

Open Platform to Detect and Monitor

Macular Disorders

Navid Mohaghegh

A Dissertation Submitted to the Faculty of

Graduate Studies in Partial Fulfillment of the

Requirements for the Degree of Doctor of

Philosophy

Graduate Program In Electrical Engineering and Computer Science,

York University, Toronto, Ontario

June 2019

© Navid Mohaghegh, 2019

ii

ABSTRACT

Macular disorders (MDs) such as Age-related Macular Degeneration (AMD) and

Central Serous Retinopathy (CSR) cause Visual Distortions (VDs) while affecting human

vision and the quality of life. Home-monitoring helps with disorder early detection and

possibly slow down or even progress prevention while reducing the risk of vision loss and

medical management costs.

We addressed the challenge of developing accurate, rapid, and low-cost home

monitoring technology for the detection and progress assessment of MDs. The proposed

methods allow the detection of small VDs using a novel approach called NGRID. The

proposed NGRID platform is a unified software and hardware system that assist eye-care

professionals in running the visual tests from hospitals or remotely at patients' home.

Advanced programming techniques such as Standard Vector Graphic (SVG) and voice

recognition were used to develop the required software. The high security, capacity, and

availability of the computer cluster running NGRID enable the access of millions of people

to run the test and assess the progress of their MDs at home. NGRID sends the results to

the medical practitioner to better manage the patients.

We tested CSR patients using NGRID. The patients were asked to answer if they

see the VD test frames wavy or with missing parts. Patient's voice is processed to extract

the answers and detect metamorphopsia or scotoma, and results displayed in a graph called

heatmap, which visually shows how the visual field is affected. Furthermore, we

successfully verified the heatmaps with patients' Optical Coherence Tomography (OCT)

iii

images, which is the golden standard methodology for MD diagnostic. We confirmed the

location of the detected VDs with the patients once they gain normal vision.

The proposed NGRID research platform can offer significant advantages for home

monitoring and subsequently, control of MDs. NGRID opened new avenues towards the

generation of first MD big data suitable for medical industries. Finally, NGRID aims to

offer medical practitioners better ways to monitor patients at home, where using OCT is

not possible. Clinical trials for NGRID on other MDs such as AMD may allow medical

practitioners for faster intervention when Anti-Vascular Endothelial Growth Factor (Anti-

VEGF) is needed.

iv

DEDICATION

I like to thank my wife. Without her patience and support, this work would not have

been possible. I also want to thank my parents for their unconditional love and continued

support during this process.

v

ACKNOWLEDGMENTS

I want to express my gratitude to all who have helped me to complete this

dissertation. This thesis would not be possible without the encouragement and assistance

of my mentors. I am especially indebted to my supervisor (Dr. Ebrahim Ghafar-Zadeh) for

his untiring effort, support, and constructive feedback which motivated me to complete my

thesis and publish my papers. I sincerely appreciate him for letting me do my Ph.D.

research in Biologically Inspired Sensors and Actuator (BioSA) laboratory that made me

discover the beauty of merging computer science and biomedical engineering. I cannot

thank him enough for all his constant efforts and valuable comments in all theoretical and

experimental aspects of my thesis. I am also deeply indebted to my co-supervisor (Dr.

Sebastian Magierowski) for his valuable inputs and critiques during the committee

meetings, presentations, and writing and submitting my conference and journal papers

derived from this thesis.

I like to thank Dr. Peter Kertes, Chief of Ophthalmology at Sunnybrook hospital

for his valuable comments. I also like to thank my supervisory committee members (Dr.

Mokhtar Aboelaze and Dr. Jia Xu) for their valuable inputs and critiques during the

committee meetings. Finally, I like to thank my defense committee members (Dr. Regina

Lee, Dr. Benoit Gosselin, Dr. Ali Sadeghi-Naini, Dr. Mokhtar Aboelaze, Dr. Jia Xu, Dr.

Sebastian Magierowski, and Dr. Ebrahim Ghafar-Zadeh) for accepting to evaluate this

thesis.

vi

TABLE OF CONTENTS

Abstract ... ii

Dedication .. iv

Acknowledgments... v

Table of Contents ... vi

List of Figures ... x

List of Abbreviations .. xvii

1 Introduction .. 1

1.1 VD Caused by Macular Disorders .. 2

1.2 Related Macular Disorders .. 3

1.3 VD Assessment in Patients with Macular Disorders 5

1.4 Summary and Organization of the Dissertation .. 7

2 Related Works .. 8

2.1 Static VD Assessment Methods .. 8

2.1.1 Enhanced Portable AG Test .. 8

2.1.2 Threshold Amsler Grid Test .. 9

2.1.3 Accelerated Amsler Grid Test ... 10

2.1.4 Deformable Amsler Grid ... 12

vii

2.2 Dynamic VD Assessment Methods... 13

2.2.1 PHP Test .. 13

2.2.2 3D-CTAG Test .. 14

2.2.3 Macular Computerized Psychophysical Test 15

2.2.4 M-CHART Score Test .. 16

2.2.5 Shape Discrimination Test .. 17

2.2.6 Positioning Techniques ... 18

2.2.7 Discussion ... 20

2.3 Summary ... 24

3 Mathematical Modeling of a Simple VD ... 26

3.1 Effect of CSR in the Visual Field.. 27

3.2 VDs due to Cylindrical Shape Macular Deformations............................ 28

3.3 VDs Due to Spherical Shape Macular Deformations.............................. 31

3.4 Summary ... 37

4 Proposed NGRID Platform ... 38

4.1 High-level View of the Proposed GMIS Platform 39

4.2 Software Background in Advance Computer Vector Graphics 41

4.3 NGRID – The Proposed GMIS Platform .. 43

4.3.1 NGRID VD Test Patterns .. 43

4.3.2 NGRID Test Control Input Devices .. 45

viii

4.3.3 Heatmap .. 46

4.4 Software Implementation of NGRID Platform 48

4.4.1 Design of VD Test via NGRID SVG Editor 50

4.4.2 Schematic of NGRID Database for Storing Tests and Trials Data ... 55

4.5 Data Collection from the Sensory System .. 56

4.6 NGRID Administrative User Interface ... 58

4.7 NGRID Heatmap ... 61

4.8 Hardware Implementation ... 70

4.9 NGRID Security .. 74

4.10 Summary .. 78

5 Results .. 79

5.1 NGRID Test Apparatus ... 79

5.2 VD Test Frames and Designs .. 80

5.3 NGRID Test on Healthy Participant ... 81

5.3.1 Characterization and Systematic Response Time 84

5.4 NGRID Test on Non-Healthy Participant ... 85

5.4.1 NGRID Test and Verification of the Results against OCT Images .. 86

5.4.2 Discussion on the NGRID Heatmap Results 91

5.4.3 Verification of the Estimation of Visual Distortion 92

5.5 Summary ... 94

ix

6 Conclusion and Future Work .. 95

6.1 Research Achievements .. 95

6.2 Future Works ... 99

6.2.1 Developing Accurate VD Model for Various Macular Disorders 99

6.2.2 Clinical Trials on Patients Suffering from Macular Disorders 100

6.2.3 Development of Optimal NGRID Platform 100

6.2.4 Macular Big Data using NGRID Platform for Other Applications . 101

Appendix A – NGRID Test Application .. 102

Fetch the Test Data ... 103

Display the Test .. 104

Sensory System ... 109

Collection and Validation of Test Answers .. 123

Archival of the Test Answers ... 126

Appendix B – NGRID Database ... 129

Appendix C – NGRID SVGEditor ... 132

Appendix D – NGRID Application Server ... 140

Appendix E – NGRID Heatmap Generator .. 143

Appendix F – NGRID VD Simulator ... 150

References ... 157

x

LIST OF FIGURES

Figure 1 - (a) Simplified schematic of the Eye Structure (b) healthy macula (c) unhealthy

macula (the deformed retinal basement due to a macular disorder such as CSR).

Various parts of the eye including (1) sclera, (2) iris, (3) cornea, (4) pupil, (5) lens,

(6) entire retina, (7) macula and in its center fovea, (8) optic nerve. 3

Figure 2 - Illustration of retina section of (a) normal eye and the eye suffers from (b)

Edema, (c) Central Serous Retinopathy (CSR) and (d) AMD. In this figure, RPE is

the retinal pigment epithelium. ... 4

Figure 3 - Visual Chart Tests: (a) ETDRS Visual Acuity Chart and (b) Amsler grid with

Scotoma (right) and Metamorphopsia (left) seen on Amsler grid in AMD patients. . 6

Figure 4 - (a) Near Eye Ophthalmic Device utilized with a phoropter rod to better display

Amsler Grid, (b) Portable Smart Tablet Used for Evaluation of Metamorphopsia and

(c) Eyeglasses Used in Threshold Amsler Grid Test Equipped with Mountable

Polarized Filters. ... 9

Figure 5 - AG Based VD detection methods (a) Binary Amsler Interactions (b)

Deformable Amsler Grid (DAG). DAG has Ability to Apply Correction Vectors to

Improve Patient Vision (A) denotes the normal Grid (B) is the Grid as seen by the

patient (C) is the correction vectors that are highlighted in red and correction values

that are measured in green which denotes the amount of deflection from the straight

grid lines (D) is the improved final grid as viewed by the patient after applying the

correction vectors .. 11

xi

Figure 6- (a) Presenting a dotted line with the presence of a small bump and another large

bump for 500ms to healthy individuals. (b) PHP Test Apparatus – a dotted line with

a very small artificial bump shortly flashed on the screen and patients should record

where they see a bump using stylus pen (c) is the generated PHP heatmap that shows

the location and severity of visual distortions in patient’s visual field. 14

Figure 7 - 3D-CTAG Apparatus – (a) shows the overall apparatus with chin rest to limit

the head movements (b) final result of the test which highlights the severity of

affected visual distortion areas .. 15

Figure 8 - Stimulating patterns used in (a) MCPT and (b) M-Chart test techniques 16

Figure 9 - Shape Discrimination (a) circular pattern and (b) another similar pattern with

radial deformation of 8/2π (right). .. 18

Figure 10 - Aligning Method: (a) Basic Aligning Task and (b) Vernier Hyperacuity Test.

... 19

Figure 11 - Square completion task: (a) a fixed green dot and three adjustable white dots

and (b) four movable orange-colored bisecting dots. ... 19

Figure 12 - Vibrating Method: (a) Oscillating Visual Stimuli and (b) real-time retinal

tracking. .. 20

Figure 13 - Commercially available visual field monitoring systems using (a) PHP

method with two versions of desktop and portable devices and (b) real-time retinal

tracking method. ... 24

Figure 14 - Effect of the presence of cylindrical shape deformation in a sub-sectional

macular plane (P2). P1 presents what is projected in the corresponding healthy sub-

sectional macular plane. P3 presents the final changes and what is projected in the

xii

corresponding unhealthy sub-sectional macular plane. In P3, line L5 is displayed

due to the cylindrical shape deformation presented on P2. 29

Figure 15 - Deformation Relation of the VDs Due to Cylindrical Shape Macular

Deformations... 30

Figure 16 - Cylindrical VD Simulation. (a) is the normal Amsler grid (b) is the outcome

of applying cylindrical shape VDs to the normal Amsler grid (c) is the normal text

that healthy macula would see (d) is the outcome of applying cylindrical shape VDs

to a normal test shown in c. .. 31

Figure 17 - Proposed Model: a) OCT image of a CSR cavity, b) a semi-spherical model,

c)-d) half-spherical shape activity using discrete and continuous presentation, e) 3D

half-spherical shape activity with partially spherical shape cavity model, f) semi-

spherical-cylindrical shape CSR cavity mode .. 33

Figure 18 - Simulation Results of semi-spherical (b, e, and h) and spherical (c, f and i)

models on three different patterns (a, d and g). .. 35

Figure 19 - Simulation Results of semi-spherical (b, and e) and spherical (c, and f)

models on three different real-world scenery (a, and d). .. 36

Figure 20 - Hardware stack used in wearable embedded NGRID system. 39

Figure 21 - Illustration of various patterns created with (a)-(f) straight lines and (g)-(l)

distorted lines along with (m) a series of frames. The graphical pattern in each figure

(g-l) are called respectively. .. 44

Figure 22 - A photograph of the NGRID platform including servers, control input devices

(joystick, keyboard, microphone for speech recognition), monitor and a human

xiii

participant who has fixated at the center of the screen (fixed his head in front of the

screen using a chinrest .. 46

Figure 23 - Data Analysis strategies for creating the heatmap of the affected visual field;

(a) threshold method, (b) interpolating method and (c) heatmap method. For

simplicity, only the transparent circles (denoted with yellow borders and labeled as

D) associated with pixels possessing two crossing patterns are shown in (c). 47

Figure 24 - The flowchart diagram of the proposed NGRID software platform. The

patient will be given a login ID to download NGRID App to perform the VD tests

from home. .. 49

Figure 25 - NGRID Editor is a customized online SVG Editor for the easy creation of VD

test patterns. (1) identifies the general editing buttons that allow for SVG pattern

creation and modification (2) identifies the customized buttons that allow the

automatic retrieval of the patterns from the NGRID data center. This allows for test

data to be automatically mounted in the editor for editing purposes (3 and 4) are

more detailed SVG editing tools that further allows the editor to rotate, group in

layers or even change the style of the SVG patterns (5 and 6) are tools that are used

to introduce various colors and opacities (7 and 8) are sample VD Test patterns that

are designed. ... 54

Figure 26 -Schema Details on NGRID SVGs, NGRID Tests and AMD Trials Database 55

Figure 27 - Performing Admin Low Level Queries Against the Test SVG Tables 56

Figure 28- (1) Specialized Database Admin Portal that allows for low-level archival and

backup tasks to be done on the NGRID DB as well optimization on DB indices (2) is

the overview of the NGRID Admin interface that allows adding patients and

xiv

assigning them to trials (3 and 4) refer to how patients are added to the system (5

and 6) refer to how a new trial is added to the system (7) is how patients are

assigned to trials. ... 60

Figure 29 - Control Test Admin UI: (1) the overall online interface that allows staff and

admins to be added to the system as well as creating and editing new NGRID VD

Tests (2,3,4 and 5) allows for adding new staff (medical practitioner) and admins

(NGRID test designers and technical staff) to the system. Only names, the email

address is required (6) view the existing library of VD tests in the system. The

medical practitioner can administer the test once the VD test is designed and stored

in the NGRID library (7 and 8) adding a new test with customized settings. A test

needs a name, series of settings such as duration of a test and for advance animated

test associated scripts (9 and 10) low-level modification to SVG codes associated

with a test. This is where the NGRID SVG Editor is launched as shown in Figure 25.

... 61

Figure 30 - An example of 16 frames in a simplified demonstration of heatmap algorithm

... 63

Figure 31 - An example of creating heatmap: (a) two overlapped features and (b) single,

larger feature covering the second part. .. 69

Figure 32 - The proposed hardware platform with the software process flow 71

Figure 33 - High-level Overview on NGRID Datacenter ... 74

Figure 34 - TLS/SSL Certificate for NGRID Site .. 76

Figure 35 - Hardware sensory overview of various components used in a typical NGRID

VD test .. 77

xv

Figure 36 - High-level illustration of proposed software and hardware architecture 77

Figure 37 - Illustration of (a) VDT1, (b) VDT2 and (c) VDT3 including all frames

collapsed in a single frame to better illustrate the entire test coverage. 80

Figure 38 - Systematic error in VD tests performed by healthy participants based on a

control device .. 82

Figure 39 - The response time diagram related to control input devices (a) Keyboard, (b)

Joystick and (c) Voice recognition used for performing VD tests. The voice

recognition has the longest response times whereas the keyboard and joystick

produced the shortest response times. ... 86

Figure 40 - First Macular Disorder Measurement Results of left Eye: (a)-(b) OCT vertical

and horizontal OCT images and (c) NGRID heatmap results with and

 ... 87

Figure 41 - First Macular Disorder Measurement Results of right Eye: (a)-(b) OCT

vertical and horizontal OCT images and (c) NGRID heatmap results with

and ... 88

Figure 42 - Second Macular Disorder Measurement Results of left Eye: (a)-(b) OCT

vertical and horizontal OCT images and (c) NGRID heatmap results with

and .. 89

Figure 43 - Second Macular Disorder Measurement Results of right Eye: (a)-(b) OCT

vertical and horizontal OCT images and (c) NGRID heatmap results with

and .. 89

xvi

Figure 44 - Third Macular Disorder Measurement Results of left Eye: (a)-(b) OCT

vertical and horizontal OCT images and (c) NGRID heatmap results with

and .. 90

Figure 45 - Third Macular Disorder Measurement Results of right Eye: (a)-(b) OCT

vertical and horizontal OCT images and (c) NGRID heatmap results with

and .. 90

Figure 46 - Experimental results (Left eye, First visit): a) heatmap graph and b) estimated

VD using the CSR model. ... 92

Figure 47 - Experimental results (Left eye, second visit): a) heatmap graph and b)

estimated VD using the CSR model. .. 93

Figure 48 - Experimental results (Right eye, second visit): a) heatmap graph and b)

estimated VD using the CSR model. .. 93

Figure 49 - Observed images by the patients suffering from CSR. In the (a) First visit, left

eye, (b) in the second visit left eye and (c) in the second visit right eye. 93

Figure 50 - Future works plans ... 99

xvii

LIST OF ABBREVIATIONS

3D-CTAG Three-dimensional Computer-automated Threshold Amsler Grid

AAG Accelerated Amsler Grid

AES Advanced Encryption Standard

AFFS Advanced Fringe Field Switching

AG Amsler Grid

AMD Age-related Macular Degeneration

API Application Programming Interface

ASYNC Asynchronous

AntiVEGF Anti-Vascular Endothelial Growth Factor

CPU Central Processing Unit

CSC Central Serous Chorioretinopathy, also known as CSCR and CSR

CSCR Central Serous Chorioretinopathy, also known as CSC and CSR

CSR Central Serous Retinopathy, also known as CSCR and CSC

CSS Cascading Style Sheets

DME Diabetic Macular Edema

EHR Electronic Health Record

ETDRS Early Treatment Diabetic Retinopathy Study

FPGA Field Programmable Gate Array

FS File System

GCL Ganglion cells Layer in the retina

GIMP GNU Image Manipulation Program

GMIS Graphical Macular Interface System

GNU GNU's Not UNIX

Gbps Giga-bit per seconds

HBA Host Bus Adapter

HCA Host Controller Adapter

HDD Hard Disk Drive

HFFS High-Transmittance Fringe Field Switching

HMD Head Mounted Display

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

INL Inner Nuclear Layer in the retina

IPL Inner Plexiform Layer in the retina

IoT Internet of Things

JS JavaScript

LB Load Balancer

LCD Liquid Crystal Display

LMS Long-Medium-Short Waves

LogMAR The Logarithm of the Minimum Angle of Resolution

xviii

LTE Long Term Evolution

LVS Linux Virtual Server

LXC Linux Containers

LZ Lempel and Ziv compression

MCPT Macular Computerized Psychophysical Test

MCU Micro Controller Unit

NFL Nerve Fiber Layer in the retina

NoSQL Not only SQL

OCT Optical Coherence Tomography

ONL Outer Nuclear Layer in the retina

OPL Outer Plexiform Layer in the retina

OS Operating System

OVS Oscillating Visual Stimuli

OpenCV Open Computer Vision

OpenZFS Open Zettabyte File System

PCM Pulse-Code Modulation

PHP Preferential Hyperacuity Perimeter

REB Research Ethical Board

RPE Retinal Pigment Epithelium in the retina

RSA Rivest, Shamir, and Adelman algorithm

SHA Secure Hash Algorithm

SQL Structured Query Language

SSD Solid State Drive

SSL Secure Socket Layer

SSO Single Sign-On

SVG Standard Vector Graphic

TAG Threshold Amsler Grid

TLS Transport Layer Security

TOD Task-Oriented Fixation

UI User Interface

VD Visual Distortion

VDT Visual Distortion Test

VR Virtual Reality

WWW World Wide Web

XML Extensible Markup Language

ZIL ZFS Intent Log

1

1 INTRODUCTION

Macular disorders such as Myopic Maculopathy, Macular Holes, Diabetic Macular

Edema, Age-Related Macular Degeneration (AMD) and Central Retinopathy (CSR) cause

visual distortion (VD) in their early stages [1], [2]. In their advanced phases, macular

disorders cause central vision loss. Among these retinal conditions, AMD is the leading

cause of blindness and will affect the central vision of 196 million people over the age of

65 worldwide by 2020 [3]. The central vision effects are very diverse and can impact

patients' basic mobility, road crossing, driving, scene viewing, reading, working with

computers and electronics and even cause depression [4], [5]. Patients with macular

disorders may require low vision rehabilitation assistance to achieve some simple goals

like news reading, leisure and entertainment, computer/mobile use for personal

communication, and correspondence. Therefore, the macular disorders severely affect the

quality of life and raise the direct and indirect medical management cost of macular

disorders [6]. Early detection of macular disorders is crucial as close monitoring allows

for intervention before irreversible damage occurs. In other words, the earlier the VD is

detected, the better the treatment of the macular disorder can be managed [7]. Currently,

2

various imaging methods including Optical Coherence Tomography (OCT) are used as the

standard assessment tools to monitor the progress of the macular disorders [8]. Although

OCT is a high-resolution technique to show any deformation in the cross-section of the

retina, OCT is not a low cost and easy to use method and only a medical expert can use it.

Therefore, it cannot be a choice for home-monitoring purposes. Despite significant

advances in biomedical technologies, still, the early detection and home-monitoring of VD

associated with various macular disorders is a significant challenge. Computerized

Graphical Interface (CGI) methods have recently attracted eye care professionals’ attention

as a low cost, home-use method for rapid detection of damage in the visual field as well as

monitoring the progress of macular disorders.

1.1 VD CAUSED BY MACULAR DISORDERS

As seen in Figure 1a, light passes through the cornea and the lens thus allowing an

image to be focused on the retina. The retina changes this light energy into a signal that

can be transmitted to the brain via the optic nerve on the top layer of the retina. The macula

is a small area of the retina approximately 4 mm from the optic disk. This area contains

the fovea and provides the sharpest central vision. When the gaze is fixed on an object, the

macula, the lens, and the object are in a straight line. The fovea is a shallow, capillary-free,

depression in the center of the macula approximately 1.5 mm in diameter and contains

more than 199,000 to 300,000 cones per square millimeter [9], [10]. As seen in Figure 1c,

the deflection of the retina near the fovea might be due to a macular disorder such as Central

Serous Chorioretinopathy (CSR) or Age-related Macular Degeneration (AMD) resulting

in the distortion of the created image on the retina. Figure 1 shows the main components

of the retina when a deflection has occurred due to a macular disorder. It is noteworthy that

3

this deformation is the source of VD in the visual sharpness, color and even the distortion

of straight lines [11], [12].

Figure 1 - (a) Simplified schematic of the Eye Structure (b) healthy macula (c) unhealthy macula (the deformed retinal

basement due to a macular disorder such as CSR). Various parts of the eye including (1) sclera, (2) iris, (3) cornea, (4)

pupil, (5) lens, (6) entire retina, (7) macula and in its center fovea, (8) optic nerve.

1.2 RELATED MACULAR DISORDERS

Macular Edema, CSR, and AMD are three well known macular disorders that cause

deformation in the retina. This section outlines these macular disorders [13]–[18]. Macular

Edema occurs when the fluid collects within the macula leading to swelling of the retina’s

tissue and subsequently results in visual distortion [10], [19]. Diabetic Macular Edema

(DME), Cystoid Macular Edema (CME) are two subtypes of macular edema. DME or

swelling of the retina occurs in diabetes from the leakage of fluid from blood vessels. In

CME, fluid accumulates in cyst-like spaces within the macula. The collection of fluid

results in the deformation of the retina with a significant effects on vision. On the other

hand, CSR is a condition that occurs because of leakage of fluid at the level of the retinal

pigment epithelium (RPE) [16], [17]. It is noteworthy that the epithelium is one of the four

main types of tissues in the body and the RPE is the pigmented cell layer that nourishes

4

retinal visual cells. As seen in Figure 2c, this leakage results in deformation of the retina

similar to that imposed by Macular Edema. There is usually no underlying cause, however,

in most cases the condition is preceded by work-related mental stress. In AMD, drusen –

yellow colored pigments made up of lipids – builds under the basement membrane of the

retinal pigment epithelium causing significant vision loss [13], [15]. As the macula is the

central part of the retina consisting of the highest concentration of photoreceptors, the

emergence, and growth of drusen over the years causes loss of vision. AMD can be

classified into two categories, dry and wet. Dry drusen are small, round and discrete

whereas in wet AMD, drusen are larger with indistinct margins. As shown in Figure 2d,

the presence of drusen can displace the mosaic retina causing patients to complain about

the observation of wavy lines [20], [21]. In addition to AMD, CSR, and Macular Edema,

other types of macular disorders may result in the deformation of the retina and thus VD

in the early stages of the development of the disease [10], [12].

Figure 2 - Illustration of retina section of (a) normal eye and the eye suffers from (b) Edema, (c) Central Serous

Retinopathy (CSR) and (d) AMD. In this figure, RPE is the retinal pigment epithelium.

5

1.3 VD ASSESSMENT IN PATIENTS WITH MACULAR DISORDERS

Among various visual assessment methods, the visual acuity test [22] is widely

used to evaluate the smallest letters that a patient can read on a standardized Snellen chart

or the more accurate Logarithm of the Minimum Angle of Resolution (LogMAR) chart as

displayed in Figure 3a. The LogMAR chart called Early Treatment of Diabetic Retinopathy

Study Chart (ETDRS) was created as a more accurate means of measuring visual acuity.

Despite the great advantages of ETDRS, the studies show that visual acuity is a poor

indicator of macular disorders including AMD [23]–[25]. This is because the acuity test

can only evaluate the presence of AMD, but it does not provide any information about the

location or the progression of AMD

In 1947 Marc Amsler created a printed grid for the detection of AMD [10], [26],

which he called the Amsler Grid [27]. Currently, the Amsler Grid (AG) is the gold standard

of home monitoring for patients suffering from macular disorders. The grid is used in a

monocular fashion with their best near correction (see Figure 3b) while the participants are

asked to fixate at the center. An AG sheet approximately 8x8 inches in size should be held

20cm from one eye when the other eye is covered. In this test, first, the patients should

wear their eyeglasses and look at the dot in the center of the AG sheet. Then, they should

detect any missing corners or any lines that are wavy or missing. The AG test can

successfully monitor metamorphopsia and scotomas as seen in Figure 3b [25]. Although it

is widely used, the Amsler Grid shows low accuracy for detecting VD changes smaller than

the distance between the horizontal or vertical lines in patients suffering from AMD from

one time to another. Moreover, AG has limitations such as cortical completion (the brain

completes a partially formed image) [26], lack of accurate central fixation (looking at an

6

object involves our macula and is called central fixation), crowding of the lines (confusion

due to the presence of multiple lines), and poor patient compliance (there is no way to

monitor if they actually did the test every day).

(a) (b)

Figure 3 - Visual Chart Tests: (a) ETDRS Visual Acuity Chart and (b) Amsler grid with Scotoma (right) and

Metamorphopsia (left) seen on Amsler grid in AMD patients.

OCT is a noninvasive medical imaging technique used to provide an optical cross-

section of the retina [29], [30]. This technique is widely used for obtaining sub-surface

images of opaque materials at a resolution equivalent to a low-power microscope. By

employing near-infrared light, it can capture micrometer-resolution features [10], [31].

OCT can play a key role in evaluating patients with macular disorders and those

undergoing treatment [32].

Proper analysis of OCT images requires training and extensive practice, for this

reason, it is not suitable for home diagnostics. Figure 2 shows the OCT illustrations of

normal, AMD, and Macular Edema afflicted retinas.

7

1.4 SUMMARY AND ORGANIZATION OF THE DISSERTATION

Computerized graphical VD assessment methods have recently emerged to overcome

the problems mentioned earlier. Despite significant advances, there are many challenges in

developing and using computerized VD assessment techniques. These methods can be

divided into two main groups including static and dynamic approaches that are put forward

in chapter 2 along with the challenges of computerized methods. We follow up the

discussion with our mathematical model in chapter 3 to better simulate the effect of

deformations. The mathematical models helps us to design better VD tests. Based on the

discussion and mathematical models, we introduce our approach to VD tests, namely the

NGRID platform in chapter 4. We review test results of NGRID platform in chapter 5

followed up with conclusion and our future plans in chapter 6.

8

2 RELATED WORKS

As we reviewed in chapter 1, the Amsler Grid is used as a standard method to detect

scotoma and metamorphopsia in macular disorders. In this method, the grid pattern is used

as a still image while the patient fixates at the center of the display (central fixation) and

tries to detect any deformation or curvy lines in the grid. In this chapter we discuss the

related works around various static and dynamic methods for detection and monitoring

visual deformation in the visual field.

2.1 STATIC VD ASSESSMENT METHODS

In this section we review static VD assessment methods. These methods are static in

nature and does not require the graphical patterns to be displayed to the patients with a

specific timing requirement.

2.1.1 ENHANCED PORTABLE AG TEST

Many efforts have been made to convert the paper-based AG test to a computerized AG

test [33], [34]. Among these efforts, as shown in Figure 4a, Hirji [35] presented a portable

near-eye ophthalmic device using a portable tablet computer incorporated with a phoropter

9

rod to limit the movements of the head and allow a better view of the Amsler Grid. Despite

the fact that this device allows for better fixation at the center of the grid by reducing the

head movements, as with the AG charts’ test, it still suffers from the completion effect. As

described in [36], the brain fills or completes the gaps in the visual field of each eye.

Therefore, this completion effect may cause wrong answers in this test. As shown in Figure

4b, a finger-touch tablet or smartphone can be used for directly marking any area of VDs

such as metamorphopsia. By offering advantages of faster interaction with patients, this

technology not only can be used in eye-care clinics but also, a portable smart tablet is

suitable for self-monitoring of macular disorders at home. Despite the advantages

mentioned above, this method, in addition to its problems with the completion effect, also

suffers from a lack of eye-tracking to assure fixation compliance during testing.

Figure 4 - (a) Near Eye Ophthalmic Device utilized with a phoropter rod to better display Amsler Grid, (b)

Portable Smart Tablet Used for Evaluation of Metamorphopsia and (c) Eyeglasses Used in Threshold Amsler Grid Test

Equipped with Mountable Polarized Filters.

2.1.2 THRESHOLD AMSLER GRID TEST

As described in subsection 2.1.1, the AG is directly displayed in front of the eye.

10

Therefore, the accuracy of detecting scotoma and metamorphopsia is limited by overall

visual acuity and the performance of the eye is functioning properly or not. The Threshold

Amsler Grid (TAG) test has been designed to increase the accuracy of the traditional AG

tests. A TAG test can be performed through cross-polarizing filters that cause low

luminance conditions in which the grid becomes barely perceptible as seen in Figure 4c

[37]. It is noteworthy that the cross-polarizing filter is used for enhancing vision by filtering

the reflected lights. However, this filter reduces luminance conditions. Such eyeglasses,

reported by Sadun et al. [38], can vary the amount of luminance of the observed AG by

the patient. Therefore, this will greatly increase the sensitivity of the patient's eyes to

perceive the presence of scotomas. Although the threshold Amsler grid shows better

performance in comparison with traditional AG method, 50% of all scotomas remain

undetected [39].

2.1.3 ACCELERATED AMSLER GRID TEST

In an AG test, the patients should explain their VD experience in order to

approximately find the locations of VD in their visual fields, however, with AG test,

patients cannot be provided with a quantitative analysis of their VD. One of the first steps

towards quantifying these answers was taken by proposing the Accelerated AG test (AAG).

In AAG test, sub AG blocks ⅟₄, ⅟₁₆ and ⅟₃₂ the size of the largest AG block (with

32 small blocks such as block C in Figure 5a) are displayed for covering the entire display

(A, B and C in Figure 5a). Patients provide ‘yes’ or ‘no’ answers in response to viewing

these blocks. The observation of a normal block with straight-lines or abnormal blocks

with curvy-lines can represent the presence or absence of VDs respectively (Figure 5a). In

this method, proposed by Palanker [40], at the first step, AG block A is displayed in the

11

top-right, bottom-right, top-left, and bottom-left in order to detect the location of VDs. In

the next steps, the AG blocks C and D are scanned in the detected location with VD in

order to accurately detect the location of the VDs.

The accuracy of AAG method is limited to the distance between the grid lines that

create the sub AG blocks. Figure 5b shows that VD can be observed in two adjunct blocks

or other combinations of the smallest AG blocks. In this method, the smallest detectable

metamorphopsia lesions in the visual field of the patient can be equal to the smallest AG

block. By decreasing the size of the smallest block, for instance to ⅟₆₄ or lower, the accuracy

of this technique is increased, however, it will require more time to scan all blocks thus

causing eye fatigue. Consequently, it results in higher difficulty to fixate on the center of

the screen.

