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Abstract

Planetary radar has provided an increasingly growing number of datasets on the inner terrestrial

planets and near-Earth and main-belt asteroid populations in our solar system. Physical inter-

pretation of radar data for inference of surface properties requires constraints on the constitutive

parameters of the material making up a given surface. For many planetary surfaces, the response

to electromagnetic radiation is described by the complex permittivity. In this thesis, the dielectric

response of several geologic materials as a function of frequency and porosity was characterized to

supplement radar data interpretation. Using the coaxial transmission line method, the complex

permittivity of seven powdered mineral samples was measured. The samples were characterized

for their composition and structure using a variety of laboratory techniques. A detailed review

of the theory and use of electromagnetic mixing equations was presented to introduce the range

of models available to describe the experimental permittivity measurements. A thorough analysis

of the experiments was performed which showed that the Looyenga-Landau-Lifshitz and Brugge-

man (Symmetric) mixing models described the experimental results with the highest accuracy.

Measurement bias in the coaxial transmission line method highlighted in previous research due

to inhomogeneities at the sample/conductor interface was modelled using these mixing theories,

providing a way to correct for these effects post-measurement. The variation in the permittivity

of the solid mineral grains between different minerals was characterized based on the grain density

of the minerals, as well as the chemical composition. The experimentally verified mixing models

were incorporated into an existing asteroid radar model and were used to calculate the porosity

in the near-surface of seven asteroids visited by robotic spacecraft. Comparing with bulk porosity

estimates, the asteroid radar model indicated the presence of a porous regolith covering on each as-

teroid that is similar in porosity to the upper 30 cm of the Moon. The results from this research are

important for future radar studies, and the model predictions for asteroid surface properties will be

tested with results from upcoming space missions visiting asteroids, such as NASA’s OSIRIS-REx

and JAXA’s Hayabusa2 missions.
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Chapter 1

Introduction

1.1 Motivation

Knowledge of our solar system has increased greatly in recent decades as a result of technological

advances, and renewed interest in, and funding support for, robotic exploration missions. Plane-

tary bodies close to Earth, such as the Moon and Mars, have been studied extensively by robotic

orbiters, landers, and rovers by various governmental space organizations. The Moon was the first

and (at the time of writing) only solar system body to be visited by humans as part of the United

States (US) National Aeronautics and Space Administration (NASA) Apollo missions throughout

the 1970’s. These missions, along with the Soviet Space Program’s Luna missions, acquired the

largest selection of pristine extraterrestrial geologic samples, consisting primarily of lunar regolith,

or the fine-grained geologic material covering the upper layer of the lunar surface. Analysis of these

samples and data collected from lunar robotic exploration missions have resulted in the current

understanding of regolith evolution on airless bodies. For airless bodies further from Earth, the

vast majority of data have been collected from Earth-based remote sensing observations and by

studying meteorites. Spectral and chemical properties of meteorites are used to link them to the

known properties of parent bodies such as the Moon, Mars, asteroids and comets. Much of the

current knowledge base of asteroids and their taxonomy is based on the analysis of meteorites.

This is biased by an uneven distribution of the types of asteroidal meteorites discovered on Earth,

as well as contamination of samples by interaction with Earth’s atmosphere and biosphere. As a

result, asteroids and comets remain some of the most mysterious objects in our solar system.

Asteroids are of significant interest for research in planetary science as they are generally acknowl-

edged as being relatively unaltered material created during the formation of the solar system.

Primitive asteroids that have not undergone metamorphism or significant alteration post forma-
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tion have been shown to be compositionally similar to the Sun, and thus the material present in

the early solar nebula. Asteroids and comets have been proposed as possible carriers of water

and organic material to the early Earth, and may hold information about the formation of life

in our solar system. Due to their scientific importance, and our lack of understanding, asteroids

and comets have been the focus of many recent and current space missions. The first robotic ex-

ploration mission to encounter an asteroid was NASA’s Galileo mission, which performed flybys

of S-complex asteroids 951 Gaspra and 243 Ida in 1991 and 1993 respectively while en route to

Jupiter (Chapman, 1996). S-complex refers to the spectral taxonomic complex that the two as-

teroids belong to, which is a function of the asteroid composition and surface weathering. The

Galileo flybys confirmed the link between S-complex asteroids and ordinary chondrite meteorites

(Chapman, 1996). There are different taxonomic classification schemes that differentiate asteroid

complexes into different classes; however, all agree on the main three complexes: the siliceous

S-complex, the (most common) low-albedo carbonaceous C-complex, and the metallic X-complex

asteroids (DeMeo et al., 2009; Bus and Binzel, 2002; Demeo et al., 2015). In 1997, NASA’s NEAR

spacecraft performed a flyby of 253 Mathilde, providing the first close look at a C-type asteroid

(Yeomans et al., 1997). NEAR then continued on to orbit and investigate the large S-complex as-

teroid 433 Eros from 2000 - 2001 (Yeomans et al., 2000). In 2005 the Japan Aerospace Exploration

Agency (JAXA) mission Hayabusa was the first robotic exploration mission to land on an aster-

oid, S-complex near-Earth asteroid (NEA) 25143 Itokawa, confirming a rubble-pile structure and

composition matching that of LL chondrites (Fujiwara et al., 2006). Hayabusa returned pristine

regolith samples from 25143 Itokawa, although the sampling mechanism did not function properly

and the quantity of returned sample was low. The first X-complex asteroids to be encountered

by a spacecraft were 2867 Steins and 21 Lutetia in 2008 and 2010 respectively, observed through

flybys during the European Space Agency (ESA) Rosetta mission (Keller et al., 2010; Pätzold et al.,

2011). NASA’s Dawn mission orbited the large NEA 4 Vesta 3 times in 2011, confirming 4 Vesta

as the likely parent body for Howardite-Eucarite-Diogenite (HED) achondrite meteorites (Russell

et al., 2015; McSween Jr et al., 2013). Dawn proceeded to orbit the dwarf-planet and first object

ever observed in the asteroid belt 1 Ceres, revealing interesting icy features (Russell et al., 2016).

The China National Space Administration (CNSA) performed a flyby of the S-complex asteroid

4179 Toutatis in 2012 as part of the Chang’e-2 mission, confirming the accuracy of the previously

derived radar shape model and complex structure (Huang et al., 2013). At the time of writing,

in an unprecedented effort to study asteroids, two robotic exploration missions are currently or-
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biting and analyzing NEAs. JAXA’s Hayabusa2 mission is orbiting 162173 Ryugu and NASA’s

Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer, or OSIRIS-

REx, mission is orbiting 101955 Bennu (Lauretta et al., 2017; Watanabe et al., 2017). Both of

these asteroids are C-complex asteroids, representing some of the most primitive asteroidal mate-

rial, with potentially significant quantities of organic carbon and volatile content. These missions

also intend to return pristine regolith samples for detailed analysis in Earth-based laboratories. It

truly has never been a more interesting time to study asteroids, and the future is filled with data

collection and insights to be gained from current missions, such as Hayabusa2 and OSIRIS-REx,

and from future planned missions such as NASA’s Lucy, DART, and Psyche missions. In support

of on-going investigations of 101955 Bennu by the OSIRIS-REx mission, the research presented in

this thesis focuses on furthering our knowledge of asteroids by ascertaining correlations observed in

laboratory dielectric experiments to inform interpretations of asteroid radar observation datasets.

With the OSIRIS-REx and Hayabusa2 missions targeting carbonaceous asteroids, as well as the

general scientific interest in these types of asteroids, this research will focus the discussion when

possible on this asteroid taxonomy.

1.2 Purpose and structure of thesis

The purpose of this thesis is to support the study of asteroids, specifically using radar observations,

through increasing our understanding of the responses of materials to radar waves by performing

laboratory experiments and modelling the experimental results. The processing, analysis, and mod-

elling of planetary radar data yields properties of the regolith material within the radar penetration

depth. These properties, such as the constitutive parameters, can be related to the fundamental

response of a material to the electric and magnetic fields which electromagnetic (EM) radiation is

comprised of. The constitutive parameters of different materials can be measured in laboratory

experiments to see how these change as a function of composition and environmental parameters,

such as temperature and water content. These relationships can then be applied to planetary radar

data to surmise such environmental parameters of the planetary surfaces. This area of research

is broad, as there are numerous environmental parameters that can be varied experimentally. In

this thesis, the aim is to use laboratory microwave measurements of the complex permittivity of

different geologic powders to understand radar propagation through a particulate regolith layer.
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The environmental parameter that is examined is the porosity of the powder, or the amount of void

space between solid mineral grains. The derived function relating the permittivity and porosity for

a geologic powder is then be applied to some asteroid radar data to calculate the porosity within

the radar penetration depth. The structure of the thesis is as follows. Chapter 1 introduces the mo-

tivation behind this research and provides the necessary theoretical background in planetary radar

and electromagnetic theory to establish context for the remainder of the thesis. Chapter 2 reviews

the existing theories, termed generally as electromagnetic mixing equations, relating permittivity

and porosity for a material. Then a summary of the body of literature that exists regarding exper-

imental measurements of the permittivity of geologic materials as a function of porosity is given.

Chapter 3 discusses the experimental setup and methodology used to perform the permittivity

measurements. Chapter 4 discusses the samples that were used in this study, as well as the ways in

which they were characterized. Chapter 5 focuses on the results of modelling efforts in correcting

measurement bias observed in the permittivity measurement technique used in this thesis. Chap-

ter 6 discusses the permittivity measurements, and the results of modelling these measurements

with mixing theories. Chapter 7 discusses the application of this modelling to asteroid radar data.

Finally, chapter 8 summarizes the major contributions and findings of this thesis, and provides a

brief discourse on the possible future directions that can expand on this work.

1.3 Asteroid Planetary Radar

Visiting asteroids, or any planetary body, with robotic spacecraft remains the best way to obtain the

most scientific information. As can be surmised from the above discussion, these visits are relatively

few and far between owing to their complexity, orbital constraints, and funding requirements. One

of the most-used Earth-based remote sensing techniques to observe asteroids at a fraction of the

price of a space mission is planetary radar. Large radio telescopes, like the Arecibo Observatory and

the Goldstone Solar System Radar, can transmit microwave signals with enough power and receiver

sensitivity to measure the reflected signal from an asteroid surface. From these observations, many

properties of asteroids can be determined, such as shape, spin state, generic composition, and

surface roughness. Recent funding support for asteroid radar studies and technological advances

have significantly increased the number of radar observed NEAs (Figure1.1) (Benner et al., 2015).

Radar was developed for military applications concurrently by several countries during World War

II for the detection of naval ships and aircraft. The first extraterrestrial target probed by radar
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Figure 1.1: Figure taken from (Benner et al., 2015) with following caption: Number of near-Earth asteroid
radar detections through the end of 2014. The increase in cumulative detections in 1999-2000 was caused in
part by a surge of discoveries by LINEAR and by the order-of-magnitude increase in sensitivity at Arecibo
after the upgrade. The increase in 2012 was the result of increased funding for Arecibo and greater access
to telescope time at Arecibo and Goldstone. (The upgrade here refers to the installation of the 1 MW 12.6
cm radar system).
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was the Moon, followed by Venus, Mercury and Mars. The power of a radar echo, or the signal

that reflects from a target and is received by the antenna, is determined by the following equation,

termed the “Radar Equation” (Ostro, 1993):

Prcv =
PtxG

2
antλ

2σ

(4π)3r4
(1.1)

In the Radar Equation (1.1), Prcv is the power of the received signal, Ptx is the power of the

transmitted signal, λ is the signal wavelength, Gant is the antenna’s gain (equal to 4π
λ2Aeff, where

Aeff is the effective aperture of the antenna), σ is the radar cross-section of the target, and r is

the distance to the target. The signal-to-noise (SNR) ratio is a limiting factor for radar detections

(the received power must be higher than the receiver noise power), and is dependent on the specific

antenna properties. The SNR is dependent on the integration time, which increases with the

number of independent estimates of Prcv for a given target (i.e the more observations of a target,

the higher the SNR). A radar signal emitted from the transmitting antenna will decay in power

according to the inverse of the squared distance from the transmitter, which means that for the

two-way travel of a transmitted and then reflected echo, the power will depend on the inverse of

the fourth power of distance, or r in the Radar Equation. This means that the received power is

strongly limited by the distance to the target, which bounds the possible regions of the solar system

observable from Earth-based radar systems.

1.3.1 Radar Polarimetry

In early radar studies of the Moon, it was observed that the Earth’s ionosphere induces Faraday

rotation of a linear-polarized signal, so that the angle of polarization is altered with propagation

(Campbell, 2016). As a result, most radar signals that propagate through Earth’s atmosphere

are intentionally circularly polarized, termed left-handed circularly polarized or right-handed cir-

cularly polarized depending on whether the angle of polarization is rotating in a counter-clockwise

or clockwise orientation with respect to the direction of propagation. The polarization of the re-

ceived signal, relative to the polarization of the transmitted signal, contains information about the

target surface properties. To make use of this information, most modern radar systems can receive

polarimetric signals in two orthogonal polarizations simultaneously, so that the full polarization of

the signal is known (Carter et al., 2011). The polarization of the signal is described by the Stokes

vector, S, which can be broken down into the four Stokes parameters, S1−4, all described by the
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relative amount of signal received in either circular polarization channel and their relative phase

(Campbell, 2016):

S =


S1

S2

S3

S4

 =



〈
V 2
L

〉
+
〈
V 2
R

〉
2 〈VLVR cos δ〉

2 〈VLVR sin δ〉〈
V 2
L

〉
−
〈
V 2
R

〉

 (1.2)

In equation (1.2), VL and VR are the voltages measured for the polarized channels in the left- and

right- handed sense respectively, δ is their relative phase, and 〈〉 represents a time average. S1 is

the total average power of the echo received in both left- and right- handed circular polarizations,

S2 and S3 represent the linearly polarized state of the wave, and S4 describes the handedness

and magnitude of the circularly polarized state of the wave (Carter et al., 2011). Rather than

describing the received signal in terms of left- and right-handed circular polarizations, the circular

polarization is typically described relative to that transmitted, so that an echo received in the same

direction of circular polarization as transmitted is termed same sense circularly polarized (SC), and

an echo received in the opposite direction is termed opposite sense circularly polarized (OC). Planar

specular reflection of a circularly polarized signal reverses the direction of circular polarization, so

that the reflected signal would be in the OC polarization (Ostro et al., 1985; Ostro, 1993; Carter

et al., 2011; Campbell, 2016). Received signals that are SC polarized are comprised mostly of

diffuse scattering such as multiple scattering, single scattering from curved surfaces, or subsurface

volume scattering (Ostro, 1993; Carter et al., 2011). The radar cross section, σ, is labelled for the

portion of the radar echo received in SC and OC polarizations as σSC and σOC. The radar albedo,

σ̂, for a given circular polarization state is defined as the radar cross section divided by the mean

projected area, 〈Aproj〉, of the radar target, which for the OC signal reads: σ̂OC ≡ σOC/ 〈Aproj〉

(Magri et al., 2001; Ostro, 1993). The ratio of the radar albedo (or equivalently the radar cross

section) in either circular polarization is termed the circular polarization ratio (CPR), µC:

µC =
σ̂SC

σ̂OC
=
S1 − S4

S1 + S4
(1.3)

Since the radar albedo is higher in SC polarization for rougher surfaces, and is higher in OC po-

larization for smoother surfaces, the CPR is used as an indication of the wavelength-scale surface

roughness of the radar target. The wavelength scale dependence is important, as regolith features
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can appear smooth or rough on different length scales (i.e particle grain size, surface topology).

The CPR will also increase with the incident angle, since more of the reflected signal is comprised

of diffuse scattering for large incident angles (Carter et al., 2011). For asteroid observations from

Earth-based radar telescopes, the reflected signal is virtually entirely in the backscatter direction

and the incident angle can be taken as nadir, or ≈ 0◦. Circularly polarized waves are ideal cases

of the general elliptical polarization, which is a combination of circular polarization and linear po-

larization components at the same frequencies and fixed phase relationship (Carter et al., 2011).

Linear polarization is sensitive to transmission through an interface, and can be used as an indi-

cation of scattering from subsurface material. The degree of linear polarization, ml, is calculated

from the Stokes vector as (Carter et al., 2011):

ml =

√
S2

2 + S2
3

S1
(1.4)

The degree of linear polarization increases with incident angle and is zero at normal incidence, and

therefore is not often used for Earth-based radar observations of asteroids (Carter et al., 2011).

1.3.2 Radar Scattering Laws

The scattering of radar signals from planetary surfaces depends on many factors, such as surface

roughness, composition, and angle of incidence. Initial radar studies of the Moon did not take

these dependencies into consideration until the 1960’s, when it was determined that radar scat-

tering was wavelength dependent and varied across the lunar surface (Simpson and Tyler, 1982).

The power in the OC polarization of the reflected echo from planetary surfaces, indicating that

this is the quasi-specular component of the reflection, was observed to be highest at the subradar

point (McCollom and Jakosky, 1993; Ostro, 1993). The subradar point is the intersection of a

line connecting the radar receiver and the planet’s centre of mass with the surface of the planet

(Campbell, 2016). Radar echo power decreases from the subradar point to the limbs, or edges of

the target planet, since the reflections from the limb are mostly diffuse in nature. The variation in

quasi-specular reflections across a planetary surface is thought to arise from smooth, tilted facets

perpendicular to the incident signal, and can be related to the surface slope at wavelength scales.

The wavelength scale dependence of the quasi-specular scattering of a planetary surface can then

be used to determine changes in surface slope at relevant length scales.
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Radar scattering laws have been developed primarily from an empirical perspective to be mathe-

matical descriptions relating the reflection characteristics of a particular surface roughness to the

received radar echo power (in the OC polarization for quasi-specular reflection). Several laws have

been applied and can be fit to radar data for a given surface, resulting in varying estimates of

surface roughness. Each scattering law is described as a function of the incident angle, φ, the radar

reflectivity, R, and the roughness parameter, C (Mitchell et al., 1996; Ostro, 1993; McCollom and

Jakosky, 1993). When not considering diffuse scattering, the roughness parameter is related to

the adirectional root-mean-square (rms) slope, s0, by the following equation (Simpson and Tyler,

1982):

s0 =
〈
tan2 θrms

〉1/2
=

[∫ 2π

0
tan2 θpp(θ) sin θdθ

]1/2

= C−1/2 (1.5)

In equation (1.5) θrms is the rms slope angle of a given tilted facet with respect to the mean

surface normal, not to be confused with the incident angle, φ, and pp(θ) is the slope probability

distribution, sometimes referred to as Parker’s density function (Simpson and Tyler, 1982; Parker,

1973). If there is no diffuse component to the scattering, the radar cross section as a function of

incident angle, σqs(φ), is most commonly calculated using the Hagfor’s scattering law, assuming

a “smoothly undulating surface” with flat, tilted facets on the wavelength scale (Hagfors, 1964;

McCollom and Jakosky, 1993; Ostro, 1993; Campbell, 2002):

σqs(φ) =

(
RC

2

)
(cos4 φ+ C sin2 φ)−3/2 (1.6)

For the radar cross section resulting from diffuse scattering as a function of incident angle, σdiff, a

cosine power law is often assumed:

σdiff(φ) = ρ cosn(φ) (1.7)

The exponent, n, in equation (1.7) is fit to a radar spectrum, and usually falls between unity for the

scattering observed on the Moon and 2 for Lambertian scattering (Ostro, 1993). ρ is related to the

radar brightness, but is not necessarily equivalent to the Fresnel reflectivity (Mitchell et al., 1996;

Hudson and Ostro, 1994). The amount of diffuse scattering from a surface is determined by the

rms slope at relevant wavelength scales, and increases with increasing incident angle (increasing

distance from the subradar point). In some studies, combinations of quasi-specular and diffuse
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radar scattering laws are used to derive the rms slope for planetary surfaces (Ostro, 1993; Harmon

and Ostro, 1985; Thompson et al., 2011). For asteroid radar studies, typically a radar scattering

law similar to equation (1.7) is assumed (Mitchell et al., 1996; Hudson and Ostro, 1994). Figure 1.2

shows the radar cross section calculated by equations (1.6) and (1.7) for a range of incident angles

and rms slope angles. The radar albedo due to quasi-specular reflection alone is typically assumed

Figure 1.2: Hagfor’s scattering law for rms slope angles of θrms = 1◦, 2◦, and 8◦, as well as the diffuse
scattering law for incident angles from φ = 0− 60◦. The quasi-specular radar cross section is given in units
of decibels (σqs(dB) = 10log10(σqs)) and is seen to drop off sharply as the incident angle increases from
nadir (φ = 0), and decreases gradually with increasing φ. Increasing surface roughness (θrms) decreases the
sharpness of the nadir peak. The diffuse radar cross section drops off less dramatically with incident angle,
and becomes more important for high φ and high θrms. In this figure the exponent assumed in equation
(1.7) is n = 1.5, and the radar reflectivity is calculated from the Fresnel reflectivity at normal incidence on
a loss-less material with ε

′

r = 4.

equal to σ̂OC, and is related to the Fresnel power reflection coefficient, Rfp, by the backscatter gain,

g (Ostro, 1993; Magri et al., 2001; Mitchell et al., 1996):

g =
σ̂OC

Rfp
≈ 1 +

1

2
s2

0 (1.8)

To the second order, radar scattering theories generally agree in the equivalency between g and s0
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in equation (1.8) for a spherical target, where g < 1.5 (increasing g from unity indicates increased

surface roughness) is observed for most surfaces, corresponding to an adirectional rms slope of

θrms = 45◦ (Ostro et al., 1985). By applying a radar scattering law to fit the observed radar

spectrum of a planetary surface, the surface roughness and Fresnel reflectivity can be determined.

1.4 Electromagnetic Theory

1.4.1 Electromagnetic Wave Propagation: The Wave Equation

The propagation of electromagnetic radiation through a vacuum is described by Maxwell’s equa-

tions, which in differential form and in the time domain are (Balanis, 1989) (all subsequent deriva-

tions in this section are based on (Balanis, 1989), with any deviations indicated by another citation.

Vectors are indicated by bold characters.):

∇×E = −Mi −
∂B

∂t
(1.9)

∇×H = Ji + Jc +
∂D

∂t
(1.10)

∇ ·D = ρe (1.11)

∇ ·B = ρm (1.12)

In equations (1.9) - (1.12), the variables are defined as:

E = electric field intensity (V/m)

H = magnetic field intensity (A/m)

D = electric flux density (C/m2)

B = magnetic flux density (T)

Ji = impressed (source) electric current density (A/m2)

Jc = conduction electric current density (A/m2)

Mi = impressed (source) magnetic current density (V/m2)

ρe = electric charge density (C/m3)

ρm = magnetic charge density (T/m)

So far there have been no magnetic monopoles, or magnetic charge carriers, discovered in nature,

and the magnetic charge density, ρm, and impressed magnetic current density, Mi, are not physi-
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cally reasonable. In the formulation of Maxwell’s equations presented in equations (1.9) - (1.12),

these terms are included to provide symmetry between the electric and magnetic phenomena and

for mathematical descriptions of different electromagnetic problems; however, they are typically

assumed to be equal to zero in most references, and will be treated so for the purpose of this the-

sis. The constitutive equations are used to further describe the interaction between the variables

introduced in equations (1.9) - (1.12), specifically in the interaction of electric and magnetic fields

with matter:

D = ε∗E (1.13)

B = µ∗H (1.14)

Jc = σsE (1.15)

The charged particles that matter consists of (electrons and protons), and inherent magnetic or

electric dipoles present in different materials, interact with the electric and magnetic fields of an

electromagnetic wave, and will alter the propagation properties of the wave. The multiplication in

equations (1.13) - (1.15) is for the variables in the frequency domain, where in the time domain the

multiplication is a convolution. The variables ε∗, µ∗, and σs are called the constitutive parameters

and determine how a material responds to electromagnetic radiation. EM radiation consists of

electric and magnetic fields alternating with time, thus the response of the charges within a material

will be a function of the frequency of the oscillation of the fields. The constitutive parameters

are generally complex quantities, termed the (complex) dielectric permittivity, ε∗, the (complex)

magnetic permeability, µ∗, and the (real-valued) static electric conductivity, σs. In 3-dimensional

(3D) space the constitutive parameters can also be a function of position within a material, and

are then in general 3×3 tensors relating the x, y and z components of the associated vectors, which

for E and D would read:

D =


Dx

Dy

Dz

 =


ε∗xx ε∗xy ε∗xz

ε∗yx ε∗yy ε∗yz

ε∗zx ε∗zy ε∗zz



Ex

Ey

Ez

 (1.16)

Combining Maxwell’s equations (1.9) - (1.12) with the constitutive equations (1.13) - (1.15) results

in:
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∇×E = −µ∗∂H

∂t
(1.17)

∇×H = Ji + σsE + ε∗
∂E

∂t
(1.18)

∇ ·E =
1

ε∗
ρe (1.19)

∇ ·H = 0 (1.20)

Equation (1.10) can be rewritten by considering the EM fields as time harmonic with a ejωt de-

pendence (i.e D(x, y, z, t) = D(x, y, z)ejωt), where j2 = −1, and ω = 2πf , and computing the

derivative ∂D
∂t (Knoll, 1996; Plonus, 1978):

∇×H = Ji + Jc + jωD (1.21)

Substituting equations (1.13) and (1.15) into (1.21) results in:

∇×H = Ji + σsE + jω(ε
′ − jε′′)E (1.22)

ε
′

refers to the real part of the complex dielectric permittivity, and ε
′′

the imaginary part (i.e,

ε∗ = ε
′ − jε

′′
). The remainder of this thesis will use the same notation for real and imaginary

components of complex numbers. Equation (1.22) can be rewritten in terms of an effective, or

equivalent conductivity σe = σs + ωε
′′

= σs + σa:

∇×H = Ji + (σs + ωε
′′
)E + jωε

′
E = Ji + σeE + jωε

′
E (1.23)

The complex nature of ε∗ and µ∗ accounts for the frequency dependent properties of the permittiv-

ity and permeability. Now with the definition of an effective conductivity, σe, with a static, σs, and

an alternating field, σa, component, the frequency dependent conductivity behaviour of a material

is also accounted for.

The total electric current density, Jt, of a material is a combination of the impressed electric

current density, Ji, the effective electron conduction current density, Jce = σeE, and the effective

displacement current density, Jde = jωε
′
E:

13



Jt = Ji + σeE + jωε
′
E (1.24)

Equation (1.24) can be rearranged to:

Jt = Ji + jωε
′
(

1− j σe
ωε′

)
E = Ji + jωε

′
(1− j tan δe)E (1.25)

In equation (1.25), the effective loss tangent, tan δe = σs
ωε′

+ σa
ωε′

, the static electric loss tangent,

tan δs = σs
ωε′

, and the alternating current electric loss tangent, tan δa = σa
ωε′

= ε
′′

ε′
, have been defined,

where tan δs and tan δa represent energy loss in the electric field strength due to DC conduction

and AC conduction.

The symmetry between the electric and magnetic components of EM radiation allow a comple-

mentary derivation to arrive at a similar expression to describe the total magnetic current density,

Mt:

Mt = Mi + jωµ
′
(1− j tan δm)H (1.26)

In equation (1.26), tan δm = µ
′′

µ′
is the alternating magnetic loss tangent (since there is no static

case as a result of no magnetic monopoles). Substituting in equations (1.13) and (1.15) into (1.10),

and (1.14) into (1.9), along with the definitions of σe and ε∗, results in:

∇×E = −Mi − µ∗
∂H

∂t
(1.27)

∇×H = Ji + σeE + ε
′ ∂E

∂t
(1.28)

To uncouple these two first order differential equations, the medium is assumed homogeneous and

the curl of each side of equations (1.27) and (1.28) is taken to arrive at:

∇2E = ∇×Mi + µ∗
∂Ji

∂t
+

1

ε′
∇ρve + µ∗σe

∂E

∂t
+ µ∗ε

′ ∂2E

∂t2
(1.29)

∇2H = −∇× Ji + σeMi +
1

µ∗
∇ρvm + ε

′ ∂Mi

∂t
+ µ∗σe

∂H

∂t
+ µ∗ε

′ ∂2H

∂t2
(1.30)
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If it is further assumed that there are no sources near the region in consideration, Ji = ρve = 0 and

Mi = ρvm = 0 (even though Mi = ρvm = 0 is already true due to the lack of magnetic monopoles),

equations (1.29) and (1.30) can be written in the form that is termed the Wave Equation:

∇2E = µ∗σe
∂E

∂t
+ µ∗ε

′ ∂2E

∂t2
(1.31)

∇2H = µ∗σe
∂H

∂t
+ µ∗ε

′ ∂2H

∂t2
(1.32)

The Wave Equation describes the propagation of EM waves through a material. The dominant

constitutive parameter for a given material will then largely determine the EM properties of that

material. For materials with free charges, such as metals, or with significant tan δe, the first term on

the right hand side of either equation will dominate. Similarly, for materials with no free charges,

such as insulators or dielectrics with low tan δe, the second term on the right hand side of either

equation will dominate. The propagation of radar signals, which are EM waves, through a material

is described by the Wave Equation, where the variation of propagation/scattering properties of EM

waves within/from different materials is due to the differences in constitutive parameters.

1.4.2 Propagation, Phase, and Attenuation constants

The Wave Equation (equations (1.31) & (1.32)) can be written in time harmonic form, similar to

the derivation of equation (1.21) by assuming each field varies in time according to ejωt. In this

way, the operators ∂/∂t and ∂2/∂t2 can be rewritten as jω and −ω2 ((jω)2 = −ω2, since j2 = −1).

Under the same assumptions that there are no sources, the Wave Equation (equations (1.31) &

(1.32)) can be rewritten as:

∇2E = jωµ∗σeE− ω2µ∗ε
′
E = γ2E (1.33)

∇2H = jωµ∗σeH− ω2µ∗ε
′
H = γ2H (1.34)

In the time harmonic Wave Equation (equations (1.33) & (1.34)) the propagation constant, γ, has

been introduced:

γ2 = jωµ∗σe − ω2µ∗ε
′

(1.35)
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Writing γ as a complex number, γ = α + jβ, squaring the result, γ2 = α2 + j2αβ − β2, and

comparing with equation (1.35), equating the real and imaginary parts, expressions for α and β

can be written as:

α = ω
√
µ∗ε′

{
1

2

[√
1 + tan2 δe − 1

]}1/2

(Np/m) (1.36)

β = ω
√
µ∗ε′

{
1

2

[√
1 + tan2 δe + 1

]}1/2

(rad/m) (1.37)

β in equation (1.37) is called the phase-propagation constant, which defines the phase velocity at

which the EM wave propagates. The sinusoidal wave form of E and H means that the strength

of either field is determined by the phase angle, which is constant at a phase velocity defined

by β (Plonus, 1978). α in equation (1.36) is called the attenuation constant, and describes the

attenuation of an EM wave during propagation through a medium with appreciable σe, otherwise

known as a lossy material. The attenuation constant is commonly expressed in units of decibels

(dB), which can be calculated from units of (Np/m) by:

α(dB) = 20log10

(
eα(Np/m)

)
= 8.686α(Np/m) (1.38)

The attenuation of an EM wave decreases the energy of that wave as it propagates through a

material. The distance travelled when the wave energy reaches e−1 = 0.368 of it’s initial energy is

termed the skin depth, δ:

δ =
1

α
(1.39)

The skin depth is generally considered the penetration depth of an EM wave into a lossy medium.

In the context of radar remote sensing, the penetration depth is δ = 1
2α , since the wave that

propagates through the material must be reflected (and thus travels a distance in the material

twice in opposite directions) in the subsurface in order for a reflected wave to be detected.

1.4.3 Dielectric Permittivity

As was introduced in section 1.4.2, materials that do not contain free charges are termed dielectric,

or insulating, materials. Since there are no free charges, when an electric field is externally applied

to such a material, there is no static conduction current (σs = 0). Instead, the electric field exerts
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a force that shifts the distribution of charges within the material that depends on the frequency,

strength, and direction of the electric field, as well as the material properties. When a positive

and negative charge, with total charge Q, are displaced a distance d from one another, a dipole

moment, p, is established:

p = Qd (1.40)

The accumulation of n dipole moments (assuming all dipoles are of the same magnitude and

direction for simplicity) within a dielectric in the presence of an applied electric field summed over

a given volume defines the electric polarization, P:

P = np = ε0χeE (1.41)

In equation (1.41), χe is the electric susceptibility:

χe =
1

ε0

|P|
|E|

(1.42)

In equation (1.42) the permittivity of free space (vacuum), ε0 = 8.85 × 10−12 (F/m), has been

introduced. The electric polarization interacts with the applied electric field, E, to change the

electric flux density, D:

D = ε0E + P = ε∗E (1.43)

Typically, the complex permittivity of a material is reported relative to the permittivity of free

space, and is termed the relative complex permittivity, ε∗r :

ε∗r =
ε∗

ε0
= ε

′
r − jε

′′
r = 1 + χe (1.44)

There are different types of charge separation, and thus dipole moments, that can manifest in a

material in the presence of an applied electric field. These depend on the atomic, molecular, and

polar properties, as well as the frequency of the applied electric field. Since the length scale for

each polarization mechanism is different, the frequency of the oscillation in the electric field for

an EM wave determines whether there is enough time for the dipole to establish itself before the

field direction is inverted. The polarization mechanisms for dielectric materials are summarized in
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Figure 1.3. As an example, the length scale of an atom’s electron cloud is relatively small, and so
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Figure 1.3: Polarization mechanisms in dielectrics adapted from (Stillman, 2006; Olhoeft, 1981; Balanis,
1989). Interfacial polarization is sometimes referred to as Maxwell-Wagner polarization, and in this figure
is represented by charge build-up at the boundaries of an individual mineral grain.

this type of dipole can be established very quickly and persists to high frequencies (< 1024 Hz).

The length scale of an entire mineral grain is much larger than this, so the dipole associated with

interfacial polarization is only established for lower frequencies (< 106 Hz). If the direction of the

electric field is inverted too quickly, the charges cannot move the required distance in time. The

bound charges in a dielectric want to resist the separation of charges to maintain the lowest energy

state. Therefore when polarization mechanisms establish electric dipoles in a material, there is

electric potential energy stored in the dipoles. This is described by the real part of the relative

complex permittivity. The rotation and movement of permanent dipoles and charges in a dielectric

material during polarization consumes energy, and represents energy lost in the material, which is

described by the imaginary part of the relative complex permittivity. The polarization of charges

within a dielectric is distinct from the polarization of an EM wave, although the same term is used

to describe both phenomena. If the frequency of oscillation of the electric field of an EM wave is

in resonance with the rotation rate of the dipoles in a dielectric, significant energy is lost, causing
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a peak in the effective loss tangent (tan δe) of the material at that frequency, termed a relaxation

peak. The relaxation refers to how long it takes for the dipoles to reorient themselves.

Frequency Dependence

The frequency dependence of polarization mechanisms in dielectrics has already been introduced,

but also implies that the real and imaginary parts of the relative complex permittivity are related.

When the dipoles in a material are establishing themselves by rotating and moving charges in space,

potential energy is converted to kinetic energy and the real part of the relative complex permittivity

(hereafter just referred to as permittivity for simplicity) decreases as the imaginary part of the

permittivity increases. This interdependency has been derived mathematically for determining ε
′
r

as a function of ε
′′
r and vice-versa, termed the Kramers-Kronig relations (also referred to as the

Hilbert transform of a complex function):

ε
′
r(ω) = 1 +

2

π

∫ ∞
0

ω
′
ε
′′
r (ω

′
)

(ω′)2 − ω2
dω
′

(1.45)

ε
′′
r (ω) =

2ω

π

∫ ∞
0

1− ε′r(ω
′
)

(ω′)2 − ω2
dω
′

(1.46)

In (1.45) and (1.46), ω = 2πf is the angular frequency of the applied electric field. Several models

describing the real and imaginary parts of the permittivity as a function of frequency, typically in

the form of angular frequency, have been derived by various researchers. One of the most commonly

used models, the Debye model, was derived by considering the response of pure polar molecules in

the presence of an applied electric field (Sihvola, 1999):

ε∗r(ω) = ε
′
r(ω)− jε′′r (ω) = ε

′
r,∞ +

ε
′
r,s − ε

′
r,∞

1 + jωτ
(1.47)

Equation (1.47) introduces the static permittivity, ε
′
r,s, the high-frequency limit for the permittivity,

ε
′
r,∞, and the relaxation time constant, τ , which refers to the relaxation time for a given resonant

frequency, ωres = 1
τ , for a local maximum ε

′′
r in a material as described earlier. The real and

imaginary parts of the permittivity can be solved for individually from the general Debye equation

as:
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ε
′
r(ω) = ε

′
r,∞ +

ε
′
r,s − ε

′
r,∞

1 + (ωτ)2
(1.48)

ε
′′
r (ω) =

(ε
′
r,s − ε

′
r,∞)ωτ

1 + (ωτ)2
(1.49)

Multiple polarization mechanisms can occur at different frequencies within a material, so in general

there are N relaxation time constants to describe N polarization mechanisms:

ε∗r(ω) = ε
′
r(ω)− jε′′r (ω) = ε

′
r,∞ +

N∑
n=1

ε
′
r,s − ε

′
r,∞

1 + jωτn
(1.50)

Several variations of (1.50) have been proposed to explain experimentally observed data, which in

the most general form is the Havriliak-Negami (HN) relaxation equation (Tsai et al., 2019):

ε∗r(ω) = ε
′
r(ω)− jε′′r (ω) = ε

′
r,∞ +

N∑
n=1

ε
′
r,s − ε

′
r,∞

(1 + (jωτn)αn)βn
(1.51)

In equation (1.51), αn and βn are parameters that control the broadness and asymmetry of a given

relaxation peak. Some names for special cases of the HN relaxation are the Cole-Cole relaxation

(β = 1), the Cole-Davidson relaxation (α = 1), and the Debye relaxation (α = β = 1).

