas
Valva Suerior	116.0757	2	1.003691	0.86468658	1.084381486	0.550984126
			0.2550124	0.219694906		1.2587034
Valva Inferior	112.3707	0	0	0	0	228.4464

AZ-5	Area de valva	No. Ampollas	Area de Ampollas	% C/U	% de valva	%total de ampollas
Valva Suerior	121.9362	7	2.496307	2.047223876	6.122763134	3.138278836
8			0.6869069	0.563333038		7.5252443
			1.348237	1.105690517		239.7889
			0.6923832	0.567824157		
			0.7506937	0.615644657		
	1:		1.361025	1.116177968		
			0.1303119	0.10686892		
Valva Inferior	117.8527	1	0.0593796	0.05038459	0.05038459	

AZ-7	Area de valva	No. Ampollas	Area de Ampollas	% C/U	% de valva	%total de ampollas
Valva Suerior	130.3102	3	0.8810197	0.676094197	1.270743656	0.647452606
			0.6115617	0.469312226		1.6559086
			0.1633272	0.125337234		255.7575
Valva Inferior	125.4473	0	0	0	0	

AZ-8	Area de valva	No. Ampollas	Area de Ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	121.5598	1	0.4332604	0.3564175	0.3564175	0.182393561
Valva Inferior	115.9817	0	0	0	0	0.4332604
	100					237.5415

AZ-9	Area de valva	No. Ampollas	Area de Ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	50.19097	2	0.9290531	1.851036352	3.42502227	1.74540844
			0.7899988	1.573985918		1.7190519
Valva Inferior	48.29898	0	0	0	0	98.48995

AZ-10	Area de valva	No. Ampollas	Area de Ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	136.4423	4	0.2248915	0.164825351	0.915625873	1.199561504
			0.1666745	0.122157498		3.1377662
			0.2863929	0.209900375		261.5761
			0.5713421	0.418742648		
Valva Inferior	125.1338	2	1.425805	1.13942436	1.509156759	
			0.4626602	0.369732398		

AZ-12	Area de valva	No. Ampollas	Area de Ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	114.6362	3	3.970212	3.463314381	4.111945232	2.800112055
			0.8838256	0.770982988		5.98430876
			0.5496581	0.479480391		213.71676
Valva Inferior	99.08056	1	1.270531	1.282321174	1.282321174	

AZ-14	Area de valva	No. Ampollas	Area de Ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	112.456	4	0.4727947	0.420426389	1.584829372	1.244787069
			0.7371661	0.655515135		2.807680719
			0.5507102	0.489711709		225.5551
			0.24356	0.216582486		
Valva Inferior	113.0991	1	1.025445	0.906678302	0.906678302	

AZ-15	Area de valva	No. Ampollas	Area de Ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	95.58077	5	0.3041803	0.318244245	1.81771982	0.951875356
			0.262857	0.275010339		1.7373906
			0.705514	0.738133832		182.52291
			0.4404122	0.460774903		
			0.0244271	0.025556501		
Valva Inferior	86.94214	0	0	0	0	

AZ-16	Area de valva	No. Ampollas	Area de Ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	83.01689	3	2.781013	3.34993638	4.02012747	2.824839322
			0.3341846	0.402550132		4.4380028
			0.2221872	0.267640958		157.10638
Valva Inferior	74.08949	1	1.100618	1.48552514	1.48552514	

AZ-17	Area de valva	No. Ampollas	Area de Ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	90.27437	2	8.892258	9.850257609	10.98862616	5.885613477
			0.062881	0.069655429		10.01307944
Valva Inferior	79.85368	1	0.0931664	0.116671392	0.116671392	170.12805

AZ-18	Area de valva	No. Ampollas	Area de Ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	102.7412	3	1.781557	1.734023936	2.727636236	1.930340945
	N. S		0.6018077	0.585751091		3.9023261
			0.4190415	0.407861209		202.15735
Valva Inferior	99.41615	2	0.9989691	1.004835834	1.106379497	
	10 10		0.1009508	0.101543663		

AZ-19	Area de valva	No. Ampollas	Area de Ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	119.8418	7	12.2913	10.25627118	12.09218995	6.444092956
			0.3355374	0.279983612		14.8179211
			0.4303327	0.359083976		229.9458
			0.3822964	0.319000883		
			0.1890299	0.157732861		
			0.763191	0.636832057		
			0.0998107	0.083285381		
Valva Inferior	110.104	1	0.326423	0.296467885	0.296467885	

AZ-20	Area de valva	No. Ampollas	Area de Ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	130.6847	4	0.7485896	0.572821149	1.967891192	1.001492933
			0.1277281	0.097737608		2.5717327
			1.409535	1.078576911		256.7899
			0.28588	0.218755524		
Valva Inferior	126.1052	0	0	0	0	

AZ-22	Area de valva	No. Ampollas	Area de Ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	127.6986	3	11.63526	9.111501614	10.5297275	5.96103565
0			0.8236047	0.644959851		14.8128815
			0.9874499	0.773266034		248.4951
Valva Inferior	120.7965	2	1.081438	0.895256071	1.131296768	
		4	0.2851289	0.236040697		

AZ-23	Area de valva	No. Ampollas	Area de Ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	97.14313	2	2.360598	2.430020527	3.707252381	1.89072011
			1.240743	1.277231854		3.601341
Valva Inferior	93.33144	0	0	0	0	190.47457

AZ-24	Area de valva	No. Ampollas	Area de Ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	84.72635	3	1.304934	1.540174928	2.62450678	2.57047247
			0.7198487	0.849616088		4.3146496
			0.1988661	0.234715764		167.85434
Valva Inferior	83.12799	2	0.0492428	0.059237328	2.515399205	
			2.041758	2.456161878		

AZ-25	Area de valva	No. Ampollas	Area de Ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	103.9554	2	6.798097	6.539436143	8.309114293	5.771069646
			1.839676	1.76967815		11.7200631
Valva Inferior	99.12763	2	2.743696	2.767841822	3.10941571	203.08303
			0.3385941	0.341573888		

La Concha, Laguna Ojo de Liebre, Guerrero Negro. Enero 2013

AC-6	Area de valva	No. De Nodulos	Area de Nodulos	% C/U	% de valva	%total de ampollas
Valva superior	99.57901	4	0.3841729	0.385797067	1.214718659	1.854377252
			0.3615942	0.363122911		
			0.2001144	0.200960423		
			0.258631	0.259724414		3.7553385
Valva Inferior	102.9331	1	2.550826	2.478139685	2.478139685	202.51211

AC-7	Area de valva	No. De Nodulos	Area de Nodulos	% C/U	% de valva	%total de ampollas
Valva superior	82.41198	2	0.7315502	0.887674583	1.304556328	2.513292097
			0.3435605	0.416881745		
Valva Inferior	85.83423	2	1.054154	1.228127753	3.673835019	4.2285187
			2.099254	2.445707266		168.24621

AC-8	Area de valva	No. De Nodulos	Area de Nodulos	% C/U	% de valva	%total de ampollas
Valva superior	114.5652	4	0.7544897	0.65856796	1.502604281	0.773180829
			0.3892993	0.339805892		
			0.4840268	0.42249025		
			0.0936458	0.081740179		1.7214616
Valva Inferior	108.0815	0	0	0	0	222.6467

AC-9	Area de valva	No. De Nodulos	Area de Nodulos	% C/U	% de valva	%total de ampollas
Valva superior	133.215	3	3.367712	2.528027625	3.048558646	1.761251237
			0.2038891	0.153052659		
			0.4895363	0.367478362		4.5866628
Valva Inferior	127.2057	1	0.5255254	0.413130386	0.413130386	260.4207

AC-11	Area de valva	No. De Nodulos	Area de Nodulos	% C/U	% de valva	%total de ampollas
Valva superior	101.1094	1	0.875471	0.865865093	0.865865093	0.443143602
Valva Inferior	96.44981	0	0	0	0	0.875471
						197.55921

AC-12	Area de valva	No. De Nodulos	Area de Nodulos	% C/U	% de valva	%total de ampollas
Valva superior	97.65385	3	13.65839	13.98653509	14.38113418	10.09816703
			0.2161156	0.221307813		
			0.1692256	0.173291273		
Valva Inferior	89.89812	2	2.628497	2.923862034	5.445697863	18.9393112
			2.267083	2.521835829		187.55197

AC-13	Area de valva	No. De Nodulos	Area de Nodulos	% C/U	% de valva	%total de ampollas
Valva superior	118.8823	1	0.3732615	0.313975672	0.313975672	0.158318898
Valva Inferior	116.8833	0	0	0	0	0.3732615
						235.7656

AC-14	Area de valva	No. De Nodulos	Area de Nodulos	% C/U	% de valva	%total de ampollas
Valva superior	127.0811	5	1.415886	1.114159383	3.693827328	1.942998608
			1.619389	1.274295706		
			0.8681851	0.683174052		
			0.2970147	0.233720593		
			0.4936816	0.388477594		4.6941564
Valva Inferior	114.5123	0	0	0	0	241.5934

AC-17	Area de valva	No. De Nodulos	Area de Nodulos	% C/U	% de valva	%total de ampollas
Valva superior	102.9819	1	3.139406	3.048502698	3.048502698	1.498860126
Valva Inferior	106.471	0	0	0	0	3.139406
						209.4529

El Chocolatero , Laguna Ojo de Liebre, Guerrero Negro. Noviembre 2013

Ch-2	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	58.21187	4	0.1533822	0.26348956	4.27095831	2.178493572
			0.1099115	0.188812866		2.4862047
			1.168178	2.00676941		114.12495
-			1.054733	1.811886476		
Valva Inferior	55.91308	0	0	0	0	

THE RESERVE OF THE PARTY OF THE	(3/2/02/09/41-20/92/20)	22.1	NS	5/2		
Ch-4	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	38.68446	1	0.2873179	0.742721754	0.74272175	0.374765346
Valva Inferior	37.98162	0	0	0	0	0.2873179
						76.66608
Ch-5	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	28.66044	1	4.817529	16.80898479	16.8089848	8.9767717
Valva Inferior	28.64916	2	0.2088568	0.729015441	1.141475	5.14455
			0.1181662	0.412459563		57.309
			Ī	lar a tr		
Ch-7	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	25.17525	8	0.9345355			
			0.2848628	THE RESERVE OF THE PARTY OF THE		5.142807
			1.372582	5.452108718		50.1139
Valva Inferior	24.93872	1	2.550827	10.2283798	10.2283798	
Ch-8	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	42.56505	2	0.2539056	0.596511927	2.98657155	1.564106478
			0.2871965	0.674723746		1.27123567
Valva Inferior	38.71047	0	0	0	0	81.27552
Ch-9	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior			0	0	0	0.669066563
Valva Inferior	24.67927	1	0.3307004	1.339992633	1.33999263	0.3307004
			Continued State Continued Stat			49.42713

El Zacatoso , Laguna Ojo de Liebre, Guerrero Negro. Noviembre 2013

Z-1	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	90.57743	7	0.3242504	0.357981453	4.045777629	1.937729205
			0.175793	0.194080358		4.6480355
			0.0883026	0.097488524		239.87023
			0.0908209	0.100268798		
			0.1700659	0.18775748		
			0.1661666	0.183452544		
			2.649162	2.924748472		
Valva Inferior	149.2928	1	0.9834741	0.658755211	0.658755211	

Z-2	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	159.1822	1	4.630245	2.908770579	2.908770579	1.465037453
Valva Inferior	172.8451	1	0.2340793	0.135427212	0.135427212	4.8643243
						332.0273

Z-5	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	164.1037	5	0.3118214	0.19001485	7.860356713	4.232177795
			9.917479	6.043421934		12.8991362
			0.9086565	0.553708722		304.7872
		1				
			1.051874	0.640981282		
			0.7093053	0.432229925		
Valva Inferior	140.6835	0	0	0	C	

Z-6	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	174.8248	4	5.055795	2.89192094	11.02221281	6.299680216
			9.055655	5.179845766		22.3750215
			0.7996795	0.457417655		355.1771
			4.358432	2.493028449		
Valva Inferior	180.3523	1	3.10546	1.721885443	1.721885443	

Z-7	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	120.4856	1	0.3153551	0.261736755	0.261736755	0.467488796
Valva Inferior	106.3442	1	0.7450488	0.700601255	0.700601255	1.0604039
						226.8298

Z-8	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	160.9929	3	14.78643	9.184523044	10.71337643	0.520864875
			1.843186	1.144886514		1.703624
			0.6181594	0.383966871		327.076
Valva Inferior	166.0831	1	1.703624	1.025766017	1.025766017	

Z-9	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	130.1618	0	0	0	0	0.397842587
Valva Inferior	123.911	2	0.9011829	0.727282404	0.815754695	1.0108098
			0.1096269	0.088472291		254.0728

Z-10	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	190.9024	3	9.217476	4.828370937	6.066352073	3.38702722
			1.460325	0.764958953		11.5808117
			0.9030107	0.473022183		341.9167
Valva Inferior	151.0143	0	0	0	0	

