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Resumen La capacidad de realizar tareas cotidianas juega un papel fundamental

en la forma en que las personas se perciben a śı mismas como miembros

aportadores a la sociedad. Esta percepción puede cambiar drásticamente cuando se

producen pérdidas de funciones en el cuerpo, sobre todo si éstas implican la

pérdida de una extremidad, lo que es particularmente preocupante si tomamos en

cuenta que la pérdida de movilidad en las extremidades inferiores es una de las

discapacidades más comunes. Las interfaces cerebro computadora, Brain-Computer

Interfaces (BCIs), surgen como un intento de devolver a las personas con

discapacidad la movilidad que alguna vez tuvieron. Uno de sus objetivos es la

estimación de manera precisa de variables continuas de la locomoción humana,

tales como fuerzas musculares, posiciones articulares, posiciones cartesianas y pares

articulares, a partir de mediciones neuronales no invasivas, como las realizadas por
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medio de electroencefalograf́ıa (EEG). Al diseñar esquemas que integren la

adquisición de señales EEG y algoritmos para su procesamiento, se puede lograr el

objetivo antes mencionado. Sin embargo, todav́ıa no existe un método factible para

adquirir y procesar estas señales de una manera que permita estimaciones

confiables; además, no hay propuestas para la estimación de variable cinética de

extremidades inferiores, como pares articulares, durante la ejecución de

movimientos fuera del ciclo de la marcha, tales como movimientos de inicio de la

marcha. Por lo tanto, esta tesis presenta un esquema para estimar pares articulares

de las extremidades inferiores a partir de señales EEG adquiridas durante la

ejecución de movimientos de inicio de la marcha. Este esquema se aplica para

optimizar un subconjunto de canales de EEG a partir del cual se lleva a cabo una

extracción de la información más relevante del conjunto de datos. Estos datos

extráıdos, llamados prototipos y obtenidos mediante un algoritmo propuesto, se

utilizan para entrenar y validar el modelo de regresión que se encarga de estimar

los pares articulares. Los resultados muestran estimaciones exitosas y que los

canales de EEG más frecuentemente seleccionados son consistentes con las regiones

del cerebro que se sabe se activan durante tareas motrices. Los datos extráıdos se

pueden utilizar para un posterior análisis que tenga el fin de caracterizar procesos

neuronales.

Abstract The ability to perform physical tasks of daily living plays a critical

role in the way people perceives themselves as contributors to society. This

perception can be drastically modified when loss of function in the body occurs,

specially if this involves the loss of a limb. This is particularly worrying as loss of

mobility in the lower limbs is one of the commonest physical impairments.

Brain-Computer Interfaces (BCIs) surge as an attempt to return the mobility

impaired people once had. One of the aims BCIs have is the accurate estimation of

continuous variables of the human locomotion, such as muscular forces, articular

positions, cartesian positions and joint torques, from non-invasive neural

recordings, such as Electroencephalographic (EEG) signals. By designing schemes

that integrate acquisition of EEG signals and processing algorithms, the

aforementioned aim may be achievable. However, there is still no feasible method
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to acquire and process these signals in a way that allows reliable estimations;

moreover, there is lack of proposes for the estimation of kinetic variables of the

lower limb, such as joint torques, during the execution of movements outside the

gait cycle, such as gait initiation movements. Hence, this thesis presents a scheme

for estimating lower-limb joint torques from EEG acquired during the execution of

gait initiation movements. The scheme is applied to optimize the subset of EEG

channels from which the extraction of the most relevant information of the dataset

is carried out. This extracted data, referred as prototypes and obtained with a

proposed algorithm, is used to train and test the regression model that estimates

the desired joint torques. Results show that successful estimations are obtained,

and that the most selected EEG channels are consistent with the regions of brain

known to be activated during motor tasks. Extracted data can be used for further

analysis in order to characterize neural processes.

Advisor’s signature:
PhD. Griselda Quiroz Compeán



Chapter 1

Introduction

As part of the everyday life, people must perform certain tasks or activities

that involve interaction with the environment, which mainly include walking and

touching things. However, the execution of such activities becomes especially

difficult for people with mobility impairments. Several schemes for rehabilitation

and restoration of mobility have been developed over the last years to address this

problem. Conventional rehabilitation therapies consist of performing exercises

during certain time and a certain number of sessions, depending on the severity of

the mobility loss. Although there is a wide spectrum of therapies, there is no

guarantee that patients will be able to regain the mobility they once had, and

physical therapies are not useful in cases when total loss of communication between

brain and limbs has occurred.

For those cases, BCIs have been developed during the last years as an

alternative way of communication between brain and environment through the use

of assistive devices, such as prostheses, wheelchairs and exoskeletons. BCIs provide

the user with some sort of control over the assistive device, which can be used to

classify or to estimate movement intentions by using neural activity.

The focus of this thesis is the estimation of kinetic variable in the lower-limb

from non-invasive recordings of brain signals, acquired during the execution of gait

initiation movements.

1
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1.1 Motivation

The focus on lower-limbs is motivated by two reasons. First, the impairment

of the lower-limbs is the most common type of dissability in USA and Mexico [1,

2]. Second, most of the schemes for rehabilitation and restoration of mobility are

focused on the upper-limb, and those who analyze the lower-limb are focused on the

gait cycle. Therefore, analyzing the initiation of movement offers an opportunity to

contribute to the understanding of locomotion and the use of BCIs to restore it.

Studying the process of initiation of the gait cycle provides insights about how

representative the information contained in the measurable signals of the brain is for

the human locomotion, which is the basis behind the daily tasks one performs as part

of the interaction with the environment. Such knowledge enhances the development

of motor assistance technologies, since it will allow prosthetic limbs to be controlled

with neural information, acquired preferably from non invasive methods. It also

represents a tool for a better diagnosis of motor disabilities, identification of its

causes and subsequent treatment.

Regarding the approach taken, machine learning has shown to be reliable for

solving real life problems in which the underlying processes are not extensively known

or measurable, by searching for hidden structures and information in an available

dataset.

1.2 Literature Survey

The acquisition of neural activity for the control of BCIs has gained great

interest since Fitzsimmons et al. [3] used neural signals for the estimation of angles

of hip, knee and ankle joints of macaques during the cycle of bipedal walking.

Their decoding method used linear Wiener filters for the estimation of kinematics.

However, the neural signals were acquired via the invasive method

Electrocorticography (ECoG), which requires a surgeon for the placement of

intracortical electrodes. As the ethical implications of such procedures becomes of

special concern for its application in the human body, later attempts of estimating

variable of movement from brain signals were carried out using recordings of
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Electroencephalographic (EEG) signals, which consist in the placement of

electrodes in the scalp. Thus this non-invasive method became one of the most

used methods for acquisition of human brain signals with the aim of decoding

movement.

Starting from this, a later result of Presacco et al. [4] showed estimation of joint

angles of the hip, knee and ankle joints from EEG signals by using linear Wiener

filters with estimations above the chance level. Although this work set the tone for

subsequent research of kinematic variable estimation from non-invasive methods, it

should be noted that the limitations of this study are the use of a very restrincted

range of EEG frequencies (0.1 to 2 Hz) and the focus in a defined gait cycle, so

that the estimated signal has sinusoidal-like waveform. The use of the coefficient of

correlation for assessing the goodness of fit for this type of waveform could lead to

a misterpretation of the results [5].

In contrast to the estimation of continuous kinematic variable, another kind of

decodification of movement from EEG signals is the classification of tasks. Dong Liu

et al. [6] developed a BCI which attempts to detect the intention of ankle movement

from low frequencies of EEG by using a support vector machine. Kilicarslan et al. [7]

decoded intentions of right-turning and sit-rest-stand motions of paraplegic subjects

with high offline accuracy from low frequencies of EEG recordings by using Gaussian

classifiers.

Studies that went far from the low frequencies of EEG where those of Gwin

and Ferris [8], who distinguished ankle tasks from knee tasks with high accuracy

from recordings of α and β modulations of EEG by using independent component

analysis and Bayesian classifiers. Similarly, Seeber et al. [9] reconstructed gait cycle

patterns from low gamma modulations (24-40 Hz) of EEG by using Morlet wavelets.

The notable difference of the aforementioned studies compared to the vast majority

of other studies, is the usage of a wider range of frequencies of the EEG signals,

based on established results of neurosciences [10]. Such results states that oscillatory

cortical activity in of 8 to 30 Hz present desynchronization during the execution of

movement.