1.4.4 Magnetic Permeability

The magnetic permeability of a material relates the magnetic flux density, B, and the magnetic

field intensity, H (see equation (1.14)), in an analogous way that the dielectric permittivity relates

the electric flux density, D, and electric field intensity, E. Similar to the permittivity, the magnetic

permeability is complex, and often reported relative to the magnetic permeability of free space,

µ0 = 4π × 10−7 (henries/m):

µ∗r =
µ∗

µ0
= µ

′
r − jµ

′′
r (1.52)

Magnetic dipoles in a material are formed by the angular momentum of electrons as they spin and

orbit atomic nuclei (Balanis, 1989; Stillman, 2006). For some minerals, such as magnetite, the

inherent magnetic dipoles in the molecules will interact with an applied magnetic field. In most

cases, there are not significant magnetic dipoles present, and the mineral in question has little

interaction with an applied magnetic field. For the purposes of the work presented in thesis, the
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minerals studied are considered non-magnetic, and to have a magnetic permeability equal to that

of free space (µ0). This assumption can be tested and verified for each material experimentally,

and is also assumed by similar studies in the literature (Campbell and Ulrichs, 1969; Robinson

and Friedman, 2003; Telford et al., 1990). As such, there will not be extensive discussion on the

magnetic properties of materials throughout this thesis.

1.4.5 Electric Conductivity

As opposed to dielectric materials with no free charges, conductive materials contain significant

amounts of free electrons that are loosely bound to their parent atom, permitting movement of

electrons. In the absence of an applied electric field, these charges move in random directions

resulting in zero net conduction current. In the presence of an applied electric field, the charges

will migrate to the surface of a conductor, establishing an electric current as described in equation

(1.15). The amount of bound and free charges in a material determines if that material behaves

more like a conductor, or an insulator. Metals contain many free electrons and behave almost like

perfect conductors, whereas minerals often contain more bound electrons and behave like dielectrics.

The magnitude of the effective electric loss tangent, tan δe, gives an indication of whether there

is appreciable conductive current flow in a material. Water, especially salt water or water with

ionic impurities, is a good conductor and can therefore drastically influence whether a geologic

powder will behave according to a conductive or dielectric material. This is why differences in

water saturation in natural settings can be readily observed by electromagnetic methods. On

Earth, this is an important parameter to consider; however, in the vacuum of space and for small,

airless bodies, water cannot exist in liquid form. Planetary radar studies of asteroids will not

likely encounter (liquid) water saturated geologic material. For this reason, the work presented in

thesis assumes that there is negligible static conductivity in the mineral samples considered. To

justify this assumption, steps were taken to ensure minimal water saturation of samples during

measurements.

1.4.6 Electromagnetic Wave Polarization

The polarization of an EM wave is arbitrarily defined as the magnitude and direction of the electric

field vector over time, where specific polarizations refer to patterns in these properties. If the tip

of the electric field vector stays within a straight line in the plane perpendicular to the direction

of wave propagation, the wave is linearly polarized. In general, the polarization of any wave can
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be described by a combination of orthogonal linear polarizations in the plane perpendicular to the

direction of wave propagation. If the orthogonal (often termed H for horizontal and V for vertical)

polarizations have equal magnitude and are exactly π/2 radians (or integer multiples of π/2) out

of phase, the tip of the electric field vector will trace a circle in the plane perpendicular to the

direction of propagation, which is referred to as circular polarization. The direction of the rotation

of the electric field vector with time is determined by which orthogonal polarization is leading in

phase, where the naming convention of left- and right-handed circular polarization has already

been defined. Elliptically polarized waves are composed of both left- and right-handed polarization

components.

1.4.7 Reflection and Transmission

When an EM wave encounters a boundary where the constitutive parameters of the medium in

which the wave propagates are changed, a portion of the wave is reflected from, and a portion

transmitted through, the boundary. The angle of the incident (wave 1) and transmitted waves

(wave 2) with respect to the surface normal vector are given by Snell’s law:

n1 sin θ1 = n2 sin θ2 (1.53)

In Snell’s law (1.53) the index of refraction, n, for the mediums 1 and 2 has been introduced. The

index of refraction of a material is the ratio of the speed of light in vacuum, c = 1√
ε0µ0

, to the phase

velocity of a wave, vp = ω
β , travelling in that medium:

n =
c

vp
=

1√
ε0µ0

ω
β

≈
√
ε′r (1.54)

In (1.54), the term on the right side has been equated with the index of refraction by assuming

that the material is loss-less and non-magnetic. The electric and magnetic field amplitudes of the

reflected and transmitted EM waves are derived by applying boundary conditions at the interface

of contrasting n, or
√
ε′r for the loss-less and non-magnetic assumptions. For the general case of

normal incidence of an EM wave to some interface, the Fresnel amplitude reflection coefficient, Rf

(Fresnel power reflection coefficient, Rfp = |Rf |2), which defines the fraction of the wave reflected,

is calculated according to:
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Rf =

√
ε
′
r,2 −

√
ε
′
r,1√

ε
′
r,2 +

√
ε
′
r,1

(1.55)

The transmission coefficient, T , defining the fraction of the wave transmitted, is then T = 1−Rf ,

or T =
(

2
√
ε
′
r,2

)
/
(√

ε
′
r,1 +

√
ε
′
r,2

)
. The Fresnel reflection and transmission coefficients depend

on the angle of incidence, as well as the polarization, of the incident wave. In general the index of

refraction is a complex quantity. Lossy materials will also require different considerations for their

reflection and transmission properties. The derivations of these equations are beyond the scope of

this thesis, but can be found in most EM textbooks (Griffiths, 1999; Balanis, 1989).

1.4.8 Theoretical Assumptions

In the EM discussion just presented, several assumptions about material properties have been made

to justify the use of certain equations. To clarify the interpretation of this thesis, the main assump-

tions about the material properties of the geologic samples considered in this thesis are summarized

in this section. All of the constitutive parameters of the samples are considered linear functions of

the applied field strength, which is valid for most materials. The constitutive parameters are also

considered to be constant, or homogeneous, with respect to the position within a sample, which

is valid for geologic powders randomly mixed with grain sizes much smaller than the observing

wavelength. Similarly, due to the random orientation of individual powder grains, the samples are

considered isotropic, which means that the constitutive parameters are independent of the direc-

tion of the applied field. The dependence of the constitutive parameters on the frequency of the

applied field is termed dispersion. In general, the samples from this study are characterized as

low-loss materials and have little dispersion. This low-loss assumption validates the use of (1.54)

and equations (1.55) in describing EM reflection properties for these materials. The samples are

also considered non-magnetic, which is true for the dominant minerals identified in each sample.

Lastly, the samples are considered to have negligible static conductivity due to the low values of

the loss tangent measured for each sample at low frequencies. These assumptions are commonly

applied in similar dielectric experiments and radar modelling. The focus is on the real part of the

permittivity throughout this thesis, as this has the greatest impact on the reflectance properties of

most dry geologic materials, including the samples used in this thesis.
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1.5 Geologic Description of Powders

This thesis is predominantly concerned with mineral and rock samples in a particulate, or powder,

form. Therefore it is necessary to define some parameters that are commonly used to describe the

properties of geologic samples in both solid and powder form. The density of a geologic sample can

refer to the bulk density, ρbd, or the grain (solid) density, ρs. The bulk density refers to the mass

density within a specified volume, and can include micro- and macro-porosity. Porosity, φ, is defined

as the proportion of empty space, or voids, in the sample. Micro-porosity refers to the void space

on very small scales in a sample, typically in microcracks between crystal grains. Macro-porosity

refers to void space on a larger scale, such as fractures and the voids between particulate grains

(composed of many crystals). The grain density refers to the zero-porosity density of a geologic

sample. In practice, the grain density of a sample is determined through experimental techniques

that cannot identify certain types of micro-porosity in a sample, like isolated voids, and so in truth is

not representative of the zero-porosity state of the sample. This bias is relatively insignificant, and

for the rest of this thesis the grain density will be considered representative of the zero-porosity

sample. When the term “solid permittivity” is used, this is referring to the permittivity of the

zero-porosity sample. The porosity can be calculated from the bulk density and grain density of a

sample according to:

φ = 1− ρbd

ρs
(1.56)
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Chapter 2

Electromagnetic Mixing Equations

Review

2.1 Introduction

The intricacies of natural systems makes modelling their properties difficult, and has motivated

extensive studies into the description of such systems by macroscopic effective properties. The

powdered samples used in the presented research, and the regolith material on the surfaces of

planetary bodies, can be viewed as heterogeneous mixtures. For the powdered mineral samples

analyzed in this research, this mixture is comprised of the solid mineral grains and air in the pore

space between grains. For actual regolith material, this mixture is made up of a variety of min-

erals, lithic fragments, glasses, voids, and in some cases, possibly adhered water or other volatiles

as well. In both the cases of radar remote sensing of planetary bodies and laboratory permittivity

measurements of powders, some or all of the information extracted from a given target/sample by a

microwave signal is the effective material properties averaged over the observing wavelength. When

the heterogeneities of a material are on a similar length scale as the wavelength of incident EM

radiation, Mie and Rayleigh scattering occur. For heterogeneities at smaller length scales (typical

threshold is 1/10th of the EM wavelength), the propagation of the EM wave can be approximated by

the propagation through an equivalent material whose properties are described by spatial averages

of the true material properties (Sihvola, 1999). In the case of a heterogeneous mixture of dielectric

materials, the averaged relative complex permittivity is labelled the effective permittivity, ε∗r,eff ,

of the mixture. Based on the assumptions introduced in chapter 1, the following discussion will

assume low-loss materials, where the permittivity can be adequately described by, and will refer to,

the real part of the relative complex permittivity. To simplify the interpretation of symbols in this

chapter, the subscript r and superscript ’ will be dropped from all mentions of permittivity, and
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it is implied that the permittivity is referring to the real part of the relative complex permittivity

unless otherwise stated (i.e, ε
′
eff,r ≡ εeff , the use of the term permittivity to describe the real

part of the permittivity will be assumed throughout this thesis as well). The effective permittivity,

representing the contributions from the entire volume within the sample holder, is the parameter

that is measured by the laboratory permittivity experiments presented in this research. To extract

the solid sample permittivity, or the permittivity of just the rock/mineral phase of this mixture,

requires a method of characterizing how the permittivities of the materials in the sample holder

relate to εeff . Electromagnetic mixing equations have been derived over the years for modelling this

homogenization. The method of homogenization is complicated by a variety of factors including

the micro-structure of the mixture, the frequency of the incident electric field, and the contrast

between constituent permittivities. At the frequencies measured in the presented experiments, the

mixture is assumed to be quasi-static since the wavelength of the incident electric field is much

larger than the scale of the inhomogeneities in the mixture, based on the average measured grain

size of the mineral samples. The micro-structure of the mixture can be taken into account with

some mixing theories, while others attempt to average the properties such that small fluctuations

do not impact the effective permittivity.

The range and complexity of the micro-structure and material chemistry of different materials

has motivated the derivation of many mixing theories. In mixtures of conducting and insulating

components, the structure becomes increasingly important as connecting pathways between phases

can dramatically change the effective conductivity or permittivity, creating percolating pathways.

The percolation threshold, fc, is defined as the volume fraction at which a given phase dominates

the effective properties of the mixture, and in some cases has been calculated for different mixing

theories. The percolation behaviour predicted by some mixing theories limits the types of mix-

tures which those theories can be applied to, based on the experimentally observed percolation

behaviour of different mixtures. Similar effects are possible with insulating mixtures when the

dielectric contrast (ratio of the permittivities of each component) between components is large. Of

particular importance to the geologic context is the consideration of liquid phases in a mixture.

The conductivity and permittivity of a liquid vary not only with temperature and frequency, but

also with the intermolecular forces acting on a given molecule, which for example will be different

for bound water and free water. The presence and distribution of water within a rock or mineral

will change the way in which each component contributes to the effective material properties. Ex-
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tensive literature reviews on mixing theories have been published throughout the decades in which

this field of research has been active (Brosseau, 2006; Landauer, 1978; Reynolds and Hough, 1957;

Sihvola, 1999). This chapter will provide a similar review of mixing theory as it pertains to per-

mittivity, but will also discuss the applications of mixing theory to explain laboratory permittivity

measurements. The mixing theories discussed are separated into two general groups based on their

properties, which are the matrix/inclusions group and the statistical/aggregate group. The focus

in the current research is on two-phase mixtures that can model powdered mineral samples. While

the range in mineralogy of a given regolith is diverse, the mixing problem is simplified in the labora-

tory experiments from this research by using samples made up of predominantly one mineral. The

thermodynamic conditions are unfavourable for liquid water to exist on most airless bodies, and so

this research is focused on dry materials in both the analysis and measurements. In the context of

a mineral powder, the two mixture phases can be thought of as air and solid mineral grains, but

in the following discussion the two mixture phases will be generally labelled as an inclusion phase

with permittivity εi and an environment, or background, phase with permittivity εe. The volume

fraction of inclusions will be labelled f , and the volume fraction of the environment is then (1− f).

These labels are arbitrary, but will help in the discussion of the matrix/inclusions mixing theories,

and follows the nomenclature of Sihvola (1999).

2.2 Matrix/Inclusions Mixing Theories

This group of mixing equations is defined by the asymmetry with respect to the mixture phases.

In other words, each phase contributes differently to the effective permittivity, and the definition of

which mixture component is inclusion (phase 1) or environment (phase 2) will change the behaviour

of the model. The general structural assumptions in these theories is that phase 1 is embedded

as inclusions in some background matrix composed of phase 2. In the following discussion the

inclusions are assumed to be spherical, but it will later be shown how this assumption can be

dropped and general ellipsoidal inclusions can be modelled. Each matrix/inclusions mixing theory

considered in this thesis will be introduced in individual sections.

2.2.1 Maxwell Garnett (MG)

(Otherwise known as the Clausius-Mossotti, Lorenz-Lorentz, or Rayleigh equation (Sihvola, 1999)).
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εeff = εe + 3fεe
εi − εe

εi + 2εe − f(εi − εe)
(2.1)

Equation (2.1) is one of the oldest and most commonly applied mixing theories. It was derived

by James Clerk Maxwell Garnett in 1904 to explain the observed properties of metal spheres

embedded in a liquid, which was then extended to the general dielectric case (Maxwell Garnett,

1904). This equation is fundamental to the origin and development of mixing theories, and therefore

will be derived from classical electrodynamics to provide context for its application to experimental

measurements.

Derivation

Consider a spatially uniform electric field, E0 = E0ẑ, in some medium with permittivity εe (Figure

2.1). Next, introduce a linear, homogeneous, and isotropic dielectric sphere with permittivity εi

Figure 2.1: Spatially uniform electric field, E0 = E0ẑ, in some medium with permittivity εe.

into the medium (Figure 2.2). E0 will induce a polarization in the sphere, which can be modelled

as an electric dipole linearly proportional to E0:

p = αE0 (2.2)

Here α is the polarizability of the spherical inclusion. The dipole moment can be written in terms

of the difference in permittivity between the inclusion and environment, the internal electric field

in the inclusion, Ei, and the volume of the inclusion, V (Sihvola, 1999):
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Figure 2.2: Dielectric sphere with permittivity εi embedded in the medium.

p =

∫
V

(εi − εe)EidV (2.3)

In order to write a useable expression for the dipole moment, the internal field Ei relative to the

external field E0 (Figure 2.3) needs to be calculated to express the dipole moment in terms of

known fields.

Figure 2.3: Field lines of E0 and Ei for a dielectric sphere with permittivity εi embedded in the medium.

Here Ei is a result of E0 and not the polarization induced by p. The solution to this problem is to

solve for the electric potential, V (r, θ), (not to be confused with the volume of the sphere, despite

the same symbol) both inside the sphere (r ≤ R) and outside the sphere (r ≥ R) using Laplace’s

equation (since there are no free charges within r ≤ R, r ≥ R) in spherical coordinates (sphere is

centered at the origin of the coordinate system). The solution is constrained by three boundary

conditions (Griffiths, 1999):
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1. Potential must be continuous at r = R:

Vin = Vout at r = R

2. Normal (n̂) components of electric flux, D, must be continuous at surface (no free charge at

surface):

εi
∂Vin
∂r

= εe
∂Vout
∂r

at r = R

3. Far from the sphere the contribution to the potential from the perturbing field of the sphere

should vanish:

Vout → −E0r cos θ at r >> R

The general solution to Laplace’s equation in spherical coordinates is written:

V (r, θ) =
∞∑
l

(
Alr

l +
Bl

r(l−1)

)
Pl cos θ (2.4)

Here Pl are the Legendre polynomials. As r → 0 (inside sphere), Bl = 0 and the potential inside

the sphere can be written:

Vin(r, θ) =
∑
l

Alr
lPl cos θ

As r →∞ (outside sphere) Alr
l →∞ and the potential outside the sphere can be written (including

boundary condition 3):

Vout(r, θ) = −E0r cos θ +
∑
l

Bl
r(l+1)

Pl cos θ

Applying the boundary conditions and solving for A and B when l = 1 (A = B = 0 forl 6= 1) yields:

Ei =
3εe

εi + 2εe
E0 (2.5)

Equation (2.5) can also be derived by considering the Lorentz field, which will be discussed later.

Now that Ei is expressed in terms of E0, this result can be substituted into equation (2.3) after

integrating over the volume of the spherical inclusion, V :
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p = (εi − εe)
3εe

εi + 2εe
E0V (2.6)

Using the definition of a dipole moment (2.2), the polarizability of the dielectric sphere can be

expressed as:

α = V (εi − εe)
3εe

εi + 2εe
(2.7)

Here it is worth noting that the expression for polarizability is independent of the field that excited

the sphere, E0. Now there are expressions to relate the dipole moment of the spherical dielectric

inclusion to the permittivity of the sphere relative to the background medium. The case of multiple

random spherical inclusions of permittivity εi embedded in an environment with permittivity εe is

shown in Figure 2.4. The macroscopic behaviour of the two phase composite can be approximated

by a homogenized effective medium with permittivity εeff . Here, εeff is defined as the relation

Figure 2.4: Effective permittivity of a mixture.

between the volume averaged electric field and flux density:

< D > = εeff < E > (2.8)

< D > = fεiEi + (1− f)εeE0 (2.9)

< E > = fEi + (1− f)E0 (2.10)

With equation (2.10), the Maxwell Garnett formula can actually be derived macroscopically using

the result for the electric field in a dielectric sphere (2.5). For a microscopic description of the

homogenization, the dipole moment and polarizability is used to arrive at the same result. When

in terms of the polarizability of the inclusions, the resulting equation is often termed the Clausius-

Mossotti equation. The constitutive equation (2.8) can be expanded to:
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< D > = εeff < E > = εe < E > + < P > (2.11)

< P > = np (2.12)

Here < P > represents the average electric polarization and assumes all dipole moments (inclusions)

to be of equal strength with n = number density of p. The field that excites a given inclusion,

called the local electric field EL, is a combination of the average electric field and the average

polarization from the other inclusions in the mixture. The contribution of the average polarization

of other inclusions is especially relevant at higher volume fractions of inclusions. To account for field

contributions from other inclusions, the field that excites a given inclusion, EL, is calculated from an

empty cavity with the same shape as the inclusion embedded in a background neighbourhood that

has the average polarization, < P >, resulting from all other inclusions (Figure 2.5). This empty

Figure 2.5: Empty cavity with same shape as inclusion to calculate Lorentz field contribution to EL.

cavity in which EL is determined takes on the shape of the inclusion, and in this case represents a

Lorentz sphere where:

EL = < E > + contribution from < P >

The field contribution from < P > is often called the Lorentz field, ELorentz, arising from the

bound surface charge along the cavity wall resulting from < P >. Looking into the sphere of radius

r (Figure 2.6), the bound surface charge, σb is determined by the normal component of < P >:

σb =< P > · n̂ =< P > cos θ
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Figure 2.6: Lorentz sphere.

dA = 2πr2 sin θdθ

Due to symmetry, horizontal components cancel and vertical components do not. A single charge

contribution from the surface charge can be written:

dq = σbdA

dq =< P > cos θ2πr2 sin θdθ

Using Coulomb’s Law and only the vertical components:

dELorentz =
1

4πεe

dq cos θ

r2

Summing up all charge elements along the sphere (integral from 0→ π due to symmetry):

ELorentz =
1

4πεe

∫ π

0

< P > cos2 θ

r2
2πr2 sin θdθ

ELorentz =
< P >

2εe

∫ π

0
cos2 θ sin θdθ

ELorentz =
1

3εe
< P > (2.13)
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The Lorentz field, ELorentz, is the contribution from the bound surface charge at the cavity walls

induced by < P >. Now the local exciting field of a given inclusion, including the contribution

from the average polarization, is written as:

EL = < E > +
1

3εe
< P > (2.14)

The dipole moment resulting from the local exciting electric field, pmix (the subscript differentiates

this dipole moment from the dipole moment for an isolated dielectric sphere (2.3)), and average

electric polarization, < P >, can be expressed as:

pmix = αEL

< P > = npmix = nαEL

Substituting this into equation (2.14):

EL = < E > +
nαEL

3εe

< E > = EL(1− nα

3εe
)

Substituting this result for the average electric field back into the constitutive equation yields:

εeff < E > = εe < E > + < P >

εeffEL(1− nα

3εe
) = εeEL(1− nα

3εe
) + nαEL

εeff = εe +
nα

1− nα
3εe

εeff − εe
εeff + 2εe

=
nα

3εe
(2.15)

This last result (2.15) is one form of the Clausius-Mossotti (CM) mixing equation. This is used if

microscopic quantities of a mixture are understood; however, generally the macroscopic quantities

are what can be measured experimentally and most practically used. Often the variable n is
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excluded in equation (2.15) in favour of the molar volume of some substance. The Clausius-

Mossotti equation can be transformed into the Maxwell Garnett (MG) equation by substituting

the expression for the polarizability of an inclusion (2.7) and the volume fraction of inclusions

f = nV :

εeff = εe + 3fεe
εi − εe

εi + 2εe − f(εi − εe)

The spherical inclusions in the mixture need to be small when compared to the wavelength of the

external electric field in order to be modelled as dipole moments; however, they do not all need

to be of the same size (Sihvola, 1999). The MG equation satisfies the limiting cases f → 0 and

f → 1, where in the latter case the size of the spheres in the mixture are such that smaller spheres

fill the pore space of larger spheres. The MG equation for εeff becomes an increasingly non-linear

function of f for higher dielectric contrasts εi/εe. Inherent in the derivation of the MG equation is

the assumption that the local electric field acting on any inclusion is a combination of the average

external electric field and the average polarization electric field caused by neighbouring inclusions.

An assumption is made that the spheres must be well separated such that the contribution from

other dipoles can be averaged by their far fields (Jylhä, 2008). The perturbation field of a scatterer

falls off with 1/r3 justifying this assumption for sparse mixtures (Sihvola, 1989). The MG equation

is asymmetric, i.e the inclusion phase and environment phase do not contribute on an equal basis

to the effective permittivity of a mixture (Sihvola, 1999). The difference between using the MG

equation or the inverse MG (IMG) (εi,MG = εe,IMG, εe,MG = εi,IMG) is greater for larger dielectric

contrasts. Mathematically, the percolation threshold for the MG equation is calculated to be fc ≈ 1

(Sihvola, 1999). The host, or environment, phase of the mixture is considered continuous (and there-

fore within the percolation regime) with inclusions assumed to be separated islands (Sihvola et al.,

2013). Therefore for any two phase mixture, the limiting bounds on effective permittivity through

extreme percolation of either phase is given through the MG and IMG equations. At high dielectric

contrasts in a mixture the MG equation breaks down for high inclusion volume fractions since the

environment permittivity dominates until the percolation threshold. This is a result of the deriva-

tion being based on isolated dielectric spheres with no multi-pole interactions (Calame et al., 1996).
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Use in the literature

One of the most influential studies investigating the dielectric properties of rocks for interpretation

of planetary radar was by Campbell and Ulrichs (1969). The complex permittivity of numerous

solid and powder samples of natural rocks was measured at 450 MHz in a re-entrant cavity and

at 35 GHz in a waveguide. The error was estimated as 3% and 10% in the permittivity and loss

tangents respectively when compared to accepted measurements of standard materials. Using the

known permittivity of the solid phase for the powder measurements, the MG formula (labelled

as the Rayleigh formula in the original paper) was shown to fit both the real and imaginary

parts of the measured permittivity well for most samples. Variations with composition in the

permittivity of solid rocks was observed, which could be observed in the powdered rocks if viewed

at a common porosity. At a bulk density of 1 g/cm3, the permittivity of the powdered rocks

was generally around 2. The authors highlight the theoretical limitations of the MG theory for

anything but dilute mixtures, but do not discuss the fact that the MG theory was able to fit their

measurements for denser mixtures regardless. Robinson and Friedman (2003) determined the solid

(zero-porosity) permittivity of glass beads at 300 MHz using the liquid immersion technique in a

coaxial waveguide. This technique consists of measuring the effective permittivity of a particulate

substance immersed in liquid mixtures of known permittivity. Successive measurements in various

liquids allows determination of the permittivity of the particulate substance (once the effective

permittivity of the substance/liquid mixture equals that of the liquid mixture permittivity alone).

The effective permittivity of the different mixtures was best predicted by the MG equation, with

the inclusion volume fraction fixed at roughly 0.6, although below a fluid permittivity of 10 the

differences between the investigated models seemed negligible. There are numerous studies that

employ the MG equation for modelling the effective permittivity of a mixture simply due to its

legacy and fundamental electrodynamic theoretical considerations. Due to the dilute mixture limit

for the MG theory, its accuracy in predicting laboratory permittivity measurements is typically

lower than for other mixing theories.

2.2.2 Bruggeman (Non Symmetric) (BGNS)

(Otherwise known as Sen-Scala-Cohen, Bruggeman-Hanai-Sen, and Hanai-Bruggeman equation).

εi − εeff
εi − εe

= (1− f)

(
εeff
εe

)1/3

(2.16)
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Equation (2.16), or its complement (same as inverse, as defined for the MG equation) (Sihvola,

1999), has been derived independently in the literature in several studies over the years (Bruggeman,

1935; Hanai, 1960; Sen et al., 1981). It is a transcendental equation with no closed-form solution,

and must be solved numerically for the effective permittivity. As shown by Sihvola (1999), (2.16)

agrees with the Unified Mixing Theory introduced in Sihvola (1989) with the constant ν = 1 up to

the second order. The research presented in this thesis uses this approximation for the solution to

(2.16) and its complement. In the extensive derivation by Sen et al. (1981), the complement of the

BGNS equation (2.16) is arrived at by the differential application of the Bruggeman (Symmetric)

(BG, which will be introduced in the next section) equation to a fractal system of coated spheres.

Each sphere is considered coated with some effective medium made up of other coated spheres,

and by incrementally adding coated spheres up to some volume fraction and differentiating, the

complement to the BGNS equation, often termed the Sen-Scala-Cohen equation (after the authors),

is arrived at. Merrill et al. (1999) showed that the the dilute mixture approximation of several

mixing theories diverged to the BGNS equation by applying the same iterative approach as Sen

et al. (1981). Semenov (2018) argued that the BGNS equation is only applicable in the dilute

mixture limit, since each incremental addition to the effective permittivity in the iterative derivation

is considered equivalent. Semenov (2018) opposed this assumption by noting the effects of each

incremental addition would depend on the current effective permittivity, which is a viewpoint also

supported by Merrill et al. (1999).

Use in the literature

Böttcher and Bordewijk (1978) found the BGNS equation to model effective permittivity measure-

ments from the literature of mixtures of metallic inclusions in insulating matrices better than other

tested mixing theories. In this study it was highlighted that conductor-insulator mixtures need to

be prepared in either waxy mediums or with an applied velocity gradient to resist the clumping of

particles, which would drastically change the percolation behaviour. Sen et al. (1981) derived the

BGNS (its complement) equation to model permittivity measurements made in a 1.1 GHz resonant

cavity of fused glass beads embedded in water and air. Banhegyi (1988) found the BGNS equation

to model permittivity measurements of water-in-oil emulsion mixtures taken from the literature

better than other mixing theories, noting that the mixture phases cannot be in direct contact

(which is actually inherent in the Sen et al. (1981) derivation). Olhoeft (1987) found the BGNS

equation to model permittivity measurements of sand/clay/water mixtures in a coaxial transmis-
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sion line well at frequencies above 100 MHz. According to Olhoeft (1987), above this frequency,

the mixture phases were deemed non-interacting; however, below 100 MHz, chemical interactions

between the mixture phases, especially the clay surfaces, caused the experimental results to deviate

from the BGNS predictions. Johnson and Poeter (2005) measured the complex permittivity of wa-

ter saturated sand (silica) mixtures using the coaxial transmission line method from 20 - 200 MHz.

The BGNS formula matched dry sand/air mixtures well with a sand permittivity taken to be that

measured by Olhoeft (1981) at 1 MHz (εquartz = 4.5). The three phase mixtures of sand/air/water

were best modelled with an iterative application of the BGNS formula, using a weighted average

of the calculated effective permittivity assuming an air/sand matrix composition and a water/sand

matrix composition. Pervin (2015) performed permittivity measurements of porous NaCl and KCl

salts using an open ended coaxial probe from 10 MHz - 3 GHz at very low porosity and found

the MG and BGNS theories to model the measurements best out of the discussed mixing theories,

although it was noted that the fit was still poor. Pervin (2015) noted the difficulty in comparing

the accuracies of the mixing theories when the differences between them for the given dielectric con-

trasts of the samples was on the order of the measurement uncertainty. This is especially a result of

the low volume fraction of the mixtures Pervin (2015) considered, since most mixing theories agree

in this regime. In general, the BGNS theory has seen success in modelling the effective permittiv-

ity of conductor-insulator mixtures, particularly when the conducting phase is the background, or

matrix.

2.2.3 Coherent Potential (CP)

εeff = εe + f(εi − εe)
3εeff

3εeff + (1− f)(εi − εe)
(2.17)

The Coherent Potential (CP) equation as written in (2.17) is taken from Sihvola (1999); however, the

name Coherent Potential is often used throughout the literature as a synonym for the Bruggeman

Symmetric (BG) equation (Sihvola, 1999). The predictions of the CP equation are very similar

to the BG equation, which explains the interchanging of the names throughout the literature. As

a result, there are not any studies that could be found making use of the CP equation, and the

discussion of this equation will be limited.
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2.3 Statistical/Aggregate Mixing Theories

In contrast to the matrix/inclusions mixing theories, the statistical/aggregate mixing theories are

defined by the symmetry with respect to the mixture phases. In this way, the mixture micro-

geometry and topology is considered in the form of statistical averages, and the mixture can be

considered as roughly homogeneous throughout. Generally these theories do not consider the

polarizability of a given inclusion, and are thus independent of particle shape for powder mixtures.

When individual inclusions are considered, they will be treated as spherical, and the definition of a

mixture phase as being labelled inclusion (εi) or environment (εe) is arbitrary and invertible with

no consequences for the model behaviour.

2.3.1 Bruggeman Symmetric (BG)

(Otherwise known as the Effective Medium Approximation (EMA), Böttcher equation, de Loor

equation, Polder-van Santen, and Coherent Potential equation (Sihvola, 1999)).

(1− f)
εe − εeff
εe + 2εeff

+ f
εi − εeff
εi + 2εeff

= 0 (2.18)

The Bruggeman Symmetric (BG) equation (2.18) was first introduced by Bruggeman (1935), and

has seen extensive use in mixing problems in the literature as it overcomes some of the limitations of

the MG equation. The BG equation is one of the most fundamental symmetrical mixing theories,

and highlights the difference in the homogenization approach taken by mixing theories in the

statistical/aggregate group compared to the matrix/inclusions group. The derivation of the BG

equation follows from the MG equation derivation for spherical inclusions and will be discussed

further.

Derivation

Consider the definition of εeff developed earlier in the derivation of the Maxwell Garnett equation

(2.11) (Figure 2.4):

< D > = εeff < E > = εe < E > + < P >

Using the same logic as in the MG derivation, the expression for the local exciting electric field for

a given spherical inclusion is re-written as before (2.14):
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EL = < E > +
1

3εe
< P >

The critical aspect of the BG theory is that the polarization of a given phase is measured with

respect to the effective permittivity of the homogenized mixture (Figure 2.7). The polarizations

induced by other inclusions are taken to be included in the effective material properties. As a

result, when calculating the polarization of a given particle, the overall contribution must be zero to

maintain the effective material properties relative to other inclusions (self-consistency requirement).

In other words, the exciting electric field must be equivalent to the average electric field, EL = <

E >. This consideration implies that there is a polarization associated with the environment phase

of a mixture as well as the inclusion phase (for a 2-phase mixture), where each phase is equally

weighted.

Figure 2.7: BG model assumes each inclusion is embedded in an already homogenized medium, and so must
have zero polarization.

For a two phase mixture the visualization of the inclusion phase from the BG perspective is shown

in Figure 2.7. Mathematically, this is a change of variables from εe → εeff :

EL = < E > +
1

3εeff
< P > (2.19)

Using EL = < E >, < P > = npmix, pmix = αEL, (2.7), and the effective constitutive parameters

from the MG derivation the following can be substituted:

< P > = npmix = nV (εi − εeff )
3εeff

εi − εeff
EL, where f = nV
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< E > = < E > +f
εi − εeff

3εeff

3εeff
εi + 2εeff

< E >

Since < E > 6= 0, the ith phase in an N phase mixture can be written:

N∑
i=1

f
εi − εeff
εi + 2εeff

= 0

Specifically for the 2-phase mixture under consideration, the BG equation introduced at the begin-

ning of this section is arrived at (2.18):

(1− f)
εe − εeff
εe + 2εeff

+ f
εi − εeff
εi + 2εeff

= 0

In the case of the MG theory, the permittivity outside a scatterer is approximately εe for sparse

mixtures. As described in the BG derivation, polarizations due to each phase arise in a mixture

and are treated equally. Therefore, unlike the MG theory, the environment and inclusion phase of

a 2-phase mixture are treated symmetrically in the BG theory (Sihvola, 1999). The BG equation

is widely used as its solution for the effective permittivity of a mixture is more theoretically valid

than the MG theory for a wider range of volume fractions of the inclusion phase (useful when there

is no particular dominating phase of the mixture) (Jylhä, 2008). The solution for the effective

permittivity using the BG equation requires finding the roots to a polynomial, or for a 2-phase

composite the roots to a quadratic equation (Calame et al., 1996). In the case of a two-phase

mixture the correct root represents a positive, physically realistic value for εeff (Calame et al.,

1996). Due to the symmetrical nature of the BG theory, at small volume fractions of the inclusion

phase the equation tends to overestimate the effective permittivity. The BG approach maximizes

the interactions between phases of a mixture where the effects of all neighbouring inclusions are

considered in the polarization of a given inclusion, thereby representing an extreme case in which all

inclusions interact with one another (Cosenza et al., 2009). The BG assumption that each inclusion

is surrounded by a medium with permittivity εeff breaks down when the dielectric contrast between

mixture phases increases, since local changes in the effective permittivity will be more substantial

(Adams et al., 1996; Dube and Parshad, 1970; Goncharenko, 2003). Mathematically the percolation

threshold is calculated to be fc ≈ 0.33 for the BG equation (Sihvola, 1999). Due to the symmetry

between the phases in the BG formulation, the components form a three dimensional continuum

with connectivity between all phases at the percolation threshold. For a 2-phase mixture, at

41



and above the percolation threshold the macroscopic permittivity will be closer to the inclusion

permittivity. As in the case of the MG formula, percolation behaviour is enhanced for higher

dielectric contrasts in the mixture.

Use in the literature

Dube and Parshad (1970) performed permittivity measurements of several loss-free and lossy pow-

ders at 20 MHz using a commercial Q-meter and at 9.375 GHz using a rectangular waveguide.

The BG equation predicted a solid permittivity for the powder in agreement with values from the

literature, and was less accurate for particle sizes less than 30 µm in diameter, as well as for pre-

dicting the imaginary part of the permittivity, where the loss mechanisms of a dielectric material

were proposed to be different in solid and powder form for a given material. Larger grain sizes

were also discussed as introducing non-uniformity in the powder samples, breaking the homoge-

neous assumption in the BG theory. Benadda et al. (1982) measured the effective permittivity

of powder mixtures of the polar compound 1-cyanoadamantane from 1 kHz - 1 GHz in an open

coaxial cell and found the BG theory to match the experimental data most accurately above vol-

ume fractions of f > 0.75 (corresponding to a porosity of φ < 0.25). The authors discuss the

viable use of mixing theories derived under quasi-static assumptions for the dynamic case in the

frequency range considered (1 kHz - 1 GHz). Adams et al. (1996) found the BG formula to predict

the most accurate solid permittivity, when compared with other mixing theories, from powdered

granite and two basalt samples (first measured as solid samples to constrain analysis) in a short

circuited slotted rectangular waveguide from 4 - 19 GHz. The LLL equation (introduced later) was

also shown to calculate similar solid permittivity values for the three samples. Kärkkäinen et al.