Z-11	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	162.8204	7	2.952656	1.813443524	6.998175413	3.226042391
			1.191274	0.731649105		11.9362149
			0.8764061	0.538265537		369.9956
			0.8288023	0.509028537		
			4.226262	2.595658775		
			0.6742523	0.414107999		
			0.6448045	0.396021936		
Valva Inferior	207.1752	1	0.5417577	0.26149737	0.26149737	

Z-12	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	176.8026	3	18.69909	10.57625284	14.91935526	8.533218426
27			2.933404	1.659140759		26.377808
			4.745314	2.683961661		309.1191
Valva Inferior	132.3165	0	0	0	0	

Z-13	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	159.8709	3	22.92397	14.33905107	20.7930402	10.2580149
			9.423204	5.89425843		33.2420205
			0.8948465	0.559730695		324.059
Valva Inferior	164.1881	0	0	0	0	

Z-14	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	169.6757	6	14.90516	8.7844989	13.55326272	6.928404094
7.7			0.6968357	0.410686798		23.2219805
			3.241041	1.910138576		335.1707
17			1.19956	0.706972183		
			0.6626357	0.390530701		
			2.291361	1.350435566		
Valva Inferior	165.495	2	0.121406	0.073359316	0.136189673	
			0.1039811	0.062830357		

Z-15	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	184.7382	8	0.884814	0.478955625	3.175521684	3.50877997
			0.5564206	0.301194122		13.6825296
			0.9708421	0.5255232		389.9512
:			0.6939518	0.375640663		
			0.5331061	0.28857383		
			0.1342818	0.07268762		
			0.4922042	0.266433364		
			1.600781	0.86651326		
Valva Inferior	205.213	2	5.801738	2.82717859	3.808787942	
			2.01439	0.981609352		

Z-16	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	185.2513	2	0.9403382	0.507601404	0.699494956	0.327566642
			0.3554853	0.191893552		1.2958235
Valva Inferior	210.3395	0	0	0	0	395.5908

Z-17	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	188.1702	3	5.66904	3.012719336	5.402997074	2.873027258
			0.3496364	0.185808592		10.1668304
			4.148154	2.204469145		353.8717
Valva Inferior	165.7015	0	0	0	0	

Z-19	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	136.93	3	2.388559	1.744365004	2.567455196	1.160830699
			0.8641396	0.631081282		3.5156164
			0.2629178	0.19200891	_	302.8535
Valva Inferior	165.9235	0	0	0	0	

Z-20	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	123.6082	2	1.676573	1.356360662	2.388853652	1.709900863
4			1.276246	1.03249299		4.582601
Valva Inferior	144.3957	1	1.629782	1.128691505	1.128691505	268.0039

Z-21	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	149.9906	4	0.7075993	0.47176243	3.844778273	1.721263014
			1.260364	0.840295325		5.766806
			2.836246	1.890949166		335.0334
			0.9625967	0.641771351		
Valva Inferior	185.0428	0	0	0	0	

Z-24	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	170.65	7	6.488379	3.802155875	6.961713214	3.658029341
			0.3703513	0.217023909		11.8801636
			0.3212447	0.1882477		324.7695
			3.053104	1.789102842	l)	
			0.2276617	0.133408556		
			0.47746	0.279789042		
			0.9419629	0.551985292		
Valva Inferior	154.1195	0	0	0	0	

Z-25	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	135.2246	2	0.7872505	0.582179944	0.710528632	0.330281434
			0.173559	0.128348688		0.9608095
Valva Inferior	155.6817	0	0	0	0	290.9063

Z-26	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	155.7218	2	1.03189	0.662649674	2.247949227	2.067296814
			2.468657	1.585299553		6.214656
Valva Inferior	144.8957	2	1.493509	1.030747634	1.873146684	300.6175
			1.2206	0.84239905		

La Concha , Laguna Ojo de Liebre, Guerrero Negro. Noviembre 2013

C-1	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	83.11952	0	0	0	0	0
Valva Inferior	72.6606	0	0	0	0	0
						155.78012

C-2	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	75.96177	0	0	0	0	0.471404
Valva Inferior	87.81306	1	0.7720411	0.879187105	0.879187105	0.7720411
						163.77483

C-3	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	83.90712	0	0	0	0	0
Valva Inferior	91.55676	0	0	0	0	C
						175.46388

C-4	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	61.68513	0	0	0	0	0.896728765
Valva Inferior	87.03576	1	1.333623	1.532270184	1.532270184	1.333623
						148.72089

C-6	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	68.22109	2	0.1758106	0.257707111	0.337829988	0.164335779
			0.0546607	0.080122877		0.2304713
Valva Inferior	72.02305	0	0	0	0	140.24414

C-9	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	73.23871	1	0.2114147	0.288665243	0.288665243	0.135126358
Valva Inferior	83.21833	0	0	0	0	0.2114147
						156.45704

C-21	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	148.2717	4	0.6763282	0.456141125	5.982492748	2.828824992
			7.72806	5.212093744		8.8703437
			0.1826279	0.123171111		313.5699
			0.2833276	0.191086768		
Valva Inferior	165.2982	0	0	0	0	

C-22	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	116.8199	1	5.455492	4.670002286	4.670002286	2.136956575
Valva Inferior	138.4727	0	0	0	0	5.455492
						255.2926

C-10	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	74.65178	1	0.2036487	0.272798184	0.272798184	0.1281173
Valva Inferior	84.3031	0	0	0	0	0.2036487
						158.95488

C-11	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	77.18912	0	0	0	0	2.043957104
Valva Inferior	98.07493	1	3.582322	3.652637835	3.652637835	3.582322
						175.26405

C-24	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	86.78313	1	0.5842579	0.673239027	0.673239027	0.244855721
Valva Inferior	151.83	0	0	0	0	0.5842579
						238.61313

C-25	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	104.7148	1	0.2858374	0.272967527	0.272967527	0.121170169
Valva Inferior	131.1827	0	0	0	0	0.2858374
						235.8975

C-26	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	106.236	0	0	0	0	0.004549077
Valva Inferior	155.2566	1	0.0118955	0.007661832	0.007661832	0.0118955
						261.4926

C-27	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	106.1521	0	0	0	0	0
Valva Inferior	144.5409	0	0	0	0	0
						250.693

C-28	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	73.61509	0	0	0	0	0.552114129
Valva Inferior	155.1531	2	0.541592	0.349069403	0.814074292	1.2630615
			0.7214695	0.465004889		228.76819

C-29	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	131.1513	7	1.619722	1.235002627	2.91208139	1.234601586
			0.1448096	0.110414155		3.8192326
			0.1603151	0.12223676		309.3494
			0.4199547	0.320206281		
			0.8796186	0.670689959		
			0.386709	0.294857161		
			0.2081036	0.158674447		
Valva Inferior	178.1981	0	0	0	0	

El Datil, Laguna Ojo de Liebre, Guerrero Negro. Noviembre 2013

D-1	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	156.6959	0	0	0	0	0
Valva Inferior	152.1096	0	0	0	0	0
						308.8055

D-2	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	136.2022	1	0.9268075	0.680464412	0.680464412	0.337753035
Valva Inferior	138.2017	0	0	0	0	0.9268075
						274.4039

D-3	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	157.7108	2	0.5066	0.321220868	0.417484155	0.215354172
			0.1518176	0.096263287		0.6584176
Valva Inferior	148.0263	0	0	0	0	305.7371

D-9	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	85.24428	1	1.261987	1.480435989	1.480435989	0.758144353
Valva Inferior	81.21307	0	0	0	0	1.261987
						166.45735
D-13	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	92.68846	0	. 0	0	0	0.106932033
Valva Inferior	78.02568	1	0.1825481	0.233958999	0.233958999	0.1825481
						170.71414

El Chocolatero, Laguna Ojo de Liebre, Guerrero Negro. Diciembre 2013

ACh-3	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	60.80768	1	0.1238045	0.20%	0.20%	0.01%
Valva Inferior	49.33038	3	0.0384184	0.08%	2.34%	
			0.2416039	0.49%	A.total daño	1.2788685
			0.8750417	1.77%	A. total	110.13806

ACh-4	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	55.28001	2	0.1491	0.269717751	0.297575923	1.05%
			0.0154	0.027858172		
Valva Inferior	46.8673	7	0.1064184	0.227063219	1.944598046	
			0.1798147	0.383667717		
			0.0722156	0.154085258		
			0.1572037	0.335422992		
			0.2069336	0.441530875		
			0.0949697	0.202635313		1.076008
			0.0938249	0.200192672		102.14732

ACh-5	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	43.09248	0	0	0	0	5.74%
Valva Inferior	29.41734	3	2.200107	7.478946091	14.16030579	
			1.742873	5.924645124		
9			0.2226053	0.756714577		4.1655853
						72.50982

ACh-6	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	48.84076	0	0	0	0	0.99%
Valva Inferior	33.50068	4	0.2432093	0.725983174	2.431039609	l e
			0.0783333	0.233826		
			0.1430001	0.426857306		0.8144148
			0.3498721	1.044373129	1	82.34144

ACh-7	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	49.68895	0	0	0	0	0.88%
Valva Inferior	40.97373	2	0.6965188	1.699915531	1.949688984	
y			0.1023415	0.249773452		
						0.7988603
						90.66268

ACh-8	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	35.74095	0	0	0	0	0.24%
Valva Inferior	44.60154	1	0.1890811	0.423934017	0.423934017	
						0.1890811
					_	80.34249

ACh-9	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	33.04914	0	0	0	0	0.10%
Valva Inferior	25.76215	2	0.0324237	0.125857896	0.846651867	
8			0.0237676	0.092257828		
						0.0561913
						58.81129

ACh-10	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	28.9724	0	0	0	0	0.39%
Valva Inferior	36.56499	1	0.2530803	0.6921383	0.69	
						0.2530803
						65.53739

El zacatoso, Laguna Ojo de Liebre, Guerrero Negro. Diciembre 2013

AZ-1	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	141.1783	1	1.546274	1.095263224	1.095263224	0.51%
Valva Inferior	163.4006	0	0	0	0	
						1.546274
						304.5789

datos valva superior de la concha
datos valva inferior de la concha
Area total de daño
Area total de la concha las 2 valvas
% de daño total de la concha

AZ-2	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	101.6724	5	0.5781662	0.568655997	1.279576758	0.64%
			0.0948018	0.093242414		
			0.3174791	0.312256915		
			0.1541242	0.151589025		
			0.1564051	0.153832407		
Valva Inferior	101.9039	0	0	0	0	
						1.3009764
						203.5763

AZ-3	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	71.1869	3	1.50941	2.120347985	2.980096197	1.49%
<u> </u>			0.139975	0.196630279		
			0.4720531	0.663117933		2.1214381
Valva Inferior	71.06782	0	0	0	0	142.25472

AZ-4	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	95.08473	6	1.058785	1.113517386	2.617444778	1.31%
12			0.0448099	0.047126284		
			0.0479018	0.050378015		
			0.7029339	0.739271069		5. (5
	2		0.5109979	0.53741321		
			0.1233618	0.129738813		2.4887903
Valva Inferior	95.12343	0	0	0	0	190.20816

AZ-5	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	85.87822	7	0.1904818	0.221804551	4.559390146	2.165329135
	3		0.3663233	0.426561356		
			1.503128	1.750301765		
			1.317412	1.5340467		
			0.1838679	0.214103064		
			0.1906006	0.221942886		
			0.1637095	0.190629824		3.9155231
Valva Inferior	94.94986	0	0	0	0	180.82808

AZ-6	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	108.3891	4	0.1430036	0.131935407	0.555009129	0.43%
			0.1271628	0.117320653		
			0.1770845	0.163378513		
			0.1543185	0.142374556		
Valva Inferior	81.31355	2	0.0906552	0.11148843	0.252751971	0.807091
			0.1148664	0.141263541		189.70265

AZ-7	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	116.6923	1	0.9185894	0.787189386	0.787189386	0.59%
Valva Inferior	100.5461	2	0.1565103	0.155660239	0.358839677	1.2793887
			0.204289	0.203179437		217.2384

AZ-8	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	114.4498	3	0.2962715	0.258865896	1.554650598	2.14%
25 HE			1.072952	0.937487003		
			0.410071	0.358297699		
Valva Inferior	85.08605	3	1.081278	1.270805261	2.937330385	
			0.5514128	0.648064871		4.2785529
			0.8665676	1.018460253		199.53585

AZ-9	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	49.22327	0	0	0	0	0.04%
Valva Inferior	38.68538	3	0.0891681	0.230495603	0.984214192	
			0.1934513	0.500063073		0.380747
			0.0981276	0.253655515		87.90865

AZ-11	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	98.09178	1	0.2671906	0.272388369	0.272388369	1.43%
Valva Inferior	73.61029	4	0.3309416	0.449586057	2.965663089	
			0.2342893	0.318283354		
	2		1.1271	1.531171797		2.4502238
			0.4907023	0.666621881		171.70207

