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Abstract

Python is nowadays one of the most popular programming languages. It has been

used extensively for rapid prototyping as well as developing real-world applications.

Unfortunately, very few empirical studies were conducted on Python-based appli-

cations. There are various Python implementations (e.g., CPython, IronPython,

Jython, and PyPy). Each has its own unique characteristics. Among them, PyPy,

which is also implemented using Python, is generally the fastest due to PyPy’s

efficient tracing-based Just-in-Time (JIT) compiler. Understanding how PyPy has

been evolved and the rationale behind its high performance would be very useful

for Python application developers and researchers.

This thesis is divided into two parts. In the first part of the thesis, we conducted

a replication study on mining the historical code changes’ of PyPy and compared

our findings against Python-based applications from five other application domains:

Web, Data processing, Scientific computing, Natural Language Processing, and

Media. In the second part of the thesis, we conducted a detailed empirical study
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on the performance impact of the JIT configuration settings of PyPy. The findings

and the techniques in this thesis will be useful for Python application developers

as well as researchers.

iii



Table of Contents

Abstract ii

Table of Contents iv

List of Tables viii

List of Figures xi

1 Introduction 1

2 Related Work 5

2.1 Code Diffing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Code Change Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 JIT Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Understanding and Tuning the Configuration Settings . . . . . . . . 8

3 The Replication Study 11

iv



3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Chapter Organization . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Python Source Code Diffing . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Code Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.2 GumTree Differencing . . . . . . . . . . . . . . . . . . . . . 19

3.2.3 Action Parser . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.4 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.5 Tool Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Summary of original study . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Replication Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 (RQ1) Across Projects . . . . . . . . . . . . . . . . . . . . . 34

3.4.2 (RQ2) Across Versions . . . . . . . . . . . . . . . . . . . . . 37

3.4.3 (RQ3) Maintenance Activities . . . . . . . . . . . . . . . . . 38

3.4.4 (RQ4) Dynamic feature . . . . . . . . . . . . . . . . . . . . 41

3.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.1 Construct Validity . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.2 Internal Validity . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.3 External Validity . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

v



4 Assessing and Optimizing the Performance Impact of the Just-in-

time Configuration Parameters 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Chapter Organization . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 An Overview of the JIT Compilation Process . . . . . . . . 51

4.2.2 PyPy’s JIT Configuration . . . . . . . . . . . . . . . . . . . 54

4.3 Exploratory Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Automatically Tuning the JIT Configuration Parameters . . . . . . 77

4.4.1 Tailoring MOGA for JIT Configuration Tuning . . . . . . . 79

4.4.2 Our Performance Testing Framework . . . . . . . . . . . . . 90

4.4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5.1 Case Study Setup . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5.2 Case Study Results . . . . . . . . . . . . . . . . . . . . . . . 97

4.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.6.1 Optimal Configurations across Different Systems . . . . . . . 101

4.6.2 Top Configurations across Different Workloads . . . . . . . . 105

4.6.3 Code Jitting vs. Performance . . . . . . . . . . . . . . . . . 108

4.6.4 JIT vs. Memory Usage . . . . . . . . . . . . . . . . . . . . . 114

vi



4.6.5 Termination criteria . . . . . . . . . . . . . . . . . . . . . . 117

4.7 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.7.1 Construct Validity . . . . . . . . . . . . . . . . . . . . . . . 119

4.7.2 Internal Validity . . . . . . . . . . . . . . . . . . . . . . . . 121

4.7.3 External Validity . . . . . . . . . . . . . . . . . . . . . . . . 122

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5 Conclusions and Future work 125

Bibliography 127

vii



List of Tables

3.1 Identified changes in 10 sampled commits of PyPy. . . . . . . . . . 28

3.2 Comparisons between the original study and the current study . . . 31

3.3 Comparisons between the original study and the current study (con-

tinued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Comparisons between the original study and the current study (con-

tinued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 PyPy benchmark programs description. . . . . . . . . . . . . . . . . 59

4.2 Comparing the response time between the warmup phase (A) and

the warmed up phase (B). . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 List of relevant PyPy’s JIT configuration parameters and their in-

formation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 The JIT configurations chosen for performance evaluation. . . . . . 68

4.5 Number of best performing programs/scenarios under each JIT con-

figuration setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

viii



4.6 Comparing the jitting performance against the configuration under

JIT off. The number of programs/scenarios whose performance un-

der jitted configuration is worse or no different than JIT off setting

is highlighted in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.7 Comparison between the configuration settings yielded the best per-

formance and the configuration settings resulted in the most jitted

code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.8 Dominance relations among the four configuration settings in our

running example. “�” means the the left configuration setting dom-

inates the right configuration setting, “≺” means the right config-

uration setting dominates, and “≈” means there is no dominance

relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.9 An overview of the three Python-based systems under study. . . . . 92

4.10 Workload description for the three systems. . . . . . . . . . . . . . 94

4.11 Statistics after running the MOGA approach on the three case study

systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

ix



4.12 Comparing the performance between the optimal configuration set-

tings and the default configuration setting for the three systems. The

optimal configurations are labelled as O
A

, O
B

, and O
C

. WS stands

for the web server, and DB stands for the database. “-” means the

ESM-MOGA suggested optimal configuration setting outperforms

the default setting and “+” means otherwise. . . . . . . . . . . . . 98

4.13 Top three optimal configuration settings for the three studied system.102

4.14 Spearman correlation between configuration and response time. The

large and very large correlation measures are shown in bold. . . . . 102

4.15 Comparing the performance among the optimal configuration set-

tings under different workloads for Wagtail. . . . . . . . . . . . . . 106

4.16 Top three optimal configuration settings for Wagtail under different

workloads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.17 Configuration A and the default configuration. . . . . . . . . . . . . 114

4.18 Spearman correlation between number of jitted line and memory

usage for each system. . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.19 Runtime statistics for ESM-MOGA under different termination cri-

teria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

x



List of Figures

3.1 Overall process of PyDiff. . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 An example of converting Python source code to Python AST . . . 16

3.3 An sample converting Python AST to JSON AST . . . . . . . . . . 17

3.4 An example of converting JSON AST to LAT . . . . . . . . . . . . 18

3.5 Two sample statement with their corresponding ASTs and mappings 19

3.6 Two sample statement with their corresponding ASTs and mappings 21

3.7 Fluri’s Taxonomy of Change Type . . . . . . . . . . . . . . . . . . . 25

3.8 The distribution of change type frequency across projects. . . . . . 35

3.9 The frequency comparison between different versions of PyPy. . . . 38

3.10 The frequency comparison between bug-fix commits and non-bugfix

commits of PyPy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.11 The change frequency of each dynamic feature. . . . . . . . . . . . . 42