(2000) performed thousands of 2D Finite Difference Time Domain (FDTD) simulations, initially

developed by Pekonen et al. (1999), to explore the adherence to mixing boundary theories, and

found all measurements fall between the Wiener bounds and most within the Hashin-Shtrikman

bounds (Wiener and Hashin-Shtrikman bounds discussed in section 2.5). The BG model matched

the simulations best, similar to the results of Pekonen et al. (1999). Kärkkäinen et al. (2001)

extended the simulation to 3D and found that the BG model fits the results best when inclusion

clustering is allowed and that the MG model fits for non-clustering systems. However, these models

only worked well for dilute mixtures, and as the volume fraction of inclusions was increased the

results tended to fall between the BG and MG predictions. A hybrid mixing formula, matching

closer to the MG model for low volume fractions of inclusions and the BG model for high volume
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fractions of inclusions, was derived by Jylhä and Sihvola (2007). It is assumed in this derivation

that the contrast between the permittivities of the mixture phases is large, and the model predicts

a similar percolation threshold to the BG model. The formula fit numerical FDTD simulations

of effective permittivities of large contrast mixtures by Kärkkäinen et al. (2001) and effective con-

ductivity measurements by Mamunya et al. (2001). Calame (2008) found the BG model predicted

an effective permittivity close to finite difference numerical simulations, although the simulations

did not match the functional form of the BG predictions. Oguchi et al. (2009) measured the per-

mittivity of volcanic ash powder samples with particle diameters < 170 µm in a 7 mm coaxial

airline from 3 - 13 GHz. The solid permittivity of the samples extracted using the BG equation

was in agreement with those found by similar studies. Scattering effects were observed for samples

with larger grain sizes, at a diameter of roughly 0.5 mm and in the GHz frequency regime. Rogers

et al. (2011) used a quasi-optical free space permittivity measurement technique to measure the

permittivity of loose and pelletized volcanic ash powder samples from 65 - 110 GHz. By using

the measured permittivity of the pelletized samples as the permittivity of the solid phase of the

loose mixtures, the loose samples were fit well with the BG model. Similar values for the solid

permittivity of volcanic ash were derived when compared with Adams et al. (1996) and Oguchi

et al. (2009). The samples were ground to small particle sizes; however, no particle size metrics

were provided, nor a discussion of possible scattering effects that would be relevant at the higher

frequency range of the permittivity measurements. The BG equation has generally been shown to

be accurate in calculating the effective permittivity of low dielectric contrast mixtures with rela-

tively equal mixture phases by volume. In studies that also considered the LLL equation, it was

observed that the BG and LLL equations predict similar effective permittivities, and are exactly

equal for a volume fraction of f = 0.43 (Tuhkala et al., 2013).

2.3.2 General Power Law Mixing Theory: β

(Otherwise known as the Lichtenecker-Rother equation (Knoll, 1996; Lichtenecker and Rother,

1931)).

εβeff = fεβi + (1− f)εβe (2.20)

A group of mixing equations exist that in general describe the effective permittivity by averaging the

contribution of volume weights of different powers of the permittivity of the mixture components
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Sihvola (1999). Equation (2.20) is the generalized form of this group of equations to relate a

two component mixture. Different values of β used in the above equation result in a different

physical model for the mixture. A consistent feature in this group of mixing equations is that the

geometrical shape of a given phase (particle shape of inclusions) in a mixture is generally not taken

into consideration. Since the polarization of an isolated inclusion is not considered, this family

of mixing equations tends to overestimate the value of the effective permittivity of a mixture at

low volume fractions of inclusions. It has been shown by Zakri et al. (1998) that (2.20) can be

derived through application of the self-consistent effective medium theory (used to arrive at the

BG equation from the MG equation) and the assumption of a beta distribution of depolarization

coefficients (a measure of particle shape, as will be discussed further) of inclusions (if only spheres

are considered, derivation results in BG equation). In the Zakri et al. (1998) model, the variable β

is comprised of the three angles made between an ellipsoid’s three principal axes and the applied

electric field.

2.3.3 Linear (LIN), β = 1

(Otherwise known as the Silberstein formula, Browns formula, and the Wiener upper bound (Si-

hvola, 1999; Birchak et al., 1974)).

εeff = fεi + (1− f)εe (2.21)

Equation (2.21) represents the maximum effective permittivity attainable for a mixture bounded by

the permittivities of the components for a given volume fraction. Physically this is represented by

the mixture phases represented as layers that are parallel to the direction of electric flux. Inversely

if the layers are perpendicular to the direction of electric flux, the resulting equation is the lower

limit of the Wiener bounds.

Use in the literature

In most applications of homogenization, the structure of a mixture will be more complex than

that associated with the linear law. As such this equation acts as the extreme end of possibilities

in approximating the effective permittivity of a mixture and is not used to model most physical

systems. Brouet et al. (2014) and Brouet et al. (2015) make use of a linear relationship to describe

the change in the effective permittivity of various cometary analogue material powders with bulk
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density. This is not a true application of the LIN equation, since the mixture was not described

in terms of volume fraction (or inversely, porosity). Rust et al. (1999) found the LIN equation

to model experimental permittivity measurements of various volcanic rocks from 0.01 - 10 MHz

well, possibly due to parallel layering in samples. Kameyama and Miyamoto (2008) similarly

used the LIN equation to model permittivity measurements of terrestrial soils made with a time

domain reflectometry (TDR) probe at an unspecified frequency, making note of the implied parallel

geometry of the samples. ElShafie and Heggy (2013) measured the permittivity of volcanic basalts

in a dielectric capacitative cell from 100 - 1000 MHz and found a linear relationship to exist between

the permittivity and density of the samples.

2.3.4 Complex Refractive Index Model (CRIM), β = 1/2

(Otherwise known as the Time-Propagation model (Martinez and Brynes, 2001; Knoll, 1996)).

√
εeff = f

√
εi + (1− f)

√
εe (2.22)

Equation (2.22) was developed for use in optical physics to describe the refractive index of a mixture

of non-magnetic gases (Sihvola, 1999). The same result has been derived in certain models depicting

plane wave propagation through a heterogeneous dielectric medium (Nelson, 1992). Birchak et al.

(1974) proposed a mixing model of this form derived from the optical path length of a single EM

wave in a heterogeneous medium. In general, the CRIM equation describes the refractive index of

non-magnetic mixtures as being a simple volume average of the component refractive indices.

Use in the literature

Gladstone and Dale (1863) have applied this formula with success in approximating the refractive

index of a mixture of liquids. Birchak et al. (1974) found this equation to be a better model for

the measured complex permittivity (greater discrepancy in imaginary permittivity due to ionic

conduction) of bentonite clay mixed with water at 4 GHz in a coaxial transmission line when

compared with a linear mixing model. When compared with an extensive set of mixing equations,

the refractive mixing model showed the best correlation with experimental data of the complex

permittivity of soil as a function of volumetric water content in a study by Shutko and Reutov

(1982). In the Feng and Sen (1985) study of partially water/oil saturated clay-free sedimentary

rocks, the CRIM and BGNS models compared well with experimental permittivity data from the
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literature at high frequency, but deviated from some of the results due to the lack of consideration of

grain shape. Similarly Shen et al. (1985) found good agreement with the CRIM and BGNS models

and permittivity measurements made using a coaxial transmission line on saturated sedimentary

rocks. The models deviated from the measurements at higher salinity values in the water, as was

similarly found by Feng and Sen (1985), likely due to increased chemical interactions between

mixture phases. Knoll (1996) found the CRIM equation to model permittivity measurements of

dry sand/clay mixtures well, extrapolating a solid permittivity for the powder grains consistent

with values from the literature. Martinez and Brynes (2001) used the CRIM equation to model

GPR surveys of water saturated soils, and despite not testing any other mixing theories, found the

CRIM equation to fit experimental data from the literature well. Leão et al. (2015) used a 50 MHz

impedance sensor to measure the permittivity of several saturated soil samples. The generic form

of the power law mixing model was fitted to the data using least squares regression, where the

solid phase permittivity and power law exponent were used as fitting parameters. Due to this over-

parameterization, many soil measurements could not be fitted properly and the resulting discussion

is questionable. The CRIM model was found to fit measurements of glass beads well, although the

solid permittivity used was found by least squares fitting and not constrained by other means. As

a result of the lack of constraints on the fitting of the different mixing models analyzed in Leão

et al. (2015), the conclusions are vague at best. The CRIM equation has typically been applied in

mixtures with liquid phases, and predicts a similar effective permittivity to the BGNS equation for

high frequencies and simpler mixtures.

2.3.5 Looyenga-Landau-Lifshitz Formula (LLL), β = 1/3

ε
1
3
eff = fε

1
3
i + (1− f)ε

1
3
e (2.23)

The LLL equation was derived independently by Looyenga (1965) and Landau and Lifshitz (1960)

for the effective permittivity of a mixture. In either derivation (see appendix A.1 and A.2 for

more detail), the basic premise consists of a system made of two components with slightly higher

εeff + δε and lower εeff − δε permittivities than the effective permittivity of the whole mixture.

The effective permittivity of the overall mixture is then considered a volume average of these two

components, which are in themselves mixtures. In either derivation it is assumed that the dielectric

contrast between the mixture phases is small. In addition the particle shape is not considered for

either derivation, for which the resulting equations are independent of particle shape or structure.
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Since the structure and positioning of the mixture components with respect to one another is not

considered, and the dielectric contrast is assumed small, there is no percolation threshold for the

LLL equation.

Use in the literature

Looyenga (1965) tested the validity of their equation against measurements of the effective per-

mittivity of glass spheres dispersed in carbon tetrachloride from van Beek (1967), and found it to

fit the measurements better than other mixing laws, especially at higher volume fractions of the

inclusion phase. At low volume fractions the BG equation predicted the effective permittivity of the

mixture more precisely. Dube (1970) estimated the solid permittivity of various minerals from bulk

powder permittivity measurements using the Böttcher (BG) and LLL formulas. Measurements at

20 MHz were made from pressed discs of material using a commercial Q-meter and at 9.375 GHz

using a rectangular waveguide. Nearly identical values for low dielectric constant minerals were

predicted by both equations, however for higher (9 and above) dielectric constant minerals, the

LLL formula resulted in more accurate dielectric values. Böttcher and Bordewijk (1978) found

the BG and LLL (LLL deemed slightly more accurate) equations to accurately model effective

permittivity measurements of dry non-conducting powders taken from the literature. The authors

noted the lack of either of these mixing theories to account for conduction mechanisms in materials.

In the Benadda et al. (1982) study that found the BG model to match experimental permittivity

measurements of mixtures of 1-cyanoadamantane from 1 kHz - 1 GHz in an open coaxial cell above

f > 0.75, the authors concluded that the LLL equation matched the data sets below f < 0.35.

Banhegyi (1988) compared the LLL, BG, and BGNS formulas through numerical modelling and

fits to experimental data from various permittivity studies in the literature. In general, the LLL

formula was found to behave similarly to the BG equation in situations with no clear distinction

between mixture components, such as for powders, but lacked the ability to predict percolation

behaviour in conductor-dielectric and high dielectric contrast mixtures. Malik et al. (1988) used

the LLL equation to estimate the solid permittivity of various dried marble powders from effective

permittivity measurements made at 100 kHz and 10 MHz in a universal R.F. bridge. The solid

permittivity was in agreement with other measurements from the literature. Merrill et al. (1999)

presented the metallic inclusion limit for a variety of mixing equations and noted that the LLL

formula is only valid for low permittivity contrast mixtures. The authors showed that an iterative

application of the MG and BG equations resulted in the BGNS equation, whereas an iterative ap-
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plication of the LLL equation resulted in itself due to the iterative approach in the LLL equation’s

original derivation. Gershon et al. (2001) performed resonant cavity measurements between 1 - 4

GHz of the complex permittivity of porous and densified (sintered) alumina. The solid permittivity

was extrapolated from the densified measurements using the MG, BG, and LLL mixing models,

and subsequently used to predict the porous measurements according to the respective models

(three phase, with water content measured at < 0.2%). The LLL model predicted the real part

within 8-12%, the BG model to slightly worse accuracy, and the MG model with the worst fit. The

imaginary part in all cases was severely underestimated, which was attributed to an inability of the

analytical models to describe micro-structure and the distribution of water throughout the samples.

Finite difference quasi-electrostatic simulations predicted similar complex permittivities, but when

the water content was restricted to contact points between alumina grains the simulations predicted

accurate effective imaginary permittivities. The numerous studies into the effective permittivity

of dried mineral and agricultural powders and standard plastics by Stuart Nelson using a variety

of measurement techniques in the GHz range all concluded that the LLL equation modelled the

effective permittivity the most accurately (Nelson et al., 1989; Nelson, 1992; Nelson and Bartley,

1998; Nelson, 2005). The error in the model fit increased with the powder particle size, and it was

noted that the BG equation gave similar results. Plug et al. (2006) tested the predictions of several

mixing theories against 3D Finite Element Model (FEM) and Finite Difference Model (FDM) nu-

meral simulation results for heterogeneous material and found that for low dielectric contrasts the

LLL and BG equations were in the most agreement with the simulations. Stillman et al. (2010)

measured the low frequency (1 mHz - 1 MHz) complex permittivity of several sand, ice, and saline

liquid (CaCl2) mixtures using a capacitively coupled three-electrode sample holder. The static

limit for the real part of the permittivity was modelled well with the general power law equation

with an exponent 1/β, with β = 2.7±0.3, which is consistent with the LLL equation. Tuhkala et al.

(2013) used an open ended resonant cavity to measure the effective permittivity of several oxide

powders at 4.5 GHz. Various mixing equations were fit to the measurements, and the LLL and BG

were found to fit the data with a solid permittivity closest to those found in the literature for the

samples. It was noted that both equations predict similar effective permittivities for a given solid

permittivity, and are exactly equal at a volume fraction of f = 0.43. Throughout the literature, the

LLL equation has been successfully applied to low dielectric contrast powder mixtures and found

to predict similar effective permittivities as the BG equation. The similar assumptions in either

equation’s derivation explains their similar predictive abilities.
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2.3.6 Lichtenecker Formula (LI), β = 0

εeff = εfi ε
1−f
e (2.24)

This formula was first proposed by Lichtenecker (1926) and is considered semi-empirical, as the

original derivation lacked a strong theoretical foundation. Zakri et al. (1998) derived the LI formula

as a special case of a uniform particle distribution in their broader derivation of the general power

law equations (for which inclusion shapes follow a beta function distribution). Recently, Simpkin

(2010) was able to derive the LI formula directly from Maxwell’s equations and the principle of

charge conservation for a random spatial distribution of inclusions. Based on this derivation, the

effectiveness of applying the LI formula relies on how well the mixture in question satisfies the

condition of having a random spatial distribution of inclusions. It was also shown that the MG

and BG equations can be derived from this model for special model parameters, and thus each

equation is valid for first-order interactions between mixture phases and represent approximations

of the LI formula. Through the derivation of the spectral density function (which describes the

micro-geometry of a mixture) of the LI formula, Goncharenko et al. (2000) showed that the topology

associated with the LI model is that of randomly oriented spheroids with uniform shape distribu-

tions. Considering that β = +1 and β = −1 represent geometries where mixture components are

contained in flat planes parallel and perpendicular to the applied electric field, it is intuitive that a

value of β = 0 corresponds to mixture components in random orientations. Neelakantaswamy et al.

(1985) proposed a modified form of the Lichtenecker formula derived in Lichtenecker (1926) that

takes into consideration the shape of particle inclusions and thus can be considered an extension

of the fundamental Lichtenecker formula. Kiley et al. (2012) highlighted that no peak in the loss

tangent of a mixture considered by the LI approximation exists, and as such the model fails to pre-

dict a percolation threshold. In Kiley et al. (2012), the LI and BG models predicted the effective

permittivities (both real and imaginary) of metal powders better than the MG model for volume

fractions below the observed percolation threshold.

Use in the literature

Saint-Amant (1968) measured the complex permittivity of various rock samples using a variety of

techniques, albeit with questionable procedures and accuracies. Of relevance in this study was the

determination of the solid, and subsequently effective powder permittivities of a basalt, granite, and

olivine sample. The LI and BG formulas were used with the solid sample permittivity measurement
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to predict the effective powder permittivity for each sample. For the granite and olivine samples,

the LI and BG equations underestimated and overestimated the measured permittivity at room

temperature, respectively. The LI equation predicted the closest value to the measured permittivity

for the basalt sample. In each case the powder measurement was only completed at one porosity.

Olhoeft and Strangway (1975) compiled 92 measurements of the complex permittivity of lunar

regolith samples returned from NASA’s Apollo missions and found that a function of the form

εeff = aρbd with a = 1.93 ± 0.17 fit measurements of the real part of the permittivity well. The

imaginary part did not follow such a strong correlation with density, but was better explained

by the TiO2 and FeO weight percent oxide (wt. % oxide) concentrations in the samples. It

was shown that the empirical exponential equation fitted to the real part of the permittivity was

equivalent to the LI equation assuming an average solid permittivity of 7.7 and solid density of

3.1 g/cm3 for the lunar regolith (which are reasonable values (Carrier et al., 1991)). The value of

the constant, a, is in good agreement with the value of 1.9− 2.1 for normalized (to a bulk density

of ρbd = 1 g/cm3 using the MG equation) rock powder permittivity measurements by Campbell

and Ulrichs (1969). Drawing from such a large database of permittivity measurements on lunar

regolith samples, this relationship, or slight variations of it (i.e (Palmer et al., 2015; Bussey, 1979;

Garvin et al., 1985; Carrier et al., 1991; Campbell, 2002; Barmatz et al., 2012; Brouet et al.,

2016)), has been used predominantly in planetary radar inversion efforts. Neelakantaswamy et al.

(1983) used least squares regression to show that the LI equation fits the data from Benadda et al.

(1982) better than the BG and LLL equations suggested by the original authors. This comparison

isn’t very valuable, since the BG and LLL equations were not also fit by least squares regression.

Ulaby et al. (1988) and Ulaby et al. (1990) measured the complex permittivity of 80 dry solid

rock samples in resonant cavities from 1 - 16 GHz. All of the samples were found to be essentially

dispersionless within this frequency range, and their permittivities were fit well with an exponential

equation similar to that from Olhoeft and Strangway (1975) with the constant a = 1.96. A chemical

analysis of the various wt. % oxides in the samples found that after accounting for the correlation

of the real part of the permittivity with density, the chemical composition could explain most of

the remaining variance in the dataset. Similar to Olhoeft and Strangway (1975), the imaginary

part of the permittivity showed no obvious correlation with density, and was more dependent

on the chemical composition. The real part of the permittivity was also fitted with the linear

equation εeff = 1.86ρbd + 1, which was found to be statistically as significant as the exponential

fit. Zheng et al. (2005) used the resonant cavity perturbation method at 9.37 GHz to measure
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the complex permittivity of a variety of reference materials, rocks, and minerals. In addition to

directly measuring solid samples, mixtures of samples with polythene were created, where the

sample permittivity was derived assuming the LI mixing model. The latter method was validated

by comparing the derived sample permittivities to values found in the literature, as well as to

values measured directly. In the calculation of the sample permittivity from the resonant frequency

shift in the cavity, small perturbation theory is assumed, and the range in sample permittivities

that can be accurately measured by the system is limited (highest direct measurement is 8.11 for

the real part of the permittivity). The mixtures are composed of polythene with a real part of

the permittivity of 2.35. These mixtures can be compared to mixtures of rock samples with air

by looking at the contrast in the mixture component permittivities. A measurement of a sample

with a permittivity of 5 mixed with polythene has an equivalent contrast in permittivity to a

sample with a permittivity of 2.13 mixed with air. Similarly, a measurement of a sample with a

permittivity of 8 with polythene would correspond to a sample with a permittivity of 3.40 mixed

with air. At such low contrasts in permittivity, most mixing theories will predict similar effective

permittivities and could be shown to adequately model the measured data. For instance, at a

permittivity contrast of 3.40 the upper and lower Hashin-Shtrikman bounds differ in the predicted

effective permittivity by an average of only 7%. Since Zheng et al. (2005) did not attempt to

calculate sample permittivities based on any mixing model other than the LI model, this fact is

not discussed. Ebara et al. (2006) measured the effective permittivity of powdered silica and ferrite

in a Teflon®-capped open waveguide from 4.0 - 5.8 GHz at various porosities and extracted the

solid silica permittivity by fitting the data with the LI formula. The derived solid permittivity was

compared to a measurement of solid silica using a cylindrical cavity resonator and it was found

that the solid permittivity of silica extracted from the powder measurements using the LI equation

was roughly 6.5% higher (3.97) than that measured in the cylindrical cavity resonator (3.71). Of

note in this study is that the uncertainty of the measurements was not quantified, and there was

no consideration for the moisture content in any samples. The LI equation has been used as an

accurate empirical mixing theory to fit experimental data, but has been criticized in the literature

for lacking strong theoretical validation.
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2.4 Particle Shape: Depolarization Factor

So far the inclusion phase of a given mixture, or what can be thought of as the solid particles in a

mineral powder, have been considered perfect spheres in mixing theories that depend on inclusion

shape. This assumption can be extended to general ellipsoids by using the depolarization factors

Nx, Ny, and Nz of an ellipsoid for 3D Cartesian space. The depolarization factor in the x̂ direction,

Nx, for an ellipse with semi-axes ax, ay, and az is (Sihvola, 1999):

Nx =
axayaz

2

∫ ∞
0

ds

(s+ a2
x)
√

(s+ a2
x)(s+ a2

y)(s+ a2
z)

(2.25)

The term outside the square root in the denominator within the integral is specific to the direction

of the depolarization factor, and for Ny and Nz the ax is replaced by ay and az respectively. The

three depolarization factors must add to one: Nx+Ny+Nz = 1. The depolarization factors for three

special ellipsoids are perfect spheres (1/3, 1/3, 1/3), discs (1, 0, 0) and needles (0, 1/2, 1/2). General

solutions to the integral in (2.25) can be found in Sihvola (1999). The depolarization factors are

used to calculate the polarizability, α, of the ellipsoidal inclusion, which for the x̂ direction reads

(Sihvola, 1999):

αx =
4πaxayaz

3
(εi − εe)

εe
εe +Nx(εi − εe)

(2.26)

The lowest polarizability for an inclusion is for a spherical shape. In the case of an ellipsoidal

inclusion, the polarizability is anisotropic and is a 3 × 3 tensor. The effective permittivity is then

also anisotropic, except for the case of randomly oriented ellipsoidal inclusions, since in this case

the average deviations in any one direction will be zero. The MG equation for randomly oriented

ellipsoidal inclusions is (Sihvola, 1999):

εeff = εe + εe

f
3

∑
j=x,y,z

εi−εe
εe+Nj(εi−εe)

1− f
3

∑
j=x,y,z

Nj(εi−εe)
εe+Nj(εi−εe)

(2.27)

The BG equation for randomly oriented ellipsoidal inclusions is (Sihvola, 1999):

εeff = εe +
f

3
(εi − εe)

∑
j=x,y,z

εeff
εeff +Nj(εi − εeff )

(2.28)

Boyle (1985) extended the BGNS equation by incorporating a depolarization factor, N , so that
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particle shape can be considered:

εeff − εi
εe − εi

(
εe
εeff

)N
= (1− f) (2.29)

It is not clear in the study how to account for the depolarization factors in each direction. Boyle

(1985) also provided a revised form of the LLL equation making use of a depolarization factor;

however, this is not appropriate since there is no assumed particle shape in the original derivation.

Consideration of the depolarization factor is important for mixtures where there is information

known about the particle shape and when the polarizability of individual particles is required.

2.5 Mixing Theory: Bounds

There are two sets of generally accepted bounds for the effective permittivity of a mixture: the

Wiener bounds, and the Hashin-Shtrikman bounds. The Wiener bounds are the most general,

and represent the maximum and minimum bounds for any mixture as completely connected layers

in series (parallel to applied electric field) and in parallel (perpendicular to applied electric field)

(Sihvola, 1999):

εeff,max = fεi + (1− f)εe (2.30)

εeff,min =
εiεe

fεe + (1− f)εi
(2.31)

The Wiener bounds represent an anisotropic mixture that has the extreme structure to maximize

and minimize the possible effective permittivity. Hashin and Shtrikman (1962) developed bounds,

termed the Hashin-Shtrikman bounds, for the maximum and minimum effective permittivity of an

isotropic mixture, which have been shown to be identical to the MG and IMG equations (Sihvola,

1999). Figure 2.8 shows the Wiener and Hashin-Shtrikman bounds for a dielectric contrast of 4 and

10. For both the Wiener and Hashin-Shtrikman bounds, the difference between the maximum and

minimum effective permittivity increases with the dielectric contrast in the mixture. These mixing

theory bounds are useful for constraining the possible effective permittivity of a mixture where not

much information is known. They have been used at times for a more conservative analysis of the

mixing problem of planetary radar inversion (Kofman et al., 2015; Hérique et al., 2017).
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Figure 2.8: Wiener and Hashin-Shtrikman bounds for the effective permittivity of two mixtures with dielectric
contrast of 4 and 10.
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2.6 Summary

Due to the complexity at microscopic scales in heterogeneous mixtures, it is not a simple task to

choose which equation best represents a system macroscopically. Inherent in all mixing models is

the generalization of the structure of a mixture. While some equations have obvious constraints

on applicability, many behave very similarly for a given mixture. Numerous studies have been

undertaken to characterize the effectiveness of mixing equations for a variety of situations, some

of which have been introduced. Numerical methods such as FDTD and Monte Carlo simulations

are sometimes used to solve for the effective permittivity of a mixture, for which results can be

compared to predictions from analytical mixing equations. Furthermore experimental permittivity

measurements of different material mixtures have also been conducted to test the validity of mixing

equations. Table 2.1 summarizes the mixing theories that have been discussed in this chapter (the

Sen-Scala-Cohen (SSC) equation is the inverse, or complement, to the Bruggeman (Non-Symmetric)

equation). Tables 2.2 - 2.4 summarize the usage of these equations in the literature (SSC and BGNS

equations are considered as one (BGNS), similar to the MG and IMG equations (MG)). The studies

Table 2.1: Two-phase mixing equations considered in this study. εeff is the effective permittivity of the
mixture, εe and εi refer to the permittivities of the first and second phase with volume fractions (1− f) and
f respectively.

Matrix/Inclusions Mixing Equations

Maxwell Garnett (MG) εeff = εe + 3fεe
εi−εe

εi+2εe−f(εi−εe)
Inverse Maxwell Garnett (IMG) εeff = εi + 3(1− f)εi

εe−εi
εe+2εi−(1−f)(εe−εi)

Coherent Potential (CP) εeff = εi + f(εi + εe)
3εeff

3εeff+(1−f)(εi−εe)

Bruggeman (Non-Symmetric) (BGNS)
εi−εeff
εi−εe = (1− f)(

εeff
εe

)
1
3

Sen-Scala-Cohen (SSC)
εeff−εe
εi−εe = f(

εeff
εi

)
1
3

Statistical/Aggregate Mixing Equations

Lichtenecker (LI) εeff = εfi ε
1−f
e

Looyenga-Landau-Lifshitz (LLL) ε
1
3
eff = fε

1
3
i + (1− f)ε

1
3
e

Complex Refractive Index Model (CRIM)
√
εeff = f

√
εi + (1− f)

√
εe

Bruggeman (Symmetric) (BG) (1− f)
εe−εeff
εe+2εeff

+ f
εi−εeff
εi+2εeff

= 0

included in this summary span a wide range of research fields, are performed on numerous materials

under different experimental conditions, and derived conclusions on the appropriateness of a given

mixing theory in a variety ways. Tables 2.2 - 2.4 represent a summary of the essential findings

of each study; however, for more thorough information on each study the reader is encouraged to

refer to the original publication. The consideration of a large, diverse research base contained in
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Table 2.2: Summary of various studies exploring the use of mixing theory. Each study is characterized by
the type of mixture considered, the frequency range applicable for the analysis (by orders of magnitude),
and the mixing theory that was determined to be the most accurate in that study.

Reference Type of Mixture Frequency
Range

Mixing Model Used

(Adams et al., 1996) dielectric 1 - 10 GHz BG
(Banhegyi, 1988) liquid saturated 1 MHz BGNS
(Banhegyi, 1988) dielectric 10 GHz LLL
(Barmatz et al., 2012) dielectric 1 GHz LI
(Benadda et al., 1982) (f > 0.75) dielectric 1 kHz - 1 GHz BG
(Benadda et al., 1982) (f < 0.35) dielectric 1 kHz - 1 GHz LLL
(Birchak et al., 1974) liquid saturated 1 GHz CRIM
(Böttcher and Bordewijk, 1978) dielectric 10 MHz, 10 GHz LLL
(Böttcher and Bordewijk, 1978) conductive/dielectric 10 MHz, 10 GHz BGNS
(Brouet et al., 2014) dielectric > 20 GHz LIN
(Brouet et al., 2015) dielectric 100 MHz, > 20

GHz
LIN

(Brouet et al., 2016) dielectric (ice/rock) 10 MHz - 1 GHz LI
(Calame et al., 1996) dielectric 1 GHz Custom/Empirical
(Calame, 2008) numerical

simulation
- Custom/Empirical

(Campbell and Ulrichs, 1969) dielectric 100 MHz, > 20
GHz

MG

(Dobson et al., 1985) liquid saturated 1 - 10 GHz Custom/Empirical
(Dube and Parshad, 1970) dielectric 10 MHz, 10 GHz BG
(Dube, 1970) dielectric 10 MHz, 10 GHz LLL
(Ebara et al., 2006) dielectric 1 GHz LI

56



Table 2.3: Summary from Table 2.2 continued.

Reference Type of Mixture Frequency
Range

Mixing Model Used

(ElShafie and Heggy, 2013) dielectric 100 MHz - 1 GHz LIN
(Fensler et al., 1962) dielectric 100 MHz - 1 GHz LIN
(Gershon et al., 2001) dielectric 1 GHz LLL
(Gladstone and Dale, 1863) liquid saturated > 20 GHz CRIM
(Heggy et al., 2001) dielectric 1 MHz Custom/Empirical
(Heggy et al., 2012) dielectric (ice/rock) 1 - 10 MHz Custom/Empirical
(Johnson and Poeter, 2005) liquid saturated 10 - 100 MHz BGNS
(Kameyama and Miyamoto, 2008) dielectric 1 - 10 MHz LIN
(Kenyon, 1984) liquid saturated 100 kHz - 1 GHz Custom/Empirical
(Knight and Nur, 1987) liquid saturated 10 kHz - 1 MHz Custom/Empirical
(Knoll, 1996) dielectric 100 kHz - 10 MHz CRIM
(Malik et al., 1988) dielectric 100 kHz, 10 MHz LLL
(Martinez and Brynes, 2001) dielectric 100 MHz - 1 GHz CRIM
(Neelakantaswamy et al., 1983) dielectric 1 kHz - 1 GHz LI
(Nelson et al., 1989) dielectric 1 - 10 GHz LLL
(Nelson, 1992) dielectric 1 - 10 GHz LLL
(Nelson and Bartley, 1998) dielectric 1 - 10 GHz LLL
(Nelson, 2005) dielectric 1 - 10 GHz LLL
(Oguchi et al., 2009) dielectric 1 - 10 GHz BG
(Olhoeft and Strangway, 1975) dielectric 100 kHz - 1 MHz,

100 MHz, 10 GHz
LI

(Olhoeft, 1987) liquid saturated 100 MHz BGNS
(Park et al., 2017) liquid saturated 10 MHz, 1 - 10

GHz
Custom/Empirical

(Pekonen et al., 1999) numerical
simulation

- BG

(Penn et al., 1997) dielectric 10 GHz Custom/Empirical
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Table 2.4: Summary from Table 2.3 continued.

Reference Type of Mixture Frequency
Range

Mixing Model Used

(Pervin, 2015) dielectric 10 MHz - 1 GHz BGNS
(Plug et al., 2006) numerical

simulation
- LLL

(Robinson and Friedman, 2003) liquid saturated 10 MHz - 1 GHz MG
(Robinson and Friedman, 2003) dielectric 10 MHz - 1 GHz LI
(Robinson and Friedman, 2005) liquid saturated 10 MHz - 1 GHz Custom/Empirical
(Rogers et al., 2011) dielectric > 20 GHz BG
(Rust et al., 1999) dielectric 10 MHz LIN
(Sen et al., 1981) liquid saturated 1 GHz BGNS
(Sharif, 1995) dielectric 10 GHz LLL
(Sheen et al., 2010) f < 0.25 dielectric 10 GHz LIN
(Sheen et al., 2010) f > 0.25 dielectric 10 GHz LLL
(Shen et al., 1985) liquid saturated 100 MHz - 1 GHz CRIM
(Stillman et al., 2010) dielectric (ice/rock) < 1 kHz - 1 MHz LLL
(Tuhkala et al., 2013) dielectric 1 GHz LLL
(Ulaby et al., 1990) dielectric 100 MHz - 10 GHz LI
(Zheng et al., 2005) dielectric 10 GHz LI

Tables 2.2 - 2.4 allows for some general analysis of the frequency of use of each mixing theory in the

literature. It was noted in several of the studies that the LLL model and the BG model predicted

similar effective permittivities, especially at relatively equal mixtures (50% phase 1, 50% phase two),

where the two model predictions are equivalent at f = 0.43 (or 43% of phase 1) (Tuhkala et al.,

2013; Dube, 1970; Plug et al., 2006; Nelson, 2005). From Tables 2.2 - 2.4, roughly 35% of the studies

found the LLL and BG models to describe their dataset the best, followed by custom/empirical

models (17%) and the LI model (13%). If the studies considered are restricted to those on dry

materials in the GHz frequency range (corresponding to S- and X- band radar), these percentages

change to 56% for the LLL and BG models, 6% for the custom/empirical models, and 20% for the

LI model. The following plots illustrate how each mixing theory that has been discussed predicts

the effective permittivity of a mixture as a function of the volume fractions of either phase, for given

dielectric contrasts. In Figure 2.9 it is evident that for low dielectric contrast, the mixing theories

are generally not that different from one another. As the dielectric contrast increases (Figure 2.10),

the differences between the mixing theories become greater. A dielectric contrast of 100 (Figure

2.11) is not reasonable for typical non-metallic geologic material, but is useful in illustrating the

percolation behaviour of each mixing theory. The percolation threshold can be visually identified

in Figure 2.11 as the point where the slope of the curve increases dramatically.
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Figure 2.9: Mixing theories for a dielectric contrast of εi
εe

= 4.
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Figure 2.10: Mixing theories for a dielectric contrast of εi
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= 10.
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Figure 2.11: Mixing theories for a dielectric contrast of εi
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Chapter 3

Experimental Setup and Methodology

3.1 Introduction

The experimental work in the presented research consists of geologic powder sample preparation

and characterization, which will be discussed in chapter 4, and complex permittivity measurements

of those samples. This chapter will describe the experimental setup and the methodology that

was followed to measure the complex permittivity of powder samples. The coaxial transmission

line method was used for the complex permittivity measurements of the powder samples, utilizing

coaxial airlines, coaxial cables, and a vector network analyzer (VNA). A VNA is a device that

transmits a voltage wave, or signal, (over a range of possible frequencies) through some device

under test (DUT) and measures the signal as received at each port of the electrical network. For

2-port VNA, for example, a signal is transmitted from port 1 and the signal’s amplitude and phase

is measured at both port 1 (reflected) and port 2 (transmitted) (the reverse, from port 2 to 1, is

also executed). The magnitude and phase of the measured signals are used to derive the scattering

parameters, or S-parameters, of the DUT, which can then be used to determine the constitutive

parameters, such as permittivity, for that DUT. With the application to powder samples in this

research, the powder sample contained within a coaxial airline is the DUT, and the measured

permittivity is thus the permittivity (more specifically, the effective permittivity) of that sample.

The foundation for the specific methodology used in this research was established in Sotodeh (2014),

and has since been expanded as reported in this work in cooperation with several collaborators at the

University of Toronto. The major contributions reported in this work towards the methodology are

the design, construction, and incorporation of an environment chamber and a heating mechanism

for the setup, as well as the introduction of the use of silica aerogel for high porosity measurements.

To a lesser extent this work contributed in the development of the software used to analyze the raw

outputs from the network analyzer, with the majority of the software written by Alexandre Boivin,
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a graduate student in the Solar System Exploration Group (SSXG) at the University of Toronto.

When applicable, this chapter will be explicit in delineating any research efforts made by others

that were made use of in this research.

3.2 Coaxial Transmission Line Method

3.2.1 Overview of Coaxial Transmission/Reflection Method

The constitutive parameters for a material are determined using the coaxial transmission line

method by measuring the scattering parameters from a sample filled coaxial airline inserted into a

transmission line that is connected to a network analyzer. As opposed to resonance based methods,

the coaxial transmission line method has the advantage of being relatively cheap, can be readily

adapted for measurements of powder samples, and measures the scattering parameters over a broad

frequency range. A coaxial airline is essentially the same as a coaxial transmission line, consisting

of a solid cylindrical inner conductor with diameter b surrounded by a hollow cylindrical outer

conductor with diameter a (Figure 3.1). The space between the inner and outer conductors is filled

Figure 3.1: Cross-sectional view of the GR900-LZ coaxial airline filled with a powder sample. Electric field
lines are the green arrows, and magnetic field lines the orange arrows.

with whatever material is being tested in the coaxial airline. A voltage wave is transmitted through
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the inner conductor, which creates a potential difference with the grounded outer conductor. The

result is an electric field directed radially outward from the inner conductor, perpendicular to both

the inner and outer conductors and the direction of propagation of the wave. Since the voltage

wave oscillates at some frequency of interest dictated by the network analyzer, the electric field

also changes with time, in turn inducing a magnetic field that is perpendicular to the electric field

and propagation direction (Figure 3.1). This describes a transverse electric/magnetic wave (TEM),

which is the fundamental mode in coaxial airlines (Chen et al., 2004). Transverse electric (TE)

and transverse magnetic (TM) higher order wave modes are also supported in coaxial airlines, but

occur at higher frequencies than the fundamental TEM mode. The frequency where TE and TM

modes manifest themselves is often described in terms of wavelength, or the cutoff wavelength, λc

(Adam and Packard, 1969):

λc = π(
a+ b

2
)
√
ε∗rµ
∗
r (3.1)

For the GR900-LZ coaxial airlines used in this research the inner and outer conductor dimensions

are roughly the same, and for the 15 cm length airline used for most of the measurements the

dimensions are b = 0.62052± 0.00025 cm and a = 1.42824± 0.00025 cm. The cutoff frequency for

the empty airline is then ≈ 9.32 GHz according to (3.1). This is in agreement with the manufacturer

listed upper frequency limit of 8.5 GHz, since the cutoff frequency is often defined just below the

theoretical limit to account for defects in the airline. Under the assumption that µ∗r = 1−0j for all

of the samples in this research and that the materials are low loss, the cutoff frequency as a function

of the real part of the permittivity is plotted in Figure 3.2. For the typical range in the measured

sample permittivity in this research, the cutoff wavelength occurs at roughly 5 - 6 GHz. An example

of the effect that this has on the data is shown in Figure 3.3 for a labradorite/silica aerogel mixture.