The most common methods for extraction of information from the EEG signals



Chapter 1. Introduction 4

in the previous studies are those of spectral analysis. Another kind of information

discrimination is done by selecting a subset of electrodes in the EEG signals, either

arbitrarily or by discriminating zones of interest in the scalp. The drawbacks of these

methods is the lacking of a deeper analysis of the significance of each electrode for

the overall dataset. Therefore, this thesis focuses on the extraction of subsets of EEG

prior to the decoding stage. The selection of electrodes is carried out in such a way

that attempts are made to extract the most relevant information from the process

of generation of movement in the lower-limb.

1.3 Problem Statement

As seen in the previous section, there are schemes for the reconstruction of

movements of the lower-limb from EEG signals. These schemes decode kinematic

variables based on the lower frequencies of neural activity during the gait cycle using

linear methods. However, it is a matter of importance to consider the frequency range

recognized as the fluctuating one during motor activity, furthermore to consider

movements of the initiation of the gait cycle and a possible non-linearity of the

relationship between relevant variables, thus exploiting the available information of

the process. In addition, the estimation of kinetic variable is of special interest as it

is related with both the muscular force and the kinematics of the lower-limb.

1.4 Hypothesis

Based on insights given by previous studies in the field of BCIs, and by using

ML techniques for identifying data prototypes and relating datasets, it is possible

to find a relationship between EEG recordings and the joint torques generated in

the lower-limb during the execution of gait initiation movements. Such relationship

is expected to allow the continuous reconstruction of joint torques from only EEG

signals.
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1.5 Aim and Objectives

The aim of this study is to propose a scheme for relating the neuronal and

mechanical information of the lower limb acquired during the execution of gait

initiation movements through an analysis of the data based on ML techniques. The

specific objectives of this thesis are:

To propose a ML scheme for identifying prototypes of the available data that

represent the overall process.

To implement optimization algorithms for finding optimal subsets of EEG

channels that allow a better prototyping of the data.

To implement regression algorithms for finding the relationship between

identified prototypes of EEG recordings and joint torques of the lower-limb

during gait initiation movements.

1.6 Outline of the Thesis

The rest of this document is organized as follows. In Chapter 2, the reader

is provided with a brief theoretical framework on physiological definitions and ML

methods that will be mentioned later. Then, in Chapter 3, the proposed scheme

to solve the estimation of torque from EEG signals using the methods described in

Chapter 2 is explained. The results obtained for each defined objective through the

application of the proposed scheme are presented in Chapter 4; these results are

discussed in depth in Chapter 5. Finally, overall conclusions on the contributions of

this work and recommendations for future ones are discussed in Chapter 6.



Chapter 2

Theoretical Framework

In this chapter, the definitions, algorithms, methods and measures used in this

thesis are briefly described. The theoretical framework is divided into two contexts:

the physiological and the computational one.

2.1 Physiological Context

In this section, definitions for a basic understanding of the human locomotion

during walking and the processes that allow it to occur are described.

2.1.1 Movements of the lower-Limb During Walking

In order to describe the movements of joints in the lower-limb that are executed

during walking, it is necessary to introduce the concept of gait cycle.

Gait Cycle. The gait cycle is the repetition of a sequence of movements that are

executed during walking. The phases of the gait cycle, according to the floor contact

by the two feet, are illustrated in Figure 2.1 (adapted from [11]). Then, several

movements are observed in the hip, knee and ankle joints during the gait cycle and

variations of it, such as stair climbing, backward walking and lateral walking. The

following descriptions start from the assumption of the anatomical position as the

initial position of joints. The anatomical position, as well as the relevant anatomical

planes, can be seen in Figure 2.2.

6
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Figure 2.1: Phases and divisions of the gait cycle according to [12]. Adapted from
[11].

Figure 2.2: Anatomical position and vertical planes of the human body.

2.1.1.1 Hip Joint

Flexion and extension. These movements consist of moving the leg forth and

back to the anatomical position in the sagittal plane, as seen in Figure 2.3a,

respectively.

Hyperextension. This movement consist of moving the leg farther posteriorly

the anatomical position in the sagittal plane, as shown in Figure 2.3b.
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Abduction and Adduction. These movements consist of moving the leg

outward and inward the anatomical position in the frontal plane, respectively.

These movements are depicted in Figure 2.3c.

Figure 2.3: Movements of the hip joint.

2.1.1.2 Knee Joint

Flexion and Extension. These movements bend and straighten the leg at the

knee in the sagittal plane, as seen in Figure 2.4.

Figure 2.4: Movements of the knee joint.
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2.1.1.3 Ankle Joint

Dorsiflexion. This movement consist of moving the ankle so that the tip of the

foot points upwards.

Plantarflexion. This is the opposite movement of the dorsiflexion, so that the

tip of the foot points downwards. Both previous movements are shown in Figure 2.5.

Figure 2.5: Movements of the ankle joint.

2.1.2 Neural Supply of the lower-Limb

Muscles have to be activated in order to perform movements, such as those of

the gait cycle. The nervous system is responsible for identifying the specific

muscles necessary to perform a particular movement and for generating the

stimulus necessary to develop the force that is required in such muscles. The

central nervous system is divided into the central nervous system and the

peripheral nervous system. In the specific case of movement, the central nervous

system is responsible for the initiation and control of movement and consist of the

brain and the spinal cord; and the peripheral system is responsible of muscle

activation and consist of spinal nerves.

As the main control is carried out in the brain, the acquisition of brain activity

is of the utmost importance. Such acquisition can be carried out by a wide number

of techniques, where the most applied are the ECoG and the EEG. Since the EEG

is a non-invasive method, as it does not require a surgical procedure (compared to
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the ECoG), it is preferred for performing measurements of brain electrical activity.

2.1.2.1 EEG

As mentioned earlier, EEG is a non-invasive method for the continuous

measurement of electrical activity in the brain in which electrical conductors,

known as electrodes, are placed along the scalp. The number and placement of

electrodes vary according to the standard being used. For example, Figure 2.6

shows the electrode placement specified by the international 10-20 system [13],

which is used for most applications. Each electrode has a letter to identify the

region of the brain it is measuring from, such as pre-frontal (Fp), frontal (F),

temporal (T), central (C), parietal (P) and occipital (O). The amplitudes of the

EEG signals for each electrode ranges from 10 to 100 µV.

Figure 2.6: A single plane projection of the head with electrode placement according
to the international 10-20 system.

Frequency bands of the EEG. The EEG has a fuzzy frequency range,

although it can be broken down into the following bands or rhythms [14]:

Delta (δ). Below 3.5 Hz, these frequencies are related to sleep and

anesthesia, and they are often used to characterize the depth of sleep or type of

anesthesia.

Theta (θ). This band occur within the 4 to 7.5 Hz frequency range, and is

related to motion, alert state and cognitive tasks.
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Alpha (α). Mainly observed in the frequency range of 8 to 13 Hz, this band

is associated with relaxation states. A variant of this band is the Mu (µ) band, this

is observed in the motor cortex around the same frequency range.

Beta (β). Ranging from 14 to 30 Hz, this band is observed as the slow bands

disappear during wakefulness.

Gamma (γ). Above 30 hz, these frequencies are enhanced during cognitive

tasks, arousal and stimulation.

Bereitschaftspotential (BP). The BP is the pre-motor potential measured

in the motor cortex during EEG recordings that precedes voluntary movement in

humans. It is divided into two segments: the initial slow segment (early BP) and the

steeper negative slope (late BP), where the first begins about 2 seconds before the

movement and the latter begins about 400 miliseconds before the movement [15].

Artifacts. The recordings of EEG are subject to interference known as artifacts.

These can be derived from a variety of sources that hide the original signal, such as

blinks, eye movements, heart beats, muscle noise and line noise. Improper handling

of those artifacts can lead to misleading interpretations of the processes studied with

such EEG.

Several methods for its identification and posterior attenuation of artifacts have

been developed. One of the simplest yet effective methods for the removal of artifacts

is the Blind Source Separation (BSS) [16]. The main idea of the BSS method is to

recover independent sources s(k) = s1(k), ..., sN(k) after being mixed by an unknown

matrix M to a linear mix of signals x(k) = x1(k), ..., xN(k) . The recovered version

r(k) of the original sources s(k) is computed with

r(k) = Wx(k) , (2.1)

whereW is the recovery matrix consisting of filters that attempt to invert the mixing

process.
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2.2 Machine Learning (ML) Context

In this section, concepts and algorithms belonging to the ML framework, such

as times series matching, clustering, regression and optimization, are explained. For

evaluating these methods, different measures and metrics are also defined.

2.2.1 Time Series Matching

In the field of time series analysis, similarity measures between time series is

one of the most prevalent problems for finding sections of signals that match in some

characteristic. For finding similar patterns between series, several methods of time

series matching have been proposed. If the characteristic to be found is the similarity

in shape, regardless of the amplitude and the size of the signals, the dynamic time

warping is one of the most common and reliable choices.