3.12 The change frequency of each dynamic feature. . . . . . . . . . . . . 43

4.1 A sample PyPy code snippet with the jitted code marked as “(*)”. 51

xi



4.2 Number of jitted lines and response time over 50 iterations for the

html5lib program from the PyPy benchmark suite. . . . . . . . . . . 60

4.3 Overall process of PyPyJITTuner. . . . . . . . . . . . . . . . . . . . 78

4.4 The workflow for our tailored version of the MOGA method. . . . . 80

4.5 Visualizing the response time distributions of different scenarios un-

der different configuration settings for Wagtail. . . . . . . . . . . . . 98

4.6 Number of jitted lines and overall average response time among all

evaluated JIT configuration settings in Saleor. The red dotted line

shows the overall average response time with JIT turned off. . . . . 109

4.7 Two code snippets showing the executed code and the jitted code

under the two configuration settings: A vs. B. Configuration A is

a jit-enabed configuration shown in Figure 4.6. It has worse perfor-

mance than configuration B, which is JIT off. The colour scheme

is defined as follows: grey coloured code is for not executed code;

bolded black coloured code is for executed but not jitted code; and

highlighted bold coloured code is for jitted code under configuration

A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xii



1 Introduction

Python is nowadays one of the most popular programming languages [51]. Due

to its dynamic features, rich set of library and framework, and large community,

Python is also used quite often during rapid prototyping [77], especially in the

fields of web (e.g., [4, 6]), data analysis (e.g., [11, 9]), and machine learning (e.g.,

[20, 18]) as well as developing many real-world business systems in many large scale

and mission-critical systems inside companies like Facebook [66], Google [26], and

PayPal [55].

There are many empirical studies done for other programming languages, like

Java [79, 45, 42, 38, 59] and JavaScript [53]. However, very few works focused on

Python, except the works of [69] and [71]. Studying Python applications have

been increasing important, as many popular applications and libraries were writ-

ten in Python. There are various Python implementations (e.g., CPython, Iron-

Python, Jython, and PyPy). Each implementation has its own unique characteris-

tics. For example, Jython is a Python interpreter implemented in Java and it can be

1



fully integrated into Java applications, IronPython is tightly integrated with .NET

Framework. Among those implementations, PyPy is generally the fastest [14] due

to PyPy’s efficient tracing-based Just-in-Time (JIT) compiler [31] and it is imple-

mented with Python. Understanding how PyPy has been evolved and the rationale

behind its high performance would be very useful for Python application developers

and researchers.

There have been very few studies on the evolution of Python-based applications,

except the work of Lin et al. [69], the authors conducted an empirical study about

fine-grained source code changes on ten Python application across five domains

(Web, Data processing, Science computing, NLP, Media). However, the study

did not included any applications from the domain of compiler, whose evolution

patterns may or may not be the same as other application domains. For example,

dynamic features bring great flexibility during development, but are generally slower

to execute. PyPy, which is focused on high performance, would its JIT compiler use

many dynamic features compared to other application domains? The first part of

this thesis will be focused on replicating the above study on the PyPy development

history.

PyPy mainly gains its performance via its JIT complier [14]. For dynamic

languages, JIT compiler is being used to improve the efficiency of compiling and

executing the source code. For example, Java’s HotSpot JVM [10] can compile
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methods based on its execution frequency. JIT compiling is also used in Chrome’s

V8 engine [2], which can compile JavaScript code into machine code during run-

time. Existing works on the JIT compilation focus on the jitting strategies (e.g.,

method [38] vs. trace-level based code jitting [31]), speeding up the process of the

JIT compilations [63, 47, 70], optimizing the performance of the underlying virtual

machines [88, 89, 90], and detecting JIT unfriendly code [53]. Unfortunately, there

are very few existing studies which investigate the impact of the JIT configurations

on the system performance. Software configuration is one of the main sources of

software errors [92]. The configuration settings of a software system can signifi-

cantly impact its performance. Optimizing the configuration settings may result

in great performance gain. Hence, the second part of the thesis will be focused on

investigating the performance impact of PyPy’s JIT configurations.

The contributions of this thesis are:

1. We have developed a change extraction tool, PyDiff, which can extract fine-

grained historical changes from the Python source code.

2. We have replicated the empirical study in [69] by comparing our results from

PyPy (a language interpreter written in Python) against 10 Python-based

applications from five other domains (Web, Data processing, Science comput-

ing, NLP, Media) and found that 6 out of 9 findings are different from the

3



original study.

3. This is the first empirical study on assessing and optimizing the impact of

the tracing-based JIT configuration settings on system performance.

4. In this thesis, we have detailed our search-based configuration tuning ap-

proach, (ESM-MOGA) for tuning applications running PyPy.

5. Our experiments on JIT configurations are carried out on both the synthetic

benchmarks as well as real systems. The empirical findings can be useful for

both software engineering and programming language researchers as well as

practitioners.

Thesis Organization:

The thesis is organized as follows: Chapter 2 introduces the related work. Chap-

ter 3 presents our empirical studies on the historical code changes in PyPy and

compared our findings to the findings in the original study. Chapter 4 studied and

optimized PyPy performance by tuning its JIT configuration settings. Chapter 5

concludes the thesis and discusses some future work.
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2 Related Work

In this chapter, we discuss prior research works that are related to this thesis.

2.1 Code Diffing

Software projects are changed rapidly to meet the constantly evolving customer

requirements and deployment environments. To help developers better understand

the changes in different code commits, many tools have been developed to extract

the find-grained code changes by comparing the historical versions of the source

code.

J-REX [79] is an evolutionary extractor which can analyze Java-based projects.

It uses the token-based technique to compare the changes between each consecutive

file revisions and outputs the code revisions in terms of function additions, function

deletions and function updates. Fluri and Gall presented a taxonomy of source code

changes to be used for change coupling analysis in his work [43]. Fluri et al. [45]

also presented the original Abstract Syntax Trees (AST) differencing algorithm,

5



ChangeDistiller, and described inadequacies concerning the extraction of source

code changes. The work of Falleri et al. [42] mainly described their novel tree

differencing algorithm, the GumTree differencing algorithm, which is more efficient

and accurate. However, neither GumTree nor ChangeDistller provided a mechanism

for diffing among Python-based source code. Lin et al. [69] implemented an

automatic tool to extract fine-grained source code changes in Python code, named

PyCT, based on ChangeDistiller. However, the implementation of PyCT is not

available for download. In this thesis, we have developed a fine-grained code diffing

tool, called PyDiff. Our tool extracts the ASTs from different versions of the

Python-based applications and leverages the GumTree’s differencing algorithms to

output the fine-grained code changes between two commits.