The frequency-averaged permittivity for this sample measurement is 3.16, corresponding to a cutoff

frequency of 5.2 GHz. Highlighted in Figure 3.3 is the cutoff frequency in the spectrum, where

the higher order TE and TM modes can be seen to add spurious deviations, or sharp spikes as

a function of frequency, in the solution for ε∗r above this frequency. This is due to the random

constructive and destructive interference of these wave modes with the fundamental TEM mode.

The interference caused by these higher order modes is more significant for the measured imaginary

part of the permittivity, and relatively less important for the measured real part of the permittivity.

Although the frequency-averaged real part of the permittivity is calculated including frequencies
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Figure 3.2: Cutoff frequency of the GR900-LZ coaxial airlines as a function of the permittivity of the sample
being measured.

above the cutoff frequency, the standard deviation of this average is typically less than the Type A

measurement uncertainty for powder samples (see section 3.9.2). Care must be taken to consider

this interference, however, when analyzing the high frequency component of the imaginary part of

the permittivity. The cutoff wavelength for a guided wave in a coaxial airline changes the calculation

of the propagation constant, γ, of the wave. The propagation constant as written in (1.35) can be re-

written in terms of a complex permittivity with zero static conductivity (substituting σe = σs+ωε
′′
):

γ = jω
√
µ∗ε∗. Here it is worth noting that in many applications, the AC conductivity is considered

inherently in the imaginary part of the permittivity. Instead of including an effective conductivity

term that encompasses static conductivity, the static conductivity is included in the definition

of the complex permittivity: ε∗ = ε
′ − j(σsω + ε

′′
). In this case, the permittivity is often called

the effective permittivity, which can be confusing in this thesis given the definition of effective

permittivity with regards to mixtures (Baker-Jarvis et al., 2005; Knoll, 1996). The definition of the

static conductivity is arbitrary, and is inherently measured as part of the effective loss tangent in

the coaxial transmission line method, and so can be considered part of the complex permittivity.

The propagation constant for a guided wave is γ = j
√
k2 − k2

c , where k = ω
√
µ∗ε∗ and kc = 2π/λc
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5.2 GHz

(a) Real part of the measured effective permittivity.

5.2 GHz

(b) (Effective) loss tangent of the measured effective permittivity.

Figure 3.3: Illustration of the effect of the cutoff frequency on permittivity measurements (here a measure-
ment of the labradorite sample).
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(Baker-Jarvis et al., 2005). The propagation constant for a guided wave can then be written for a

given material γ and for free space γ0 as (Baker-Jarvis et al., 1993):

γ = j

√
ω2µ∗rε

∗
r

c2
−
(

2π

λc

)2

(3.2)

γ0 = j

√(ω
c

)2
−
(

2π

λc

)2

(3.3)

Here the speed of light, c = 1√
ε0µ0

, has been introduced. These propagation constants will determine

the electric field of an EM wave that is incident on, reflected from, and transmitted through a

material in a coaxial airline. In Figure 3.4 a schematic of a sample filled coaxial airline in the VNA

Port 1

EIncident

EReflected

ETransmitted

Port 2

Region I Region II Region III

Figure 3.4: (Adapted from Figure 4.1 (Chen et al., 2004)) Depiction of the VNA circuit, including the VNA,
coaxial cables, and sample filled coaxial airline. This circuit is broken down into the corresponding diagram
depicting a forward (S11, S21) measurement, made up of regions I, II, and III, where region II represents the
sample filled airline. The z-axis is chosen to be along the length of the airline.

circuit is given, dividing the area into regions I, II, and III. The normalized electric fields in each

region are defined by (Chen et al., 2004; Baker-Jarvis et al., 1993):
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EI = e−γ0z + C1e
γ0z (3.4)

EII = C2e
−γz + C3e

γz (3.5)

EIII = C4e
−γ0z (3.6)

For a typical 2-port network analyzer, like the one used in the research presented in this thesis,

each port is described by an incident (or input) node, a, and a reflected (or output) node, b (Chen

et al., 2004; Adam and Packard, 1969). The incident nodes for port 1, a1, and port 2, a2, measure

the magnitude and phase of the source voltage wave, and the reflected nodes for port 1, b1, and port

2, b2, measure the magnitude and phase of the reflected (S11 or S22) and transmitted voltage wave

(S21 or S12) (Figure 3.5). The relationship between the input and output waves are described by

a1

a2b1

b2S21

S12

S22S11Port 1 Port 2

Figure 3.5: (Adapted from Figure 3.2-2. (Adam and Packard, 1969)) Flow graph depiction of the 2-port
VNA network.

the 2×2 scattering matrix S with S-parameters, Sij , which are complex parameters with magnitude

and phase:

b1
b2

 =

S11 S12

S21 S22

a1

a2

 (3.7)

The S-parameters for a given measurement are determined by the ratios of of the complex signals

measured at each node (a1,2 and b1,2) and are related to the electric fields EI , EII , and EIII . The
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constants in equations (3.4) - (3.6) can be determined by applying boundary conditions at the

interfaces of regions I, II, and III requiring that the tangential electric and magnetic fields must be

equal (Baker-Jarvis et al., 1993). With equations (3.4) - (3.6) solved, the measured S-parameters

can be written in terms of the reflection coefficient, Γ, and the transmission coefficient, T :

S11 = S22 =
Γ(1− T 2)

1− Γ2T 2
(3.8)

S21 =
T (1− Γ2)

1− Γ2T 2
(3.9)

T = e−γd (3.10)

Γ =

µ∗

γ −
µ0

γ0

µ∗

γ + µ0

γ0

(3.11)

In equation (3.8), it is assumed that the scattering matrix (and thus the sample) is symmetric. With

knowledge of the sample length, d, and the measured S-parameters of the DUT, equations (3.8)

- (3.11) represent an over-determined system of equations that can be solved for the constitutive

parameters ε∗ and µ∗ (Baker-Jarvis et al., 1993).

3.2.2 Calculating constitutive parameters from S-parameters

A direct calculation of the constitutive parameters from the S-parameters was discovered by Nicol-

son and Ross (1970) and Weir (1974), aptly called the Nicolson-Ross-Weir (NRW) algorithm. This

algorithm has been used extensively in the literature as it is relatively easy to implement, solves for

both ε∗ and µ∗, and can be applied to coaxial airlines or rectangular waveguides (Boughriet et al.,

1997). The significant drawback to the NRW algorithm is in the numerical instabilities that occur

at integral multiples of one-half wavelength in the sample (Baker-Jarvis et al., 1993; Boughriet

et al., 1997). At these intervals, the magnitude of S11 is small and there is a large uncertainty in

the phase of S11. This instability causes large spikes in the calculated values of ε∗ and µ∗ which

makes it difficult to ascertain the broadband frequency dependence of these parameters. Stillman

(2006) provided an equation that allows the determination of the frequencies, fr, up to n harmonics

at which these spikes occur in the NRW solution as a function of the constitutive parameters (since

the spikes are wavelength dependent):
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fr =

√
2c

2d
n

√√
(µ′rε

′
r − ε

′′
rµ
′′
r )2 + (µ′′r ε

′
r + µ′rε

′′
r )2 + ε′rµ

′
r − ε

′′
rµ
′′
r

(3.12)

To overcome this issue, Baker-Jarvis et al. (1990) developed an iterative technique that provides

a stable solution for ε∗r assuming µ∗r = 1. This method can be accurate, but also requires specific

tuning (initial guesses for ε∗r) for a given sample and can be computationally intensive. Another

stable solution for ε∗r was derived in Boughriet et al. (1997) that is non-iterative and also assumes

µ∗r = 1. The Boughriet et al. (1997) algorithm is the one chosen to calculate ε∗r from the measured S-

parameters in the current research, as the samples are considered non-magnetic and the algorithm

can be easily applied for any sample. The resonant frequency instabilities are still present to

some extent in the data, and are especially strong for low-loss materials. The uncertainty in the

constitutive parameters are derived in Boughriet et al. (1997) as a propagation of the uncertainty in

the length of the sample and the measured S-parameters, where the latter can be extracted directly

from the network analyzer. This method only requires the S-parameters from one orientation with

respect to the sample, i.e either S11 and S21, or S22 and S12. As a result, two separate calculations

for the complex permittivity of the sample can be made making use of either pair of S-parameters.

If the sample is truly homogeneous, then the two calculations would be equal. This provides a

method of quantifying the homogeneity of the sample filled coaxial airline post-measurement.

3.3 Equipment

3.3.1 Network Analyzer

A 2-port Keysight (previously Agilent) E5071C ENA Vector Network Analyzer (VNA) operating

from 300 kHz - 12 GHz was used to measure the S-parameters for all of the permittivity measure-

ments in this research. The ports are fitted with standard 3.5 mm coaxial connectors. The VNA

was controlled using a built in Windows operating system, external buttons, and the METAS VNA

Tools II software package (see section 3.7.1).

3.3.2 Coaxial Airlines, Cables, and Adapters

The coaxial airlines used for all of the measurements in this study are from the General Radio

Reference Airline Set consisting of different lengths of the 14 mm diameter General Radio GR 900-

LZ 50Ω model coaxial airline (Figure 3.6). It was shown in Sotodeh (2014) that the measurement
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Figure 3.6: 10 cm length GR 900-LZ coaxial airline with inner conductor removed from airline and Teflon
® washers.

uncertainty decreases with increasing airline length. The largest airline is 30 cm in length and was

too large to fit inside of the environment chamber used for the measurements, so the second largest

airline at 15 cm length was predominantly used. Some of the samples used in the current research

did not consist of enough material to completely fill the 15 cm length airline, which is required based

on the homogeneous and symmetrical assumptions in the derivation of the constitutive parameters.

The 7.5 cm and 10 cm length airlines were used for these samples. The cables connecting the VNA

to the coaxial airlines were Maury Microwave SC-35-MM-36-TVAC cables, which were chosen for

their low-outgassing properties and thermal stability over a wide range of temperature (−55° C to

+125° C). To connect the 14 mm GR connectors on either end of the GR 900-LZ coaxial airlines

to the cables, GR900-QMMJ 3.5 mm - 14 mm adapters were used. The GR 14 mm connectors

have good repeatability between connections and are hand tightened (Sotodeh, 2014). The 3.5 mm

connectors can potentially be over-tightened, and were therefore tightened with a 12 in-lb precision

HP 1250-1874 torque wrench for all connections made.

3.3.3 Custom Filling Funnel

To fill the coaxial airlines with powder samples, the custom filling funnel from Sotodeh (2014) was

utilized. This setup consists of an aluminium funnel to which the coaxial airline is attached vertically

(both the inner and outer conductor), which is then attached to a Gilson Performer III Sieve Shaker

(Figure 3.7). The powder sample is poured into the top of the funnel and redirected to the space
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Figure 3.7: Custom funnel filling device designed and manufactured by RobotWorks Corp. based on the
designs from Sotodeh (2014).
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between the inner and outer conductor of the coaxial airline. To ensure homogeneous packing

of the powder, the sieve shaker was set to vibrate during the packing procedure and the coaxial

airline was periodically tapped by hand, which has been shown to help with the packing process

(Dube, 1970). The original funnel from Sotodeh (2014) was used for most of the measurements,

but eventually degraded in quality from continued use. A similar funnel was then designed and

fabricated by RobotWorks Corp. for the remaining measurements.

3.3.4 Teflon® Washers

One of the difficulties in containing a powder sample in the coaxial airlines was in stopping the pow-

der grains from spilling into the GR 14 mm connectors, and keeping the powder sample/connector

interface perfectly perpendicular to the length of the airline. To achieve these ends the use of

Teflon® washers was incorporated into the measurement setup, as established in Sotodeh (2014).

Teflon® is a brand of polytetrafluoroethylene (PTFE) and is considered a standard dielectric ma-

terial with a low permittivity (real and imaginary) of ε∗r ≈ 2.1 − j0.0007. The Teflon® washers

were machined to have an inner and outer diameter matching the GR 900-LZ coaxial airlines and

were made as thin as possible, while maintaining structural integrity (Figure 3.6). Alister Cunje,

a graduate student in the SSXG lab at the University of Toronto, characterized (using a digital

caliper) an average width of 1.7 mm for the large batch of Teflon® washers machined at the Uni-

versity of Toronto that were used in the measurements presented in this research. The washers can

be cleaned and re-used in some cases, and in others are deformed in the process of removing them

from the airline and are discarded after one use. To use the washers, a washer is attached at one

end of the coaxial airline with the inner conductor in place prior to filling the airline with a powder

sample, ensuring that the washer is flush with the connection surface. The airline is then filled

using the custom filling funnel until the level of powder nearly reaches the end of the airline (with

roughly 1.7 mm of space). The airline is then removed and the second washer is attached to the

“top” of the airline, thereby sealing the powder sample and ensuring that it maintains it’s correct

orientation during measurement. This last step proved to be difficult, and required some intuition

from the experimenter. With practice, it became easier to judge when the airline was “full”.
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3.4 Environment Chamber

To accurately measure the permittivity of a geologic sample, the volume within the coaxial airline

needs to be devoid of all other substances, especially water. Water has a high complex (both real

and imaginary) permittivity, especially with increased salinity and ionic concentrations, and will

drastically affect the effective permittivity measured. Air, at low relative humidity, has essentially

the same permittivity as that of free space, εr,air = εair/ε0 = 1, and will be accounted for in the

post-processing of the data (modelling effective permittivity with mixing equations). To ensure

that there is minimal water in the sample it is necessary to oven dry the powder samples prior

to measurements, which will be discussed in the next chapter. In the time that the sample is

removed from the oven, packed into the coaxial airline, and connected to the network analyzer, the

sample will adsorb some amount of water. For minerals with low permittivities, such as silicates

and carbonates, this small amount of water can significantly alter the effective permittivity. In an

effort to reduce this contribution to the permittivity measurements, an environment chamber was

incorporated into the experimental setup (Figure 3.8). The aim of this chamber was to isolate the

Figure 3.8: Annotated image of the environment chamber used for the permittivity measurements in this
research.

coaxial airline from the ambient laboratory atmosphere with appropriate feedthrough components
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(a) Upper aluminium plate prior to attaching
feedthroughs.

(b) Upper aluminium plate incorporated into
chamber.

Figure 3.9: Custom aluminium plate used for environment chamber

for the coaxial cables, vacuum hoses, and electrical wiring. The glass chamber that was used for

the environment chamber was salvaged from a previous experiment in the Centre for Earth and

Space Science at York University. To adapt the chamber to the requirements of the experiments in

this research, two custom aluminium plates were designed and fabricated at the Machine Shop in

the Faculty of Science at York University (Figure 3.9). The aluminium plates were designed to line

up with the existing O-ring grooves and mounting bolt positions. Holes were cut in either plate

to attach the necessary feedthrough components (Figure 3.9). In the upper plate, two QF40 half

nipples, for a thermocouple and sub-D electrical connector, were attached to the appropriate holes

using vacuum epoxy. In both plates, a QF16 vacuum half nipple was attached to the appropriate

hole for the MPF Products Inc. SMA 50 Ω coaxial connector feedthrough. Figure 3.9 (b) shows the

upper plate with QF40 plugs and the QF16 coaxial connector feedthrough attached with appropriate

O-rings and vacuum clamps. The upper plate also had a shallow M6 threaded hole that was meant

to house a threaded rod to which the coaxial airline could be attached. This was for intended use

with an HP (Agilent) 85051B Verification Kit 50 Ω reference airline with a 7 mm outer diameter

and 10 cm length. The original design was for the 7 mm airline to be attached in the vertical

position with retort stand clamps. As the experimental design progressed, it became apparent that

the 7 mm airline was too small to incorporate the desired heating components, and the 7 mm

airline was set aside in favour of the larger 14 mm outer diameter, 15 cm length GR900-LZ airline.

To accommodate the 14 mm airline, two shallow M6 threaded holes were added to the bottom

aluminium plate. Two M6 threaded aluminium rods of equal length were fabricated and screwed
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into the threaded holes. A QF25 vacuum clamp with an M6 threaded hole was attached to the

end of each threaded rod. It was observed that the diameter of these clamps roughly matched the

exterior diameter (slightly larger than 14 mm) of the 14 mm airline, and were a simple solution

to attaching the airline to the threaded rods. Figure 3.8 shows the 14 mm outer diameter, 15 cm

length GR900-LZ coaxial airline secured in the environment chamber. The horizontal positioning

of the coaxial airline during measurement is commonly used in similar studies (i.e (Stillman, 2006)),

and the perpendicular orientation of the powder/connector interface was deemed to be maintained

with the incorporation of the Teflon® washers. The aluminium cylinder on the left of the chamber

(Figure 3.8) is remnant from a previous experiment that made use of the chamber, and was mainly

used to allow easy access to install the coaxial airline and relevant components prior to a permittivity

measurement. The aluminium plate on the right side of the chamber (Figure 3.8) already had a

QF25 half nipple attached from the previous experimenter. This was used to attach a QF25 tee

nipple that connected a Kurt J. Lesker® Company (KJLC) 300 Series pressure gauge (Convection

Enhanced Pirani method) and the vacuum hose to the roughing pump (Figure 3.10). This pressure

Figure 3.10: KJLC 300 Series pressure gauge.

gauge is factory calibrated for nitrogen gas, and was used to determine the pressure in the chamber

during a permittivity measurement. The vacuum hose attached to the same QF25 tee nipple was
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then attached to an nXDS10i Edwards rotary scroll pump that was used to evacuate the air in

the sealed chamber. All vacuum connections were periodically cleaned and lubricated with vacuum

grease. The lowest pressure that was reached over the course of the use of the environment chamber

was roughly 400 mTorr. Atmospheric pressure is roughly 760 Torr, so a pressure of 400 mTorr is

greater than three orders of magnitude reduction in the air pressure inside the chamber. The

highest pressures in the chamber during a permittivity measurement were roughly 950 mTorr.

According to the phase diagram for water, at pressures below 950 mTorr water exists in a vapour

state above 0.01° C (Lemmon et al., 2017). By this logic, any water that has adsorbed to the

sample inside the coaxial airline will be removed as the gases inside the chamber are pumped out

through the roughing pump. Capillary water is subject to stronger intermolecular forces and may

stay in a liquid phase at lower pressures. The change in relative humidity between the ambient

laboratory atmosphere and the evacuated chamber was not directly measured. Regardless of how

much water was removed from the sample in the environment chamber, it is likely that there was

no further adsorption of water to the sample as long as the roughing pump was turned on. It was

observed for all permittivity measurements conducted in the environment chamber that the real

part of the permittivity decreased with increasing time in the low pressure atmosphere. In tests

conducted on oven dried serpentine samples by Alexandre Boivin it was observed that the decrease

in the permittivity levelled off after approximately 2 hours under vacuum, and that this time was

sufficient in removing adsorbed water from the sample (Boivin et al., 2018). A duration of 2 hours

was then adopted as the standard time required to remove adsorbed moisture from the samples

prior to a permittivity measurement. For permittivity measurements of oven dried aluminium

oxide samples that were performed in the chamber, the difference between the permittivity of the

sample under low pressure for 1 hour and two hours were within the estimated uncertainty of

either measurement. As such, permittivity measurements on samples in low pressure for 1 hour

were considered identical to those in low pressure for 2 hours.

3.5 Heating Mechanism

The polarization mechanisms responsible for the storage and loss of electrical energy in a medium

are temperature dependent, since the thermal motion of the particles and dipoles will change with

temperature. This dependency varies with the thermal behaviour of different materials. The real

and imaginary parts of the permittivity can increase or decrease with increasing temperature; how-
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ever, most of the change seems to occur at low frequencies (< 1 MHz) (Chen and Hunter, 2004;

Nelson and Bartley Jr, 2000; Napijalo et al., 1998). To model the permittivity as a function of

temperature, the time constant of relaxation, τ , is often described with a Boltzmann tempera-

ture dependence (Stillman, 2006; Brouet et al., 2019). From the perspective of planetary radar

astronomy, surface regolith of airless bodies can exhibit a wide range of surface temperatures over

a diurnal cycle. As a result, the received radar echoes from a given surface can change depending

on the surface temperature at the time of observation. For NEA (101955) Bennu, the target of

NASA’s OSIRIS-REx mission, surface temperatures can reach as high as 117° C in its current

orbit, and may have been as high as 227° C in the recent past (Lauretta et al., 2015). A heating

and temperature control mechanism was then desired in the permittivity measurement methodol-

ogy established in this research in order to characterize the dependence of sample permittivity on

temperature.

In the preliminary design of this heating mechanism it was identified that the simplest setup would

consist of heating tape and a temperature sensor attached to the coaxial airline, which could then

be controlled by a temperature controller. Restrictions on the size of available heating tape, as

well as the minimum allowed bending radius, constrained the use of heating tape to the 14 mm

outer diameter, 15 cm length GR900-LZ coaxial airline. Kapton® flexible heating tape capable of

reaching temperatures of +120° C were used. Originally, self-adhesive versions were applied, but it

was immediately obvious that the curvature of the outside of the coaxial airline was such that the

corners of the heating tape were repeatedly peeling off. Thermal epoxy was then applied to non-self-

adhesive heating tape to maintain contact with the airline. A self-adhesive Omega SA1-RTD-4W

resistance temperature detector (operable from −70° C to +260° C) was attached to the airline

opposite the heating tape, also using thermal epoxy. To control the heating tape, an Omega CNi8

series temperature controller was utilized. The heating tape was connected to the output of the

temperature controller, and the RTD connected to the input. The temperature controller utilizes

proportional-integral-derivative (PID) control that can be auto-tuned to control how much current

is supplied to the heating tape, and thus controlling what temperature the sample is maintained at,

as read by the RTD. The basic heating mechanism, assembled outside of the environment chamber

but using the sub-D connection electrical feedthrough, is shown in Figure 3.11. The same 14 mm

outer diameter, 15 cm length GR900-LZ coaxial airline was used by Alister Cunje in permittivity

measurements conducted in a freezer at low temperatures, since the attached RTD was capable
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Figure 3.11: Annotated heating mechanism incorporated into permittivity measurement setup. The wire
leads were eventually soldered to sub-D connectors.

of measuring the airline temperature during measurement. After repeated use of the airline, the

wires connected to the RTD broke. A second RTD was then attached, but this time thermal epoxy

was not used, as the old epoxy was not easily removable and the available surface area with which

to attach temperature components was limited. Instead, the heating tape and RTD were both

attached to the exterior of the airline using a layer of aluminium tape and then duct tape. At

the temperatures that the airline was expected to be subjected to, these tapes are sufficient. Fur-

thermore, the tape was able to secure the wires connected to both the heating tape and the RTD

to reduce strain on the connections to the actual resistive elements, prolonging the life of the system.

As this research project evolved, the focus was aimed at investigating the usefulness of different

mixing equations at room temperature, and did not further explore the use of the heating mechanism

for measurements. The setup was utilized by Alexandre Boivin to remove adsorbed water from

temperature-sensitive samples that could not be oven dried at high temperatures. By placing

the sample in the airline in the environment chamber at low pressure, the airline was subjected

to a lower temperature of 40° C using the heating mechanism, which was adequate in removing

water from the sample (Boivin et al., 2018). The permittivity of the samples in Boivin et al.

(2018) were measured at room temperature and at 40° C, and so it was necessary to determine

if the permittivity measurement process itself was affected by elevated temperatures. A simple

experiment was performed to determine if this would pose an issue. First, based on the thermal
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properties of the airline (composed of brass) and the airline volume, the expected volume expansion

of the airline at 120° C was calculated to be less than 1%. Next, the permittivity of air was measured

from room temperature to 90° C at 10° C increments, which should be stable, to see if there were any

effects on the rest of the equipment. Figure 3.12 shows the results of these measurements, where the

maximum standard deviation (between the room temperature and 90° C measurement) was 0.005,

which was within the measurement uncertainty of the setup. From both of these conclusions, it

Figure 3.12: Figure taken from (Boivin et al., 2018) with the following caption: Measurements of the empty
transmission line in vacuum at different temperatures. A very slight increase in ε

′

r can be seen with increasing
temperature attributed to error due to thermal expansion of the brass transmission line. Note the log scale
on the frequency axis.

was decided that the elevated temperatures did not adversely affect the permittivity measurement

setup, and that changes in the permittivity measured at elevated temperatures were indicative of

the sample properties.

3.6 Silica Aerogel

In order to compare the accuracy of the mixing theories considered in this research, it was necessary

to measure the permittivity of each sample as a function of porosity. Tests performed in Sotodeh

(2014) using the custom filling funnel to pack powder samples in the coaxial airline showed that the

sample reaches an asymptotic limit of porosity within a few minutes of vibration, which is within
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the amount of time it takes to completely fill the airline. As a result, repeated measurements of the

same powder sample, with a given particle size distribution, result in very similar porosities. Dr.

Michael Daly offered the idea of incorporating silica aerogel particles into the powder samples to

artificially increase the void space, and thus the porosity. Silica aerogel is a synthetic polymer com-

posed of silica (SiO4) that is highly porous, consisting of 95 - 99% empty space (Soleimani Dorcheh

and Abbasi, 2008). This extremely high porosity gives silica aerogel unique material properties,

such as low thermal and acoustic conductivity, and low complex permittivity (Gurav et al., 2010).

Silica aerogel has a legacy of use in space applications, being a key component of NASA’s Stardust

mission to capture small hypervelocity particles from a cometary tail, and in use as thermal insu-

lation on NASA’s Mars Pathfinder mission (Jones, 2006).

The extremely low complex permittivity of silica aerogel is due to the amount of empty space that

makes up the bulk material, since silica has a real part of the permittivity of≈ 4.5 (Soleimani Dorcheh

and Abbasi, 2008; Olhoeft, 1981). This can be seen from the application of any mixing theory to

a two-phase silica aerogel composite that is made up of silica and air with a conservative porosity

of 95%. Hrubesh and Pekala (1994) performed measurements of the complex permittivity of silica

aerogel and found the material to behave electrically as a gas, and its effective permittivity was

dominated by the pore spaces. The measurements were made on both oven dried and ambient (left

in regular atmosphere) samples in a resonant cavity from 2 GHz - 40 GHz. It was found that the

real part of the permittivity varied linearly with density from 0.01 g/cm3 to 0.6 g/cm3 with slopes

of 1.60 and 1.48 for the ambient and oven dried samples respectively, and that water contributed

to 70% of the measured loss tangent. The silica aerogel that was used in the current research is

Enova IC3100 particles ranging in size from 2 - 40 µm with a particle density of 0.12− 0.15 g/cm3

(Cabot Corporation, 2017). Using the linear model from Hrubesh and Pekala (1994), at this density

the solid permittivity of the aerogel is estimated as ε
′
r ≈ 1.2. A permittivity measurement of the

ambient silica aerogel particles was carried out to verify this (Figure 3.13). From the measured

bulk density, the porosity of the sample was roughly 75%. The reason that this is lower than the

expected porosity is likely due to water retained by the sample, since the sample was not oven dried.

From Figure 3.13 it can be seen that the silica aerogel is dispersionless, and the frequency-averaged

real part of the permittivity and loss tangent are ε
′
r,aerogel = 1.059±0.008 and tan δ = 0.003±0.003.

From this measurement and the results from Hrubesh and Pekala (1994), it was concluded that the

addition of the silica aerogel to a powdered mineral sample to increase the void space was valid,
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(a) Real part of the permittivity.

(b) Loss tangent.

Figure 3.13: Measured permittivity and loss tangent for silica aerogel used in this study. Note the pronounced
measurement spikes at resonant frequencies due to the very low loss of the material.
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and the silica aerogel would behave the same as the air filled voids. By making use of the silica

aerogel in repeated measurements of the samples, the total range in porosity across all measured

samples was from 30% - 70%. The silica aerogel was added in small increments to each sample over

the course of the permittivity measurements (Figure 3.14). The aerogel was mixed with mineral

Figure 3.14: Figure taken from (Hickson et al., 2018) with the following caption: a) Powdered dunite with
silica aerogel prior to mixing. b) Resulting dunite/silica aerogel mixture.

samples by mechanical stirring. The resulting sample was not mixed well if the mineral grain size

was significantly larger than the aerogel (effect was observed for ≈ 200 µm average grain size). This

did not pose an issue for the samples in this research, since the grain size of the mineral samples

was kept low to reduce boundary effects in the coaxial airline at the sample conductor interface.

3.7 Software

To collect, process, and analyze the data used in this research, several software packages were

used, both commercial and developed throughout the research. This section will discuss the major

software packages that were used.

3.7.1 METAS VNA Tools II

The VNA can be controlled by external buttons and built in software. For better control of the

VNA, Alexandre Boivin incorporated the METAS VNA Tools II software package for use with

the permittivity measurement methodology, which was then used for the measurements presented

in this thesis (Boivin et al., 2018; Wollensack et al., 2012). This is advantageous as it can track

sources of uncertainty, log operations, and provides alternate calibration techniques. The settings
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and calibration data that were input to METAS VNA Tools II were established by Alexandre

Boivin.

3.7.2 permittivitycalc

Several programmed scripts were developed over the course of this research and by collaborators

for the processing of the raw data (measured S-parameters and uncertainties) output by the VNA

and METAS VNA Tools II software. These scripts were based off of the original MATLAB®

code used in Sotodeh (2014), and were expanded on and consolidated into the open source Python

package permittivitycalc (Boivin and Hickson, 2018). Contributions to developing the initial scripts

were made by Alister Cunje, Brian Tsai (from the Department of Physics at the University of

Toronto), and Alexandre Boivin. Alexandre Boivin then developed the majority of the permittiv-

itycalc package, with some minor contributions resulting from the current research. This package

includes many functions and tools for analyzing the raw data, and for processing the data in dif-

ferent ways. At the time of writing this thesis, the package can apply the NRW algorithm and the

Boughriet et al. (1997) algorithm to the S-parameters measured by the VNA. When applying these

algorithms, permittivitycalc calculates the complex permittivity from both the forward S11,21 and

reverse S22,12 S-parameters and compares the results to check for the homogeneity of the sample in

the airline. If the results are significantly different from one another, the sample is not homogeneous

and the software will give some simple statistics regarding this difference and corresponding degree

of heterogeneity. Corrections can be applied to the data that account for the boundary effects of

the coaxial airline, the influence of the teflon washers on the measured effective permittivity (de-

embedding), and for the specific dimensions of the coaxial airline used for a given measurement.

The package includes functions that create publishable plots and figures from the data, which can

include multiple permittivity measurements of different samples. permittivitycalc can normalize a

permittivity measurement to some bulk density using standard techniques for comparison between

measurements made at different densities. The software also automatically calculates the frequency-

averaged real part of the permittivity, imaginary part of the permittivity, and loss tangent from

roughly 1 GHz - 9 GHz (for the GR900-LZ coaxial airlines from the current research). To avoid

the influence of the resonance spikes in this averaging, the values for the parameter of interest are

taken from the nearest midpoint frequency between resonant frequencies (calculated from (3.12),

where median values used as estimates for ε
′
r and ε

′′
r ). These midpoint values are taken past the

first two resonant frequencies, which roughly corresponds to the 1 GHz - 9 GHz frequency range.
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Depending on the dispersion of a given sample, these frequency-averaged values are possibly valid

at lower frequencies. The permittivitycalc package was used to analyze all of the data presented in

this research, as well as to create all of the plots of permittivity measurements.

3.8 Calibration

The coaxial transmission line method is subject to three general sources of measurement error,

termed systematic error, random error, and drift error (KeysightTechnologies, 2014a). Random

error, or VNA instrument noise, cannot be removed with any calibration and is inherent to a given

VNA. Systematic errors are defined as predictable, arising from minor defects in the coaxial cables,

coaxial adapters, and VNA used for a measurement. This bias can be removed from the final

measurement if it is initially characterized for a given set of equipment by calibrating that equip-

ment prior to measurement. The systematic error in a two-port VNA measurement is typically

described by a 12-term error model, with each term representing a source of systematic error for

a given measurement direction (forward or reverse S-parameters) (Rytting, 2001). A full 2-port

calibration of the VNA, coaxial cables, and coaxial adapters will determine the values for these

terms so that the error model can be applied to correct a subsequent material measurement. The

SOLT technique, or Short, Open, Through, and Load method is widely used and was implemented

in Sotodeh (2014), and so was initially used to correct measurements performed in the current

research (KeysightTechnologies, 2014a). In this calibration, a Short (out of phase 180°) and Open

(in phase) calibration standard are measured for each port, representing an ideal perfect reflection

of the source signal. A Load (50 Ω) calibration standard that matches the characteristic impedance

of the VNA and cables (50 Ω) is measured for each port as well, representing ideal zero reflection.

Finally a measurement is made with port 1 connected to port 2 (Through), representing ideal trans-

mission. The METAS VNA Tools II software then uses these measurements to solve for the error

terms in the error model, which is then applied to calibrate any further measurements. Alexandre

Boivin implemented the use of the Through-Reflect-Match (TRM) calibration into the measure-

ment setup, since the TRM calibration requires fewer calibration measurements (fewer standards)

and is comparable if not improved in accuracy compared to the SOLT calibration (Pulido-Gaytán

et al., 2015; KeysightTechnologies, 2014a). The TRM calibration requires a measurement of a Short

and Load standard for each port, and one Through measurement. The calibration standards used

in this research were included in the General Radio 900-LZ series Reference-Airline set. The cali-
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bration standard definitions, and input parameters to the METAS VNA Tools II software required

for TRM calibration, were implemented by Alexandre Boivin. The TRM calibration was applied

prior to all permittivity measurements in this research unless otherwise stated. After calibration,

the measurement plane where the S-parameters are recorded is at the coaxial adapter/coaxial air-

line connection interface. Ideally the measurement plane is at the interface with the sample under

measurement, not the Teflon® washer. The measurement plane can be artificially moved to this

interface post-measurement in a step called de-embedding (KeysightTechnologies, 2014b). Alexan-

dre Boivin implemented this correction in the permittivitycalc package, which was then applied to

all of the measurements in the current research (Boivin and Hickson, 2018).

3.9 Uncertainty in the Complex Permittivity

3.9.1 Type A and Type B Uncertainty

The uncertainty in the measured S-parameters is output from the METAS VNA Tools II software

after the calibration is applied to the raw data. The sources of this uncertainty can be tracked in

the METAS VNA Tools II software, and is made up of error associated with connector repeatability,

VNA noise, VNA linearity, VNA drift, and cable stability (Boivin et al., 2018). Alexandre Boivin

performed a series of measurements to characterize each of these sources of error for the permittivity

measurement setup (including the environment chamber), and then used these to define the errors

in the METAS VNA Tools II software that are applied to all other measurements. This uncertainty

is then propagated in the calculation of the complex permittivity according to the error propagation

equations in Boughriet et al. (1997) and Baker-Jarvis et al. (1993) for the Boughriet et al. (1997)

and NRW algorithms respectively. Alexandre Boivin characterized the total error in a permittivity

measurement as combinations of Type A and Type B uncertainties as defined by the ISO Guide to

the Expression of Uncertainty in Measurements (Boivin et al., 2018; ISO/IEC GUIDE 98-3, 2008).

The propagated error in calculating the complex permittivity from the S-parameters is the Type B

error. Type A error for the real and imaginary parts of the permittivity is defined as the maximum

standard deviation between 10 separate measurements (performed by Alexandre Boivin) of a solid

Rexolite ® sample across all measured frequencies. Rexolite® is a standard dielectric material,

and as a solid sample should yield high precision results. The total uncertainty is then the Type

A and Type B uncertainties added in quadrature. The Type A uncertainty in the real part of the

permittivity was found to be 0.008, and for the loss tangent was defined in two regions: below 100

86



MHz the uncertainty is 0.009, above 100 MHz the uncertainty is 0.002. The Type A error was

found to be higher than the Type B error for all measurements, so that the lowest error achieved

was 0.008 and 0.002 in the real part of the permittivity and loss tangent.

3.9.2 Type A Uncertainty for Powder Samples

The Type A uncertainty described above was derived from repeated measurements of a solid stan-

dard dielectric sample, and is therefore applicable to measurements of similar samples for which

you can expect similar repeatability. The repeatability of a powder sample measurement is lower

than for a solid sample, since there will be a greater change in the homogeneity and distribution

of the sample between measurements. These different distributions will cause the bulk density to

change slightly, which will change the measured permittivity. Assuming that the difference be-

tween any two measurements is only due to the change in the density of the samples, all repeated

measurements of a given powder sample should be able to be normalized to the same bulk density

and permittivity. The standard deviation between a normalized set of measurements for a given

sample thus represents the repeatability due to influences such as changes in moisture content,

particle packing, and Teflon® washer positioning. The Olhoeft and Strangway (1975) equation

( εeff = (1.93 ± 0.17)ρbd) is most often used to normalize measurements with respect to density

(Olhoeft and Strangway, 1975; Stillman, 2006; Stillman and Olhoeft, 2008; Boivin et al., 2018). In

the current research it was found that if instead, the normalization is carried out using a mixing

equation that has been optimized to fit that particular set of measurements, the convergence to a

common permittivity value is improved and the standard deviation decreases (Figures 3.15 - 3.17).