2.2.1.1 Dynamic Time Warping (DTW)

The DTW is an algorithm used to align time series in the search of shape

similarity by creating a warping path that minimizes the distance between elements

of the series. The main advantages of DTW are that time series can be aligned

even if they are dephased one from another, and that time series are not required

to be within the same range of magnitude. The band-constrained DTW, a slight

modification that improves the resulting path [17], is explained as follows.

Two time series, a sequence a of length I and a sequence b of length J , are

expressed as:

a = {a1, a2, a3, ..., aI} and

b = {b1, b2, b3, ..., bJ} .
(2.2)

Then a distance matrix DI×J between both time series is filled by computing

the absolute distance dij between every pair of elements ai and bj in both time series:

dij = |ai − bj| , (2.3)

where i = 1, ..., I and j = 1, ..., J .
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For creating the warping path, an auxiliary matrix UK×L is initialized with

symbolic representations of positive infinite values (or with values of very large

magnitude compared to the magnitude of both original series), where K = I + 1

and L = J + 1. The value of u1,1 is initialized as 0 and u2,2 is initialized as d1,1.

Then, a bound constraint for the warp search is defined as:

Wc =

⌈

bp × J

100

⌉

, (2.4)

where ⌈⌉ is the ceil function and bp is the maximum percentage of the total length

of the shortest series that the warp can extend to the left (LWc) and to the right

(RWc). Then U is filled recursively in the permissible extension given by Wc with:

uij = d(i−1,j−1) +min(u(i−1,j−1), u(i−1,j−1), u(i−1,j−1)) . (2.5)

The path with minimum distance from u1,1 to uK,L is the resulting warping

path, whose indexes are used to compute the sequences that map a to b (Sab) and

b to a (Sba). An example result of the DTW and the effect of the bound constraint

in the warping path is seen in Figure 2.7. Algorithm 2.1 summarizes the mapping

with DTW.

Figure 2.7: Effect of the bound constraint in the generation of the warping path in
the DTW algorithm.
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1: procedure DTW(a, b, bp)
2: I← length of a
3: J← length of b
4: Distance matrix :
5: Define D← empty I × J matrix
6: for i from 1 to I do

7: for j from 1 to J do

8: dij ∈ D← computation of Equation 2.3

9: Auxiliary matrix :
10: K← I + 1
11: L← J + 1
12: Define U← K × L matrix filled with ∞
13: u1,1 ∈ U← 0 , u2,2 ∈ U← d1,1
14: Wc ← computation of Equation 2.4
15: for i from 2 to K do

16: LWc ← max(2, i− ⌈WcK/2⌉)
17: RWc ← max(2, i+ ⌈WcK/2⌉)
18: for i from LWc to RWc do

19: uij ← computation of Equation 2.5

20: Warping path:
21: i← I
22: j ← J
23: Sab ← i− 1
24: Sba ← j − 1
25: while i = j 6= 2 do

26: minind ← min(u(i−1,j−1), u(i−1,j), u(i,j−1))
27: if u(i−1,j−1) = min(u(i−1,j−1), u(i−1,j), u(i,j−1)) then
28: i← i− 1
29: j ← j − 1
30: else if u(i−1,j) = min(u(i−1,j−1), u(i−1,j), u(i,j−1)) then
31: i← i− 1
32: else

33: j ← j − 1

34: Sab ← i− 1
35: Sba ← j − 1

36: Flip Sab

37: Flip Sba

return Sab and Sba

Algorithm 2.1. Pseudocode of DTW
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2.2.2 Clustering

Clustering methods consist of grouping points of a set so that points in the

same group are as similar as possible and points of different groups are as different as

possible. In this work, the similarity is the distance between elements. The results of

most of the clustering methods are dependent of the number of clusters defined prior

the execution of the algorithms. This can be a drawback, since most of the datasets

have underlying structures that cannot be easily recognized, thus the number of

clusters in the dataset are often unknown. The drawbacks of assigning an arbitrary

number of clusters are depicted in Figure 2.8; where the optimal clustering may not

be reached. Hence the need to use algorithms that do not require the pre-specification

of the number of clusters.

(a) Number of clusters: 3 (b) Number of clusters: 4 (c) Number of clusters: 5 

Figure 2.8: Effect of the arbitrary assignation of number of clusters. (a) When the
number of clusters is 3, the optimal clustering is reached. (b) and (c) shows a deficient
clustering, consequence of an arbitrary assignment of the number of clusters.

2.2.2.1 Balanced Iterative Reducing and Clustering (BIRCH)

BIRCH is a clustering algorithm that finds good clusters with a single scan of

the dataset and does not need the number of clusters as parameter. It is based on

the hierarchization of the data set, which is done by building a tree data structure.

The main parts of the algorithm are explained as follows [18].

Clustering Feature (CF). A CF is a triple representing a cluster x of N

points, it is defined as:

cf = (N, LS, SS) , (2.6)

whereN is the number of points in the cluster, LS is the sum of points in x (
∑N

i=1 xi),



Chapter 2. Theoretical Framework 16

and SS is the square sum of points in x (
∑N

i=1 xi). CFs have additive property, which

means that a CF could be composed of other CFs:

cf (1−2) = cf (1) + cf (2) = (N (1) +N (2), LS(1) + LS(2), SS(1) + SS(2)) . (2.7)

So CFs of clusters are computed as clusters are merged in the tree structure.

CF-tree. A CF-tree is a compact representation of the dataset with two

parameters: branching factor B and threshold T . Each nonleaf node is a cluster

containing at most B leaf nodes or subclusters with at most L elements each

satisfying T , a factor of the leaf node’s diameter, as seen in the Figure 2.9.

Figure 2.9: Structure of a CF-tree.

The CF-tree is built as new elements l are inserted by following the next steps:

1. Choose the leaf node with mean c that is closest to l according to:

d = |c− l| . (2.8)

2. Update the leaf node if l can be entered without violating the threshold

condition. Otherwise, insert a new CF element in the leaf node. When the

leaf node has reached its maximum number of elements L, the node is split

by choosing the farthest pair of elements and dividing in between them.
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3. Modify the path to the leaf node by updating cf of each nonleaf element on

the path to the leaf node. If the nonleaf node has reached B elements, a split

similar to step 2 must be done.

At the end of the scan, the number of leaf nodes or subclusters becomes the

estimated number of clusters C for the dataset and the leaf nodes are returned as

the final clusters Λ = {λ1, λ2, ..., λC}. The summary of BIRCH is presented in

Algorithm 2.2.

1: procedure BIRCH(data, T )
2: B ← lenght of data if number of clusters is unkown
3: L← lenght of data
4: CF-tree:
5: for l ∈ data do

6: Select closest leaf node to l with Equation 2.8
7: if T condition is met then
8: Insert l to leaf node
9: Update every cf triplet
10: else

11: if Not L elements in leaf node (or B in nonleaf node) then
12: Insert l as a single cluster
13: Update every cf triplet
14: else

15: Split leaf node to create another leaf node
16: Create a new CF for the new leaf node
17: Update every cf triplet

18: Final clusters :
19: return leaf nodes as clusters Λ

Algorithm 2.2. Pseudocode of BIRCH

2.2.2.2 Consistency of Cluster Assignment

The validation of the assignment of clusters can be graphically evaluated with

the silhouette algorithm [19]. This algorithm assigns coefficients (silhouette

coefficients) to each sample of each cluster. Such coefficients lies in the range of -1

to 1. Silhouette coefficients near to +1 indicate that the sample is assigned to a

very representative cluster, coefficients near to 0 indicate that the sample is

between two clusters, and coefficients near to -1 indicates that the sample might be

assigned to the wrong cluster. Such coefficients are defined as follows.
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Let i be a point in its cluster λ(i). For each point i, the mean distance ai of i

to every other point in λ(i) is defined as

ai =
1

‖λ(i)‖ − 1

∑

j∈λ(i),i 6=j

di,j , (2.9)

where di,j is the distance between points i and j. The minimal mean distance bi of
i to all points in another cluster λ is

bi = min

(

1

‖λ‖
∑

j∈λ

di,j

)

∀λ ∈ Λ | λ 6= λ(i), (2.10)

The cluster λ with the smallest bi is the neighbor cluster of i. Then the silhouette
value si for each point i is computed as follows:

si =























1− ai/bi, if ai ≤ bi ,

0, if ai = bi ,

bi/ai − 1, if ai ≥ bi .

(2.11)

However, for a better evaluation of the cluster assignment, multiple

executions of the silhouette algorithm might be needed to determine if the

assignment is consistent along the executions. The analysis of silhouette coefficients

in Figure 2.10a depicts the quality of the cluster assignment shown in Figure 2.10b.