2.2 Code Change Analysis

In the work of Lin et al. [69], the authors conducted an empirical study on 10

Python projects across 5 domains. They tried to investigate the pattern of change

types across project, revisions and maintenance activities. And they provided in-

sights about the change of Python dynamic features. Similar as the work of Lin

et al. [69], Romano et al. [75] developed the tool WSDLDiff to extract fine-

grained source code changes between different versions of WSDL interfaces and

they analyzed the evolution of WSDL interface based on the fine-grained source
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code changes in four real world web services. [44] used ChangeDistiller to extract

change types from each version of the software and formed a matrix with which

they can group changes between versions into different clusters and explore the

patterns in each cluster. Thung et al. [86] combined code analysis and machine

learning approaches to analyze the bug fix changes. Their approach can predict

the code line that caused the bug and the result out-performed the state-of-art.

However, there is no existing evolutionary study on Python-based compilers, which

is the focus of Chapter 3 of the thesis.

2.3 JIT Compiler

JIT is introduced as a technique to improve the system behavior during runtime by

compiling the frequently executed (a.k.a., “hot”) code snippets into binaries [31, 73].

Currently, there are two general approaches on recognizing and compiling hot code:

(1) the method-based jitting approach [38], which compiles the whole hot method;

and (2) the trace-based jitting approach [31], which only compiles the frequently ex-

ecuted code path(s) within one method. Both techniques have their pros and cons

and are adopted by different programming languages. The code jitting process

takes a while to recognize and compile the hot code snippets [30]. Hence, various

techniques have been proposed to speed up the JIT compilations [63, 47, 70]. Since

only portions of the source code are jitted, during runtime, depending on the ac-
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tual execution path(es), the system may switch between the native mode (a.k.a.,

executing the compiled binaries) and the interpreter mode. Gong et al. [53] de-

veloped a technique to detect performance anti-patterns that prohibit the system

to execute certain portions of the code natively. Our paper differs from the above

works, as it focuses on the configuration settings of the JIT compiler. The closest

work was done by Hoste et al. [59], which proposed a search-based technique to

automatically tune the Java compiler. Although the two programming languages

differ in their jitting techniques (method-based JIT for Java and tracing-based JIT

for PyPy), both [59] and this paper reported the need to automatically tune JIT

configurations, as the optimal JIT configurations are system and workload depen-

dent. [59] even found that the JIT configuration tuning is hardware dependent.

In this paper, we further studied the characteristics of the PyPy jitting behavior

and tried to derive general patterns/guidelines on tuning the JIT configurations.

For example, we have found a high correlation between the amount of jitted code

and memory utilization. Generally, the configuration parameter decay should be

set with a small value and a large value in the trace limit.

2.4 Understanding and Tuning the Configuration Settings

Software configuration settings play an important role in the performance of a

software system. However, there can be many configuration parameters, each of
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which has various possible settings. Hence, the overall configuration space for one

system can be huge. In this subsection, we will discuss the related works in the

area of assessing and optimizing the configuration settings for one system. We have

divided the existing techniques into the following three categories:

� Understanding the Performance Impact of Various Configuration

Parameters Through Experimentation: Not all configuration parame-

ters can impact the system performance. Hence, researchers have devised a

set of experiments with various combinations of the configuration settings to

assess the impact of the configuration parameters [33, 84]. Various experi-

mental design techniques (e.g., screening design [93], and covering array [58])

have been applied to assess the performance impact of various configuration

parameters. These techniques require a much smaller set of experiments than

exhaustively enumerating all the possible combinations of the configuration

settings, while still able to identify the high performance impacting configu-

ration parameters.

� Modeling System Performance Under Different Configuration Set-

tings: Instead of isolating the impact of various configuration parameters,

another approach to assess the performance impact of configuration settings

is through performance modeling. Siegmund et al. [81] predicted the system

9



performance by detecting performance-relevant feature interactions. In their

later work [80], Siegmund et al. leveraged machine learning and sampling

heuristics to build performance models, which can describe the performance

influences among different configuration options and their interactions, from

a small set of experiments. Libič et al. [68] used queuing theory to model

the performance of the JVM garbage collectors (GCs). Singer et al. [82] built

machine learning models using the data from the existing configurations of

the GCs. Recently, Jamshidi et al. [61] proposed to use the transfer learning

technique to model and infer the system performance under different config-

uration settings.

� Automated Tuning of the Configuration Settings: There are two gen-

eral approaches to automatically tuning the configuration settings of a soft-

ware system: (1) through reduction of the possible candidates of optimal con-

figurations (e.g., based on the similarities among configuration settings [74]

or through iterative experimentations [85]); (2) through the use of the search-

based algorithms (e.g., hill-climbing [91, 87], ParamILS [67], or multi-objective

genetic algorithms [59, 83]).

However, there is no existing works focusing on assessing and tuning the per-

formance of PyPy. This is the foucs of Chapter 4 of the thesis.
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3 The Replication Study

In this study, we have performed an evolutionary study on the PyPy project. In

particular, we compared our findings against one existing evolutionary study on

Python-based appications [69].

3.1 Introduction

It has been well understood that software has to be adapted to changing require-

ments and environments. The source code changes between different versions can

provide developers insight into how a software project evolves. Researches in mining

software repositories are becoming more and more popular.

There are many works which studied the evolution in source code changes in

projects. Romano et al. [75] analyzed the evolution of the WSDL interface based

on the fine-grained source code changes in four real-world web services. [44] extract

change types from each version of the software and formed a matrix with which they

can group changes between versions into different clusters and explore the patterns
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in each cluster. However, few of these work studied the evolution of Python-based

applications, except the work of Lin et al. [69], the authors conducted an empirical

study about fine-grained source code changes on ten Python application across

five domains (Web, Data processing, Science computing, NLP, Media). However,

the study did not include any applications from the domain of compilers, whose

evolution patterns may or may not be the same as other application domains.

For example, dynamic features bring great flexibility during development but are

generally slower to execute. PyPy, which is focused on high performance, it would

be interesting to verify if the JIT compiler use as many dynamic features as other

application domains.

In order to study the evolution of the Python-based applications, tools to extract

the fine-grained differences between different commits are needed. For example, J-

REX [79], ChangeDistiller [44], and GumTree [42] can extract fine-grained Java

source code changes. Unfortunately, they do not support Python. PyCT [69] can

be used to extract fine-grained changes from Python source code and is based

on ChangeDistiller’s AST differencing algorithm. But its implementation is not

available publically. In this project, we leveraged the framework from PyCT and

the GumTree differencing algorithm and developed PyDiff, which can extract fine-

grained historical changes from python source code. We conducted a replication

study which analyzes the source code evolution for PyPy, which is a Python-based
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application in the domain of interpreter. The contributions of this chapter are:

1. We have developed a change extraction tool, PyDiff, which can extract fine-

grained historical changes from the Python source code. This tool is publicly

available for use [13].