(a) (b)

Figure 5 - AG Based VD detection methods (a) Binary Amsler Interactions (b) Deformable Amsler Grid

(DAG). DAG has Ability to Apply Correction Vectors to Improve Patient Vision (A) denotes the normal Grid (B) is the

Grid as seen by the patient (C) is the correction vectors that are highlighted in red and correction values that are measured

in green which denotes the amount of deflection from the straight grid lines (D) is the improved final grid as viewed by

the patient after applying the correction vectors

12

By assuming a VD happens in sub AG block D (denoted with “o” in Figure 5a),

after answering seven “yes/no” questions; the VD block can be identified. One may suggest

a pure binary search tree approach to accelerate the speed even further. Despite the

advantages of this method, this method still may suffer from the completion effect and a

lack of controlled fixation which are inherited from the Amsler Grid as already explained.

2.1.4 DEFORMABLE AMSLER GRID

This method relies on the fact that when an AG with all straight lines (Figure 5b-A)

is projected on the patient’s retina, the patient partially sees a deformed (Figure 5b-B) line.

Assuming that the patient can spot the metamorphopsia displayed in Figure 5b-B, then it

could be possible to project an AG with the same deformed lines (Figure 5b-C) but in the

opposite direction to ease the metamorphopsia experienced by the patient as shown in

Figure 5b-D. As shown in Figure 5b-C, the alternate grid has the same deformed lines, but

in the opposite direction. This is achieved by applying a correction vector (highlighted in

red in Figure 5b-C). Figure 5b-D is the result of the correction vector is applied.

Based on this method, Kohn et al. [41] proposed a portable device including a tablet

with a deformable AG program that can interactively measure the metamorphopsia via

measuring the correction vector. Based on this technique, the patient can change the

location of the vertices of the grid until the grid appears substantially rectilinear to the

patient. The deformations of the pattern are recorded by the program and can be retrieved

for evaluation of deformation and the progress of the disorder. The inherited difficulties of

the AG test such as the completion effect apply to this technique as well. Additionally, the

fixation at the center is another important problem; this is because the patient’s focus will

move toward the deformation location while interactively changing the deformations.

13

In the next section we review the VD assessment methods that have more dynamic

requirements on how the patterns should be projected.

2.2 DYNAMIC VD ASSESSMENT METHODS

The second group of VD assessment methods relies on projecting the stimulation pattern

over a short time and indirectly measuring the visual performance based on the ability of

the eye in detecting the stimuli. These methods are dynamic in nature. It is noteworthy that

the projection time of graphics to patients’ retina in dynamic methods is much shorter the

static methods.

2.2.1 PHP TEST

Preferential Hyperacuity Perimeter (PHP) is another computerized VD assessment

method that utilizes hyperacuity to detect changes and distortions in the central retina.

Hyperacuity or Vernier Acuity is the ability to detect small misalignments between two

lines. This acuity based measurement method is found to be much more accurate than

Snellen type acuity (see chapter 1) VD detection in patients suffering from macular

disorders [39], [42], [43]. Hyperacuity can also be defined as the capability of the visual

sensor to transcend sampling limits set by discrete receiving elements. As seen in Figure

6a, if a dotted line with a small bump and a large bump (one bump is very small in

comparison to the other one) is presented to an individual for 500 ms, the individual may

not able to perceive the smaller bump due to the presence of the larger bump. PHP relies

on this concept and simply flashes a dotted line across the screen for a short period (Figure

6b). This dotted line contains a small visual distortion (e.g., a bump in the line that can be

as small as 0.3 degrees). Patients with a macular disorder might ignore this small bump

14

due to the presence of a bigger VD caused by the macular disorder. Patients should record

any perceived distortions by clicking or drawing the “bump” they have observed on the

screen. A macular map, also known as a heatmap, (Figure 6c) is obtained with quantitative

values of the area and intensity of the metamorphopsia. The higher the number of clicks

around the areas that no artificial bump is presented, the higher the chance of

metamorphopsia presence in those regions, and the darker that area is rendered in heatmap

[44].

2.2.2 3D-CTAG TEST

Three-dimensional Computer-automated Threshold Amsler Grid (3D-CTAG) is another

visual field test [33], [45]. Patients, with one eye covered, are positioned in front of a touch-

sensitive computer screen on a head-chinrest. They are asked to finger-trace the areas of

an Amsler grid that are missing from their field of vision (Figure 7a). Various degrees of

contrasts of the Amsler grid are presented by repeating the test at different grayscale levels.

It is noteworthy that the number of vertical and horizontal lines and their width can be

changed to achieve various contrasts.

Figure 6- (a) Presenting a dotted line with the presence of a small bump and another large bump for 500ms to

healthy individuals. (b) PHP Test Apparatus – a dotted line with a very small artificial bump shortly flashed on the screen

15

and patients should record where they see a bump using stylus pen (c) is the generated PHP heatmap that shows the

location and severity of visual distortions in patient’s visual field.

(a) (b)

Figure 7 - 3D-CTAG Apparatus – (a) shows the overall apparatus with chin rest to limit the head movements

(b) final result of the test which highlights the severity of affected visual distortion areas

3D-CTAG is used to test the 25 degrees of the central visual fields at different

contrast levels. Among the efforts made in this direction, Robison et al. reported a 3D-

CTAG test with five different contrast levels [45] (5%, 10%, 20%, 40% and 100%

contrast). The detected VD area with each contrast was mapped to one of five different

levels in the z-axis direction denoted with colors in Figure 7b. This method can reflect the

effect of contrast on the accuracy with which a VD area is detected; however, the visual

fixation at the center is still a problem. This is because the attention of the patient jumps

from the center of the display to its surrounding area as shown in Figure 7a.

2.2.3 MACULAR COMPUTERIZED PSYCHOPHYSICAL TEST

Macular Computerized Psychophysical Test (MCPT) is another visual field test that

acts based on hyperacuity [39], [46]. The patient has to bring the mouse cursor to the center

point on the screen to view the next flashed dotted line. This task initiates a stimulus and

simultaneously a forced fixation. This task is called Task Oriented Fixation (TOF) and

16

should be repeated in order to view the next flashed dotted-line. This TOF based test

ensures that the patient is going to re-fixate at the center of the screen even in the event that

they momentarily lose their central fixation. A dotted line (white dots on a black

background with maximal contrast) flashed at a random order across different perifoveal

locations (see Figure 8a). By using a dotted line (e.g., line A in Figure 8a), the test is similar

to the aforementioned hyperacuity assessment methods in accurately detecting the VDs. In

MCPT the patient uses a mouse to click on a central dot, after which a new dotted line is

presented at a different location (e.g., line B in Figure 8a) on the screen. The patient marks

any scotoma or metamorphopsia by marking the corresponding locations on the screen with

a mouse [39].

(a) (b)

Figure 8 - Stimulating patterns used in (a) MCPT and (b) M-Chart test techniques

2.2.4 M-CHART SCORE TEST

A metamorphopsia chart or so-called M-CHART is used to quantify the

metamorphopsia in patients’ visual field [47], [48]. The test contains 19 kinds of horizontal

and vertical dotted lines with different widths and lengths that are displayed in different

visual angles ranging from 0.2 to 2.0 degrees [49]. The lines are presented at 30 cm,

17

monocularly, while patients are allowed to have their eye-glasses to achieve best near

corrected vision. As shown in Figure 8b, the patient starts by seeing a vertical or horizontal

dotted line in between two letters (as seen in line A, B, and C in Figure 8b) that is seen by

the patient as curved or misaligned. The patient is then presented with changes in the dots

from fine to coarse until the metamorphopsia disappears. The minimum visual angle

needed to detect the metamorphopsia is recorded [50]. In this technique, the fixation at the

center of the visual field is not trivial. Additionally, it is challenging to obtain

metamorphopsia scores from those patients with visual acuities 20/100 or less or the ones

suffering from very large central scotomas.

2.2.5 SHAPE DISCRIMINATION TEST

Wang et al. [51] proposed a method to test visual hyperacuity using shape

discrimination. In this test as seen in Figure 9, one circular pattern is shown to the patient

along with another similar shape that is deformed slightly.

 Patients should identify the deformed pattern. The test showed that AMD patients

have significantly worse performance in detecting radial deformation of the patterns when

compared with normal control eyes [51].

The primary goal of this test is the early detection of a macular disorder. Very small

circles can be screened in the patient’s retina in order to quantify the progress of the

macular disorder. However, the smaller the circles, the lower the accuracy in distinguishing

normal from deformed circles.

18

(a) (b)

Figure 9 - Shape Discrimination (a) circular pattern and (b) another similar pattern with radial deformation of 8/2π (right).

2.2.6 POSITIONING TECHNIQUES

There were many moveable tasks introduced over the years to assess the visual

field. For instance, Enoch et al. [52] reported a method for measuring metamorphopsia. As

shown in Figure 10a, while one of the blocks is fixed, the other block is movable, and the

patient should be able to align it vertically or horizontally with another one. In another

effort, Schmid et al. presented the Vernier Hyperacuity Test (see Figure 10b), with a black

background screen and a few white objects that are slightly misaligned and should be

aligned by the patient. A more complex aligning task was proposed by Weicek et al. [53]

who reported the square completion task with movable and immovable dots. The patient

should be able to move the dots in order to form a rectangular shape as shown in Figure

10. The patient should be able to detect the dots and accurately align them horizontally and

vertically. In all the above-mentioned tests with movable patterns, still, it is difficult for

patients to maintain fixation at the center of the screen. Stewart [54] addressed this problem

by proposing oscillating visual stimuli (OVS) to detect metamorphopsia. The test pattern

(Figure 11a) is positioned in front of the patient to cover at least 40° or more of the visual

field.

19

(a) (b)

Figure 10 - Aligning Method: (a) Basic Aligning Task and (b) Vernier Hyperacuity Test.

Similarly, in the real-time retinal tracking method [55], a random flash point is projected

in a different location of the patient’s retina (see Figure 12b). The patient should

immediately press a button once a projected flashed light point is seen. The method is

widely used for eye diseases such as Glaucoma [56]. It is noteworthy that the

aforementioned methods are used to detect the locations of VDs in the visual field and to

consequently detect metamorphopsia.

(a) (b)

Figure 11 - Square completion task: (a) a fixed green dot and three adjustable white dots and (b) four movable orange-

colored bisecting dots.

20

(a) (b)

Figure 12 - Vibrating Method: (a) Oscillating Visual Stimuli and (b) real-time retinal tracking.

2.2.7 DISCUSSION

 Computerized static VD assessment methods including portable threshold,

accelerated, and deformable AG methods, in general, are prone to the filling-in effect and

may not detect small metamorphopsia and scotoma regions. This is due to the predictive

shape of the grid and the fact that the brain will guess and fill-in the gaps. As reported by

Fink et al. [38] 3D-CTAG like other AG based methods suffer from the filling in effect due

to the predictable static grid-based nature of the test. This effect was addressed in the

NGRID method [57] by offering a series of different patterns projected in a different

location of the retina. Additionally, AG methods slightly suffer from the inaccurate fixation

at the center of the screen if they are used as home-monitoring tools, however, if the

collection of responses are managed by an assistant, the fixation at the center can be better

performed. This is because the attention of the patient will be placed at the center during

the test.

In comparison with the aforementioned AG-based methods, by taking the

advantages of hyperacuity, PHP allows higher accuracy so that this method enables the

21

detection of small metamorphopsia and scotomas in the early stages of development of

these disorders. Although PHP demonstrates high accuracy in comparison with AG

methods, it allows very weak fixation at the center of the screen. This is because the

location of the bump shape patterns are randomly changed and the patient should detect

them using a mouse or finger-touch screen. Using dynamic methods such as PHP, the entire

central field should be covered. In other words, although PHP, M-CHART, and Shape

Discrimination all quantify metamorphopsia, none of these tests track eye movement and

therefore cannot ensure proper fixation during the test [2], [58]–[60]. Weicek et al. [53]

used a computer-based Amsler grid test, square completion, and dioptric pointing task with

eye-tracking to quantify metamorphopsia in patients with maculopathy.

 Similar to PHP, M-Chart lines also have to scan of view to be able to detect

metamorphopsia and scotomas accurately. However, this increases the period of the test

and subsequently decreases the accuracy. Furthermore, each line in the M-Chart should be

repeated multiple times to cover from fine to coarse dotted lines. For MCPT with a flash

duration of greater than 180 ms, the dots located on a retinal lesion theoretically should be

perceived as being either misaligned or missing. This is because, for a short duration, the

fovea requires re-fixation on the displayed line and this shift in fixation should cause the

apparent movement of these dots from a misaligned position to an aligned one, thus giving

the patient the perception of movement. For flash durations less than 180 ms, such apparent

movement could be extinguished and the sensitivity of the test reduced [39]. One may

argue the static tests such as AG based methods not only lower diagnostic accuracy due to

poor compliance in fixation and inherit crowding and filling-in effects [61], they cannot be

quantified to show the progress of disorders. On the other hand, dynamic tests such as PHP

22

and MCPT, by offering the higher accuracy, can be considered as better choices to quantify

the progression of macular disorders. It is noteworthy that moveable methods, such as the

Square completion task and Oscillating Visual Stimuli can be considered in the group of

dynamic methods with higher accuracy.

Table 1 presents a summary of GI methods, their advantages and disadvantages, and

other details based on our study in this dissertation. Table 1 compares various factors

including the (1) accuracy, (2) complexity or easy-to-use, (3) required time for a complete

test, (4) portability. As seen in this table, “High”, “Low”, and “Medium” have been used

to compare factors 1-4. As also seen in this table, in all methods except AG, threshold AG,

and PHP home, PC should be employed. Therefore, they are considered as portable

methods. However, by developing the smart-phone version of these methods, their

portability can improve. Another factor is complexity. A comparison between the

complexity of patterns projected in the patient’s retina shows that in AG, Accelerated AG,

and Shape Discrimination, simple patterns are used and accordingly detect the location of

VD through a low complexity procedure. This complexity can increase the required time

to run a test. The required time for running a simple test such as AG or threshold AG is

low. However, these methods cannot be used for quantifying the progress of macular

disorders, and they can not necessarily be used to accurately detect them. Among various

factors, PHP method (Figure 13a) has demonstrated higher accuracy [44], [62]–[64].

All aforementioned visual assessment methods have great potential for

commercialization by offering new software applications to run in the PC, laptop or

smartphone. However, for highly professional visual distortion assessment with high

accuracy, the design and implementation of a specific device is required. In this direction,

23

the PHP method was commercialized by Foresee Inc. [44], [62]–[64] for monitoring the

macular disorder (see Figure 13a). Another company called Centervue [55] developed a

device for monitoring the visual field using various methods including real-time retinal

tracking (see Figure 13b). Despite significant advantages, these devices are expensive and

can be suitable for professional eye-care settings. It is worth mentioning that while the

fixation problem could be mitigated in the future by using an eyetracker, most

commercially or clinically available tests have not included the eyetracker system in their

instruments. Additionally, there are many psychological or physiological factors that can

affect the performance of proposed computerized methods. Therefore, the success of these

methods is dependent on the clinical trial. To date, a few efforts have been made to

systematically study the performance of graphical interface techniques for various macular

disorder. Among various techniques discussed in this paper, only AG and PHP have been

systematically studied and their statistics widely reported based on various clinical trials.

As reported in [62], [65], the sensitivities of AG and PHP for the detection of AMD are

78% and 87% respectively.

It is noteworthy that the focus of this dissertation was placed on the graphical

interface methods from a computer science perspective. This dissertation is the first to

review these methods. Most of the proposed methods discussed here need to be used by

experts and trained personnel. Therefore, in their current form, they are not suitable for

home diagnostics. However, these methods potentially can be used at home in the future

using, for instance, a smartphone and tablet. The advantage of these methods for home

diagnostic purposes has been reported in other review papers [62]. The focus of this

24

dissertation is placed on the graphical computerized methods used for the detection of the

macular disorders.

Table 1 - A quick Comparison of Visual Distortion Methods

Test Accuracy Complexity
Measurement

Time
Portability

Amsler Grid Low Low Low Good [26], [33]

Threshold Amsler Grid Medium Low Low Medium [39]

PHP High Medium High Poor [39], [42], [43]

PHP Home High Medium High Good [44], [62]–[64]

3D-CTAG Medium Medium High Poor [33], [45]

MCPT Medium High High Poor [39], [46]

M-CHART Medium Low Low Poor [47], [48]

Shape Discrimination Medium Low Low Poor [51]

Positioning High High High Medium [52]

(a) (b)

Figure 13 - Commercially available visual field monitoring systems using (a) PHP method with two versions of desktop

and portable devices and (b) real-time retinal tracking method.

2.3 SUMMARY

This chapter reviewed the dominant dynamic and static VD assessment methods.

Despite significant advances, these methods suffer from low accuracy, high duration test’s

25

time and difficulty in central fixation point. Also, these techniques can only provide a

qualified assessment of VD. This thesis addresses the challenges above by proposing a new

VD method called NGRID. In this method, a new unified hardware/software system is

developed for generating and projecting various patterns in the short period. NGRID

platform allows for collection and processing of the patient responses to create a specific

heatmap to quantitively evaluate the damages in the retina for macular disorders. Before

we start explaining the NGRID platform, we put forward simple mathematical models that

helps us to better design VD tests in chapter 3.

26

3 MATHEMATICAL MODELING OF A SIMPLE VD

A number of attempts have been made to model the optical schematic of the human

eye [59], [66]–[68]. The main goal of these models is to explain various optical phenomena

in our vision. They also allow various optical refraction and aberrations to be

computationally studied and compared to better understand our optical vision limitations.

In this chapter, we focus on a simplified mathematical model specific to macular visual

distortions (VDs) that are introduced by the presence of drusen, edema or even

neovascularization and omit the optical aberrations that happen outside the macula. We

discuss our simplified mathematical model for macular VDs and present the outcome of

our algorithm to simulate VDs on a sample textual scene similar to what patients may

experience due to their macular disorder.

As mentioned in chapter 1, many patients that suffer from macular disorders may

experience metamorphopsia when viewing an Amsler grid as shown to Figure 3b. The

physical changes in the retina due to macular disorders can significantly affect visual

performance. The deformation of the retina due to macular disorders exerts forces in

cellular layers. These forces can displace the cells that form the visual field. Therefore the

27

straight lines might be seen as curvy (metamorphopsia) [69], on the other hand,

deformation of the retina might slightly deviate it from the focal point of the lens. This may

change sharpness, contrast, and brightness of patients’ vision. Due to the complexity of the

visual effects of these disorders, it is not possible to precisely quantify the effect of VDs

and consequently predict the observed images by the patient. In this section, we propose a

low complexity model of VD in the visual field of the patient suffering from CSR by taking

into account the above mention effects. Given the fact that the accuracy of the

computerized VD graphical methods relies on the accurate detection of distorted lines, it is

crucial to have an idea of the distorted images seen by the patient. Our mathematical model

can be utilized to design better VD test patterns.

3.1 EFFECT OF CSR IN THE VISUAL FIELD

Central Serous Retinopathy (CSR) or Central Serous Chorioretinopathy (CSCR) is

a condition that occurs because of leakage of fluid at the level of retinal pigment epithelium

[2]. This results in the creation of micrometer scale structures like a cavity. Figure 17a

shows the OCT image of the retina affected by CSR. The structure can be modeled with

cylindrical or semi-spherical geometries. One may argue that the deformation of the retina

can affect the mosaic of cones and rods and other components between the photoreceptor

layer and the basement of the retina as seen in Figure 1c. The deformation of the retina due

to CSR can slightly stretch the retinal layers and consequently displace the visual sensing

points on the top layer. These small displacements can cause significant visual distortion

in the visual field of a patient. In the next sections, we derive the mathematical relationships

for modeling a simple cylindrical shape as well as a more general extension of this model

through semi-spherical shapes’ deformation. Even though the CSR structure does not

28

precisely assume these shapes, the models can be used to estimate the visual distortion

caused by CSR. We start our models with visual distortions that are introduced by

cylindrical shape drusen or edema and expand the model to more generic spherical shapes

subsequently.

3.2 VDS DUE TO CYLINDRICAL SHAPE MACULAR

DEFORMATIONS

We begin our modeling with cylindrical shape macular changes. As shown in

Figure 14, P2 presents a small subsection within the macula that has a cylindrical shape

deformation. The deformation in the LMS cone mosaic tiles can be caused due to various

macular disorders by a presence of drusen, edema or even near fovea neovascularization.

We are going to study the effect of this cylindrical shape and compare what is projected in

a healthy macula sub-sectional plane (shown in Figure 14, P1) versus what is projected in

a macula sub-sectional plane with the presence of cylindrical shape deformation (shown in

Figure 14, P3).

As shown in Figure 14 sub-sectional macular plane P1, lines L1 through L7 (i.e.,

the sample lines from the outside eye scenery viewed by the human eye) are projected to

the macula without any changes. However as soon as we project the same set of lines for

an unhealthy macula (e.g., the macula with a deformation), we will notice some changes

in the location of projections in the LMS cones mosaic tiles. As shown in Figure 14 P3, the

location of the lines L1, L2 and L3 are not changed. These lines are projected normally as

they happen to be outside of the cylindrical deformation showed in in Figure 14 P2.

29

Figure 14 - Effect of the presence of cylindrical shape deformation in a sub-sectional macular plane (P2). P1

presents what is projected in the corresponding healthy sub-sectional macular plane. P3 presents the final changes and

what is projected in the corresponding unhealthy sub-sectional macular plane. In P3, line L5 is displayed due to the

cylindrical shape deformation presented on P2.

The location of projection of the line L5 is slightly shifted in the LMS cones mosaic tiles

due to a bump introduced by the presence of the cylindrical deformation in the

corresponding sub-sectional macular region. Please note the location of L4, L6, and L7

lines are not changed drastically even though that is projected within the boundaries of the

30

cylindrical displayed in Figure 14 P2. These changes can be explained by mathematical

relation shown in Figure 15.

Figure 15 - Deformation Relation of the VDs Due to Cylindrical Shape Macular Deformations

We now apply the deformation relation shown in Figure 15 to a simple Amsler grid

(Figure 16a) to better visualize see the changes. As shown in Figure 16b, we have used

black and white canvas with size of 800x800 pixels at 96 DPI. The radius of the cylinder

is 100 pixels and the boundaries of the cylinder are marked with helper guider lines

highlighted in red. We also applied the same cylindrical VDs to a normal text and showed

the results in Figure 16c and Figure 16d respectively.

It is noteworthy to mention that, as is evident in Figure 16b, we only considered VDs

in vertical lines. In the next section (spherical model) we discuss changes that happen

vertically and horizontally (e.g. the full Cartesian coordinates in a sphere shape VD).

31

(a) (b)

(c) (d)

Figure 16 - Cylindrical VD Simulation. (a) is the normal Amsler grid (b) is the outcome of applying cylindrical shape

VDs to the normal Amsler grid (c) is the normal text that healthy macula would see (d) is the outcome of applying

cylindrical shape VDs to a normal test shown in c.

3.3 VDS DUE TO SPHERICAL SHAPE MACULAR DEFORMATIONS

The creation of CSR is due to the collection of fluid under the basement of the

retina. This results in the creation of micrometer scale structures like a cavity as seen in

Figure 17a. This figure shows OCT images of the retina affected by CSR. The structure

can be modeled with spherical or semi-spherical geometries. One may argue that the

32

deformation of the retina can affect the cones, rods, and other components between the

photoreceptors and the basement of the retina including the entire retinal pigment

epithelium layers.

As demonstrated in Figure 17b, the deformation of the retina due to CSR can

slightly stretch the retina layers and consequently displace the visual sensing points on the

top layer. These small displacements can cause significant VD. Here we derive the

mathematical relationships for modeling a half-spherical shape’s deformation. Even

though the CSR structure does not exactly assume this shape, our simple model can be

extended to estimate the visual distortion caused by CSR.

A CSR deformation can be modeled with a sphere as illustrated in Figure 17b-d.

Naturally, the cross section of this deformation assumes a half-circular locus. Given the

fact that the number of sensing points or ‘pixels’ in the retina is the same before (orange

points in Figure 17c) and after deformation (red points in Figure 17c), we can assume these

sensing points are distributed uniformly before and after retinal stretching. For this reason,

as a result of this deformation, the observed pattern in the retina differs from the pattern

stimulated or observed in the normal retina. In other words, the distance between the

sensing points in the deformed retina will be different from the one in the normal retina.

Therefore, the stimuli pattern will be different from the pattern observed by the patient (see

Figure 17c). In other words, the light from each point of the stimuli pattern that reaches the

deflected retina at point x1 where the light will be observed by the patient in point x2 (see

Figure 17d).

33

Figure 17 - Proposed Model: a) OCT image of a CSR cavity, b) a semi-spherical model, c)-d) half-spherical shape

activity using discrete and continuous presentation, e) 3D half-spherical shape activity with partially spherical shape

cavity model, f) semi-spherical-cylindrical shape CSR cavity mode

 With reference to Figure 17d, x1 can be obtained from the following equation.

𝑥1

𝑅
=

𝛼𝑅

(𝛾)𝑅
 (1)

Where R is the sphere's radius, γ=π/2 and α are the angels between the sensing point and

horizontal axis that become equal to 𝜋𝑥2/2𝑅 using equation 1. On the other hand x2, is equal

to 𝑅 sin(𝛼) , thus x2 becomes equal to 𝑅 sin(𝜋𝑥2/2𝑅) that is a one-dimensional model of

displacement of the visual point from x1 to x2. However, the real visual point should be

modeled in two dimensions as seen in Figure 17e. In this figure L1 and L2 replce x1 and x2

so that 𝐿1 = √𝑥1
2 + 𝑦1

2 and 𝐿2 = √𝑥2
2 + 𝑦2

2 where (x1 , y1) are the cartesian cordinates of

the object point seen in a normal retina. This point is displaced to (x2 , y2) so that 𝐿1 =

34

𝑅 sin(𝜋𝐿2/2𝑅). In the other hand, tan(ω)=y1/x1=y2/x2 where ω is an angle shown in Figure

17e. By combining above information, the equation 2 and 3 are obtained.

 𝑥2−𝑥0 =
(𝑥1−𝑥0)𝑅

√(𝑥1−𝑥0)2+(𝑦1−𝑦0)2
. sin(

𝛾√(𝑥1−𝑥0)2+(𝑦1−𝑦0)2

𝑅
) (2)

 𝑦2−𝑦0 =
(𝑥1−𝑥0)𝑅

√(𝑥1−𝑥0)2+(𝑦1−𝑦0)2
. sin (

𝛾√(𝑥1−𝑥0)2+(𝑦1−𝑦0)2

𝑅
) (3)

Where (𝑥0, 𝑦0) is the center of spherical VD area. Equations (2)-(3) are used to obtain the

displacement of the stimulation pattern where (𝑥1−𝑥0)
2 + (𝑦1−𝑦0)

2<R2. The actual CSR

deformation shape as seen in OCT image in Figure 17a, can be modeled with a semi-sphere

shape structures. With reference to x1 in Figure 17e-f, γ=β=sin-1(D/2R), therefore equations

(2) and (3) with this having γ can be re-written to obtain the displacement of (x1,y1) to

(x2,y2).

 In the aforementioned spherical shape CSR modeling, we discussed a simple model that

has been extracted from the OCT images of human subjects in order to create the required

patterns for the detection of macular disorders. We use this modeling technique to estimate

the distortion of a pattern seen by the patient. This can help to design patterns with maximum

observable distortion by patients.

The effect of CSR models including half-spherical and semi-spherical models on

three predefined patterns are shown in Figure 18. In these simulations, R=250 and D=60

and 125 pixels for modeling purposes. By assuming the patterns (Figure 18a, d, and g) are

projected upon the retina, Figure 18b, f, and h estimate the distorted images seen by a

patient suffering from mild CSR (D=60). On the other hand, Figure 18c, g and i estimate

the distorted images are seen by a patient suffering from severe CSR using (D=125).

The simulation VD patterns are shown in Figure 18g that are shown to patients we

will discuss the details on how these patterns are created in chapter 4. The estimated

35

distortions in spherical shape model are shown in Figure 18h-i. Based on these results, the

straight lines are distorted similarly that a CSR patient may experience VDs. This is why a

group of straight lines can be used to detect the VDs in the visual field. Also based on the

simulation results shown in Figure 18, the severity of the deformation of the VDs

experienced in the test lines are dependent on how large the CSR cavities are (D=60 vs.

D=125). As can be seen in Figure 18h, in early stages the distortion can hardly be observed.

Figure 18 - Simulation Results of semi-spherical (b, e, and h) and spherical (c, f and i) models on three different patterns

(a, d and g).

36

Figure 19 aims to display the same simulation on more natural scenery that patients

experience in their day to day life. Figure 19a is presenting a sample text while Figure 19d

is showing a sample photo that is seen by the normal eye. As seen in Figure 19b and e, the

distortions are lower (D=60) than the distortions seen in Figure 19c and f (D=125).

Another interesting point is that the distortion can be better recognized in the text (Figure

19b and c) than in the photo (Figure 19e and f). Overall the simulation results are shown

in Figure 18, and Figure 19can confirm the advantage of simple patterns like straight lines

or text to be projected in the patient’s retina for the VD tests. Please refer to Appendix F

for sample code demonstration on how we programmed the VD Simulator.

Figure 19 - Simulation Results of semi-spherical (b, and e) and spherical (c, and f) models on three different real-world

scenery (a, and d).

37

3.4 SUMMARY

In this chapter, we discussed simple mathematical models for simplified VDs. We

saw how small the effect of VDs could be on distorting the real world sceneries. In the next

chapter, we introduce NGRID platform which allows various VD tests to be designed and

performed for patients. We discuss how NGRID allows the collection and processing of

the VD test results to help detection and progress monitoring of macular disorders. We use

our mathematical model to simulate the distortion effect on our designed VD test patterns.

38

4 PROPOSED NGRID PLATFORM

In this chapter, we discuss a new Graphical Macular Interface System (GMIS) for

accurate, rapid and quantitative measurement of visual distortion (VDs) in the central

vision of patients suffering from macular disorders. In this system, a series of predefined

graphical patterns are randomly selected from a library of patterns and visualized on the

screen, then the identified VDs by the patient are recorded as binary codes using various

control methods including speech recognition. Scalable Vector Graphics (SVG) is used to

generate the patterns and save them into a central library. Based on the projected patterns

and the patients’ responses, a VD graph or so-called heatmap is generated for eye-care

professionals.

We also demonstrate and discuss the functionality of the proposed system for the

detection and progress assessment of a macular condition in patients suffering from Central

Serous Chorioretinopathy (CSR) and compare the results with standard Optical Coherence

Tomography (OCT) images. Also, we characterize the proposed technique to evaluate the

systematic error and response time on healthy human subjects with normal/corrected

vision. Below we discuss our approach towards a novel wearable visual distortion

39

diagnostic system called NGRID. As shown in Figure 20, this embedded system is

composed of various software and hardware components for macular disorder detection

and monitoring. We will discuss the details for software implementation in section 4.4 and

review the hardware details in section 4.8. The proposed platform can be used as the best

alternative for home monitoring of various macular disorders, and the responses can be

stored in secured cloud server for the future big data analysis.

Figure 20 - Hardware stack used in wearable embedded NGRID system.

4.1 HIGH-LEVEL VIEW OF THE PROPOSED GMIS PLATFORM

As mentioned in Chapter 1, macular disorders such as Myopic Maculopathy,

Macular Holes, Diabetic Macular Oedema, Age-Related Macular Degeneration (AMD)

and Central Serous Retinopathy (CSR) affects central vision. Early detection of macular

disorders is crucial as close monitoring allows for intervention before irreversible damage

occurs.

40

It is not possible for patients to visit the hospital or doctor’s office very frequently to

have OCT to assess the progress of macular disorders such as AMD. However, the use of

an affordable at home monitoring device will help them to monitor the progress of the

disease. Such a device needs to accurately and quickly perform graphical tests to detect

and monitor the VDs’ progress. Such a device can update the doctor’s office to help to

contact the patient to visit the medical office if an urgent treatment such as Anti-VEGFs is

required. This enables better patient care.

We propose a new approach towards the development of a head-mounted point-of-

care diagnostic system for the detection and continuous monitoring of macular disorders at

home. This system is an open-source platform that allows administration of various

graphical macular tests by utilizing advance standard set of graphical interface eye tests

(e.g., Amsler Grid, Threshold Amsler Grid, Macular Computerized Psychophysical Test,

PHP and our own suite of test to excel macular VD detection and monitoring). This multi-

Grid or so-called NGRID system aims to address challenges that are discussed in the

previous chapter in regards to macular disorder VD detection and monitoring. NGRID has

the following characteristics:

 Allow for a series of graphical patterns to be shown to the patients via commodity

computers (e.g., tablets, laptops or smartphones)

 Provide simple ways to collect the test answers from the patients (e.g., simply do

speech recognition on the patient's voice to understand and extract the patient's

answers).

41

 Allows for quick and on-the-fly validation of answers to make sure patients are

following and conforming to the test procedures properly.