Figure 2.10: Example of a silhouette analysis on sample data with three clusters.
(a) Shows the silhouette plot of the cluster assignment, two of the values of cluster
0 (blue dots and blue bars) might be wrongly assigned. (b) A visualization of the
clustered data.



Chapter 2. Theoretical Framework 19

2.2.2.3 Density of Clusters

One or more clusters are assigned as a result of the clustering algorithm. Each of

the clusters contains a defined number of elements that are scattered or concentrated

in the space of the dataset. When executing regression tasks with similarity measures

(see subsection 2.2.3), one may expect several clusters if the dataset is suspected to

be noisy even if the subset of points should be ideally a single cluster. In this case,

computing the density of the resulting clusters is useful for determining the cluster

that better represents the dataset. This can be achieved by using a Kernel Density

Estimator (KDE) over the N observations, that is, by weighting the distances of the

observations xi from a particular point x. This is expressed as:

f̂kernel(x) =
1

Nb

N
∑

i=1

Γ

(

x− xi

b

)

, (2.12)

where b is the width of the bin containing x and Γ(·) is the Kernel, which is the

Gaussian function of a random variable x with expected value µ and variance σ2:

Γ(x, σ) =
1

σ
√
2π

e−(x−µ
2σ

)2 . (2.13)

The bin with the largest density estimation is the densest cluster.

2.2.3 Regression

The regression problem is one in which a continuous variable is estimated from

a set of inputs. Some of the most widely used methods for solving regression tasks

are the k-nearest neighbors and the multi-layer perceptron algorithms, which are

described below.

2.2.3.1 K-Nearest Neighbors (KNN)

The K nearest vectors or neighbors of a query vector x, contained in a dataset

S, are obtained with a similarity measure function fs as in Algorithm 2.3. Then, the

KNN algorithm for regression [20] estimates the output y of a query vector x as the

mean of the outputs o of its K nearest neighbors in S, as in the following equation:

y(x) =
1

K

K
∑

i=1

oi(x) . (2.14)
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1: procedure KNN search(x, S, fs, K)
2: Initialize empty lists D and I

3: N ← length of S
4: for i from 1 to N do

5: Append fs(x, Si) to D

6: Append i to I

7: Arrange I according to D sorted in descending order.
8: κ← first K elements of I
9: return κ ⊲ Indexes of the K nearest neighbors

Algorithm 2.3. Pseudocode of KNN search.

This means that all of the K nearest neighbors of x contribute equally to

the estimation of its output. Another approach used for the output estimation is to

weight the output o of each one of the K nearest neighbors [21], this weighting is

done as follows:

y(x) =
1

K

K
∑

i=1

1

fs(x,Si)
oi(x), (2.15)

where fs is usually the euclidean distance.

2.2.3.2 Multi-layer Perceptron (MLP)

The architecture of the MLP is shown in Figure 2.11. This artificial neural

network consist of one input layer, multiple hidden layers, and one output layer.

Fa Fa

Fa Fa

Fa Fa

Fa Fa

Input layer Hidden layer Output layer𝐼 neurons 𝐻 neurons 𝑂 neurons𝑥1
𝑥2
𝑥3
𝑥𝐼

𝑥1
𝑥2
𝑥3
𝑥𝐼

𝑧1
𝑧2
𝑧3
𝑧𝐻

𝑦1
𝑦2
𝑦3
𝑦𝑂

𝑣ℎ𝑖 𝑤𝑜ℎ

Figure 2.11: Architecture of a MLP.
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The number of neurons in the input, hidden and output layers are I, H, and

O, respectively. The outputs of each neuron of the input layer are the same as its

inputs xi ∈ x, since this layer is composed of identity neurons. Each neuron in the

hidden layer takes the weighted sum of the outputs of the input layer, such that the

output of these neurons zi is expressed as:

zh = Fa

(

H
∑

h=1

vhixi + b

)

, (2.16)

where vhi ∈ v is the weight of neuron i of the input layer to neuron h of the hidden

layer, b is a bias term and Fa is the activation function that introduces non-linearity

to MLP. The most commonly used Fa is the sigmoidal function, which is expressed

as:

Fa(x) =
1

1 + e−x
. (2.17)

The output of each neuron yo in the output layer is defined similarly to the

hidden layer with:

yo = Fa

(

O
∑

o=1

wohzh + b

)

, (2.18)

where woh ∈ w is the weight of neuron h of the hidden layer to neuron o of the

output layer. Weights v and w must be optimized to decrease the following loss

function:

loss =
1

N

N
∑

i=1

(yoi − ydi)
2 , (2.19)

where N is the length of the dataset and yoi and ydi are the estimated and desired

outputs, respectively. One of the most efficient learning algorithms for the

optimization of such weights is the adaptive moment estimation method [22].

Adaptive Moment Estimation (Adam). One of the most attractive benefits

of using the Adam method is the intuitive interpretation and little tuning of the

hyper parameters. The main idea of the Adam method is to compute individual

adaptive learning rates for different parameters θ of a loss function from estimations

of first and second moments of gradients g. The first moment of the gradient (the
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decaying average of previous gradients) mk and the second moment of the gradient

(previous squared gradients) vk at a time step k are computed as follows:

mk = β1mk−1 + (1− β1)gk ,

vk = β2vk−1 + (1− β1)g
2
k ,

(2.20)

where β1 and β2 are exponential decay rates for the moment estimates. Then, the

bias-corrected first and second moments are computed with:

m̂k =
mk

1− βk
1

,

v̂k =
vk

1− βk
2

.
(2.21)

Finally, the learning rates for the different parameters are updated according

the following rule:

θk+1 = θk −
α√

v̂k + ǫ
m̂k , (2.22)

where α is the learning rate (the size of the steps made for reaching a minimum), ǫ is

a term used to avoid division by zero, and θk are the parameters of the loss function

at a time step k. In the previous equations β1 and β2 are usually set as 0.99, and ǫ

is set as 10−8, as recommended in [22]. Algorithm 2.4 summarizes the MLP neural

network using Adam for optimizing the weights.

2.2.3.3 Measures of Goodness of Fit

Some useful measures for the evaluation of regression models are defined in this

section. The goodness of fit is computed with respect to desired (yd) and estimated

outputs (ye) of length N .

Coefficient of correlation (R). R is a measure of the linear relationship

between two variables. The following expresion of R gives values from -1 to 1:

R =

∑N
i=1(yei

− ȳe)(yd−i − ȳd)
√

∑N
i=1(yei

− ȳe)
2

√

∑N
i=1(ydi

− ȳd)
2

. (2.23)
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1: procedure MLP train(train data)
2: x← input data in train data
3: yd ← output data in train data
4: Initialize random weights v, w
5: Initialize time step k ← 0
6: while loss has not converged do

7: zh ← computation of Equation 2.16
8: ye ← computation of Equation 2.25
9: loss← computation of Equation 2.19 with ye and yd
10: k ← k + 1
11: Update v and w with Adam

return w, v

12: procedure MLP test(test data, v, w)
13: x← input data in test data
14: yd ← output data in test data
15: zh ← computation of Equation 2.16
16: ye ← computation of Equation 2.25
17: return Estimated output ye

18: procedure Adam(loss, mk−1, vk−1, θk, k)
19: Initialize moment estimates: m0, v0 ← [0, 0]
20: Initialize parameters ǫ, α, β1 and β2

21: gk ← gradient of loss
22: Update moment estimates mk, vk with Equation 2.20
23: Create bias-corrected estimates m̂k, v̂k with Equation 2.21
24: Update objective parameters θk+1 with Equation 2.22
25: return objective parameters (weights v and w) θk+1

Algorithm 2.4. Pseudocode of the MLP with Adam optimization

Results of R near to 1 means that the variables present positive correlation,

while values near to -1 means that there exist negative correlation between the

variables. If R is near to 0, there is no relationship between the two variables.

Coefficient of determination (R2). When comparing sinusoidal-like signals,

as in some periodical signals, R may be misinterpreted. For such cases, an alternative

for assessing the similarity between those signals is the R2, which is defined as:

R2 = 1−
∑N

i=1(ydi
− ȳd)

2

∑N
i=1(ydi

− yei
)2
. (2.24)

Values of R2 near to 1 are preferred.
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Signal-to-Noise Ratio (SNR). Another measure of goodness of fit is the SNR.

It is expressed in terms of variance and mean squared error:

SNR = 10log10

(

V ar(ye)

MSE(ye − yd)

)

. (2.25)

A SNR of value 0 indicates that the signal and noise are in equal proportions. SNRs

below 0 mean that there is more noise than signal, and SNRs above 0 mean that

there is more signal that noise [3].

2.2.4 Optimization

The optimization consist of maximizing or minimizing a function by searching

and evaluating the best available solution in a set of proposed solutions. The most

used method for optimization is the genetic algorithm.