2. We have replicated the empirical study in [69] by comparing our results from

PyPy (a language interpreter written in Python) against Python applications

from five other domains (Web, Data processing, Science computing, NLP,

Media) and we found that 6 out of 9 findings are different from the original

study.

3.1.1 Chapter Organization

The rest of the chapter is organized as follows: we introduced the implementation

of our Python source code diffing tool, PyDiff, in detail in section 3.2. Section 3.3

gives a summary of the original study and an overview of the findings. Section 3.4

describes the findings in our replication study and discusses the implications. Sec-

tion discusses the threats and validity and Section 3.6 concludes the chapter.
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3.2 Python Source Code Diffing

PyDiff analyzes two consecutive revisions of source code and provides fine-grained

change information between these two revisions. The source code changes are cate-

gorized into many change types to help software engineer understand how the code

got changed. Fig 3.1 gives us an overview of PyDiff. The input of PyDiff is histor-

ical revisions of a project, which is usually stored in the Code Repositories (e.g.,

CVS, SVN, and git.). Within PyDiff, there are three components: the Code Parser

(Section III-A) parses Python source code into abstract syntax tree (AST) that can

be processed by GumTree; the GumTree Differencing (Section III-B) performs the

GumTree differencing algorithm on two ASTs and generates an edit script which

contains Actions must be performed on the first AST to obtain the second one;

and, the Action Parser (Section III-C) groups these Actions according to their line

number and identifies the change type for each group by analyzing the Actions in

that group. The output of PyDiff is a CSV file which contains change types for

each changed line between two consecutive revisions.

3.2.1 Code Parser

The Code Parser is responsible for converting the Python source code to AST that

could be analyzed by GumTree. GumTree has the functionality to directly convert
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Figure 3.1: Overall process of PyDiff.

Java, C, and C++ source code into a Tree that it can process. However, no such

a function has been developed for Python source code. Fortunately, GumTree can

accept JSON data as input and can convert JSON data into a Language-Agnostic

Tree (LAT) format which it can also analyze. Therefore, we can bring the gap

between Python source code and LAT by converting Python AST into JSON AST

and use the JSON AST as input for GumTree. The Code Parser takes the following

four steps to convert Python source code to LAT that can be analyzed efficiently

by GumTree:

3.2.1.1 Python Source Code to Python AST

Python has a module, named ”ast”, which can generate an AST from python source

code. We can use it to parse the Python source code to Python AST easily. The

result will be a tree of objects whose classes all inherit from AST. Figure 3.2 gives
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Figure 3.2: An example of converting Python source code to Python AST

an example about how to convert a Python statement ”a = 1” to Python AST.

3.2.1.2 Python AST to JSON AST

JSON data structure is similar to XML. In JSON, each node is constructed by a

name/value pair, in which name is a string and value could be number, string, list

or another node. For each node in Python AST, we can get its class name as well as

its child nodes. This structure is very similar to JSON data structure. Therefore,

when we covert Python AST to JSON AST, we use the class name of the node as

name and use its child nodes as value to construct a field in JSON data structure.

By converting all nodes in Python AST, we can obtain a JSON AST that keeps the

original structure of Python AST. Figure 3.3 shows the JSON AST for statement

”a=1”.
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Figure 3.3: An sample converting Python AST to JSON AST

3.2.1.3 JSON AST to LAT

As we mentioned above, GumTree provides an API called TreeGenerator which

can take JSON data as input and convert JSON data into a LAT. We can use

TreeGenerator from GumTree to generate LAT from JSON AST. Figure 3.4 shows

a LAT generated by TreeGenerator from JSON AST of statement ‘a = 1’. In the

LAT, each node has two fields: node type and label. Node type 4, 10, 15 16 do not

have a label because they donate array, field, object, and number in JSON data

separately. And node type 17 means string and node type 14 means numbers in

JSON.
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Figure 3.4: An example of converting JSON AST to LAT

3.2.1.4 Simplify LAT

As shown in Figure 3.4, the above parsing steps could introduce many uninforma-

tive nodes. For example, a field node will be added to LAT for each field in JSON

AST, an object node will be added to LAT for each object in JSON AST. These

uninformative trivial nodes make our LAT redundant. They can also introduce

misclassification in the GumTree algorithm and bring a large number of uninfor-

mative Actions in GumTree’s differencing results which are hard to interpret. To

address this issue, we simplify the LAT by eliminating the uninformative nodes,

like field nodes, object nodes, array nodes, number nodes, string nodes, etc. The

simplified LAT of statement ‘a = 1’ can be seen in Figure 3.5. In the simplified

LAT, each node has two fields: node id and label.
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a = 1 

Figure 3.5: Two sample statement with their corresponding ASTs and mappings

3.2.2 GumTree Differencing

The GumTree Differencing component takes two LATs as input and applies the

GumTree differencing algorithm to these two LATs. It can compute a sequence of

tree edit actions that transform a LAT into another. GumTree Differencing works

in two steps: establishing mappings and deducing an edit script. The mapping

between two LATs will be computed by two successive phases. 1. A greedy top-

down algorithm to find isomorphic subtrees of decreasing height. Mappings are

established between the nodes of these isomorphic subtrees. They are called anchors

mappings. On the sample trees of Fig 3.6, this step finds the mappings shown with

dashed lines. 2. A bottom-up algorithm where two nodes match (called a container

mapping) if their descendants (children of the nodes, and their children, and so

on) include a large number of common anchors. When two nodes match, it finally

applies an optimal algorithm to search for additional mappings (called recovery

mappings) among their descendants. On the sample trees of Fig 3.6, this step finds

the container mappings shown using short-dotted lines. And there are no recovery
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mappings in this example. Then the mapping results can be used by the RTED

algorithm [36] to compute the actual edit script. It will generate a tree edit script

which contains Actions that must be performed on the first LAT to obtain the

second LAT. And those Actions can be used to identify fine-grained source code

change types. There are four types of tree edit actions: Insert, Delete, Update and

Move. In the example of Fig 3.6, the edit script generated contains only one Action,

which is “update label ’1’ to label ’2’ in node 5”.

Then the mapping results can be used by the RTED algorithm [36] to compute

the actual edit script. It will generate a tree edit script which contains Actions

that must be performed on the first LAT to obtain the second LAT. And those

Actions can be used to identify fine-grained source code change types. There are

four types of tree edit actions: Insert, Delete, Update and Move. In the example

of Figure 3.6, the edit script generated contains only one Action, which is “update

label ‘1’ to label ‘2’ in node 5”.