AZ-13	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	119.4832	4	2.670081	2.234691572	4.863621413	3.54
			2.078564	1.739628667		
			0.8616033	0.721108323		
			0.2009622	0.168192851		7.4349335
Valva Inferior	90.64183	1	1.623723	1.79136167	1.79136167	210.12503

AZ-14	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	85.15651	0	0	0	0	1.85%
Valva Inferior	57.94248	3	0.5448712	0.940365687	4.575852811	
			0.9595424	1.656025769		2.6513626
			1.146949	1.979461355		143.09899

La Concha, Laguna Ojo de Liebre, Guerrero Negro. Diciembre 2013

AC-1	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	103.8649	3	0.459785	0.442676015	0.813495801	0.967587608
Valva Inferior			0.1510301	0.145410143		1.8123062
			0.2341215	0.225409643		187.30151
	83.43661	3	0.2847862	0.341320435	1.159406644	
			0.4248514	0.50919063		
			0.257732	0.30889558		

AC-2	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	106.5848	1	0.5004124	0.469496964	0.469496964	0.380350072
Valva Inferior	82.25823	2	0.1508568	0.183394172	0.264839397	0.7182646
			0.0669954	0.081445224		188.84303

AC-3	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	67.16067	2	0.4172846	0.621322866	0.747033197	0.516432153
Valva Inferior			0.0844279	0.12571033		0.8845908
	104.1282	1	0.3828783	0.367698952	0.367698952	171.28887

AC-4	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	86.98273	0	0	0	0	0
Valva Inferior	61.58015	0	0	0	0	0
						148.56288

AC-6	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	116.0129	0	0	0	0	0.35386743
Valva Inferior	98.03531	2	0.4517412	0.460794381	0.772626618	0.7574469
			0.3057057	0.311832237		214.04821

AC-7	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	78.48394	0	0	0	0	0.515706943
Valva Inferior	115.9511	1	1.002715	0.86477403	0.86477403	1.002715
						194.43504
AC-13	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	111.304	1	2.123001	1.907389672	1.907389672	0.933899479
Valva Inferior	116.0225	0	0	0	0	2.123001
						227.3265

AC-19	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	67.56019	1	0.5156395	0.763229796	0.763229796	0.411850958
Valva Inferior	57.64032	0	0	0	0	0.5156395
						125.20051

AC-20	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	113.9714	0	0	0	0	0.037497229
Valva Inferior	97.30901	1	0.0792243	0.081415174	0.081415174	0.0792243
						211.28041

El Datil, Laguna Ojo de Liebre, Guerrero Negro. Diciembre 2013

AD-2	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Inferior	128.0613	2	0.1469208	0.11472693	0.228232729	0.13%
			0.145357	0.1135058		
Valva Superior	89.1588	0	0	0	0	
						0.2922778
						217.2201

AD-4	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	125.5377	0	0	0	0	0.08%
Valva Inferior	111.3006	1	0.197757	0.17767829	0.177678287	
						0.197757
						236.8383

AD-11	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	131.5006	2	0.9288851	0.70637328	4.279103746	2.291509635
A			4.698162	3.57273047		
Valva Inferior	114.0601	0	0	0	0	
						5.6270471
						245.5607

AD-13	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Inferior	81.21173	1	0.4147966	0.51075947	0.510759468	0.27%
Valva Superior	73.20884	0	0	0	0	
						154.42057
						0.4147966

El Chocolatero , Laguna Ojo de Liebre, Guerrero Negro. Mayo 2014

CH-1	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	361.4804	2	5.942113	1.643827162	1.762514676	2.431437651
			0.4290321	0.118687514		14.1155581
Valva Inferior	219.0633	1	7.744413	3.535239814	3.535239814	580.5437

CH-2	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	77.01323	0	0	0	0	0.306820329
Valva Inferior	71.78457	1	0.4565419	0.635988904	0.635988904	0.4565419
						148.7978

CH-3	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	115.097	8	3.765102	3.271242517	7.964448509	4.48524404
			0.7910778	0.687314005		9.1668413
			2.184818	1.898240614		204.37776
			0.0704914	0.061245211		
			1.611627	1.400233716		
			0.0999426	0.086833367		
			0.3313897	0.2879221		
			0.3123928	0.271416979		
Valva Inferior	89.28076	0	0	0	0	

CH-5	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	77.61579	2	0.6102293	0.786217985	1.254151765	0.515955851
			0.3631905	0.46793378		0.9734198
Valva Inferior	111.0476	0	0	0	0	188.66339

CH-6	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	101.8604	2	3.584592	3.51912225	3.821371799	1.7128233
			0.3078726	0.302249549		3.8924646
Valva Inferior	125.3939	0	0	0	0	227.2543

CH-9	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	87.7766	4	6.455169	7.354088675	8.708818409	6.492494551
			0.3488333	0.397410358		8.7359267
			0.5103066	0.58136975		134.55424
			0.3299958	0.375949627		
Valva Inferior	46.77764	1	1.091622	2.333640603	2.333640603	

CH-10	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	133.3215	2	3.085576	2.314387402	2.46135732	1.679440929
_			0.1959425	0.146969919		3.4987677
Valva Inferior	75.00781	1	0.2172492	0.289635439	0.289635439	208.32931

CH-11	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	76.70765	3	0.3583716	0.467191473	3.452496589	1.691932185
4			1.945266	2.535947849		2.648329
			0.3446914	0.449357267		156.5269
Valva Inferior	79.81925	0	0	0	0	

CH-13	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	43.33223	1	4.450642	10.27097382	10.27097382	4.344852234
Valva Inferior	59.1026	0	0	0	0	4.450642
						102.43483

El Zacatoso, Laguna Ojo de Liebre, Guerrero Negro. Mayo 2014

Z-1	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	97.5379	6	2.062746	2.114814857	5.453788527	3.231532566
			1.710797	1.753981786		6.167927
			0.9629737	0.987281559		190.86693
			0.3277279	0.33600057		
			0.1604618	0.164512256		
			0.0948044	0.0971975		
Valva Inferior	93.32903	1	0.8484162	0.909059271	0.909059271	

Z-3	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	39.11605	3	0.6190706	1.582651111	3.683536553	1.850689815
			0.5419282	1.385436924		1.440854
			0.2798552	0.715448518		77.85497
Valva Inferior	38.73892	0	0	0	0	

Z-4	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	33.65833	4	0.6653083	1.976652734	5.999413815	5.634460159
#			0.4248805	1.262333871		3.8251595
			0.1482113	0.440340623		67.88866
			0.7809024	2.320086588		
Valva Inferior	34.23033	1	1.805857	5.275604997	5.275604997	

Z-5	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	38.42945	2	0.0327765	0.085290057	0.139956466	0.063589994
			0.021008	0.054666408		0.0537845
Valva Inferior	46.15068	0	0	0	0	84.58013

Z-6	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	32.43027	1	1.637016	5.047802562	5.047802562	2.277572902
Valva Inferior	39.44519	0	0	0	0	1.637016
						71.87546

Z-7	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	45.57161	3	4.821658	10.58039863	11.85150733	6.860530792
			0.5002506	1.097724219		5.8191523
			0.0790141	0.173384482		84.82073
Valva Inferior	39.24912	1	0.4182296	1.065577012	1.065577012	

Z-9	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	47.16269	3	2.935313	6.22380318	12.34268571	6.754454164
<u> </u>			0.7241906	1.535515892		5.8211426
			0.1422773	0.30167342		86.18228
			1.86667	3.957937938		
			0.1526917	0.323755282		
Valva Inferior	39.01959	0	0	0	0	

Z-8	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	41.35967	2	1.258472	3.04275155	3.331721215	1.668134346
			0.1195169	0.288969665		1.3779889
Valva Inferior	41.24692	0	0	0	0	82.60659

Z-10	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	41.65731	2	11.62263	27.90057735	28.12773028	13.70612084
		d	0.0946258	0.227152929		11.7172558
Valva Inferior	43.83191	0	0	0	0	85.48922

Z-11	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	41.54918	7	0.3000667	0.722196443	5.487188676	8.478328075
			0.8326559	2.004024869		7.4058679
	27		0.3905507	0.939972101		87.35057
			0.0979712	0.235795749		
			0.5282481	1.271380326		
			0.0849084	0.20435638		
			0.0454809	0.10946281		
Valva Inferior	45.80139	1	5.125986	11.19176951	11.19176951	

Z-12	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	52.73307	1	12.42421	23.56056645	23.56056645	11.40432257
Valva Inferior	56.20992	0	0	0	0	12.42421
						108.94299

Z-13	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	55.91437	2	1.125912	2.013636208	2.947447856	1.995454788
3			0.5221349	0.933811648		2.4123021
Valva Inferior	64.97547	2	0.3301551	0.508122681	1.176221119	120.88984
			0.4341001	0.668098438		

Z-14	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	161.7668	4	19.63702	12.13909158	15.30560183	11.08144323
			0.2746779	0.169798686		24.9709563
			0.5041934	0.311679158		225.34029
			4.343491	2.685032405		
Valva Inferior	63.57349	1	0.211574	0.332802242	0.332802242	

Z-21	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	103.5121	5	0.5863456	0.566451265	6.35566441	3.138658143
			1.924526	1.859228052		6.5788817
			1.911983	1.847110628		209.6081
			1.540839	1.488559309		
			0.6151881	0.594315157		
Valva Inferior	106.096	0	0	0	0	

Z-22	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	299.3677	6	1.721866	0.575167595	2.275329536	8.362739968
			1.718109	0.573912616		44.0727017
			0.5319612	0.177694922		527.0127
			1.267851	0.423509617		
			0.820894	0.274209275		
			0.7509205	0.250835511		
Valva Inferior	227.645	1	37.2611	16.3680731	16.3680731	

Z-22	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	310.8482	0	0	0	0	1.331901841
Valva Inferior	310.8482	3	1.877403	0.603961355	2.663803683	8.2803858
			5.420713	1.74384571		621.6964
			0.9822698	0.315996618		

Z-23	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	310.8482	0	0	0	0	1.334883177
Valva Inferior	309.4597	3	1.877403	0.60667124	2.675755777	8.2803858
			5.420713	1.751670088		620.3079
			0.9822698	0.317414448		

Z-24	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	335.4273	3	1.13613	0.33871125	2.467381844	2.185252003
			6.180977	1.842717334		10.1348863
			0.9591653	0.28595326		463.7857
Valva Inferior	128.3584	1	1.858614	1.447987822	1.447987822	

Z-25	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	126.8763	2	3.382697	2.666137805	5.289491418	2.823758478
			3.328414	2.623353613		6.711111
Valva Inferior	110.7896	0	0	0	0	237.6659

Z-26	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	121.9393	2	17.09492	14.01920464	15.11561982	8.239210887
			1.336961	1.096415184		18.431881
Valva Inferior	101.77	0	0	0	0	223.7093

Z-27	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	79.98654	2	0.8944728	1.11827915	6.202688352	3.10896378
ta			4.066843	5.084409202		4.9613158
Valva Inferior	79.59447	0	0	0	0	159.58101

Z-28	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	89.96685	5	1.021319	1.135217027	2.895641339	1.453279502
			0.7497018	0.833308935		2.6051173
			0.4619877	0.513508809		179.25783
			0.1333965	0.148272947		
			0.2387123	0.26533362		
Valva Inferior	89.29098	0	0	0	0	

La Concha, Laguna Ojo de Liebre, Guerrero Negro. Mayo 2014

C-4	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	78.8974	6 0	0	0		
Valva Inferior	90.7628	9 1	0.9810862	1.080933188	1.08093319	0.9810862
						169.66035
-11	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
alva Superior	53.22195	1	0.0421953	0.079281763	0.07928176	0.038633065
alva Inferior	55.99874	0	0	0	0	0.0421953
						109.22069
-12	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
alva Superior	51.5653	1	0.4972438	0.964299248	0.96429925	
alva Inferior	52.05761	2	0.660111	1.268039389	3.21297885	2.1698438
			1.012489	1.944939462		103.62291
C-23	Area de valva		Area de ampollas			%total de ampollas
Valva Superior	53.85996		1.512958	2.8090589	2.8090589	1.448204435
Valva Inferior	50.61134	0	0	0	0	1.512958
						104.4713
C-14	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	57.47685		Area de arripolias	76 C/ U	70 de valva	1.488441703
Valva Inferior	80.62221	100	2.055524	2.549575359	2.54957536	2.055524
Valva IIIIEIIOI	60.0222.	-	2.033324	2.545575555	2.54957550	138.09906
		100				138.03300
		A1 A 311	Area de ampolla	s % C/U	% de valva	%total de ampollas
C-30	Area de valva	No. Ampollas	Aica ac ampona			
	Area de valva 26.463)	0	0	5.704009
C-30 /alva Superior /alva Inferior		2 (3.37102	0	0 35 10.32915	0 5.704009

El Datil, Laguna Ojo de Liebre, Guerrero Negro. Mayo 2014

D-24	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	183.0266	0	0	0	0	1.334864991
Valva Inferior	149.8589	1	4.443572	2.96517057	2.96517057	4.443572
						332.8855