As will be illustrated later, most of the mixing theories discussed in this thesis can model a set

of permittivity measurements equally well. By adjusting the solid permittivity input to a given

mixing theory, that theory can be forced to fit the measurements, in some cases with unrealistic

values that deviate from the literature. The Type A uncertainty assumed for a given powder sample

measured in this research is defined as the averaged (across frequency) standard deviation between

the normalized set of measurements for that sample, where the mixing equation used to normalize

the measurements is the LLL equation that has been optimized to fit the data.
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(a) Real part of the permittivity.

(b) Loss tangent.

Figure 3.15: Raw forsterite sample data set (un-normalized) (average standard deviation of 0.193).
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(a) Real part of the permittivity.

(b) Loss tangent.

Figure 3.16: Forsterite dataset normalized to a bulk density of ρbd = 1.60 g/cm3 using the Olhoeft and
Strangway (1975) equation (average standard deviation of 0.025).
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(a) Real part of the permittivity.

(b) Loss tangent.

Figure 3.17: Forsterite dataset normalized to a bulk density of ρbd = 1.60 g/cm3 using the LLL equation,
with the input parameter εi optimized through non-linear least squares regression to fit the dataset (average
standard deviation of 0.014).
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3.10 Basic Workflow

The general procedure that was followed for the permittivity measurement experiments carried out

in the current research is outlined in Figure 3.18. The VNA was turned on at least 1 hour prior to

Figure 3.18: Workflow for the permittivity measurements.

its use to allow the internal electrical components to heat up to a constant temperature. The mass

of the empty and filled airline is used to calculate the mass of the sample, which with the known

volume of the coaxial airline allows the calculation of the bulk density of the sample. The VNA

settings were kept constant for the permittivity measurements in this research. The intermediate-

frequency bandwidth was set to 10 Hz for detailed spectral information. The power was chosen

as -10 dB, as this results in the highest accuracy in the measured S-parameters for the VNA used

(KeysightTechnologies, 2016). The recorded S-parameters were an average of five measurement

sweeps of the sample. The highest frequency for the sweep was 8.5 GHz, corresponding to the

highest frequency in the coaxial airline. Lastly, the number of frequency points for the recorded

S-parameters was chosen as 601, being a trade off between frequency resolution and measurement

time. The TRM calibration was performed with the environment chamber incorporated into the

VNA circuit. The METAS VNA Tools II software displays the result of each measurement of a

calibration standard performed. If the measurement showed obvious signs of error, often in the

form of erroneous spikes due to an improper connection, the connection was re-established and
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the measurement was repeated. Once the TRM calibration was completed successfully, the coaxial

airline was connected to the coaxial cables in the environment chamber. An initial measurement in

ambient atmospheric conditions was completed to check the overall quality of the data. If the data

quality was poor, the connections were re-established and the measurement repeated. If the data

was still poor, this was likely a result of improper washer placement, or some other filling error,

and the airline was emptied of the sample and the process started over again. If the data quality

was good, the environment chamber was sealed and the roughing pump left on for two hours before

the final permittivity measurement was completed.
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Chapter 4

Sample Characterization and

Preparation

4.1 Techniques to Characterize and Prepare Samples

The powdered geologic samples used in the research presented in this thesis were analyzed using a

variety of instrumentation and then prepared for measurement of their complex permittivity. This

analysis was necessary to determine the composition, particle size distribution, and particle density

for each sample. These parameters are used to understand and model correlations observed in the

permittivity measurements.

4.1.1 Sample Comminution

The initial state of the samples used in this study varied from manufactured powder to natural

cohesive rocks. For some samples it was necessary to comminute the samples to the desired powder

particle size. This particle size was determined to be 20 µm < x < 200 µm by the boundary effects

in the airline, which will be discussed in chapter 5, and the homogeneous mixing criteria with

silica aerogel. At this size the particles are small enough that boundary effects are minimized and

homogeneous mixing with silica aerogel is possible, while the particles are large enough to not pose

a significant health hazard during handling (a dust mask or respirator was used for all handling of

samples regardless).

Some of the samples were obtained as large, cohesive rocks that needed to be broken down into

smaller pieces in order for further processing into powders. A Metkon® Instruments Inc. Geocut

Petrographic Cutter was used to cut small pieces from the overall sample for the larger samples.

The necessary particle size for use of the ball mill was roughly a few centimetres in diameter, so
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these small pieces of samples were further broken down using a petrographic rock hammer. Care

was taken to clean the surfaces of the cutter and hammer with isopropyl alcohol before and after use.

Once the sample grains were in the centimetre size range, they were further pulverized to the desired

20 µm < x < 200 µm particle size range. For the softer samples, such as the dunite and dolomite

samples, an aluminium oxide ceramic mortar and pestle was used for this purpose. The aluminium

oxide composition was desired as a metal mortar and pestle might contaminate the sample with

metal particles which would significantly affect the effective permittivity of the sample. Harder

samples, such as the labradorite, were pulverized using a Retsch® PM100 Planetary Ball Mill,

with aluminium oxide grinding balls and grinding jar. Each sample was pulverized using either the

mortar and pestle or ball mill in increments, with the resulting particle size analyzed in between.

Once the particle size was close to the desired range of 20 µm < x < 200 µm, the process was

complete.

4.1.2 Mass Balance

Throughout the presented research it was necessary to accurately measure the mass of the samples

and experimental apparatus used. This was completed using two identical Sartorius MSA524P-100

DI Cubis Precision Balances, one at the University of Toronto and one at York University, which is

accurate to ±0.0001 g and ±0.0005 g, depending on the total mass being weighed (the higher the

mass, the lower the accuracy).

4.1.3 Particle Size Distribution

The particle size distribution (PSD) of each sample was determined by separating the sample by

particle diameters with a Gilson Performer III Sieve Shaker and corresponding sieve screens. The

sieve sizes were ASTM size #60, #100, #170, #325, and #500, corresponding to mesh screen sizes

of 250 µm, 150 µm, 90 µm, 45 µm, and 25 µm. The sieves were assembled on the Gilson Performer

III Sieve Shaker, with the sample poured in small batches and left to vibrate for roughly 10 minutes

at a time. The mass of the sample retained by each sieve was then used to determine the PSD.

The average particle diameter of a sample was of interest in this research for studying boundary

effects at the sample/conductor interface during a permittivity measurement. Permittivity mea-

surements of aluminium oxide grit from Kramer Industries, Inc. taken from Sotodeh (2014) were
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used to model these boundary effects. In Sotodeh (2014), different aluminium oxide samples with

varying average particle sizes were used, and it was observed that there was a correlation between

the porosity and grain size of the samples. Unfortunately, it was not specified in Sotodeh (2014)

how the average particle size was determined. The PSD of each different aluminium oxide sample

is defined by Kramer Industries, Inc. according to ANSI Testing Methods (ANSI B74.12.2001).

This size grading standard is commonly used for abrasive materials, and defines a range in particle

diameters for which 65-75% of the sample conforms to, including the median particle size (Uni-

fied Abrasives Manufacturers’ Association, 2018). This analysis gives some metric for the range

expected for the average particle size, but does not coincide with the specific values from Sotodeh

(2014). Instead it was found in the current research that the average particle sizes from Sotodeh

(2014) matched well with the average value of a Gaussian distribution fit to the PSD of a test batch

of a given aluminium oxide sample provided by Kramer Industries, Inc (fitting performed using the

Python package LMFIT (Newville et al., 2014)). Figure 4.1 shows the Gaussian fit for the #120

mesh test batch aluminium oxide sample from Kramer Industries, Inc., where the values chosen for

the particle sizes in the PSD are taken as the size of the sieves used in the analysis (the left side

of the bins in Figure 4.1). The average grain sizes reported in Sotodeh (2014) are compared with

Figure 4.1: Gaussian distribution fit to PSD from Kramer Industries, Inc. for #120 mesh alumina sample.

the averages calculated from fitting Gaussian distributions to the Kramer Industries, Inc. PSD in

Table 4.1. Since the particles retained by a given sieve will span the range in sizes permitted by
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the bounds of the upper and lower sieve (i.e. the samples retained in the 90 µm sieve will range

from this size to the size of the sieve in which they passed through, which for the 150 µm sieve

results in particles in size ranging from 90 µm - 150 µm), it is more physically realistic instead

to fit the Gaussian distribution to the average particle size between the sieve sizes. The results

Table 4.1: Average particle size determined through Gaussian fitting to PSD’s compared with those reported
in Sotodeh (2014). Particle sizes taken as the sieve sizes for regular Gaussian fit, and particle sizes taken as
average between bin sizes for adjusted Gaussian fit.

Kramer Industries,
Inc. Sample

Sotodeh (2014) avg.
particle size (µm)

Gaussian fit avg.
particle size (µm)

Adjusted Gaussian
fit avg. particle size

(µm)

#180 mesh 76 no fit no fit
#120 mesh 102 101.5 118.4
#80 mesh 165 168.4 185.3
#54 mesh 305 303.6 328.6
#36 mesh 483 484.1 520.6
#24 mesh 686 715.1 756.7
#20 mesh 940 963.9 1029.1

of these fits will be called adjusted Gaussian fits and are also shown in Table 4.1. The adjusted

Gaussian fit for the #120 mesh alumina sample is shown in Figure 4.2. Figure 4.3 shows a com-

Figure 4.2: Adjusted Gaussian distribution fit to PSD from Kramer Industries, Inc. for #120 mesh alumina
grit.

parison of the ANSI B74.12.2001 size grading standard particle size ranges and the average particle
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size estimated in Sotodeh (2014) and the adjusted Gaussian fitting method used in the current

research. The particle size estimates from Table 4.1 (the Sotodeh (2014) and adjusted Gaussian

Figure 4.3: ANSI B74.12.2001 size grading standard particle size ranges compared to average particle size
estimates from Sotodeh (2014) and using the adjusted Gaussian fit.

fits) fall within the ANSI B74.12.2001 size grading standard particle size ranges, validating the

equivalency between the different methods. The PSDs of the samples in this research are fitted

with an adjusted Gaussian distribution to estimate the average particle size. The significance of

any Gaussian fit is questionable since the number of data points, or sieve sizes, is low. On the other

hand, the correspondence with the average particle sizes from Sotodeh (2014) makes this method a

way to characterize the average particle sizes of other samples and apply the same boundary effects

model that was developed from the Sotodeh (2014) dataset. Carrier et al. (1991) used the following

equation for calculating the mean particle size, x̄, from a cumulative frequency distribution (CDF)

of particle sizes for a sample:

x̄ =

∑
pm(φ)

100
≈ φ16 + φ50 + φ84

3
(4.1)

In equation (4.1) p is the percent fraction of a sample for a size interval whose midpoint is m(φ),

where φ is dependent on the particle size. Figure 4.4 shows the Gaussian probability distribution

function (PDF) plotted along with the cumulative distribution function CDF for the Gaussian

function fitted to the #100 mesh alumina sample. In Figure 4.4, the size interval for particle
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Figure 4.4: Gaussian (not-adjusted) function plotted as PDF and CDF for #100 mesh alumina sample.

diameter is 10 µm, which is significantly smaller than the intervals for the sieve sizes actually used,

but allows comparison of the CDF and PDF. The 16% and 84% cumulative retention lines are

plotted as blue dotted lines, and the one sigma particle diameter lines are plotted as red dotted

lines. Equation (4.1) from Carrier et al. (1991) is equivalent to fitting the PSD with a Gaussian

distribution and calculating the average particle size, assuming the particle sizes follow a normal

distribution. If φ16 and φ84 in equation (4.1) are considered the one sigma interval for the PDF

average the following can be written:

x̄ =

∑
pm(φ)

100
≈ ( ¯xgauss − σ) + ¯xgauss + ( ¯xgauss + σ)

3
= ¯xgauss (4.2)

Using equations (4.1) and (4.2) on the CDF and PDF calculated from the fitted Gaussian param-

eters used to make Table 4.1, the results are generally in good agreement across all samples. This

test is considered further justification for the use of the adjusted Gaussian distribution to determine

average particle size for the samples used in this research.

The statistical significance of the average particle sizes calculated in this way is questionable,

as previously mentioned. Regardless, it is a metric that is consistent between the relative average

particle sizes between samples, and provides a general idea of the average particle size. The average
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particle size is only used in the boundary effects modelling, and as will be shown, this effect is already

small for the range in particle sizes for the samples considered, so the inaccuracy of the calculated

average particle size will have a small effect on the results of the modelling. For some samples, a

smaller quantity of material resulted in very narrow PSDs with material only retained in the #170

and #325 (90 µm and 45 µm) sieves. In these cases the average particle size was determined as a

mass average of the amount retained in each sieve:

x̄ = p120(120 µm) + p67.5(67.5 µm) (4.3)

In (4.3), p120 and p67.5 are the percent (by mass) of the sample retained in the 90 µm and 45 µm

sieves respectively, and these are then multiplied with the average grain size between these sieves

and the upper sieve used in the grain size sorting (150 µm and 90 µm respectively).

4.1.4 Scanning Electron Microscope (SEM) / Electron Dispersive Spectroscopy

(EDS)

The composition of the samples was generally known at the time the samples were acquired. For

the aluminium oxide sample from Kramer Industries, Inc., for instance, the chemical purity of the

sample is listed from the manufacturer’s website. The compositions of the natural rock samples,

however, were not known with the same certainty. The bulk chemical composition for each sample

was thus determined using a Tescan VEGA3 SEM equipped with a Bruker Quantax EDS detector

in the Planetary Instrumentation Laboratory at York University (Figure 4.5). The EDS detector

was calibrated using a copper standard, and was periodically tested with standards such as nickel

and copper. Images and spectra were obtained of the original cohesive rock sample for the natural

rock samples, and images and spectra were also obtained for all powder samples. For the solid

samples, point by point EDS analysis was used to determine the composition of distinct mineral

phases observed in SEM images with a backscattered electron (BSE) detector. This was useful in

identifying minor mineral phases, but was inadequate at quantifying the amount of these minor

phases. A small amount of the powder samples was compacted into pellets for measurement in

the SEM. Since a given powder sample may be composed of several mineral phases, the contextual

information regarding these phases is lost in the pelletized samples, and so the EDS spectra were

obtained over a large area and were interpreted as representing the bulk composition. The EDS

spectra are comprised of characteristic X-ray emissions from different elements that have been en-
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Figure 4.5: Tescan VEGA3 SEM with Bruker Quantax EDS detector at York University.

ergized by the SEM electron beam. Characteristic X-ray emissions for elements can result from

several electron orbital energy levels, and in some cases are very close to one another for different

elements. In addition, the geometry of the sample relative to the electron beam and EDS detector

can skew the obtained spectra, further complicating the analysis of EDS spectra (Lymer, 2017).

EDS spectra can be quantified into elemental abundances, albeit with low accuracy, and are consid-

ered a semi-quantitative data product. ESPIRIT 2.1 software was used to collect and quantify all

EDS spectra using the standardless P/B-ZAF QUANTAX analysis strategy (Bruker Nano GmbH,

2011). From this semi-quantitative analysis, it was possible to constrain mineralogies present in

the different samples.

4.1.5 Particle Density

To calculate the porosity of a powder sample contained in a coaxial airline, it is necessary to

know both the bulk density and particle (grain, or solid) density. The bulk density of a sample

is measured directly for a given permittivity measurement from the known volume of the coaxial

airline and the mass of the coaxial airline before and after filling with the sample. The particle

density for each sample was determined using a Micromeritics® Instrument Corporation Accupyc®

II 1340 Gas Displacement Pycnometer (Figure 4.6). The pycnometer was used with helium gas,

which allows the determination of the skeletal volume of samples down to connected microporosity
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Figure 4.6: Micromeritics® Instrument Corporation Accupyc® II 1340 Gas Displacement Pycnometer at
York University.

as small as a helium gas molecule. Measuring the mass of the sample whose volume was measured,

the particle density of the sample was calculated. A capped sample holder was used that permitted

measurement of powder samples in the pycnometer. All samples were oven dried at 115° C and kept

in a dessicator prior to measurement in the pycnometer, since small amounts of adsorbed water

can alter the volume measurement. The pycnometer was calibrated with manufacturer provided

calibration standards prior to each measurement.

4.1.6 X-ray Diffraction (XRD)

XRD measurements were carried out for every sample, except the aluminium oxide sample, by the

staff at the Royal Ontario Museum (ROM). This process consists of radiating the samples with

fixed frequency X-rays over a range of incident angles and measuring the angle of reflection from

the sample. The amount of radiation reflected in certain geometries is characteristic of the unique

crystal structure of different minerals, and allows the identification of mineral phases present in the

sample. The XRD system at the ROM is a Bruker D8 Advance with a Cu source operating at 40 kV

and 40 mA with a Linx-eye detector. It is equipped with a twin primary motorized slit of 0.6 mm,

nickel filter, and a twin secondary motorized slit of 5.5 mm. The XRD data can be compared with

databases containing XRD spectra of known mineral samples to search for the closest matching
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spectra. The XRD data from the current research was compared with the RRUFF project database

for these purposes (Lafuente et al., 2015). Long XRD acquisition can increase the signal-to-noise

ratio (SNR) of the data to the point that mineral quantification is possible from the data; however,

this was not applied to any of the samples. XRD data presented in this thesis was collected for the

samples by Veronica DiCecco, a technician in the mineralogy department at the ROM.

4.1.7 Fines Removal

The resulting powder for a sample pulverized in the ball mill contained a very fine grained com-

ponent that was not observed for samples pulverized using the mortar and pestle. This made the

sample clump together and then difficult to measure the PSD or to pack into the coaxial airlines.

The fines were removed from these samples by a decanting process. In this process, powder sam-

ples are immersed in small batches into a beaker filled with isopropyl alcohol. The bottom of the

beaker is then immersed several centimetres into a water bath in a vibrating ultrasonic cleaner to

mobilize the finest particles in the sample. The fines can then be removed by slowly draining the

liquid from the beaker and recovering the sample and letting it dry. Figures 4.7 and 4.8 show the

lizardite and labradorite samples before and after the decanting process. EDS spectra collected

Figure 4.7: Lizardite before and after decanting process was applied (for a small batch of overall sample).

on pelletized labradorite samples before and after the decanting process was applied showed no

change, confirming that the process does not preferentially remove any one mineral present in the

sample.
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(a) Before decanting. (b) After decanting.

Figure 4.8: Labradorite sample viewed through the petrographic microscope before and after decanting the
sample (same magnification).

4.1.8 Magnetite Removal

Some of the samples were found to contain magnetite, which is a mineral with appreciable magnetic

permeability that would violate assumptions in the permittivity measurements. Several magnets

were used to remove the magnetite component of these samples. The magnets were taped to the

bottom of a plastic weight boat, and the sample was then poured into the weight boat in small

batches. The magnets attracted the magnetite, and the rest of the sample was poured into a

separate weight boat. The magnetite was brushed into another weight boat and the process was

repeated until all of the magnetite was separated from the sample. Figure 4.9 shows the setup used

to do this.

4.2 Samples

4.2.1 Overview

A total of seven different geologic samples were studied in the current research. Each was chosen

for a specific reason with relevance to either the analysis of mixing theory or planetary radar obser-

vations. Aluminium oxide was chosen as a standard dielectric material, as it was a pure (> 99%)

sample provided by Kramer Industries Inc. and has been studied extensively for its dielectric

properties. A dolomite and labradorite sample provided by the Department of Earth Sciences at

the University of Toronto (provenance unknown) were incorporated into this research to enhance

the analysis of mixing theory. Brian Tsai measured the complex permittivity of either of these

samples, in solid form, using a Keysight Technologies 85072A 10 GHz Split Cylinder Resonator
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Figure 4.9: The setup used to remove magnetite from the samples. The upper weight boat has several
magnets taped to its bottom, and can be seen capturing magnetite grains.

in a previous study. These measurements provide a constraint on the permittivity of the solid

phase of the powdered dolomite and labradorite samples used in this research, which can then be

used as an input in various mixing theories to test the correspondence with effective permittivity

measurements of the powdered samples. With the focus of applying this research to radar surveys

of carbonaceous asteroids, some samples were included that are representative of the dominant

mineralogy for such asteroids. The visible (VIS)/near-infrared (NIR) spectra of C-complex aster-

oids is similar to those for carbonaceous chondrite meteorites, hinting that carbonaceous asteroids

are the parent bodies of carbonaceous chondrites (Demeo et al., 2015). The petrologic types of

carbonaceous chondrites range from 1-6, where types 1-3 are representative of varying degrees of

aqueous alteration and types 3-6 of thermal metamorphism (Demeo et al., 2015; Hutchison, 2004).

Early electron microprobe studies of carbonaceous chondrites revealed that serpentine mineral con-

tent increased with increasing degrees of aqueous alteration in CM chondrites, and that serpentine

composition increased in Mg content (Tomeoka and Buseck, 1985; Zolensky et al., 1993). Browning

et al. (1996) proposed the Mineralogical Alteration Index (MAI) for CM chondrites that classifies

the degree of aqueous alteration by the progressive alteration of Fe-rich serpentine (cronstedtite)

to Mg-rich serpentine (antigorite). Similar alteration scales and geochemical and petrologic studies

have shown that this correlation generally holds true (Rubin et al., 2007; Howard et al., 2009; Takir
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et al., 2013). The silicate mineral olivine is a possible precursor for serpentinization reactions and

is common in carbonaceous chondrites. The distribution of Fe-rich olivine (fayalite) to Mg-rich

olivine (forsterite) is varied among ordinary chondrites, and has been linked to petrologic types

3.1-3.9 showing correlation with thermal metamorphism (Huss et al., 2006; McCoy et al., 1991).

Based on this mineralogical analysis, the current work focuses on observing the change in dielectric

properties between Fe-rich and Mg-rich endmembers of the serpentine and olivine mineral groups,

and whether there exists a dielectric contrast strong enough for discrimination between endmember

compositions in analysis of asteroid radar data. A dunite sample from the University of Toronto

(provenance unknown) was used as a sample in the presented research, being representative of the

Mg-rich olivine endmember forsterite. Due to the rarity in natural samples on Earth, a synthetic

fayalite sample created at the University of Nevada Las Vegas High Pressure Science and Engineer-

ing Center was used in this research, representing the Fe-rich olivine endmember. To represent the

Mg-rich endmember of the serpentine mineral group, two serpentinite samples, one predominantly

antigorite and one predominantly lizardite, were acquired from the UCF/DSI-CI-2 Deep Space

Industries CI carbonaceous chondrite regolith simulant and the ROM respectively. The antigorite

sample is labelled as such in the CI carbonaceous chondrite regolith simulant ensemble; however,

at the time of writing there is little additional information available regarding the sample. The

serpentinite (lizardite) sample from the ROM is originally from the Mt. Genevre Massif, France.

The Fe-rich endmember of the serpentine mineral group, cronstedtite, was not available for use in

this study in the necessary quantities.

4.2.2 Aluminium Oxide (Al2O3)

This sample was obtained from Kramer Industries, Inc. and has already been described somewhat

previously. Two different samples with > 99% purity, #150 and #120 mesh, with average grain

sizes of 76 µm and 102 µm were used, with these averages taken from Sotodeh (2014). Since the

Gaussian fitting method was not successful for the PSD of the #150 mesh sample, the average grain

sizes from Sotodeh (2014) were assumed instead. Some of the modelling in the presented research

is based off of other aluminium oxide samples from Kramer Industries, Inc. that were measured

by Sotodeh (2014). To minimize the boundary effects on the measured permittivity, only the #150

and #120 mesh samples were measured directly in the current work. Kramer Industries, Inc. list

the specific gravity of the aluminium oxide to be 3.8 (irrespective of grain size). The grain density

of the sample was measured with the pycnometer to be 3.948± 0.002 g/cm3.
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4.2.3 Forsterite (Mg2SiO4)

The dunite sample used in this research is pictured in Figure 4.10. The provenance of this sample

Figure 4.10: Dunite sample provided by the University of Toronto (provenance unknown) that was used in
this research.

was unknown, but was previously identified as dunite by Brian Tsai for prior research conducted

on the sample. To confirm the mineralogy of the sample, it was taken to the ROM for an XRD

measurement. While at the ROM, Veronica DiCecco collected a Raman spectrum of the sample

using the Horiba LabRAM 532 nm (1300 nm spot size) Raman instrument at the ROM (Figure

4.11). The Raman spectrum compares well with the Raman spectrum (RRUFF ID X050088) for

a forsterite sample from San Carlos, Arizona, USA. The XRD spectrum collected for the sample

was in correspondence with a forsterite sample in the International Centre for Diffraction DATA

(ICDD) Powder Diffraction File (PDF) database, as well as showing possible trace minerals present

(Figure 4.12). An EDS spectrum of the dunite sample was also acquired (10 kV beam voltage due

to sample charging), confirming the dominant O, Si, and Mg elemental composition expected

for the forsterite mineralogy (Figure 4.13). Based on the Raman, XRD, and EDS data it was

concluded that the dunite sample is predominantly forsterite, with some possible antigorite (from

localized serpentinization) and chromite inclusions. The dunite sample will hereafter just be referred

to as forsterite. The grain density of the forsterite was measured using the pycnometer to be

3.326 ± 0.001 g/cm3. The solid sample as depicted in Figure 4.10 was pulverized using the rock

hammer and mortar and pestle to two samples with average grain sizes of 146 µm and 152 µm using
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Figure 4.11: Raman spectrum of the dunite sample compared with the RRUFF database ID X050088
processed San Carlos forsterite spectrum.

Figure 4.12: XRD spectrum (Dylan.raw) of dunite sample with matching mineral spectrum from PDF
database.
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Figure 4.13: EDS spectrum for elemental mapping of roughly 3 mm2 area of solid dunite sample. Energy
levels expected for common elements found in rocks and minerals are indicated.

the (adjusted) Gaussian fit to the PSD. Two samples were made from the solid sample because the

original powder sample was dropped during experimentation, and it was necessary to powder the

solid sample further, resulting in a slightly different average grain size.

4.2.4 Fayalite (Fe2SiO4)

Synthetic fayalite produced in the University of Nevada Las Vegas High Pressure Science and

Engineering Center was provided for use in this research by Dr. Pamela Burnley. The fayalite

sample was acquired as a fine grain powder that was too small for the typical grain size sorting

using mechanical sieves applied to the other samples. The fayalite sample was imaged using an

Olympus BX-53P petrographic microscope, resulting in a visual classification of the average grain

size as ≈ 20 µm (Figure 4.14). Trace amounts of magnetite were identified in the sample. The

(a) 5x magnification. (b) 10x magnification.

Figure 4.14: Fayalite sample as viewed by petrographic microscope.
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magnetite was removed using the methods outlined in section 4.1.8. XRD data was collected for the

sample, confirming the fayalite composition (and removal of magnetite) by matching the spectrum

with a fayalite spectrum from the ICDD PDF database (Figure 4.15). An EDS spectrum (15 kV

Fa_UNLV_unaltered

Figure 4.15: XRD spectrum of fayalite sample with matching mineral spectrum from ICDD PDF database.

beam voltage) was collected for a pellet made from the sample over a roughly 3 mm2 area (Figure

4.16). In this EDS spectral map, small inclusions of silica were identified (Figure 4.17). The grain

Figure 4.16: EDS spectrum for elemental mapping of roughly 3 mm2 area of pelletized fayalite sample.

density of the fayalite was determined using the pycnometer to be 4.347± 0.003 g/cm3.
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(a) BSE image. (b) EDS Si intensity map.

Figure 4.17: Silica inclusions identified in BSE image and EDS spectral mapping of pelletized fayalite sample.

4.2.5 Antigorite (Mg3Si2O5(OH)4)

The antigorite sample is the serpentine component from the UCF/DSI CI carbonaceous chondrite

asteroid regolith simulant, which was obtained in powder form. On the safety datasheet for this

simulant, the composition is listed as antigorite/lizardite, non-asbestiform. Covey et al. (2018)

identify the simulant component as antigorite from Northfil Resources in Ontario, with roughly 5

% Fe. Covey et al. (2018) describe the sample processing procedure, and that average particle

sizes of 75 µm were targeted in the comminution process. Metzger et al. (2019) list this component

as antigorite in their work, and noted that in XRD analysis minor impurities of dolomite were

identified. Veronica DiCecco collected XRD data for the antigorite sample at the ROM, and for

the SNR of the data it was difficult to discern the major minerals besides antigorite present in the

sample (Figure 4.18). EDS spectra (10 kV beam voltage) were collected at various points across

a pellet made from the antigorite sample, with Mg, Si, and O being the predominant elements

identified (Figure 4.19). Several inclusions containing Na, Al, Fe, and Ca were also identified.

The Ca corresponds with the dolomite that was identified in Metzger et al. (2019). From the EDS

and XRD analysis, there are clearly other minerals than antigorite present in the sample, some

of which were not distinguished. The sample PSD could not be fit with a Gaussian distribution

due to a considerable amount of particles larger than > 250 µm skewing the distribution from

normal. Particles larger than 250 µm were removed from the sample, and the PSD was then fit
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Antigorite (CI Regolith Simulant)

Figure 4.18: XRD spectrum of antigorite sample with attempted matching of mineral spectrum from ICDD
PDF database.

Figure 4.19: EDS point spectra of pelletized antigorite sample, differentiated by colour and overlapped.
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with a (adjusted) Gaussian distribution with an average particle size of 121 µm. Some permittivity

measurements were performed before these large particles were removed, which through a mass

weighted average the average particle size for these measurements was calculated to be 164 µm.

How the PSD affects the boundary effects model that was applied to the permittivity measurements

is uncertain, and so the effect that the unique PSD for the antigorite sample has is also uncertain.

The average (since this sample contains several minerals, the measurement in the pycnometer

represents an average of their properties, which is technically true of all samples) grain density for

the sample was measured by the pycnometer to be 2.763± 0.001 g/cm3.

4.2.6 Lizardite (Mg3Si2O5(OH)4)

This sample was provided by the ROM, originally from the Mt. Genevre Massif, France, in the

form of a solid rock. Prior research conducted on the sample at the ROM and York University

included the collection of XRD data, which compared well with XRD spectra for lizardite from the

RRUFF database (Figure 4.20). Since the sample was in a solid form, it was possible to use the

Figure 4.20: XRD spectrum of lizardite sample with matching mineral spectrum from RRUFF database
(RRUFF ID R060006).
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SEM to look at contextual information about the sample (Figure 4.21). The BSE image revealed a

(a) BSE image. (b) EDS point spectra.

Figure 4.21: BSE image of annotated inclusion in lizardite sample with corresponding EDS point spectra
taken in different brightness zones of the BSE image.

fine grained lizardite matrix with minor inclusions, some complicated with more than one mineral

phase (Figure 4.21(a)). EDS point spectral analysis (15 kV) of these components confirmed the

lizardite composition of the matrix, and identified S, Ca, Cr, Fe, and Ni in the inclusions. The Fe

is likely in the form of magnetite (and pyrite), a common iron oxide resulting from serpentinization

reactions, and the S is likely from pyrite, which has been identified as a secondary mineral in the

Mt. Genevre Massif (Lewis and Smewing, 1980). The concentrations of these trace minerals must

be low to not appear in the XRD data. The solid sample was pulverized using a combination of

the rock hammer and ball mill. The resulting powder sample had a large proportion of very fine

particles, which were removed using the method described in section 4.1.7. The magnetite from

the sample was removed using the method described in section 4.1.8. The final powder consisted

of a small amount of material, which was sorted into #170 (90 µm) and #325 (45 µm) sized sieves,

resulting in a mass weighted average particle size of 104 µm. The grain density of the lizardite was

measured using the pycnometer to be 2.634± 0.001 g/cm3.

4.2.7 Dolomite (CaMg(CO3)2)

The dolomite sample used in this research was provided as a solid rock sample by the University

of Toronto with unknown provenance. XRD measurements at the ROM identified dolomite to be
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the major mineral constituent, with possible traces of calcite present (Figure 4.22). BSE images

Marble

Figure 4.22: XRD spectrum of dolomite sample (labelled marble in the plot) with matching mineral spectrum
from ICDD PDF database.

of the solid sample showed a dominantly uniform mineralogy, with some small inclusions present.

EDS point spectral analysis (15 kV) of the background and inclusions confirmed that Mg, C, and

Ca dominate most of the sample, with Ba and S dominant in the inclusions (Figure 4.23). The

inclusions rich in Ba and S are likely baryte, and must be small in proportion to the dolomite in the

sample since baryte was not recognized in the XRD data. Smaller sections of the larger dolomite

sample were removed using the rock saw, and pulverized to powder using a rock hammer and

mortar and pestle. The PSD of the sorted powder was fit with a (adjusted) Gaussian distribution

with an average particle size of 124 µm. The grain density of the sample was determined to be

2.863± 0.001 g/cm3 using the pycnometer.

4.2.8 Labradorite ((Ca,Na)(Al, Si)4O8)

Similar to the dolomite sample, the labradorite sample used in this research was of unknown

provenance and provided by the University of Toronto as a solid rock. XRD analysis performed on

the sample was matched well by a combination of albite and anorthite spectra, which corresponds

with a labradorite feldspar composition (labradorite is 50-70 % anorthite) (Figure 4.24). EDS data
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(a) BSE image. (b) EDS point spectra.

Figure 4.23: BSE image of inclusion in dolomite sample with corresponding EDS point spectra taken in
different brightness zones of the BSE image.

 Labradorite

Figure 4.24: XRD spectrum of labradorite sample with matching mineral spectrum from ICDD PDF
database.

115



(10 kV) was collected for a pellet made from the powdered sample, which showed Si, Na, Al, O,

and Ca throughout the roughly 3 mm2 spectral mapping area (Figure 4.25). No significant minor

Figure 4.25: EDS spectrum of pelletized labradorite sample.

minerals were identified in the labradorite sample. Sections of the large solid sample were cut using

the rock saw, and pulverized to powder using the rock hammer and ball mill. Very fine particles

were removed from the resulting powder using the method described in section 4.1.7. The PSD of

the leftover material was fit with a (adjusted) Gaussian distribution with an average particle size

of 104 µm. The grain density of the sample was measured to be 2.714± 0.001 g/cm3.

4.2.9 Samples Summary

The samples used in this research have each been described in detail. It is possible to calculate

the composition of a sample in weight percent oxides from the EDS data; however, the accuracy

is generally very low. Instead, the elemental quantification of the EDS data was used qualitatively

to confirm the composition determined by XRD data and to identify any trace mineralogies. Table

4.2 summarizes the main attributes for each sample.

4.3 Oven Drying Samples prior to Permittivity Measurements

It was necessary to oven dry the samples prior to conducting permittivity measurements and vol-

ume measurements to remove residual water. Initially, the samples were heated at 250° C for ≈ 24

hours prior to measurement. This treatment was applied to the aluminium oxide and forsterite

samples without any adverse effects observed in the samples. When the fayalite sample was heated

to 250° C the sample underwent a colour change from dark green to brown (Figure 4.26). XRD
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Table 4.2: Summary of the samples used in this research.

Sample Chemical Formula Minor Minerals Avg. grain size
(µm)

Avg. grain
density (g/cm3)

Aluminium Oxide Al2O3 - 76− 102 3.948± 0.002
Dolomite CaMg(CO3)2 calcite, baryte 124 2.863± 0.001
Labradorite (Ca,Na)(Al, Si)4O8 - 104 2.714± 0.001
Forsterite Mg2SiO4 antigorite,

chromite
146− 152 3.326± 0.001

Fayalite Fe2SiO4 quartz, magnetite 20 4.347± 0.003
Antigorite Mg3Si2O5(OH)4 dolomite, enstatite,

chlorite
121− 164 2.763± 0.002

Lizardite Mg3Si2O5(OH)4 magnetite, pyrite,
calcite

104 2.634± 0.001

Figure 4.26: Colour change in fayalite sample after heating to 250° C.
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data was collected on the fayalite sample before and after the colour change was observed, with

no differences between the peak positions in either spectrum, indicating that the sample is still

fayalite post-colour change. The width and relative heights of the peaks changed slightly, which

indicates that the degree of crystallinity and positions of lattice vacancies changed. New positions

for lattice vacancies could describe some of the colour change in the sample. The bulk density of

measurements post-colour change were somewhat greater than those pre-colour change, suggesting

some change occurred in the sample. A reasonable hypothesis is that the sample underwent some

heat-induced oxidation of Fe2+ to Fe3+. Shannon et al. (1991) noted that darker colours in fay-

alite are indicative of oxidized iron and higher permittivities. Since the XRD data confirmed the

mineralogy did not change in the sample, the brown sample post-colour change was still considered

fayalite. Fayalite can exist with a range in iron oxidation states, so comparing this sample to the

literature is still valid.