3.2.3 Action Parser

GumTree differencing can only give us changes between two ASTs, because GumTree

ignores the semantic meanings of each node in the LAT when it’s performing the

differencing. Therefore, those changes cannot tell us anything about the source

code changes, which is useless in software analysis. To gather source code level
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1:"Assign"
2:"targets"

3:"a"
4:"value"

5:1

1:"Assign"
2:"targets"

3:"a"
4:"value"

5:2

Tree 1:
“a = 1”

Tree 2:
“a = 2”

{"Assign": 
{"targets": [

{"Name": 
{"ctx": "Store", 
"id": "a"}

}], 
"value": 

{"Num": 
{"n": 1}

}
}

}

Figure 3.6: Two sample statement with their corresponding ASTs and mappings

change types, we introduced Action Parser to interpret Actions from the GumTree

differencing result and obtain source code level change types for all changed lines.

This can be done in two steps:

3.2.3.1 Map source code line with Actions

Edit script contains a sequence of Actions from different code lines. With just one

Action, we cannot identify the change type for a code line correctly. Therefore,

we need to aggregate Actions that are taken in each code line by its line number.

For each Action in the edit script, it contains node information of the node that

has been changed. And the line number of that node can help us identify which

statement that action belongs to.

However, the line number can represent the line in the source code before a
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change and it can also represent the line in the source code after a change. There-

fore, we cannot simply map the line number back to the before source code line

number. In GumTree differencing, the source of the line number is determined by

the type of action. The line numbers of changed nodes in Update, Delete and Move

Actions represent line number in before source code. The line numbers of changed

nodes in Insert Actions represent line number in after source code. In order to deal

with the difference, Action Parser processes Insert Actions and other Actions sep-

arately by dividing them into before Actions and after Actions. Therefore, it has

two groups of Actions which represent the changes made to before and after AST.

And it aggregates those two groups of Actions by their line number and builds a

map of the source code line and the Actions.

3.2.3.2 Identify change type

In Fluri’s work [43], they presented a taxonomy of source code changes that can

be used for change coupling analysis. The source code change types are defined

according to tree edit operations in the AST. And this classification allows one to

assess error-proneness of source code entities, qualify change couplings, or identify

programming patterns. The defined change types are shown in Table 3.7. Although

the change types are mainly defined for Java programming language and there are

many change types not applicable for Python, we took it as a guideline and defined
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our change type taxonomy base on the characteristic of Python. The third column

in the Table 3.7 indicates whether a change type is applicable for Python or not.

As shown in Table 3.7, ’Additional Object State’ and ’Removed Object State’

are not applicable because Python doesn’t have attribute declaration. Since Python

don’t have attribute declaration in Python, change types, like ’Decreasing Acces-

sibility Change’, ’Increasing Accessibility Change’, ’Attribute Type Change’, ’At-

tribute Renaming’, ’Final Modifier Insert’ and ’Final Modifier Delete’ are also not

applicable. In method declaration of Python, we cannot define the return type

of a method, thus ’Return Type Insert’, ’Return Type Delete’ and ’Return Type

Update’ are also not applicable. Base on Fluri’s taxonomy of change types, we

defined our own fine-grained change types according to our needs. For example, in

Fluri’s work, he identifies a class declaration statement as a normal statement and

inserting or deleting the class declaration will be regarded as ’statement insert’ or

’statement delete’ action. Therefore, we defined two additional actions ’Additional

Class’ and ’Removed Class’ to help me understand insert and delete changes made

to class declaration statements. And we grouped defined fine-grained change types

into eight groups: Class Change, Function Change, Statement Change, Selection

Structure Change, Loop Structure Change, Exception Handling Change, Import

Change, and Others Change.

For each changed statement, Action Parser identifies the change type for the
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changed statement by analyzing Actions taken under the statement. For each

changed statement, it can analyze its aggregated Actions by two steps. It firstly

identifies if there is any Action made to the root node of that statement. If the

root node of the statement is changed, the change type of the statement would be

statement level Insert, Delete or Move, which is determined by Action type. If it’s

not a statement level change, it will identify a detailed change type according to

the type of statement and the action type. If these Actions do not contain changes

to the statement’s root node, the change type would be statement Update. And a

more detailed change type can be determined by doing an analysis of the Actions.

From the example in Fig 3.6, Action Parser can obtain an action “update ’1’ to

’2’ in node 5”. According to the strategy, node 5 is not a root node for the variable

assignment statement. Therefore, it can roughly infer that the change type for the

statement is statement update. Then, it does further analysis on the change type

by combining the statement type, which is assigned statement in our case, and

the action made to the statement. And it can determine the change type for that

statement is ’statement update’.

3.2.4 Output

In order to help researchers understand the changes in the software, PyDiff will

output all changes made to a file throughout the software’s life circle into a CSV
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Figure 3.7: Fluri’s Taxonomy of Change Type
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file. For each change, it will contain information about change type, file path,

before revisionID, after revisionID, changed line number, changed location.

3.2.5 Tool Evaluation

In this section, we will explain how our experiment was designed to evaluate PyDiff.

In order to test the robustness of PyDiff, we need to choose well-maintained, long

history project to evaluate PyDiff. Thus we chose the Python project PyPy to

evaluate PyDiff. PyPy has more than 17 years of development history. And it’s

open-source on Bitbucket, so we can easily obtain all the historical revisions. Based

on SVN logs, PyPy was first committed on Feb 24, 2003. With more than 17 years’

development history, PyPy contains 97,000 committed revisions and about 4000

python source files. And the evaluation process is as follows:

1. Extracting PyPy history source code from SVM: In order to extract all

changed files in each commit, we implemented a small tool to extract changed

source files in the current commit and its parent commit by three steps: a. Ex-

tract the change log, which contains information about changed files, change

type of the file, commit id, revision id, etc., for each commit. b. Recursively

extract changed file’s source code for each commit and its parent commit. c.

Create a JSON file for each commit in PyPy and store changed source code

in the JSON file. In this way, we can extract the changed source code for all
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commits, on which we can apply PyDiff.

2. Applying PyDiff on PyPy source code: After we obtained the historical source

code, we used them as input for PyDiff. PyDiff will run the differencing

algorithm on two consecutive source code and generate the change type for

each changed line between these two source code files. Then, PyDiff will store

all changes in that commits into a CSV file.

3. Manual Examine: After obtaining the output for all commits in PyPy, we

evaluated the differencing results by conducting a manual examination. Be-

cause there are more than 97,000 commits in PyPy, it is not practical to

examine the output of all commits. Therefore, we conducted a manual exam-

ine on 10 sample commits. For each selected commit, we manually checked if

the identified change type matches the source code change or not and record

the number of correctly identified changes.

After manually checking the source code change result from 10 randomly se-

lected commits, we measured the number of changes correctly identified and mis-

classified in each change type. Table 3.1 shows us the result of the examination. As

we can see, PyDiff identified 293 lines of changes among the 10 randomly selected

commits. Statement change is the most common change type which takes up 59

percent of all source line changes and achieved 98.8 percentage of accuracy. And
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Table 3.1: Identified changes in 10 sampled commits of PyPy.