2.2.4.1 Genetic Algorithm (GA)

The GA is an evolutionary algorithm inspired by the process of natural

selection. It consists of generating a random population P with TI individuals of

N dimensions each. In the binary GA, each proposed solution is represented as an

array of 0s and 1s. Evolution in the GA is an iterative process executed during TG

generations, consisting of the following steps:

1. Evaluation. The generated population PTI×N is evaluated according to a

fitness function Ff . Each individual x ∈ P enters as argument to the Ff to obtain

a fitness value fv ∈ [0, 1], where 0 indicates a poor evaluation of the individual and

1 indicates a good evaluation.

fv(x) = Ff(x) ∀x ∈ P. (2.26)

2. Selection. In the basic binary GA, individuals are selected through

tournament, somewhat similar to the natural selection. This involves running

several tournaments between pairs of individuals, which are chosen randomly from

the population. The winner of each tournament is the one with the largest fitness

value fv. Winners fill the selected population S to be used in the next step.



Chapter 2. Theoretical Framework 25

3. Crossover. The crossover in the simple binary GA combines the information of

two individuals si, sj ∈ S (parents) to generate a new individual c (child) according

to a crossover probability cp. One of the most common methods of crossover for

binary individuals is the uniform crossover, in which both parents are compared to

a random mask z ∈ B
N to generate a child, as in the following expression:

cn =











sin , if zn = 1 ,

sjn , if zn = 0 ,
∀n ∈ N . (2.27)

Mutation. As an optional step, mutation swaps each element of the

generated child according to a mutation probability mp.

The generated individuals update the population P to be re-evaluated in step

1. When the GA completes TG generations of evaluation, selection, crossover and

mutation, the individual with the largest fv is selected as the solution of the

optimization. The GA is summarized in Algorithm 2.5.

1: procedure genetic algorithm(TI, TG, N , cp, mp)
2: Initialization:
3: Generate random population P ∈ B

TI×N

4: Evaluate P with Ff in Equation 3.10
5: Main loop:
6: for 1 to TG do

7: Select individuals from P through tournament selection of its fv
8: for s in P do

9: randomcp ← random[0, 1]
10: if cp > randomcp then

11: Generate child with Equation 2.27

12: randommp ← random[0, 1]
13: for j from 1 to N do

14: if mp > randommp then

15: Mutate element j of s

16: return Individual s with the largest fv

Algorithm 2.5. Main phases of the GA
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Proposed Scheme

The proposed scheme to estimate torques from EEG signals consists in the

following: first, raw sets of data are acquired and pre-processed. Then, an

optimization of EEG channels and data prototypes is carried out. Finally, a

regression model is trained on such prototypes. This ML scheme is presented in

Figure 3.1, whose steps are explained in this chapter.

Torque

EEG

Figure 3.1: General diagram of the proposed ML scheme for torque estimation.

3.1 Dataset and Pre-processing

A dataset containing torque and EEG signals of three gait initiation

movements (tasks) executed by five subjects were acquired by the research team

prior the development of this thesis. These tasks were performed at Universidad de

Guadalajara by five healthy volunteers with no history of psychiatric, neurological

or neurodegenerative diseases. All subjects gave their informed and signed consent

to perform the tasks, which belong to an experimental protocol that was approved

by the Ethics Committee of the Institute of Neurosciences of the University of

Guadalajara. Each subject performed ten series, of 10 repetitions each, of the

aforementioned tasks with both lower-limbs, at the time their EEG signals and

26
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joint angles were recorded. Each series is divided in four phases: a basal state of 5

seconds, a period of 10 repetitions of a single task (time varying among subjects), a

basal state of 5 seconds, and a resting period of 10 seconds. The phases of a single

series is illustrated in Figure 3.2.

Variable time

Figure 3.2: Phases of a single series of the protocol. A total of 10 continuous series
of each movement is executed by each subject for each type of movement and for
each lower-limb.

3.1.1 Gait Initiation Movements

The gait initiation movements are observed at the beginning of forward walk,

backward walk and at stair climbing. According to the definitions in subsection

2.1.1, these movements are next described from the anatomical position shown in

Figure 3.3a.

Movement 1: Step forward. This movement is observed at the beginning of

forward walking. It consist of a flexion of around 45° on the hip from the anatomical

position, as seen in Figure 3.3b. This movement is labeled as T1L for the left lower-

limb and as T1R for the right lower-limb.

Movement 2: Step backward. A step backward is executed at the start of

backward walking. It involves a hyperextension on the hip from the anatomical

position. This movement is shown in Figure 3.3c. This movement is labeled as T2L

for the left lower-limb and as T2R for the right lower-limb.

Movement 3: Step up. Observed at the beginning of stair climbing, the step up

involves a flexion of around 45° on the hip and a natural extension of around 45° on
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the knee, due to gravity. This can be seen in Figure 3.3d. This movement is labeled

as T3L for the left lower-limb and as T3R for the right lower-limb.

(a) (b) (c) (d)

Figure 3.3: Gait initiation movements performed for the acquisition of EEG and
torque data. (a) is the anatomical position, (b) is the step forward movement, (c)
depicts the step backward movement and (d) shows the step up movement.

3.1.2 Torque Acquisition

The acquisition of torque was performed as follows. Markers were placed in hip,

knee, ankle and toes of the lower-limb of interest for each movement and subject.

The execution of each task was video recorded at a rate of 30 frames per second.

By means of computer vision techniques, angles of hip, knee and ankle joints were

measured. Then, kinematic and dynamical models of the lower-limb were proposed,

which used as parameters the weights and heights of each subject. These models

were applied to a close-loop control scheme for tracking the joint positions in order

to compute the torques of each joint. Figure 3.4 shows the lower-limb kinematic

chain with three degrees of freedom proposed for the measurement of angles.

Upsampling of Torque Data. As both EEG and torque signals are acquired

at different sampling rates, fτ and fEEG, an upsampling of the torque data is

required. Given the original torque signal τO ∈ R
M and its respective discrete

Fourier transform TO ∈ R
M , the upsampled torque τ is obtained as follows:

1. If M is odd, make M = M − 1

2. Zero-pad TO by inserting M zeros to the central portion of TO to create T Z .

This can be done by moving the first half of TO a total of M
2

(

fEEG

fτ
− 1
)

bins
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Figure 3.4: Lower-limb kinematic chain with 3 degrees of freedom, representing the
hip (q1), knee (q2) and ankle (q3) angles.

to the left and by moving the last half of TO a total of M
2

(

fEEG

fτ
− 1
)

bins to

the right.

3. Compute the inverse discrete Fourier transform of T Z as τZ .

4. Scale the amplitudes of τZ by fEEG

fτ
to obtain the upsampled torque τ .

This acquisition results in a dataset of torque called τ ∈ R
M , where M varies

among subjects according to the time each one requires for performing the protocol.

3.1.3 EEG Acquisition

The scalp EEG signals of each subject were recorded at a rate of 200 Hz using

a UPM-PLUS Grass® system by Natus Neurology®, which includes the nineteen

electrodes of the 10-20 system explained in subsection 2.1.2.1. The following pre-

processing steps were performed.

Artifact removal. The raw EEG recordings were filtered with a notch filter at

60 Hz to remove the power line interference. Then the BSS method was applied with

the aim of extracting independent source signals and removing remaining artifacts.
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The resulting EEG signals were validated by clinical inspection, from which it was

identified that the signals contained neural activity free of artifacts.

Extraction of delays. Delays of each channel of EEG are extracted to cover

the information of about 0.35 seconds before each movement in the dataset, according

to the late BP. Since the torque sampling rate of EEG, fEEG, is larger than the

sampling rate of torque, fτ , the separation gap between each delayed sample is

σ = round

(

fEEG

fτ

)

. (3.1)

Since the sampling rate of the overall dataset is fEEG, the total number of

samples to be covered by the delayed data is N = 0.35fEEG. Thus, the number of

delays to be extracted is

δ =
N

σ
. (3.2)

This acquisition results in a dataset of EEG called EEG ∈ R
M×N , where M is

the length (or number of rows) of the dataset and N is the dimension of the dataset

(or number of columns), which is fixed in N = 19(δ + 1), as the number of channels

is 19 and a total of δ delays were retained in addition to the actual value of each

channel.