NGRID’s affordability allows it to be used at home very frequently to ease the

detection and monitoring of macular disorders as an alternative to paper-based AMSLER

Grid. Once adopted by various hospitals, it can also provide means of comparing various

graphical tests and the effectiveness of experimental preventive drugs. Also, big data

analysis on the collected test results can answer various demographic questions and

lifestyle effects on different macular tests such as AMD and CSR. We start with providing

essential background information on software implantation of NGRID.

4.2 SOFTWARE BACKGROUND IN ADVANCE COMPUTER

VECTOR GRAPHICS

In computer graphics, a raster image is a dot matrix data structure representing a

rectangular grid of pixels (colorful point) [70]. In contrast to the raster graphic, vector

graphics is the use of geometrical primitives such as points, lines, curves, shapes or

polygons. Vector graphics use mathematical expressions and vectors to represent images.

The vectors (also called paths) lead through locations called control points or nodes. Each

of these points has a position on the X and Y axes of the Cartesian work plane and

determines the direction of the path. Further, each path may be assigned a stroke color,

shape, thickness, and fill. These properties don't increase the size of vector graphic files in

a substantial manner. Vector graphics can be magnified infinitely without loss of quality,

while raster graphics are resolution dependent, meaning they cannot be scaled up to an

arbitrary resolution without loss of apparent quality.

42

Raster image editors (e.g., Adobe Photoshop [71] and GIMP [72]) revolve around

editing pixels. Vector-based image editors (e.g., Adobe Illustrator [73] and InkScape [74])

revolve around editing lines, shapes, and paths (e.g., vectors in general).

One of the first uses of vector graphic displays was the US SAGE Air Defense

System in 1957 [75]. In 2001, the World Wide Web Consortium (W3C) [76] put together

a standard for vector graphics, which is called Scalable Vector Graphics (SVG) [77]. SVG

standards are complex, but widely deployed and are royalty-free. Many web browsers

(including the ones in mobile phones) now have basic support for rendering SVG data.

SVG is completely independent of the resolution of the rendering device. SVG files

are essentially Extensible Markup Language (XML) printable texts that describe both

straight and curved paths along with their attributes (e.g., colors, thickness, and

transparency). Vector graphics shapes (e.g. straight lines or curved paths, images, and text)

can be easily crafted using XML SVG files. Graphical objects can be grouped, styled,

transformed and composited into unified objects to compose more sophisticated graphics.

SVG drawings can be interactive and dynamic. For example, animations can be

defined and triggered by using programming or scripting languages. Web browsers support

various sophisticated SVG shapes and animations via JavaScript. Basically, a series of

programming scripts access the SVG Document Object Model (DOM) and provide

complete access to all elements, attributes, and properties. A rich set of event handlers such

as 'onmouseover' and 'onclick' can be assigned to any SVG graphical object to further allow

human-computer interaction with the SVG [78].

43

The proposed hardware for NGRID (will be discussed in section 4.8) is powerful

enough to run and render XML-based SVGs that can be manipulated via XML DOM.

NGRID Graphics can also be created using SVG editor programs (e.g., InkScape [74],

which have a similar look and feel to Adobe Illustrator [73]).

4.3 NGRID – THE PROPOSED GMIS PLATFORM

The proposed GMIS relies on displaying predefined patterns and collecting patient

responses using control devices. Based on the patterns and patient’s responses, a heatmap

is generated for the detection and progress assessment of a macular condition. Below we

discuss the details for each component comprising our proposed system including an

overview of the patterns, use of control input devices to provide ways to answer the test,

as well as different techniques to create the heatmap of visual distortions for visual and

quantitative assessment of macular disorders.

4.3.1 NGRID VD TEST PATTERNS

A GMIS includes a pattern that is used as stimuli projected onto the retina. The

patient’s response is recorded while the patient has concentrated their attention gaze onto

the center of the screen. In order to avoid the problem of changing the fixation during the

examination, in this work, a series of patterns are shown, and the patient is asked to react

only if the predefined pattern is observed as being distorted. In other words, the proposed

method does not require capturing the position of each distorted pattern via mouse or stylus.

Let us assume a VD test is composed of a series of N frames that are visualized, and the

patients’ responses are recorded correspondingly. In each frame displayed to patients, P

44

represents a pattern that is displayed in that particular frame (). A pattern can be a single

or a group of straight-lines with predefined Cartesian coordinates as seen in Figure 21.

Figure 21 - Illustration of various patterns created with (a)-(f) straight lines and (g)-(l) distorted lines along

with (m) a series of frames. The graphical pattern in each figure (g-l) are called respectively.

There are several parameters that can be selected to generate various patterns using

straight lines as seen in Figure 21a-f. These parameters include width (W), length (L),

grayscale (G), color (C), angle () and form (e.g. solid, dash, dash-dot, etc.) of lines. A

number (n) of parallel lines can form a pattern (Figure 21e) or a network of patterns (Figure

21f). The number of frames N and the time of projection (tp) can be controlled by knowing

the permitted time of examination. The optimum values of parameters are obtained for a

high accuracy assessment of VDs. For instance, as the default, black lines on a white canvas

are chosen to achieve the highest contrast. However, for patients who have difficulty

recognizing such patterns, the system can further adjust colors, thickness, contrast, and

brightness appropriately for each individual patient. Additionally, the length and number

of parallel lines are two parameters that can be chosen to maximize the misalignment with

the remaining part of each line or other lines. Figure 21g-l illustrate simplified models of

45

distorted patterns namely and respectively. One may argue can be

identified better than and Alsocan be detected easier than andwith a healthy

eye. Figure 21c and 3i show patterns that can be repeated with different angles () in

different positions. A series of such patterns are shown to the patient (see Figure 21m).

Most VD test includes a group of frames with straight lines, however we have also

used distorted lines to run a VD test on healthy participants to evaluate systematic errors

and response times using various control devices. For unhealthy participants we validated

that they can see distorted patterns. it is noteworthy that in each frame with a positive

response, all Cartesian Coordinates points of a pattern are recorded. We take advantage of

SVG for the generation of pattern, frames and the collection of responses [18], [19].

4.3.2 NGRID TEST CONTROL INPUT DEVICES

As mentioned, the response of a patient is recorded using a control input device

including keyboard, joystick and speech recognition (Figure 22a-c). The response of a

patient for each one of N frames can simply be ‘0’ or ‘1’. At the end of an examination, N

bits should be collected if a response is registered for all frames. All patterns associated

with ‘1’ bits will be used to create the heatmap. For the selection of an appropriate control

device for a patient, the response time and error are two metrics that should be minimized.

A characterization study has been made in the last section of this chapter for the comparison

of response time and errors in healthy participants. Among the control devices, speech

recognition has the advantage of collecting the responses of patients for various patterns.

We also can record the patient's voice (with patient consent) through the duration of the

test to allow further verification of the patient’s answers if needed.

46

Figure 22 - A photograph of the NGRID platform including servers, control input devices (joystick, keyboard,

microphone for speech recognition), monitor and a human participant who has fixated at the center of the screen (fixed

his head in front of the screen using a chinrest

4.3.3 HEATMAP

As already mentioned, the recorded responses include a series 0’s and 1’s that are

used for VD assessment. This assessment can be performed using different methods to

approximately calculate the damaged area in the macula. Herein we introduce three

different methods (seen Figure 23a-c), however, in this thesis, we will only use the heatmap

method shown in Figure 23c.

Threshold method: In this method, the number of 0’s, regardless of the positions of

associated patterns projected in the retina, can be counted and compared with a threshold

number (Figure 23a). This number should be greater than the systematic error. It is

noteworthy that the systematic error is defined as the average number of errors made by

47

the participants with healthy eyes. This method can be used to detect the onset or to

measure the progress, of macular conditions. However, it doesn’t give any information

about the location of the lesion regions in the eye.

Interpolation method: The set of 0’s can be used to create a boundary function. This

boundary can be created by connecting the center of patterns (Figure 23b). This method

can give an estimate of the retinal lesions by calculating the surface of the boundary.

However, this method suffers from a lack of accuracy since the center of each pattern is

not necessarily placed in the lesion region.

Heatmap method: In this method, all patterns related to the positive responses,

which identified as distorted by the patient, are collapsed in a single frame. In this frame,

each pixel may meet distorted patterns where 0 ≤. The heatmap is generated by giving

color to each pixel with transparency proportional to (Figure 23c). Therefore, the higher

the , the higher the probability of identifying the damaged area in the retina. In this work,

we use this method and a program, namely the NGRID Heatmap Generator (as shown in

Figure 23). This program and its algorithm are discussed in section 4.7.

Figure 23 - Data Analysis strategies for creating the heatmap of the affected visual field; (a) threshold method, (b)

interpolating method and (c) heatmap method. For simplicity, only the transparent circles (denoted with yellow

borders and labeled as D) associated with pixels possessing two crossing patterns are shown in (c).

48

4.4 SOFTWARE IMPLEMENTATION OF NGRID PLATFORM

In this section, we discuss the essential elements needed to create the NGRID

platform to facilitate NGRID VD tests and also securely store the massive amount of data

potentially collected from a broad population of patients using the systems outside the

clinics and hospitals. Our main goal is to offer a low cost, easy-to-use home-based VD

assessment method for patients suffering from macular conditions. Therefore, we develop

a hardware platform (will be discussed in details in the next chapter) to allow patients with

an internet connection to perform their VD test daily. This platform includes a so-called

NGRID Data Center that can also be used as a Big Data processing facility for many

applications including testing the efficiency of applied treatments and drugs.

We also discuss the details of NGRID software for generating the test patterns,

projecting the patterns in the form of VD tests for healthy and unhealthy participants,

collecting the responses, user interfaces for entering the participants’ information and

modifying the specification of NGRID programs and generating heatmaps for the attention

of medical practitioners and ophthalmologists.

As seen in Figure 24, the NGRID platform allows users, including patients or

ophthalmology assistants or supervisors, access to the platform. At the first step, the users

are identified as (a) supervisor, (b) patient/assistant or physician and (c) software designers.

A designer can develop new patterns and generate new VD tests using the proposed web-

based tool (will be introduced subsequently in this chapter). The generated data are saved

in the Data Center and are collected in the Database (DB). NGRID data center has many

other components which are responsible for processing the results and generating heatmaps

as well as a secure, load-balanced, web portal to access NGRID admin and patient

49

components. As shown in Figure 24, the supervisor can reconfigure the system parameters

including retention of the stored log files as well as adding new designers and physician

login credentials to the system.

Figure 24 - The flowchart diagram of the proposed NGRID software platform. The patient will be given a

login ID to download NGRID App to perform the VD tests from home.

An important part is the access of eye-care professionals to design a trial as well as

patients to run a test. A trial is designed in order to enter the patient’s information and set

a specific VD test. A patient can be allocated to different trials with different ID numbers.

The trials are saved in the database of the NGRID data center. Once the trial is designed

and the test is set to a particular patient, the patient can ‘run the test’. In a typical NGRID

VD test, there exists a series of frames that are displayed and the patient’s responses are

collected, compressed, and saved in the data center. The VD test results can be displayed

in the form of a heatmap using the data saved in the data center. In this platform, several

programs were developed using different programming techniques. A summary of these

programs is shown in Table 2 and details are discussed subsequently.

50

Table 2 - A summary of programs developed in the NGRID Software Platform

Name of Program Language Input/Process/Output

NGRID Test App C++ and C# Consumes stored tests patterns and produces raw test results in

NGRID Datacenter

NGRID Database SQL and NoSQL The highly available database within NGRID datacenter that keeps

all test data, credentials and test results

NGRID SVG Editor HTML5, CSS3 and JavaScript Facilitates creating various SVGs that compose patterns used in

NGRID Tests. The outputs are store in NGRID Database

NGRID Admin Scala, Java, HTML5/CSS3 and

JavaScript

This website allows for physicians and admins to login and

produces and control various NGRID Tests

NGRID Heatmap

Generator

R, C#, C++, OpenCV, HTML5,

CSS3 and JavaScript

Consumes raw test results and after various rasterization and

image processing, produces heatmap results for a test that a patient

has completed.

4.4.1 DESIGN OF VD TEST VIA NGRID SVG EDITOR

Scalable Vector Graphics (SVG) [20] is used to create complex graphical patterns.

SVG is a royalty-free and widely used standard that is supported by many web browsers

including the ones in mobile phones and tablets. This allows the custom made NGRID

SVG patterns to be displayable in commodity hardware without the need to pay royalty

fees. This is an important factor in developing low-cost software for home diagnostics

purposes. Furthermore, SVG is completely independent of the resolution of the underlying

rendering device which allows for VD tests to be easily scaled for any screen sizes, pixel

densities or for different Head Mounted Displays (HMD) that can be afforded by hospitals

and doctors' offices. Table 3 shows a summary of the benefits of using SVG as the main

standard for pattern creation in NGRID.

51

Table 3 - Comparison of Raster and Vector Images

Feature Raster SVG

Unanimously supported in a variety of web browsers and operating systems yes yes

Very small compressed file size no yes

Easy and fast manipulation through mathematical expressions no yes

Resolution independent no yes

Very small memory footprint to be used in embedded devices and small displays no yes

As an example, a simple SVG program (See SVG Program 1) is shown below for

drawing a dashed line or so-called line001 from Cartesian coordinates (x1=100, y1=100) to

(x2=400, y2=200) in a canvas with width and height of 500 pixels at a scale of 1.0 without

any magnification.

SVG Program 1: Drawing simple patterns

<svg width="800" height="800" xmlns="http://www.w3.org/2000/svg">

<line id="line001" stroke-dasharray="2,2" stroke-width="1.0"
stroke="#000000"

x1="100" y1="100"

x2="400" y2="200"

/>

</svg>

Since SVGs are based on Extensible Markup Language (XML), the arrangements

of each pattern can be programmatically scripted and changed via the manipulation of the

SVG Document Object Model (DOM) [80]. DOM manipulation provides a very powerful

feature to NGRID that allows sophisticated graphical shapes to be designed, animated and

52

scripted mathematically. NGRID creates extended APIs that allow easy manipulation of

SVG DOM. This allows NGRID to create shapes that are purely stated in terms of

mathematical expressions. NGRID DOM manipulation also allows for the creations of

sophisticated VD graphic tests via a program that creates and controls various SVG shapes

and their attributes (e.g., location, scale and various style actors such as color, thickness,

and transparency). This means that mathematical expressions and the shapes of the patterns

they describe can be further modified through the NGRID API. A sample NGRID custom

API for DOM manipulation is shown below (See SVG Program 2) to change line001

coordinates from (x1=0, y1=0) to new (x1=50, y1=50) as well as the color of the line from

black to red. As seen in the above program, once the first part of the code is executed, it

results in the transformation of the original SVG. Indeed, SVGs can be created simply by

writing text files that conform to the SVG standard. Since SVG creation can be time-

consuming and prone to human coding errors, NGRID has addressed this issue by

providing an enhanced customized online SVG Editor that allows ways to create and

modify the pattern of each frame in a fully graphical way without the need to write SVG

code as seen in Figure 25.

SVG Program 2: Manipulating SVG DOM via custom APIs

Original SVG:

<svg width="500" height="500"
xmlns="http://www.w3.org/2000/svg">

<line id="line001" x1="0" y1="0" x2="400" y2="200" stroke-
dasharray="2,2" stroke-width="1.0" stroke="#000000"/></svg>

53

Custom API Calls:

var newX1 = 50;

var newY1 = 50;

var redColour = "#FF0000";

NGRIDsvg.select("line001")

 .attr("x1", newX1)

 .attr("y1", newY1);

 .attr("stroke", redColour);

Final transformed SVG:

<svg width="500" height="500"
xmlns="http://www.w3.org/2000/svg">

<line id="line001" x1="50" y1="50" x2="400" y2="200" stroke-
dasharray="2,2" stroke-width="1.0" stroke="#FF0000"/></svg>

This will ease the process of pattern generation for NGRID VD tests. The NGRID

SVG Editor is a web-based system that allows for easy and rapid creation as well as saving

the tests online in the NGRID data center.

 As mentioned in Table 2, the NGRID Test App renders the patterns for the

patient to do the VD tests. NGRID uses an embedded web browser in headless mode. This

allows the same tests to be seamlessly used in any commodity hardware as-is and without

any modification. SVG patterns are embedded inside an HTML5 canvas which is

controlled using the static test JavaScript APIs. These APIs allow for manipulation of the

test graphics (i.e., showing the next pattern upon receiving the patient’s answer) and for

54

automatically uploading the test results, answers and UI related events back to the NGRID

database in the data center.

 The NGRID Editor can be used to create a series of frames to create or modify a

VD test and save it in the NGRID library. Figure 25, shows the NGRID customized SVG

Editor which allows NGRID designers to easily create various graphics for a frame or add

additional frames to a test. Once the design process is done, by pressing the save button,

all the frames will be stored in the NGRID database for later use. It is noteworthy to

mention that SVG editing can be very complex as the graphics are expressed in

mathematical vector notation. As noted earlier the NGRID SVG Editor simplifies the SVG

editing task by introducing very simplified features similar to Microsoft Paint.

Figure 25 - NGRID Editor is a customized online SVG Editor for the easy creation of VD test patterns. (1) identifies the

general editing buttons that allow for SVG pattern creation and modification (2) identifies the customized buttons that

allow the automatic retrieval of the patterns from the NGRID data center. This allows for test data to be automatically

mounted in the editor for editing purposes (3 and 4) are more detailed SVG editing tools that further allows the editor to

55

rotate, group in layers or even change the style of the SVG patterns (5 and 6) are tools that are used to introduce various

colors and opacities (7 and 8) are sample VD Test patterns that are designed.

4.4.2 SCHEMATIC OF NGRID DATABASE FOR STORING TESTS AND

TRIALS DATA

Figure 26 shows the Test and SVG data structure that is stored inside the NGRID

database. Each user of the system is given specific permission. The permission determines

the role of the user in the system (e.g., if they are a system admin and can add a patient to

the system or if they are a medical practitioner that can assign different AMD tests to a

patient). Each test is composed of a series of SVGs. A medical trial is composed of various

patients that are assigned one or more tests to do.

Figure 26 -Schema Details on NGRID SVGs, NGRID Tests and AMD Trials Database

56

NGRID Technical Admin staff also have access to the Test SVG database Tables that

allow them to perform various low level archival and backup tasks. As shown in Figure 27,

NGRID also provides a custom interface for admin technical staff to run various low-level

queries against the Test SVG tables.

Figure 27 - Performing Admin Low Level Queries Against the Test SVG Tables

NGRID admin interface is written in Scala and benefits from advanced hardware and

software load-balancing. We will discuss the details in the hardware section and explain

how the system can serve millions of concurrent connections allowing it to serve many

hospitals and patients via various advanced techniques such as caching the most frequently

used queries as well as AMD Test SVG Graphics to enhance the overall system speed.

4.5 DATA COLLECTION FROM THE SENSORY SYSTEM

It is vital to quickly and accurately collect the test answers from the patients. In

traditional graphical macular tests (e.g., PHP, MCPT and computerized AMSLER) patients

were asked to perform a pointing task (e.g., to point to an area that patient experiences the

visual distortion and difficulty). Pointing tasks inherently carry a level of difficulty that is

explained by Fitts’ Law [81] and described with an Index of Difficulty (pointing tasks

become harder as the target area to point becomes smaller. The pointing task becomes even

57

harder when multiple targets with greater distance are targeted for pointing). Of course, not

having any pointing task involved in the test would eliminate this inherent difficulty.

To avoid any pointing tasks and associated overheads as well as inherited

systematic errors, NGRID performs real-time voice recognition while recording the

patient’s voice for future audits. This will allow the patient to simply say what is in their

mind without having to use a keyboard, mouse or other pointing devices. This will also

help patients to not lose fixation on the center of the screen as a result of moving the mouse

and fixating on the cursor/pointer. If desired, NGRID also allows designing tests that can

use both traditional input devices as well as voice recognition (to assure complete coverage

for all possible macular test types and styles).

The voice recognition is carried out via the NGRID voice recognition engine which

communicates the recognized voice phrases back to the visual distortion test through a

secure web socket. Also, this engine logs in the detected words and/or commands. This

communication between the sensory system and data collection is performed at a high-

level. Basically, the NGRID speech recognition is first configured by setting up the locale

culture, the lexicon of detectable grammar words, amount of noise/silence required after

each spoken word (here 200 ms) along with links to already established secure web-socket

and database connections. Once the NGRID speech engine detects a word and/or

command, it will store the results in a temporarily NoSQL DB Speech Log Table and also

notify the client’s VD test code, via a web-socket, about the recognized word. The client

code will later act based on the state of the test and the recognized speech.

58

Each test has a specific lexicon that is accepted by the NGRID speech recognition

engine via a file called ngrid.speech. The content of ngrid.speech can be modified by test

designers. In this work, we used the following words ‘Yes’, ‘No’, ‘Bad’, ‘Brighter’,

‘Darker’, ‘Finish’, ‘Good’, ‘Next’, ‘Pause’, ‘Previous’, ‘Stop’, ‘Thicker’, ‘Thinner’ and

‘Wait’ to control various aspect of our NGRID VD tests. The program snippet below

provides a high-level instantiation of the NGRID’s speech engine.

SVG Program 3: Voice Recognition’s Communication

public void SpeechEngineInit() {

NgridSpeechRecognitionEngine speech = new NgridSpeechRecognitionEngine("en-
US");

 speech.loadGrammar("ngrid.speech");

 speech.endOfWord = 200; //ms

speech.speechRecognized += new
AsyncEventHandler<EventArgs>(SpeechRecognized);

 speech.storageDB = ngridNoSQLSpeechStorageDB;

 speech.webSocketServerPipe = ws;

}

public async void SpeechRecognized(EventArgs e){

 storageDB.log(e.recognized.timestamp, paitentId, trialId, e.recognized.text);

 if (ws) {

 ws.notify(e.recognized.timestamp, paitentId, trialId, e.recognized.text);

 }

}

4.6 NGRID ADMINISTRATIVE USER INTERFACE

The NGRID Admin portal is a series of online administrative user interfaces (UIs)

which were designed for patient data entry and for test control purposes. The general admin

UI was designed for adding patients’ information, and the control admin UI was designed

59

for controlling the VD tests. The NGRID admin interfaces are written in Scala in order to

benefit from the load balancing done at the hardware level to serve many of concurrent

connections allowing it to serve many hospitals and patients. It also uses a caching layer to

save the most frequently used queries or VD tests to further enhance the speed of serving

patients and medical practitioners.

General Admin: To perform a VD test for a patient, first the patient should be added

to the system. Figure 28, shows the process of adding a patient to the system. Importantly,

the system does not retain any Electronic Health Records (EHR) of the patients. NGRID

can provide a cross-reference ID to correlate, patient test results to the hospital EHR. This

approach assures one-way access of EHR record to be initiated by hospitals authorized

personnel and further guarantee that any patient information is used or saved in the NGRID

database. If sufficient authorization and consent are provided by both hospitals and

patients (mainly for the patient’s first name, last name, age and gender), NGRID can also

retain this limited information. Once the patients are added to the system and the desired

tests are created, an ID is generated and used instead of the actual personal information of

the patient. The ID is unique and helps to keep the patient anonymous and also hides the

associated technical clinical test details.

NGRID technical admin staff (or a designer, see Figure 24) also have direct access

to the Test SVG Database Admin Interface (Figure 28-1) that allows them to perform

various low-level DB Table archival and backups for the database. Figure 28-2 shows the

NGRID General Admin interface (intended to be used by medical staff tasked with creating

trials, adding patients to the system and assigning them to the trials). Figure 29 shows the

NGRID Control Test Admin interface (intended to be used by technical staff who

60

implement the tests and run various low-level tasks and queries against the Test SVG

tables).

Figure 28- (1) Specialized Database Admin Portal that allows for low-level archival and backup tasks to be done on the

NGRID DB as well optimization on DB indices (2) is the overview of the NGRID Admin interface that allows adding

patients and assigning them to trials (3 and 4) refer to how patients are added to the system (5 and 6) refer to how a new

trial is added to the system (7) is how patients are assigned to trials.

Control Test Admin: This interface provides an easy way of manipulation and low-

level manual editing of SVGs for a VD test (see Figure 29). The creation and modification

of tests are mainly targeted for use by NGRID technical staff that are supervised by a

participating doctor’s office to create different VD test styles as per request of the medical

practitioner and ophthalmologists. Figure 29, shows the Control Test Admin interface that

allows for adding new staff to the system as well as creating and customizing new NGRID

VD Tests. It is noteworthy that patients can benefit from the NGRID’s settings with a preset

61

of built-in tests as well as more specialized customized tests that are created based on the

ophthalmologists’ instructions. New tests can be added and edited via the online SVG

Editor as explained in Figure 25.

Figure 29 - Control Test Admin UI: (1) the overall online interface that allows staff and admins to be added to the system

as well as creating and editing new NGRID VD Tests (2,3,4 and 5) allows for adding new staff (medical practitioner)

and admins (NGRID test designers and technical staff) to the system. Only names, the email address is required (6) view

the existing library of VD tests in the system. The medical practitioner can administer the test once the VD test is designed

and stored in the NGRID library (7 and 8) adding a new test with customized settings. A test needs a name, series of

settings such as duration of a test and for advance animated test associated scripts (9 and 10) low-level modification to

SVG codes associated with a test. This is where the NGRID SVG Editor is launched as shown in Figure 25.

4.7 NGRID HEATMAP

As mentioned in Table 2, the NGRID Heatmap Generator program is developed to

create a diagram with quantitative measures of the damaged VD area. It aims to both

62

visually and quantitively measure the damaged area in the retina. As aforementioned,

NGRID VD tests show a series of graphical patterns to the patients and collect their

answers. The answers are post-processed in the NGRID datacenter that is later used by the

NGRID Heatmap Generator program to render a visualized heatmap along with the Heat-

index score.

The NGRID heatmap generator program finds the location of the scotoma and

metamorphopsia by going through patient’s answers frame-by-frame to create

PerfectMatrix (PM) and HeatMatrix (HM). PM uses rasterized graphics from SVGs by

considering the display resolution and pixel density at which the test is performed. HM will

be similar while it distinguishes the frames that are seen as ‘Bad’ or ‘1s’ (e.g., due to the

presence of metamorphopsia or scotoma).

The HeatMap Matrix (HMM) is calculated by using HMM = PM – HM. This matrix

provides the location of VDs along with the severity of the VDs at each location. Let us

assume, F(i) is a matrix representing a frame from a series of N frames that are sequentially

projected on the retina where 0<i<N+1 and F(i) is an m×m matrix that represents an m×m

image. N and m are natural numbers.

In the following example, N=16 and m=5, however in the actual VD tests, m and

N can be much higher (e.g., m=800 pixels and N=167). In this example, the sixteen frames

were defined with different patterns as seen in Figure 30.

63

Figure 30 - An example of 16 frames in a simplified demonstration of heatmap algorithm

Each frame can be represented with one of the following matrices F(1)-F(16).

 F(1)=

[

1 1 1 1 1
0 0 0 0 0
0
0
0

0
0
0

0 0 0
0 0 0
0 0 0]

, F(2)=

[

0 0 0 0 1
0 0 0 0 1
0
0
0

0
0
0

0 0 1
0 0 1
0 0 1]

, F(3)=

[

0 0 0 0 0
0 0 0 0 0
0
0
1

0
0
1

0 0 0
0 0 0
1 1 1]

, F(4)=

[

1 0 0 0 0
1 0 0 0 0
1
1
1

0
0
0

0 0 0
0 0 0
0 0 0]

,

 F(5) =

[

0 0 0 0 0
0 1 1 1 0
0
0
0

1
1
0

1 1 0
1 1 0
0 0 0]

, F(6)=

[

0 0 0 0 0
1 1 1 1 1
0
0
0

0
0
0

0 0 0
0 0 0
0 0 0]

, F(7)=

[

0 0 0 0 0
0 0 0 0 0
1
0
0

1
0
0

1 1 1
0 0 0
0 0 0]

, F(8)=

[

0 0 0 0 0
0 0 0 0 0
0
1
0

0
1
0

0 0 0
1 1 1
0 0 0]

,

 F(9)=

[

0 1 0 0 0
0 1 0 0 0
0
0
0

1
1
1

0 0 0
0 0 0
0 0 0]

, F(10)=

[

0 0 1 0 0
0 0 1 0 0
0
0
0

0
0
0

1 0 0
1 0 0
1 0 0]

, F(11)=

[

0 0 0 1 0
0 0 0 1 0
0
0
0

0
0
0

0 1 0
0 1 0
0 1 0]

, F(12)=

[

0 0 0 0 1
0 0 0 1 0
0
0
1

0
1
0

1 0 0
0 0 0
0 0 0]

,

F(13)=

[

1 0 0 0 0
0 1 0 0 0
0
0
0

0
0
0

1 0 0
0 1 0
0 0 1]

, F(14)=

[

1 1 1 1 1
1 1 1 1 1
0
0
0

0
0
0

0 0 0
0 0 0
0 0 0]

, F(15)=

[

0 0 0 0 0
1 1 0 1 1
1
1
1

1
1
1

0 1 1
0 1 1
0 1 1]

, F(16)=

[

1 1 0 1 1
1 1 0 1 1
1
1
1

1
1
1

0 1 1
0 1 1
0 1 1]

64

Let’s assume the answer of a patient to each frame F(i) can be represented with AN(i)

where 0<i<17. More precisely A(i)=0 when the answer is ’good’ and AN(i)= 1 when the

answer is ’bad’. In this example, the AN matrix is equal to [0 0 1 0 1 0 1 1 0 1 0 1 1 0 0 0].

The combination of all frames results in a PM can be obtained from the following equation.

For our sample frames (F(1)-F(16)) the value of PM is shown in Equation 2. It is

noteworthy to mention that PM acts as a reference comparison matrix that demonstrates a

perfect scenario which the patient experiences no VDs.

𝑃𝑀 = ∑ 𝐹(𝑖)𝑖=16
𝑖=1 (1)

PM =

[

5. 4. 3. 4. 5.
5. 7. 4. 7. 5.
4.
5.
5.

5.
6.
4.

5. 5. 1.
3. 6. 4.
2. 4. 5.]

 (2)

PM matrix is also used as the initial value of the heat matrix (HM). We now start going

through the patient’s answers. In this example, for frame 0<i<17, if AN(i) is 'good', then

equation 3 is obtained and if AN(i) is 'bad', then equation 4 will be obtained. It is

noteworthy to mention that in a regular test, a patient may have extra time to visit some of

the test frames more than once. If the patient is having doubts about seeing VDs on some

of the repeated frames, we cannot deterministically understand if the patient indeed saw

the frame with VD or made a mistake on answering a particular frame. We treat these cases

with more suspicious on patient indeed observed VDs in the frame, and hence we apply

double penalty (e.g., "-2" heat factor in Equation 4). Since the patient is not able to visit

any of the frames more than two times (due to the restriction on test duration), we do not

use more than double penalty on VD frames.

65

HM = HM + F(i) (3)

HM = HM - 2 * F(i) (4)

Therefore, HM is obtained as follows.

HM =

[

7. 8. 3. 0. 7.
10. 8. 2. 8. 10.
5.
5.
4.

4.
3.
5.

−5. 4. 5.
−3. 3. 5.
−2. 5. 4.]

 (5)

By differentiating PM and HM, HMM is obtained as follows (HMM = PM – HM):

HMM =

[

−2. −4. 0. −4. −2.
−5. −1. 2. −1. −5.
−1.
−1.
1.

1.
3.

−1.

10. 1. −1.
6. 3. −1.
4. −1. 1.]

 (6)

All values lower than mean values of 𝐻𝑀𝑀̿̿ ̿̿ ̿̿ ̿̿ =∑ ∑
𝐻𝑀𝑀(𝑖,𝑗)

25

𝑗=5
𝑗=1

𝑖=5
𝑖=1 that is zero in this

example will be ignored (this is mainly done to avoid graphical noise in later stages when

we render the VD areas on a visualized heatmap graph). The new HMM is obtained as

follows.

HMM =

[

0. 0. 0. 0. 0.
0. 0. 2. 0. 0.
0.
0.
1.

1.
3.
0.

10. 1. 0.
6. 3. 0.
4. 0. 1.]

 (7)

The z-score of the HMM values are obtained as seen below using the z = (X - μ) / σ

relationship where z is the z-score, X is the value of the element, μ is the population mean,

and σ is the standard deviation (SD). This can further differentiate the values with SD lower

than μ. It is noteworthy, using the Z-score and other functions below, that the pixels

66

involved in the VD area are differentiated from other pixels. This process will result in

increasing the visibility of the NGRID heatmap even if the frames processed are minimal

(in real VD tests a much higher number of frames are displayed).

 HMMZ=

[

−0.54. −0.54. −0.54. −0.54. −0.54.
−0.54. −0.54. 0.30. −0.54. −0.54.
−0.54.
−0.54.
−0.11.

−0.11.
0.73.

−0.54.

3.72. −0.11. −0.54.
2.01. 0.73. −0.54.
1.16. −0.54. −0.11.]