Change Type Total Misclassified Accuracy(%)

Class 3 1 66.6

Function 31 1 96.7

Statement 174 2 98.8

Selection Structure 32 1 96.8

Loop Structure 6 0 100.0

Exception Handling 43 0 100.0

Import 2 1 50.0

Others 2 0 100.0

All 293 6 97.9

Import change and Other changes occurred the least in the examined commits.

Overall, the PyDiff can achieve a precision of 97.9 percent for all changes types.

3.3 Summary of original study

In the work of Lin et al., the authors conducted an empirical study about fine-

grained source code changes in Python applications (Django, Tornado, Pandas,

Pylearn2, Numpy, Scipy, Sympy, Nltk, Beets, Mopidy) from different domains
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(Web, Data processing, Science computing, NLP, Media). In their study, they

first defined 77 kinds of fine-grained changes types and then they developed an au-

tomatic tool - PyCT, which can quickly compare Python source code and extract

fine-grained source code changes. The author proposed four research questions cov-

ered different aspects of the source code change behavior throughout the project’s

history. Then, the authors applied PyCT on ten open source Python projects from

five different domains and answered the proposed research questions. Based on

the source code diffing result, the author reported 11 major findings, as shown in

the Table 3.4, summarised below (Note: Original Fining is denoted as F and New

finding is denoted as NF).

First, they compared the change type frequency between projects and domains.

They found that Function and Statement changes are the most frequent change

types and Loop Structure changes is the least frequent (Finding 1). Also, the

distribution of change types shares similar trends between projects (Finding 2) and

domains (Finding 3).

Second, they use Scipy and Pandas as case study and compared the change type

frequency between different versions of a project. In project Scipy, they found that

the change type frequency distribution is significantly different between bug-fix and

non-bugfix versions (Finding 4) and language evolution may have a big impact on

software evolution (Finding 5). In project Pandas, they found the change type
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frequency distribution are similar across different versions (Finding 6).

Then, they conducted a detailed comparison for change type frequency be-

tween bug-fix and non-bugfix commits, in which they found that if structure related

change types are more related to bug-fix activities (Finding 7). And the non-bugfix

activity related change types are import statement and function structure changes

(Finding 8).

Finally, they investigated the dynamic feature changes. The result shows that

isinstance, type, hasattr, and getattr are the most frequently changed dynamic

features (Finding 9). The most common change action on dynamic features is

Update (Finding 10). 23% dynamic feature changes are related to bug-fix activities

and 77% dynamic feature changes are related to non-bugfix activities (Finding 11).

We applied the PyDiff tool on PyPy to get the answer for each research question.

And we compared our findings against the findings in the original study and report

whether they are similar or different (as shown in Table 3.4). In summary, we found

that PyPy, as a compiler, has very different code change behavior compared to the

applications from other domains and 6 out of 9 findings are different compared

with the original study. In the following sections, we detailed our approach for

replication and results for each research question. And we summarised our findings

and discussed the implications.
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Table 3.2: Comparisons between the original study and the current study

Research QuestionsFinding Comparison Implications Comparison

Across Projects

F1:Function Change and Statement

Change are the most common change

types, whereas Loop Structure Change

is the least common change type.

PyPy as an implementation of

a language rarely uses third

party dependencies.

Therefore, the Import change

is the least common change

type.

Different

NF1: Statement Change and Func-

tion Change are the most common

change types, whereas Import Change

is the least common change type.

F2: The distributions of change type

frequency share similar trends across

studied projects.

PyPy, as a Python written

compiler, is different from

other Python projects in

change behavior. More

replication studies are needed

to generalize the evolutionary

behavior of Python

applications.

Different

NF2: The distribution of change type

frequency is significant different be-

tween PyPy and the projects in the

original study.

F3: There are no significant dif-

ferences among the distributions of

change type frequency across studied

domains.

The domain of compiler does

not share similar change type

frequency distribution with

the projects from the other

application domains. It is

worthwhile to study other

Python-based compilers to see

whether our findings would

generalize in this domain.

Different

NF3: PyPy is significantly different

from the studied Python-based appli-

cations in other application domains

in terms of the distribution of change

type frequency.
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Table 3.3: Comparisons between the original study and the current study

(continued)

Research Questions Finding Comparison Implications Comparison

Across Versions

F4:Considering project Scipy, the dis-

tributions of change type frequency are

different significantly between bug-fix

version and non-bugfix version.

Not applicable Not applicable

F5: Language evolution may have a

huge impact on software evolution.

Not applicable Not applicable

F6: The distributions of change type

frequency across versions show no sig-

nificant difference.

Similar to Project Pandas, the

distributions of change type

frequency across versions in

PyPy are similar.

Similar

Maintenance

Activities

F7: If structure related change types

are more related to bug-fix, especially

Condition Expression Update and If

Insert.

In PyPy, bugs are more likely

to be fixed by Statement

Update. Bug prediction

models for Python-based

applications trained in one

domain cannot be easily

transferred to other domains.

Different

NF7: Statement Update is the only

change type that is related to bug-fix.

F8: Import statement and Function

Structure change types are mainly re-

lated to non-bugfix activity.

Like the original study, devel-

opers are most likely to in-

volve changes like Additional

Function, Function Renaming,

and Parameter Insert to added

new features to the project.

Similar
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Table 3.4: Comparisons between the original study and the current study

(continued)

Research Questions Finding Comparison Implications Comparison

Dynamic Features

F9: In their studied projects, isin-

stance, type, hasattr, and getattr are

the top four dynamic features that

change frequently.

Similar to other projects, PyPy

practitioners should pay more

attention to dynamic features

like isinstance, type, getattr,

hasattr and delete as well.

Similar

F10: The change actions on dynamic

features follow the pattern that Up-

date is the most common type, fol-

lowed by Insert and Delete respec-

tively.

PyPy might involves more

dynamic features than normal

Python projects. The high

performance of PyPy is not a

result of constraining the use

of dynamic features.

Different

FN10: The most common change ac-

tion for dynamic features in PyPy is

Insert. Delete changes in more than

Update changes in most of the dy-

namic features.

F11: Among the changes contain-

ing dynamic features in the studied

projects, about 23% are related to bug

fixes, while 77% are related to other

changes.

In PyPy project, bug-fix

changes do not involve as

many dynamic feature

changes as the originally

studied projects do.

Different

NF11: Among the changes containing

dynamic features in PyPy, about 19%

are related to bug fixes.
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3.4 Replication Results

In our replication study, we selected PyPy as our subject, because PyPy, as a

compiler written in Python, is from a domain that was not studied in the original

study. Since the first commit on Feb 24, 2003, there are about 97,000 commits

submitted to the project after 16 years of development. About 44 releases published.