D-25	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	331.8239	1	11.94089	3.59856237	3.59856237	2.715887096
Valva Inferior	279.6214		2.648686	0.94724009	1.668425235	16.606164
			2.016588	0.721185145		611.4453

D-26	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	191.6432	1	0.1793008	0.093559698	0.093559698	0.040869744
Valva Inferior	247.0696	0	0	0	0	0.1793008
						438.7128

D-27	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	294.8604	1	0.4304031	0.145968431	0.145968431	0.073594
Valva Inferior	289.9741	0	0	0	0	0.4304031
						584.8345

[D-28	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
١	Valva Superior	278.0469	0	0	0	0	0.486589027
3 🚺	/alva Inferior	353.7417	2	2.520824	0.712617144	0.86905615	3.074214
Γ				0.55339	0.156439006		631.7886

El Chocolatero, Laguna Ojo de Liebre, Guerrero Negro. Agosto 2014

ACH-1	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	37.50735	0	0	0	0	0.166354542
Valva Inferior	31.98405	1	0.1156021	0.361436716	0.361436716	0.1156021
						69.4914

ACH-2	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	38.07019	2	0.0762091	0.200180509	0.556717211	2.374013155
			0.1357342	0.356536702		2.0228883
Valva Inferior	47.13946	1	1.810945	3.841675318	3.841675318	85.20965

ACH-3	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	80.44657	7	0.3001466	0.373100556	1.887486315	2.170552589
			0.1045536	0.129966511		3.892543772
			0.1682497	0.209144653		179.33423
			0.3773753	0.469100547		
			0.1645977	0.204604994		
			0.0790639	0.098281257		
			0.3244312	0.403287797		
Valva Inferior	98.88766	2	1.205369	1.218927619	2.005057456	
			0.7773854	0.786129837		

ACH-4	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	51.19676	3	1.943306	3.795759732	4.715578291	2.190155102
			0.0824749	0.161093983		2.4142233
			0.3884424	0.758724576		110.2307
Valva Inferior	59.03394	0	0	0	0	

ACH-5	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	30.83755	2	0.065142	0.211242463	0.261858676	0.108242545
			0.0156088	0.050616213		0.0807508
Valva Inferior	43.76417	0	0	0	0	74.60172

ACH-6	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	46.31261	2	0.4920876	1.062534804	1.56360136	0.787192586
			0.232057	0.501066556		0.7241446
Valva Inferior	45.67817	0	0	0	0	91.99078

ACH-7	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	39.32793	2	0.916716	2.330954108	2.58176797	1.829769888
			0.0986399	0.250813862		1.6011524
Valva Inferior	48.17774	1	0.5857965	1.215906973	1.215906973	87.50567
ACH-9	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	61.40571	1	0.5181333	0.84378684	0.84378684	1.108243183
Valva Inferior	59.18775	1	0.8183355	1.382609577	1.382609577	1.3364688
	55.120775		0.010000	11302303377	I.SOLOGJJ77	120.59346

ACH-10	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	38.35099	1	0.692037	1.804482753	1.804482753	0.880594018
Valva Inferior	40.23653	0	0	0	0	0.692037
						78.58752

ACH_11	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	62.26606	1	0.2101267	0.337465868	0.337465868	0.155592011
Valva Inferior	72.78374	0	0	0	0	0.2101267
						135.0498

ACH-12	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	59.79103	1	1.146029	1.916723963	1.916723963	0.992374926
Valva Inferior	55.69244	0	0	0	0	1.146029
						115.48347
ACH-14	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	70.40238	1	0.9945194	1.412621846	1.412621846	0.805918577
Valva Inferior	52.99959	0	0	0	0	0.9945194
						123.40197

ACH-15	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	74.77891	1	9.83975	13.15845604	13.15845604	6.612864095
Valva Inferior	74.01819	0	0	0	0	9.83975
						148.7971

ACH-16	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	75.61838	1	0.4283544	0.566468628	0.566468628	0.294494106
Valva Inferior	69.83594	0	0	0	0	0.4283544
						145.45432

ACH-17	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	59.96638	_1	2.101452	3.504383623	3.504383623	2.845691194
Valva Inferior	61.19294	3	0.6696618	1.094344871	2.20020169	3.4478201
			0.4375122	0.714971694		121.15932
			0.2391941	0.390885125		

ACH-20	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	34.65261	2	0.9576105	2.76345851	4.841468796	5.084231342
			0.7200848	2.078010286		4.1694439
Valva Inferior	47.35475	2	1.6467	3.477370274	5.261876792	82.00736
			0.8450486	1.784506517		

El Zacatoso, Laguna Ojo de Liebre, Guerrero Negro. Agosto 2014

Z-1	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	94.17052	6	1.249619	1.326974726	4.12169456	2.158532544
			0.5648673	0.599834534		3.8814212
			0.3922612	0.416543521		179.81759
			0.9456536	1.00419282		
			0.4295965	0.456190005		
			0.2994236	0.317958954		
Valva Inferior	85.64707	0	0	0	0	

Z-2	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	104.4803	1	0.2947521	0.282112609	0.282112609	0.132407037
Valva Inferior	118.1303	0	0	0	0	0.2947521
						222.6106

Z-3	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	68.8095	1	0.1827092	0.265529033	0.265529033	0.127284909
Valva Inferior	74.73399	0	0	0	0	0.1827092
						143.54349

Z-4	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	46.19775	3	0.2721544	0.589107478	1.522265695	0.839604327
			0.2325946	0.503476035		0.7032525
			0.1985035	0.429682181		83.75999
Valva Inferior	37.56224	0	0	0	0	

Z-9	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	49.95675	1	1.419074	2.840605123	2.840605123	1.621317465
Valva Inferior	37.56923	0	0	0	0	1.419074
						87.52598

Z-16	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	52.28788	1	0.907169	1.734950815	1.734950815	0.969856033
Valva Inferior	41.24858	0	0	0	0	0.907169
						93.53646
Z-19	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	50.31145	3	0.1466531	0.291490506	4.119775518	2.258155848
			0.9452087	1.878714885		2.0727188

1.949570128

0

0

91.78812

0.980857

0

Valva Inferior

41.47667

0

Z-23	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	52.90568	4	0.6442835	1.217796463	3.342309181	1.728859117
			0.3398547	0.642378474		1.7682714
			0.4468367	0.844591167		102.27967
			0.3372965	0.637543077		
Valva Inferior	49.37399	0	0	0	0	

La Concha, Laguna Ojo de Liebre, Guerrero Negro. Agosto 2014

C-1	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	75.1445	1	1.040679	1.384903752	1.384903752	1.697507109
Valva Inferior	75.85852	1	1.522608	2.007168081	2.007168081	2.563287
						151.00302

C-6	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	65.91937	1	0.0792308	0.120193503	0.120193503	0.060344062
Valva Inferior	65.37905	0	0	0	0	0.0792308
						131.29842

						83.55585
Valva Inferior	45.16955	0	0	0	0	0.1229617
Valva Superior	38.3863	1	0.1229617	0.320327044	0.320327044	0.14716109
C-25	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
						98.95271
Valva Inferior	46.37367	0	0	0	0	0.1082426
Valva Superior	52.57904	1	0.1082426	0.205866444	0.205866444	0.109388212
C-23	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
					1	143.03629
Valva Inferior	82.64119	0	0	0	0	0.2254761
Valva Superior	60.3951	1	0.2254761	0.373335088	0.373335088	0.15763559
The same of the sa		No. Ampollas	Area de ampollas	% C/U		%total de ampollas
C-19	Area de valva	No Amnallas	Area de ampellas	0/ C/11	% de valva	Ottotal do ampollas
Valva Inferior	86.16531	0	0	0	0	166.02801
			1.532192	1.918532682		1.7568153
Valva Superior	79.8627	2	0.2246233	0.281261841	2.199794522	1.058143924
C-16	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
		1 200000 2000 2000 2				
						141.46152
Valva Superior	70.95731	0	0	0	0	1.255977
Valva Inferior	70.50421	1	1.255977	1.78142128	1.78142128	0.887857702
C-14	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
]						126.0968
Valva Inferior	54.567	0	0	0	0	0.9641729
Valva Superior	71.5298	1	0.9641729	1.347931771	1.347931771	0.764629158
C-7 Valva Superior	Area de valva 71.5298	No. Ampollas	Area de ampollas 0.9641729	% C/U 1.347931771	% de valva 1.347931771	%total de ampol 0.764629158

El Datil, Laguna Ojo de Liebre, Guerrero Negro. Agosto 2014

D-1	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	62.92791	1	0.9347348	1.48540576	1.48540576	0.836883885
Valva Inferior	71.17239	1	0.187529	0.263485602	0.263485602	1.1222638
						134.1003

D-2	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	100.5868	1	0.9991724	0.993343461	0.993343461	0.502331568
Valva Inferior	98.32015	0	0	0	0	0.9991724
						198.90695

D-13	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	84.84258	3	0.2238262	0.263813524	0.484430106	0.260070953
			0.1161397	0.136888459		0.411003
			0.0710371	0.083728123		158.03495
Valva Inferior	73.19237	0	0	0	0	

D-24	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	49.71655	1	2.264919	4.55566406	4.55566406	2.562141796
Valva Inferior	38.68289	0	0	0	0	2.264919
						88.39944

El Chocolatero, Laguna Ojo de Liebre, Guerrero Negro. Marzo 2015

Ch1	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	27.72078	4	0.7612616	2.746176695	4.777682302	2.620542799
			0.2972443	1.072279712		1.3244108
			0.1298648	0.468474552		50.53956
			0.1360401	0.490751342		
Valva Inferior	22.81878	0	0	0	0	

Ch2	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	22.16424	3	0.5735704	2.587818937	4.533197168	2.86350217
. Torque			0.3430825	1.547910057		1.3185305
			0.0880958	0.397468174		46.04608
Valva Inferior	23.88184	1	0.3137818	1.313892899	1.313892899	

Ch3	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	23.16422	2	0.4123409	1.780076774	2.248217294	1.087175355
,			0.1084411	0.46814052		0.520782
Valva Inferior	24.73808	0	0	0	0	47.9023

Ch4	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	22.27866	8	0.3790175	1.701258065	5.173257278	2.485640626
			0.4005718	1.798006702		1.1525324
			0.1226113	0.550353118		46.36762
			0.0749955	0.336624824		
			0.0601177	0.269844326		
			0.0468743	0.210399997		
			0.0385171	0.172887867		р Э

			0.0298272	0.133882379		
Valva Inferior	24.08896	0	0	0	0	

Ch5	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	30.57557	4	0.6561987	2.146153612	3.434380128	2.734137013
			0.2053659	0.671666628		1.7621349
			0.1037908	0.339456632		64.4494
			0.0847259	0.277103256		
Valva Inferior	33.87383	2	0.4181749	1.234507288	2.10207585	
			0.2938787	0.867568563		

Ch6	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	27.85679	3	1.452629	5.214631693	6.425826881	3.126145609
			0.2101047	0.754231554		1.7900291
			0.1272954	0.456963634		57.25994
Valva Inferior	29.40315	0	0	0	0	

Ch7	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	27.06666	6	0.483457	1.786171622	2.942490873	1.425280906
			0.0728473	0.269140337		0.796434
			0.0806105	0.297822118		55.87909
			0.0551514	0.20376138		
			0.0423124	0.156326639		
		-	0.0620554	0.229268776		
Valva Inferior	28.81243	0	0	0	0	

Ch14	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	24.18669	2	0.1976027	0.816989427	1.233852172	0.609118904
			0.1008253	0.416862746		0.298428
Valva Inferior	24.8067	0	0	0	0	48.99339
	ř.			3 3		-
Ch10	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	24.36499	3	0.1197722	0.491575002	1.140559467	0.550847241
Name and American			0.0991067	0.406758632		0.2778972
			0.0590183	0.242225833		50.44905
Valva Inferior	26.08406	0	0	0	0	
			1	×	Y-	
Ch15	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Inferior	28.94575	5	0.570958	8 1.97251340	9 2.4804487	71 1.300548597
			0.147025	7 0.50793536	52	0.7179845
Valva Superior	26.26053	3	0	0	0	0 55.20628

Ch16	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	23.39242	1	4.996608	21.3599448	21.3599448	10.39773359
Valva Inferior	24.66236	0	0	0	0	4.996608
						48.05478

Ch18	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	24.96912	1	4.715168	18.88399751	18.88399751	10.27366465
Valva Inferior	25.08232	1	0.4269491	1.702191424	1.702191424	5.1421171
						50.05144

El Zacatoso, Laguna Ojo de Liebre, Guerrero Negro. Marzo 2015

Z1	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	44.25243	2	0.8755157	1.978457906	2.548283337	16.67379712
			0.2521616	0.569825431		14.2890573
Valva Inferior	41.44525	1	13.16138	31.75606372	31.75606372	85.69768

Z2	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	69.5262	6	8.387814	12.06424916	15.81427102	7.583710924
			1.03153	1.483656521		11.4011106
			0.5550554	0.798339906		150.33683
			0.6270545	0.901896695		
			0.273822	0.39384002		7
			0.1197858	0.17228872		
Valva Inferior	80.81063	1	0.4060489	0.502469663	0.502469663	

Z3	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	60.44132	4	2.292667	3.793211333	7.818070486	4.97203937
			0.8831824	1.461222885		5.6226168
			0.8369801	1.384781305		113.08472
			0.7125155	1.178854962		
Valva Inferior	52.6434	3	0.3743187	0.711045829	1.704433604	
			0.4169801	0.792084288		
			0.105973	0.201303487		

Z4	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	63.74437	6	1.571773	2.465744034	5.236723494	4.577400917
			0.7611955	1.194137616		5.892707
			0.7413109	1.162943331		128.73478
		8	0.1136184	0.178240682		
			0.0960944	0.150749627		
			0.0541242	0.084908204		
Valva Inferior	64.99041	4	0.9621677	1.480476427	3.930719317	
			0.857928	1.320083994		
			0.5547258	0.853550239		
	0		0.1797691	0.276608657		

Z 5	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	56.07215	2	0.5897417	1.051755105	1.554904529	0.702658303
			0.2821267	0.503149424		0.8718684
Valva Inferior	68.00927	0	0	0	0	124.08142

Z 6	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	59.39308	3	0.8047394	1.354937983	2.153792664	4.228051383
			0.4116846	0.693152468		4.9533588
			0.0627798	0.105702213		117.15465
Valva Inferior	57.76157	4	2.269572	3.929207603	6.360898778	
			0.44753	0.774788497		
			0.6240665	1.080418174		
			0.3329865	0.576484503		

Z8	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	43.47764	2	4.192237	9.642282792	9.903731205	6.986207454
			0.1136716	0.261448413		5.7681035
Valva Inferior	39.08652	3	1.406263	3.597820937	3.740918608	82.56416
			0.0300182	0.076799367		
			0.0259137	0.066298304	Ĭ.	