 (8)

By clamping on heatmap z-score values with higher than 75% SD the following matrix

clamped Z-score HMMZC is obtained. It is noteworthy to mention that we used z-score to

be able to compare VD heat results for different tests that a patient will do over time. The

tests may have different normal distributions for heat values, and z-score allows a unified

way to compare the scores over time. Also, we clamped the value on 75% of the population

of heat values to further reduce the rendering graphical noise on VD heatmap graphs.

HMMZC =

[

0 0 0.00 0 0
0 0 0.00 0 0
0
0
0

0
0
0

 3.72 0 0
2.01 0 0
1.16 0 0]

 (9)

This matrix can be converted to a heatmap pattern as seen in the heatmap (Figure 31b). The

heatmap figure indicates the visual field with visual distortion. As noted above, in each

pixel, a circle with a certain opacity is drawn. The opacity (OP) and Radius (RA) matrices

are obtained as discussed below.

OP = 100*HMMZC / Max(HMMZC) where each member of OP is between 0 to 100 and

“Max” is a function that finds the maximum value in the matrix. The lower the value in

67

OP, the higher the transparency will be at the heatmap circle drawn at that location. The

color of each circle in each pixel is obtained from the following matrix.

OP =

[

0 0 0.00 0 0
0 0 0.00 0 0
0
0
0

0
0
0

 100 0 0
54.1 0 0
31.2 0 0]

 (10)

Similarly, the radius matrix (RA) is obtained so that RA = k*HMMZC / Max(HMMZC)

where each member of RA is between 0 to k (k is defined in each VD test and can be from

1-20 depending on the sparse area of collapsed frames combined). It is noteworthy that k

tries to factor in the area that no graphical coverage is done in the VD test. Herein we select

k=1. The lower the value in RA, the smaller the radius of the circle will be. The radius of

the corresponding heat location will be:

RA =

[

0 0 0.00 0 0
0 0 0.00 0 0
0
0
0

0
0
0

 1 0 0
0.54 0 0
0.31 0 0]

 (11)

It is also noteworthy that the values in the RA matrix cannot be directly rendered in the

heatmap graphical canvas without scaling up the values according to the canvas resolution.

To explain this better, please consider the following RAr matrix which demonstrates the

rounded-up values of RA to the nearest integer numbers:

RAr =

[

0 0 0 0 0
0 0 0 0 0
0
0
0

0
0
0

 1 0 0
0 0 0
0 0 0]

 (12)

68

As seen in Equation 12, RAr cannot help to render the heatmap graph as the rounding

operation will wrongly eliminates many of the VD locations (the diagram is shown in

Figure 31a). Instead, the correct approach is to scale up the RA values based on the size of

the drawing heatmap canvas. As demonstrated in Figure 31b, the drawing heatmap canvas

has a higher resolution with three heatmap circles.

RA and OP matrices define the radius and opacity of each heatmap circles. For instance,

considering the above RA matrix, for RA(3,4) = 0.54 to be drawn in a heatmap canvas of

size 400x400 pixels, will result in a scaled-up factor of 80 (e.g. 5x5 to 400x400). This

means values for drawing a circle at pixel location (3,4) are mapped to (240, 320) with a

radius of 43 pixels (location of 3 × 80 = 240 and 4 ×80 = 320 as well as radius size of 0.54

× 80=43.2 pixels which rounded to 43 pixels).

As seen in Figure 31b, the heatmap area is highlighted that shows where the patient

experiences VD. The percentage of VD area in the visual field (and the center of this

area (can be calculated as follows. In order to obtain a program was developed to

count the total number of pixels under the heatmap area. In this example (Figure 31b), is

calculated to be 11.25%.

To calculate coordinates of , for each pixel in the heatmap area, RAij and OPij represent

the opacity and relative radius in i and j Cartesian coordinates. By knowing that OP22 is

100% in (2, 2), using the following equation 13 and equation 14, the center of the heatmap

area will be obtained (and scaled up in the drawing heat canvas accordingly).

x= Av (i * OPij) (13)

69

y= Av (j * OPij) (14)

where Av() represents a function that obtains the mean value of i and j for all available

non-zero OPij. In this example, by substituting, (2, 2) and the related opacity in the above

equations, will be equal to (2, 2) that will be scaled up to pixel coordinates of (160,160)

in the drawing canvas size of 400x400 pixels. It is noteworthy that we can use a larger

drawing canvas in order to show the heatmap with higher accuracy for medical purposes.

Here we demonstrated a scale-up factor of 80 (e.g. 400x400 pixels from 5x5 pixels) while

in our real VD tests we start with a minimum of 800x800 as well as 1200x1200. Please

refer to Appendix E for sample code demonstration on how we programmed the results

shown in this chapter.

We discuss the results and present the heatmap of VDs that are generated using the

explained NGRID Heatmap Generator program in chapter 5.

Figure 31 - An example of creating heatmap: (a) two overlapped features and (b) single, larger feature covering the

second part.

70

4.8 HARDWARE IMPLEMENTATION

In this section, we discuss the essential elements needed to create a hardware

platform to facilitate NGRID tests and also securely store the massive data collected across

the globe for Big Data analytics.

To truly study macular disorders, we need large datasets to compare different test

methodologies or even future treatments or preventative drugs. Since NGRID AMD tests

need to be conducted across the globe, we designed our tests to be able to run from

commodity hardware such as tablets, personal computers, and even smart mobile phones.

As we explained in the software section, we can run the tests not only in commodity

hardware but also in specialized HMDs that are equipped with advanced sensors such as

eye-trackers.

NGRID software collects a large number of events based on patient interactions.

As an example, we can collect what part of the screen the patient is looking at any given

moment by using eye-tracker, or what the patient said at any given time through NGRID

speech recognition. We can also collect very granular NGRID UI events to enhance post-

processing tasks. This data will be compressed, de-duplicated and stored locally. This

allows the individual patient device nodes to be able to work in offline mode (e.g. operate

in areas with no internet connectivity). Once connected to the internet, the compressed data

can be streamed in a real-time mode in the NGRID Data Centre. We can also add LTE and

5G data connectivity to truly bring NGRID into IoT era.

The NGRID Data Centre (Figure 33) is composed of a set of physical servers to

create the cloud infrastructure that allows for linear expansion of NGRID when expansion

71

needed for serving more patients across the globe. Currently, a total of 7 servers are utilized

to conduct high availability and sizing for future tests conducted across the glob. Each

server has 64 GB of RAM and two physical Intel Xeon 5460 CPUs. The servers are also

equipped with 4 Gbps Host Bus Adapter (HBA) card to access the NGRID Storage Area

Network (SAN). Each server runs on Linux Kernel 4.4 with the support of Linux

Containers (LXC) for OS-Level Virtualization and also allows for Linux Virtual Server

(LVS) to perform load detecting, fault tolerance and load balancing of services. Each server

is equipped with TCP offload and Crypto Accelerator card (Cavium Nitrox) to accelerate

SSL/TLS process for secure communication. Servers are also connected through a

backplane of Host Channel Adapter (HCA) using Mellanox InfiniBand (IB) with Remote

Direct Memory Access for in cluster storage access and IP over IB for fast 10 Gbps IP

communication within the cluster. Figure 32 shows the server setup.

Figure 32 - The proposed hardware platform with the software process flow

To further utilize each server, we run multiple services using LXC. The services

are composed of SQL Database Data Nodes along with SQL workers and DB cluster

managers, NGINX Web Server acting as a static server while performing reverse proxy on

72

the dynamic web requests to the NGRID Application Server written in Scala. We also use

LXC to host Apache Cassandra and Spark nodes/workers for big data crawling across the

cluster to run our various analytics. Our LXC also hosts the Apache Shiro security

platform, which provides full SSL/TLS hardening and Single-Sign-On (SSO). Redis is

utilized as an in-memory distributed cache for any small to medium size IO intensive

scripts, using NoSQL. With the help of LVS (through persistent hashing, port health check

and monitoring the least established connections), we perform load-balancing and provide

high availability. Through Apache Spark and LVS/LXC containers, the cluster can support

a near linear growth in servers to handle more NGRID AMD traffic/load.

In our current prototype, to provide a highly available storage for our micro-scaled

cluster, we are connecting 20 x 300 GB SAS 6.0 Gbps 15k RPM hard disk drives (with 4x

128 GB solid-state drives acting as a dedicated read and write cache) to a cluster of

active/passive OpenZFS links (via HBA 12 Gbps). To expose the LUNs to the NGRID

cluster (hosted on OpenZFS), we use 24 port SAN Surfer switch (connected to each server

in the cluster via 4 Gbps fiber channel link). Each OpenZFS pool has a dedicated SSD

cache along with ZFS Intent Log (ZIL) to accelerate synchronous write transactions. LZ4

compression and deduplication are enabled for the archives.

Any project that deals with Big Data requires proper measures for Data Integrity

and Storage. In the NGRID platform, each test can produce as much as a 10 MB of very

detailed log files and around 8 MB of raw voice recording. For 2,000,000 patients across

the world to simply perform the test only once, we will need around 35 TB of storage. And

if they repeat the test daily around 12 PB of raw storage would be needed to retain yearly

73

data which will quickly become cost prohibitive. Here are the details for 12 minutes of

voice recording and recognition:

 Audio recording is done in raw mode (as we do real-time voice recognition on a

stream of PCM u8 mono channel 11025 samples per second with 8 bits per sample).

 File size estimate of 12 minutes per recording and voice recognition = 11025

samples per second * 8 bits per sample * 12 minutes * 60 seconds per minute =

11025*8*12*60 = 7.57 MB

To avoid dealing with high and costly storage, we enabled GZIP compression on

our collected data (since the patient is not speaking continuously we achieved around 400-

500% reduction in file sizes for our recordings). Also, the same was done for the stream of

events and SQLite logs (since only raw ASCII logs with fairly repetitive keywords are

used, a compression ratio of 700-800% is possible). This means our storage size can be

reduced 5.5 times less the actual raw size which lands us in the range of 2 PB for yearly

usage.

Figure 33 shows the NGRID platform high-level architecture, is set to target at least

100,000 unique patients across hospitals in Canada, India, and Iran, with plans to increase

to a range of 2,000,000 patients to cover all AMD patients across the globe.

74

Figure 33 - High-level Overview on NGRID Datacenter

4.9 NGRID SECURITY

In this section, we discuss the details around security and access levels to the NGRID

platform.

The Transport Layer Security (TLS) and Secure Socket Layer (SSL) are

cryptographic protocols that are widely used for secure communication over insecure data

links. TLS provides privacy and data integrity needed for the Internet including financial

institutions. TLS/SSL can provide a highly secure connection through the use of

public/private key infrastructure. Breaking the symmetric cryptography with a high key

75

length (more than 4096 bits) is almost impossible using current supercomputers (the time

required to break the code far exceeds the span of a communication).

Once the NGRID test is completed, the patient's answers are transferred to the

NGRID data center. This communication is done via TLS/SSL. The NGRID platform does

not save or use Extended Electronic Health Records (EHR). The only saved information

that is obtained under patient consent is related to the patient's name, age, gender, and

NGRID Internal Globally Unique ID (GUID or simply ID). Even this information is

encrypted using Advanced Encryption Standard (AES 256) to avoid privacy leaks.

NGRID database access is guarded through an advance control list, firewall, and IP

level filtration. NGRID patient ID allows the hospital to cross-reference patients in the

NGRID database with the hospital EHR records. As shown in Figure 34, all database access

along with the online admin user interface is encrypted using SHA256 hashing with RSA

2048 bit length keys which provide the same level of encryption as banks and financial

institutions.

As we will explain in the hardware section, NGRID Data Centre can serve many

patients across the globe and store a massive amount of test results and information (in the

range of 12 Peta Bytes). The data cannot be analyzed by traditional Structured Query

Language (SQL). We are using a cluster of Apache Spark and Kafka along with Scala and

R Languages to perform data analytics on the Big Data (mainly around the test results).

Figure 35 shows various sensors and how they interact to collect and verify the answers

from patients.

76

Figure 34 - TLS/SSL Certificate for NGRID Site

Figure 36 illustrates the high-level interaction between software components. The

end-user NGRID Device is mainly used by patients. It uses TLS/SSL/HTTPS to securely

load various tests and patterns from the NGRID Data Centre. This is done via the onboard

wireless capabilities (both 802.11 and LTE). Various input devices ranging from basic

Keyboard, Mouse and Touch to more advance Joystick and Voice Recognition is enabled.

Also, feedback sensors like head and eye-tracking provide measures to make sure the

patient is fixating at the center of the screen. All the patient input is stored in local storage

which at the end of the test will be uploaded to the NGRID Data Centre for further

processing.

77

Figure 35 - Hardware sensory overview of various components used in a typical NGRID VD test

Figure 36 - High-level illustration of proposed software and hardware architecture

78

4.10 SUMMARY

In this chapter, we discussed the details around the implementation of the NGRID

platform. We explained how tests are designed, assigned to patients along with internals of

how heatmaps are generated to assess the progress of a macular disorder. We also discussed

how the NGRID cluster is designed and scaled up along with details on various hardware

components used in the platform. In the next chapter, we discuss the results of NGRID

tests along with the corresponding generated heatmap with comparison to patients’ OCT

images.

79

5 RESULTS

In this section, we demonstrate and discuss the experimental results using healthy

and non-healthy participants. We compare the heatmap results with patients’ OCT images

to show how heatmap results conform to OCT images and can serve as an indicator to

detect and monitor the progress of the macular disorders.

5.1 NGRID TEST APPARATUS

The test apparatus is shown in Figure 22. A chinrest was used to assure that the

participants could comfortably fixate at the center of the screen and provide their responses

to test frames via keyboard, joystick or voice recognition input devices. An eye tracker is

used to record the fixation location during the test. As shown in Figure 37, three different

Visual Distortion Tests (VDT1, VDT2, and VDT3) from the NGRID default library were

selected. Three different control input devices (keyboard, joystick and speech recognition)

for each test were also selected. Each participant was trained for 10 minutes and instructed

on each VD test with all the control input devices using counterbalanced perfect square of

the above tests and input devices (3 VD Tests × 3 Input Devices).

80

Figure 37 - Illustration of (a) VDT1, (b) VDT2 and (c) VDT3 including all frames collapsed in a single frame to better

illustrate the entire test coverage.

5.2 VD TEST FRAMES AND DESIGNS

The VD test frames are generated via NGRID SVGEditor. VDT1 is composed of a

total of 167 frames that were individually presented to the participants in a random order.

Similarly, we have 50 frames for VDT2 and 123 frames for VDT3. For the purpose of

illustration and to better explain the procedure, in Figure 37, we intentionally collapsed all

the frames into a single frame for better visualization.

We conduct the tests on healthy and non-healthy participants. Healthy participants

helped us to determine the systematic error and response time of the NGRID platform.

Since we were measuring the systematic errors of the system (by having healthy

participants), we deliberately added a few distorted patterns in the tests to assure

participants carefully go through the test without being able to predict answers (otherwise

they could say they saw all the frames as ‘Good’).

As seen in Figure 37, the projected frames cover the entire screen which covers the

central 20 degrees of the visual field of view both in horizontal and vertical nasally. As

seen in Figure 37b, VDT2 is very similar to VDT1, with the difference in grouping and the

81

rotation angle () being 45° (where is an integer number between 0 to 8). VDT2 also

includes a single distorted pattern similar to distorted patterns in VDT1. It is noteworthy to

mention that we deliberately used only one distorted frame to simulate minor VD cases

that affect only one small location. We wanted to assure participants can accurately detect

single minor distortions as well. VDT3 is composed of parallel lines that are displayed with

a random rotation angle () ranging from 0° to 360°.

5.3 NGRID TEST ON HEALTHY PARTICIPANT

To better characterize the NGRID platform and obtain possible systematic errors

and response times of participants for various input devices, we tested the system on

healthy participants. As shown in Figure 37, three different VD tests (VDT1, VDT2, and

VDT3) from the NGRID default library were selected. Three different control input devices

(keyboard, joystick and speech recognition) for each test was also selected. Twenty healthy

participants (12 females, 8 males) with healthy corrected vision were recruited from the

local university to test the NGRID platform. The mean age was 23.8 years (SD = 6.1). The

healthy participants were selected to identify inherited systematic errors, any accuracy

issues of the platform. The apparatus is the same as Figure 22. The VD tests were

performed by all healthy participants. Table 4 provides a summary of each test for the

number of errors and response times. It is noteworthy that information related to errors and

response times were extracted from the detailed log of captured responses during the test.

The log provides detailed recording of speech, keyboard and joystick actions as well as the

timestamp of each event in milliseconds.

82

Table 4 - General Tests Specification

Test
Duration
(seconds)

Number of Frames
Average and Standard

Deviation of Errors
Average and Standard Deviation of

Response Times (seconds)

VDT1 480 167 8.3% 4.2% 1.16 0.45 sec

VDT2 180 50 15.6% 20.7% 0.97 0.48 sec

VDT3 360 123 9.1% 5.5% 1.03 0.42 sec

Figure 38 - Systematic error in VD tests performed by healthy participants based on a control device

As seen in Figure 38, the errors made by each one of the twenty healthy participants

combined in all three VDT1, VDT2 and VDT3 tests separated by the control device

(joystick, keyboard, and voice) are presented. For this purpose, we extracted and analyzed

the responses associated with each one of the control devices separately from the logs.

Speech recognition had the least number of errors as a participant could effortlessly say

what they think about a frame seen, and no pointing task was involved. Participants made

the maximum number of errors when they used the keyboard and made the minimum

number of wrong responses when they used voice recognition. One may argue that

participants have to pay attention to press the right keys in the keyboard and carefully fixate

at the center of the display. In agreement with the experimental results, this increases the

number of systematic errors. The joystick with less need for visual attention can be used

83

which is in conformance with the presented experimental results. As expected, the

participants, while looking at the center of the display, could speak their responses without

losing their attention or fixation point. This is why the errors made by participants when

they use voice recognition device were lower than the errors made using the other two

control input devices.

It is noteworthy that VDT2 had only one artificially induced VD across all the

frames while participants did not know how many artificially distorted frames exist in a

test. We noticed a high number of errors (as high as 35%) on this particular test. We also

noticed that many participants expressed frustration for missing the one artificially induced

VD while doing the test. This can be considered as a systematic error that can be easily

avoided by changing the color or shape of the patterns to make it less similar to other

patterns. Another unlikely, but possible hypothesis was that some of the participants could

suffer from a minor macular disorder. However, these participants were able to

successfully identify the distorted pattern in VDT1 and VDT3. As aforementioned, we

think that since the patterns in VDT2 were very similar to each other, and that there was

only one artificially induced VD created, coupled with the fact that participants wanted to

finish the test as fast as possible, caused this systematic error in VDT2. It is noteworthy

that we decided to offer voice recording for the participants to allow post-processing of the

answers in case a participant makes a mistake answering a frame to enable better error

correction.

We did not generate any heatmap for healthy participants as we artificially created

the VD frames and counting the errors would be equivalent of generating a heatmap (we

know which frames contain VDs).

84

5.3.1 CHARACTERIZATION AND SYSTEMATIC RESPONSE TIME

Figure 41a-c show the response times for each frame done for every twenty

participants using the keyboard, joysticks and voice input devices. In this result, the

combination of three different VD tests performed by all twenty participants were used,

where each participant is distinguished with a certain color in the result charts.

Participants had a fixed time to do the test and, depending on their speed, could go

through all the frames a few times (all participants were able to go through all test frames

and even repeat most of the frames one more time).

Voice recognition, in comparison to the joystick and keyboard, demonstrates a

slower control device. One may argue that this depends on the speed of the voice

recognition system, therefore, using a real-time digital system, it may be possible to reduce

the response time. However, we also need to remember that speaking a simple single word

like ‘Good’ or ‘Bad’ will take more time compared to a simple binary pointing task such

as pressing a button [21]. As expected, the response time when the participants used the

keyboard or joystick was almost the same.

It is noteworthy that the response time in each frame has three components. These

components are (a) the required time that a participant needs to make a decision about a

frame just seen and (b) the required time that a participant needs to react and take action

using the control input device and (c) the required time that the computer needs to process

the response received from the participant. We assumed the first component is almost the

same when different control devices are used.

85

5.4 NGRID TEST ON NON-HEALTHY PARTICIPANT

In this section, we demonstrate and discuss the functionality and applicability of

the proposed NGRID platform for non-healthy participants suffering from a macular

condition called Central Serous Chorioretinopathy (CSCR or CSR) [2]. We selected CSR

as CSR patients can recover their normal vision after a few months, which allows verifying

our heatmap foundings directly with the patients in addition to their OCT images. CSR is

an idiopathic macular condition and usually happens in men aged between 20 and 50 (10

annual cases in 100,000 males) [21], but is also associated with high levels of stress and

usage of inhaled steroids [17], [83]. Studies show disturbing psychological events and high

levels of stress can trigger CSCR in more than 75% of the patients [23]. Also, there are

studies that link sleep disturbances, hypertension and autoimmune diseases to CSR [21],

[22].

For diagnosis purposes, an eye-care professional starts examining a dilated eye and

performs optical coherence tomography (OCT) and fluorescein angiography. This may

reveal localized serous detachment of the neurosensory retina at the level of retinal pigment

epithelium (RPE).

The Amsler Grid is used for documenting the affected areas of the visual field. Most

of the patients are expected to have a full recovery between 1 and 6 months. In rare chronic

cases, laser treatment, photodynamic therapy or even Ranibizumab Anti-VEGF are utilized

(reduced visual acuity may still persist) [2], [24]. CSR can become a recurrent problem

which makes follow-ups necessary [84].

86

(a)

(b)

 (c)

Figure 39 - The response time diagram related to control input devices (a) Keyboard, (b) Joystick and (c) Voice

recognition used for performing VD tests. The voice recognition has the longest response times whereas the keyboard

and joystick produced the shortest response times.

5.4.1 NGRID TEST AND VERIFICATION OF THE RESULTS AGAINST OCT

IMAGES

Here the results of the NGRID test and corresponding OCT images are

demonstrated and discussed. We used the OCT images of a participant as the control of

87

NGRID results. The subject is a 48-year-old male suffering from CSR. The rapid change

of his macular condition allowed us to repeat the NGRID tests and compare with OCT

follow up for observation of changes. The subject performed the VD tests using VDT1,

VDT2, and VDT3, but without any distorted patterns. The responses for NGRID VD tests

were collected, post-processed and heatmaps were generated through the NGRID Heatmap

Generator program. Figure 40, Figure 41, Figure 42, Figure 43, Figure 44, and Figure 45

show both the NGRID heatmap and the corresponding OCT images. The experiments were

performed on the right and left eyes. NGRID detected VD on each eye which fully

conforms to OCT images. The heatmaps were generated using the NGRID Heatmap

Generator program with the algorithm that was explained in Chapter 4. It is It is noteworthy

that OCT images show how severely retina is impacted while heatmap results show how

severely the visual field is impacted. Heatmap cannot replace OCT, however, the higher

and more severe retinal changes in OCT, the more severe distortion exist in the visual field.

Based on the results, the proposed NGRID platform can possibly be used as an accurate

method to detect and assess the progress of CSR. We are conducting additional clinical

trials to extend the same NGRID platform for other macular disorders such as AMD.

Figure 40 - First Macular Disorder Measurement Results of left Eye: (a)-(b) OCT vertical and horizontal OCT images

and (c) NGRID heatmap results with and

88

Figure 41 - First Macular Disorder Measurement Results of right Eye: (a)-(b) OCT vertical and horizontal OCT

images and (c) NGRID heatmap results with and

The subject visited the Sunnybrook Hospital Emergency Room (ER) while

observing a large yellow circle in the center of his vision. The subject also complained

about metamorphopsia upon seeing the paper-based Amsler grid. AMD and CSR were the

initial diagnosis based on the symptoms. However, OCT images from his left eye revealed

a CSR lesion as in Figure 40 and related heatmap result. As per this NGRID result, the

VD left eye of the patient is about 27%. The damage is almost placed in the center

of the visual field where the exact center of the display is located at Cartesian

coordinates x=400 and y=400. Figure 41, shows the OCT images along with their

corresponding NGRID heatmap images related to the right eye in the first visit. As seen in

this figure and Based on this result, the right eye also shows the

CSR condition, however the patient did not complain because the effect of CSR was

negligible in his vision. Figure 42, and Figure 43 show the OCT and heatmap NGRID

results related to left and right eye respectively after a couple of weeks. As seen in these

results, has decreased in both eyes which shows that the CSR was reduced. However, in

the third visit, the CSR had not decreased with almost the same in the left eye as seen in

Figure 44. For the final visit, as seen in Figure 45, the effect of CSR in the right eye

89

decreasing as seen in both OCT and NGRID images. It is noteworthy that the location of

the CSR disorder in the retina can move from one spot to another. This is because the main

cause of CSR is the influence of fluid under the basement of the retina. This fluid can move

over time due to the eye movement and other activities.

Figure 42 - Second Macular Disorder Measurement Results of left Eye: (a)-(b) OCT vertical and horizontal

OCT images and (c) NGRID heatmap results with and

Figure 43 - Second Macular Disorder Measurement Results of right Eye: (a)-(b) OCT vertical and horizontal

OCT images and (c) NGRID heatmap results with and

90

Figure 44 - Third Macular Disorder Measurement Results of left Eye: (a)-(b) OCT vertical and horizontal OCT images

and (c) NGRID heatmap results with and

Figure 45 - Third Macular Disorder Measurement Results of right Eye: (a)-(b) OCT vertical and horizontal

OCT images and (c) NGRID heatmap results with and

As aforementioned, the subject performed the VD tests and his responses were

collected, post-processed, and heatmaps were generated using the Heatmap Generator

program. We used our semi-spherical shape simulator program to get a better sense of how

the patient may view the test patterns during his CSR progress. The results are illustrated

in Figure 46b, Figure 47b, and Figure 48b. These results estimate the visual distortion of

the patient during different stages of CSR.

91

We used the heatmap results to simulate VD effects on a normal visual field.

Depend on the heatmap results, we manually selected up to three VD centers on the

heatmap and applied low, medium, and high R values for the visually selected VD locations

(the values are selected from the Radius matrix in the heatmap results). Furthermore, we

used our semi-spherical model (discussed in chapter 3) to simulate the effect of the VDs

on the visual field based on the manually chosen R values. The goal here was to show the

simulated results to the CSR patients to verify that they experienced the VDs around the

same VD areas that we detected through the heatmap results. We successfully confirmed

that the patient experienced VDs in the locations and severity that we discovered through

the heatmap.

5.4.2 DISCUSSION ON THE NGRID HEATMAP RESULTS

As seen in Figure 46a, Figure 47a, and Figure 48a, the vertical (AB) and horizontal

(CD) cross section of OCT images are in agreement with the corresponding heatmap

results. It is noteworthy to mention that it is expected that VD simulation and heatmaps

conform to each other as we derived the visual field simulations directly from heatmap

results, as explained in the previous section. However, we can also visually confirm that

the length and severity of the VDs conform to what is seen in the heatmap.

In Figure 47a, by changing the vertical cross-section from AB, to EF, likely only

one cavity related to the upper distorted area could be seen. Similarly, the OCT images in

the direction of AC in Figure 46a, could still show two cavities. Please note the OCT

images, heatmap graph and estimated VDs in the visual field of the right eye in the second

visit is seen in Figure 47a-b. As seen in these images, the VD is very small. This is why

the patient did not complain about his right eye in the first or even second visit. However,

92

as seen in OCT images, test and modeling results, the presence of this distortion is

observed. This can prove the importance of the proposed method for detecting the VDs.

5.4.3 VERIFICATION OF THE ESTIMATION OF VISUAL DISTORTION

Based on the results shown in Figure 40, and Figure 48, we can estimate the visual

distortion in the left and/or right in the two visits. We applied the same model on a picture

as seen in Figure 49. These images show the variation of the observed image by the patients

in different tests. This allows us to have an idea on how the patient may see real-world

scenery. As seen in these figures, the visual distortion is changing from one test to another

due to the change of the cavity or the movement of fluid between the retinal upper layer

and its basement.

Figure 46 - Experimental results (Left eye, First visit): a) heatmap graph and b) estimated VD using the CSR model.

The observed distortion in each Figure 49a-c, can be calculated using the total area

covered by the circle to the total area. However, this percentage can be more accurately

calculated using the heatmap generated in each test. For this purpose, we can count the

number of pink pixels (N) in each heatmaps as demonstrated via the distortion value (η) in

Figure 40, and Figure 45. Therefore, the distortion (η) on Figure 49a-c is equal to 100xN/M

which is 27%, 24%, and 2% respectively.

93

Figure 47 - Experimental results (Left eye, second visit): a) heatmap graph and b) estimated VD using the CSR model.

Figure 48 - Experimental results (Right eye, second visit): a) heatmap graph and b) estimated VD using the CSR model.

(a) (b) (c)

Figure 49 - Observed images by the patients suffering from CSR. In the (a) First visit, left eye, (b) in the second visit left

eye and (c) in the second visit right eye.

94

5.5 SUMMARY

In this chapter, we reviewed the systematic errors and response time

characterization of the NGRID platform through controlled tests done on healthy

participants. Once we characterized the platform and had a clear understanding of response

time and systematic errors, we conducted NGRID tests on unhealthy CSR participants. By

comparing the OCT images and generated NGRID heatmap results, we confirmed that we

can possibly use NGRID for detection and monitoring the progress of CSR. We are

conducting additional clinical trials to confirm the same for other macular disorders such

as AMD.

95

6 CONCLUSION AND FUTURE WORK

This chapter briefly describes the research achievements in this Ph.D. thesis

followed by future works. We proposed a novel platform for detecting and monitoring of

visual distortions (VD) in macular disorders. We developed the required hardware and

software for generating the graphical patterns, displaying the patterns, conducting VD tests,

collecting the patients’ responses, and creating the associated heatmaps. A visual heatmap

of VDs with quantitative measures can provide better indicators compared to traditional

VD tests, such as the Amsler Grid or other related computerized methods, for eye-care

physicians. The implementation and preliminary measurements and results were also

reported. The system was also successfully tested and verified on healthy and unhealthy

patients. This work has recently opened an avenue to obtain the required approval from

Research Ethical Board (REB) in Sunnybrook Hospital, Toronto, Canada for running a

clinical trial on a large number of patients.

6.1 RESEARCH ACHIEVEMENTS

In this thesis, we proposed a novel platform for evaluating the VDs caused by

macular disorders such as CSR. As described in chapters 4-5, a unified software/hardware

96

platform (NGRID) is used to generate custom-made VD Test patterns which are to be

presented to patients. The patterns are projected to the patients’ retina, and their answers

are collected to create the assessment graph called heatmap. The software part of this

platform includes numerous programs consisting of SVG Editor for generating the

graphical test patterns, NGRID Test program to display the VD Test patterns to allow

conducting VD tests and collection of the patients’ responses, NGRID Heatmap Generator

that analyzes and the patients’ answers and create a heatmap to quantify VDs for further

processing. We also created VD simulator programs to better visualize the effect of

simplified VDs on patient visual field. These programs allow users including patients,

ophthalmologist assistants, engineering administrators, and the chief research supervisor

to directly or remotely (through the internet) access the NGRID cluster servers, run VD’s

test, modify the program’s settings, collect various data and finally perform the detailed

VD analysis and heatmap generation. The developed hardware system including secure

simple board computer to run the NGRID VD Test programs as well as various sensory

systems such as touch screen, customized joystick, eye-trackers, and speech analyzers

enabled securely running programs by a large number of users. This Ph.D. research has

resulted in the following contributions:

1. Proposed a novel VD model of macular disorder such as CSR (see Chapter 3).

2. Proposed a novel VD detection and assessment method called NGRID (see Chapter

4).

3. Performed VD test on healthy subjects using three different control device

including keyboard, voice recognition system and joystick (see Chapter 5).

97

4. Demonstrated the VD tests using healthy subjects and proved that VR method

reveals less error but higher test’ duration time (see Chapter 5).

5. Performed VD test using unhealthy subject suffering from CSR (see Chapter 5).

6. Demonstrated the results of VD test on unhealthy subject and successfully

compared with OCT results of the same patient (see Chapter 5).

7. Developed database layers and user interface programs related to NGRID platform

(See Appendix A and Appendix B).

8. Designed and developed a custom made SVG editor dedicated to NGRID platform

(see Appendix C).

9. Developed a hardware/software platform dedicated to NGRID platform (see

Appendix D).

10. Developed heatmap method and dedicated to NGRID platform (see Appendix E).

11. Developed a CSR model program for evaluating the deformation (see Appendix F).

12. Incorporated voice recognition system as an input method (see Appendix A –

Sensory Systems).

13. Developed data center program dedicated to NGRID platform (see Chapter 4).

As the outcome of this thesis, so far the following conference and journal papers have been

submitted or accepted for the publications:

1. N. Mohaghegh, E. Ghafar-Zadeh, S. Magierowski, NGRID: A Novel Platform for

Detection and Progress Assessment of Visual Distortion Caused by Macular

Diseases, Elsevier Journal - Computers in Biology and Medicine, Accepted, June

2019.