As a result of the fayalite oxidation at 250° C, it was desirable to heat the remaining samples at a

lower temperature. A loss on ignition (LOI) test was performed on the samples to determine if 115°

C was adequate in removing water from the samples (Figure 4.27). From Figure 4.27 it can be seen
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Figure 4.27: Loss on ignition test to determine oven drying time required at 115° C.

that the amount of water removed from the samples levels off very quickly (< 10 hours) when dried

at 115° C. The antigorite and lizardite samples had the most amount of water removed due to their

clay-like structures and increased water retention compared to the other samples. The samples in

this research were therefore heated at 115° C for at least 10 hours prior to a permittivity or volume

118



measurement, often for longer. The samples were either kept in the oven between measurements

to reduce their exposure to water vapour or were stored in sealed containers. The careful storage

of samples kept moisture levels low in the samples, likely influencing the low mass loss observed

during the LOI test.
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Chapter 5

Boundary Conditions Model

5.1 Overview

One of the major contributions resulting from the research in this thesis is a model developed to

correct the effect of heterogeneities in powder samples at the interface of the sample and coaxial

airline during a permittivity measurement. Sotodeh (2014) inferred that porosity at the interface

between a powder sample and the coaxial airline conductors is greater than for the areas of the

sample surrounded by other particles. This region of elevated porosity is larger for larger particle

sizes, making this boundary effect more significant. The boundary effect was confirmed by mea-

suring the porosity of aluminium oxide samples with a range in average grain sizes in the 14 mm

and 7 mm coaxial airlines introduced earlier in this thesis. The porosity increased with decreasing

coaxial airline diameter and increasing grain size, as predicted by the boundary effect hypothe-

sis. Corrections exist in the literature for accounting for air gaps between a solid sample and the

coaxial airline conductors in a permittivity measurement. The research in the current thesis aimed

modelling efforts at using mixing theory to adapt the traditional solid air gap correction models to

the case of powders and the boundary effect identified by Sotodeh (2014). The resulting work was

published in the journal Advances in Space Research in 2017 (available online in 2016) (Hickson

et al., 2017b). Sections 5.2 - 5.9 of this chapter are taken directly from the pre-print version of

the article and discuss the model development and testing in detail. The citations, nomenclature,

and abbreviations have been altered in some cases to coincide with the rest of the thesis. Some

of the introductory notes are repetitive given the thorough introduction already included in this

thesis, but have been left as they provide context for the specific discussion points in the journal

article. The last section of this chapter (sections 5.10) includes a short summary describing the

results of the model in the context of the rest of the thesis. I attest that I did not perform any

of the permittivity measurements discussed in this chapter, and that they are taken directly from
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Sotodeh (2014).

5.2 Abstract

Accurate measurements of the dielectric properties of materials are essential in constraining inter-

pretations of radar observations of planetary bodies. For bodies whose surfaces are comprised of

regolith this requires an understanding of the behaviour of the bulk permittivity of powders. In this

research we measure the effective permittivity of powdered aluminium oxide (or alumina, Al2O3)

in a 7 mm and 14 mm (diameter) coaxial airline at 7.5 GHz for multiple samples with varying grain

size. The solid permittivity of alumina is extracted from these measurements using the Brugge-

man (Symmetric) mixing equation. We develop a model to account for heterogeneity within the

airline, specifically in regards to local variation in porosity. The results of the model show good

correlation to experimental data and effectively correct for grain size effects on the measured bulk

permittivity. We show that particle shape can have a significant impact on the output of the model

and can be accounted for by modelling particles as ellipsoids rather than perfect spheres, where the

depolarization factor must be measured and averaged for a specific sample batch.

5.3 Introduction

Active remote sensing techniques in the microwave regime are used in observing planetary bodies

through terrestrial/orbiting radar and GPR. The reflectivity and penetration depth of a radar signal

incident on a non-conducting surface are largely determined by those materials’ dielectric response

at a given frequency (Griffiths, 1999; Feynman et al., 1979). For planetary bodies whose surfaces

consist of regolith material, such as the Moon and asteroids, properties of that regolith may be

extracted from a radar return if the effective permittivity of the regolith is known (Carrier et al.,

1991). Polarimetric radar is used to measure the degrees of circular/linear polarizations received

from a surface which are sensitive to a variety of target features including subsurface structure, sur-

face roughness, regolith thickness, bulk density, and composition (Carter et al., 2011). Models that

derive these features from radar data intrinsically make assumptions about physical characteristics

of the target that greatly affect the returned signal properties, such as the dielectric permittivity,

introducing large sources of uncertainty to interpretations. To overcome this, radar images of plan-

etary bodies are often compared with terrestrial analogues (Carter et al., 2011); however, this is not

appropriate for bodies for which no adequate terrestrial analogues exist, such as asteroids. A corre-

121



lation between circular polarization ratio and visible-infrared taxonomic class has been identified in

near-Earth asteroids that would be better understood if the bulk (effective) dielectric properties as

a function of mineralogical composition were known (Benner et al., 2008). Providing information on

the dielectric permittivity of regolith materials is therefore relevant for missions to asteroids such

as 101955 Bennu, the target of NASA’s Origins-Spectral Interpretation-Resource Identification-

Security-Regolith Explorer (OSIRIS-REx ) mission. To constrain the analysis of radar data on

planetary bodies, specifically asteroids, laboratory measurements are needed to better understand

the dielectric permittivity of regolith materials (Nolan et al., 2013; Carter et al., 2011).

A popular and effective approach for measuring the permittivity of any dielectric material is the

transmission line method utilizing a coaxial airline and network analyzer (Chen et al., 2004). This

technique has the advantage of broadband measurement, being relatively inexpensive, and recently

has been shown to have the capability of measuring powdered samples (Grosvenor Jr, 1993; Still-

man and Olhoeft, 2008; Sotodeh, 2014). By measuring powdered samples the effects of grain size

distribution, grain shape, and porosity on the effective permittivity can be determined. Measure-

ment techniques for powdered samples have been investigated in the literature (Tuhkala et al.,

2013; Ebara et al., 2006); however, the aforementioned effects on the effective permittivity are not

well understood. For a powdered sample, the measured value in the transmission line method is

the effective permittivity of the sample. The effective permittivity is a combination of each phase

within the airline: water adsorbed on grain surfaces, air, and the solid sample. Samples can be

oven baked to remove residual moisture, resulting in a two phase mixture of air and solid sample.

Electromagnetic mixing theory can be used to extract the permittivity of the solid phase of the

mixture (true permittivity of the sample). Many mixing theories are based on the assumption of

homogeneity within the sample and uniform particle shape (Sihvola, 1999). These assumptions are

not valid when considering a powdered sample in a coaxial airline.

In this research a theoretical model is developed to account for heterogeneity at the boundary

of the coaxial airline and shows potential to compensate for particle shape effects. The effective

complex permittivity of alumina is measured (using the transmission line method) and input to

this model to calculate the real part of the permittivity of solid alumina. While both the real

and imaginary parts of relative permittivity affect radar scattering, this paper is focused on using

the real part of permittivity measurements to test the validity of the model (similar to the rest of
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this thesis, if the word permittivity is used it is referring to the real part unless otherwise stated).

Given the results of our experiment, future work will be done applying this model to the dielectric

loss. Alumina was chosen for this study as it has well known dielectric properties and is readily

available in powdered form at a variety of grain sizes, making it a suitable standard to test the

model with. The average grain sizes and porosities of samples measured in this research were chosen

to correspond to asteroidal surface regolith material (Shepard et al., 2010; Magri et al., 2001; Clark

et al., 2002). Section 5.4 discusses our measurement procedure and presents the raw, unprocessed

permittivity data. Section 5.5 describes the model developed in this research to correct the raw

data. Section 5.6 discusses the results of processing the data presented in section 5.4 with the

technique shown in section 5.5. The corrected permittivity values are compared to results from

the literature. Improving the accuracy of measurements of the permittivity of powders will tighten

constraints on radar/GPR data and allow more accurate interpretations of planetary datasets.

5.4 Experimental Procedure

5.4.1 Sample Preparation

Seven sample batches of alumina grit with average grain sizes ranging from 76 µm to 940 µm

supplied by Kramer Industries, Inc. were used in the experiment. The particle size distribution

for each sample conform to ANSI B47-12-2001 grit size grading standards. The samples were

oven baked at a constant temperature of 200 ° C for 48 hours prior to measurement to evaporate

residual moisture. The mass of the sample before and after oven baking was measured using a

digital scale within ± 1 mg (Sotodeh, 2014). The volume of each airline was measured with a hole

gauge micrometer within ± 0.25 mm to calculate the bulk density of each sample. The sample

bulk density and specific gravity were used to calculate the porosity within the coaxial airline

for a given measurement. A custom airline filling fixture was created to vibrate the airline and

ensure maximum and uniform particle packing density. Tests run on the filling/vibrating procedure

showed porosity in the sample holder reaches an asymptotic limit after a given vibration time. By

vibrating the airline throughout the filling process there is no suspected gradient in porosity along

the airline’s length. Each sample’s complex permittivity was measured in a 7 mm diameter (HP

85051B, 10 cm length) and 14 mm diameter (GR 900-LZ, 15 cm length) coaxial airline connected to

an Agilent E5071C-280 ENA series vector network analyzer. A full two-port short, open, through,

and load (SOTL) calibration of the network analyzer was completed before all measurements to
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reduce systematic errors following the manufacturer’s instructions (Technologies, 2011; Sotodeh,

2014). The complex permittivity of each sample was calculated from the S-parameters measured

by the network analyzer using the non-iterative algorithm outlined in Boughriet et al. (1997).

5.4.2 Measurement Results

Figure 5.1: Effective (real) permittivity of alumina measured with 7 mm and 14 mm airlines at 7.5 GHz
(∆εr ≈ 0.015,∆φ ≈ 0.001). Annotated text refers to average grain size of measured sample (Sotodeh, 2014).

The permittivity measured for each sample at 7.5 GHz is presented in Figure 5.1 as a function

of porosity within the sample. At this frequency the wavelength of the exciting electric field (in

free space) is 4 cm, which is large enough compared to the particle sizes and airline dimensions

to permit homogenization of the dielectric behaviour of the powder (Sihvola, 1999). It is worth

noting that this is a broadband measurement technique and the same procedure that is used in this

research can be applied at other frequencies, given the frequency is low enough (λ� particle size)

to permit homogenization of the powder under test. In general it is observed in Figure 5.1 that

the measured effective permittivity decreases with increasing grain size and porosity. There are

two distinct trends in the data corresponding to smaller grain sizes (76 µm, 102 µm, and 165 µm)

versus larger grain sizes. We suggest this to be a result of batch processing of the different samples

producing two distinct sets of particle shapes, as will be discussed in section 5.6. The measured

values for the permittivity of alumina are much lower (3-4) than the values found in the literature

(9-10, see Table 1) due to the contribution of the air phase in the powder to the measured effective

permittivity. As the permittivity of air is roughly εair ≈ 1, this lowers the measured effective

permittivity of the sample, especially at higher porosities.
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5.5 Revised Mixing Model

5.5.1 Boundary Conditions

A physical explanation for some of the observed trends in Figure 5.1 is that there are conditions

at the boundary of the sample holder (interface between sample and conductor) that are different

from those within the bulk sample. Particles pack more densely in the bulk of the sample, whereas

grains along the conductor interface have more pore space around them (Figure 5.2). At microwave

frequencies used in radar applications, porosity has a profound effect on the dielectric properties of

a powder, as seen in section 5.4. Characterizing this heterogeneity is important in calculating the

permittivity of the solid material from effective permittivity measurements. This characterization

will allow better modelling of the porosity of asteroid regolith from radar returns. In our model,

Figure 5.2: Geometry for spherical particles of powder in airline at conductor interface.

we treat the particles as spheres and treat the curved sample/conductor boundary as flat. The

volume of the airline can then be divided into two distinct regions with two distinct porosities: the

dominating region consisting of the bulk sample material (with porosity denoted as φs) and another

smaller region consisting of particles contacting the surfaces of the conductors (with porosity de-

noted as φb, Figure 5.2). The extent of each region within the airline is determined by the grain size

of the sample being measured. The boundary region extends radially one half grain size into the

airline from the conductor (for both inner and outer conductors in the airline) as shown in Figure

5.2. This particular division is chosen because it defines the transition from one porosity to another.

To constrain the porosities of each region the densest possible packing of spheres for each geometry

is considered. For the bulk sample region this porosity limit is given by the Kepler Conjecture which

corresponds to a porosity of φs = 0.25952 (Hales, 2005). The lower limit on porosity, or highest

packing density, in the boundary region can be calculated for unit spheres (rsphere = 1, lcube =

wcube = hcube = 2) the following way:
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Vsphere =
1

2

(
4

3
πr3

)
= 2.094

Vcube =
1

2
lwh = 4

Vvoid = Vcube − Vsphere = 1.905

φb =
Vvoid

Vcube
= 0.47625

Thus it can be shown that the constant of proportionality, here called β, between porosities in each

region for this limiting case is:

φb = βφs, where β = 1.835 (5.1)

The volume weighted porosities in each region are related to the total porosity that is recorded

during each measurement of a powder sample, φtot by:

φtot = φs

(
Vs
Vtot

)
+ φb

(
Vb
Vtot

)
(5.2)

By combining equations (5.1) and (5.2) the bulk sample region porosity can be calculated from the

total porosity:

φs =
φtotVtot
βVb + Vs

(5.3)

The boundary region porosity can be calculated by combining the result of equation (5.3) with

equation (5.2).

5.5.2 Modelling and Mixing

The coaxial capacitor model (Baker-Jarvis et al., 1993), typically used for solid sample air gap

correction, can be used to represent the bulk sample and boundary regions in the airline (Figure

5.3). In Figure 5.3 D1 is the diameter of the inner conductor, D2 is the diameter of the inner

boundary region, D3 is the diameter of the outer boundary region, and D4 is the diameter of the

outer conductor. The regions bounded by D1−D2 (Inner Boundary Region), D2−D3 (Bulk Sample

Region), and D3 − D4 (Outer Boundary Region) (Figure 5.3) represent the entire volume of the

airline and are modelled as capacitors in series. The capacitance, Cn, of each region can be used
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Figure 5.3: Cross section of coaxial airline showing the sample region (C2) and boundary regions (C1, C3).
For ‘7 mm’ airline D1 = 0.30404 cm and D4 = 0.69926 cm. For ‘14 mm’ airline D1 = 0.62052 cm and
D4 = 1.42824 cm. The values for D2 and D3 are dependent on the average grain size of the sample being
measured as discussed in section 3.1.

to calculate the effective measured (total) capacitance, Cm, through the following equation:

1

Cm
=

n=3∑
n=1

1

Cn
(5.4)

The capacitance in each region can be rewritten in terms of the effective permittivity of the region,

the length of the airline, L, and the bounds on the region. For the total (measured) capacitance

this expression is:

Cm =
2πεmL

ln
(
D4
D1

) (5.5)

Substituting equation (5.5) into (5.4) yields:

ln
(
D4
D1

)
2πεmL

=
ln
(
D2
D1

)
2πεibL

+
ln
(
D3
D2

)
2πεsL

+
ln
(
D4
D3

)
2πεobL

(5.6)

where εm is the measured effective permittivity, εib is the effective permittivity in the region D1−D2,

εs is the effective permittivity in the region D2 − D3, and εob is the effective permittivity in the

region D3 − D4. Assuming that the porosity is the same for both the inner and outer boundary

regions (and thus the effective permittivity is the same), εib = εob = εb, equation (5.6) can be

rewritten to express εm as:

εm =
εsεb ln

(
D4
D1

)
εs

[
ln
(
D2
D1

)
+ ln

(
D4
D3

)]
+ εb ln

(
D3
D2

) (5.7)
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Mixing equations can be used to approximate the effective permittivity of a mixture, or in this

case a powder, for each region, εs and εb. For any mixing equation the effective permittivity is

determined by the permittivity of the components, in this case solid alumina and air, and the

volume fraction of each phase, in this case a proxy for porosity. Therefore the permittivity of

alumina can be calculated by inverse mixing theory using the experimentally measured effective

permittivity of the mixture, the permittivity of air (εair ≈ 1), and a value for porosity. If the space

within the coaxial airline is considered homogeneous then the total porosity of a measurement

can be used to calculate the total effective permittivity (Figure 5.4a). For the remainder of this

paper this scenario will be labelled “Classical Mixing”. If the space within the coaxial airline

is considered divided into a bulk sample and boundary region then the effective permittivity of

each region can be calculated using the porosity of each region as shown in section 5.5, and the

total effective permittivity of the entire space within the airline given by equation (5.7) (Figure

5.4b). For the remainder of this paper this scenario will be labelled “Model Mixing”. To test the

Figure 5.4: Cross section of coaxial airline with radial component cross section for a) Classical Mixing
Scenario b) Model Mixing Scenario.

validity of our model we are interested in the relative change when calculating the permittivity

of alumina considering the classical mixing scenario versus the model mixing scenario. Therefore

to focus on the model results we will narrow our discussion to the use of one mixing equation.

For this discussion, the result of using the Bruggeman symmetric equation, otherwise known as
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the Effective Medium Approximation, was chosen as it gave the most realistic results (Bruggeman,

1935; Sihvola, 1999). This equation has the advantage of treating the air phase and solid phase

of the powder symmetrically, where the permittivity of air is taken to be εair = 1.0, as well as

being a widely accepted and implemented approximation (Sihvola, 1999). Furthermore, contrary

to many mixing equations that are derived empirically, the Bruggeman formula has a theoretical

foundation that is appropriate under our sample conditions and allows particle shape to be included

in modelling. The results of applying the same method with different mixing equations are given

in section (appendix) 5.9. The effective permittivity of each region in the model mixing scenario is

calculated according to the Bruggeman equation as (Zhang, 2007; Sihvola, 1999):

γs = (3fs − 1)εi + (2− 3fs)εe, εs =
1

4
(γs +

√
γ2
s + 8εiεe) (5.8)

γb = (3fb − 1)εi + (2− 3fb)εe, εb =
1

4
(γb +

√
γ2
b + 8εiεe) (5.9)

In equations (5.8) and (5.9) the inclusion permittivity, εi, is the true permittivity of solid alumina,

the environment permittivity, εe, is the air phase of the mixture (εe = εair), and the volume fraction

in each region is f = 1− φ.

5.6 Application of Model to Measured Data

Substituting equations (5.8) and (5.9) into (5.7) allows the effective permittivity of the entire air-

line, εm, to be calculated for the model mixing scenario. The values for D1, D2, D3, and D4 as well

as fb and fs can be determined for a sample by applying the constraints discussed in section 5.5.

Different values of εi used in equations (5.8) and (5.9) result in different values of εm calculated

in (5.7). Iterating through possible values of εi from 0 − 100 in (5.8) and (5.9) results in various

calculations of εm which are compared with the experimental results from section 5.4. Those values

of εi that result in a modelled effective permittivity for the entire airline that coincide with the

measured effective permittivity values from Figure 5.1 are taken as the true permittivity of alumina.

For each measurement the permittivity predicted by the model mixing scenario that calculate the

effective permittivity within a tolerance of 0.0005 to the experimentally measured effective permit-

tivity is shown in Figure 5.5. For comparison, the permittivity predicted by the classical mixing

scenario applied to the experimental measurements is also shown in Figure 5.5. In this calculation

the same iteration through possible values of εi was conducted, however the volume of the airline
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Figure 5.5: Output of model mixing scenario and classical mixing scenario results plotted vs. average grain
size of sample measurement (data grouped by coaxial airline used). Smaller grain sizes (76 µm, 102 µm, 165
µm)

was assumed homogeneous with constant porosity throughout (Figure 5.4.a). Figure 5.5 shows the

permittivity of alumina that has been extracted from the raw data presented in section 5.4 from

the classical mixing scenario as well as from the model mixing scenario developed in section 3.

To interpret Figure 5.5 accurately it should be noted that since the permittivity of solid alumina is

constant regardless of grain size, an ideal distribution of data would be a horizontal line centered

at the value of the true permittivity. The trend of measured effective permittivity decreasing with

increasing grain size observed in Figure 5.1 is also seen in Figure 5.5 as the permittivity of alumina

predicted by the classical mixing scenario also decreases with increasing grain size. The permittivity

predicted by the model mixing scenario is in better agreement across the various samples and indi-

cate a reduction in the grain size effects on effective permittivity measurements. It should be noted,

however, that samples with different grain sizes were also measured at different porosities, which

may be influencing the results of Figure 5.5. The same data in Figure 5.5 is therefore presented

in Figure 5.6 as a function of porosity. In Figure 5.6 the permittivity calculated from the classical

mixing scenario decreases with increasing porosity, as observed experimentally in Figure 5.1. The

permittivity calculated by the model mixing scenario does not follow this trend and furthermore

largely removes the differences observed experimentally between the measured permittivity of small

grain sizes versus large grain sizes. When looking at the smaller grain sizes in Figure 5.5, however,
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Figure 5.6: Output of model mixing scenario and classical mixing scenario results plotted vs. porosity of
sample measurement (data grouped by coaxial airline used)

it is apparent that the values of the permittivity resulting from the model mixing scenario are

higher than those of the remaining larger grain sized samples.

To characterize any physical differences between the small grain size samples and large grain size

samples, the alumina grains were observed under microscope (Figure 5.7). Representative samples

are shown in Figure 5.7 that highlight an observation that the smaller grain sizes (76 µm, 102

µm, and 165 µm) have lower sphericity with angular corners compared with the larger grain sizes

which have higher sphericity with rounded corners. As a result, modelling the alumina grains as

spheres in equations (5.8) and (5.9) is inappropriate for smaller grain sizes. To test this hypothesis,

the same modelling procedure is undertaken with equations (5.8) and (5.9) modified for smaller

grain size sample particle shapes to be represented as needles (ellipsoids with depolarization factors

N = (0, 1
2 ,

1
2)) while the larger grain size particle shapes represented as spheres (Figure 5.8). The

depolarization factor of an inclusion is a shape parameter that represents how the internal electric

field changes with particle shape, ultimately affecting the polarizability and dielectric properties

of a mixture (Sihvola, 2007). The Bruggeman equation is rewritten to include this depolarization

factor in the following way (Sihvola, 1999):

εeff = εe +
f

3
(εi − εe)

∑
j=x,y,z

εeff
εeff +Nj(εi − εeff )

(5.10)
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Figure 5.7: 76 µm (left) and 305 µm (right) alumina grain shapes (Sotodeh, 2014)

Figure 5.8: Output of model mixing scenario and classical mixing scenario results plotted vs. average grain
size of sample measurement (data grouped by coaxial airline used). Smaller grain sizes (76 µm, 102 µm, 165
µm) modelled as needles.
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This change in the modelling parameters had the effect of lowering the calculated value of the

permittivity of alumina for the smaller grain size samples as desired. However, the new permit-

tivity calculated is lower than the values predicted for the larger grain size samples, effectively

overcompensating for particle shape effects. From this it can be inferred that the grain shape for

the smaller grain size samples is not perfectly spheroidal or needle-like and is rather somewhere

in-between. This is also true of the larger grain sized samples that are not perfectly spherical but

somewhat elliptical (Figure 5.7). We deduce that the manufacturing process for a specific sample

batch determines the ellipticity of the grains in that sample. This can be accounted for in the

Bruggeman mixing equation by measuring the three semi-axes of several representative grains of a

sample and determining the average depolarization factor for the grains of that sample (Sihvola,

1999). Furthermore there is a range both in size and shape for particles in a given sample batch

which influences the geometry assumed in Figure 5.2, the porosity of the airline, and the mixing

equation used in modelling.

An interesting observation in Figures 5.5, 5.6, and 5.8 is the difference in the permittivity calculated

for samples with identical grain size but measured in different sized airlines. Since the extent of the

boundary region in a given airline is determined by the grain size of the sample being measured,

the effects discussed in section 5.5 are more pronounced in airlines with smaller diameters. For a

given grain size, the boundary region will occupy a larger proportion of the total volume of the

7 mm airline than in the 14 mm airline. This can be seen in the classical mixing results in Fig-

ure 5.5. The model mixing results, however, do not seem to have an obvious correlation between

airline dimensions and permittivity. The quantitative differences in permittivities calculated for

a given grain size in different airlines is on the order of the uncertainty associated with environ-

mental fluctuations in a given transmission line measurement. In developing this model further

these sources of measurement uncertainty (such as relative humidity in the laboratory) need to be

eliminated to isolate sources of error in the model. We are currently developing the instrumentation

and methodology necessary to make permittivity measurements in a coaxial airline isolated in an

environment chamber capable of controlling air pressure (subsequently humidity) and temperature.

The permittivity of alumina output from the model mixing scenario and classical mixing scenario

have been compared to the values found in other relevant experiments for comparison (Table 5.1).

Table 5.1 shows that our model results better reflect the values for the permittivity of aluminium

oxide found in other experiments. The standard deviation of the model results are less than half of
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Table 5.1: Permittivity of alumina: results from this study (spherical particle shapes) compared to results
in the literature

Source εi
(Young and Frederikse, 1973) 9.34
(Gershon et al., 2001) 8.82, 9.22
(Rajab et al., 2008) 9.164, 9.424
(Tuhkala et al., 2013) 9.8

Model Mixing Avg εi 9.07
Classical Mixing Avg εi 8.15

Model Mixing STDEV, σ 0.199
Classical Mixing STDEV, σ 0.538

the standard deviation of the classical mixing results and therefore show more consistency in the

calculated permittivity.

5.7 Conclusion

Air gap correction is well characterized for measurements of permittivity for solid samples using the

transmission line method. Currently, no such correction exists to address the increased porosity at

boundaries of a sample holder when measuring permittivity of granular samples, nor is magnitude

of the systematic error possible by these boundary effects understood. Applying constraints on the

porosity and extent of this boundary region allows mixing equations to be used to represent the

volume of the sample holder as a series of layered capacitors so the same air gap correction may be

applied. This method shows an increase in accuracy when correcting measurements of the permit-

tivity of powdered aluminium oxide compared with a classical mixing approach. The magnitude

of the differences between our model approach and classical mixing increases with increasing grain

sizes. Our model highlights the large source of error introduced in measurements of powders using

the transmission line method at the boundaries of the sample holder. The boundary conditions

discussed are even more pronounced for granular materials with a high permittivity and should

be taken into consideration for more accurate modelling. By improving non-destructive electrical

measurement techniques for powders we are establishing a method that can be applied to samples

returned from missions to asteroids such as NASA’s OSIRIS-REx mission and JAXA’s Hayabusa2

mission. These ground-truth measurements combined with measurements from asteroid analogues

will help to constrain the dielectric properties of the broader asteroid population and improve the

interpretation of radar observations.
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5.9 Appendix

The results of our study are dependent on the choice of mixing equation used in calculating the

permittivity of alumina from experimental data in both the classical mixing and model mixing

scenarios (Figure 5.4). The most realistic results were attained through the use of the Bruggeman

Symmetric formula as is discussed at length in this paper. For comparison, the result of our model

used with several other mixing equations is given here. The data are presented as a function of

sample grain size for comparison with Figure 5.5. It is worth noting that the Looyenga-Landau-

Lifshitz equation gave similar results to the Bruggeman equation, however does not consider particle

shape and therefore was not used for discussion.

5.9.1 Maxwell Garnett

Otherwise known as Clausius-Mossotti, Lorenz-Lorenz, Rayleigh Mixing Formula (Sihvola, 1999;

Maxwell Garnett, 1904)

εeff = εe + 3fεe
εi − εe

εi + 2εe − f(εi − εe)

5.9.2 Inverse Maxwell Garnett

Same equation as Maxwell Garnett with variable changes: Sihvola (1999)

εe → εi

εi → εe

f → 1− f

135



Figure 5.9: Study Results (Figure 5.5) derived using the Maxwell-Garnett equation.

Figure 5.10: Study Results (Figure 5.5) derived using the Inverse Maxwell Garnett equation.
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5.9.3 Coherent Potential

(Sihvola, 1999)

εeff = εe + f(εi − εe)
3εeff

3εeff + (1− f)(εi − εe)

Figure 5.11: Study Results (Figure 5.5) derived using the Coherent Potential equation.

5.9.4 Lichtenecker

(Sihvola, 1999; Lichtenecker, 1926)

εeff = εfi ε
1−f
e

5.9.5 Looyenga

(Sihvola, 1999; Looyenga, 1965)

ε
1
3
eff = fε

1
3
i + (1− f)ε

1
3
e
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Figure 5.12: Study Results (Figure 5.5) derived using the Lichtenecker equation.

Figure 5.13: Study Results (Figure 5.5) derived using the Looyenga-Landau-Lifshitz equation.
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5.10 Summary

The above discussion highlighted the boundary effects in the coaxial airline during the measurement

of the permittivity of a powder sample and provided a model to account for these effects when

applying mixing theory. As was shown, the boundary effects are more pronounced for larger grain

sizes, which is why the average grain size of samples measured in the research presented in this

thesis was kept < 200 µm. Although the model showed good results with the aluminium oxide

dataset, the influence of PSD on the model was not tested. A broad PSD would imply that voids

between larger particles could be filled with smaller particles, and would change the local porosity.

This is an opportunity for future work to expand on that presented in this thesis. The boundary

conditions model is applied throughout the remainder of this thesis to the experimental results

obtained.
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Chapter 6

Permittivity Measurements and

Mixing Theory Analysis

6.1 Permittivity Measurement Results

The permittivity of each powdered sample was measured using the methodology described in chap-

ter 3, incrementally adding silica aerogel to the samples between measurements so that the mea-

surements spanned a range of porosities. Figures 6.1 - 6.7 show the complex permittivity measured

for each sample grouped by sample. In Figures 6.1 - 6.7 the data is plotted with errorbars every 25

data points, with the error calculated using the Type A and Type B uncertainty in permittivitycalc

(Boivin and Hickson, 2018). The Type A error for powder permittivity measurements described

in this thesis is only applicable for a set of permittivity measurements, and cannot be applied to

any one measurement. The effects of higher order modes in the measured data above the cutoff

frequency is minimal in the real part of the permittivity, but can be clearly identified in the loss

tangent measurements. In general the samples are low-loss with resonance spikes present in each

dataset, being more pronounced in the loss tangent. The lizardite and antigorite samples display

the highest loss tangents which is characteristic of their phyllosilicate mineralogy and structural

water in the form of a hydroxyl group (OH−). Due to the lack of significant relaxation peaks and

loss mechanisms at the frequencies measured, every sample except the aluminium oxide sample

is frequency independent (see section 6.1.1 for discussion of aluminium oxide dispersion). There

are some broader spikes in the loss tangent data (Figures 6.3 and 6.7) that are thought to be

the result of imperfect coaxial connections, washer placement, or minor calibration errors. The

real part of the permittivity is largely unaffected (within the plotted errorbars) by these errors.

Furthermore, these sources of error are accounted for in the Type A uncertainty for powder mea-

surements reported for the frequency-averaged permittivities of the powder samples as discussed in
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(a) Real part of the permittivity.

(b) Loss tangent.

Figure 6.1: Dataset of permittivity measurements of the aluminium oxide sample.
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(a) Real part of the permittivity.

(b) Loss tangent.

Figure 6.2: Dataset of permittivity measurements of the forsterite sample.
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(a) Real part of the permittivity.

(b) Loss tangent.

Figure 6.3: Dataset of permittivity measurements of the lizardite sample.
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(a) Real part of the permittivity.

(b) Loss tangent.

Figure 6.4: Dataset of permittivity measurements of the fayalite sample.
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(a) Real part of the permittivity.

(b) Loss tangent.

Figure 6.5: Dataset of permittivity measurements of the antigorite sample.
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(a) Real part of the permittivity.

(b) Loss tangent.

Figure 6.6: Dataset of permittivity measurements of the dolomite sample.
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(a) Real part of the permittivity.

(b) Loss tangent.

Figure 6.7: Dataset of permittivity measurements of the labradorite sample.
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section 3.9.2. It is difficult to eliminate all sources of measurement error for any one permittivity

measurement, let alone for a large set of data as is presented in this thesis. The analysis of the

data is focused on the real part of the permittivity by averaging across frequency and reporting the

Type A uncertainty for powder samples (section 3.9.2). The range in permittivities between mea-

surements of a given sample are a result of the differences in porosity of each sample measurement.

The frequency-averaged permittivity of each measurement was extracted from the datasets and

is considered representative of the permittivity of the measurement from 1 - 8.5 GHz (Tables 6.1

and 6.2, with the error reported as the Type A uncertainty for powder permittivity measurements

(section 3.9.2)). The Type A uncertainty for powder samples reported in Tables 6.1 and 6.2 is

different for each sample owing to the different sample properties, and describes the repeatability

of measurements for a given sample.

Table 6.1: Frequency-averaged permittivities, < ε
′

r >, of aluminium oxide, dolomite, and labradorite mea-
surements.

Sample Description Effective permittivity < ε
′
r > Bulk Density, ρbd (g/cm3)

Aluminium Oxide 3.78± 0.08 2.054± 0.002
Aluminium Oxide 3.73± 0.08 1.957± 0.002
Aluminium Oxide 3.54± 0.08 1.832± 0.002
Aluminium Oxide 3.46± 0.08 1.811± 0.002
Aluminium Oxide 3.45± 0.08 1.783± 0.002
Aluminium Oxide & silica aerogel 3.28± 0.08 1.774± 0.002
Aluminium Oxide & silica aerogel 3.22± 0.08 1.758± 0.002
Aluminium Oxide & silica aerogel 3.22± 0.08 1.731± 0.002
Aluminium Oxide & silica aerogel 3.20± 0.08 1.713± 0.002
Aluminium Oxide & silica aerogel 3.09± 0.08 1.619± 0.002
Aluminium Oxide & silica aerogel 3.01± 0.08 1.566± 0.001
Dolomite 4.2± 0.3 1.961± 0.002
Dolomite 4.2± 0.3 1.922± 0.002
Dolomite 4.0± 0.3 1.867± 0.002
Dolomite 3.9± 0.3 1.805± 0.002
Dolomite & silica aerogel 3.6± 0.3 1.719± 0.002
Dolomite & silica aerogel 3.4± 0.3 1.600± 0.002
Dolomite & silica aerogel 3.1± 0.3 1.456± 0.001
Labradorite 3.45± 0.09 1.726± 0.002
Labradorite 3.43± 0.09 1.700± 0.002
Labradorite 3.37± 0.09 1.677± 0.002
Labradorite & silica aerogel 3.16± 0.09 1.587± 0.002
Labradorite & silica aerogel 2.97± 0.09 1.486± 0.001
Labradorite & silica aerogel 2.93± 0.09 1.468± 0.001
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Table 6.2: Frequency-averaged permittivities, < ε
′

r >, of forsterite, fayalite, and antigorite measurements

Sample Description Effective permittivity < ε
′
r > Bulk Density, ρbd (g/cm3)

Forsterite 3.08± 0.01 1.743± 0.002
Forsterite 3.04± 0.01 1.724± 0.002
Forsterite 2.99± 0.01 1.698± 0.002
Forsterite & silica aerogel 2.88± 0.01 1.638± 0.002
Forsterite & silica aerogel 2.73± 0.01 1.553± 0.001
Forsterite & silica aerogel 2.70± 0.01 1.518± 0.001
Forsterite & silica aerogel 2.51± 0.01 1.393± 0.001
Fayalite & silica aerogel 2.49± 0.01 1.587± 0.002
Fayalite & silica aerogel 2.46± 0.01 1.566± 0.001
Fayalite & silica aerogel 2.41± 0.01 1.525± 0.001
Fayalite 2.38± 0.01 1.488± 0.001
Fayalite* 2.35± 0.01 1.469± 0.001
Antigorite 3.00± 0.03 1.562± 0.001
Antigorite 3.00± 0.03 1.537± 0.001
Antigorite 2.89± 0.03 1.505± 0.001
Antigorite 2.76± 0.03 1.423± 0.001
Antigorite & silica aerogel 2.57± 0.03 1.274± 0.001
Lizardite & silica aerogel 2.92± 0.06 1.451± 0.001
Lizardite & silica aerogel 2.34± 0.06 1.138± 0.001
Lizardite & silica aerogel 2.27± 0.06 1.100± 0.001
Lizardite & silica aerogel 2.19± 0.06 1.062± 0.001

*Sample prior to oxidation

6.1.1 Aluminium Oxide Dispersion

The permittivity measurement dataset for the aluminium oxide sample shows the most significant

dispersion with a broad relaxation peak visually identifiable in the loss tangent (Figure 6.1). One

measurement, however, does not contain this relaxation peak and displays the low loss behaviour

that is expected of aluminium oxide. At first, this discrepancy was attributed to water retention

in the samples; however, this did not seem likely since the samples for measurements showing the

relaxation peak were oven dried at 250° C and were measured in the environment chamber. In fur-

ther contradiction to this hypothesis, the sample measurement that does not show the relaxation

peak was oven dried at 115° C. If water is responsible for the relaxation, the dispersion behaviour

should be reversed (assuming water would more likely be left in the sample if dried at a lower

temperature) for these samples. A simple experiment to test if water was responsible for the relax-

ation peak was performed. A 76 µm average grain size aluminium oxide sample was oven dried at

250° C for 36 hours and its permittivity was measured under ambient conditions. Another 76 µm

average grain size aluminium oxide sample from the same overall sample batch was not oven dried,
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and its permittivity was measured under the same conditions and for the same calibration. The

results of these measurements are shown in Figures 6.8 and 6.9. In Figure 6.8, the sample that

(a) Real part of the permittivity.

(b) Loss tangent.

Figure 6.8: Permittivity measurements of two 76 µm average grain size aluminium oxide, one oven dried at
250° C and the other not oven dried.

was oven dried at 250° C shows the relaxation peak and the sample that was not oven dried shows
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(a) Real part of the permittivity.

(b) Loss tangent.

Figure 6.9: Permittivity measurements of two 76 µm average grain size aluminium oxide, one oven dried at
250° C and the other not oven dried. Data normalized to a bulk density of ρbd = 1.60 g/cm3 using the fitted
LLL equation.
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no relaxation peak. The relaxation peak is most likely not a result of water, since the sample that

was oven dried at 250° C is assumed to have retained less water in the sample than the sample that

was not oven dried. Instead, this seems to be the result of some alteration of the aluminium oxide

sample that is occurring when heated. Courtney (1970) measured the loss tangent of hot-pressed

alumina (aluminium oxide) and observed an increase with temperature up to 130° C, although the

frequency of measurement for this observation was not specified. Geyer (1990) discussed observed

increases in the loss tangent of alumina above 450° C at 1 MHz, although this frequency is well

below the relaxation observed in the current data. Krupka et al. (1998) measured an increase in

the loss tangent of alumina with temperature up to 150° C at 7.53 GHz. Westphal and Sils (1972)

measured the loss tangent of various forms of alumina and observed a broad relaxation peak around

10 GHz at temperatures from 25° − 350° C. Tallan and Detwiler (1963) measured anomalous dis-

persion in permittivity measurements of single crystal sapphire (aluminium oxide) at temperatures

greater than 200° C and frequencies below 104 Hz. The authors attribute the relaxation to inter-

facial polarization caused by the estimated 10 µm thick electrical double layer at the crystal surface.