Z9	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	49.02289	2	0.4986131	1.017102623	1.086469606	0.790415877
			0.0340057	0.069366983		0.7813883
Valva Inferior	49.83498	1	0.2487695	0.499186515	0.499186515	98.85787

Z10	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	44.22368	1	0.3044357	0.688399744	0.688399744	0.354207854
Valva Inferior	41.72464	0	0	0	0	0.3044357
	<i>y</i>					85.94832

Z11	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	53.42653	2	2.338264	4.37659717	5.245181373	2.470883697
			0.4640544	0.868584203		2.8023184
Valva Inferior	59.98708	0	0	0	0	113.41361

Z12	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	53.37516	1	2.907462	5.447219268	5.447219268	2.757325881
Valva Inferior	52.06983	0	0	0	0	2.907462
						105.44499

Z14	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	44.84818	1	0.1575877	0.351380368	0.351380368	0.168719112
Valva Inferior	48.55422	0	0	0	0	0.1575877
						93.4024

La Concha, Laguna Ojo de Liebre, Guerrero Negro. Marzo 2015

C1	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	138.0998	1	5.246705	3.799212598	3.799212598	1.94580118
Valva Inferior	131.5426	0	0	0	0	5.246705
						269.6424

C2	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	131.3399	2	0.1647954	0.125472457	0.534985104	0.27856628
			0.5378535	0.409512646		0.7026489
Valva Inferior	120.8977	0	0	0	0	252.2376

C7	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Inferior	143.8186	3	0.8519435	0.592373657	1.369937824	0.774261843
			0.5839391	0.406024742		1.9702254
·			0.5343428	0.371539425		254.465
Valva Superior	110.6464	0	0	0	0	

C8	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	181.2784	1	16.94551	9.347782196	9.347782196	4.825060043
Valva Inferior	175.8846	1	0.2878192	0.163640933	0.163640933	17.2333292
						357.163

C12	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	130.4896	2	0.1869605	0.143276169	0.25189609	0.154074797
			0.1417377	0.108619921		0.4736193
Valva Inferior	176.9061	1	0.1449211	0.081919787	0.081919787	307.3957

C13	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	169.8611	1	4.096707	2.411798228	2.411798228	1.770938039
Valva Inferior	177.441	1	2.053798	1.157454027	1.157454027	6.150505
						347.3021

C16	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	154.55	1	7.878016	5.097389841	5.097389841	2.498137341
Valva Inferior	160.8056	0	0	0	0	7.878016
						315.3556

El Datil, Laguna Ojo de Liebre, Guerrero Negro. Marzo 2015

D1	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	148.1348	1	17.59776	11.87955835	11.87955835	8.997394906
Valva Inferior	130.953	2	7.256738	5.541482822	5.737074752	25.1106315
			0.2561335	0.19559193		279.0878

D2	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	168.6107	2	0.5979819	0.354652403	0.643752621	0.842039773
			0.4874539	0.289100217		2.8014318
Valva Inferior	164.0852	1	1.715996	1.045795721	1.045795721	332.6959

D3	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	184.7694	0	0	0	0	
Valva Inferior	179.028	0	0	0	0	363.7974

D4	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	148.1874	1	0.7599806	0.512851025	0.512851025	2.16949055
Valva Inferior	130.953	2	2.613787	1.995973364	4.0441563	6.0559246
			2.682157	2.048182936		279.1404

D5	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	145.7122	0	0	0	0	0.115697385
Valva Inferior	140.5495	1	0.3311973	0.235644595	0.235644595	0.3311973
						286.2617

D6	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	141.7116	4	0.8697351	0.613735996	2.751807897	2.04077712
			1.596691	1.126718631		3.899631
			0.8857118	0.625010091		191.08559
			0.5474931	0.386343179		
Valva Inferior	49.37399	0	0	0	0	

D7	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	152.1724	0	0	0	0	
Valva Inferior	156.2623	0	0	0	0	308.4347

D8	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	173.6214	3	0.4793912	0.276112968	1.482438225	0.827069385
			1.894209	1.090999727		2.57383
			0.2002298	0.11532553		311.1988
Valva Inferior	137.5774	0	0	0	0	

D11	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	148.0757	2	1.864606	1.259224842	1.575397381	0.818442869
a _e			0.4681747	0.316172539		2.3327807
Valva Inferior	136.951	0	0	0	0	285.0267

El Chocolatero, Laguna Ojo de Liebre, Guerrero Negro. Abril 2015

Ch1	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	49.48942	8	0.6931277	1.400557331	3.460686547	1.786737731
			0.43852	0.88608838		1.7126737
			0.0850427	0.171840163		95.85479
			0.12184	0.246194035		
			0.1137372	0.229821243		
			0.089949	0.181753999		
			0.0526313	0.106348589		
			0.1178258	0.238082806		
Valva Inferior	46.36537	0	0	0	0	

Ch2	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superio	50.36029	1	5.720534	11.35921576	11.35921576	5.970653637
Valva Inferior	45.45056	0	0	0	0	5.720534
						95.81085

Ch3	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	24.82355	1	0.1004307	0.404578314	0.404578314	0.200248479
Valva Inferior	25.32949	0	0	0	0	0.1004307
						50.15304

Ch5	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superio	23.30177	3	0.2552768	1.095525361	1.685717866	0.798373059
			0.0667555	0.286482529		0.3928021
			0.0707698	0.303709976		49.20032
Valva Inferior	25.89855	0	0	0	0	

Ch6	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superio	30.65789	3	0.6055575	1.975209318	3.961087668	2.221456476
			0.3951809	1.289002276		1.4521932
			0.2136475	0.696876073		65.37122
Valva Inferior	34.71333	1	0.2378073	0.685060465	0.685060465	

Ch7	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superio	38.18231	3	0.0655661	0.171718526	0.429101592	0.19879737
			0.0143472	0.037575516		0.1638409
			0.0839276	0.21980755		82.41603
Valva Inferior	44.23372	0	0	0	0	

ch11	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	24.4746	6	0.1433237	0.585601808	1.634095756	2.37394902
			0.1089052	0.444972339		1.2107432
			0.05895	0.240861955		51.00123
			0.027505	0.112381816		
			0.0207403	0.084742141		
			0.0405142	0.165535698		
Valva Inferior	26.52663	1	0.8108048	3.056569191	3.056569191	

Ch12	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superio	24.43543	3	0.7598089	3.109455819	3.991700167	2.089627244
			0.1270437	0.519915958		0.9753891
			0.0885365	0.36232839		46.67766
Valva Inferior	22.24223	0	0	0	0	

Ch13	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	29.78331	2	0.5118916	1.718719645	2.972691081	1.352453039
	8		0.3734742	1.253971436		0.8853658
Valva Inferior	35.68039	0	0	0	0	65.4637

Ch14	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	38.5766	7	0.1674836	0.434158531	0.792199157	0.384663845
			0.0358309	0.092882473		0.3056035
			0.0413319	0.107142413		79.4469
			0.011671	0.030254092		
			0.0121171	0.031410492		
			0.0191792	0.049717186		
			0.0179898	0.04663397		
Valva Inferior	40.8703	0	0	0	0	

Ch15	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	27.95756	7	0.3114763	1.114104021	3.094496444	1.623459638
			0.17462	0.624589556		0.8651457
			0.1147779	0.410543338		53.29025
			0.0811771	0.290358315		
			0.0561252	0.200751425		
			0.0364999	0.130554669		
			0.0904693	0.323595121		
Valva Inferior	25.33269	0	0	0	0	

ch17	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	30.31029	4	0.3937685	1.299124819	0	1.424189157
			0.217067	0.716149532		0.868045
			0.1424316	0.469911703		60.95012
			0.1147779	0.378676351		-
Valva Inferior	30.63983	0	0	0	0	

Ch18	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	29.67403	2	0.1045193	0.352224824	0.549630771	0.277658212
			0.0585783	0.197405947		0.1630976
Valva Inferior	29.06639	0	0	0	0	58.74042

Ch19	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	23.24936	1	0.0469816	0.20207696	0.20207696	0.096779722
Valva Inferior	25.29552	0	0	0	0	0.0469816
						48.54488

Ch21	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superio	21.16946	2	0.2436057	1.150741209	1.42885742	0.713051579
			0.0588757	0.278116211		0.3024814
Valva Inferior	21.25123	0	0	0	0	42.42069

El Zacatoso, Laguna Ojo de Liebre, Guerrero Negro. Abril 2015

Z1	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	56.7382	1	2.471962	4.356786081	4.356786081	2.421612084
Valva Inferior	45.34099	0	0	0	0	2.471962
		·				102.07919

Z6	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	30.94506	1	1.167627	3.77322584	3.77322584	1.86233372
Valva Inferior	31.75192	0	0	0	0	1.167627
						62.69698

Z9	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	37.75829	1	0.5995361	1.587826408	1.587826408	0.786001005
Valva Inferior	38.51847	0	0	0	0	0.5995361
						76.27676

Z11	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	27.67121	1	0.0791699	0.286109281	0.286109281	0.136694098
Valva Inferior	30.24636	0	0	0	0	0.0791699
2 2						57.91757

Z15	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	25.78845	1	0.8115482	3.146944465	3.146944465	1.587059361
Valva Inferior	25.34689	0	0	0	0	0.8115482
						51.13534

	Z16	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
0	Valva Superior	22.85307	2	0.2927431	1.280979317	1.471922591	0.678787173
				0.0436364	0.190943274		0.3363795
	Valva Inferior	26.70289	0	0	0	0	49.55596

	Z18	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
4	Valva Superio	27.93749	2	3.616991	12.94672857	14.4267044	7.106289161
				0.4134681	1.479975832		4.0304591
	Valva Inferior	28.7793	0	0	0	0	56.71679

Z24	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	34.97686	2	0.2341648	0.669484911	1.174255208	0.591838967
			0.1765528	0.504770297		0.4107176
Valva Inferior	34.41999	0	0	0	0	69.39685

Z27	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	34.58911	1	0.8461154	2.446190145	2.446190145	1.199852067
Valva Inferior	35.9292	0	0	0	0	0.8461154
						70.51831

Z30	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	38.12373	1	0.1369306	0.359174194	0.359174194	1.069598403
Valva Inferior	41.70497	1	0.7169159	1.719017901	1.719017901	0.8538465
						79.8287

Z27	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	60.28769	1	0.2674682	0.443653091	0.443653091	0.216812163
Valva Inferior	63.07633	0	0	0	0	0.2674682
						123.36402

La concha, Laguna Ojo de Liebre, Guerrero Negro. Abril 2015

C1	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	80.49024	2	0.5047552	0.627101124	0.997358562	0.520436251
			0.2980211	0.370257437		0.8027763
Valva Inferior	73.76041	0	0	0	0	154.25065

C2	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	84.86198	1	0.2201149	0.259379878	0.259379878	0.141146606
Valva Inferior	71.08573	0	0	0	0	0.2201149
						155.94771
C4	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
C4 Valva Superior	Area de valva 98.36942			% C/U 0.908656776		%total de ampollas 0.441296712
		1				

C5	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	135.532	1	8.433054	6.222186642	6.222186642	4.120893371
Valva Inferior	97.04866	1	1.151347	1.186360533	1.186360533	9.584401
						232.58066