Extraction of initials. As the movements of interest for this study are those

of the initiation of gait, and to avoid the analysis of cycles (created by repeatedly

executing each movement), only the first trial of each series was retained to create

the dataset. Each first trial is called a pattern of movement. These patterns are

labeled as P p from p = 1, ..., 10. As the duration of the execution of each trial is

different, the size of each pattern is fixed in PS = 500 from the end point of each

trial. The process of extraction of EEG and torque data from relevant movements is

shown in Figure 3.5. Thus the overall dataset DS is

DS = [EEG, τ ]initials ∈ R
10PS×19(δ+1) . (3.3)
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Figure 3.5: Selection of the dataset. From each one of the 10 series of trials for a
task (top figure), only the first trial is extracted (middle figure). The resulting trials
(bottom figure) are concatenated.

3.2 Optimization Stage

In this section, the methods for prototyping and selection of channels are

described. The proposed method for prototyping the dataset is described first in

this section. The motivation behind the proposal of such algorithm is to avoid the

contributions of noisy data or outliers of EEG in the estimation of torque. The

algorithm is based on the KNN algorithm for regression, with addition of a

clustering step, which is applied assuming that the densest cluster of neighbors of a

query contains its most similar points. Therefore, The algorithm attempts to

validate the assumed relationship of each point of the EEG-torque dataset. The

validated data, called prototype data, is optimized with a GA in order to extract

the most representative dataset of the EEG-torque relationship.
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3.2.1 Clusterized KNN (C-KNN) for Prototyping

The C-KNN algorithm is used with the aim of extracting representative

information of the EEG-torque relationship from the dataset. This prototyping

algorithm combines time series mapping, similarity search and clustering

techniques, as shown in Figure 3.6. Each step of C-KNN are next described.

κ

λ ϛ ρ

ρ

τ

κ

K KNN

Figure 3.6: Scheme of the C-KNN prototyping algorithm.

Initial mapping. The main idea of the C-KNN algorithm is to find representative

samples in the EEG-torque dataset by looking for similarity in inputs (EEG) and

outputs (torque) of the dataset. This similarity measure is going to be selected in

such a way that the relative proportion between input vectors (channels of the EEG)

is analyzed instead of analyzing its magnitudes. Hence, the extraction of similarity in

the torque data space is performed according to a shape similarity of each pattern of

movement to a template movement, rather than to the magnitudes of each point in

the patterns. This shape similarity is computed with the DTW algorithm, explained

in subsection 2.2.1.1, as follows.

1. Each element tm of a template pattern TMP ∈ R
PS is obtained as the

normalized mean of torques of the 10 patterns extracted in subsection 3.1.3:

tmn =

∑10
p=0 P pn

max
(

∑10
p=0 P pn

)

−min
(

∑10
p=0 P pn

) ∀n ∈ PS , (3.4)

where PS is the size of each pattern.

2. The torque of each P p is mapped to TMP using the DTW algorithm,

obtaining 10 warping arrays wTMP ,P p , which dictate the indexes of TMP
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to which each index of P p belongs. Each warping array is called the shape

similarity of the pattern P p to the template TMP .

The following steps are computed for each query point i ∈ DS with index ρ.

Defining the search space. The space for the similarity search (SS) is given

by the indexes of the points of movement patterns that do not contain the query

point i, since points similar to the query point tend to be those that surround it.

The steps for extracting the search space, based on zero-based indexing, are the

following.

1. Obtain the corresponding pattern to the query point i as P (i) = P ⌊ρ/PS⌋,

where PS is the size of patterns and ⌊ ⌋ represents the floor operation.

2. Obtain the interval of indexes of the pattern P (i) to be excluded with:

MOV = [PS⌊ρ/PS⌋ : PS(⌊ρ/PS⌋+ 1)] . (3.5)

3. Define the search space as:

SS = DSEEG [[0 : 10PS]−MOV −DEL] , (3.6)

where DEL is the set of indexes of points that have been deleted from the

search space (see Equation 3.8).

Similarity search with KNN. The indexes κ of the K nearest neighbors of

the EEG component of the point i (DSEEGi
) are obtained with KNN search of

Algorithm 2.3. The similarity measure used is the cosine similarity (cs):

cs(DSEEGi
,DSEEGj

) =
DSEEGj

DST
EEGj

‖DSEEGi
‖‖DSEEGj

‖ ∀ DSEEGj
∈ SS , (3.7)

whose result varies from -1 to 1. The higher cs, the greater the similarity.
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Final mapping. The neighbors of i are compared by mapping their torques to

the template TMP using the indexes contained in wTMP ,P (i) and by mapping the

torque of the query point i (DSτi), as seen in Figure 3.7a. This mapping forms the

mapped nearest neighbors W (κ) and the mapped query point W i shown in

Figure 3.7b. Then the mapped torques are seen in terms of their normalized

magnitudes, as in Figure 3.7c.
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Figure 3.7: Data mapping. (a) Original torques of the K nearest neighbors (red
dots) of a query point i (blue dot). (b) Mapped torques of the K nearest neighbors
(red dots) of the mapped query (blue dot). (c) Magnitudes of the mapped nearest
neighbors W (κ) (red dots) of a mapped query point W (i) (blue dot).

Validation of mapped neighbors. Mapped K nearest neighbors W (κ) are

clustered using the BIRCH algorithm. The resulting clusters Λ go through a

Gaussian KDE to obtain the densest cluster ς, whose mean µς is compared with

W (i). Then the index ρ of the query point is stored as a prototype in repository

PRO, or discarded as such in DEL, according to the following condition of

accuracy assessment:

ρ→ PRO, if W (i) − ǫ < µς < W (i) + ǫ ,

ρ→DEL , otherwise ;
(3.8)

where ǫ is a permissible threshold value. This validation phase is depicted in

Figure 3.8.
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Figure 3.8: Example of the proposed validation for the KNN search. (a) shows two
examples of mapped nearest neighbors W (κ) (gray and red dots). (b) illustrates the
clustering phase, where each color is a different cluster. (c) shows the densest cluster
ς (circled dots). In (d), the mean of the densest clusters µς (green and purple dots)
is compared to the mapped query point W (i) (black dot), ρ indicates whether the
query point is stored as a prototype or not.

The summary of C-KNN is presented in Algorithm 3.1, which requires the

dataset DS, the size of patterns PS, the cosine similarity cs, and parameters bp, K,

ǫ and T for the DTW, KNN and BIRCH algorithms.

1: procedure CKNN prototyping(DS, bp, K, ǫ, T , PS)
2: Initial mapping :
3: TMP ← computation of Equation 3.4
4: for p from 0 to 10 do

5: W P p,TMP ← Sab of DTW(P p, TMP , bp) of Algorithm 2.1

6: Main loop:
7: N ← length of DS

8: for ρ from 1 to N do

9: i← DSEEG[ρ]
10: Define SS with Equation 3.6
11: κ← KNN search(i, SS, cs, K) of Algorithm 2.3
12: Final mapping :
13: ι0 ← index in W P ⌊ρ/PS⌋,TMP corresponding to index ρ
14: W (i) ← TMP [ι0] ⊲ Mapped query
15: ι1 ← indexes in W P ⌊ρ/PS⌋,TMP corresponding to indexes κ
16: W (κ) ← TMP [ι1] ⊲ Mapped neighbors
17: Validation of mapped KNN :
18: Λ← BIRCH(W(κ), T ) of Algorithm 2.2 ⊲ Clusterize neighbors
19: µς ← mean of ς of Λ
20: Store ρ according to Equation 3.8 and ǫ

Algorithm 3.1. Pseudocode of C-KNN.
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3.2.2 Channel Selection

For each combination of subject and tasks, an optimal subset of EEG

channels is selected using the GA with the aim of extracting representative cortical

information. The steps carried out for the application of the GA for the purposes

of this thesis are the following ones.

Generation of Population. A population of binary genes P ∈ B
TI×19 is

generated. Each one of the TI individuals represents a selection of channels, with

their respective delays from the EEG dataset DSEEG.

Fitness Function. The EEG subset generated by each individual in P is

evaluated with the C-KNN prototyping algorithm, where the indexes of the

resulting prototypes are used for generating the prototype datasets EEGproto and

τproto. The GA seeks to maximize both the percentage of extracted torques τ proto

and their quality. By maximizing these values, the algorithm seeks for a

combination of channels that could provide the largest amount of data and the

most dispersed torques, so that the resulting prototypes are as similar as possible

to the original torques. In this way, it is suggested that the extracted cortical

information, EEGproto, could be more representative for the process than the

original information.

The quality of the extracted data is quantified as the relative dispersion RIQR

between the prototype torques τ proto and the original torquesDSτ with the following

equation:

RIQR =
IQRp

IQRo

, (3.9)

where the interquartile ranges IQRp and IQRo of τ proto and DSτ , respectively, are

computed based on the first Q1 and third Q3 quartiles of the torques of interest with

IQR = Q3−Q1. Then, the fitness function Ff to be maximized is defined as follows:

Ffmax = RIQR +
Np

No

, (3.10)

where Np and No are the lengths of the τ proto and DSτ , respectively.
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The prototypes extracted with the best individuals at the end of execution of

the GA (DP = [EEGproto, τ proto]) are used for estimating the torque.