In regards to the current research, the sample that was oven dried at 250° C was measured when

the sample had been out of the oven for 2 hours (no water was re-adsorbed by the sample as it

was filled into the coaxial airline and left on the mass balance to observe any mass change over this

time) and re-equilibrated to room temperature. An increase in the loss tangent with increasing

temperature is fairly standard for materials; however, in the case of the current measurement the

sample was at room temperature. The interfacial polarization observed by Tallan and Detwiler

(1963) in their measurements occurs at much lower frequencies than the observed relaxation in the

current research. It is unsure as to the physical mechanism responsible for the observed relaxation

peak in the permittivity measurements of aluminium oxide. It is possible that some sort of phase

transition between alumina polymorphs occurred, although this does not seem likely at such a low

temperature. Figure 6.9 shows the data from Figure 6.8 normalized to a bulk density of 1.60 g/cm3.

In Figure 6.9 the high frequency data (real part) for either sample is in good agreement, indicating

that the relaxation is not significantly affecting the real part of the permittivity that is of interest

to the mixing analysis. The frequency-averaged permittivities for the normalized (to a bulk density

of 1.60 g/cm3 using the optimized LLL equation) measurements are < ε
′
r >= 3.10 ± 0.08 and

< ε
′
r >= 3.05 ± 0.08 for the sample oven dried at 250° C and not dried respectively. These

permittivities are equivalent to each other within the Type A uncertainty for powder samples
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calculated for the frequency-averaged permittivities of the aluminium oxide sample. Based on this,

the real part of the permittivity measured for the aluminium oxide samples that show the relaxation

peak is considered equivalent to that measured for aluminium oxide samples that do not show the

relaxation peak. The dispersive aluminium oxide measurements are fit (using the Python package

LMFIT (Newville et al., 2014)) with the Havriliak-Negami and Cole-Cole relaxation models in

Figures 6.10 and 6.11. The fitting parameters for these models are given in Table 6.3.

Table 6.3: Fitting parameters for Havriliak-Negami and Cole-Cole model fits to aluminium oxide data from
Figures 6.10 and 6.11 (Maximum value of τ = 5.0 × 10−7 s applied). Note the samples were measured at
different bulk densities.

Havriliak-Negami Model Cole-Cole Model

Fitting Parameter Oven Baked 250° C Oven Baked 115° C Oven Baked 250° C Oven Baked 115° C

ε
′
r,s 3.332 4.240 3.384 4.241

ε
′
r,∞ 2.795 3.362 2.937 3.362

τ 7.261× 10−10 s 4.983× 10−7 s 1.166× 10−10 s 5.000× 10−07 s
α 0.846 0.214 0.501 0.214
β 0.222 1 - -

The Havriliak-Negami (HN) model fit the data better than the Cole-Cole (CC) model (lower root-

mean-square-error, RMSE), although the frequency of the relaxation peak in the CC model, f =

1.36 GHz, matches the observed peak better. The data used to fit these models is not the same

as in Figure 6.8, but is instead permittivity measurements of aluminium oxide samples that were

heated at 250° C and 115° C and measured in the environment chamber. The relaxation peak was

generally not seen in any aluminium oxide measurements heated at 115° C, unless that sample had

experienced prolonged exposure at this temperature.

6.2 Fitting mixing theories to data

Tables 6.1 and 6.2 list the frequency-averaged measured (effective, since the sample is considered

a mixture) permittivity of each sample at different bulk densities. This data is plotted in Figure

6.12 as a function of bulk density, and in Figure 6.13 as a function of volume fraction of powder

(1 - porosity, or 1 − φ), where the measured grain density of a given sample is used to convert

between bulk density and volume fraction. The grouping of the sample datasets relative to one

another changes when viewed as a function of bulk density and volume fraction. The lizardite and

antigorite datasets plot close to one another in both cases, as would be expected since they are

mineral polymorphs with similar chemical compositions and grain densities. The functional form
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(a) Real part of the permittivity.

(b) Loss tangent.

Figure 6.10: Permittivity measurements of two 76 µm average grain size aluminium oxide, one oven dried
at 250° C and the other oven dried at 115° C fitted with the Havriliak-Negami relaxation model (Maximum
value of τ = 5.0× 10−7 s applied).
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(a) Real part of the permittivity.

(b) Loss tangent.

Figure 6.11: Permittivity measurements of two 76 µm average grain size aluminium oxide, one oven dried at
250° C and the other oven dried at 115° C fitted with the Cole-Cole relaxation model.
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Figure 6.12: Frequency-averaged permittivity as a function of bulk density.

Figure 6.13: Frequency-averaged permittivity as a function of volume fraction (1− φ).
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of each of the two-phase mixing equations from Table 2.1 is bounded by the permittivities of each

mixture phase and their relative proportions. For powder permittivity measurements one phase is

air with a permittivity of 1. The porosity, and therefore also the volume fraction of powder sample,

is known for each permittivity measurement through the measured bulk density and grain density

of the sample. As a result there is only one free parameter with which to fit a mixing model to

powder measurements of a given sample, which is the permittivity of individual grains, or the solid

permittivity, of that sample. A non-linear least squares regression was performed of each sample

dataset for each mixing equation to determine the solid permittivity that provides the best fit for

that mixing model. The Python package LMFIT, utilizing the Levenberg-Marquadt method, was

used to do this (Newville et al., 2014). It was found that almost any mixing model could fit the

powder permittivity measurements, as long as the solid permittivity of the sample was derived

through least squares regression analysis. Figure 6.14 shows the result of applying this regression

analysis for each mixing equation to the fayalite and aluminium oxide datasets. The goodness of

the fits can be judged by the RMSE between the predicted and observed (measured) permittivity,

and was generally constant across all fitted mixing models for all samples. This fact highlights the

ambiguity of numerous studies in experimentally verifying mixing theories, since any mixing theory

has the potential to fit a set of data. Another metric besides the goodness of fit of a mixing model

is thus required to compare the accuracy of the different models.

6.3 Comparison to the literature

The free parameter that was optimized in the regression for each mixing model was the solid

permittivity assumed for a given sample. This provides a metric with which to compare the

accuracy of each fitted mixing model. If a mixing model is fitted to a sample dataset with a solid

permittivity that is physically unrealistic for that sample, the model is then also unrealistic and

inaccurate in describing the mixing behaviour of that sample. To compare the accuracy of each

mixing model it is then necessary to know what the solid permittivity of each sample is. The data

presented in Tables 6.4 - 6.9 summarize the results of dielectric experiments in the literature on solid

samples (single crystal, or densified samples) that are the closest match to the samples used in the

current research. If the papers presented numerous measurements of the same sample, either the

average of the measurements were taken or the measurement corresponding to the purest sample, or

sample with a composition closest to those in this research, was chosen. The measurement method
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(a) Fayalite dataset.

(b) Aluminium oxide dataset.

Figure 6.14: Regression of mixing models for fayalite and aluminium oxide datasets. The data points are
the frequency-averaged permittivity, < ε

′

r >, for each measurement.
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is listed in Tables 6.4 - 6.9 if provided in the study.

Table 6.4: Solid aluminium oxide permittivity measurements from the literature.

Aluminium Oxide

Reference ε
′
r Frequency Method

(Young and Frederikse, 1973) 10.44 10 Hz - 8 GHz -
(von Hippel, 1954) 9.58 10 Hz - 300 MHz -
(Carmichael, 1982) 12.1 Radio -
(Gershon et al., 2001) 9.02 1 - 4 GHz Resonant Cavity
(Rajab et al., 2008) 9.424 17 GHz Resonant Cavity
(Robertson, 2000) 9 - -
(Tuhkala et al., 2013) 9.8 4.5 GHz Open Ended Coaxial Resonator
(Bussey et al., 1964) 9.42 8.6 - 9.2 GHz Waveguide/Resonator1

(Penn et al., 1997) 9.5 10 GHz Resonant Cavity
(Webb and Church, 1986) 9.1 100 MHz - 1 GHz Coaxial liquid immersion
(Olhoeft, 1981) 12.6 1 MHz -
(Olhoeft, 1981) 9.2 1 MHz 3-Terminal Sample Holder
(Krupka et al., 1998) 10.1 5.4 - 7.53 GHz Resonant Cavity
(Courtney, 1970) 9.74 9.905 - 12.223 GHz Dielectric Post Resonator
(Westphal and Sils, 1972) 10.07 3 GHz -
(Church et al., 1988) 9.81 915 MHz Coaxial Liquid Immersion
(Sharif, 1995) 12.66 10 GHz Waveguide Transmission Line
(Plaßmann and Schulz, 2009) 9.8 - -
(Rosenholtz and Smith, 1936) 5.35 60 Hz -
(Fontanella et al., 1974) 10.154 1 GHz Capacitance Bridge
1Short Circuited Waveguide, Resonant Cavity, H011 Resonator

Table 6.5: Solid dolomite permittivity measurements from the literature.

Dolomite

Reference ε
′
r Frequency Method

(Fensler et al., 1962)1 9.84 420 MHz - 1.8 GHz Waveguide
(Bapna and Joshi, 2013)2 4.18 8.8 - 12.2 GHz Waveguide
(Sengwa and Soni, 2005)2 6.86 10.1 GHz Waveguide
(Olhoeft, 1981)3 7.3 1 MHz 3-Terminal Sample Holder
(Olhoeft, 1981) 7.4 1 MHz 3-Terminal Sample Holder
(Church et al., 1988) 7.26 915 MHz Coaxial Liquid Immersion
(Pervin, 2015) 6.63 10 MHz - 3 GHz Coaxial Probe
(Shen et al., 1985)4 6.82 0.8 - 1.2 GHz Coaxial Transmission Line
(Rosenholtz and Smith, 1936) 8.45 60 Hz -
(Ulaby et al., 1988) 6.67 1 - 16 GHz Resonant Cavity
(Carmichael, 1982) 7.4 - -
1 White Marble
2 White Marble (high Mg content)
3 Marble Dolomitic
4 Dolomite with 5.9 - 6.6% porosity
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Table 6.6: Solid fayalite permittivity measurements from the literature.

Fayalite

Reference ε
′
r Frequency Method

(Geyer, 1990) 5.77 10 GHz -
(Shannon et al., 1991) 8.77 1 MHz Parallel Plate Capacitor
(Olhoeft, 1981) 6.8 1 MHz 3-Terminal Sample Holder
(Takei, 1978) 10.35 1 MHz -
(Suwa, 1964) 14.65 1 MHz -
(Xiao, 1985) 12.33 9.4 GHz -

Table 6.7: Solid forsterite permittivity measurements from the literature.

Forsterite

Reference ε
′
r Frequency Method

(Shannon et al., 1991)1 7.27 1 MHz Parallel Plate Capacitor
(Davis et al., 1988)2 8.12 600 kHz Impedance Analyzer
(Cygan and Lasaga, 1986)3 7.26 1 MHz Capacitance Bridge
(Ghosh and Das, 1979) 6.5 100 kHz - 25 MHz -
(Shannon, 1990) 7.00 - -
(Saint-Amant, 1968)4 6.4 high frequency limit -
(Saint-Amant and Strangway, 1970)4 8.2 1 MHz Capacitance Bridge
(Rosenholtz and Smith, 1936)5 6.77 60 Hz -
(Ulaby et al., 1988)4 6.10 1 - 16 GHz Resonant Cavity
(Campbell and Ulrichs, 1969)4 6.15 450 MHz, 35 GHz Waveguide/Resonant Cavity
(Olhoeft, 1981)5 7.3 1 MHz 3-Terminal Sample Holder
(Olhoeft, 1981) 6.8 1 MHz -
(Xiao, 1985)5 8.36 9.4 GHz -
1 Mg1.80Fe0.22SiO4
2 Mg1.86Fe0.14SiO4
3 Synthetic
4 Dunite
5 Olivine

Table 6.8: Solid labradorite permittivity measurements from the literature.

Labradorite

Reference ε
′
r Frequency Method

(Rosenholtz and Smith, 1936) 6.98 60 Hz -
(Olhoeft, 1981) 6.57 1 MHz 3-Terminal Sample Holder
(Zheng et al., 2005)1 6.21 9.37 GHz Resonant Cavity
1 Anorthosite

160



Table 6.9: Solid serpentine permittivity measurements from the literature. There were not enough experi-
ments found differentiating between the types of serpentine, and so the analysis of the lizardite and antigorite
samples was combined.

Serpentine (Lizardite/Antigorite)

Reference ε
′
r Frequency Method

(Rosenholtz and Smith, 1936) 11.48 60 Hz -
(Campbell and Ulrichs, 1969) 6.55 450 MHz, 35 GHz Waveguide/Resonant Cavity
(Telford et al., 1990) 6.6 > 100 MHz -
(Olhoeft, 1981) 12.87 1 MHz 3-Terminal Sample Holder

The averaging of multiple measurements from a given study is important especially for single crys-

tal measurements, since the crystal orientation will affect the measured permittivity (anisotropy).

For a particulate sample, it is assumed that the average crystal grain orientation is random, and

that the effective single crystal solid permittivity will then be an average of the values for various

orientations. Some samples, like aluminium oxide, have many measurements in the literature of

standard materials, whereas other natural samples, like labradorite, lizardite and antigorite, have

fewer measurements that are of samples with varying composition. Further complicating the matter

is that the literature measurements span a range of frequencies. The permittivity measurements

presented in this thesis showed little to no dispersion, indicating that this frequency bias is min-

imized. The moisture content was not constant across all experiments from the literature and

may have a significant impact on the measurements, especially for the serpentine samples and for

measurements at lower frequencies where interfacial polarization can occur. The methodology and

accuracy across the experiments is also varied, in part owing to the historical and technological

context of each study.

Considering these biases in the literature measurements, a direct comparison with the solid per-

mittivity values derived through the mixing analysis should be done carefully. To facilitate this

comparison, the mean, < ε
′
r > (this is the same symbol as the frequency-averaged measured per-

mittivity for the samples; in either case the angled brackets are denoting an average), and standard

deviation, S<ε′r>
, were calculated from the literature measurements for each sample. The Student’s

t-distribution 95% confidence interval, t0.05,n−1

S
<ε
′
r>√
n

, for each mean was then calculated in order

to account for smaller datasets. Here t0.05,n−1 is the t-value for 95% confidence and n− 1 degrees

of freedom, where n is the number of literature measurements for a given sample. This confidence

interval was then used as the error for the mean permittivity value calculated from the literature
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measurements for a given sample, so that the mean value is calculated as: < ε
′
r > ± t0.05,n−1

S
<ε
′
r>√
n

.

The mean permittivity value and associated error calculated from the literature measurements for

each sample used in this research is summarized in Table 6.10. The values in Table 6.10 can now

Table 6.10: Mean solid permittivity from the literature with t-distribution 95% confidence intervals.

Sample < ε
′
r > t0.05,n−1

S
<ε
′
r>√
n

Aluminium Oxide 9.84 ± 0.71
Dolomite 7.16 ± 0.92
Fayalite 9.78 ± 3.53
Forsterite 7.09 ± 0.46
Labradorite 6.59 ± 0.96
Serpentine 9.38 ± 5.22

be compared with the solid permittivities resulting from the mixing regression of the powder per-

mittivity measurements presented in this thesis. The same regression analysis from Figure 6.14 is

plotted in Figure 6.15 along with the mean solid permittivity from the literature. The large un-

certainty in the mean solid permittivity from the literature for the fayalite sample (Figure 6.15(a))

makes it difficult to compare the accuracies of the mixing equations. The lower uncertainty for

the aluminium oxide sample (Figure 6.15(b)) makes this comparison easier, and it can clearly be

seen that the LLL and BG theories model the dataset with the most accurate solid permittivity.

The RMSE between the solid permittivities resulting from regression analysis and the mean solid

permittivities from the literature provides a way of quantifying the accuracy of each mixing theory.

A weighted RMSE (WRMSE) was applied instead, so that the mean values with lower uncertainty

are weighted higher using the uncertainty in the mean solid permittivity from the literature as

weights:

WRMSE =

√√√√ N∑
i=1

wi(< ε′ri > −ε̂
′
r)

2 (6.1)

In equation (6.1), < ε
′
ri > is the mean solid permittivity from the literature of the ith sample, ε̂′ri is

the solid permittivity of the ith sample derived for a given mixing equation by fitting the equation

to the sample dataset, N is the total number of different samples, and wi is the weight of the

ith sample. The weight for a given sample is the inverse of the squared uncertainty in the mean,

wi = 1/(t0.05,n−1

S
<ε
′
ri
>

√
n

)2, where the 95% confidence interval is converted to a percentage of the

mean (similar results are obtained if the denominator isn’t squared). The weights are normalized so
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(a) Fayalite dataset

(b) Aluminium oxide dataset

Figure 6.15: Regression of mixing models for fayalite and aluminium oxide datasets. Mean solid permittivity
from the literature measurements are plotted at 100% volume fraction (ideal zero porosity) with the t-
distribution 95% confidence intervals as error bars.The data points are the frequency-averaged permittivity,
< ε

′

r >, for each measurement.

163



that
∑N

i=1wi = 1. The WRMSE between the solid permittivity mixing model predictions and mean

literature values is shown in Figure 6.16, where each mixing model is applied both with and without

coaxial boundary conditions applied (chapter 5). Consideration of the boundary conditions in the

Figure 6.16: WRMSE (equation (6.1)) for each mixing theory prediction compared with literature values
across all samples.

mixing modelling increases the solid permittivity required for a given mixing model to fit a dataset

because the increased porosity at the sample/conductor interface is taken into account. As a result,

models that generally over-predicted the solid permittivity when compared to the mean literature

values show an increase of WRMSE when boundary conditions are considered, and models that

under-predicted show a decrease of WRMSE. Figure 6.16 shows the LLL and BG equations to

have the lowest WRMSE across all samples and are therefore the most accurate models for these

samples. This is consistent with the literature review in chapter 2 on the application of mixing

theory presented in Tables 2.2 - 2.4, where 56% of studies on dry materials in the GHz range found

the LLL and BG models to describe their data best. The permittivity contrast between mixture

phases for all of the powder measurements presented in this thesis was εi
εe
< 10, and the range of

volume fractions of solid inclusions was roughly 0.3 - 0.7. These parameters are consistent with the

theoretical assumptions of the LLL and BG mixing models. For dry, particulate minerals, the LLL

and BG mixing models most accurately describe the change in the real part of the permittivity

across all porosities, up to the solid grain density of a given mineral.
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6.3.1 Comparison to Resonant Cavity Measurements

The permittivity of the solid dolomite and labradorite samples was measured in a split cylinder

resonator by Brian Tsai prior to the incorporation of either sample into this research. For these

measurements, the sample is machined to a flat surface (shape doesn’t matter, only size) roughly

1 mm in width and is placed between two cylinder halves. The sample displaces the characteristic

resonant frequency of the resonator and the complex permittivity of the sample is calculated from

the the shift in frequency. The samples were prepared using an Isomet 4000 Linear Precision Saw

and polished with sand paper of increasing grading from 180 - 600 grit to ensure the sides of the

sample were as smooth as possible. The samples had to be cut in stages using the saw, result-

ing in non-uniform topography. To account for this, the dolomite and labradorite samples were

each measured five times in the resonator at different orientations. The uneven sample surfaces

caused the displacement between the two cylinder halves to vary between measurements. The av-

erage thickness of the dolomite and labradorite sample was 1.42 ± 0.03 mm and 2.47 ± 0.02 mm

respectively. The average of the five permittivity measurements for each sample was 4.85 ± 0.09

and 5.66± 0.06. The dolomite sample showed a distinct wedge shape, introducing visible air gaps

between the cylinder halves and increasing the standard deviation in the measured thickness and

permittivity. The labradorite sample was more even throughout and about 1 mm thicker. Air gaps

for the thinner dolomite sample therefore impacted the measurement more than for the labradorite

sample, as the range in measured thicknesses was roughly 5.6% of the average sample thickness,

compared with just 2% for the labradorite sample. Although the standard deviation of the sample

thickness is incorporated into the error analysis for the measured permittivity, the effects of the

relative amount of air and sample between the cylinder halves is not considered, and so the error

in the measured permittivity of the samples is greater than reported, especially for the dolomite

sample.

The labradorite sample measured permittivity of 5.66±0.06 is in agreement with the literature value

of 6.59± 0.96, whereas the dolomite sample measured permittivity of 4.85± 0.09 is not consistent

with the literature value of 7.16 ± 0.92. It is likely that the measurement of the solid dolomite

permittivity was significantly affected by air gaps, which lowered the measured permittivity. The

resonant cavity permittivity measurement of the solid labradorite sample is plotted along with

the powder measurements and mean literature value in Figure 6.17. Since the resonant cavity
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Figure 6.17: Regression of mixing models for labradorite dataset compared with mean literature value and
resonant cavity solid sample measurement from Brian Tsai.

measurement is of the same labradorite sample as the powder measurements, the resonant cavity

measurement is a better representation of the solid permittivity for the labradorite sample than the

mean literature value, which averages measurements from a range in labradorite compositions. The

permittivity contrast in the powder mixture is relatively low, and so the mixing model predictions

are closer together than for higher contrast mixtures. The BG mixing model predicts a solid

permittivity for the labradorite sample of 5.70 (5.79 when coaxial boundary conditions applied),

within 0.71% of the resonant cavity measurement (2.3% with coaxial boundary conditions). The

LLL, SSC, CP, CRIM, and IMG predictions are all within 3-5% of the resonant cavity measurement.

6.4 Modelling Permittivity of Solid Mineral Samples (Solid Per-

mittivity)

The correlation of the permittivity of a dry geologic powder (or any substance) with porosity

has been identified by many researchers. The previous section described how this correlation can

be modelled accurately using the LLL and BG equations and an appropriate value for the solid

permittivity of a given material. The variation of the solid permittivity between different minerals

is not as well studied. Chemical composition has been proposed as a mechanism controlling the
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loss tangents of minerals, although this correlation has not been extensively studied (Olhoeft and

Strangway, 1975). It was found in the current research that the solid permittivities required to

fit the sample datasets for a given mixing equation correlated well with the grain density of the

samples. Figure 6.18 shows the solid permittivities resulting from fitting the BG equation to the

sample datasets plotted as a function of the grain densities of each sample. The data in Figure

6.18 is fit well by a linear equation with an intercept of 1, corresponding to a permittivity of 1 at

zero density, or ideal vacuum. The same analysis as in Figure 6.18 for almost every other mixing

Figure 6.18: Solid permittivities used to fit the BG mixing model (with boundary conditions) to the sample
permittivity measurements plotted against the grain density of each sample. The data is fitted with a linear
model.

equation resulted in a similar linear correlation between solid permittivity and grain density. Figure

6.19 shows the Pearson correlation coefficient (R2) calculated for the best linear fit (constrained

to have an intercept of 1) through the solid permittivities used for each mixing model fit to the

sample datasets. The linear correlation is relatively strong for each mixing equation, but is the

strongest for the BG equation. This has some implications for understanding the solid permittivity

of minerals since the BG equation was shown to fit the sample datasets with the most accurate

solid permittivities. The equation for the line that fits the solid permittivities resulting from the

BG (boundary corrected) fit to the sample dataset is ε
′
r = 1.85ρs + 1. This turns out to be exactly

the same in the case of the LLL (boundary corrected) fit, which is not surprising given the similar
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Figure 6.19: Pearson correlation coefficient for linear fits derived from solid permittivities used for each
mixing model (with and without boundary conditions applied).

behaviour of the two models. This equation is similar to the model fit from Ulaby et al. (1988),

where the linear equation ε
′
r = 1.86ρs + 1 was found to model measurements of 80 rock samples in

resonant cavities from 1 - 16 GHz well. Ulaby et al. (1988) found their data to be modelled just as

well using a slightly altered version of the Olhoeft and Strangway (1975) empirical model. In the

current research, it was found that when plotting the measurements from Ulaby et al. (1988) over

the BG solid permittivity values, the measurements of metamorphic and igneous rocks matched well

with the linear fit and the measurements of sedimentary rocks plotted below the linear fit, closer

to the measurements of the powder samples presented in this thesis (Figure 6.20). It is reasonable

to assume that the sedimentary rocks used in Ulaby et al. (1988) had substantial porosity, causing

their measured permittivity to be more similar to powdered mineral samples than to solid mineral

samples. The metamorphic and igneous rock samples had less porosity and behaved similar to the

BG predicted solid permittivity of the samples presented in this thesis. This analysis implies that

the dielectric behaviour of geologic materials is different for low and high porosity regimes. In this

view, to predict the permittivity of some solid mineral, the linear equation ε
′
r = 1.85ρs + 1 should

be used, and to then predict the permittivity of some powder of that mineral, the BG or LLL

equations should be used to extrapolate from that solid permittivity to the effective permittivity

at the porosity of that powder. The linear equation used to predict solid permittivities is entirely
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Figure 6.20: Solid permittivities used to fit the BG mixing model (with boundary conditions) to the sample
permittivity measurements compared with the sample permittivity measurements and results from Ulaby
et al. (1988) separated by rock type.

empirical, unlike the application of mixing theory applied to the powder permittivities. Intuitively,

the denser the rock, the more atoms, ions, and molecules available in a given volume with which

to be polarized, and therefore the greater the potential for polarizability.

6.4.1 Additivity Rule of Ionic/Molecular Polarizability

It is intuitive that the properties of a molecule are a function of the properties of the atoms and

ions that make up that molecule. Additivity rules apply to some of these properties, such as mass,

stating that the molecular property is the additive properties of the atoms and ions contained in

that molecule. The additivity rule of molecular polarizabilities (ARMP) is a theory stating that

the molecular (dielectric) polarizability, αD, of a complex substance can be determined by the

additive dielectric polarizabilities of fundamental molecular constituents (Shannon, 1993; Cygan

and Lasaga, 1986; Tuhkala et al., 2017; Blair and Thakkar, 2014):

αD(M2M
′X4) = 2αD(MX) + αD(M ′X2) (6.2)

The additivity of molecular properties, or in this case polarizability, can be extended further, where

these simpler molecular compounds (and thus the more complex substances) can be described by

169



the polarizabilities of individual ions through the additivity rule of ionic polarizability (ARIP):

αD(M2M
′X4) = 2αD(M2+) + αD(M ′4+) + 4αD(X=) (6.3)

Using measurements from the literature of the real part of the permittivity and molecular volume for

129 oxides and 25 fluorides, Shannon (1993) used the ARIP and Clausius-Mossotti (CM, equation

(2.15)) theories to derive the polarizabilities of 61 ions through least squares regression (Figure

6.21). Ionic polarizability is typically correlated with ionic radii and atomic number, as electrons

Figure 6.21: Ionic polarizabilities (Å3) derived in Shannon (1993).

farther from the atomic nucleus are less tightly bound. The permittivities of the solid mineral

samples (or solid permittivities of the mineral samples) in this research were calculated using the

ionic dielectric polarizabilities from Shannon (1993), the ARIP and CM equations, and the chemical

composition of the minerals from Table 4.2. The (unit) crystal volumes for each mineral were taken

from Gaines et al. (1997). Figure 6.22a) shows the results of the solid permittivities calculated this

way compared with the mean values from the literature. Within the error bars for the mean values

from the literature, the ARIP/CM predictions are generally consistent with the literature. Although

the error bars are large for some samples (serpentine and fayalite), the ARIP/CM predictions

assume a pure mineral composition, which is generally not true of the samples in this research.

This discrepancy is not accounted for in the error bars for the ARIP/CM predictions (error bars

calculated from propagated uncertainty in ionic polarizabilities from Shannon (1993)). The solid

permittivities for the samples resulting from the LLL fit to the sample datasets is compared with

the mean values from the literature in Figure 6.22b). Figures 6.22a) and 6.22b) show that the LLL
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a) b)

c)

Figure 6.22: a) Solid permittivities for the samples predicted using the theoretical ARIP and CM models
(ARIP/CM Predictions) compared to the mean values from the literature (Literature Values). b) Solid
permittivities for the samples predicted by the LLL fit to the sample permittivity measurements (LLL Mixing
Predictions) compared to the mean values from the literature (Literature Values). The error bars for the
mixing predictions are the WRMSE for the LLL mixing model predictions compared with the mean literature
values. c) Solid permittivities for the samples predicted by the the ARIP and CM theories (ARIP/CM
Predictions) compared to the those predicted by the LLL fit to the sample permittivity measurements (LLL
Mixing Predictions). R2 = 0.87.
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mixing model predictions match closely with the ARIP/CM predictions for the solid permittivities

of the samples. Figure 6.22c) compares the ARIP/CM and LLL mixing predictions for the solid

permittivities of the samples, and shows that the two models are in excellent agreement with a

correlation of R2 = 0.87. Given the variable mineralogic composition within the samples used in

this research, the correspondence between the LLL mixing predictions, based on actual material

measurements, and the ARIP/CM predictions, based on theoretical pure mineral properties, is

exceptional.

6.5 Empirical Methods

The above results rely on knowing the mineralogical composition of a geologic powder in order to

predict the permittivity for that material. The Olhoeft and Strangway (1975) empirical equation for

the effective permittivity as a function of bulk density for a geologic material, ε
′
r = 1.93ρbd , requires

no a priori information about the composition of the material. This equation was derived from the

regression of permittivity measurements of lunar regolith samples, but has been shown to also be

valid in predicting the permittivity of terrestrial geologic samples (Ulaby et al., 1988; Campbell,

2002). Figure 6.23 shows the version of this equation from Ulaby et al. (1990), ε
′
r = 1.96ρbd , derived

through a regression of permittivity measurements of terrestrial geologic samples, plotted with the

permittivity measurements of the mineral powder samples from the current research (the Ulaby

et al. (1990) equation is used instead of the Olhoeft and Strangway (1975) equation since it was

derived from terrestrial samples, such as those used in the research presented in this thesis). Since

this equation was derived from regression of permittivity measurements of a range of minerals, it

is not surprising that it predicts an effective permittivity for the powder mineral samples that is

essentially an average of the actual measurements. If the mineral composition of a geologic powder

is unknown, this empirical model is therefore a good prediction for the permittivity of that powder.

As shown in Figure 6.14, any mixing model can be fit to a set of permittivity measurements.

The goodness of fit of the empirical model of Olhoeft and Strangway (1975) to lunar regolith

permittivity measurements, based on the LI mixing theory, should be the same for any other type

of empirical model based on a different mixing theory. One of the attractive features of the Olhoeft

and Strangway (1975) empirical equation is its simplicity. A similar empirical equation that predicts

the effective permittivity of a geologic powder from bulk density can be written according to the

LLL mixing theory:
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Figure 6.23: Ulaby et al. (1990) empirical equation, ε
′

r = 1.96ρbd , plotted with the frequency-averaged
mineral powder permittivity measurements, < ε

′

r >, from the current research.

ε
′
r = (ρbdα+ 1)3 (6.4)

α =
1

ρs
(ε1/3s − 1) (6.5)

In (6.5), εs refers to the real part of the solid permittivity of whatever mineral, or put another way,

the permittivity of whatever solid (single crystal) mineral the particular geologic sample is made

up of (and will throughout the remainder of this thesis). In the same way that the constant, a,

in the Olhoeft and Strangway (1975) empirical equation (ε
′
r = aρbd) is related to the LI mixing

theory according to a = ε
1/ρs
s , the constant α in equation (6.4) is related to the LLL mixing the-

ory according to equation (6.5). Figure 6.24 shows the results of fitting (using LMFIT (Newville

et al., 2014)) the Olhoeft and Strangway (1975) empirical equation (ε
′
r = aρbd), as well as fitting

equation (6.4), to the lunar regolith permittivity measurements compiled in Carrier et al. (1991).

The dataset in Carrier et al. (1991) is relatively large and spans permittivity measurements from

several different studies. The measurements from Carrier et al. (1991) used for the regression in

Figure 6.24 are restricted to only those measurements that were carried out in vacuum, so that it

can be certain that the permittivity measurements are truly representative of the samples. The
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Figure 6.24: Figure taken from Hickson et al. (2017a) εeff ≡ ε
′

r. Olhoeft and Strangway (1975) empirical

equation, ε
′

r = aρbd , and equation (6.4) fit to lunar regolith permittivity measurements from Carrier et al.
(1991).

measurements are also differentiated on the basis of which Apollo mission collected the regolith

samples used for a given permittivity measurement. The Olhoeft and Strangway (1975) empirical

equation fit the data with a value of a = 1.96 and an RMSE of 0.6723, whereas equation (6.4) fit

the data with a value of α = 0.307 and an RMSE of 0.6930. The goodness of fit of either equation,

based on the RMSE, is fairly equal. Carrier et al. (1991) suggest a value of ρs = 3.1 g/cm3 to

represent the average grain density of lunar regolith. At this grain density, the fit for the Olhoeft

and Strangway (1975) empirical equation (a = 1.96) corresponds to a solid permittivity of 8.11 for

the lunar regolith. Similarly, the fit for equation (6.4) corresponds to a solid permittivity of 7.42.

The mineralogy and composition of the lunar regolith across all of the samples used to derive these

numbers is varied, and so these empirical fits represent an average of these properties.

To isolate the influence of composition and mineralogy on the permittivity measurements of lunar

regolith from Carrier et al. (1991), the same regression as in Figure 6.24 was carried out separately

for the samples collected during the Apollo 15, 16, and 17 missions. Due to the smaller datasets,

all of the measurements for each mission were used in the regression, not just those taken in vac-

uum. Table 6.11 shows the results of the regression for the Olhoeft and Strangway (1975) empirical

equation, and for equation (6.4), as well as the average TiO2 and FeO weight percent oxides for

each sample from Carrier et al. (1991). The values for the constants a and α in Table 6.11 de-
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Table 6.11: Regression analysis of Apollo 15, 16, and 17 mission lunar regolith sample permittivity measure-
ments presented in Carrier et al. (1991).

NASA Apollo Mission ε
′
r = aρbd ε

′
r = (ρbdα+ 1)3 TiO2 wt. % FeO wt. %

Apollo 15 a = 1.89 α = 0.283 5.39 13.19
Apollo 16 a = 2.01 α = 0.310 0.6 4.90
Apollo 17 a = 1.90 α = 0.282 1.42 15.52

Table 6.12: Solid density (g/cm3) measurements of regolith samples returned in Apollo missions 15, 16, and
17 with references.

Apollo 15 Apollo 16 Apollo 17

3.24 (Carrier et al., 1991) 2.5 (Lin et al., 1992) 3.51 (Carrier et al., 1991)
3.0 (Carrier et al., 1991) 2.79 (Robens et al., 2007) 3.44 (Carrier et al., 1991)
3.1 (Carrier et al., 1991) 2.709 - 2.751 (Jeanloz and Ahrens, 1978) 3.07 (Carrier et al., 1991)

3.05 (Carrier et al., 1991)
Avg. = 3.11 Avg. = 2.69 Avg. = 3.27

rived through regression of the lunar regolith permittivity measurements show a correlation with

the average TiO2 and FeO concentrations in the samples. The regression results are similar for

Apollo missions 15 and 17, which have similar TiO2 and FeO concentrations, but not for Apollo

16. Apollo missions 15 and 17 were carried out at lunar sites closer to the mare regions of the

Moon when compared to the Apollo 16 mission, which is reflected in the higher concentrations of

TiO2 and FeO. TiO2 and FeO are dense mineral oxides, and increase the average grain density

of a regolith mixture that is otherwise composed of less dense minerals such as plagioclase. The

grain density of regolith grains returned during Apollo missions 15, 16, and 17 have been mea-

sured by various authors and are summarized in Table 6.12. Using the values for the constants a

and α calculated through regression and listed in Table 6.11, as well as the average grain density

measured for regolith samples returned for the Apollo 15, 16, and 17 missions listed in Table 6.12,

the solid permittivity (εs) of the regolith material predicted by the Olhoeft and Strangway (1975)

equation, equation (6.4), and the linear fit from section 6.4 (ε
′
r = 1.85ρs + 1) for each mission is

calculated and presented in Table 6.13. Using any of the three equations in Table 6.13 to calculate

the solid permittivity of the lunar regolith, the calculated solid permittivity shows correlation with

the TiO2 and FeO concentrations and grain density measured for the samples returned by each

Apollo mission. The solid permittivity predicted by the linear equation εs = 1.85ρs + 1 is very

similar to that derived for the empirical LLL equation that was fit to the datasets by regression.

The variation in fitting empirical models to permittivity measurements of lunar regolith samples

is largely explained by the variation in grain density of the samples, which is likely caused by the
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Table 6.13: Calculated solid permittivity for lunar regolith returned during the Apollo 15, 16, and 17 missions
using the data in Tables 6.11 and 6.12. The solid permittivity is calculated using the Olhoeft and Strangway
(1975) equation (εs = aρs), equation (6.4) (εs = (ρsα+ 1)3), and the linear equation εs = 1.85ρs + 1 defined
in section 6.4.

NASA Apollo Mission εs = aρs εs = (ρsα+ 1)3 εs = 1.85ρs + 1

Apollo 15 7.28 6.64 6.75
Apollo 16 6.52 6.16 5.98
Apollo 17 8.19 7.10 7.05

differences in TiO2 and FeO concentrations. Using the general empirical equations, such as the

Olhoeft and Strangway (1975) equation ε
′
r = aρbd or equation (6.4) to fit the Apollo lunar regolith

sample permittivity measurements will result in an average fit that does not consider variation in

composition or mineralogy between the samples. Different empirical equations (given by values of

a and α in Table 6.11) provide better fits to the individual datasets from each Apollo missions by

taking into consideration the specific composition and mineralogy. The application of the linear

equation εs = 1.85ρs +1 and LLL mixing theory to fit the measurements is comparable in accuracy,

and does not require any regression of the dataset.