C7	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	54.85053	1	0.1557382	0.283931988	0.283931988	0.159396004
Valva Inferior	42.85468	0	0	0	0	0.1557382
						97.70521
r	To a second	Table 10 av	1	I	T	
C10						
C10	Area de valva	No. Ampolias	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior				3.023707885	Control of the Contro	24-3-3-3-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4
the contract of the contract o		1		100000000 1000000	Control of the Contro	24-3-3-3-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4

C17	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	99.66156	1	0.0999846	0.100324137	0.100324137	0.049153844
Valva Inferior	103.75	0	0	0	0	0.0999846
						203.41156

C18	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Inferior	115.5044	1	0.2308939	0.199900523	0.199900523	0.105249581
Valva Superior	103.8731	0	0	0	0	0.2308939
						219.3775

El Dátil, Laguna Ojo de Liebre, Guerrero Negro. Abril 2015

D1	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	80.30394	2	0.3172003	0.394999672	0.682246973	12.56558795
			0.2306709	0.287247301		19.4860742
Valva Inferior	74.77097	2	17.00705	22.74552544	25.32828316	155.07491
			1.931153	2.58275772		

D4	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Inferior	94.87026	1	0.6309068	0.665020629	0.665020629	0.300116316
Valva Superior	115.3505	0	0	0	0	0.6309068
						210.22076

D12	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	101.7277	2	0.4877318	0.479448371	0.654902647	0.337817145
			0.1784856	0.175454276		0.6662174
Valva Inferior	95.48473	0	0	0	0	197.21243

D13	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	110.8469	1	0.2038349	0.183888679	0.183888679	0.093600657
Valva Inferior	106.9239	0	0	0	0	0.2038349
						217.7708

D19	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	141.4923	1	1.01516	0.717466604	0.717466604	0.40626567
Valva Inferior	108.3836	0	0	0	0	1.01516
						249.8759

D30	Area de valva	No. Ampollas	Area de ampollas	% C/U	% de valva	%total de ampollas
Valva Superior	95.12122	1	0.3023327	0.317839384	0.317839384	2.6849445
Valva Inferior	83.86407	1	4.503323	5.369788278	5.369788278	4.8056557
						178.98529

LITERATURA CITADA

Abbott RT. 1974. American Seashells. Van Nostrand Reinhold Co., New York. usa. 663p.

Alagarswami, K. & A. Chellam (1978). On fouling and boring organisms and mortality of pearl oysters in the farm at Veppalodai, Gulf of Mannar. Indian Journal of Fisheries 23: 10-22.

Almeida M. J., Moura G. Macahado J., Coimbra J., Vilarinho L., Ribero C. y Soares DaSilva P., 1996, Aminoacid and metal content of *Crassostea gigas* shell enfested by *Polydora* sp. Intheprismatic layer insoluble matrix and blister membrane. Aquatic Living Resources, 9; 179-186.

Ambariyanto, Seed, R., 1991. The infestation of Mytilus edulis Linnaeus by Polydora ciliata (Johnston) in the Conway Estuary, North Wales. Journal of Molluscan Studies 57, 413–424.

Arellano-martínez M. 2005. Características ecofisiológicas de la reproducción de *Nodipecten subnodosus* (Sowerby 1835) (Pectinidae) en la Laguna Ojo de Liebre, bcs, México. Tesis de Doctorado. Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional.

Arellano-Martínez M, BP Ceballos-Vázquez, M Villalejo-Fuerte, F García-Domínguez, JF Elorduy-Garay, A Esliman-Salgado e I Racotta. 2004a. Reproduction of the lion's paw scallop *Nodipecten subnodosus* Sowerby 1835 (Bivalvia: Pectinidae) from Laguna Ojo de Liebre, bcs, México. *Journal of Shellfish Research* 23: 723-729.

Arellano-Martínez M, I Racotta, BP Ceballos-Vázquez y J Elorduy-Garay. 2004b. Biochemical composition, reproductive activity, and food availability of the lion's paw scallop *Nodipecten subnodosus* in the Laguna Ojo de Liebre, b.c.s., Mexico. *Journal of Shellfish Research* 23: 15-23.

Aviles F., Rozbaczylo N., Herve M. and M. Godoy, 2007. Firstreport of polychaetes from the genus Oriopsis (Polychaeta: sabellidae) associated with the Japanese abalone *Haliotisdiscus*Hannai and others native mollusks in Chile. Journal of Shellfish Research, 26 (3): 863–867.

Bailey-Brock, J.H., 2000. A new record of the polychaete Boccardia proboscidea (family Spionidae), imported to Hawaii with oysters. Pacific Science 54, 27–30.

Bergman, K. M., R. W. Elner & M. J. Risk (1982). The influence of Polydora websteri borings on the strength of the shell of the sea scallop, Placopecten magellanicus. Canadian Journal of Zoology 60: 2251-2256.

Baxter JM 1984. The incidence of Polydora ciliata and Cliona celata boring the shell of Patella vulgata in Orkney. Journal of Marine Biology Association of United Kingdom 64:728-729.

Benninger, P. y M., LePennec (1991). Functional anatomy of scallops En: S. E. Shumway (ed.), Scallops: Biology, Ecology and Aquaculture. Developments in Aquaculture and Fisheries Science Elsevier. New York. 21, 133-224.

Blake J.A. 1969. Systematic and Ecology of Shell-Boring Polychaetes from New England. *Am. Zoologist*, 9 (3): 813-820.

Blake, J.A. 1969. Reproduction and larval develop- ment of *Polydora* from Northern New England (Polychaeta: Spionidae). Ophelia, 7: 1-63.

Blake, J.A., 1996. Family Spionidae Grube, 1850, In: J. A. Blake, B. Hilbig & PH Scott (eds.) Taxonomic Atlas of the Benthic fauna of the Santa Maria Basin and the Western Santa Barbara, Mus. Nat. Hist., pp. 81-223.

Blake J.A. & P.L. Arnofsky, 1999. Reproduction and larval development of the spioniform. Polychaeta with application systematics and phylogeny. Kluwer Academic publisher. Hidrobiología 402: 57-106.

Blake J. A. & K. H. Woodwick (1975). Reproduction and larval development of Pseudopolydora paucibranchiata (Okuda) and Pseudopolydora kempi (Southern) (Polychaeta: Spionidae). Biological Bulletin. Marine Biological Laboratory, Woods Hole 149: 109-127

Boscolo, R. and Giovanardi, O., 2002. Polydoraciliata shell infestation in *Tapesphilippinarum*Manila clam held out of the substrate in the Adriatic sea, Italy. *JournalofInvertebratePathology*, 79: 197-198.

Boss K.J. 1982. Mollusca. En: Parker S.P (ed.) Synopsis and classification of living organims. Vol. 1. McGraw-Hill Book Co. New York. 945-1166 pp.

Bower, S. M. (2001). Synopsis of infectious diseases and parasites of commercially exploited shellfish: shell-boring Polychaetes of oysters. http://www-sci.pac.dfo-mpo.gc.ca/shelldis/pages/sbpoy_e.htm

Cáceres-Martínez, J. (2003). Gusanos perforadores de los géneros *Polydora* y *Boccardia* y su impacto en el cultivo de moluscos. Boletín del Programa Nacional de sanidad Acuícola y la red de Diagnóstico, 4 (24): 1-6.

Cáceres-Martínez, J., P. Macias-Montes de Oca y R. Vásquez-Yeomans. 1998. Polydora sp. infes- tation and health of the Pacific oyster Cras- sostrea gigas cultured in Baja California, NW Mexico. Journal of Shellfish Research, 17: 259-264. Calcinai, B., Arill, A., Cerrano, C., Bavestrello, G. 2003. Taxonomy- Related differences in the excavating micro-patterns of boring sponges. Journal of the Marine Biological Association of the United Kingdom 83(1). 37-39.

Calcinai B., Bavestrello G. And cerrano C. 2004. Bioerosion micropatterns as diagnostic characteristics in boring sponges. Bollettino dei musei e digli istituti Biologici della Università di Genova 68, 229-238.

Carlton, J.T., 1975. Introduced intertidal invertebrates. In: Smith, R.I., Carlton, J.T. (Eds.), Light's Manual: Intertidal Invertebrates of the Central California Coast. University of California Press, California, pp. 17–25.

Carton J. T. 1985. Transoceanic and interoceanic dispersal of coastal marine organisms: the biology of ballast water. Oceanography and Marine Biology: An Annual Review 23.

Carlton, J.T., Geller, J.B., 1993. Ecological roulette: the global transport of nonindigenous marine organisms. Science, New Series 261, 78–82.

Clavier, J. 1992. Infestation of Haliotis tuberculata shells by Cliona celata and Polydora species. South Australia Department of Fisheries Fisheries Research Paper 24: 16-20.

Ciocco NF. 1990. Infestación de la vieyra tehuelche (*Chlamys tehuelcha* (d'Orbigny)) por *Polydora websteri* Hartman (Polychaeta: Spionidae) en el Golfo San José (Chubut, Argentina): un enfoque cuantitativo. Biología Pesquera 19:9–18.

Ciocco NF, Lasta ML, Narvarte M, Bremec C, Bogazzi E, Valero J, et al. 2005. Argentina. In: Shumway SE, Parsons GJ, editors. Scallops: Biology, ecology and aquaculture. Chapter 26. 2nd ed. Argentina: Elsevier. pp. 1251–1292.

Contreras, F. 1985. Las lagunas costeras mexicanas. Centro de Ecodesarrollo, Secretaría de Pesca, México DF, 265 pp.

Cotte, J. 1902. Note sur le mode de perforation des Clionides.Comptes Rendus Societe Biologie 54, 626-637.

Cremonte, F., 2011. Enfermedades de moluscos bivalvos de interés comercial causadas por metazoos In: Enfermedades de moluscos bivalvos de interés en acuicultura. Ed. Fundación Observatorio Español de Acuicultura. Barcelona, España: 331-385.

Dauer, D. M. (1991). Functional morphology and feeding behavior of Polydora commensalis (Polychaeta: Spionidae). Ophelia supplement 5 (Systematics, Biology and Morphology of World Polychaeta): 607-614.

Dauer, D. M., C. A. Maybury & R. M. Ewing (1981). Feeding behavior and general ecology of several Spionid Polychaetes from the Chesapeake Bay. Journal of Experimental Marine Biology and Ecology 54: 21-38.

Díaz-Díaz, O. & I. Liñero-Arana, 2003. Poliquetos asociados a Isognomonalatus (Gmelin, 1791) (Bivalvia: Isognomonidae) en la costa nororiental de Venezuela. Soc. Española de malacol., 21(2): 61-65.

Díaz- Díaz, O. and I. Liñero-Arana. 2009. Percentage of Infestation Level of *Polydoracf. websteri*Hartman, 1943 (Polychaeta: Spionidae) by Size Class of *Crassostrearhizhophorae*(Guilding, 1828) on La Restinga. Lagoon (Margarita Island, Venezuela). RevistaCientífica, FCV-LUZ, 19(2): 113 – 118

Diez M. E, Orensanz J.M, Marquez F. and Cremanore F. (2013). Shell damage in the Tehuelche scallop *Aequipecten tehuelchus* caused by *Polydora rickettsi* (Polychaeta: spionidae) infestation. Journal of Invertebrate Pathology 114, 107–113 p.

Diez, M. E., V. I. Radashevsky, J. M, Orensanz, & F. Cremonte, F. 2011. Spionid polychaetes (Annelida: Spionidae) boring into shells of molluksofcommercial interest in northern Patagonia, Argentina. *Italian Journal of Zoology*, 2011, *First*, 1–8,URL: http://dx.doi.org/10.1080/11250003.2011.572565.

Erpenbeck, D. y G. Wörheide. 2007. On the molecular phylogeny of sponges. Zootaxa 1668:107-126.

Evans, J.W., 1969. Borers in the shell of the sea scallop, Placopecten magellanicus. American Zoologist 9, 775–782.

Fao 2010. Fishery Statistical Collections 1950-2008. fao, Rome, Italy. Available at http://www.fao.org (accessed 4 May 2010).

Félix-Pico, E.F.1991. Mexico. pp 943-980. En: S. Shumway (ed.). Scallops: Biology, Ecology and Aquaculture. Elsevier Publishers, Amsterdam.

FÉLIX-PICO, E., M. VILLALEJO-FUERTE, A. TRIPP-QUEZADA, & O. HOL-GUIN-QUIÑONES. 1999. Growth and survival of Lyropecten subno- dosus (Sowerby, 1835) in suspended culture at the national marine park of Bahia de Loreto, B.C.S., Mexico. In: Strand, Ø (Ed.) Book of abstractas 12th Internacional Pectinid Workshop, Bergen, Norway. pp. 39-40.

Gabbott, P. A. (1983). Development and seasonal metabolic activities in marine molluscs. 165-217 pp. *En*: Hochachka, P.W. (Ed.). The Mollusca Vol. 2. London: Academic Press.