3.3 Torque Estimation

A two-layered MLP neural network was implemented for the estimation of

prototype torques τ proto from prototype EEG data EEGproto. The extracted EEG

data, from selected prototypes with the optimal subset of channels, are used as

the only inputs to the neural network. The data to be estimated is the prototype

torque. The estimation is made with each selection of channels proposed by the

GA, according to the subject and task to which its subset of channels and optimal

prototypes have been sought.



Chapter 4

Results

In this thesis, the the main objective was to develop a ML scheme that

enables the estimation of lower-limb joint torques from EEG signals acquired

during gait initiation movements; such scheme was introduced in the previous

chapter. In this chapter, the capability of the proposed scheme in estimating the

variable of interest is assessed. Specifically, the capability of the C-KNN algorithm

for obtaining prototypes and the performance of the GA for obtaining EEG

channels that characterize the dataset are evaluated, so that the resulting dataset

can be used in a MLP neural network to effectively estimate torques.

4.1 Implementation details

The parameters set to apply the main algorithms of the proposed scheme are

mentioned below.

C-KNN parameters. The constraint of extension for the warping path in

Equation 2.4 is fixed in bp = 30% to avoid exaggerated warping between time

series. The number of nearest neighbors to search for in the KNN algorithm is

K = 10. The validation of neighbors found is done by fixing the permissible

threshold value in Equation 3.8 as ǫ = 0.125. In the BIRCH algorithm, the

threshold for each node is T = 0.5.

GA parameters. The GA was executed 30 times, evaluating a population of

TI = 20 individuals during TG = 30 generations. The number of channels the GA

can select varies from 1 to TD = 19, where the latter is the total number of channels

38
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or the dimension of the optimization problem. A high crossover probability cp =

0.98 was chosen for this study in order to exploit the solutions resulting from early

generations of the GA, hence the selection of a low mutation probability mp = 0.02.

The number of delays to be selected for each channel and the separation between

them are δ = 10 and σ = 7, according to the computation of equations 3.1 and 3.2

with fEEG = 200 Hz and fτ = 30 fps.

MLP parameters. The MLP is applied using two hidden layers with sizes H1 =

200 and H2 = 50. The number of neurons in the input layer is I = δNch, where

Nch is the number of channels selected by the GA. The output layer has a single

neuron, which corresponds to the torque estimation. The bias for each neuron is set

as b = 1 in Equation 2.16. The Adam algorithm is implemented with decay rates

β1 = β2 = 0.99 in Equation 2.20, and with learning rate α = 0.125 and ǫ = 10−8

in Equation 2.21, as recommended in [22]. The number of iterations the MLP was

trained is 1000.

4.2 Prototypes Extracted

In order to evaluate the results of the prototyping stage, an analysis of the

consistency of the extraction of prototypes and a comparison between prototype

and original torques were performed.

4.2.1 Consistency of Extraction

The consistency of the prototyping algorithm is evaluated with a silhouette

analysis of the extracted prototypes, this is done by treating the prototype torques

as a cluster and the remaining data (non-prototype torques) as another cluster. The

indexes of data extracted in each execution of the GA are compared with the indexes

of the execution of the GA that obtained the highest fitness value in order to compute

the silhouette coefficients. The plots of silhouette coefficients are shown in figures 4.1,

4.2, and 4.3 for hip, knee and ankle joints, respectively. The silhouette coefficients

that lie between 0 and the mean indicates that the assignment of a sample to its

cluster (prototype or non-prototype) is not as strong as the assignment of samples
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Non-prototypes

Figure 4.1: Mean (black dotted line) and individual silhouette coefficients of the
extracted prototype (green bars) and non-prototype (cyan bars) torques after
optimizing the hip data.

Non-prototypes

Figure 4.2: Mean (black dotted line) and individual silhouette coefficients of the
extracted prototype (green bars) and non-prototype (cyan bars) torques after
optimizing the knee data.
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with values above the mean. Moreover, negative silhouette coefficients indicates that

the sample may be assigned to the wrong cluster.

Non-prototypes

Figure 4.3: Mean (black dotted line) and individual silhouette coefficients of the
extracted prototype (green bars) and non-prototype (cyan bars) torques after
optimizing the ankle data.

4.2.2 Comparison to Original Torques

Prototype torques are compared to the original torques by visualizing the

distributions of both datasets. Such distributions are shown if figures 4.4, 4.5 and

4.6 for hip, knee and ankle joints, respectively. Large amplitudes in the distribution

curves of prototype torques around the first and third quartiles of the original

torques are preferred over large amplitudes around the mean, as the later indicates

that torques were extracted mostly from data of the basal state of the movement

(recall section 3.1).
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Figure 4.4: Mean (black solid line), 1st and 3rd quartiles (black dotted lines), and
distributions of prototype (green) and original torques (cyan) of the hip joint.

Figure 4.5: Mean (black solid line), 1st and 3rd quartiles (black dotted lines), and
distributions of prototype (green) and original torques (cyan) of the knee joint.
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Figure 4.6: Mean (black solid line), 1st and 3rd quartiles (black dotted lines), and
distributions of prototype (green) and original torques (cyan) of the ankle joint.

4.3 Selected Channels

The selection of channels is assessed qualitatively with topographic maps of

the distribution of EEG electrodes in the scalp of subjects according to the 10-20

system. The said maps for each subject and movement are shown in figures 4.7, 4.8,

and 4.9 for hip, knee and ankle joints, respectively. Each topographic map shows the

normalized occurrence of each channel given by the solutions of all executions of the

GA for each subject and movement.

The summary statistics of the percentage of extracted prototypes and the

number of selected channels for each movement and limb are shown in Table 4.1.
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Table 4.1: Summary statistics of the percentage of extracted prototypes and number
of selected channels.

Measure

Statistic Avg. Min Max Std. Avg. Min Max Std.

Left 45.20 38.80 58.90 0.04 7 3 10 1.47

Right 42.20 38.50 52.80 0.02 8 3 12 2.46

Left 40.60 27.60 55.80 0.10 6 3 9 1.54

Right 41.60 34.50 46.80 0.04 6 3 10 1.97

Left 47.60 36.00 54.90 0.06 6 1 12 2.61

Right 49.60 38.60 59.70 0.06 7 3 11 2.11

Left 52.90 46.50 63.10 0.05 7 4 12 1.88

Right 47.30 43.90 54.90 0.02 7 2 11 2.46

Left 52.50 46.10 60.30 0.04 7 3 14 2.11

Right 51.90 39.20 58.90 0.07 6 1 10 2.22

Left 48.30 34.50 56.10 0.07 7 3 12 2.08

Right 50.40 39.30 58.20 0.05 7 2 13 2.60

Left 48.80 41.60 60.90 0.06 7 3 13 2.13

Right 45.40 41.80 51.50 0.02 7 3 14 2.15

Left 60.10 52.80 65.70 0.04 9 4 13 2.31

Right 57.20 54.10 59.80 0.01 6 2 8 1.39

Left 48.00 41.90 54.10 0.04 6 3 12 1.74

Right 46.80 31.10 54.50 0.08 7 3 12 2.22

Avg 48.69 40.38 57.05 0.05 7 3 12 2.08

Movement T2

Movement T3

Movement T3

Ankle

Movement T1

Knee

Movement T1

Movement T2

Movement T1

Movement T2

Movement T3

Prototypes in % Number of channels

Hip
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Figure 4.7: Normalized occurrence of EEG channels (black dots) selected along the
executions of the GA for the hip joint.
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Figure 4.8: Normalized occurrence of EEG channels (black dots) selected along the
executions of the GA for the knee joint.
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Figure 4.9: Normalized occurrence of EEG channels (black dots) selected along the
executions of the GA for the ankle joint.

4.4 Estimated Torques

Curves of estimations with highest R2 values of optimized prototype torques,

result of the optimized EEG channels used as inputs to the MLP, are shown in

figures 4.10, 4.11, and 4.12. Figure 4.13 shows some estimation curves of prototypes

overlapped with the entire curve of torques chosen for testing the MLP. The goodness

of fit of the regression models trained with prototype torques were evaluated with

R2 and SNR measures, these measures are depicted in Figure 4.14 with respect to

joints, movements and limb, and in Figure 4.15 with respect to subjects.
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Figure 4.10: Estimation curves (gray) with the highest R2 values of prototype hip
torques (black).

Figure 4.11: Estimation curves (blue) with the highest R2 values of prototype knee
torques (gray).
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Figure 4.12: Estimation curves (blue) with the highest R2 values of prototype ankle
torques (gray).