98

2. N. Mohaghegh, E. Ghafar-Zadeh, and S. Magierowski, “Recent Advances of

Computerized Graphical Methods for the Detection and Progress Assessment of

Visual Distortion Caused by Macular Disorders,” Vision, vol. 3, no. 2, p. 25, Jun.

2019.

3. A Novel Method for Detection and Progress Assessment of Visual Distortion

Caused by Macular Disorder: A Central Serous Retinopathy (CSR) Case Study,

Journal of Medical and Biological Engineering Computing, Submitted 2019.

4. N. Mohaghegh, E. Ghafar-Zadeh, S. Magierowski, A Novel Macular Visual

Distortion Assessment Method: A Chorioretinopathy (CSR) Case study, accepted

IEEE ENBENG 2019 conference.

5. N. Mohaghegh, S. Munidasa, Q. Owen, Z. Zahio, E. Ghafar-Zadeh, S.

Magierowski, Age-Related Macular Degeneration Diagnostic Tools: Hardware and

Software Development, IEEE MWSCAS, Windsor, August 2018.

6. N. Mohaghegh, E. Ghafar-Zadeh, S. Munidasa, S. Magierowski, Toward Age-

related Macular Degeneration (AMD) Big Data: Hardware and Software Design

and Implementation, IEEE CCECE 2017, April 29th-May 3rd, Windsor, Canada.

7. N. Mohaghegh, E. Ghafar-Zadeh, S. Magierowski, A Wearable Diagnostic System

for Age-Related Macular Degeneration Conference: 38th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society, EMBC

2016.

The research work in this thesis has opened new avenues for developing novel VD

technologies and created a novel device that can be further modified and used for

99

ophthalmology studies. In the next section, some of the unmet challenges are put forward

for future works.

6.2 FUTURE WORKS

The research described in this thesis can be continued in the following directions

as seen in Figure 50 and described below.

Figure 50 - Future works plans

6.2.1 DEVELOPING ACCURATE VD MODEL FOR VARIOUS MACULAR

DISORDERS

In this thesis, we introduced a new approach by developing a method to explain the

deformation of a graphic pattern observed by the patients suffering from macular disorders.

Based on this model, it is possible to approximately estimate the images observed by the

patient. A macular disorder’s model, not only can be used to accurately measure the VD

changes, but also it inspires the development of new technologies for the correction of

macular disorders if they are in the early stages of their development. In this thesis, we

proposed low-complexity spherical shape models for the comparison of NGRID heatmap

100

and the OCT results. In the future, more realistic models should be developed. These

models can be proposed for various macular disorders including AMD, Macular Holes,

and Macular Edema.

6.2.2 CLINICAL TRIALS ON PATIENTS SUFFERING FROM MACULAR

DISORDERS

The proposed NGRID platform in this Ph.D. thesis has successfully been tested,

and its applicability was proved by using human healthy and unhealthy participants.

However, complete clinical trials using a large number of patients suffering from various

macular disorders such as CSR and AMD should be performed to fully characterize the

functionality, accuracy, and speed of VD tests. These clinical trials can help to optimize

the proposed methods and take another step for commercialization. The proposed platform

allows us to perform the VD tests and collect the test data.

6.2.3 DEVELOPMENT OF OPTIMAL NGRID PLATFORM

This platform can be further enhanced by upgrading the hardware and related

software system in the future. For instance, by adding a faster eye-tracker (currently we are

using a 120 Hz tracker), the errors due to the fixation issues can be reduced. Also, the voice

recognition system can be performed on a new application-specific hardware board FPGA

or similar technologies (such as new Intel-Compute-Stick-II) for real-time voice

recognition and consequently reduce the test’s duration time.

Using SVG allows us not only to be able to present the VD tests to patients via low-

cost commodity LCD monitors, but also to be able to show the same tests in smaller mobile

as well as head-mounted displays (e.g. Oculus Rift). Due to budgetary constraints we could

101

not use any medical grade HFFS (High-Transmittance Fringe Field Switching) or AFFS+

(Advanced Fringe Field Switching) monitors which have enhanced color calibration, near

optimal color and luminosity reproduction as well as minimum color distortion. For proper

commercialization, more advanced medical-grade hardware will be needed.

6.2.4 MACULAR BIG DATA USING NGRID PLATFORM FOR OTHER

APPLICATIONS

To date, a few papers reported the development of medical big-data[86]–[88] for

various biomedical applications but the development of a big data repository for macular

disorders or retinal disorders had not been met yet. Assuming that the proposed NGRID

system can be used for a large number of patients around the world, the proposed platform

can be used to collect a large amount of data that can be used for ophthalmology study or

pharmaceutical purposes. For instance, the effect of the drug in a patient suffering from the

macular disorder can be tracked by running the VD tests over the days, and the related

progression of disorder can be evaluated. Therefore, this thesis has opened a novel

approach to develop new Big Data.

102

APPENDIX A – NGRID TEST APPLICATION

NGRID Test Application is a thick graphical Microsoft Windows-based desktop

application that can run on commodity personal computers and laptops. This application

allows for various NGRID Tests to be done for patients at hospitals or at comfort of their

homes. Furthermore, the application helps collect test results and send it to NGRID

Datacenter for post-processing and archival. In this section we explain the technical details

around implementation of NGRID Desktop Application.

The desktop application has the following main tasks:

 Fetch the test data: securely connect to NGRID Datacenter and fetch NGRID

Test graphics and settings

 Display the test: Renders the graphics for the patient

 Sensory system: Allows for variety of sensory devices to be used during the

test. Devices such as keyboard, mouse, voice and eye-tracker, joystick are

some examples.

 Collection and validation: Collect the answers that patient provides and also

perform basic validation before storing the test answers.

 Archival: Securely send the test results to NGRID Datacenter to be archived

and post-processed for medical practitioner.

The desktop application can run in Online mode or Offline mode. While working

in online mode, constant connection to NGRID Datacenter is established (through Secure

103

WebSocket) which allows sending push notification from hospital to the application (this

is useful to instantiate an update on the application to install newer versions). In offline

mode, all test results are stored locally until online connection establishes to send the results

to datacenter. In the following sections we discuss the details around each aforementioned

main tasks.

FETCH THE TEST DATA

As shown in sample code below, we contact https://ngrid.website and fetch all the

associated data that is needed for a given trial id that patient is enrolled in. The data

includes participant ID and associated test data (mainly test SVGs and settings). Upon

successful fetch and validation the test will be started.

//fetch a test data for a given trial id for the patient
var trial_id = $("#trial_id").val();
console.log("Trial id is: " + trial_id);
$.ajax({
 url: "https://ngrid.website:9000/app/getAllTrialData/" + trial_id,
 async: false,
 type: "GET",
 beforeSend: function(xhr){xhr.setRequestHeader('X-NGRID-DESKTOP-APP', 'true');},
 success: function(data) {
 console.log("Trial Data is fetched.");
 }
}).done(function(data) {
 data.svgs.sort(SVGSortBySeqComprator);
 trial_fetched_data = data;
 console.log("Trial Data is fetched and svgs are sorted by sequence id.");

 //remove xmlns parent tag as we use our own schema
 $.each(trial_fetched_data.svgs, function(i, item) {
 var xml = $.parseXML(item.xmlContent);
 $xml = $(xml);
 var temp_svg_parsed = $xml.find('svg');
 item.xmlContent =
temp_svg_parsed[0].innerHTML.replace('xmlns="http://www.w3.org/2000/svg"',"").trim();
 });

 //set the gloabl values to be used during the test for logging
 global_partcipant_id = trial_fetched_partcipant_id;
 global_trial_id = trial_fetched_data.trials.trial_id;
 global_test_name = trial_fetched_data.tests.test_name;
 $.each(trial_fetched_data.settings, function(i, item) {
 if (item.id == trial_fetched_data.trials.settingId)
 {
 global_setting_details =item.settingContent;
 global_setting_id = item.settingName;
 }
 });

https://ngrid.website/

104

 console.log("global_partcipant_id: " + global_partcipant_id);
 console.log("global_trial_id: " + global_trial_id);
 console.log("global_test_name: " + global_test_name);
 console.log("global_setting_id: " + global_setting_id);
 console.log("global_setting_details: " + global_setting_details);

 $("#div_trial_id_container").hide(750);
 $("#div_trial_id_container").remove();

 start_the_exam();
}

DISPLAY THE TEST

One of the main objective of the NGRID platform is to allow macular graphical

tests to be done seamlessly in desktop, mobile and tablet computers. To do this Standard

Vector Graphics (SVG) are used as the main protocol to create test data. However the SVG

needs to be rendered. We use HTML5, CSS3 and Javascript along with SVG to create an

NGRID VD Test and use Chromium Embedded Framework (CEF) to render and display

the test. This allows the test to be seamlessly rendered in desktop, tablet and mobile devices

without any change. We heavily customize CEF to allow asynchronous script execution

from C# and browser side to create a fully dynamic and intractable NGRID test. We only

show important CEF modifications below (complete code is over 2000 lines):

public partial class NGRIDDesktopApp : Form
{
 public CefSettings cef_settings = new CefSettings();
 public ChromiumWebBrowser chromeBrowser;

 public NGRIDDesktopApp()
 {
 InitializeComponent();

 // Specify Global Settings
 this.cef_settings = new CefSettings();
 //cef_settings.CachePath = "cache";
 cef_settings.CefCommandLineArgs.Add("enable-media-stream", "1");
 cef_settings.LogSeverity = LogSeverity.Verbose;
 cef_settings.CefCommandLineArgs.Add("disable-gpu", "1");
 cef_settings.CefCommandLineArgs.Add("no-proxy-server", "1");

 //Add NGRID protocol: i.e. ngrid://commands
 cef_settings.RegisterScheme(new CefCustomScheme
 {
 IsStandard = true,
 SchemeName = "ngrid",
 SchemeHandlerFactory = new CefSharpSchemeHandlerFactory(),
 DomainName = "",

105

 IsSecure = true
 });

 Cef.Initialize(cef_settings);

 while (!Cef.IsInitialized)
 {
 Thread.Sleep(100);
 }

 chromeBrowser = new ChromiumWebBrowser("http://localhost:8080/ar/index.html")
 {
 BrowserSettings =
 {
 DefaultEncoding = "UTF-8",
 WebGl = CefState.Disabled
 },
 RequestHandler = new NavidRequestHandler()
 };

 //Register objects to be called from JS (both sync and async are exposed).
 chromeBrowser.JavascriptObjectRepository.Register("bound", new BoundObject(),
isAsync: false, options: BindingOptions.DefaultBinder);
 chromeBrowser.JavascriptObjectRepository.ResolveObject += (sender, e) =>
 {
 var repo = e.ObjectRepository;
 if (e.ObjectName == "boundAsync")
 {
 repo.Register("boundAsync", new AsyncBoundObject(), isAsync:
true, options: BindingOptions.DefaultBinder);
 }
 };

 SingletonBrowsers.Instance.browsers.Add("tab1", new NavidWebBrowserWithSignal {
browser = chromeBrowser });

 SingletonBrowsers.Instance.browsers["tab1"].setBrowserLoadingStateChangeNotificationEvent(
);
 }

 private void OnFormClosing(object sender, FormClosingEventArgs e)
 {
 Cef.Shutdown();
 }

 private void OnButtonShowDevToolsChrome_Click(object sender, EventArgs e)
 {
 this.chromeBrowser.ShowDevTools();
 }

 //login
 private void button1_Click(object sender, EventArgs e)
 {
 chromeBrowser.ExecuteScriptAsync("login.js", "show_login();");
 chromeBrowser.Invalidate();
 }

 //...
}

public class NavidWebBrowserWithSignal
{
 public ChromiumWebBrowser browser { set; get; }
 public bool isLoading = true;

106

 public void setBrowserLoadingStateChangeNotificationEvent()
 {
 browser.LoadingStateChanged += Browser_LoadingStateChanged;
 }

 private void Browser_LoadingStateChanged(object sender, LoadingStateChangedEventArgs e)
 {
 this.isLoading = e.IsLoading;
 }

 public void EvaluateScript(string script, string method)
 {
 // only call via UI thread to get correct scheduler
 var scheduler = System.Threading.Tasks.TaskScheduler.Default;

 //1 minute timeout
 var task = new System.Threading.Tasks.Task(() => EvaluateScript(script, method,
TimeSpan.FromMinutes(1)));
 task.Start(scheduler);
 }

 public object EvaluateScript(string script, string method, TimeSpan timeout)
 {
 //make sure browser is ideal
 int count = 600;
 while (isLoading && count > 0)
 {
 Thread.Sleep(100);
 count--;
 }

 object result = null;

 if (browser.IsBrowserInitialized && !browser.IsDisposed && !browser.Disposing)
 {
 var task = browser.EvaluateScriptAsync(script, method, timeout);
 var complete = task.ContinueWith(t =>
 {
 if (!t.IsFaulted)
 {
 var response = t.Result;
 result = response.Success ? (response.Result ?? "null") :
response.Message;
 }
 }, TaskScheduler.Default);
 complete.Wait();

 }
 return result;
 }

 public event EventHandler TriggerJSExec;
 protected virtual void OnThresholdReached(EventArgs e)
 {
 EventHandler handler = TriggerJSExec;
 if (handler != null)
 {
 handler(this, e);
 }
 }

}

//to customize headers sent
public class NavidRequestHandler : CefSharp.Handler.DefaultRequestHandler
{
 public override bool OnBeforeBrowse(IWebBrowser browserControl, IBrowser browser, IFrame
frame, IRequest request, bool isRedirect)

107

 {
 Console.WriteLine("request.Url is: " + request.Url);
 return base.OnBeforeBrowse(browserControl, browser, frame, request, isRedirect);
 }

 public override bool OnResourceResponse(IWebBrowser browserControl, IBrowser browser,
IFrame frame, IRequest request, IResponse response)
 {
 Console.WriteLine("request.Url is: " + request.Url);
 string[] header_keys = response.ResponseHeaders.AllKeys;
 foreach (string key in header_keys)
 {
 string value = response.ResponseHeaders[key];
 Console.WriteLine(key + " ---> " + value);
 }

 return base.OnResourceResponse(browserControl, browser, frame, request,
response);
 }
}

public class CefSharpSchemeHandlerFactory : ISchemeHandlerFactory
{
 public const string SchemeName = "http";

 private static readonly IDictionary<string, string> ResourceDictionary;

 static CefSharpSchemeHandlerFactory()
 {
 ResourceDictionary = new Dictionary<string, string>
 {
 { "/home.html", "home.html" }
 };
 }

 public IResourceHandler Create(IBrowser browser, IFrame frame, string schemeName, IRequest
request)
 {
 var uri = new Uri(request.Url);
 var fileName = uri.AbsolutePath;
 string resource;

 if (uri.Host == "ngrid.website" && schemeName == "ngrid")
 {
 return new CefSharpSchemeHandler();
 }
 else if (string.Contains(fileName, ".html", StringComparison.OrdinalIgnoreCase))
 {
 return ResourceHandler.FromString("", ".html");
 }
 else if (ResourceDictionary.TryGetValue(fileName, out resource) &&
!string.IsNullOrEmpty(resource))
 {
 var fileExtension = Path.GetExtension(fileName);
 return ResourceHandler.FromString(resource, includePreamble: true,
mimeType: ResourceHandler.GetMimeType(fileExtension));
 }

 return null;
 }
}

internal class CefSharpSchemeHandler : ResourceHandler

108

{

 public override Stream GetResponse(IResponse response, out long responseLength, out string
redirectUrl)
 {
 string[] header_keys = response.ResponseHeaders.AllKeys;
 foreach (string key in header_keys)
 {
 string value = response.ResponseHeaders[key];
 Console.WriteLine(key + " ---> " + value);
 }

 redirectUrl = null;
 responseLength = -1;

 response.MimeType = MimeType;
 response.StatusCode = StatusCode;
 response.StatusText = StatusText;
 response.ResponseHeaders = Headers;

 if (ResponseLength.HasValue)
 {
 responseLength = ResponseLength.Value;
 }
 else
 {
 //If no ResponseLength provided then attempt to infer the length
 if (Stream != null && Stream.CanSeek)
 {
 responseLength = Stream.Length;
 }
 }

 return Stream;
 }

 public override bool ProcessRequestAsync(IRequest request, ICallback callback)
 {
 callback.Continue();
 return true;
 }
}

As mentioned, we heavily customize CEF and run the browser in headless mode

(without any borders or window decorations). This means the NGRID App will be in full

screen and the topmost application. Also we clip the cursor and limit the keyboard events

to make sure wrong events are ignored and no other application can interfere the test. This

requires fundamental changes in the core windows applications in an unmanaged (known

as unsafe mode). Below we demonstrate a few of these advanced techniques in order to

have the CEF to remain the topmost application and also clip the mouse cursor within the

CEF boundaries.

internal static class NGRIDNativeMethods

109

{
 // See http://msdn.microsoft.com/en-us/library/ms649021%28v=vs.85%29.aspx
 public const int WM_CLIPBOARDUPDATE = 0x031D;
 public static IntPtr HWND_MESSAGE = new IntPtr(-3);

 // See http://msdn.microsoft.com/en-us/library/ms632599%28VS.85%29.aspx#message_only
 [DllImport("user32.dll", SetLastError = true)]
 [return: MarshalAs(UnmanagedType.Bool)]
 public static extern bool AddClipboardFormatListener(IntPtr hwnd);

 // See http://msdn.microsoft.com/en-us/library/ms633541%28v=vs.85%29.aspx
 // See http://msdn.microsoft.com/en-us/library/ms649033%28VS.85%29.aspx
 [DllImport("user32.dll", SetLastError = true)]
 public static extern IntPtr SetParent(IntPtr hWndChild, IntPtr hWndNewParent);

 [DllImport("user32.dll")]
 private static extern void ClipCursor(ref Rectangle rect);
}

SENSORY SYSTEM

There are wide range of supported sensors and input devices for NGRID desktop

application. We allow keyboard, mouse, joystick, voice recognition, eye tracking right of

the box. Here is a sample code for voice recognition that not only detects a preset of defined

vocabulary, but also record the entire speeches during the test and mark each test answer

within the recording. This will allow to verify the speech recognition accuracy as the entire

spoken test answers can be manually verified.

namespace NGRIDDesktopApp
{
 /// <summary>
 /// We use simple words in our speech engine
 /// Each word has a label text and asscoiated text verb
 /// e.g. in start-start: start is a the label that speech
 /// engine will detect and upon detection will output the
 /// verb which is start.
 /// </summary>
 public class Word
 {
 public string Text { get; set; }
 public string Verb { get; set; }
 }

 public class NGRIDSpeechToTextEngine
 {
 public SQLiteConnection db_connection;

 public DateTime test_start_time = DateTime.Now;
 public string partcipant_id;
 private SpeechRecognitionEngine speech_recognition_engine;
 public string test_type;
 public string trial_id;

 public WebSocketServer websocket = new WebSocketServer();

110

 private readonly List<Word> words = new List<Word>();

 public NGRIDSpeechToTextEngine(WebSocketServer websocket, SQLiteConnection db_connection,
string trial_id, string test_type, string partcipant_id, DateTime t_now)
 {
 this.websocket = websocket;
 this.db_connection = db_connection;
 this.trial_id = trial_id;
 this.test_type = test_type;
 this.partcipant_id = partcipant_id;

 try
 {
 // create the engine
 speech_recognition_engine = create_speech_engine("en-US");

 // hook to events
 speech_recognition_engine.AudioLevelUpdated += engine_audio_level_updated;
 speech_recognition_engine.SpeechRecognized += engine_speech_recognized;

 speech_recognition_engine.InitialSilenceTimeout = TimeSpan.FromSeconds(3600);
 speech_recognition_engine.EndSilenceTimeoutAmbiguous =
TimeSpan.FromMilliseconds(80);
 speech_recognition_engine.BabbleTimeout = TimeSpan.FromMilliseconds(80);
 Console.WriteLine("==");
 Console.WriteLine("BabbleTimeout: {0}", speech_recognition_engine.BabbleTimeout);
 Console.WriteLine("InitialSilenceTimeout: {0}",
speech_recognition_engine.InitialSilenceTimeout);
 Console.WriteLine("EndSilenceTimeout: {0}",
speech_recognition_engine.EndSilenceTimeout);
 Console.WriteLine("EndSilenceTimeoutAmbiguous: {0}",
 speech_recognition_engine.EndSilenceTimeoutAmbiguous);
 Console.WriteLine("==");

 // load dictionary
 load_engine_grammer();

 // use the system's default microphone
 speech_recognition_engine.SetInputToDefaultAudioDevice();

 // start listening
 speech_recognition_engine.RecognizeAsync(RecognizeMode.Multiple);

 //record("open new Type waveaudio Alias recsound", "", 0, 0);
 //record("record recsound", "", 0, 0);

 test_start_time = t_now;
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message, "Voice recognition failed");
 }
 }

 private void db_run_statment(string sql)
 {
 var command = new SQLiteCommand(sql, db_connection);
 command.ExecuteNonQuery();
 }

 public void websocket_send(string message)
 {
 foreach (var session in websocket.GetAllSessions()) session.Send(message);
 }

 [DllImport("winmm.dll", EntryPoint = "mciSendStringA", ExactSpelling = true, CharSet =
CharSet.Ansi, SetLastError = true)]

111

 private static extern int record(string lpstrCommand, string lpstrReturnString, int
uReturnLength, int hwndCallback);

 private SpeechRecognitionEngine create_speech_engine(string preferredCulture)
 {
 foreach (var config in SpeechRecognitionEngine.InstalledRecognizers())
 if (config.Culture.ToString() == preferredCulture)
 {
 speech_recognition_engine = new SpeechRecognitionEngine(config);
 break;
 }

 // if the desired culture is not found, then load default
 if (speech_recognition_engine == null)
 {
 Console.WriteLine(
 "The lang is not installed on this machine, the speech-engine will continue
using "
 + SpeechRecognitionEngine.InstalledRecognizers()[0].Culture + " as the default
culture.",
 "lang " + preferredCulture + " not found!");

 speech_recognition_engine = new
SpeechRecognitionEngine(SpeechRecognitionEngine.InstalledRecognizers()[0]);
 }

 return speech_recognition_engine;
 }

 private void load_engine_grammer()
 {
 try
 {
 var texts = new Choices();
 var lines = File.ReadAllLines(Environment.CurrentDirectory + "\\ngrid.speech");
 foreach (var line in lines)
 {
 // skip commentblocks and empty lines..
 if (line.StartsWith("--") || line.StartsWith("#") || line == string.Empty)
continue;

 // split the line
 var parts = line.Split('|');

 // add commandItem to the list for later lookup or execution
 words.Add(new Word {Text = parts[0], Verb = parts[1]});

 // add the text to the known choices of speechengine
 texts.Add(parts[0]);
 }

 var wordsList = new Grammar(new GrammarBuilder(texts));
 speech_recognition_engine.LoadGrammar(wordsList);
 }
 catch (Exception ex)
 {
 throw ex;
 }
 }

 //get the commmand payload
 private string get_command_text(string command)
 {
 try
 {
 var cmd = words.Where(c => c.Text == command).First();
 return cmd.Verb;
 }
 catch (Exception)

112

 {
 return command;
 }
 }

 //Handles the SpeechRecognized event of the engine control.
 private void engine_speech_recognized(object sender, SpeechRecognizedEventArgs e)
 {
 var t_now = DateTime.Now;

 if ((t_now - test_start_time).TotalSeconds < 2) return;

 var log_object = new LogsObject();
 log_object.participant_id = partcipant_id;
 log_object.trial_id = trial_id;
 log_object.test_type = test_type;
 var user_said = get_command_text(e.Result.Text);
 //log_object.message = "At offset " + (t_now - test_start_time) + " user said " +
user_said;
 log_object.message = "At offset " +
speech_recognition_engine.AudioPosition.ToString("c") + " user said " +
 user_said;
 log_object.timestamp = t_now.ToString("yyyy-MM-dd HH:mm:ss.fff");
 log_object.action = "Voice";

 db_run_statment(log_object.sqlite_create_insert_statment()); //store to db
 websocket_send("voice: " + user_said);
 }

 // Handles the AudioLevelUpdated event of the engine control for the progress bar and
audio volume level
 private void engine_audio_level_updated(object sender, AudioLevelUpdatedEventArgs e)
 {
 //prgLevel.Value = e.AudioLevel;
 }

 ///call once we want to Close and stop the recording
 public void Close()
 {
 //for debug
 record("save recsound " + this.file_name, "", 0, 0);
 record("Close recsound", "", 0, 0);

 // unhook events
 speech_recognition_engine.RecognizeAsyncStop();
 }

 public void Dispose()
 {
 //clean references to speech engine
 speech_recognition_engine.Dispose();
 }
 }
}

All NGRID sensors are given an instance of a WebSocket that they can have a direct

two-way communication of events and commands to and from the desktop app. This allows

interfacing a wide range of sensors to the system.

113

We also provide Serial Communication Interface (SCI), Serial Peripheral Interface

(SPI) and Inter-Integrated Circuit (I2C) protocols in our hospital version of the desktop

which is accompanied by ARM embedded board to allow integration of even more

customized sensors. The ARM embedded board also is given an instance of WebSocket

that allows it to act as hub for SCI, SPI and I2C to aggregate and broadcast events.

Furthermore, we also allow low-level micro-controller integration from the PC or ARM

board to enable control of advanced analog and PWM sensors that may require hard real-

time signaling. Below is a sample code that demonstrate enablement of analog readings

and pulse with modulating. The code will be compiled into a firmware to run on the

microcontroller interfaced with the ARM board:

/************************************ ATD STARTS ***********************************/

/**
 * power up ATD and enable PAD04 pin
 */
static void atd_init(void)
{
 ATD0CTL2 = 0x80; /* Power up A/D, no interrupts */
 ATD0CTL3 = 0x00; /* Doe eight conversions */
 //ATD0CTL4 = 0x85; /* 8-bit mode */
 ATD0CTL4 = 0x05; /* 10-bit mode */
 ATD0CTL5 = 0xA4; /* 1 0 1 0 0 1 0 0
 | | | | ___/
 | | | | |
 | | | | __ Bit 4 of Port AD --> PAD04
 | | | ________ MULT = 0 => one channel only
 | | __________ Scan = 1 => continuous conversion
 | ____________ DSGN = 0 => unsigned
 ______________ DJM = 1 => right justified */
}

/************************************ PWM STARTS ***********************************/

#define PORTIO_8 *(volatile unsigned char *)
#define PORTIO_16 *(volatile unsigned short int *)

#define IO_BASE 0

#define PWMCNT01_16BIT PORTIO_16(IO_BASE + 0xac) /* pwm channel 0,1 counter, 16bit */
#define PWMCNT23_16BIT PORTIO_16(IO_BASE + 0xae) /* pwm channel 2,3 counter, 16bit */
#define PWMCNT45_16BIT PORTIO_16(IO_BASE + 0xb0) /* pwm channel 4,5 counter, 16bit */
#define PWMCNT67_16BIT PORTIO_16(IO_BASE + 0xb2) /* pwm channel 6,7 counter, 16bit */
#define PWMPER01_16BIT PORTIO_16(IO_BASE + 0xb4) /* pwm channel 0,1 period, 16bit */
#define PWMPER23_16BIT PORTIO_16(IO_BASE + 0xb6) /* pwm channel 2,3 period, 16bit */
#define PWMPER45_16BIT PORTIO_16(IO_BASE + 0xb8) /* pwm channel 4,5 period, 16bit */
#define PWMPER67_16BIT PORTIO_16(IO_BASE + 0xba) /* pwm channel 6,7 period, 16bit */
#define PWMDTY01_16BIT PORTIO_16(IO_BASE + 0xbc) /* pwm channel 0,1 duty cycle, 16bit
*/

114

#define PWMDTY23_16BIT PORTIO_16(IO_BASE + 0xbe) /* pwm channel 2,3 duty cycle, 16bit
*/
#define PWMDTY45_16BIT PORTIO_16(IO_BASE + 0xc0) /* pwm channel 4,5 duty cycle, 16bit
*/
#define PWMDTY67_16BIT PORTIO_16(IO_BASE + 0xc2) /* pwm channel 6,7 duty cycle, 16bit
*/

/*
 * below are some temp. vars. to save the values we get from PC
 */
char pwm_mode, pwm_channel_number, pwm_polarity, pwm_alignment, pwm_is_using_scaled_clock,
pwm_main_clock_divider;
unsigned int pwm_scale_clock_divider, pwm_period_reg_value, pwm_duty_reg_value;

/*
 * bit value of enable and disable flags in PWME
 */
#define ENABLE 1
#define DISABLE 0

/*
 * bit value of polarity
 * polarity can be high at start of the pulse or can be low
 */
#define PWM_POLARITY_IS_HIGH_AT_BEGINNING_OF_THE_PULSE 1
#define PWM_POLARITY_IS_LOW_AT_BEGINNING_OF_THE_PULSE 0

/*
 * alignment: pulse can be left or center aligned
 */
#define PWM_ALIGNMENT_CENTER_ALIGN 1
#define PWM_ALIGNMENT_LEFT_ALIGN 0

/*
 * 16bit or 8bit of opration
 */
#define PWM_8BIT_OPERATION_MODE 8
#define PWM_16BIT_OPERATION_MODE 16

/*
 * channels
 */
#define PWM_8BIT_CHANNEL_0 0
#define PWM_8BIT_CHANNEL_1 1
#define PWM_8BIT_CHANNEL_2 2
#define PWM_8BIT_CHANNEL_3 3
#define PWM_8BIT_CHANNEL_4 4
#define PWM_8BIT_CHANNEL_5 5
#define PWM_8BIT_CHANNEL_6 6
#define PWM_8BIT_CHANNEL_7 7
#define PWM_16BIT_CHANNEL_0 0 //combined 8bit channel1 and 0, CH1 is used for output pin
#define PWM_16BIT_CHANNEL_1 1 //combined 8bit channel3 and 2, CH3 is used for output pin
#define PWM_16BIT_CHANNEL_2 2 //combined 8bit channel5 and 5, CH5 is used for output pin
#define PWM_16BIT_CHANNEL_3 3 //combined 8bit channel7 and 6, CH7 is used for output pin

/*
 * we have two clock source ... A and B
 * some channels use A and some use B
 */
#define PWM_IS_USING_CLOCK_A 0
#define PWM_IS_USING_CLOCK_B 1

/*
 * are we going to use scale our clock source further or not
 */
#define PWM_IS_USING_SCALED_CLOCK 1

115

#define PWM_IS_NOT_USING_SCALED_CLOCK 0

/**
 * cannel: 8 channel in 8bit or 4 channel in 16 bit
 * status: enable, disable ...
 * mode: 8bit mode or 16bit
 * polarity: hight at start or low at start
 * alignment: left or center aligned
 * is_using_scaled_clock: SA or SB ...
 */
typedef struct pwm_struct
 {
 char channel;
 char status;
 char mode;
 char polarity;
 char alignment;
 char is_using_scaled_clock;
 char main_clock_divider_reg_value;
 int scaled_clock_divider_reg_value;
 unsigned int duty_reg_value;
 unsigned int period_reg_value;
 }
PWM;

/*
 * We can precalculate and preset the setting for different Freq.
 * and whenever we want just call the related index in batch to simply run that
 * settings ...
 *
 * here we can preload 50 different settings for channels.
 */
PWM pwm_batch[50];

/**
 * helps us to see which of clock A or B this givven channle is using ...
 * channel: 0-7 for 8bit and 0-3 for 16bit modes
 * mode: is 16bit or 8bit
 */
char pwm_is_using_which_clock(char channel, char mode)
{
 if (mode == PWM_8BIT_OPERATION_MODE)
 {
 if (channel == PWM_8BIT_CHANNEL_0 ||
 channel == PWM_8BIT_CHANNEL_1 ||
 channel == PWM_8BIT_CHANNEL_4 ||
 channel == PWM_8BIT_CHANNEL_5
)
 return PWM_IS_USING_CLOCK_A;
 else
 return PWM_IS_USING_CLOCK_B;
 }
 else // mode == PWM_16BIT_OPERATION_MODE
 {
 if (channel == PWM_8BIT_CHANNEL_0 ||
 channel == PWM_8BIT_CHANNEL_2)
 return PWM_IS_USING_CLOCK_A;
 else
 return PWM_IS_USING_CLOCK_B;
 }
}

/*
 * get a port and set the coresponding port number to 1 or 0

116

 */
void helper__bit_setter(volatile unsigned char * PORT, char bit_number, char bit_value)
{
 if (bit_value == 1)
 {
 *PORT |= 1 << bit_number;
 }
 else if (bit_value == 0)
 {
 *PORT &= ~(1 << bit_number);
 }
}