Gallo- García M. C. / M. García Ulloa, 2005. Presencia de Boccardiasp. (Polychaeta: Spionidae) en el ostión *Crassostrea gigas* (Thunberg, 1873) cultivado en la costa media de Pacífico mexicano. Avances en investigación Agropecuaria, septiembre, vol. 9, número 003 Universidad de Colima, México pp. 45-48.

Gallo-García M. C., M. García Ulloa, A. Rejón Aviña, D. E. Godínez Sordia, A. H. Diaz, 2007. Infestación de Espio0nidos perforadores en el ostión Crassostrea gigas cultivado en la Laguna de Barra de Navidad, Jalisco, México. Avances en Investigación Agropecuaria, septiembre-diciembre, vol. 11, número 003 Universidad de Colima. Colima, México. Pp. 63-73.

Gallo-García, M. C., Rivera Gómez K., García Ulloa G. M. y Godínez Siordia, D. E. 2001a. Prevalescencia e intensidad de gusanos poliquetos asociados a las valvas del ostión del Pacífico *Crassostreagigas* cultivado en la Laguna de Barra de Navidad, Jalisco, México. En: Dirección General de Educación en Ciencia y Tecnología del Mar, SEP (editor) pp. 196-197.

Gallo García, M. C., Godínez Siordia, D. E. García Ulloa G. M. y Rivera Gómez K., 2001b. Estudio preliminar sobre el crecimiento y sobrevivencia del ostión del Pacífico *Crassostrea gigas* (Thunberg, 1873) en Barra de Navidad, Jalisco, México. Universidad y Ciencia 17(34):83-91.

Gallo-García, M.C. y García-Ulloa, G. M. 2005. *Boccardia sp.*(Polychaete: Spionidae) presence in Crassostrea gigas (Thunberg,1873) oysters reared en the mid coast of the Mexican Pacific. Avances en Investigación Agropecuaria. 9 (3): 45-48.

Gallo-García M. C., M. García Ulloa, D. E, Godínez Sordia, 2004. Evaluación de los tratamientos en la intensidad de gusanos poliquetos a las valvas de ostión *Crassostea gigas* (Thunberg, 1873). Laboratorio de ciencias marinas, Facultad de Ciencias, Universidad Autónoma de Guadalajara, Barra de Navidad, Jalisco.

García-Domínguez FA, P Castro-Moroyoqui y EF Félix-Pico. 1992. Spat settlement and early growth of Lyropecten subnodosus (Sowerby 1835) in Laguna Ojo de Liebre, bc, México, 1989-1990. Triennial Meeting National Shellfisheries Association, Orlando, Florida (Book of Abstracts). Journal of Shellfish Research 11: 195.

Gibson G. I. Paterson, H. Taylor & B. Woodridge 1999. Molecular and morphological evidencenof a single species, Boccardia proboscidea (Polychaeta: Spionidade) with multiple developmente modes. Mar. Biol. 134: 743-751.

Guida, V.G. 1976. Sponge predation in the oyster reef community as demonstrated with Cliona celata grant. Journal of Experimental Marine Biology and Ecology 25 (2), 109-122

Glasby, C. J., P. A.Fauchald, K. Paxton, H. Rouse, G. Rusell and Wilson, R., 2000. Class Polychaeta. In: Polychaetes and Allies: The outhern Synthesis. Fauna of Australia.Vol.4A.Polychaeta, Myzostomida, Pogonophora, Echiura,

Grant, R. E. 1826. Notice of a new zoophyte (Cliona celata Grant) from the firth of forth. Edinburg New Philosophical Journal 1, 78-81.

Sipuncula, Beesley, P. L.; Ross, G. and Glasby, C. J. (Eds). CSIRO. Publishers, Melbourne, ASustralia, pp. 1-296.

Gómez Del praDo RMC. 1984. Echinocephalus pseudouncinatus nemátodo parásito de Argopecten circularis (Mollusca: Bivalvia) y Heterodontus francisci (Pisces: Elasmobranchi) en la Costa Occidental de Baja California Sur, México. Tesis de Maestría. Instituto de Ciencias del Mar y Limnología. Universidad Nacional Autónoma de México. 125p.

González-Anativia, C. R. 2002. Mercados y comercialización de pectínidos. 451-468 pp En: Maeda-Martínez, A. N. (ed.), Los Moluscos Pectínidos de Iberoamerica: Ciencia y Desarrollo. Limusa Noriega editores. México.

Gibson, G., I. G. Paterson, H. Taylor & B. Woolridge (1999). Molecular and morphological evidence of a single species, Boccardia proboscidea (Polychaeta: Spionidae), with a multiple development modes. Marine Biology 134: 743-751.

González-Estrada F. 2003. Temperaturas letales y temperatura optima para crecimiento de una población de almeja mano de león *Nodipecten subnodosus* (sowerby, 1835). Tesis de Maestria Centro de Investigaciones Biológicas del Noroeste S.C. La Paz B.C.S. 90pp.

Grant, R. E. 1826. Notice of a new zoophyte (*Cliona celata* Grant) from the Firth of Forth. Edinburg New Philosophical Journal 1, 78-81.

Handley, S. J. 1995. Spionidpolychaetes in Pacific oysters, *Crassostreagigas* (Thunberg) from Admiralty Bay, Marlborough Sounds, New Zealand. New Zealand Journal of Marine and Freshwater Research, 29: 305-309.

Handley, S.J. 1998. Power to the oyster: do spionid induced shell blisters affect condition in subtidal oysters? Journal of Shellfish Research 17(4): 1093–1099.

Handley, S. J. & P. R. Bergquist 1997. Spionidpolychaete infestations of intertidal pacific oysters *Crassostreagigas* (Thunberg), MahurangiHarbour, northern New Zealand. Aquaculture 153: 191-205.

Johnson P. G., 1984. Family Spionidae Grube, 1850. In: Uebelacker, J.M. and P. G. Johnson (eds.) Taxonomic Guide to the Polychaetes of the Northern Gulf of México. Barry A. Vittor & Associates, Inc. Mobile, AL. Pp 6-1 to 6-69.

Keen AM. 1971. Sea shells of tropical west America. Marine mollusks from Baja California to Perú. University Press. Stanford. usa 1064p.

Kent, R. M. L. (1979). The influence of heavy infestations of Polydora ciliata on the flesh content of Mytilus edulis. Journal of the Marine Biological Association of the United Kingdom 59: 289-297.

Keen AM y E Coan. 1974. Marine molluscan genera of western North America, an illustrated key. University Press. Stanford. usa. 208p.

Kojima, H. and Yí.Imajima, 1982. Burrowing polychaetes in the shells of the abalone *Haliofis diversicoh aquatilis* chiefly on the species of *Polydom. BulL Jap.* Soc. Sdeni. *Fish.*, 48: 31-35.

Lauckner, G. 1983. Diseases of Mollusca: Bivalvia. In: O. Kine (ed.) Diseases of Marine Animals. Volume II: Introduction, Bivalvia to Scaphopoda. Biologische Anstalt Helgoland, Hamburg, p. 805-817.

Lankford, R. R. 1977. Coastal lagoons of Mexico. Their origin and classification. Pp. 182-215. En: Wiley, M. (ed.), Estuarine Process. Academic Press Inc., New York.

Lleonart, M. (2001). Australian abalone mudworms: avoidance & identification. A farm manual. Rapport, FRDC (Fisheries Research & Development Corporation). Deakin: 33 p.

Lleonart, M., J. Handlinger & M. Powell (2003a). Treatment of Spionid mud worm (Boccardia knoxi Rainer) infestation of cultured abalone. Aquaculture 217: 1-10.

Lleonart, M., J. Handlinger & M. Powell (2003b). Spionid mudworm infestation of farmed abalone (Haliotis spp.). Aquaculture 221: 85-96.

Maeda-Martínez A.N., P. Lombeida, L. Freites, C. Lodeiros y M.T. Sicard. 2001. Cultivo de Pectínidos en fondo en estanques. En: Maeda-Martínez A.N. (ed.). Los Moluscos Pectínidos de Ibero-América. Ciencia y Acuicultura. Limusa. México. Cap. 11: 213-231 pp.

Mariani. S., Piscitelli, M.P., Uriz, M.J. 2001. Temporal and spatial coocurrence in spawning and larval release of Cliona viridis (Porifera: Hadromerida). Journal of the Marine Biological Association of the United Kingdom 81 (4), 565-567.

Martin D. T. A.&Britayev, 1998. Symbiotic polychaetes: Review of known species. In: A. D. Ansell, R. N. Gibson, and M. Barnes (Eds.), Oceanography and Marine Biology: An Annual Review. UCL. Press. 36. 217-340 pp.

Massó-rojas JA. 1993. Comportamiento y fluctuaciones poblacionales de la almeja catarina (Argopecten circularis), en bancos silvestres de las lagunas San Ignacio, Ojo de Liebre y Guerrero Negro, en Baja California Sur, México. Tesis de Licenciatura. Facultad de Ciencias, Universidad Nacional Autónoma de México. 66p.

Massó-rojas JA. 1996. Pesquería de almeja catarina. En: M Casas y G Ponce (eds.). Estudio del potencial pesquero y acuícola de Baja California Sur. Vol. i. semarnap/fao/inp/uabcs/ cibnor/cicimar/uecytm. La Paz, bcs, México, pp: 71-85 Mazón-Suástegui, J.M., M. Robles-Mungaray, M. Osuna-García y V. Koch (2002). Cultivo de Almeja Mano de León. Apuntes del curso dirigido a productores y técnicos del sector social y privado de B. C. Sur. CIBNOR La Paz, México 30 pp.

Mazón-Suástegui, J.M., M. Robles-Mungaray y M. Osuna-Garcia (2003) Bases Tecnológicas para el Cultivo de la Conchuela *Argopecten ventricosus* enla República de Panamá. Publicación del Ministerio de Desarrollo Agropecuario de Panamá, proyecto de cooperación internacional S.R.E.- IMEXCI-302NP13 "Producción de semilla de moluscos y cultivos en el mar". 54 pp.

Mazurie J, Bouget JF, Barret J, Blateau D, Le-Chanjour R, Le-Gall J (1985) Mussels and oysters growth in Brest Bay, indicators of water quality and molluscs farming potential. Third International Scientific Meetings: Proceedings, Brest, France:14-46.

Mohammad, M.-B. M. (1972). Infestation of the pearl oyster Pinctada margaritifera (Linne) by a new species of Polydora in Kuwait, Arabian Gulf. Hydrobiologia 39: 463-477.

Morales-Hernández R. Y C. Cáceres-Martínez. 1996. Pesquería de la almeja mano de león *Lyropecten subnodosus*. En: Casas-Valdés M. Y G. Ponce- Díaz (eds.). Estudio del Potencial Pesquero y Acuícola de Baja California sur. 87-100pp.

Morgan, T., Rogers, A., Paterson, G., Hawkins, L. & M. Sheader. 1999. Evidence for poecilogony in *Pygospio elegans* (Polychaeta: Spionidae). Marine Ecology Progress Series 178: 121-132.

Morse M.P. y J.D. Zardus. 1997. Bivalvia. En: Harrison F.W. (ed.) Microscopic anatomy of invertebrates. Vol. 6A: Mollusca II. Willwy-Liss. New York. 7-118 pp.

Mortesen S, Torkildsen L, Hernar I, Harkestad L, Fosshagen A, Bergh O (1999) One million scallop, Pecten maximus, spat lost due to a bristle worm, Polydora sp. infestation. 12th International Pectinid Workshop. Bergen: 5-11.

Mortensen, S., van der Meeren, T., Fosshagen, A., Hernar, I., Harkestad, L., Torkildsen, L., Bergh, O., 2000. Mortality of scallop spat in cultivation, infested with tube dwelling bristle worms, Polydora sp. Aquaculture International 8, 267–271.

Nassonov, N. 1883. Zur biologie and anatomie de Clione. Zeitschrift fur Wissenschartliche zoologie 39, 295-308.

Obeso-Nieblas M. y Jiménez-Illescas A.R. 1989. Propagación de la constituyente M2 de la marea en La Bahía de La Paz, Baja California Sur, México, mediante un modelo bidimensional hidrodinámico numérico. Investigaciones Marinas CICIMAR. 4:241-256.

Orensanz JM. 1988. Size, environment, and density: The regulation of a scallop stock and its management implications. *Canadian Special Publication of Fisheries and Aquatic Sciences* 92: 195-227.

Osuna-Garcia, M. 2004. Efecto de la densidad en el cultivo de la almeja mano de león Nodipecten subnodosus (Sowerby, 1835), en la penisula de Baja California, México. Tesis de maestría. Centro Interdisiplinario de Ciencias Marinas. Instituto Politécnico Nacional. La Paz, B. C. S. México. 95p.

Peña JB. 2001. Taxonomía, morfología, distribución y hábitat de los pectínidos iberoamericanos. En: AN Maeda-Martínez (ed.). Los moluscos pectínidos de Iberoamérica: Ciencia y Acuicultura. Limusa. México, pp: 1-25.