S
1

S
2

S
3

Figure 4.13: Estimation curves (blue solid line) of prototype torques (black solid line)
of subjects 1, 2 and 3 overlapped to the entire curve of hip torques of movement T1R
(black dotted line).
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Figure 4.14: R2 and SNR statistics of the top 5 estimations, according to R2, of
prototype torques with respect to joint (pairs of axes), type of movement (blue,
green or red dots) and left or right limb (light and dark dots).
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Figure 4.15: R2 and SNR statistics of the top 5 estimations, according to R2, of
prototype torques with respect to joints (pairs of axes) and subjects (dot color).
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Discussion

5.1 On the Extraction of Prototypes

An initial objective of the research was to propose a scheme for identifying

prototypes that characterize the dataset. The results from section 4.2 showed that the

amount of prototypes extracted was about 50% of the data. A possible explanation

for this might be the presence of noise and undetectable artifacts for the artifact-

removal method used among the acquired EEG data. This artifacts could be present

in the EEG due to input impedances and unshielded equipment, which is explained in

[23, 24], as well as to the noisy nature of the brain signal at resting state, suggested

in [25]. Alternatively, it may be the case that the data that could be extracted

represents the time-invariant information of a brain dynamics strongly suspected to

be time-variant, as [26–28] have argued. Whatever the case may be, the extraction

of prototypes with C-KNN is, generally, consistent among several executions of the

algorithm, which suggest the existence of subsets of EEG data formed by patterns

that may represent the time-invariant information of the EEG with respect to the

torque applied in the lower limbs during the execution of gait initiation movements.

Visually, there was noticeable difference in the quality of prototypes extracted

from the torques of the ankle joint compared to the quality of the hip and knee

joints, according to the distribution of the datasets, where prototype torques of the

ankle joint seem to be concentrated around the mean. These significant differences

indicates that most of the extracted ankle data was that of the basal phase of the

protocol of movement, which means that information at the tails of the distribution

was not satisfactorily extracted for the ankle joint. This result may be explained
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by the fact that no indication was given to the subjects as to whether they should

perform any defined movement in the knee joint, hence the lack of a defined pattern.

5.2 On the Selection of Channels

The second objective sought to propose optimal subsets of EEG channels for

representing the process and for using later in regression tasks. The results given by

the GA in section 4.3 suggest that, in average, only about 5 to 9 of the 19 available

channels of EEG recordings were sufficient to represent the dataset.

Upon visual inspection of figures 4.7 to 4.9, the most recurrent channels given

by the GA seem to be located in the frontal, pre-motor and motor regions of the

brain for the torques of hip and knee joints. Such results are consistent for example

with those reported by Zhang et al. [29] who, in the aim of decoding user’s

intended gait states, found that the most prevalent regions during the decoding

were the frontal and fronto-central ones. These findings also match with those of

neurosciences, in which the role of the motor cortex in the execution and planning

of lower limb movements has been hypothesized for a long time, based on several

studies dating back to the 1950s. However, the activation regions result from the

optimization of ankle joint torques varies significantly among subjects, movements

and limbs, so no claim can be made about the selections of channels for this joint,

as expected according to the results of the previous section, which shows a poor

prototype extraction for this joint.

5.3 On the Estimation of Torque

The estimation curves depicted in figures 4.10 and 4.11, corresponding to the

hip and knee joints, show generally successful estimations of prototype torques that

have been optimized with the proposed scheme. In contrast to this, however, the

estimation curves in Figure 4.12 show poor tracking of the optimized ankle joints.

These differences in the estimation of torques are easily more quantitatively seen

from Figure 4.14, where the points corresponding to the estimation of ankle joint

torques show lower measures of goodness of fit that those of the knee joint and even

lower measures than those of the hip joint. This support the claims made earlier in
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this chapter about the hypothesized origin of the poor results found for the ankle

torques: subjects did not pay special attention to the movement made in this joint

compared to the attention paid to the hip and knee joints. On the other hand, an

unexpected result was that tasks T1 and T2, which correspond to the step forward

and step back movements, seem to have the best measures of goodness of fit in

comparison to task T3, which corresponds to the step up movements; although it is

consistent with the fact that the hip joint obtained the best results, probably due

to the prevalence of the movement of this joint in these tasks.

Another interesting point to be addressed about the findings reported in the

aforementioned depiction of goodness of fit is the significantly better estimations of

right lower limb torques compared to the estimations of left lower limb torques. The

laterality tendencies of the subjects to the right-footedness may explain this result,

since the estimation is made in prototypes extracted from repetitions of movements

made with the lower limbs, and the right-footedness might cause clumsiness in the

execution of movements with the left lower limb, thus affecting the estimation of

torques in these limbs.

For instance, whilst still not conclusive, the outperforming measures of

goodness of fit of subjects S2 and S3 may suggest that an important factor in

obtaining useful data for this type of analysis (EEG-movement) may be the

attention paid by each individual in the execution of trials for this kind of

experiments.

Additionally, from Figure 4.13, it could bee seen that the estimation of

extracted prototypes of torques represents points in the dataset that are part of

the various phases of the movement, such as the increase, decrease and

maintenance of the magnitude of torque.
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Conclusions

In summary, lower limb joint torques were successfully estimated from EEG

signals, recorded from gait initiation movements, through the proposed scheme,

which consisted of training a MLP neural network with prototypes extracted

optimally with a GA under the assumption that these extracted data represent the

relationship between the EEG and the torque.

Overall, this study suggests that patterns of EEG and torque signals can be

successfully extracted, although not with a outstanding amount of data but with

that necessary to make good estimations of relevant points of the output signal.

The analysis of the characteristics of the extracted data will require further study,

but has opened new pathways of understanding the functional relationship between

acquired EEG and torque signals, even more, between neural and kinetic activity.

The research also supports the generalized idea of defining concisely the

attention that must be given by the subjects in the protocol that they will be

following, as a form to ensure the providing of useful data for further analysis.

It must be borne in mind that this study was only conducted on data of a

small group of subjects over relatively short periods of time for each execution of

the optimization algorithm for each selection of EEG channels. Further research is

hence needed, to determine the specific set of channels necessary for the estimation

of torque, on a larger number of subjects with more robust optimization algorithms

before generalized conclusions can be drawn. However, this preliminary results

support the path of using EEG signals as variables to be decoded for estimating

user’s intentions to perform motor tasks.

54



Bibliography

[1] Centers for Disease Control and Prevention (CDC), “Disability and functioning

(noninstitutionalized adults aged 18 and over),” 2016. Accesed May 2019.

[2] Department of Social Development (SEDESOL), “Diagnosis on the situation of

people with disabilities in mexico,” 2016. Accesed May 2019.

[3] N. A. Fitzsimmons, “Extracting kinematic parameters for monkey bipedal

walking from cortical neuronal ensemble activity,” Frontiers in Integrative

Neuroscience, vol. 3, 2009.

[4] A. Presacco, R. Goodman, L. Forrester, and J. L. Contreras-Vidal, “Neural

decoding of treadmill walking from noninvasive electroencephalographic

signals,” Journal of Neurophysiology, vol. 106, pp. 1875–1887, oct 2011.

[5] J. M. Antelis, L. Montesano, A. Ramos-Murguialday, N. Birbaumer, and

J. Minguez, “On the usage of linear regression models to reconstruct limb

kinematics from low frequency EEG signals,” PLoS ONE, vol. 8, p. e61976,

apr 2013.

[6] D. Liu, W. Chen, Z. Pei, and J. Wang, “Detection of lower-limb movement

intention from eeg signals,” in 2017 12th IEEE Conference on Industrial

Electronics and Applications (ICIEA), pp. 84–89, IEEE, 2017.

[7] A. Kilicarslan, S. Prasad, R. G. Grossman, and J. L. Contreras-Vidal,

“High accuracy decoding of user intentions using eeg to control a lower-

body exoskeleton,” in 2013 35th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC), pp. 5606–5609, IEEE,

2013.

55



Bibliography 56

[8] J. T. Gwin and D. P. Ferris, “An EEG-based study of discrete isometric and

isotonic human lower limb muscle contractions,” Journal of NeuroEngineering

and Rehabilitation, vol. 9, no. 1, p. 35, 2012.

[9] M. Seeber, J. Wagner, R. Scherer, T. Solis-Escalante, and G. Mller-Putz,

“Reconstructing gait cycle patterns from non-invasive recorded low gamma

modulations,” in Proceedings of the 6 th International Brain-Computer Interface

Conference 2014, 2014.

[10] W. A. MacKay, “Wheels of motion: oscillatory potentials in the motor cortex,”

Motor cortex in voluntary movements: a distributed system for distributed

functions, vol. 181, p. 211, 2005.
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