/**
 * set the priod and duty cycel registers for a channel
 */
void pwm_set_period_and_duty_registers(char channel, char mode, unsigned int period_value,
unsigned int duty_value)
{
 if (mode == PWM_8BIT_OPERATION_MODE)
 {
 char new_period_value = (char) period_value;
 char new_duty_value = (char) duty_value;

 switch (channel)
 {
 case 0:
 {
 PWMPER0 = new_period_value;
 PWMDTY0 = new_duty_value;
 }
 case 1:
 {
 PWMPER1 = new_period_value;
 PWMDTY1 = new_duty_value;
 }
 case 2:
 {
 PWMPER2 = new_period_value;
 PWMDTY2 = new_duty_value;
 }
 case 3:
 {
 PWMPER3 = new_period_value;
 PWMDTY3 = new_duty_value;
 }
 case 4:
 {
 PWMPER4 = new_period_value;
 PWMDTY4 = new_duty_value;
 }
 case 5:
 {
 PWMPER5 = new_period_value;
 PWMDTY5 = new_duty_value;
 }
 case 6:
 {
 PWMPER6 = new_period_value;
 PWMDTY6 = new_duty_value;
 }
 case 7:
 {
 PWMPER7 = new_period_value;
 PWMDTY7 = new_duty_value;
 }
 }
 }

117

 else
 {
 switch (channel)
 {
 case 0:
 {
 PWMPER01_16BIT = period_value;
 PWMDTY01_16BIT = duty_value;
 }
 case 1:
 {

 PWMPER23_16BIT = period_value;
 PWMDTY23_16BIT = duty_value;
 }
 case 2:
 {
 PWMPER45_16BIT = period_value;
 PWMDTY45_16BIT = duty_value;
 }
 case 3:
 {

 PWMPER67_16BIT = period_value;
 PWMDTY67_16BIT = duty_value;
 }
 }
 }

}

/**
 * PWME - PWM Enable Register
 * To enable PWM on channel0 and 1 you should write PWME = 0x03 ...
 * Once concatenated mode is enabled (CONxx bits set in PWMCTL register) then
 * enabling/disabling the corresponding 16-bit PWM channel is controlled by
 * the low order PWMEx bit.
 *
 * status is enabled or disabled ...
 * mode is 16bit or 8bit
 */
void pwm_set_status(char pwm_channel_number, char mode, char status)
{

 if (mode == PWM_8BIT_OPERATION_MODE)
 {
 helper__bit_setter(&PWME, pwm_channel_number, status);
 }
 else
 {
 helper__bit_setter(&PWME, pwm_channel_number+pwm_channel_number+1, status);
 }
}

/*
 * if we like to change the settings for a PWM we have to reset the
 * configurations first by writing somthing to PWM counter to reset
 * the counter ...
 */
void pwm_reset_settings(char channel, char mode)
{
 if (mode == PWM_8BIT_OPERATION_MODE)
 {
 switch (channel)

118

 {
 case 0:
 {
 PWMCNT0 = 1;
 pwm_set_status(channel,mode, DISABLE);
 PWMCNT0 = 1;
 }
 case 1:
 {
 PWMCNT1 = 1;
 pwm_set_status(channel,mode, DISABLE);
 PWMCNT1 = 1;
 }
 case 2:
 {
 PWMCNT2 = 1;
 pwm_set_status(channel,mode, DISABLE);
 PWMCNT2 = 1;
 }
 case 3:
 {
 PWMCNT3 = 1;
 pwm_set_status(channel,mode, DISABLE);
 PWMCNT3 = 1;
 }
 case 4:
 {
 PWMCNT4 = 1;
 pwm_set_status(channel,mode, DISABLE);
 PWMCNT4 = 1;
 }
 case 5:
 {
 PWMCNT5 = 1;
 pwm_set_status(channel,mode, DISABLE);
 PWMCNT5 = 1;
 }
 case 6:
 {
 PWMCNT6 = 1;
 pwm_set_status(channel,mode, DISABLE);
 PWMCNT6 = 1;
 }
 case 7:
 {
 PWMCNT7 = 1;
 pwm_set_status(channel,mode, DISABLE);
 PWMCNT7 = 1;
 }
 }
 }
 else
 {
 switch (channel)
 {
 case 0:
 {
 PWMCNT01_16BIT = 1;
 pwm_set_status(channel,mode, DISABLE);
 PWMCNT01_16BIT = 1;
 }
 case 1:
 {
 PWMCNT23_16BIT = 1;
 pwm_set_status(channel,mode, DISABLE);
 PWMCNT23_16BIT = 1;
 }
 case 2:
 {

119

 PWMCNT45_16BIT = 1;
 pwm_set_status(channel,mode, DISABLE);
 PWMCNT45_16BIT = 1;
 }
 case 3:
 {
 PWMCNT67_16BIT = 1;
 pwm_set_status(channel,mode, DISABLE);
 PWMCNT67_16BIT = 1;
 }
 }
 }

}

/**
 * PWMPOL - PWM Polarity Register
 * If the polarity bit is one, the PWM channel output is high at the beginning
 * of the cycle and then goes low when the duty count is reached. Conversely,
 * if the polarity bit is zero, the output starts low and then goes high when
 * the duty count is reached.
 */
void pwm_set_polarity(char pwm_channel_number, char mode,char polarity)
{
 if (mode == PWM_8BIT_OPERATION_MODE)
 {
 helper__bit_setter(&PWMPOL, pwm_channel_number, polarity);
 }
 else
 {
 helper__bit_setter(&PWMPOL, pwm_channel_number+pwm_channel_number+1, polarity);
 }
}

/**
 * PWMCAE - PWM Center Align Enable Register
 * If the CAEx bit is set to a one, the corresponding PWM output will be center
 * aligned. If the CAEx bit is cleared, the corresponding PWM output will be left
 * aligned
 */
void pwm_set_alignment(char pwm_channel_number, char mode, char alignment)
{
 if (mode == PWM_8BIT_OPERATION_MODE)
 {
 helper__bit_setter(&PWMCAE, pwm_channel_number, alignment);
 }
 else
 {
 helper__bit_setter(&PWMCAE, pwm_channel_number+pwm_channel_number+1, alignment);
 }
}

/*
 * helps us to set the 16bit or 8bit mode of opration for PWM channel.
 */
void pwm_set_operation_mode_flags(char pwm_channel_number, char mode)
{
 if (mode == PWM_16BIT_OPERATION_MODE)
 {
 // why 4?? just an ofset to reach CONxx bits
 helper__bit_setter(&PWMCTL, (pwm_channel_number+4), ENABLE);

120

 }
 else if (mode == PWM_8BIT_OPERATION_MODE)
 {
 helper__bit_setter(&PWMCTL, ((pwm_channel_number/2) +4), DISABLE);
 }
}

/*
 * set the main clock settings for a channel
 */
void pwm_set_main_clock(char channel, char mode, char is_using_scaled)
{
 if (mode == PWM_8BIT_OPERATION_MODE)
 {
 if (is_using_scaled)
 {
 helper__bit_setter(&PWMCLK,channel, PWM_IS_USING_SCALED_CLOCK);
 }
 else
 {
 helper__bit_setter(&PWMCLK,channel, PWM_IS_NOT_USING_SCALED_CLOCK);
 }
 }
 else // mode == PWM_16BIT_OPERATION_MODE
 {
 char bit = channel+channel+1; //to reach proper bit

 if (is_using_scaled)
 {
 helper__bit_setter(&PWMCLK,bit, PWM_IS_USING_SCALED_CLOCK);
 }
 else
 {
 helper__bit_setter(&PWMCLK,bit, PWM_IS_NOT_USING_SCALED_CLOCK);
 }
 }
}

/*
 * set the main clock divider which can be 0-7
 *
 * 2^0 or 2^1 ... 2^7
 */
void pwm_set_main_clock_divider(char channel, char mode, char divider)
{
 //Selects prescale clock source for clocks A and B independently: XXX PCKB2 PCKB1 PCKB0 XXX
PCKA2 PCKA1 PCKA0
 if (pwm_is_using_which_clock(channel, mode) == PWM_IS_USING_CLOCK_A)
 {
 PWMPRCLK &= 0xf0; //reset the pins for A
 PWMPRCLK |= divider;
 }
 else
 {
 PWMPRCLK &= 0x0f; //reset the pins for B
 PWMPRCLK |= divider << 4;
 }
}

/*
 * set the scaled clock divider register, IF we are using scaled mode
 */
void pwm_set_scale_clock_divider(char channel, char mode, char is_using_scaled, char divider)
{
 if (is_using_scaled)

121

 {
 if (pwm_is_using_which_clock(channel, mode) == PWM_IS_USING_CLOCK_A)
 {
 PWMSCLA = 0;
 PWMSCLA |= divider;
 }
 else
 {
 PWMSCLB = 0;
 PWMSCLB |= divider;
 }
 }
}

/**
 * pc can send commands to micro controller. Format will be
 * pc:command_code&arg1&arg2&
 * comand code can be from 1 to (2^16 -1)
 * args can be from 1 to (2^16 -1)
 * sample:
 * "pc:125&0&10"
 */
void process_the_retrieved_command_from_pc(int command, unsigned int arg1, unsigned int arg2)
{
 // these series of commands will control the PWM section
 if (command > 100 && command < 200)
 {
 /*
 * command for pwm channel///
 *
 * examples:
 * pc:111&0&1& means use PWM 8bit on channel 1
 * pc:111&1&0& means use PWM 16bit on channel 0
 */
 if (command == 111)
 {
 //16bit or 8bit
 if (arg1 == 0)
 pwm_mode = PWM_8BIT_OPERATION_MODE;
 else if (arg1 == 1)
 pwm_mode = PWM_16BIT_OPERATION_MODE;

 pwm_channel_number = (char) arg2;
 }

 /*
 * set the boolean flags /////////////////////////
 *
 * exampels:
 * pc:122&0&1& means use polarity high at start
 * pc:122&1&0& means use left aligned for the pulse
 */
 else if (command == 122)
 {
 if (arg1 == 0) //polarity
 {
 if (arg2 == 0)
 pwm_polarity = PWM_POLARITY_IS_LOW_AT_BEGINNING_OF_THE_PULSE;
 else if (arg2 == 1)
 pwm_polarity = PWM_POLARITY_IS_HIGH_AT_BEGINNING_OF_THE_PULSE;
 }
 else if (arg1 == 1) //align
 {
 if (arg2 == 0)
 pwm_alignment = PWM_ALIGNMENT_LEFT_ALIGN;
 else if (arg2 == 1)

122

 pwm_alignment = PWM_ALIGNMENT_CENTER_ALIGN;
 }
 else if (arg1 == 2) //is using SA clock
 {
 if (arg2 == 0)
 pwm_is_using_scaled_clock = PWM_IS_NOT_USING_SCALED_CLOCK;
 else if (arg2 == 1)
 pwm_is_using_scaled_clock = PWM_IS_USING_SCALED_CLOCK;
 }
 }

 else if (command == 133) ///values ///////////////////////////////////
 {
 if (arg1 == 0) //main divider value
 pwm_main_clock_divider = arg2;
 else if (arg1 == 1) //scaled divider value
 pwm_scale_clock_divider = arg2;
 else if (arg1 == 2) //period value
 pwm_period_reg_value = arg2;
 else if (arg1 == 3) //duty value
 pwm_duty_reg_value = arg2;
 }
 else if (command == 144) ///UPDATE SETTINGS///////////////////////////////
 {
 if (arg1 == 1 && arg2 == 1)
 {
 pwm_reset_settings(pwm_channel_number, pwm_mode);

 pwm_set_polarity(pwm_channel_number, pwm_mode, pwm_polarity);
 pwm_set_alignment(pwm_channel_number, pwm_mode, pwm_alignment);
 pwm_set_operation_mode_flags(pwm_channel_number, pwm_mode);
 pwm_set_main_clock(pwm_channel_number, pwm_mode, pwm_is_using_scaled_clock);
 pwm_set_main_clock_divider(pwm_channel_number, pwm_mode, pwm_main_clock_divider);
 pwm_set_scale_clock_divider(pwm_channel_number, pwm_mode, pwm_is_using_scaled_clock,
pwm_scale_clock_divider);
 pwm_set_period_and_duty_registers(pwm_channel_number, pwm_mode,
pwm_period_reg_value, pwm_duty_reg_value);

 pwm_set_status(pwm_channel_number, pwm_mode, ENABLE);

 }
 }
 else if (command == 155) ///UPDATE the BATCH PWM///////////////////////////////////
 {
 if (arg1 == 1)//update batch array
 {
 pwm_batch[arg2].alignment = pwm_alignment;
 pwm_batch[arg2].channel = pwm_channel_number;
 pwm_batch[arg2].duty_reg_value = pwm_duty_reg_value;
 pwm_batch[arg2].is_using_scaled_clock = pwm_is_using_scaled_clock;
 pwm_batch[arg2].main_clock_divider_reg_value = pwm_main_clock_divider;
 pwm_batch[arg2].mode = pwm_mode;
 pwm_batch[arg2].period_reg_value = pwm_period_reg_value;
 pwm_batch[arg2].polarity = pwm_polarity;
 pwm_batch[arg2].scaled_clock_divider_reg_value = pwm_scale_clock_divider;

 }
 else if (arg1 == 2) //load a pwm settings from batch array
 {

 pwm_alignment = pwm_batch[arg2].alignment ;
 pwm_channel_number = pwm_batch[arg2].channel;
 pwm_duty_reg_value = pwm_batch[arg2].duty_reg_value ;
 pwm_is_using_scaled_clock = pwm_batch[arg2].is_using_scaled_clock ;
 pwm_main_clock_divider = pwm_batch[arg2].main_clock_divider_reg_value ;
 pwm_mode = pwm_batch[arg2].mode ;
 pwm_period_reg_value = pwm_batch[arg2].period_reg_value ;

123

 pwm_polarity = pwm_batch[arg2].polarity ;
 pwm_scale_clock_divider = pwm_batch[arg2].scaled_clock_divider_reg_value ;

 pwm_reset_settings(pwm_channel_number, pwm_mode);
 pwm_set_polarity(pwm_channel_number, pwm_mode, pwm_polarity);
 pwm_set_alignment(pwm_channel_number, pwm_mode, pwm_alignment);
 pwm_set_operation_mode_flags(pwm_channel_number, pwm_mode);
 pwm_set_main_clock(pwm_channel_number, pwm_mode, pwm_is_using_scaled_clock);
 pwm_set_main_clock_divider(pwm_channel_number, pwm_mode, pwm_main_clock_divider);
 pwm_set_scale_clock_divider(pwm_channel_number, pwm_mode, pwm_is_using_scaled_clock,
pwm_scale_clock_divider);
 pwm_set_period_and_duty_registers(pwm_channel_number, pwm_mode,
pwm_period_reg_value, pwm_duty_reg_value);
 pwm_set_status(pwm_channel_number, pwm_mode, ENABLE);
 }

 }
 }

}

COLLECTION AND VALIDATION OF TEST ANSWERS

As briefly mentioned in the sensory system, NGRID desktop application provides a

secure WebSocket infrastructure to interconnect all subsystems and allow two-way

communication as well as aggregation of test answers and events. Below sample code

shown how messages are collected, validated against a set of predefined commands and

stored in logs:

namespace NGRIDDesktopApp
{
 public partial class NGRIDDesktopAppMainForm : Form
 {
 private const int WM_SYSCOMMAND = 0x0112;
 private const int SC_MINIMIZE = 0xf020;
 private const int SC_MOVE = 0xF010;

 //...
 public Process httpd_process;
 public NGRIDSpeechToTextEngine NgridSpeechToTextEngine;
 public WebSocketServer websocket_app_server = new WebSocketServer();

 public NGRIDDesktopAppMainForm()
 {
 InitializeComponent();
 NavidInit();
 }

 [DllImport("winmm.dll", EntryPoint = "mciSendStringA", ExactSpelling = true, CharSet =
CharSet.Ansi,
 SetLastError = true)]

124

 private static extern int wave_record(string lpstrCommand, string lpstrReturnString, int
uReturnLength,
 int hwndCallback);

 [DllImport("user32.dll")]
 private static extern void ClipCursor(ref Rectangle rect);

 public void NavidInit()
 {
 keyboardHook.KeyPressed += keypPressed_CtrlAlrtShiftF11;
 keyboardHook.RegisterHotKey(
 NGRIDDesktopApp.ModifierKeys.Control | NGRIDDesktopApp.ModifierKeys.Alt |
 NGRIDDesktopApp.ModifierKeys.Shift, Keys.F11);

 //Start inetrnall HTTPD
 httpd_process = new Process();
 httpd_process.StartInfo.FileName = "NGRID" +
 "HttpdConsole.exe";
 httpd_process.StartInfo.Arguments = "-n";
 httpd_process.StartInfo.WindowStyle = ProcessWindowStyle.Hidden;
 httpd_process.Start();

 //Setup the websocket app server
 if (!websocket_app_server.Setup(2012)) //Setup with listening port
 {
 return -1;
 }

 websocket_app_server.NewMessageReceived += Websocket_new_message_received;

 //Try to start the appServer
 if (!websocket_app_server.Start())
 {
 return -2;
 }
 }

 //got a new message on websocket
 public void Websocket_new_message_received(WebSocketSession session, string message)
 {
 if (
 message.ToLower().Contains("globalsetting") && message.ToLower().Contains("style")
||
 message.ToLower().Contains("objs_obj_stg3")
)
 {
 websocket_message_handle(session, message);
 return;
 }
 }

 //how to handle a new message:
 public void websocket_message_handle(WebSocketSession session, string message)
 {
 var command_stream = new MemoryStream(Encoding.UTF8.GetBytes(message));
 var command_js = new DataContractJsonSerializer(typeof(CommandObject));
 var objective = (CommandObject) command_js.ReadObject(command_stream);

 if (objective.command.Contains("store"))
 {
 if (objective.related_class.Contains("log"))
 {
 try
 {

125

 var log_stream = new
MemoryStream(Encoding.UTF8.GetBytes(objective.payload));
 var log_js = new DataContractJsonSerializer(typeof(LogsObject));
 var log_object = (LogsObject) log_js.ReadObject(log_stream); //object from
JSON
 //do DAO
 db_run_statment(log_object.sqlite_create_insert_statment()); //store to db
 }
 catch (Exception e)
 {
 Console.WriteLine(exception_string + e.Message);
 }
 }
 //else if ... many more cases ... we didn'y show them here as there many ... over
300 lines of code
 }
 //else if ... many more cases ... we didn'y show them here as there many ... over 300
lines of code

 }

 //send/broadcast a message down the webscoket
 public void websocketSend(string message)
 {
 foreach (var session in websocket_app_server.GetAllSessions()) session.Send(message);
 }

 protected override void WndProc(ref Message m)
 {
 if (m.Msg == WM_SYSCOMMAND)
 {
 var command = m.WParam.ToInt32() & 0xfff0;

 if (m.WParam.ToInt32() == SC_MINIMIZE)
 {
 m.Result = IntPtr.Zero;
 Size = new Size(400, 400);
 return;
 }

 if (!allow_window_move && command == SC_MOVE)
 {
 return;
 }
 }

 base.WndProc(ref m);
 }

 //on closing shutdown everything
 private void onFormClosing(object sender, FormClosingEventArgs e)
 {
 try
 {
 httpd_process.Kill();
 Process.Start("taskkill", "/f /im HttpdConsole.exe");

 websocket_app_server.Stop();
 websocket_app_server.Dispose();

 stop_wave_recording = true;
 thread_for_wave_saving.Shutdown();
 }
 catch (Exception e)
 {
 Console.WriteLine(exception_string + e.Message);
 }
 }

126

 //restart internal HTTPD
 private void onButtonRestartHTTPD_click(object sender, EventArgs e)
 {
 httpd_process.Kill();
 Process.Start("taskkill", "/f /im HttpdConsole.exe");

 httpd_process = new Process();
 httpd_process.StartInfo.FileName = "HttpdConsole.exe";
 httpd_process.StartInfo.Arguments = "-n";
 httpd_process.StartInfo.WindowStyle = ProcessWindowStyle.Hidden;
 httpd_process.Start();
 }

 }
}

ARCHIVAL OF THE TEST ANSWERS

Test data, events and test answers need to be structurally and securely saved and

archived for post-processing in NGRID datacenter. We use SQLite for this purpose. A

password protected local SQLite file is used to temporarily store the test data and

aggregated events as well as test answers. Once internet connection is established (i.e.

device is online), the file will be uploaded securely via HTTPS to NGRID datacenter.

Storing the logs in SQLite allows for easy access and query of the test answers and

events as well as native compression of the logs. In below sample code, we demonstrate

how this is done:

namespace NGRIDDesktopApp
{
 public partial class NGRIDDesktopAppMainForm : Form
 {

 private void createNewDatabase()
 {
 if (File.Exists(filename_db))
 {
 Console.WriteLine("** DB exist: " + filename_db);
 return;
 }
 SQLiteConnection.CreateFileWithPassword(filename_db, this.fetched_temp_password);
 }

 // Creates a connection with our database file.
 private void connectToDatabase()
 {
 db_connection = new SQLiteConnection("Data Source=" + filename_db +
";Version=3;Password=" + this.fetched_temp_password);
 db_connection.Open();

127

 }

 //e.g. to insert, update or drop etc
 private void db_run_statment(string sql)
 {
 var command = new SQLiteCommand(sql, db_connection);
 command.ExecuteNonQuery();
 }

 //how to handle a new message:
 public void websocket_message_handle(WebSocketSession session, string message)
 {
 var command_stream = new MemoryStream(Encoding.UTF8.GetBytes(message));
 var command_js = new DataContractJsonSerializer(typeof(CommandObject));
 var objective = (CommandObject) command_js.ReadObject(command_stream);

 if (objective.command.Contains("store"))
 {
 if (objective.related_class.Contains("log"))
 {
 try
 {
 var log_stream = new
MemoryStream(Encoding.UTF8.GetBytes(objective.payload));
 var log_js = new DataContractJsonSerializer(typeof(LogsObject));
 var log_object = (LogsObject) log_js.ReadObject(log_stream); //object from
JSON
 //do DAO
 db_run_statment(log_object.sqlite_create_insert_statment()); //store to db
 }
 catch (Exception e)
 {
 Console.WriteLine(exception_string + e.Message);
 }
 }
 //else if ... many more cases ... we didn'y show them here as there many ... over
300 lines of code
 }
 //else if ... many more cases ... we didn'y show them here as there many ... over 300
lines of code
 }

 }

 //Log objects to persist to sqlite
 [DataContract]
 internal class LogsObject
 {
 [DataMember] public string action;
 [DataMember] public int id;
 [DataMember] public string message;
 [DataMember] public string participant_id;
 [DataMember] public string test_type;
 [DataMember] public string timestamp;
 [DataMember] public string trial_id;

 public static string GetMemberName<T, TValue>(Expression<Func<T, TValue>> memberAccess)
 {
 return ((MemberExpression) memberAccess.Body).Member.Name;
 }

 public static string db_header_maker(string header, bool start = false)
 {
 if (!start) return ", [" + header + "]";
 return " [" + header + "]";
 }

128

 public static string db_value_maker(string val, bool start = false)
 {
 if (!start) return ", '" + val + "'";
 return " '" + val + "'";
 }

 public string sqlite_create_insert_statment()
 {
 var result = "";

 //GetMemberName((LogsObject c) => c.id);
 result = "INSERT INTO [Logs] ("
 + db_header_maker(GetMemberName((LogsObject c) => c.id), true)
 + db_header_maker(GetMemberName((LogsObject c) => c.timestamp))
 + db_header_maker(GetMemberName((LogsObject c) => c.trial_id))
 + db_header_maker(GetMemberName((LogsObject c) => c.participant_id))
 + db_header_maker(GetMemberName((LogsObject c) => c.test_type))
 + db_header_maker(GetMemberName((LogsObject c) => c.action))
 + db_header_maker(GetMemberName((LogsObject c) => c.message))
 + ") VALUES ("
 + " NULL"
 + db_value_maker(timestamp)
 + db_value_maker(trial_id)
 + db_value_maker(participant_id)
 + db_value_maker(test_type)
 + db_value_maker(action)
 + db_value_maker(message)
 + ");";

 return result;
 }

 //DROP TABLE [Logs];
 //
 //CREATE TABLE [Logs] ([id] INTEGER PRIMARY KEY
 // , [timestamp] datetime NOT NULL
 // , [trial_id] nvarchar(15) NOT NULL
 // , [participant_id] nvarchar(15) NOT NULL
 // , [test_type] nvarchar(100) NOT NULL
 // , [action] nvarchar(100) NOT NULL
 // , [message] ntext NOT NULL
 // , CONSTRAINT [PK_Logs]);
 //
 //sqlite_create_insert_statment();

 public string sqlite_create_update_statment()
 {
 var result = "";

 //GetMemberName((LogsObject c) => c.id);
 result = "UPDATE [Logs] "
 + "SET [timestamp] = '" + GetMemberName((LogsObject c) => c.timestamp) + "'"
 + " ,[trial_id] = '" + GetMemberName((LogsObject c) => c.trial_id) + "'"
 + " ,[participant_id] = '" + GetMemberName((LogsObject c) =>
c.participant_id) + "'"
 + " ,[test_type] = '" + GetMemberName((LogsObject c) => c.test_type) + "'"
 + " ,[action] = '" + GetMemberName((LogsObject c) => c.action) + "'"
 + " ,[message] = '" + GetMemberName((LogsObject c) => c.message) + "'"
 + " WHERE id = " + GetMemberName((LogsObject c) => c.id) + ";";

 return result;
 }
 }
}

129

APPENDIX B – NGRID DATABASE

NGRID platform provides a highly available relational database within NGRID

datacenter that keeps all the test SVG data and credentials. MySQL NDB Cluster is a high-

availability and high-redundancy version of MySQL adapted for the distributed computing

environment. We use NDB storage engine and ndb_mgm command line interface (CLI) to

manage the nodes ndbd, ndb_mgmd and mysqld that are explained below.

MySQL NDB Cluster is a technology that enables clustering of in-memory

databases in a shared-nothing fashion. The shared-nothing architecture enables the systems

to work with very inexpensive hardware (Wikipedia is using MySQL Cluster to serve

massive amount of data in a distributed fashion). The Cluster does not have any single

point of failure. Each node has its own independent CPU, memory and disk.

NDB Cluster integrates the standard MySQL server with an in-memory clustered

storage engine called Network DataBase (NDB). MySQL NDB Cluster refers to the cluster

of MySQL servers which use the NDB storage engine. The cluster has a series of computer

nodes which can be:

 One or more SQL API Server nodes (mysqld) to access the NDB data nodes.

 One or more NDB Data nodes (ndbd) that store the database data with high-

availability and high-redundancy.

 One or more management server nodes (ndb_mgmd) to manage the overall cluster.

The relationship of these components in an NDB Cluster is shown here:

130

We also developed various SQL stored procedures to embed frequently used database

queries. Below is sample stored procedure which copy SVGs of one NGRID test to another.

BEGIN

DECLARE bDone INT DEFAULT 0;

DECLARE XMLCONTENT text;

DECLARE SEQ INT(11);

DECLARE SVGID INT(11);

DECLARE TESTID INT(11);

DECLARE curs CURSOR FOR SELECT * FROM SVG

WHERE SVG.TESTID = _OLD_TEST_ID ORDER BY SEQ;

DECLARE CONTINUE HANDLER FOR NOT FOUND SET bDone = 1;

DROP TEMPORARY TABLE IF EXISTS `SVG_TEMP`;

CREATE TEMPORARY TABLE IF NOT EXISTS `SVG_TEMP` (`SVGID` int(11) NOT NULL

AUTO_INCREMENT, `XMLCONTENT` text COLLATE utf8_unicode_ci NOT NULL, `TESTID` int(11)

NOT NULL, `SEQ` int(11) NOT NULL, PRIMARY KEY (`SVGID`), KEY `TESTID` (`TESTID`))

AUTO_INCREMENT = 0 DEFAULT CHARSET = utf8 COLLATE = utf8_unicode_ci;

OPEN curs;

REPEAT

FETCH curs INTO SVGID, XMLCONTENT, TESTID, SEQ;

INSERT INTO `SVG` VALUES (NULL, XMLCONTENT, _NEW_TEST_ID, SEQ) ;

UNTIL bDone

END REPEAT;

CLOSE curs;

SELECT * FROM `svg_temp`;

END

We also use a cluster of Apache Cassandra NoSQL paired with a cluster of Kafka

to perform stream processing on test answers. The goal here is to start analyzing and

processing the test answers as they arrive to NGRID datacenter to generate heatmap. The

Apache Cassandra is a NoSQL database. It does not have the overhead of the relational

databases. It is designed to be linearly scalable, highly available and performant NoSQL

database. We use Cassandra to make sure test results can be accessed and stored rapidly.

131

 Apache Kafka is a streaming platform that can Publish and Subscribe to a streams of

records, similar to a message queues or enterprise transactional messaging systems. It can

store streams of records in high available, fault-tolerant and durable cluster. It also provides

APIs to help process the streams of records as they occur. Kafka allows for building real-

time streaming data pipelines that reliably get the data between systems and applications.

Moreover it appropriately transforms and react to the streams of data. It is noteworthy to

mention that the Kafka cluster stores streams of records in categories called Topics. Each

record consists of a key, a value, and a timestamp. Below is a sample code that shows how

we receive and send batch work messages to and from our Kafka cluster.

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;

import org.apache.kafka.clients.consumer.ConsumerRecord;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.kafka.core.KafkaTemplate;

 //...
 @Autowired
 private KafkaTemplate<String, String> ngridKafkaTemplate;
 private final CountDownLatch ngridKafkaLatch = new CountDownLatch(1);
 private static final int NGRID_KAFKA_TIMEOUT = 60;
 private static final String NGRID_KAFKA_TOPIC = "ngrid_batch_topic";

 public void NgridKafkaSend(String msg) {
 this.ngridKafkaTemplate.send(NGRID_KAFKA_TOPIC, msg);
 try
 {
 ngridKafkaLatch.await(NGRID_KAFKA_TIMEOUT, TimeUnit.SECONDS);
 logger.info("Sent message " + msg + " to Kafka topic " + NGRID_KAFKA_TOPIC);
 }
 catch (InterruptedException e)
 {
 e.printStackTrace();
 }
 }

 @KafkaListener(topics = NGRID_KAFKA_TOPIC)
 public void NgridKafkaListener(ConsumerRecord<?, ?> r) throws Exception {
 logger.info("Got message " + r.toString() + " from Kafka topic " + NGRID_KAFKA_TOPIC);
 ngridKafkaLatch.countDown();

 //... process the message and do the additional work
 }

132

APPENDIX C – NGRID SVGEDITOR

NGRID platform aims to provide an easy way to create and modify NGRID VD Tests.

The tests use Standard Vector Graphics (SVG). Hence, NGRID provides an easy to use

SVGEditor that can create and modify test graphics. MIT licensed online open source

SVGEditor was heavily modified to add functionalities to allow multiple SVGs to be stored

centrally at NGRID datacenter. NGRID SVGEditor allows loading and modifying NGRID

VD Tests through an online interface at http://ngrid.website. Below we demonstrate a

sample code that is responsible for loading and uploading edited SVG content to NGRID

Server at NGRID Datacenter.