And the earliest release (pypy-2.1-beta1-arm) was published on June 12th, 2013

with 4180 Python files and 1,393,401 lines of code. The latest release (release-

pypy3.6-v7.1.1) was published on Apr 14th, 2019 with 3930 Python files and 987,939

lines of code. The size of the project has been expended for about 10% over the

past years. We applied PyDiff on PyPy for source code change extraction. And

we answered each of the research questions proposed by the original study in the

subsections below. For each RQ in the original study, we described the approach

that we conducted the experiment and compared our findings with the findings in

the original study and discussed the implications.

3.4.1 (RQ1) Across Projects

In order to get the diffing result for all PyPy commits, we first extracted the changed

source code files for each commit and its parent commit. Then we applied the PyDiff

in each commits to extract the source code changes within each commit. For each
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Figure 3.8: The distribution of change type frequency across projects.

change type, we first counted the number of changes of the type in the history,

and then we divided it by the total number of changes and got the change type

frequency. Figure 3.8 shows the change type frequency for all studied projects.

As shown in Figure 3.8, the Statement change has the highest frequency (75%)

and the frequency for Function change and Selection Structure change ranked at

the second and third place with a frequency of 52% and 44% respectively. On the

other hand, the most uncommon change type in PyPy is Import changes.

New Finding 1: Statement Change and Function Change are the most com-

mon change types, whereas Import Change is the least common change type.

Implications: PyPy as an implementation of a language rarely uses third party

dependencies. Therefore, the Import change is the least common change type.
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Based on the measured change type frequency, we applied Wilcoxon rank sum

(WRS) test [27] to statistically compare the change type frequency distribution

between PyPy and the originally studied projects. A p-value larger than 0.05

indicates there is no significant difference in change type frequency distribution

between PyPy and the originally studied projects. In addition, we group the change

type frequency based on the application domains. And we applied the WRS test to

statistically compare the change type frequency distribution between the domain

of compiler with five other domains in the original study.

The statistical result indicates that the change type frequency distribution in

PyPy is significant different from the projects in the original study. And the change

type frequency in the domain of compiler is significantly different from all the five

domains in the original study.

New Finding 2: The distribution of change type frequency is significant differ-

ent between PyPy and the originally studied projects.

Implications: PyPy, which is a compiler written in Python, is different from

other Python projects in terms of change behavior. More replication studies

are needed in order to generalize the evolutionary behavior of Python-based

applications.
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New Finding 3: PyPy is significantly different from the studied Python-based

applications in other application domains in terms of the distribution of change

type frequency.

Implications: The domain of compiler does not share similar change type fre-

quency distribution with the projects from the other application domains in the

original study. It is worthwhile to study other Python-based compilers to see

whether our findings would generalize in this domain.

3.4.2 (RQ2) Across Versions

Base on the source code diffing result for each commit in RQ1, we grouped the

commits into releases. For all commits in each release, we measured the change type

frequency. Figure 3.9 shows the change type frequency for the 11 PyPy releases.

As we can see from Figure 3.9, the change type frequency distribution across dif-

ferent versions show a similar trend. To further examine the finding, we conducted

the WRS test between the change type frequency distribution between different

PyPy releases. The statistic result shows that there is no significant difference in

change type frequency distribution across different PyPy releases.

In addition, we looked into the release logs and check if any of the releases is

purely a bug-fix release. But the release log shows that all the 11 release are mixed

with changes about bug-fix, new features, and improved test coverage. Therefore,
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Figure 3.9: The frequency comparison between different versions of PyPy.

Finding 4 and Finding 5 in the original study do not hold in the PyPy project.

Finding 6: The distributions of change type frequency across versions show no

significant difference.

Implications: Similar to Project Pandas, the distributions of change type fre-

quency across versions in PyPy are similar.

3.4.3 (RQ3) Maintenance Activities

In the original study, they found that the distribution of change type frequency in

pure bug-fix versions are different from others. In order to understand the code

changes, they conducted a study comparing changes types frequency in bug-fix ac-

tivities and non-bugfix activity. First of all, we divided the commits into bug-fix
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and non-bugfix by mining the commit messages. For each commit, we got the

commit message and convert the words into word stems. Then, we checked if the

word stems contain the bug-fix related keywords. In particular, we identified a

commit as a bug-fix commit if the commit message contains word stems for the

following bug-fix related keywords: ‘error’, ‘bug’, ‘fix’, ‘issue’, ‘mistake’, ‘incorrect’,

‘fault’, ‘defect’ and ‘flaw’. Figure 3.10 provides an overview of the change type

frequency among bug-fix and non-bugfix commits. And then, for each change type,

the bug-fix and non-bugfix commits are divided into four groups (1) bug-fix com-

mits containing this change type; (2) bug-fix commits not containing this change

type; (3) non-bugfix commits containing this change type; (4) non-bugfix commits

not containing this change type. At last, we applied Fisher’s exact test on the four

groups which can measure the significance of the association between two classifica-

tions. In our case, a p-value smaller than 0.05 indicates that the change type differs

between bug-fix and non-bugfix behavior. And the Odds Ratio from Fisher’s exact

test can quantify the strength of the association between two events. An Odds

Ratio equals one means the change type behave the same in bug-fix and non-bugfix

commits. If the odd ratio is larger than 1, the change type is more related to bug-fix

commits and vice versa.

In the result of Fisher’s exact test, only Statement Update is is related to bug

fixes with a p-value equals 3.54e-48 and an Odds Ratio of 1.27. However, there are in
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Figure 3.10: The frequency comparison between bug-fix commits and non-bugfix

commits of PyPy.

total 62 fine-grained changes types which is not related to bug fixes. In particular,

many function level changes, e.g. Additional Function, Function Renaming, and

Parameter Insert are non-bugfix related.

New Finding 7: Statement Update is the only change type that is related to

bug-fix.

Implications: In PyPy project, bugs are more likely to be fixed by Statement

Update. Bug prediction models for Python-based applications trained in one

domain cannot be easily transferred to other domains (e.g., compilers).
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Finding 8: Import statement and Function Structure change types are mainly

related to non-bugfix activity.

Implications: Like the originally studied projects, developers are most likely

to involve changes like Additional Function, Function Renaming, and Parameter

Insert to added new features to the project.

3.4.4 (RQ4) Dynamic feature

To study the pattern of dynamic feature changes in PyPy project, we further imple-

mented the PyDiff tool and included the functionality to identify dynamic feature

changes in the source code files. And then, we re-applied the PyDiff in all com-

mits with the dynamic feature change function turned on and got the dynamic

feature changes in each commit. Based on the dynamic change results in PyPy, we

measured the dynamic feature change type frequency by dividing the number of

commits containing this dynamic feature change with the total number of commits

containing dynamic feature changes.