The frequency-averaged measured permittivity across all samples (Tables 6.1 and 6.2) was com-

pared with predictions from the two types of empirical equations discussed. Figure 6.25 shows the

results of using εs = 1.85ρs + 1 (with the measured grain densities of each sample) to calculate a

solid permittivity for each sample, and then using that as input to the LLL mixing theory (with

boundary conditions) to predict the powder permittivity measurements. Figure 6.26 shows the

results of predicting the powder permittivity measurements directly from ε
′
r = 1.96ρbd . The pre-

dicted permittivities are more accurate using the method for Figure 6.25, which takes the variation

in grain densities between the samples into consideration.

6.6 Summary

This chapter has described the results of measurements of the permittivity of several powdered

silicate, phyllosilicate, carbonate, and oxide mineral samples. These measurements were used to

compare the accuracy of the mixing theories presented in chapter 2 against similar permittivity

measurements from the literature that were consolidated into average permittivities for the solid

phase (single crystal) of each mineral sample. The LLL and BG mixing theories were shown to

model the powder permittivity measurements with the most accurate solid permittivities. The
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(a) Measured vs. Predicted.

(b) Errors.

Figure 6.25: Comparison of measured permittivities across all samples with permittivities predicted from
measured grain densities using εs = 1.85ρbd +1 to predict solid permittivities, and then using these as inputs
to the LLL model (with boundary conditions). R2 for 1:1 line is 0.85.
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(a) Measured vs. Predicted.

(b) Errors.

Figure 6.26: Comparison of measured permittivities across all samples with permittivities predicted from
the Ulaby et al. (1990) equation ε

′

r = 1.96ρbd . R2 for 1:1 line is 0.71.
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BGNS, SSC, and CRIM models also showed good agreement with the average literature values,

and the LI and MG models were in poor agreement. This result is significant considering the

widespread application of the LI and MG models in planetary radar applications. The combina-

tion of the ARIP and CM theories were shown to also predict solid permittivities for each mineral

sample that matched well with the average values from the literature. Then it was shown that

the LLL mixing predictions (and therefore also the BG mixing predictions) were very similar to

the ARIP/CM predictions for the solid permittivities of each mineral sample. The correspondence

between the LLL mixing model predictions and theoretical ARIP/CM predictions for the solid

permittivity of the samples in this research explains the change in dielectric characteristics of ge-

ologic materials in the low and high porosity regimes, representing a kind of dielectric hierarchy

(Figure 6.27). The application of these theories allows the length-scale dependent prediction of the

Dielectric Hierarchy: Forsterite

ARIP
Clausius-Mossotti

Looyenga-Landau-Lifshitz

O2
Mg
Si

Figure 6.27: The accurate modelling of the permittivity of the mineral samples in this research is dependent
on the length-scale considered: at high porosity (e.g a bulk powder of that mineral) the LLL mixing model
was shown to be accurate, and at low porosity (e.g a single mineral grain) the ARIP/CM theories were
shown to be accurate. This describes a hierarchical system depending on the length-scale and type of
material (single grain or bulk powder) considered. This figure is a graphical depiction of these different
models for the forsterite mineral.

permittivity of a given mineral, for both the solid grains of a mineral and a bulk powder. Only the

mineral composition is required to apply the ARIP/CM theories to predict the solid permittivity

of some mineral, which can then be used as input to the LLL mixing model to predict the effective

permittivity of some bulk powder of that mineral.

179



The accuracy of empirical models for the effective permittivity of a geologic powder was also con-

sidered in this chapter. It was shown that the Olhoeft and Strangway (1975) empirical equation,

based on the LI mixing theory, that was used to model lunar regolith permittivity measurements

can be replaced by any other empirical equation based on a different mixing theory. The empirical

equation (6.4) based off of the LLL mixing theory was shown to model lunar regolith permittivity

measurements to similar accuracy when compared with the Olhoeft and Strangway (1975) model.

For both the lunar regolith permittivity measurement dataset and the permittivity measurement

dataset from the current research, the sequential application of the linear equation εs = 1.85ρs + 1

and the LLL mixing theory was shown to be more accurate in predicting the permittivity mea-

surements than in applying any one kind of empirical equation. The most accurate modelling of

powder permittivities is then dependent on the amount of information known about the sample. If

the composition is known, the ARIP/CM theories can be used to calculate the solid permittivity.

If the average grain density is known, the linear equation εs = 1.85ρs + 1 can be used. From either

of these estimates of solid permittivity, the LLL or BG mixing theories can be used to extrapolate

to the desired powder porosity. Otherwise, the application of an entirely empirical equation, such

as ε
′
r = aρbd , can be used.

Determination of olivine or serpentine end-member compositions from radar data does not seem

possible, based on the above discussion. The differences in the solid permittivities is largely due

to the difference in grain densities. Since multiple minerals can share a similar grain density, this

does not help in determining specific olivine or serpentine concentrations.

180



Chapter 7

Applications to Asteroid Radar

Modelling

7.1 Incorporating mixing analysis into asteroid radar model

The permittivity measurements and modelling that have been discussed in this thesis have been

performed with the ultimate goal of applying any insights gained to modelling the surface properties

of planetary radar targets, specifically asteroids. Magri et al. (1999, 2001) developed an asteroid

radar model that calculates the Fresnel power reflection coefficient, Rfp, from radar observations

of asteroids. In this model, the quasi-specular radar albedo, σ̂OC,qs, is estimated from the ratio of

the circular polarization ratio (CPR), µC, to the diffuse circular polarization ratio, µC,diff:

σ̂OC,qs = σ̂OC

(
1− µC

µC, diff

)
(7.1)

The diffuse circular polarization ratio, µC,diff, is the circular polarization ratio of the component of

the radar echo due to diffuse scattering alone. Harmon and Ostro (1985) summarized the diffuse

radar scattering properties of the Moon, Venus, Mercury, and Mars, both derived in their study

and from the literature. Magri et al. (2001) assume a value of µC,diff = 0.50± 0.15 for their model,

which is the 2 sigma interval that encompasses the span of values reported in Harmon and Ostro

(1985). Garvin et al. (1985) used the equation for Fresnel reflectivity at normal incidence (1.55)

and a modified version of the Olhoeft and Strangway (1975) empirical equation to estimate the

bulk density of the Venusian surface from the Pioneer mission radar mapper data. Magri et al.

(2001) adapted this model from Garvin et al. (1985) to include their equation for the quasi-specular

radar albedo (7.1) and Fresnel reflectivity (using equation (1.8)) to arrive at the following model

predicting the bulk density of asteroid surfaces from radar observations:
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ρbd =

(
2

ln[a]

)
ln

1 +
√

σ̂OC
g (1− µC

µC, diff
)

1−
√

σ̂OC
g (1− µC

µC, diff
)

 (7.2)

In equation (7.2), a is a constant representing the value chosen for the base of the exponential in

the Olhoeft and Strangway (1975) empirical equation ε
′
r = aρbd . Garvin et al. (1985) chose a value

of a = 1.87, which was then adopted by Magri et al. (2001) in their model. Magri et al. (2001) then

tried to constrain their model using the grain density of the regolith on asteroid 433 Eros measured

by NASA’s NEAR-Shoemaker mission. As was shown in the previous chapter, the grain density

of a geologic material is correlated with the solid permittivity of that material and influences any

empirical mixing models for the permittivity of a powder of that material. The use of the empirical

equation ε
′
r = aρbd with a = 1.87 is only valid for a narrow range in grain density of a material, and

so intrinsically assumes a grain density for the material attempting to be modelled, and therefore

cannot be applied to material of a different grain density, invalidating the constraints using the

grain density of 433 Eros applied by Magri et al. (2001). Nolan et al. (2013) used equation (7.2)

to model the bulk density in the near surface of NEA 101955 Bennu using Arecibo S- band radar

data in support of NASA’s OSIRIS-REx mission. Nolan et al. (2013) calculated the bulk density

within the radar penetration depth (within the upper 1 m of the surface) to be ρbd = 1.65 g/cm3.

The results of the mixing analysis in this thesis can be incorporated into the Magri et al. (2001)

asteroid radar model to improve the bulk density estimates of asteroid surfaces from radar obser-

vations. If the estimation of the Fresnel reflectivity is treated the same as in Magri et al. (1999,

2001), equation (7.2) can be modified to incorporate the LLL mixing equation as opposed to the

LI mixing equation:

ρbd =
1

α


1 +

√
σ̂OC
g (1− µC

µC, diff
)

1−
√

σ̂OC
g (1− µC

µC, diff
)

2/3

− 1

 (7.3)

In equation (7.3), α is a constant similar to a in equation (7.2), that is determined according to

the LLL mixing theory to be α = 1
ρs

(ε
1/3
s − 1). The value of α in equation (7.3) can thus be calcu-

lated for specific mineralogies expected for a given asteroid surface. In a paper published from the

preliminary research presented in this thesis, the bulk density in the near surface of 101955 Bennu

and 25143 Itokawa (the asteroid visited by JAXA’s Hayabusa mission) were calculated using (7.3)
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to be 1.27± 0.33 g/cm3 and 1.68± 0.53 g/cm3 respectively (Hickson et al., 2018). This calculation

used a value of α that was estimated using the grain densities of meteorite analogues for either

asteroid, CI/CM carbonaceous chondrites for Bennu and LL ordinary chondrites for Itokawa, and

assuming a solid permittivity of ε
′
r = 6.5± 0.71.

Planetary regolith consists of lithic fragments of a range of mineral compositions, glasses, aggluti-

nates, and space weathered material. Furthermore the chemical composition of asteroid regolith is

only loosely constrained and remains relatively unknown. As such, an application of the ARIP/CM

theories to estimate the solid permittivity of individual regolith grains is not feasible. The corre-

lation of solid permittivity with grain density discussed in the previous chapter, ε
′
r = 1.85ρs + 1

is relevant here instead. This linear equation was derived from the accurate BG and LLL mixing

equation fits to the powder permittivity measurements presented in this thesis, as well as the aver-

age grain density measured for each sample. The measured grain density for each sample represents

an average of the grain densities for each mineral contained in that sample. Therefore, the linear

equation ε
′
r = 1.85ρs + 1 holds for mixtures of multiple minerals, albeit with one dominant miner-

alogy. This linear equation can be incorporated into equation (7.3) by calculating the constant α

according to:

α =
3
√

1.85ρs + 1− 1

ρs
(7.4)

Using equations (7.3) and (7.4), the bulk density within the radar penetration depth of an asteroid

can be calculated from radar observations and an estimate of the average grain density of the

regolith material. The applications of these two equations represent the applications of the LLL

mixing theory and the linear equation ε
′
r = 1.85ρs + 1 for determining solid permittivity.

7.2 Modelling Asteroid Regolith Porosity

The asteroid radar model (equations (7.3) and (7.4)) described in section 7.1 can be applied to

any asteroid that has been observed by radar. Based on the radar scattering assumptions in the

portion of the model incorporated from Magri et al. (2001), the model is better suited to asteroids

with low CPR. To test the accuracy of the model, the model is applied to seven asteroids that

either have been, or currently are, targeted by robotic spacecraft missions. Table 7.1 lists these

asteroids, the relevant data for each asteroid and the resulting bulk density estimates using the
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asteroid radar model (equations (7.3) and (7.4)). In applying the asteroid radar model (equations

Table 7.1: Asteroids for which the asteroid radar model (equations (7.3) and (7.4)) are applied with required
input data and references.

Asteroid Spectral
Type

Meteorite
Analogue

ρs (g/cm3) Radar Data ρbd (g/cm3)

101955 Bennu B-type (Clark
et al., 2011;

DeMeo et al.,
2009)

CI/CM
(Lauretta

et al., 2015)

2.68± 0.04
(Consolmagno
et al., 2008)

σ̂OC = 0.12± 0.04
µC = 0.18± 0.03

(Nolan et al., 2013)

1.36± 0.33

253 Mathilde C-type
(Yeomans

et al., 1997)

CM
(Consolmagno
et al., 2008)

2.90± 0.08
(Consolmagno
et al., 2008)

σ̂OC = 0.072±0.022
µC = 0.08± 0.02

(Magri et al., 2007)

1.21± 0.24

433 Eros Sw-type
(DeMeo et al.,

2009)

L
(Consolmagno
et al., 2008)

3.75± 0.1 (Magri
et al., 2001)

σ̂OC = 0.25± 0.09
µC = 0.28± 0.06

(Magri et al., 2001)

1.95± 0.76

21 Lutetia Xc-type
(DeMeo et al.,

2009)

CO, CV, CK,
En (Coradini
et al., 2011;

Barucci et al.,
2015)

3.54± 0.05 σ̂OC = 0.19± 0.07
µC = 0.22± 0.07

(Magri et al., 2007)

1.86± 0.62

25143 Itokawa S-type
(Yoshikawa
et al., 2015)

LL
(Yoshikawa
et al., 2015)

3.54± 0.13
(Consolmagno
et al., 2008)

σ̂OC = 0.16± 0.05
µC = 0.26± 0.04

(Ostro et al., 2004)

1.52± 0.46

4 Vesta V-type
(DeMeo et al.,

2009)

HED (De
Sanctis et al.,

2012)

3.44± 0.12
(Consolmagno
et al., 2008)

σ̂OC = 0.12± 0.04
µC = 0.28± 0.05

(Magri et al., 2007)

1.19± 0.40

4179 Toutatis Sq-type
(DeMeo et al.,

2009)

L (Reddy
et al., 2012)

3.56± 0.1
(Consolmagno
et al., 2008)

σ̂OC = 0.23± 0.3
µC = 0.21± 0.03

(Nolan et al., 2013)

2.17± 0.42

(7.3) and (7.4)) to the asteroids listed in Table 7.1, several assumptions were made. The diffuse

circular polarization ratio and backscatter gain were assumed to be the same as in Magri et al.

(2001), µC,diff = 0.5 ± 0.15 and g = 1.2 ± 0.1 respectively. The grain density of 101955 Bennu

was taken as the average of averages for CI and CM carbonaceous chondrites from Consolmagno

et al. (2008). The grain density of 433 Eros was taken from Magri et al. (2001) instead of the

average for measured L-chondrite falls from Consolmagno et al. (2008), since Magri et al. (2001)

note that terrestrial weathering lowers the grain density of meteorites, and so a more appropriate

value for pristine L-chondrite material is the highest measured grain density for the L-chondrite

falls. The grain density of 21 Lutetia is an average of the average grain densities of CO, CV, and CK

carbonaceous chondrites and the average grain density of Enstatite chondrites from Consolmagno

et al. (2008), since the meteorite analogue is relatively unknown for this asteroid and may span
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these meteorite types (Coradini et al., 2011; Barucci et al., 2015). The grain density of 4 Vesta is

assumed equal to the bulk density of the overall asteroid from Consolmagno et al. (2008), since the

average of the Howardite, Eucrite, and Diogenite (HED) grain densities from Consolmagno et al.

(2008) is lower than the bulk density (which is physically impossible).

The space missions that are associated with each of the asteroids in Table 7.1 have been described

already in chapter 1 section 1.1. The mass and volume of each asteroid is known with high accuracy

as a result of each of these missions, which allows calculation of the bulk density of the entire body.

With the grain densities in Table 7.1, the bulk porosity (entire body) for each asteroid in Table

7.1 can be calculated. Similarly, the porosity in the near surface (within the radar penetration

depth) can be calculated from the near surface bulk density estimates in Table 7.1. Figure 7.1

compares the near surface bulk porosity for the asteroids in Table 7.1 calculated using the Magri

et al. (1999) model (equation (7.2), a = 1.87, specified according to the Magri et al. (1999) study

as opposed to the Magri et al. (2001) study to clarify that the Eros-calibrated model was not

used) and the asteroid radar model from this thesis (equations (7.3) and (7.4)), as well as the bulk

porosity for the entire asteroid calculated from bulk density values in the literature (see references

in chapter 1 section 1.1). Figure 7.1 shows that both the Magri et al. (1999) radar model and the

radar model from this thesis (equations (7.3) and (7.4)) produce very similar results. This is likely

a result of the overall good fit of the Olhoeft and Strangway (1975) empirical model to powder

permittivities of geologic materials that is used in the Magri et al. (1999) radar model. Despite

the inaccurate theoretical assumptions contained in this model, the empirical fit still provides a

good estimate of permittivity from bulk density, and therefore also a good estimate of bulk density

from radar data. The asteroid radar model from this thesis (equations (7.3) and (7.4)) is based on

the LLL mixing theory that was shown to accurately model the powder permittivity measurements

presented in this thesis under the theoretical constraints of the theory. The variation in mineral

composition in asteroid regoliths is taken into account in this model by incorporating the linear

correlation of grain density and solid permittivity observed in this thesis. Therefore, the use of the

asteroid radar model in this research (equations (7.3) and (7.4)) is more accurate, and theoretically

sound than the Magri et al. (1999) model. Figure 7.1 also shows that the near-surface porosity is

significantly greater than the overall bulk porosity for asteroids 433 Eros, 21 Lutetia, and 4 Vesta.

This suggests the presence of a porous regolith covering each body, which has been inferred from

spacecraft observations. Asteroid radar models are therefore useful in determining if there is a
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Figure 7.1: Near-surface porosity of asteroids visited by robotic spacecraft calculated using two asteroid
radar models (this thesis, and (Magri et al., 1999)) compared with the bulk porosity for the entire asteroid.
The dashed line is 50% porosity.
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regolith component to an asteroid surface. The near-surface porosity for each asteroid considered

in Table 7.1 and Figure 7.1 are all close to 50% porosity, which is the average lunar regolith porosity

within the first 30 cm of the lunar surface (Carrier et al., 1991). This agreement implies similar

upper regolith properties among these asteroids and the Moon. A preliminary conclusion from this

is that the regolith formation mechanisms on the Moon and asteroids are similar. Considering the

range in size, composition, and histories of each body this is an interesting observation. Regolith is

generally thought to form from meteoroid bombardment and solar irradiation of surface material,

breaking the material down and accumulating more regolith over time. Based on Figure 7.1, this

mechanism seems relatively independent of the composition, size, and evolutionary history for a

given airless body in the solar system. Asteroid regolith formation is generally assumed to be

analogous to lunar regolith formation, due a lack of independent data. These results contribute

an independent validation of this assumption. Confirming the presence of and porosity of the

regolith of asteroids may also shed light on the interior structures of asteroids, and the interaction

between the surface and the interior. Most of the sources of uncertainty in the asteroid radar

model from this thesis (equations (7.3) and (7.4)) is in estimating the Fresnel reflectivity from

asteroid radar observations. Continued research efforts into improving radar scattering models and

our understanding of the roles of surface roughness and composition on radar interactions with

planetary surfaces will help to reduce these ambiguities.
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Chapter 8

Conclusions and Future Work

8.1 Conclusion

In this thesis, the dielectric properties of powdered geologic material have been determined experi-

mentally in order to better understand the interaction of radar signals with planetary regoliths on

airless bodies. The experimental design implemented by Sotodeh (2014) at York University was

greatly expanded upon for these purposes. A custom environment chamber was designed and built

to isolate samples from atmospheric humidity during a permittivity measurement. Temperature

variation was also added to the experimental setup using heating tape and an accompanying tem-

perature controller. Silica aerogel was utilized for the first time to increase the range of densities in

which a powdered material’s permittivity could be measured. The software and methodology used

to complete a permittivity measurement using the coaxial transmission line method was refined to

concise scripts and procedures that are readily available for use by other researchers in the field.

A model was developed to account for the boundary effects observed in coaxial airline permittiv-

ity measurements of powdered material, and was shown to accurately describe these effects. This

model can be adapted by other researchers to correct this effect in their data, and highlighted that

these effects are minimized for smaller grain sized samples. An extensive review of electromagnetic

mixing theory was carried out in order to provide context for the experimental results obtained in

this thesis. Seven different geologic samples were powdered, processed, and characterized using a

variety of techniques to determine their structures and compositions. The permittivity of each sam-

ple was measured for a range of porosities. This allowed a subsequent analysis into modelling these

measurements with a variety of mixing theories, with the accuracy of a given model fit determined

by the correspondence to other experimental work in the literature. The Looyenga-Landau-Lifshitz

(LLL) and Bruggeman (Symmetric) (BG) theories were shown to most accurately describe the

change in the dry, non-conducting, non-magnetic geologic powder samples measured in this thesis,
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which is consistent with the theoretical assumptions in either theory’s derivation. The permittiv-

ity of the solid phase for each sample, or solid permittivity, predicted by either theory showed a

strong linear correlation with the grain density of each sample. This correlation was described by

a linear equation, which was also identified in similar experimental work in this field. The solid

permittivity was also shown to be accurately predicted by the additivity rule of ionic polarizabil-

ity (ARIP) and Clausius-Mossotti (CM) theories. The accuracy of either the LLL/BG models or

ARIP/CM models depends on the length-scale of the dielectric mixture in question, describing a

dielectric hierarchical system. These mixing results were incorporated into an existing asteroid

radar model for use in predicting the bulk density and porosity of near-surface regolith material

on radar observed asteroid surfaces. This model was applied to seven asteroids visited by robotic

space exploration missions which measured the bulk (entire body) properties of the asteroids with

exceptional accuracy. A comparison of the surface and bulk (entire body) porosity of each asteroid

revealed that some asteroids are more homogeneous than others. The so called rubble-pile asteroids

had a surface porosity that was similar to the value for the bulk (entire body) asteroid, whereas for

some asteroids the surface porosity was significantly greater than that for the bulk (entire body)

asteroid. The application and use of the asteroid radar model in this thesis was shown to be a

useful tool in analyzing surface properties of asteroids, and can potentially be used to constrain

other asteroidal properties such as internal structure.

Radar is an integral type of remote sensing observation that is extensively used to survey the natural

universe. This thesis focused on radar observations from large telescopes such as Arecibo Observa-

tory and Goldstone Solar System Radar, but many other forms of radar are applied in planetary

science studies. NASA’s Mars 2020 mission to Mars will include the RIMFAX ground-penetrating

radar (GPR) instrument, which will collect subsurface radar profiles from 150 - 1200 MHz along

the rover’s ground track. Similarly, the ESA-Roscosmos ExoMars Rover mission to Mars will in-

clude the WISDOM GPR instrument, operating from 0.5 - 3 GHz. The CNSA has included a

GPR instrument on the Chang’e 3 and Chang’e 4 missions to the Moon. ESA’s JUICE mission

and NASA’s Europa Clipper mission to the Jovian system will include RIME and REASON, which

are orbiting radar sounding instruments. Continued funding and support for planetary radar will

extend and improve future radar observations of asteroids performed primarily by Arecibo Obser-

vatory. These radar studies span a wide range of types of planetary bodies, surface-atmosphere

interactions, chemistry, surface topography, and radar signal parameters. This is a profound oppor-
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tunity to utilize radar observations to their fullest extent, to extract more information from data

that will facilitate a deeper analysis of the properties of our solar system. Experimental research

and modelling like that presented in this thesis will support these space missions, and expand our

collective understanding of planetary science.

8.2 Future Work

The experimental methodology developed in this research can be used to measure the permittivity

of other types of materials relevant to planetary radar. While this thesis was only concerned with

dry, non-magnetic, non-conducting geologic material, these assumptions are not valid for bodies

with appreciable atmospheres, such as Mars, or regoliths with significant volatile content. Iron

oxides, such as magnetite and hematite, posses magnetic permeabilities above unity and must

also be taken into account for more accurate characterization of the electromagnetic response

of planetary regolith. High circular polarization ratios (CPRs) are associated with permanently

shadowed regions in the polar areas of Mercury and the Moon, and are thought to be a result of

ice mixed in the regolith. Permittivity measurements of rock/ice analogue mixtures would support

the study of these types of surfaces. Although most samples in this thesis were dispersionless,

characterizing the above materials over a range of frequencies is important since radar systems

operate in a range in frequencies, with orbiting radars typically in the 1-10 MHz range and GPR’s

typically in the 100 MHz - GHz range. The frequency and temperature dependence of the observed

aluminium oxide relaxation in this thesis could be investigated by sequential measurements of

aluminium oxide at increasing temperatures. The validity of the LLL and BG mixing models was

confirmed for dry, non-magnetic, and non-conducting geologic materials in this thesis; however, this

accuracy should decrease as the material properties deviate from these assumptions. Permittivity

experiments on magnetic and conducting materials should then also investigate the accuracy of the

different mixing theories in modelling the measurements. Based on the mixing review completed in

this thesis, an educated guess would be that the BGNS or SSC models would be more appropriate

in the case of conducting materials. The methodology applied to test the accuracies of the different

mixing theories in modelling the permittivity measurements in this thesis is novel, and can be used

in future research applying mixing theory. The boundary conditions model that was developed in

this thesis did not consider the effects of the particle size distribution (PSD) on the model results.

The amount of void space in a powder is dependent on the PSD, and so future experiments using
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the coaxial transmission line method should attempt to account for this factor when considering

boundary effects. In particular, the method of characterization of the PSD could be improved from

mechanical sieving, for instance, by using petrographic microscope images. The asteroid radar

model developed in this thesis makes use of the experimentally verified mixing models analyzed in

this thesis, but is only as accurate as the estimations for the Fresnel reflectivity from radar data.

Radar scattering models are applied to estimate the Fresnel reflectivity, and need to be improved

for the inversion of radar data for surface properties to increase in accuracy. NASA’s OSIRIS-

REx and JAXA’s Hayabusa2 missions, as well as future space missions to asteroids, provide the

opportunity to ground truth asteroid radar model predictions, and can help refine these models as

well as radar scattering models.

191



Chapter 9

References

Adam, S. and Packard, H. (1969). Microwave theory and applications. Prentice-Hall Upper Saddle

River, NJ, USA:.

Adams, R., Perger, W., Rose, W., and Kostinski, A. (1996). Measurements of the complex dielectric

constant of volcanic ash from 4 to 19 GHz. Journal of Geophysical Research: Solid Earth,

101(B4):8175–8185.

Baker-Jarvis, J., Janezic, M., Grosvenor Jr, J., and Geyer, R. (1993). Transmission/Reflection

and Short-Circuit Line Methods for Measuring Permittivity and Permeability. Technical Report

NIST Technical Note 1355-R, National Institute of Standards and Technology.

Baker-Jarvis, J., Janezic, M., Riddle, B., Johnk, R., Holloway, C., Geyer, R., and Grosvenor, C.

(2005). Measuring the Permittivity and Permeability of Lossy Materials: Solids, Liquids, Metals,

and negative-Index Materials. Technical Report NIST Technical Note 1536, National Institute

of Standards and Technology.

Baker-Jarvis, J., Vanzura, E., and Kissick, W. (1990). Improved technique for determining complex

permittivity with the Transmission/Reflection method. IEEE Transactions on microwave theory

and techniques, 38(8):1096–1103.

Balanis, C. (1989). Advanced Engineering Electromagnetics. John Wiley & Sons.

Banhegyi, G. (1988). Numerical analysis of complex dielectric mixture formulae. Colloid and

Polymer Science, 266(1):11–28.

Bapna, P. and Joshi, S. (2013). Measurement of dielectric properties of various marble stones of

Mewar region of Rajasthan at X-band microwave frequencies. International Journal of Engineer-

ing and Innovative Technology (IJEIT), 2:180–186.

192



Barmatz, M., Steinfeld, D., Winterhalter, D., Rickman, D., Gustafson, R., Butts, D., and Weinstein,

M. (2012). Microwave permittivity and permeability measurements on lunar simulants. 43rd

Lunar and Planetary Science Conference, Abstract 1050.

Barucci, M., Fulchignoni, M., Ji, J., Marchi, S., and Thomas, N. (2015). The flybys of asteroids
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Appendix A

Appendix

A.1 Landau & Lifshitz Derivation

From Landau and Lifshitz (1960):

Consider a mixture in which the electric field is averaged over a volume that is large in comparison

with the scale of the inhomogeneities. The mixture itself is homogeneous and isotropic with respect

to the average electric field, Ē (average quantities denoted by bar above variable and vectors by bold

variables), and can be described by effective material properties, such as dielectric permittivity. We

can write for the effective permittivity:

D̄ = εeff Ē (A.1)

The assumption is made that all of the particles, or inhomogeneities, of the mixture are isotropic

and have small differences in permittivity. We can write expressions for the local electric field, E,

and local permittivity, ε, as:

E = Ē + δE

ε = ε̄+ δε

where

ε̄ =
1

V

∫
ε dV

is the volume averaged permittivity. Substituting the local fields in to (A.1) and averaging over

the mixture results in:
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D̄ = (ε̄+ δε)(Ē + δE)

Expanding the above equation results in:

D̄ = ε̄E + ε̄δE + δεE + δεδE

Here the second and third term are equal to zero, since the average of the random fluctuations δε

and δE are inherently zero, and we can write:

D̄ = ε̄Ē + δεδE (A.2)

Since the mixture in question is a dielectric, we know that the free charge, ρf , must be zero, and

we can write the divergence of the electric flux as: divD = 0 (the notation here is to match Landau

& Lifshitz, and is equivalent to divD ≡ ∇ ·D). We can take the expression for the average electric

flux, D̄, and remove the averaging to write:

div[(ε̄+ δε)(Ē + δE)] = 0

Expanding the above equation results in:

div(ε̄Ē) + div(ε̄δE) + div(δεE) + div(δεδE) = 0

Now we apply the product rule to get:

ε̄(divĒ) + Ē · ∇ε̄+ ε̄(divδE) + δE · ∇ε̄+ δε(divĒ) + Ē · ∇δε+ δε(divδE) + δE · ∇δε = 0

Removing terms that are second order in δε and δE results in:

ε̄(divĒ) + Ē · ∇ε̄+ ε̄(divδE) + δE · ∇ε̄+ δε(divĒ) + Ē · ∇δε = 0

Since the divergence of a spatially averaged field is zero, and the gradient of an average scalar field

is zero, the first, second, fourth, and fifth terms in the above equation will be zero, allowing us to

write:
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div[(ε̄+ δε)(Ē + δE)] = ε̄(divδE) + Ē · ∇δε = 0

To arrive at equation (9.4) in Landau & Lifshitz we then take a slightly different approach to what

is suggested in the original text. First, we follow the original text by substituting the electric

potential, φ, for the electric field δE = −gradδφ (the notation here is similar to the divergence,

gradδφ = ∇φ) in the above equation:

−ε̄(∇ · ∇δφ) + Ē · ∇δε = 0

which can be re-written as:

∇2δφ =
1

ε̄
(Ē · ∇δε) (A.3)

Here ∇2 is the Laplacian operator. The following step taken in this derivation is slightly different

from Landau and Lifshitz (1960), where we take the Laplacian of both sides of δE = −gradδφ to

arrive at:

∇2δE = ∇2(−∇δφ) (A.4)

Next we make us of the identity (for an arbitrary vector field A) ∇× (∇×A) = ∇(∇ ·A)−∇2A

and substitute −∇δφ = A:

∇× (∇× [−∇δφ]) = ∇(∇ · [−∇δφ])−∇2(−∇δφ)

and since the cross product of a gradient is zero we can now write:

∇(∇2δφ) = ∇2(∇δφ)

Using the above equation we can re-write (A.4) as:

∇2δE = −∇(∇2δφ)

Substituting the expression for ∇2δφ from (A.3):
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∇2δE = −∇(
1

ε̄
Ē · ∇δε)

The above expression can be expanded using the identity (for arbitrary vector fields A and B)

∇(A ·B) = A× (∇×B) + B× (∇×A) + (A · ∇)B + (B · ∇)A:

∇2δE = −1

ε̄
[Ē× (∇×∇δε) +∇δε× (∇× Ē) + (Ē · ∇)∇δε+ (∇δε · ∇)Ē]

For the terms in the square brackets on the right of the above equation, the first, second, and fourth

terms all equal zero since the curl of a gradient is zero and the derivatives of a constant (average)

vector field are zero, leaving us with:

∇2δE = −1

ε̄
(Ē · ∇)∇δε (A.5)

Equation (A.5) is identical to (9.4) in Landau and Lifshitz (1960), but was arrived at by applying the

Laplacian operator to the electric field and potential fluctuations and rearranging. This equation

will be used to derive an expression for δεδE that can be substituted back into (A.2). The averaging

in δεδE is completed in two steps, where the first step consists of spatially averaging (A.5) for a

given mixture component, or δε. This can be done by first looking at the term (Ē · ∇)∇ on the

R.H.S of (A.5) and writing it in index notation:

(Ē · ∇)∇ = (Ej ·
∂

∂xj
)
∂

∂xk

where for 3 dimensional Cartesian space:

Ej ·
∂

∂xj
=

3∑
j=1

Ej ·
∂

∂xj

Here j = 1 = x, j = 2 = y, j = 3 = z. Expanding the term (Ē · ∇)∇:

(Ex
∂

∂x
+ Ey

∂

∂y
+ Ez

∂

∂z
)(
∂

∂x
,
∂

∂y
,
∂

∂z
)

The first term is a scalar and the second term is a vector. The multiplication results in a three

component vector:
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Ex

∂2

∂x∂x + Ey
∂2

∂x∂y + Ez
∂2

∂x∂z

Ex
∂2

∂y∂x + Ey
∂2

∂y∂y + Ez
∂2

∂y∂z

Ex
∂2

∂z∂x + Ey
∂2

∂z∂y + Ez
∂2

∂z∂z


The spatial averaging is essentially an integration, which will affect the operator ∂2

∂xj∂xk
differently

for different values of j and k. Since the mixture medium is isotropic (even function in x, y, and

z), if j 6= k the operator will return an odd function that when integrated will cancel itself out.

As a result, and since due to isotropy ∂
∂x = ∂

∂y = ∂
∂z , we can replace the operator ∂2

∂xj∂xk
with the

following:

∂2

∂xj∂xk
=

1

3

3∑
i=1

∂2

∂x2
i

=
1

3
∇2

We can now write the spatially averaged (A.5):

∇2δE = − 1

3ε̄
Ē∇2δε (A.6)

Re-writing the above with − 1
3ε̄Ē taken as some constant value, c:

∇2δE = c∇2δε

The above implies that δE + f(x, y, z) = cδε for some unknown function f(x, y, z), where ∇2f = 0.

Since we know that the permittivity and electric field are proportional through the electric flux,

i.e E ∝ ε, f(x, y, z) must be zero, otherwise δE ∝ δε would not be true. With this constraint of

proportionality, δE ∝ δε, we can say that δE = cδε, and re-write (A.6) as:

δE = − 1

3ε̄
Ēδε

Now we multiply the above by δε and effect the second step of the averaging, which is now over

the components of the mixture to obtain:

δεδE = − 1

3ε̄
Ēδε2

With the above we have an expression for δεδE that can be substituted into (A.2) to get:
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D̄ = ε̄Ē + δεδE = ε̄Ē− 1

3ε̄
Ēδε2

Comparing this with (A.1):

εeff Ē = ε̄Ē− 1

3ε̄
Ēδε2

Cancelling out terms results in:

εeff = ε̄− 1

3ε̄
δε2 (A.7)

We now need to substitute for δε, which can be done by first defining:

ε
1
3 = (ε̄+ δε)

1
3

The Taylor expansion at δε = 0 for the above equation, ignoring higher than second-order terms,

is:

ε
1
3 ≈ ε̄

1
3 +

δε

3ε̄
2
3

− δε2

9ε̄
5
3

+ . . .

The second term on the right is equal to zero since δε = 0, which allows us to write:

ε
1
3 = ε̄

1
3

(
1− δε2

9ε̄2

)
(A.8)

The Taylor expansion at δε2 = 0 of the cube root of (A.7), ignoring higher than second-order terms,

is:

ε
1
3
eff ≈ ε̄

1
3 − δε2

9ε̄
5
3

− . . .

Which can be re-written as:

ε
1
3
eff = ε̄

1
3

(
1− δε2

9ε̄2

)

The above is equivalent to (A.8), which allows us to write:

ε
1
3
eff = ε

1
3 (A.9)
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Here ε
1
3 is a weighted average, where the weights are the volume fractions, fi, of each mixture

phase, i of an N phase mixture:

ε
1
3 =

N∑
i=1

fiε
1
3
i

N∑
i=1

fi

By definition of the volume fractions we know
N∑
i=1

fi = 1, and thus we can write:

ε
1
3
eff =

N∑
i=1

fiε
1
3
i (A.10)

Equation (A.10) is the Looyenga-Landau-Lifshitz mixing equation and the derivation is complete.

A.2 Looyenga Derivation

Looyenga (1965) produced an alternate derivation arriving at the same result as Landau and Lif-

shitz. In this derivation, a large spherical (radius b) mixture is considered with an embedded small

sphere (radius a) containing inclusions corresponding to similar mixtures with slightly higher and

lower effective permittivities:

A taylor expansion up to second order is used to produce an expression defining the effective

permittivity in the large sphere as a volume weighted average of the inclusion permittivities. The

BG (and Bottcher, with similar results) model is also used to define the effective permittivity of

the small sphere as a function of the inclusion permittivities, ignoring the large sphere. The two

expressions are then combined to produce a differential equation, whose solution (with appropriate
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boundary conditions) is the LLL equation. The assumptions in this derivation is that the inclusion

sizes are small compared to the averaged volumes, and more importantly, that the mixture contains

intermediate volume fractions of the phases. Since the model does not consider the polarizability of a

single inclusion, at the limit of low volume fractions of either component this model will overestimate

the effective permittivity. However, unlike in the MG derivation, the model inherently considers

the influences of nearbly inclusions. Numerically the LLL and BG equations produce very similar

results, with identical values at roughly 43% volume fraction of a given inclusion phase. Below this

threshold, the LLL model predicts higher effective permittivities and above this it predicts lower

permittivities, relative to the BG model.
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