'use strict';

/**
 * Global is svgeditor
 *
 * @ngdoc function
 * @name NGRID Server - amdappApp.controller - SVGEditor Controller of the NGRID
 * Server - amdappApp.controller - SVGEditor
 */
angular.module('amdappApp')
 .controller('svgEditorController', function ($http, $log, $state, $stateParams, AlertService,
$sanitize, $sce, svgs) {
 var svgEditorCtrl = this;

 /**
 * Controller-specific objects attached to svgEditorCtrl:
 *
 * svgs: SVGS array deleteHistory: Stringified version of object for history
 * undoing toDelete: svgEditor objects to be deleted when resequenced.
 * tempIndexes: Indexes of temporary elements. Can be removed without
 * querying the database. remove function checks these indexes before
 * pushing an item into the toDelete stack testName: name corresponding to
 * the test where the SVGs are being added
 */
 svgEditorCtrl.svgs = svgs;
 svgEditorCtrl.deleteHistory = [];
 svgEditorCtrl.toDelete = [];
 svgEditorCtrl.tempIndexes = [];
 svgEditorCtrl.testName = $stateParams.testName;
 svgEditorCtrl.testId = parseInt($sanitize($stateParams.testId));

 var deletedTemps = [];

 if (!$stateParams.testId || !$stateParams.testName){
 $state.go('adminLoggedIn.main');
 return;
 }

 function sortBySeq(svg){
 return svg.seq;

http://ngrid.website/

133

 }

 function defaultSVG(){
 return {svgId: 0, xmlContent : svgEditor.getContent(), testId: svgEditorCtrl.testId, seq:
1};
 }

 function fixIndexes(){
 for(var i = 0; i < svgEditorCtrl.svgs.length; i++){
 svgEditorCtrl.svgs[i].seq = i+1;
 }
 }

 /**
 * Initialize function, will only run on document ready Loads the first SVG
 * defined by the seq variable.
 */
 svgEditorCtrl.init = function()
 {
 svgEditorCtrl.makeAlert = new makeAlert();
 if (svgs.length > 0)
 {
 svgEditorCtrl.svgs = _.sortBy(svgEditorCtrl.svgs, sortBySeq);
 svgEditorCtrl.currSVG = svgs[0];
 svgEditorCtrl.currIndex = 0;
 fixIndexes();
 loadCurrent();
 clearHist();
 return;
 };
 // on empty:
 svgEditorCtrl.svgs[0] = defaultSVG();
 svgEditorCtrl.currSVG = svgEditorCtrl.svgs[0];
 svgEditorCtrl.currIndex = 0;
 loadCurrent();
 clearHist();
 };

 // listen for page load
 // this ensures no svgEditor global functions will be instantiated before
 // in case the controller loads first.
 // function needs a timeout delay to clear the history properly.
 angular.element(document).ready(setTimeout(svgEditorCtrl.init, 1000));

 /**
 * Function Loads the current SVG in the frame.
 */
 function loadCurrent(){
 svgEditor.loadFromString(svgEditorCtrl.currSVG.xmlContent);
 $('#tool_navid_frame_number').val(svgEditorCtrl.currIndex);
 }

 function clearHist(){
 svgEditor.clearHistory();
 }

 /**
 * Function scrolls to next frame.
 */
 svgEditorCtrl.nextFrame = function(){
 if (svgEditorCtrl.currIndex >= (svgEditorCtrl.svgs.length-1)){
 return;
 }
 svgEditorCtrl.saveCurrent();
 svgEditorCtrl.currIndex++;
 svgEditorCtrl.currSVG = svgEditorCtrl.svgs[svgEditorCtrl.currIndex];
 loadCurrent();

134

 clearHist();
 };

 /**
 * Function to scroll to previous frame
 */
 svgEditorCtrl.prevFrame = function(){
 if (svgEditorCtrl.currIndex <= 0){
 return;
 }
 svgEditorCtrl.saveCurrent();
 svgEditorCtrl.currIndex--;
 svgEditorCtrl.currSVG = svgEditorCtrl.svgs[svgEditorCtrl.currIndex];
 loadCurrent();
 clearHist();
 };

 svgEditorCtrl.saveCurrent = function(){
 svgEditorCtrl.currSVG.xmlContent = svgEditor.getContent();
 svgEditorCtrl.svgs[svgEditorCtrl.currIndex] = svgEditorCtrl.currSVG;
 };

 /**
 * Get SVG IDs for a given test
 */
 function getSVGIds() {
 return $http.get('/app/getSVGIds/' + svgEditorCtrl.testId)
 };

 /*
 * Add/save multiple edited SVGs back to server
 */
 function postMultiple(svgs){

 var req =
 {
 method: 'POST',
 url: '/app/addMultiSVGs',
 headers:
 {
 'Content-Type': 'application/json',
 'Content-Encoding': 'gzip'
 },
 data: pako.gzip(JSON.stringify(svgs)),
 transformRequest: []
 };
 return $http(req);
 }
 // Clear all history.
 svgEditorCtrl.saveAll = function(){
 svgEditorCtrl.deleted = 0;
 svgEditorCtrl.added = 0;
 svgEditorCtrl.makeAlert.confirm("Are you sure you want to save? All changes are final!",
function(ok){
 if(ok){
 svgEditorCtrl.saveCurrent();
 svgEditorCtrl.tempIndexes = [];
 deletedTemps = [];
 // If there is deletions to be made, delete the current Frames
 if(svgEditorCtrl.toDelete.length > 0){
 $http.post('/app/deleteMultiSVGs', svgEditorCtrl.toDelete).then(function(response){
 svgEditorCtrl.deleted = response.data.deleted;
 svgEditorCtrl.toDelete = [];
 return postMultiple(svgEditorCtrl.svgs)
 }).then(function(response){
 svgEditorCtrl.added = response.data.added;
 return getSVGIds()

135

 }).then(function(response){
 for(var i =0; i< svgEditorCtrl.svgs.length; i++){
 svgEditorCtrl.svgs[i].svgId = response.data.ids[i]
 }
 loadCurrent();
 svgEditorCtrl.makeAlert.alert("Success!\n" + svgEditorCtrl.added + " Added/Updated
and " + svgEditorCtrl.deleted +" deleted!")
 })
 .catch(function(err){
 svgEditorCtrl.makeAlert.alert("Error: "+ err.data.message)
 })
 }
 // If there are no Deletions
 else{
 postMultiple(svgEditorCtrl.svgs).then(function(response){
 svgEditorCtrl.added = response.data.added;

 return getSVGIds()
 }).then(function(response){
 for(var i =0; i< svgEditorCtrl.svgs.length; i++){
 svgEditorCtrl.svgs[i].svgId = response.data.ids[i]
 }
 svgEditorCtrl.makeAlert.alert("Success!\n" + response.data.ids.length + "
Added/Updated and " + svgEditorCtrl.deleted +" deleted!")
 }).catch(function(err){
 svgEditorCtrl.makeAlert.alert("Error: "+ err.data.message)
 })
 }
 }
 })
 };

 /**
 * Function copies the frame at the index, and inserts it at the current
 * sequence.
 *
 * Inserts number of elements == iterations of svg[frameIndex]. Essentially
 * clones the current element JSON.parse and Stringify ensure no element is
 * being copied by reference. Insertion running in linear time
 */
 function insertFrames(frameIndex, iterations){
 var copyElem;

 for (var i = 1; i<=iterations; i++){
 copyElem = JSON.parse(JSON.stringify(svgEditorCtrl.svgs[frameIndex]));
 copyElem.seq += i;
 // Set Copy element ID to 0, to not conflict with the current REST calls
 copyElem.svgId = 0;
 svgEditorCtrl.svgs.splice(frameIndex+i, 0, copyElem);
 svgEditorCtrl.tempIndexes.push(frameIndex+i);
 }

 for(var j=frameIndex+iterations+1; j < svgEditorCtrl.svgs.length; j++){
 svgEditorCtrl.svgs[j].seq++;
 }

 // Points current element to last
 svgEditorCtrl.currIndex = frameIndex+iterations;
 svgEditorCtrl.currSVG = svgEditorCtrl.svgs[frameIndex+iterations];
 loadCurrent();
 clearHist();
 }

 svgEditorCtrl.insertSingle = function(){
 svgEditorCtrl.saveCurrent();
 insertFrames(svgEditorCtrl.currIndex, 1);
 };

136

 /**
 * JQuery event listener for button change.
 *
 * Filters any and all symbols outside of 0 to 9
 */
 $(function(){
 $('#tool_navid_frame_number').keypress(function(e){
 // has enter been pressed?
 var keycode = e.keyCode ? e.keyCode : e.which;

 if (keycode === 13 || keycode === 10){
 var reg = /[^0-9]+/;
 if(svgEditorCtrl.jumpToFrame.toString().search(reg) >= 0){
 $('#tool_navid_frame_number').val(svgEditorCtrl.currIndex);
 return;
 }

 if(svgEditorCtrl.jumpToFrame > (svgEditorCtrl.svgs.length-1))
 {
 svgEditorCtrl.jumpToFrame = svgEditorCtrl.svgs.length -1;
 svgEditorCtrl.currIndex = parseInt(svgEditorCtrl.jumpToFrame);
 svgEditorCtrl.currSVG = svgEditorCtrl.svgs[svgEditorCtrl.jumpToFrame];
 $('#tool_navid_frame_number').val(svgEditorCtrl.jumpToFrame);
 loadCurrent()
 }
 else if(svgEditorCtrl.jumpToFrame < 0){
 svgEditorCtrl.jumpToFrame = 0;
 svgEditorCtrl.currIndex = parseInt(svgEditorCtrl.jumpToFrame);
 svgEditorCtrl.currSVG = svgEditorCtrl.svgs[svgEditorCtrl.jumpToFrame];
 $('#tool_navid_frame_number').val(svgEditorCtrl.jumpToFrame);
 loadCurrent()
 }
 else {
 svgEditorCtrl.currIndex = parseInt(svgEditorCtrl.jumpToFrame);
 svgEditorCtrl.currSVG = svgEditorCtrl.svgs[svgEditorCtrl.jumpToFrame];
 loadCurrent()
 }
 svgEditorCtrl.saveCurrent();
 clearHist();
 }
 })
 });

 /**
 * Function on exit
 */
 svgEditorCtrl.exit = function()
 {
 $("link").each(function(){
 $(this).prop('disabled', false);
 });

 $state.go('adminLoggedIn.viewTests')
 };

 /**
 * Function to delete a specific frame at index frameIndex
 *
 * @param frameIndex
 */
 function deleteFrame(frameIndex){
 svgEditorCtrl.makeAlert.confirm("Are you sure you want to delete?", function(confirmation){
 if(confirmation) {
 if (frameIndex < 0 || frameIndex >= svgEditorCtrl.svgs.length) {
 return;
 }

137

 var deletedElem = JSON.parse(JSON.stringify(svgEditorCtrl.svgs[frameIndex]));

 svgEditorCtrl.deleteHistory.push(deletedElem);

 // If the item is a temporary item, delete it, push it into temp
 // register deleted
 if (svgEditorCtrl.tempIndexes.indexOf(frameIndex) < 0) {
 svgEditorCtrl.toDelete.push(deletedElem);
 } else {
 deletedTemps.push(svgEditorCtrl.tempIndexes.pop());
 }

 svgEditorCtrl.svgs.splice(frameIndex, 1)

 $log.debug(svgEditorCtrl.svgs)

 if (svgEditorCtrl.svgs.length > 0) {
 for (var i = frameIndex; i < svgEditorCtrl.svgs.length; i++) {
 svgEditorCtrl.svgs[i].seq--;
 }
 }

 // Currentindex
 if(svgEditorCtrl.svgs.length === 0){
 svgEditor.clearDocument();
 svgEditorCtrl.currSVG = defaultSVG();
 svgEditorCtrl.currIndex = 0;
 svgEditorCtrl.saveCurrent();
 $log.debug(svgEditorCtrl.currSVG)
 $log.debug(frameIndex)
 loadCurrent();
 clearHist();
 return;
 }
 else if(svgEditorCtrl.svgs.length === frameIndex){
 frameIndex--;
 }
 svgEditorCtrl.currSVG = svgEditorCtrl.svgs[frameIndex];
 svgEditorCtrl.currIndex = frameIndex;
 $log.debug(svgEditorCtrl.currSVG)
 $log.debug(frameIndex)
 loadCurrent();
 clearHist();
 }

 });
 }

 /**
 * Delete the current frame
 */
 svgEditorCtrl.deleteCurrent = function(){
 deleteFrame(svgEditorCtrl.currIndex);
 };

 /**
 * Alert Dialog Taken from svg-editor.js into an object
 */
 function makeAlert() {
 $('#dialog_container').draggable({cancel: '#dialog_content, #dialog_buttons *', containment:
'window'});
 var box = $('#dialog_box'),
 btn_holder = $('#dialog_buttons'),
 dialog_content = $('#dialog_content'),
 dbox = function(type, msg, callback, defaultVal, opts, changeCb, checkbox) {
 var ok, ctrl, chkbx;
 dialog_content.html('<p>'+msg.replace(/\n/g, '</p><p>')+'</p>')
 .toggleClass('prompt', (type == 'prompt'));
 btn_holder.empty();

138

 ok = $('<input type="button" value="' + svgEditor.uiStrings.common.ok +
'">').appendTo(btn_holder);

 if (type !== 'alert') {
 $('<input type="button" value="' + svgEditor.uiStrings.common.cancel + '">')
 .appendTo(btn_holder)
 .click(function() { box.hide(); if (callback) {callback(false);}});
 }

 if (type === 'prompt') {
 ctrl = $('<input type="text">').prependTo(btn_holder);
 ctrl.val(defaultVal || '');
 ctrl.bind('keydown', 'return', function() {ok.click();});
 }
 else if (type === 'select') {
 var div = $('<div style="text-align:center;">');
 ctrl = $('<select>').appendTo(div);
 if (checkbox) {
 var label = $('<label>').text(checkbox.label);
 chkbx = $('<input type="checkbox">').appendTo(label);
 chkbx.val(checkbox.value);
 if (checkbox.tooltip) {
 label.attr('title', checkbox.tooltip);
 }
 chkbx.prop('checked', !!checkbox.checked);
 div.append($('<div>').append(label));
 }
 $.each(opts || [], function (opt, val) {
 if (typeof val === 'object') {
 ctrl.append($('<option>').val(val.value).html(val.text));
 }
 else {
 ctrl.append($('<option>').html(val));
 }
 });
 dialog_content.append(div);
 if (defaultVal) {
 ctrl.val(defaultVal);
 }
 if (changeCb) {
 ctrl.bind('change', 'return', changeCb);
 }
 ctrl.bind('keydown', 'return', function() {ok.click();});
 }
 else if (type === 'process') {
 ok.hide();
 }

 box.show();

 ok.click(function() {
 box.hide();
 var resp = (type === 'prompt' || type === 'select') ? ctrl.val() : true;
 if (callback) {
 if (chkbx) {
 callback(resp, chkbx.prop('checked'));
 }
 else {
 callback(resp);
 }
 }
 }).focus();

 if (type === 'prompt' || type === 'select') {
 ctrl.focus();
 }
 };

139

 this.alert = function(msg, cb) { dbox('alert', msg, cb);};
 this.confirm = function(msg, cb) { dbox('confirm', msg, cb);};
 this.process_cancel = function(msg, cb) { dbox('process', msg, cb);};
 this.prompt = function(msg, txt, cb) { dbox('prompt', msg, cb, txt);};
 this.select = function(msg, opts, cb, changeCb, txt, checkbox) { dbox('select', msg, cb,
txt, opts, changeCb, checkbox);};
 };

 svgEditorCtrl.showToDelete = function(){$log.debug(svgEditorCtrl.currSVG);}

 });

140

APPENDIX D – NGRID APPLICATION SERVER

NGRID platform provides NGRID Application Server which is a server-side online

portal for NGRID admin staff and medical practitioners to login and create trials, add

patients, as well as add or modify NGRID VD tests. The server-side codes are written as a

microservice architecture that allows linear scalability under load.

As mentioned in NGRID SVGEditor, all changes to VD tests need to be persisted to

NGRID application server. Below code is the server side codes that SVGEditor will call to

fetch or modify NGRID VD Tests:

package controllers

import java.io.{ByteArrayInputStream, ByteArrayOutputStream, InputStreamReader}
import java.sql.SQLTimeoutException
import java.util.Calendar
import java.util.zip.GZIPInputStream
import javax.inject.{Inject, Singleton}

import scala.util.Try
import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global

import models._
import services._

import play.api.mvc._
import play.api.libs.json._
import play.api.cache.CacheApi
import play.api.libs.functional.syntax._

import com.google.common.io.CharStreams
import com.mohiva.play.silhouette.api.Silhouette

@Singleton
class SVGController @Inject()(svgService: SVGs, silhouette: Silhouette[DefaultEnv], cacheApi:
CacheApi) extends Controller {

 val cacheKeyWord = "SVGCache"

 implicit val svgRead: Reads[SVG] = (
 (JsPath \ "svgId").read[Int] and
 (JsPath \ "xmlContent").read[String] and
 (JsPath \ "testId").read[Int] and
 (JsPath \ "seq").read[Int]
)(SVG.apply _)

 implicit val svgWrites: Writes[SVG] = new Writes[SVG] {
 def writes(s: SVG): JsValue = Json.obj(
 "svgId" -> s.svgId,
 "xmlContent" -> s.xmlContent,
 "testId" -> s.testId,
 "seq" -> s.seq

141

)
 }

 def addSVG() = silhouette.SecuredAction.async { implicit request =>
 SVGForm.form.bindFromRequest.fold(
 errorForm => Future.successful(Ok(JsObject(Seq(
 "success" -> JsBoolean(false),
 "message" ->
 JsString("SVG form has errors"))))),
 data => {
 val svg = SVG(0,
 data.xmlContent,
 data.testId,
 data.seq)
 svgService.add(svg).map {
 case 0 => Ok(JsonServerMessage(false, "SVG already exists"))
 case 1 => Ok(JsonServerMessage(true, "SVG add successful"))
 case _ => InternalServerError(JsonServerMessage(false,
 """Critical SQL error.
 |Multiple SVGs with the same credentials.
 |Look into database at once.
 """.stripMargin))
 }.recover {
 case sq: SQLTimeoutException => InternalServerError(JsonServerMessage(false, "timeout"))
 case ex: Exception => InternalServerError(JsonServerMessage(false, "SQL ERROR: " +
ex.getMessage()))
 }
 }
)
 }

 def deleteSVG() = silhouette.SecuredAction.async(parse.json) {
 implicit request =>
 val id = (request.body \ "svgId").asOpt[Int]
 id match {
 case Some(x: Int) =>
 svgService.delete(x).map(res => Ok(JsObject(Seq(
 "success" -> JsBoolean(true),
 "message" ->
 JsString("SVG Delete Successful"))))).recover {
 case ex: Exception => InternalServerError(JsObject(Seq(
 "success" -> JsBoolean(false),
 "message" ->
 JsString("SVG Delete Unsuccessful"))))
 }
 case None => Future(Ok(JsObject(Seq(
 "success" -> JsBoolean(false),
 "message" ->
 JsString("request did not contain proper format")))))
 }
 }

 def getSVGIds(testId: Int) = silhouette.SecuredAction.async {
 implicit request =>
 svgService.getAllIds(testId).map(res => Ok(JsObject(Seq("ids" ->
JsArray(res.map(JsNumber(_))))))).recover {
 case ex: Exception => InternalServerError(JsObject(Seq(
 "success" -> JsBoolean(false),
 "message" ->
 JsString("Could not Retrieve SVGs. SQL: " + ex.getMessage()))))
 }
 }

 def getSVGs() = silhouette.SecuredAction.async(parse.json) {
 implicit request =>
 val exId = (request.body \ "testId").asOpt[Int]
 exId match {
 case Some(id: Int) =>
 svgService.listAll(id).map(res => {

142

 Ok(Json.toJson(res.sortBy(_.seq)))
 }).recover {
 case ex: Exception => InternalServerError(JsObject(Seq(
 "success" -> JsBoolean(false),
 "message" ->
 JsString("Could not Retrieve SVGs. Please Try again later"))))
 }
 case None => Future(Unauthorized(JsObject(Seq(
 "success" -> JsBoolean(false),
 "message" ->
 JsString("Error In format")))))
 }
 }

 def deleteMultiSVGs() = silhouette.SecuredAction.async(parse.json){
 implicit request =>
 val svgSeq = request.body.asOpt[List[SVG]]
 svgSeq match{
 case Some(x: List[SVG]) => svgService.deleteMultiple(x.toSeq).map(res =>
Ok(JsObject(Seq("success" ->
 JsBoolean(true), "deleted" -> JsNumber(res.sum)))))
 case None => Future(Ok(JsObject(Seq(
 "success" -> JsBoolean(true),
 "deleted" ->
 JsNumber(0)))))
 }
 }

 def addMultiSVGs() = silhouette.SecuredAction.async(parse.json(maxLength = 1024*10000)){
 implicit request =>
 val svgSeq = request.body.asOpt[List[SVG]]
 svgSeq match{
 case Some(x: List[SVG]) => svgService.addMultiple(x.toSeq).map(res => {
 Ok(JsObject(Seq("success" ->
 JsBoolean(true), "added" -> JsNumber(res.sum)
)))}).recover {
 case sq: SQLTimeoutException => InternalServerError(JsonServerMessage(false, "timeout"))
 case ex: Exception => InternalServerError(JsonServerMessage(false, "SQL ERROR: " +
ex.getMessage()))
 }
 case None => {
 Future(Ok(JsObject(Seq(
 "success" -> JsBoolean(true),
 "added" ->
 JsNumber(0)))))
 }
 }

 }

143

APPENDIX E – NGRID HEATMAP GENERATOR

from builtins import print

import numpy as np

import scipy as scipy

from scipy import stats

import matplotlib.pyplot as plt

from matplotlib import colors

import matplotlib.lines as mlines

from PIL import Image

Helper function: compare against a given value, if smaller return zero.

def compare_with_value(x,value):

 if x < value:

 return 0

 else:

 return x

plot_test_frames = True

define a set of frames to be shown to patient

f1 = np.matrix('1 1 1 1 1 ; '

 '0 0 0 0 0 ; '

 '0 0 0 0 0 ; '

 '0 0 0 0 0 ; '

 '0 0 0 0 0'

)

f2 = np.matrix('0 0 0 0 1 ; '

 '0 0 0 0 1 ; '

 '0 0 0 0 1 ; '

 '0 0 0 0 1 ; '

 '0 0 0 0 1'

)

f3 = np.matrix('0 0 0 0 0 ; '

 '0 0 0 0 0 ; '

 '0 0 0 0 0 ; '

 '0 0 0 0 0 ; '

 '1 1 1 1 1'

)

f4 = np.matrix('1 0 0 0 0 ; '

 '1 0 0 0 0 ; '

 '1 0 0 0 0 ; '

 '1 0 0 0 0 ; '

 '1 0 0 0 0'

)

f5 = np.matrix('0 0 0 0 0 ; '

 '0 1 1 1 0 ; '

 '0 1 1 1 0 ; '

 '0 1 1 1 0 ; '

 '0 0 0 0 0'

)

f6 = np.matrix('0 0 0 0 0 ; '

 '1 1 1 1 1 ; '

 '0 0 0 0 0 ; '

 '0 0 0 0 0 ; '

 '0 0 0 0 0'

144

)

f7 = np.matrix('0 0 0 0 0 ; '

 '0 0 0 0 0 ; '

 '1 1 1 1 1 ; '

 '0 0 0 0 0 ; '

 '0 0 0 0 0'

)

f8 = np.matrix('0 0 0 0 0 ; '

 '0 0 0 0 0 ; '

 '0 0 0 0 0 ; '

 '1 1 1 1 1 ; '

 '0 0 0 0 0'

)

f9 = np.matrix('0 1 0 0 0 ; '

 '0 1 0 0 0 ; '

 '0 1 0 0 0 ; '

 '0 1 0 0 0 ; '

 '0 1 0 0 0'

)

f10 = np.matrix('0 0 1 0 0 ; '

 '0 0 1 0 0 ; '

 '0 0 1 0 0 ; '

 '0 0 1 0 0 ; '

 '0 0 1 0 0'

)

f11 = np.matrix('0 0 0 1 0 ; '

 '0 0 0 1 0 ; '

 '0 0 0 1 0 ; '

 '0 0 0 1 0 ; '

 '0 0 0 1 0'

)

f12 = np.matrix('0 0 0 0 1 ; '

 '0 0 0 1 0 ; '

 '0 0 1 0 0 ; '

 '0 1 0 0 0 ; '

 '1 0 0 0 0'

)

f13 = np.matrix('1 0 0 0 0 ; '

 '0 1 0 0 0 ; '

 '0 0 1 0 0 ; '

 '0 0 0 1 0 ; '

 '0 0 0 0 1'

)

f14 = np.matrix('1 1 1 1 1 ; '

 '1 1 1 1 1 ; '

 '0 0 0 0 0 ; '

 '0 0 0 0 0 ; '

 '0 0 0 0 0'

)

f15 = np.matrix('0 0 0 0 0 ; '

 '1 1 0 1 1 ; '

 '1 1 0 1 1 ; '

 '1 1 0 1 1 ; '

 '1 1 0 1 1'

145

)

f16 = np.matrix('1 1 0 1 1 ; '

 '1 1 0 1 1 ; '

 '1 1 0 1 1 ; '

 '1 1 0 1 1 ; '

 '1 1 0 1 1'

)

simulate patient answers to the defined frames above while assuming patient

is seeing bad/wavy

in pixels that fall under cells located at column 3 and row 3,4,5

an = {

1: "good",

2: "good",

3: "bad",

4: "good",

5: "bad",

6: "good",

7: "bad",

8: "bad",

9: "good",

10: "bad",

11: "good",

12: "bad",

13: "bad",

14: "good",

15: "good",

16: "good"

}

Show 64 frames to patient and collect the answers

frames_seen_by_patient = [

 f1 ,f2 ,f3 ,f4 ,f5 ,f6 ,f7 ,f8 ,f9 ,f10 ,f11 ,f12 ,f13, f14, f15, f16

]

patient_answers = [

 an[1], an[2], an[3], an[4], an[5], an[6], an[7], an[8], an[9], an[10],

an[11], an[12], an[13], an[14], an[15], an[16]

]

#init PM, HM and HMM as a sparse matrix of 5x5

perfect_matrix = np.zeros((5, 5))

heat_matrix = np.zeros((5, 5))

heatmap_matrix = np.zeros((5, 5))

if plot_test_frames == True:

 Nr = 4

 Nc = 4

 cmap = "cool"

 fig, axs = plt.subplots(Nr, Nc, figsize=(20, 16), dpi=100, facecolor='w',

edgecolor='k')

 fig.canvas.set_window_title('Designed Frames')

 fig.subplots_adjust(hspace=0.25, wspace=0.25)

 plt.rcParams.update({'font.size': 22})

 #fig.suptitle('Designed Frames F1 to F16')

 k = 0

 images = []

146

 for i in range(Nr):

 for j in range(Nc):

 data = frames_seen_by_patient[k]

 images.append(axs[i, j].imshow(data, cmap=cmap))

 #axs[i, j].set_axis_off()

 axs[i, j].set_facecolor('#eafff5')

 axs[i, j].get_xaxis().set_ticks([0,1,2,3,4])

 axs[i, j].get_yaxis().set_ticks([0,1,2,3,4])

 frame_name = "F(" + str(k+1) + ")"

 #axs[i, j].text(0.01, 0.05, frame_name , fontsize=18)

 k = k + 1

 #plt.show()

 plt.savefig('frames.png', bbox_inches='tight')

k = 0

print("================")

for frame, answer in zip(frames_seen_by_patient, patient_answers):

 k = k + 1

 print("Frame" + str(k) + ":")

 print (frame)

 print("Patient marked this frame as seen " + answer)

print("================")

#Go through the frames and answers to calculate PM, HM

print("Calculating Perfect Matrix (PM):")

k = 0

for frame, answer in zip(frames_seen_by_patient, patient_answers):

 k = k + 1

 print("PM value after considering frame" + str(k) + ":")

 perfect_matrix = perfect_matrix + frame

 heat_matrix = heat_matrix + frame

 print (perfect_matrix)

 print("------")

print("================")

print("Heat Matrix (HM) is initiated as the same as Perfect Matrix (PM):")

print (heat_matrix)

print("------")

print("Now going through the frames and corresponding patients answer. Heat

Matrix (HM) value is printed at each state:")

k = 0

for frame, answer in zip(frames_seen_by_patient, patient_answers):

 k = k + 1

 print("HM value after considering frame" + str(k) + " (patients answer was:

" + answer + "):")

 if answer == 'good':

 heat_matrix = heat_matrix + frame

 elif answer == 'bad':

 heat_matrix = heat_matrix - 2 * frame

 print (heat_matrix)

 print("------")

print("================")

print("HeatMap Matrix (HMM) is: PM - HM")

print("Please note in HMM, the higher the value of a cell, the more heat it has

(e.g. higher chance of VD at that location)")

print("PM was:")

147

print(perfect_matrix)

print("HM was:")

print(heat_matrix)

print("Thus HMM is:")

#Calculate HMM, the higher the value of a cell, the more heat it has (e.g.

higher chance of VD at that location)

heatmap_matrix = perfect_matrix - heat_matrix

print(heatmap_matrix)

print("================")

print ("If our SVG test has good area coverage (e.g. test more than 90% of the

visual field), we can eliminate the lower than mean heat values. This will help

to produce cleaner heatmap.")

If our SVG test has good area coverage (e.g. test more than 90% of the visual

field), we can eliminate the lower than mean heat values

This will help to produce cleaner heatmap

vectorized__compare_with_value = np.vectorize(compare_with_value)

mean = np.floor(np.mean(heatmap_matrix)).astype(int)

print("Clamping HMM based on mean value of HMM which is " + str(mean) + ":")

heatmap_matrix = vectorized__compare_with_value(heatmap_matrix, mean)

print(heatmap_matrix)

print("================")

print ("Now we find the z-score of the heatmap values and clamp on heatmap z-

score values that are higher than 75% SD heat")

find the z-score of the heat values and only look for heat values that are

higher than 75% SD

heatmap_zscore_matrix = np.array(stats.zscore(heatmap_matrix.A1)).reshape((5,

5))

print ("HMM z-scores will be:")

print(heatmap_zscore_matrix)

vectorized__compare_with_value = np.vectorize(compare_with_value,

otypes=[np.float])

heatmap_zscore_matrix = vectorized__compare_with_value(heatmap_zscore_matrix,

0.75)

print ("After clamping on values less than 75% SD heat, we will get:")

print(heatmap_zscore_matrix)

print("================")

print("opacity_matrix derived from normalized_heatmap_zscore_matrix: ")

opacity_matrix = heatmap_zscore_matrix / np.amax(heatmap_zscore_matrix)

opacity_matrix = opacity_matrix * 100

#mask_zeros = opacity_matrix == 0

#mask_nonzeros = opacity_matrix != 0

#opacity_matrix[mask_nonzeros] = abs (opacity_matrix[mask_nonzeros] - 100.0)

#opacity_matrix[mask_zeros] = opacity_matrix[mask_zeros] + 100.0

print(opacity_matrix)

print("================")

oneDimention_heatmap_zscore_matrix = heatmap_zscore_matrix.flatten()

radious_matrix = np.array([float(i) / max(oneDimention_heatmap_zscore_matrix)

for i in oneDimention_heatmap_zscore_matrix]).reshape((5, 5))

print("radious_matrix derived from normalized_heatmap_zscore_matrix: ")

print(radious_matrix)

print("================")

148

fig, ax = plt.subplots(figsize=(20, 20), dpi=100)

plt.axis('equal', bbox_inches=0)

ax.set_xlim((-1, 5))

ax.set_ylim((5, -1))

#ax.set_facecolor('xkcd:salmon')

ax.set_facecolor((0, 1, 0))

#plt.gca().invert_yaxis()

plt.savefig('stage0.png', bbox_inches='tight')

print("And the location of heat cell indices are:")

reshaped__heatmap_matrix = heatmap_matrix.A1.reshape((5, 5))

k = 0

avg__heat_i = 0

avg__heat_j = 0

heat_cell_locations = np.nonzero(heatmap_zscore_matrix > 0)

#heat_cell_locations is a two-dimensional array. index 0 is array of i'th

indices and 1 is array of corresponding js.

for i in heat_cell_locations[0]:

 j = heat_cell_locations[1][k]

 k = k + 1

 print("\tAt Zij location (i=" + str(j) + ",j=" + str(i) + ") found heat-z-

score of " +

 '{0:.2f}'.format(heatmap_zscore_matrix[i][j]) +

 " Opacity is " + '{0:.2f}'.format(opacity_matrix[i][j]) +

 " Radius is " + '{0:.2f}'.format(radious_matrix[i][j]) +

 " and heat-value of " + str(reshaped__heatmap_matrix[i][j])

)

 avg__heat_i = avg__heat_i + i * opacity_matrix[i][j] / 100

 avg__heat_j = avg__heat_j + j * opacity_matrix[i][j] / 100

 ax.add_artist(plt.Circle((j,i), radious_matrix[i][j] , color='r',

alpha=opacity_matrix[i][j] / 100))

avg__heat_i = avg__heat_i / len(heat_cell_locations[0])

avg__heat_j = avg__heat_j / len(heat_cell_locations[0])

avg__heat_i = (avg__heat_i + np.average(heat_cell_locations[0]))/2

avg__heat_j = (avg__heat_j + np.average(heat_cell_locations[1]))/2

print("Center of the heat is " + str((avg__heat_j, avg__heat_i)))

print("================")

#plt.axis('off') #don't use as it will remove the bgcolor for axises

plt.savefig('stage1.png', bbox_inches='tight')

im = Image.open('stage0.png')

greens_in_im0 = 0

for pixel in im.getdata():

 if pixel == (0, 255, 0, 255): # this is for RGBA, for RGB remove the last

255

 greens_in_im0 += 1

im = Image.open('stage1.png')

greens_in_im1 = 0

for pixel in im.getdata():

 if pixel == (0, 255, 0, 255):

 greens_in_im1 += 1

heat_coverage = 100 - 100 * (greens_in_im1/greens_in_im0)

149

print('Heat coverage is {0:.2f}%'.format(heat_coverage))

ax.set_facecolor((1, 1, 1))

ax.add_artist(plt.Circle((avg__heat_j, avg__heat_i), 0.05 , color='b',

alpha=0.5))

#ax.text(avg__heat_j + 0.05, avg__heat_i + 0.05, 'χ =

({0:.2f},'.format(avg__heat_j) + '{0:.2f})'.format(avg__heat_i) , fontsize=20)