Phleger, F.B. and Ewing, G.C. (1962). Sedi- mentology and oceanography of coastal lagoons in Baja California, Mexico. Geol. Soc. Amer. Bull., 73: 145-182.

Pomponi, S.A., Meritt, D.W. 1985. Distribution and life history of the boring sponge Cliona truitti in the upper Chesapeake bay. P. 384-390. In 3rd International Sponge Conference.

Pomponi, S.A., Meritt, D.W. 1990. Distribution and life history of the boring sponge Cliona truitti in the Upper Chesapeake Bay. p. 384-390. In: New Perspectives in Sponge Biology. Rützler, K. (Ed). Washington, D.C., Smithsonian Institution Press, 533p.

Racotta IS, JL Ramírez, AM Ibarra, MC Rodríguez-Jaramillo, D Carreño y E Palacios. 2003. Growth and gametogenesis in the lion's paw scallop Nodipecten (Lyropecten) subnodosus. Aquaculture 217: 335-349.

Radashevsky VI, Petersen ME. 2005. On the morphology and distribution of

Dipolydora giardi and status of *D. trilobata* (Annelida: Spionidae). Zootaxa 1086:25–36.

Radashevky V. I. 1993. Revision of the genus Polydora and related genera from the north west pacific (Polychaeta: spionidae). Publ. Seto mar. Biol. Lab. 36: 1-60.

Radashevsky, V. I. & Pankova, V. V. (2006). The morphology of two sibling sympatric Polydora species (Polychaeta:Spionidae) from the Sea of Japan. Journal of the Marine Biological Association of the United Kingdom, 86: 245-252.

Ramírez-Castillo E. 2003. Desarrollo reproductivo estacional de la almeja mano de León *Nodipecten sunodosus*. Tesis de licenciatura en biología, Instituto Tecnólogico Agropecuario No. 21 del Estado de Sonora 49pp.

Read, G.B., 1975. Systematics and biology of polydorid species (Polychaeta: Spionidae) from Wellington Harbor. Journal of the Royal Society of New Zealand 5, 395–419.

Reinecke, M.A. 1981. Madurez y desove de N. subnodosus (Sowerby, 1853) en Laguna Ojo de Liebre, B.C.S. Documento interno. CRIP La Paz. INP. SEPESCA. 11 pp.

ReinecKe-reyes MA. 1996. Madurez y desove de la almeja mano de león Lyropecten subnodosus Sowerby 1835 (Bivalvia: Pectinidae) en la Laguna Ojo de Liebre, b.c.s. México. En: CE Castro-Aguirre (ed.). Boletín Pesquero. semarnap/inp-crip-La Paz, bcs, México 3, 17-20.

Rombouts, A. 1991. Guiede to pecten shells. Recent pectinidae and propeamussidae of the world. Universal Book Srevices, Dr. W. Backuys, Oegstgeest, the Neneterland. Xiii + 157pp En: Osuna-Garcia, M. 2004. Efecto de la densidad en el cultivo de la almeja mano de león Nodipecten subnodosus (Sowerby, 1835), en la península de Baja California, Mexico. Tesis de Maestría. Centros Interdisciplinario de Ciencias Marinas. Instituto Politécnico Nacional. La paz, B. C. S. México. 95p.

Román, G., G. Martínez, G. García & L. Freites. 2001. Reproducción, 27-59. En: Maeda-martinez, A. N. (ed), Los Moluscos Pectínidos de Iberoamerica: Ciencia y Desarrollo. Editorial Limusa S.A. de C.C. México.

Roldan Carrillo 2007. Efecto de la salinidad sobre la fisiología de la almeja mano de león (Nodipecten subnodosus Sowerby, 1835).

Rosell, D. 1993. Effects of reproduction in Cliona viridis (Hadromerida) on zooxanthellae. Scientia marina 57(4), 405-413.

Rosell, D. 1996. Systematics, biology and ecology of the mediterranean excavating sponges. PhD thesis, Universitat de Barcelona, Barcelona, Spain, 363p.

Rosell, D., Uriz, M. J., Martin, D. 1999. Infestation by excavating sponges on the oyster (Ostrea edulis) populations of the blanes littoral zone (north-western mediterranean sea). Journal of the Blanes littoral zone association of the United Kingdom 79(3), 409-413.

Rosell, D., Uriz, M.J. 2002. Excavating and endolithic sponge species (Porifera) from the Mediterranean: species descriptions and identification key. Organisms Diversity and Evolution 2 (1), 55-86.

Ruppert, Barnes, R.D., Fox, R.S. 2003. Invertebrates Zoology. 7a. Edition. New York: Brooks/cole Publishing Company, 1102 p.

Rützler, K., Rieger,G. 1973. Sponge burrowing: fine structure of *Cliona kampa* penetrating calcareous substrata, Marine Biology 21(2). 144-162.

Rützler K. 1975. The role of burrowing sponges in bioerosion. Oecologia 19,203-216.

Sastry, A. N. 1979. Pelecypoda (excluding Ostreidae). *En*: Giese, A.C.y J. S. Pearse, (eds.), Reproduction of Marine Invertebrates. New York: Academic Press, pp.113-292.

Sato-Okoshi, W., 1999. Polydorid species (Polychaeta, Spionidae) in Japan, with descriptions of morphology, ecology and burrow structure. 1. Boring species. Journal of the Marine Biological Association (United Kingdom) 79, 831–848.

Sato-Okoshi, W., 2000. Polydorid species (Polychaeta, Spionidae) in Japan, with descriptions of morphology, ecology and burrow structure. 2. Non-boring species. Journal of the Marine Biological Association (United Kingdom) 80, 443–456.

Sato-Okoshi, W. & K. Okoshi 1996. Microstructure of scallop shells infested with young boring Polychaete, Polydora variegata. Bulletin de l'Institut océanographique, Monaco n° spécial 14 : 203-207.

Sato-Okoshi, W., Okoshi, K., 1997. Survey of the genera Polydora, Boccardiella and Boccardia (Polychaeta, Spionidae) in Barkley Sound (Vancouver Island, Canada), with special ref- erence to boring activity. Bulletin of Marine Science 60, 293–482.

Sato-Okoshi, W. & K. Okoshi (2000). Structural characteristics of self-excaveted burrows by boring polydorid species (Polychaeta, Spionidae). Bulletin of Marine Science 67: 235-248.

Sato-Okoshi, W., Takatsuka, M., 2001. Polydora and related genera (Polychaeta, Spioni- dae) around Puerto Montt and Chiloe Island (Chile), with description of a new spe- cies of Dipolydora. Bulletin of Marine Science 68, 485–503.

Sato-Okoshi, W. K. Okoshi, B.-S. Koh, Y.-H. Kim, J.-S. Hong 2012 Polydorid species (Polychaeta: Spionidae) associated with commercially important mollusk shells in Korean waters AQUA-630165; No of Pages 9.

Sato-Okoshi, W., Okoshi, K., Shaw, J., 2008. Polydorid species (Polychaeta, Spionidae) in southwestern Australian waters with special reference to Polydora uncinata and Boccardia knoxi. Journal of the Marine Biological Association (United Kingdom) 88, 491–501.

Sato-Okoshi, W., Sugawara, Y., Nomura, T., 1990. Reproduction on the boring polychaete Polydora variegata inhabiting scallops in Abashiri Bay, North Japan. Marine Biology 104, 61–66.

Schmarda, L. K. (1861). Neue wirbellose Thiere beobachtet und gesammelt auf einer Reise 1853 bis 1857. Band I. Turbellarien, Rotatorien und Anneliden. part 2. Engelmann, Leipzig: 164 p.

Shirley, A.P., Donald, W.M. 1985. Distribution and life history of the boring sponge Cliona truitti in the Upper Chesapeake Bay. p. 384-390. In: Third international Sponge Conference.

Silina, A. V., 2006. Tumor-Like formations on the shells of Japanese csallops Patinopecten yessoensis (Jay). Mar. Biol. 148: 833-840.

Silina A. V., & Zhukova, N. V., 2009. Topical and trophic relationships in a boring polychaete-scallop association: fatty acid biomarker approach. Mar. Ecol.: Prog.Ser. 394: 125-136.

Simon, C. A., A. Ludford& Wynne 2006. Spionidpolychaetes infesting cultured abalone *Haliotismidae* in South Africa. African Journal of Marine Science, 28(1): 167-171.

Simon, C.A. 2009. *Pseudopolydora* species associated with mollusk shells on the south coast of South Africa, with the description of Ps. *Dayii*, *spnov*. Journal of the Marine Biological Association of the United Kingdom, 89(4), 681-687.

Simon, C. A. 2011. *Polydora* and *Dipolydora* (Poychaeta: Spionidae) associated with mollusks on the south coast of South Africa, with descriptions of two new species. Africa, with descriptions of two new species. African Invertebrates 52 (1): 39-50.

Simon, C.A. & A. J. Booth 2007. Population structure and growth of polydoridpolychaetes that infest cultured abalone *Haliotismidae*. African Journal of Marine Science, 29 (3): 499-509.

Simon, C. A., T. M. Worsfold, L. Lange & J. Sterley 2010. The genus Boccardia (Polychaeta: Spionidae) associated with mollusk shells on the south coast of South Africa. Journal of the Marine Biological Association of the United Kingdom, 90(3), 585-598.

Skoglun D C. 1991. Panamic province molluscan literature. Additions and changes from 1971 through 2000. i Bivalvia, The Festivus, Supplement 32:1-119.

Smith JT. 1991. Cenozoic giant pectinids from California and the Tertiary Caribbean Province: Lyropecten, "Macrochlamis", Veripecten and Nodipecten species. u.s. Geological Survey Professional Paper 1391. u.s. Government Printing Office, Washington. 155p.

Somerton DA. 1980. A computer technique for estimating the size of sexual maturity in crabs. Canadian Journal of Fisheries and Aquatic Sciences 47: 1488-1494.

Sowerby 1835. in suspended culture at the national marine park of Bahia de Loreto. b.c.s. Mexico. Book of Abstracts. 12th International Pectinid Workshop, 5-11 May. University of Bergen, Bergen, Norway, pp: 39-40.

Stefaniak, L.M., McAtee, J., Shulman, M.J. 2005. The costs of being bored: Effects of a clionid sponge on the gastropod Littorina littorea. Journal of Experimental Marine Biology and Ecology 327(1), 103-104.

Taghon GL, ARM Nowell & PA Jumars 1980. Induction of suspension feeding in spionid polychaetes by high particle flux. Science 210: 562-564.

Thomas, P.A. 1981. Boring sponges destructive to economically important molluscan beds and coral reefs in indian Seas. Indian Journal of Fisheries 26(1-2),163-200. Tinoco-Orta, G.D. 2001. Infestación del poliqueto per- forador Polydora sp. nov. en la almeja Chione fluctifraga (Showerby). Tesis de Maestría. Centro de Investigación Científica y de Edu- cación Superior de Ensenada. Ensenada, B. C. México. 97p.

Tinoco-Orta, G.D. y Cáceres-Martínez, J. 2003. Infes- tation of the clam *Chione fluctifraga* by the burrowing worm *Polydora sp. nov*. in labora- tory conditions. Journal of Invertebrate Pat- hology, 83: 196-205.

Topsent, 1887. Sur les prétendus prolongements périphériques des Cliones. Comptes Rendus de l'Académie des Sciences 105, 1188.

Turner, M.M. 1985. Parasites of Eastern oysters from subtidal reefs in a Louisiana Estuary with a note on their use as indicators of water quality. Estuaries 8 (3), 323-325.

Uddin MJ, KI Park, DH Kang, YJ Park y KS Choi. 2007. Comparative reproductive biology of Yezo scallop, Patinopecten yessoensis, under two different culture systems on the east coast of Korea. Aquaculture 265: 139-147.

VelayudhanTS 1983. On the occurrence of shellboring polychaetes and sponges on pearl oyster Pinctada fucata and control of boring organisms. Symp Ser mar biol Ass India 2:614 618.

Walker, L.M., 2011. A review of the current status of the Polydora-complex (Poloychaeta: Spionidae) in Australia and a checklist of recorded species. Zootaxa 2751, 40–62.

Warburton FE (1958) Control of the boring sponge on oyster beds. Prog Rep Atlant Cst Stns 69:7-11

Wargo, R.N. & S. E. Ford, 1993. The Effect of Shell Infestation by Polydora sp. and infection by *Haplosporidiumnelsoni* (MSX) on the Tissue Condition Oysters, Crassosteavirginica. EstuariesVol. 16(2): 229-234.

Wesche, S.J., Adiard, R.D., Hopper, J.N.A 1997. The first incidence of clionid sponges(Porifera) from the Sydney rock oyster Saccostrea commercialis (iredale and Roughley, 1993) aquaculture 157 (1-2), 173-180.

Wilbur, K.M., Saleuddin, A.S.M. 1983. Shell formation. P. 236-287, in the Mollusca \$, Physiology. Saleuddin, A.S.M., Wilbur, K.M. (Eds.) New York: Academic Press, 523p.