#ax.text(avg__heat_j + 0.05, avg__heat_i + 0.20, 'η =

{0:.1f}%'.format(heat_coverage) , fontsize=20)

i = 0

j = 0

i_max = 6

i_min = -2

j_max = 6

j_min = -2

for i in np.arange(i_min, i_max, 0.1):

 ax.add_line(mlines.Line2D([i, i], [j_min, j_max]))

for j in np.arange(j_min, j_max, 0.1):

 ax.add_line(mlines.Line2D([i_min, i_max], [j, j]))

plt.savefig('final.png', bbox_inches='tight')

#colorImage = Image.open("results.png")

#rotated = colorImage.rotate(-90)

#rotated.show()

#plt.show()

150

APPENDIX F – NGRID VD SIMULATOR

Here the details for the program we wrote to create the VD simulations:

namespace VDSimul
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void button_Click_create_vd(object sender, EventArgs e)
 {
 this.textBox_temp_code.Text = this.simpleEditor1.Text;

 openFileDialog1.Title = "Browse for an Input Image File";
 openFileDialog1.CheckFileExists = true;
 openFileDialog1.CheckPathExists = true;
 openFileDialog1.DefaultExt = "sqlite";
 openFileDialog1.Filter = "PNG Files (*.png)|*.png|JPG Files (*.jpg)|*.jpg|BMP Files
(*.bmp)|*.bmp|All files (*.*)|*.*";
 openFileDialog1.FilterIndex = 1;
 openFileDialog1.RestoreDirectory = true;
 openFileDialog1.ReadOnlyChecked = true;
 openFileDialog1.ShowReadOnly = true;
 if (openFileDialog1.ShowDialog() != DialogResult.Cancel)
 {
 selected_file = openFileDialog1.FileName;
 var task = Task.Run(() => backgroundWorker_create_the_vd_image(selected_file));
 }
 }

 [DllImport("user32.dll")]
 public static extern int MessageBox2(int hWnd, String text, String caption, uint type);

 public bool isPointInTheCircle(double cx, double cy, double cr, double x, double y)
 {
 double d = Math.Pow(cx - x, 2) + Math.Pow(cy - y, 2);
 if (d > Math.Pow(cr, 2))
 {
 return false;
 }
 else
 {
 return true;
 }
 }

 public async void backgroundWorker_save_an_image(string filepath, string append_ext,
Bitmap image, System.Drawing.Imaging.ImageFormat format)
 {
 image.Save(filepath + append_ext, format);
 }

 public async void backgroundWorker_create_the_vd_image(string filepath)
 {
 this.CompileAndRun(this.textBox_temp_code.Text);
 if (VDmethod == null)
 {

151

 MessageBox.Show("VD function compilation failed! Please correct the VD Code.");
 return;
 }

 VDs_mins = new Dictionary<int, int>();
 VDs_maxs = new Dictionary<int, int>();

 Bitmap b1 = new Bitmap(filepath);

 int height = b1.Height;
 int width = b1.Width;

 Invoke((MethodInvoker)delegate ()
 {
 this.textBox_Image_Height.Text = height + "";
 this.textBox_Image_Width.Text = width + "";
 });

 int cylinder_radius = int.Parse(this.textBox_VD_Sphere_Radius.Text);
 int origin_x_axis = int.Parse(this.textBox_VD_center_x.Text);
 int origin_y_axis = int.Parse(this.textBox_VD_center_y.Text);

 int cylinder_start_x = origin_x_axis -cylinder_radius;
 int cylinder_finish_x = origin_x_axis + cylinder_radius;

 double[][] org = new double[width][];
 Color[][] org_color = new Color[width][];
 Color[][] vd_color = new Color[width][];
 double[][] vd = new double[width][];
 for (int i = 0; i < width; i++)
 {
 org[i] = new double[height];
 vd[i] = new double[height];
 org_color[i] = new Color[height];
 vd_color[i] = new Color[height];
 }

 var img = new Bitmap(width, height);
 var vd_img = new Bitmap(width, height);
 for (int i = 0; i < width; i++)
 {
 for (int j = 0; j < height; j++)
 {
 img.SetPixel(i, j, Color.White);
 vd_img.SetPixel(i, j, Color.White);
 org[i][j] = 0;
 vd[i][j] = 0;

 vd_color[i][j] = Color.Transparent;
 org_color[i][j] = Color.Transparent;
 }
 }

 for (int i = 0; i < width; i++)
 {
 for (int j = 0; j < height; j++)
 {
 if (b1.GetPixel(i, j).ToArgb() != Color.White.ToArgb())
 {
 org[i][j] = 1;
 org_color[i][j] = b1.GetPixel(i, j);
 img.SetPixel(i, j, b1.GetPixel(i, j));
 }
 }
 }

 if (checkBox_add_org_to_vd.Checked)
 {
 for (int i = 0; i < width; i++)

152

 {
 for (int j = 0; j < height; j++)
 {
 vd[i][j] = org[i][j];
 }
 }
 }

 for (int i = 0; i < width; i++)
 {
 for (int j = 0; j < height; j++)
 {
 if (i > cylinder_start_x && i < cylinder_finish_x)
 {
 if (this.checkBox1.Checked)
 {
 vd_img.SetPixel(i, j, Color.White);
 }
 else
 {
 if (checkBox_add_org_to_vd.Checked)
 {
 vd_img.SetPixel(i, j, org_color[i][j]);
 }
 }

 vd[i][j] = 0;
 }
 else if (org[i][j] == 1)
 {
 if (checkBox_add_org_to_vd.Checked)
 {
 vd_img.SetPixel(i, j, org_color[i][j]); //changed from BLACK
 }
 }
 }
 }

 double R1 = double.Parse(textBox_VD_Sphere_R1.Text);
 for (int i = cylinder_start_x; i < cylinder_finish_x; i++)
 {
 for (int j = 0; j < height; j++)
 {
 if (org[i][j] == 0) continue;

 Color orginal_pixel = org_color[i][j];
 if (!this.isPointInTheCircle(origin_x_axis, origin_y_axis, cylinder_radius, i,
j))
 {
 vd[i][j] = 1;
 if (checkBox_add_org_to_vd.Checked)
 vd_img.SetPixel(i, j, orginal_pixel);
 continue;
 }

 VDPoint.Point p = (VDPoint.Point) VDmethod.Invoke(null, new object[] { i, j,
cylinder_radius, R1, origin_x_axis, origin_y_axis });

 if (!VDs_maxs.ContainsKey(p.j))
 VDs_maxs.Add(p.j, p.i);
 if (!VDs_mins.ContainsKey(p.j))
 VDs_mins.Add(p.j, p.i);

 if (VDs_maxs[p.j] < p.i) VDs_maxs[p.j] = p.i;
 if (VDs_mins[p.j] > p.i) VDs_mins[p.j] = p.i;

 vd[p.i][p.j] = 1;

 Color c = orginal_pixel;

153

 if (checkBox_transparency.Checked)
 {
 c = Darken(orginal_pixel, p.h);
 }

 vd_img.SetPixel(p.i, p.j, c);

 if (checkBox_pxel_pack.Checked)
 {
 vd[p.i - 1][p.j - 1] = 1;
 vd_img.SetPixel(p.i - 1, p.j - 1, c);
 vd[p.i - 1][p.j + 1] = 1;
 vd_img.SetPixel(p.i - 1, p.j + 1, c);
 vd[p.i + 1][p.j - 1] = 1;
 vd_img.SetPixel(p.i + 1, p.j - 1, c);
 vd[p.i + 1][p.j + 1] = 1;
 vd_img.SetPixel(p.i + 1, p.j + 1, c);
 }
 }
 }

 if (checkBox_Draw_TS_Circles.Checked)
 {
 for (int i = cylinder_start_x; i < cylinder_finish_x; i++)
 {
 for (int j = 0; j < height; j++)
 {
 Color orginal_pixel = vd_img.GetPixel(i, j);
 Color c = orginal_pixel;

 if (isPointInTheCircle(origin_x_axis, origin_y_axis, cylinder_radius, i,
j))
 {

 int xr = i - origin_x_axis;
 int yr = j - origin_y_axis;
 int rr = xr * xr + yr * yr;
 int sphere_rr = cylinder_radius * cylinder_radius;
 double r_val = 1;
 r_val = 1 - (sphere_rr - rr) / (double) (sphere_rr) +
double.Parse(textBox_ts_circle_offset.Text);
 c = Darken(orginal_pixel, r_val);
 vd_img.SetPixel(i, j, c);
 continue;
 }
 }
 }
 }

 if (checkBox_new_method_to_overlay_vd_on_org.Checked)
 {
 for (int i = 0; i < width; i++)
 {
 for (int j = 0; j < height; j++)
 {
 Color orginal_pixel = img.GetPixel(i, j);

 if (!VDs_mins.ContainsKey(j) && !VDs_maxs.ContainsKey(j))
 {
 vd_img.SetPixel(i, j, orginal_pixel);
 continue;
 }

 if (i <= VDs_mins[j] || i >= VDs_maxs[j])
 {
 vd_img.SetPixel(i, j, orginal_pixel);
 }

154

 }
 }
 }

 Invoke((MethodInvoker)delegate ()
 {
 this.kpImageViewer2.Image = img;
 this.kpImageViewer2.ShowPreview = false;
 this.kpImageViewer2.save_format = ImageFormat.Bmp;
 this.kpImageViewer2.file_path = filepath + ".org.bmp";
 this.kpImageViewer2.save_status_label = this.statusStrip_src_image_label1;
 });

 Invoke((MethodInvoker) delegate()
 {
 this.kpImageViewer1.Image = vd_img;
 this.kpImageViewer1.ShowPreview = false;
 this.tabPage5.Select();
 this.tabControl1.SelectedTab = this.tabPage5;

 this.kpImageViewer1.save_format = ImageFormat.Bmp;
 this.kpImageViewer1.file_path = filepath + ".VDed.bmp";
 this.kpImageViewer1.save_status_label = this.statusStrip_vd_img_label1;
 });

 }

 protected override bool ProcessCmdKey(ref Message msg, Keys keyData)
 {
 if (keyData == (Keys.Alt | Keys.O))
 {
 button_Click_create_vd(null, null);
 return true;
 }

 if (keyData == (Keys.Alt | Keys.T))
 {
 textBox_VD_center_x.Text = kpImageViewer1.target_mode_cursor_loc_x + "";
 textBox_VD_center_y.Text = kpImageViewer1.target_mode_cursor_loc_y + "";

 textBox_VD_Sphere_Radius.Text = kpImageViewer1.textBox_R.Text;
 textBox_VD_Sphere_R1.Text = kpImageViewer1.textBox_R1.Text;

 this.textBox_temp_code.Text = this.simpleEditor1.Text;
 var task = Task.Run(() => backgroundWorker_create_the_vd_image(selected_file));

 return true;
 }

 if (keyData == (Keys.Alt | Keys.R))
 {
 this.textBox_temp_code.Text = this.simpleEditor1.Text;
 var task = Task.Run(() => backgroundWorker_create_the_vd_image(selected_file));

 return true;
 }

 if (keyData == (Keys.Alt | Keys.D4))
 {
 this.tabPage5.Select();
 this.tabControl1.SelectedTab = this.tabPage5;

 return true;
 }

 if (keyData == (Keys.Alt | Keys.D3))
 {

155

 this.tabPage2.Select();
 this.tabControl1.SelectedTab = this.tabPage2;

 return true;
 }

 if (keyData == (Keys.Alt | Keys.D1))
 {
 this.tabPage3.Select();
 this.tabControl1.SelectedTab = this.tabPage3;

 return true;
 }

 if (keyData == (Keys.Alt | Keys.D2))
 {
 this.tabPage4.Select();
 this.tabControl1.SelectedTab = this.tabPage4;

 return true;
 }

 return base.ProcessCmdKey(ref msg, keyData);
 }

 public Color Darken(Color color, double darkenAmount)
 {
 HSLColor hslColor = new HSLColor(color);
 hslColor.Luminosity *= darkenAmount;
 return hslColor;
 }

 Dictionary<int, int> VDs_mins = new Dictionary<int, int>();
 Dictionary<int, int> VDs_maxs = new Dictionary<int, int>();

 private void tabControl1_DrawItem(object sender, DrawItemEventArgs e)
 {
 TabPage page = tabControl1.TabPages[e.Index];
 e.Graphics.FillRectangle(new SolidBrush(page.BackColor), e.Bounds);

 Rectangle paddedBounds = e.Bounds;
 int yOffset = (e.State == DrawItemState.Selected) ? -3 : 1;
 paddedBounds.Offset(1, yOffset);

 if (e.Index == 0)
 {
 e.Graphics.FillRectangle(new SolidBrush(Color.LightPink), e.Bounds);
 TextRenderer.DrawText(e.Graphics, page.Text, Font, paddedBounds, Color.Black);
 }
 else if (e.Index == 1)
 {
 e.Graphics.FillRectangle(new SolidBrush(Color.LightGreen), e.Bounds);
 TextRenderer.DrawText(e.Graphics, page.Text, Font, paddedBounds, Color.Black);
 }
 else if (e.Index == 2)
 {
 e.Graphics.FillRectangle(new SolidBrush(Color.LightBlue), e.Bounds);
 TextRenderer.DrawText(e.Graphics, page.Text, Font, paddedBounds, Color.Black);
 }
 else if (e.Index == 3)
 {
 e.Graphics.FillRectangle(new SolidBrush(Color.LightYellow), e.Bounds);
 TextRenderer.DrawText(e.Graphics, page.Text, Font, paddedBounds, Color.Black);
 }

 else
 {

156

 TextRenderer.DrawText(e.Graphics, page.Text, Font, paddedBounds, page.ForeColor);
 }
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 WindowState = FormWindowState.Maximized;
 MinimumSize = this.Size;
 MaximumSize = this.Size;
 }

 private void button2_Click(object sender, EventArgs e)
 {
 toolStrip_main_StatusLabel1.Text = "";
 this.textBox_temp_code.Text = this.simpleEditor1.Text;

 this.CompileAndRun(this.textBox_temp_code.Text);
 if (VDmethod == null)
 {
 MessageBox.Show("VD function compilation failed! Please correct the VD Code.");
 return;
 }

 this.textBox1_testPoint.Text = this.textBox1_testPoint.Text.Replace(" ", ",");
 this.textBox1_testPoint.Text = this.textBox1_testPoint.Text.Replace(",,", ",");
 this.textBox1_testPoint.Text = this.textBox1_testPoint.Text.Replace(",,", ",");
 this.textBox1_testPoint.Text = this.textBox1_testPoint.Text.Replace(",,", ",");

 string[] toks = this.textBox1_testPoint.Text.Split(',');
 if (toks.Length < 2) return;
 int x = int.Parse(toks[0]);
 int y = int.Parse(toks[1]);

 int cylinder_radius = int.Parse(this.textBox_VD_Sphere_Radius.Text);
 int origin_x_axis = int.Parse(this.textBox_VD_center_x.Text);
 int origin_y_axis = int.Parse(this.textBox_VD_center_y.Text);
 double R1 = double.Parse(textBox_VD_Sphere_R1.Text);

 VDPoint.Point p = (VDPoint.Point)VDmethod.Invoke(null, new object[] { x, y,
cylinder_radius, R1, origin_x_axis, origin_y_axis });

 toolStrip_main_StatusLabel1.Text = "" + p.i + "," + p.j + " " + p.h;
 }

 private void textBox1_testPoint_KeyDown(object sender, KeyEventArgs e)
 {
 if (e.KeyCode == (Keys.Enter))
 {
 button2_Click(null, null);
 return;
 }
 }
 }
}

157

REFERENCES

[1] The Eye Diseases Prevalence Research Group, “Prevalence of age-related macular

degeneration in the united states,” Archives of Ophthalmology, vol. 122, no. 4, pp.

564–572, 2004.

[2] M. Wang, I. C. Munch, P. W. Hasler, C. Prünte, and M. Larsen, “Central serous

chorioretinopathy,” Acta Ophthalmologica, vol. 86, no. 2, pp. 126–145, Mar. 2008.

[3] W. L. Wong et al., “Global prevalence of age-related macular degeneration and

disease burden projection for 2020 and 2040: a systematic review and meta-analysis,”

The Lancet Global Health, vol. 2, no. 2, pp. e106–e116, Feb. 2014.

[4] D. J. Taylor, A. E. Hobby, A. M. Binns, and D. P. Crabb, “How does age-related

macular degeneration affect real-world visual ability and quality of life? A systematic

review,” BMJ Open, vol. 6, no. 12, p. e011504, Dec. 2016.

[5] N. M. Bressler, S. B. Bressler, and S. L. Fine, “Age-related macular degeneration,”

Survey of Ophthalmology, vol. 32, no. 6, pp. 375–413, 1988.

[6] L. The, “Age-related macular degeneration: treatment at what cost?,” Lancet

(London, England), vol. 392, no. 10153, p. 1090, 2018.

[7] C. Busch et al., “Retinal Microvasculature and Visual Acuity after Intravitreal

Aflibercept in Diabetic Macular Edema: An Optical Coherence Tomography

Angiography Study,” Scientific reports, vol. 9, no. 1, p. 1561, 2019.

[8] R. F. Spaide, J. G. Fujimoto, N. K. Waheed, S. R. Sadda, and G. Staurenghi, “Optical

coherence tomography angiography,” Progress in Retinal and Eye Research, vol. 64,

pp. 1–55, May 2018.

[9] A. H. Rogers and J. S. Duker, Retina. Philadelphia: Mosby Elsevier, 2008.

[10] F. G. Holz and R. F. Spaide, Medical Retina: Focus on Retinal Imaging. Springer,

2010.

[11] E. Midena and E. Pilotto, “Microperimetry in age: related macular degeneration,”

Eye, vol. 31, no. 7, p. 985, 2017.

[12] E. Midena and S. Vujosevic, “Metamorphopsia: An Overlooked Visual Symptom,”

Ophthalmic Research, vol. 55, no. 1, pp. 26–36, Nov. 2015.

[13] J. C. Besharse and D. Bok, The Retina and Its Disorders. Academic Press, 2011.

[14] E. R. F. Collaboration and others, “Diabetes mellitus, fasting blood glucose

concentration, and risk of vascular disease: a collaborative meta-analysis of 102

prospective studies,” The Lancet, vol. 375, no. 9733, pp. 2215–2222, 2010.

[15] R. R. A. Bourne et al., “Causes of vision loss worldwide, 1990-2010: a systematic

analysis,” Lancet Glob Health, vol. 1, no. 6, pp. e339-349, Dec. 2013.

[16] R. F. Spaide et al., “Central serous chorioretinopathy in younger and older adults,”

Ophthalmology, vol. 103, no. 12, pp. 2070–2079; discussion 2079-2080, Dec. 1996.

[17] T. J. Peiris, H. E. El Rami, and J. K. Sun, “CENTRAL SEROUS

CHORIORETINOPATHY ASSOCIATED WITH STEROID ENEMA,” Retin Cases

Brief Rep, Jul. 2018.

[18] D. S. Friedman et al., “Prevalence of age-related macular degeneration in the united

states,” Archives of Ophthalmology, vol. 122, no. 4, pp. 564–572, 2004.

[19] T. Schlote, M. Grueb, J. Mielke, and J. M. Rohrbach, Pocket Atlas of Ophthalmology.

2006.

158

[20] R. E. Hogg and U. Chakravarthy, “Visual function and dysfunction in early and late

age-related maculopathy,” Progress in Retinal and Eye Research, vol. 25, no. 3, pp.

249–276, May 2006.

[21] S. Parmet, C. Lynm, and R. M. Glass, “Age-related macular degeneration,” JAMA,

vol. 295, no. 20, pp. 2438–2438, 2006.

[22] S. Plainis, P. Tzatzala, Y. Orphanos, and M. K. TSILIMBARIS, “A modified ETDRS

visual acuity chart for European-wide use,” Optometry & Vision Science, vol. 84, no.

7, pp. 647–653, 2007.

[23] C. Springer, S. Bültmann, H. E. Völcker, and K. Rohrschneider, “Fundus Perimetry

with the Micro Perimeter 1 in Normal Individuals: Comparison with Conventional

Threshold Perimetry,” Ophthalmology, vol. 112, no. 5, pp. 848–854, May 2005.

[24] F. L. Ferris III, A. Kassoff, G. H. Bresnick, and I. Bailey, “New visual acuity charts

for clinical research,” American journal of ophthalmology, vol. 94, no. 1, pp. 91–96,

1982.

[25] I. A. Falkenstein et al., “Comparison of Visual Acuity in Macular Degeneration

Patients Measured with Snellen and Early Treatment Diabetic Retinopathy Study

Charts,” Ophthalmology, vol. 115, no. 2, pp. 319–323, Feb. 2008.

[26] M. Amsler, “Earliest symptoms of diseases of the macula,” The British journal of

ophthalmology, vol. 37, no. 9, p. 521, 1953.

[27] M. Amsler, “Earliest symptoms of diseases of the macula,” The British journal of

ophthalmology, vol. 37, no. 9, p. 521, 1953.

[28] J. E. Dowling, The Retina: An Approachable Part of the Brain. Belknap Press of

Harvard University Press, 1987.

[29] D. Thomas and G. Duguid, “Optical coherence tomography--a review of the

principles and contemporary uses in retinal investigation,” Eye (Lond), vol. 18, no. 6,

pp. 561–570, Jun. 2004.

[30] “Macular Degeneration | Lake Travis Eye & Laser Center.” [Online]. Available:

https://laketraviseyecenter.com/macular-degeneration/. [Accessed: 20-Feb-2019].

[31] N. Yoshimura, Oct-atlas, 1st edition. New York: Springer, 2013.

[32] P. J. Patel et al., “Repeatability of Stratus Optical Coherence Tomography Measures

in Neovascular Age-Related Macular Degeneration,” Investigative Opthalmology &

Visual Science, vol. 49, no. 3, p. 1084, Mar. 2008.

[33] R. Trevino, “Recent progress in macular function self-assessment,” Ophthalmic and

Physiological Optics, vol. 28, no. 3, pp. 183–192, May 2008.

[34] E. Collazo, Portable electronic amsler test. US8047652, 2011.

[35] R. Hirji, Near eye opthalmic device. US20080309879, 2008.

[36] M. C. Roser, Visual and memory stimulating retina self-monitoring system.

US7798645, 2010.

[37] A. A. Sadun and M. Wall, System and method of detecting visual field defects.

US4818091, 1989.

[38] W. Fink and A. A. Sadun, “Three-dimensional computer-automated threshold Amsler

grid test,” Journal of biomedical optics, vol. 9, no. 1, pp. 149–153, 2004.

[39] A. Loewenstein et al., “Replacing the Amsler grid,” Ophthalmology, vol. 110, no. 5,

pp. 966–970, May 2003.

[40] D. Palanker, Metamorphopsia testing and related methods. WO2014022850A1,

2014.

159

[41] W. Kohn and J. A. Klingshirn, Characterization and correction of macular distortion.

US8708495, 2014.

[42] V. Lakshminarayanan and J. M. Enoch, “Vernier acuity and aging,” International

Ophthalmology, vol. 19, no. 2, pp. 109–115, 1995.

[43] J. H. Kaas, L. A. Krubitzer, Y. M. Chino, A. L. Langston, E. H. Polley, and N. Blair,

“Reorganization of retinotopic cortical maps in adult mammals after lesions of the

retina,” Science, vol. 248, no. 4952, pp. 229–231, 1990.

[44] Notal Vision Inc., “ForeseeHome,” 31-Oct-2015. [Online]. Available:

http://www.foreseehome.com. [Accessed: 31-Oct-2015].

[45] C. D. Robison, R. V. Jivrajka, S. R. Bababeygy, W. Fink, A. A. Sadun, and J. Sebag,

“Distinguishing wet from dry age-related macular degeneration using three-

dimensional computer-automated threshold Amsler grid testing,” British Journal of

Ophthalmology, vol. 95, no. 10, pp. 1419–1423, Oct. 2011.

[46] A. Loewenstein, A. Pollack, and A. Schachat, “Results of a Multicentered, Masked

Clinical Trial to Evaluate the Macular Computerized Psychophysical Test (MCPT)

for Detection of Age-related Macular Degeneration (AMD),” Investigative

Ophtalmology and Visual Science, vol. 43, no. 12, p. 1213, 2002.

[47] K. Nowomiejska et al., “M-charts as a tool for quantifying metamorphopsia in age-

related macular degeneration treated with the bevacizumab injections,” BMC

ophthalmology, vol. 13, no. 1, p. 13, 2013.

[48] Inami Ltd., “Quantitatable Metamorphopsia Chart,” 31-Oct-2015. [Online].

Available: http://www.inami.co.jp/english/surgical_instruments/innovations/kdm1.

[Accessed: 31-Oct-2015].

[49] I. Wada et al., “Quantifying metamorphopsia with M-CHARTS in patients with

idiopathic macular hole,” Clinical Ophthalmology, 20-Sep-2017. [Online]. Available:

https://www.dovepress.com/quantifying-metamorphopsia-with-m-charts-in-patients-

with-idiopathic-m-peer-reviewed-fulltext-article-OPTH. [Accessed: 16-Apr-2019].

[50] E. Arimura et al., “Correlations between M-CHARTS and PHP findings and

subjective perception of metamorphopsia in patients with macular diseases,”

Investigative ophthalmology & visual science, vol. 52, no. 1, pp. 128–135, 2011.

[51] Y.-Z. Wang, E. Wilson, K. G. Locke, and A. O. Edwards, “Shape discrimination in

age-related macular degeneration.,” Investigative ophthalmology & visual science,

vol. 43, no. 6, pp. 2055–2062, 2002.

[52] J. M. Enoch and R. A. Knowles, Method for evaluating metamorphopsia.

US4798456, 1989.

[53] E. Wiecek, K. Lashkari, S. Dakin, and P. J. Bex, “Novel Quantitative Assessment of

Metamorphopsia in Maculopathy,” Investigative ophthalmology & visual science, p.

IOVS–14, 2014.

[54] J. L. Stewart, System and method for full field oscillating stimulus perimeter.

US6742894, 2004.

[55] “Compass - Fundus Automated Perimetry,” CenterVue. .

[56] P. P. Nazemi, W. Fink, A. A. Sadun, B. Francis, and D. Minckler, “Early detection of

glaucoma by means of a novel 3D computer-automated visual field test,” British

Journal of Ophthalmology, vol. 91, no. 10, pp. 1331–1336, 2007.

[57] N. Mohaghegh, E. Ghafar-Zadeh, S. Munidasa, and S. Magierowski, “Toward Age-

related Macular Degeneration (AMD) Big Data: Hardware and software design and

160

implementation,” in 2017 IEEE 30th Canadian Conference on Electrical and

Computer Engineering (CCECE), 2017, pp. 1–4.

[58] K. J. Cocce et al., “Visual Function Metrics in Early and Intermediate Dry Age-

related Macular Degeneration for Use as Clinical Trial Endpoints,” American Journal

of Ophthalmology, vol. 189, pp. 127–138, May 2018.

[59] A. G. Bennett and R. B. Rabbetts, “Proposals for new reduced and schematic eyes,”

Ophthalmic Physiol Opt, vol. 9, no. 2, pp. 228–230, Apr. 1989.

[60] A. S. Kitzmann, J. S. Pulido, N. N. Diehl, D. O. Hodge, and J. P. Burke, “The

incidence of central serous chorioretinopathy in Olmsted County, Minnesota, 1980-

2002,” Ophthalmology, vol. 115, no. 1, pp. 169–173, Jan. 2008.

[61] M. Crossland and G. Rubin, “The Amsler chart: absence of evidence is not evidence

of absence,” British Journal of Ophthalmology, vol. 91, no. 3, pp. 391–393, Mar.

2007.

[62] E. Y. Chew et al., “Randomized trial of the ForeseeHome monitoring device for early

detection of neovascular age-related macular degeneration. The HOme Monitoring of

the Eye (HOME) study design — HOME Study report number 1,” Contemporary

Clinical Trials, vol. 37, no. 2, pp. 294–300, 2014.

[63] H. DP, “The foreseehome device and the home study: A milestone in the self-

detection of neovascular age-related macular degeneration,” JAMA Ophthalmology,

vol. 132, no. 10, pp. 1167–1168, 2014.

[64] “How the ForeseeHome AMD Monitoring Program Works,” ForeseeHome. .

[65] M. K. Schmid, L. Faes, L. M. Bachmann, and M. A. Thiel, “Accuracy of a Self-

monitoring Test for Identification and Monitoring of Age-related Macular

Degeneration: A Diagnostic Case-control Study,” The Open Ophthalmology Journal,

vol. 12, no. 1, pp. 19–28, Mar. 2018.

[66] D. A. Atchison and L. N. Thibos, “Optical models of the human eye,” Clinical and

Experimental Optometry, vol. 99, no. 2, pp. 99–106, Mar. 2016.

[67] L. Thibos, A. Bradley, D. Still, X. Zhang, and P. Howarth, “Theory and measurement

of ocular chromatic aberration,” Vision research, vol. 30, no. 1, pp. 33–49, 1990.

[68] A. N. S. Institute, American National Standard for Ophthalmics: Methods for

Reporting Optical Aberrations of Eyes. Optical Laboratories Association, 2004.

[69] C. Matsumoto, “Quantification of Metamorphopsia in Patients with Epiretinal

Membranes,” Investigative Ophthalmology & Visual Science, vol. 44, no. 9, pp.

4012–4016, Sep. 2003.

[70] J. D. Foley, Computer Graphics: Principles and Practice. Addison-Wesley, 1996.

[71] Adobe Systems Inc., “Adobe Photoshop,” 31-Oct-2015. [Online]. Available:

http://www.adobe.com/products/photoshopfamily.html. [Accessed: 31-Oct-2015].

[72] Gimp Org., “Gimp,” 31-Oct-2015. [Online]. Available: http://www.gimp.org/.

[Accessed: 31-Oct-2015].

[73] Adobe Systems Inc., “Adobe Illustrator,” 31-Oct-2015. [Online]. Available:

http://www.adobe.com/products/illustrator.html. [Accessed: 31-Oct-2015].

[74] Inkscape Org., “Inkscape,” 31-Oct-2015. [Online]. Available:

http://www.inkscape.org. [Accessed: 31-Oct-2015].

[75] R. R. Everett, C. A. Zraket, and H. D. Benington, “SAGE: A Data-processing System

for Air Defense,” in Papers and Discussions Presented at the December 9-13, 1957,

161

Eastern Joint Computer Conference: Computers with Deadlines to Meet, New York,

NY, USA, 1958, pp. 148–155.

[76] W3 Org., “W3C Standards,” 31-Oct-2015. [Online]. Available:

http://www.w3.org/standards. [Accessed: 31-Oct-2015].

[77] W3 Org., “W3C SVG,” 31-Oct-2015. [Online]. Available:

http://www.w3.org/Graphics/SVG. [Accessed: 31-Oct-2015].

[78] Microsoft Corporation, “Microsoft Introduction to SVG,” 31-Oct-2015. [Online].

Available: https://msdn.microsoft.com/en-

us/library/gg589525%28v=vs.85%29.aspx. [Accessed: 31-Oct-2015].

[79] A. Kaufman, Rendering, Visualization and Rasterization Hardware. Springer Science

& Business Media, 1993.

[80] “DOM Standard.” [Online]. Available: https://dom.spec.whatwg.org/. [Accessed: 12-

Sep-2018].

[81] P. M. Fitts, “The information capacity of the human motor system in controlling the

amplitude of movement.,” Journal of experimental psychology, vol. 47, no. 6, p. 381,

1954.

[82] A. G. Hauptmann and A. I. Rudnicky, “A comparison of speech and typed input,” in

Proceedings of the workshop on Speech and Natural Language - HLT ’90, Hidden

Valley, Pennsylvania, 1990, pp. 219–224.

[83] Y. Ji, M. Li, X. Zhang, Y. Peng, and F. Wen, “Poor Sleep Quality Is the Risk Factor

for Central Serous Chorioretinopathy,” J Ophthalmol, vol. 2018, p. 9450297, 2018.

[84] J. C. Besharse and D. Bok, The Retina and Its Disorders. Academic Press, 2011.

[85] C. Arndt, O. Rebollo, S. Séguinet, P. Debruyne, and G. Caputo, “Quantification of

metamorphopsia in patients with epiretinal membranes before and after surgery,”

Graefe’s Archive for Clinical and Experimental Ophthalmology, vol. 245, no. 8, pp.

1123–1129, Jun. 2007.

[86] Q. Yao, Y. Tian, P.-F. Li, L.-L. Tian, Y.-M. Qian, and J.-S. Li, “Design and

Development of a Medical Big Data Processing System Based on Hadoop,” J Med

Syst, vol. 39, no. 3, p. 23, Feb. 2015.

[87] J. Kim and W. Lee, “Stochastic Decision Making for Adaptive Crowdsourcing in

Medical Big-Data Platforms,” IEEE Transactions on Systems, Man, and Cybernetics:

Systems, vol. 45, no. 11, pp. 1471–1476, Nov. 2015.

[88] S. Siuly and Y. Zhang, “Medical Big Data: Neurological Diseases Diagnosis Through

Medical Data Analysis,” Data Sci. Eng., vol. 1, no. 2, pp. 54–64, Jun. 2016.