Figure 3.11 shows the distribution of the frequency of various change types

related to the dynamic features in PyPy and the originally studied projects. Among

all dynamic feature changes, more than 60% commits contain isinstance change.

The second most frequently changed dynamic feature in PyPy is getattr, with a

percentage of 22%. In addition, dynamic features type, hasattr, and del are also
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Figure 3.11: The change frequency of each dynamic feature.

commonly changed in PyPy.

Finding 9: In their studied projects, isinstance, type, hasattr, and getattr are

the top four dynamic features that change frequently.

Implications: Similar to other projects, PyPy practitioners should pay more

attention to dynamic features like ininstance, type, getattr, hasattr and delete as

well.
We grouped the dynamic feature changes into three categories based on the

change type: Insert, Delete, and Update. Figure 3.12 shows the percentage of each

change actions within a dynamic feature change for the most commonly changed

five dynamic features. As shown in Figure 3.12, Insert is the most common change

action for all the five dynamic feature changes, with a percentage from 48% to 54%.

And the second common change action is Delete for most of the dynamic features
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Figure 3.12: The change frequency of each dynamic feature.

changes except getattr.

New Finding 10: The most common change action for dynamic features in

PyPy is Insert. Delete changes in more than Update changes in most of the

dynamic features.

Implications: PyPy might involves more dynamic features than normal Python

projects. The high performance of PyPy is not a result of constraining the use

of dynamic features.

In order to understand the how the dynamic features changed under different

maintenance activities, we leveraged the identified bug-fix commits and non-bugfix

commits in RQ3 and divide the commits that contain dynamic features into two

43



groups: commits containing dynamic feature change that are bug-fix related and

commits containing dynamic feature change that are non-bugfix related.

New Finding 11: Among the changes containing dynamic features in PyPy,

about 19% are related to bug fixes.

Implications: In PyPy project, bug-fix changes do not involve as many dynamic

feature changes as the originally studied projects do.

3.5 Threats to Validity

In this section, we will discuss the threats to validity.

3.5.1 Construct Validity

Since the source code change can be very complicated, correctly identifying code

changes between two commits can be hard. To make sure that our source code

diffing tool work properly, we manually examined 10 commits which contains more

than 10 changes. The results show that all the code changes that we identified have

more than 98% confidence level.

3.5.2 Internal Validity

The taxonomy of Python source code is defined by ourselves. In order to make a

proper comparison with the original study, we must make sure the change types we

defined are the same as the original study. Therefore, we defined our classification
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scheme based on the Fluri’s [43] taxonomy for source code change in object-oriented

language, which is also used by the original study.

3.5.3 External Validity

The study is conducted in Python-based applications, the findings may not be

generalizable to applications in other programming languages (e.g. Java, C). The

findings we got from the source code change result of PyPy project from the domain

of compiler is very different from the other Python applications and domains. We

plan to extend our study to the applications in other domains as well as other

programming languages in the future.

3.6 Conclusion

Lin et al. [69] conducted the first work in studying the evolution of Python-based

projects by studying 10 Python applications from 5 different application domains.

They studied the Python source code change behavior from four different angles:

across projects, across versions, maintenances, and dynamic features and got 11

interesting findings. We performed a replication study on the PyPy project which

belongs to the domain of compiler that has never been studied. We found that 6 out

of 9 findings are different which indicates the evolution of projects from the domain

of compiler is very different from the project. In the next chapter, we will dig more

45



into the reason for PyPy’s fast speed and find ways to optimize the performance of

Python-based applications running under PyPy.
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4 Assessing and Optimizing the Performance

Impact of the Just-in-time Configuration

Parameters

In the previous chapters, we have studied the evolution of PyPy. In this chapter,

we assess and optimize the performance of applications running under PyPy by

tuning its JIT configuration parameters.

4.1 Introduction

Software performance is one of the crucial factors related to the success and the

sustainability of large scale software systems, which serve hundreds or even millions

of customers’ requests every day. Failure to provide satisfactory performance would

result in customers’ abandonment and loss of revenue. For example, Amazon re-

ported that one second delay in loading their webpages could result in $1.6 billion

loss in their sales revenue annually [41]. BBC has also recently found that 10% of
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the users will leave their website even if there is merely one additional second of

performance delay [37]. Various strategies (e.g., asynchronous requests [60], data

compression [54], just-in-time (JIT) compilation [10], load balancing [25], and re-

sult caching [34]) have been developed to further enhance the performance of these

systems.

In general, there are three types of system executions depending on the pro-

gramming languages: (1) executing natively on top of the operating systems (e.g.,

C and C++), (2) executing the source code by the interpreters (e.g., Python, PHP,

and JavaScript), and (3) executing compiled intermediate artifacts on the virtual

machines (e.g., Java and C#). Compared to the native execution mode, systems

executed under the interpreted mode (a.k.a., by interpreters or virtual machines)

are generally slower due to their additional layers. To cope with this challenge,

the JIT compilation is introduced so that frequently executed code snippets are

compiled into binaries, which can be executed natively.

Existing works on the JIT compilation focus on the jitting strategies (e.g.,

method [38] vs. trace-level based code jitting [31]), speeding up the process of the

JIT compilations [63, 47, 70], optimizing the performance of the underlying virtual

machines [88, 89, 90], and detecting JIT unfriendly code [53]. Unfortunately, there

are very few existing studies which investigate the impact of the JIT configurations

on the system performance. Software configuration is one of the main sources of
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software errors [92]. The configuration settings of a software system can significantly

impact its performance. Most of the existing configuration tuning and debugging

studies are focused on the configurations of the studied systems [40, 93, 84, 61]. For

tuning the configuration settings of interpreters or virtual machines, the focus is

mainly on optimizing the performance of the garbage collectors [82, 67, 33], except

the work by Hoste et al. [59]. In [59], Hoste et al. provided an automated approach

to tuning the JIT compiler for Java, which is a method-based JIT. Hence, in this

paper, we seek to investigate the impact of the tracing-based JIT configurations on

the system performance by using PyPy as our case study subject.

Python is nowadays one of the most popular programming languages [51].

Python has been used extensively to develop real-world business systems, including

many large scale and mission-critical systems inside companies like Facebook [66],

Google [26], and PayPal [55]. Among various implementations of the Python pro-

gramming language (e.g., CPython, IronPython, Jython, and PyPy), PyPy is gen-

erally the fastest [14] mainly due to PyPy’s efficient tracing-based JIT compiler [31].

Hence, in this paper, we focus on assessing and optimizing the performance impact

of PyPy’s JIT configuration settings. The contributions of this chapter are:

1. This is the first empirical study on assessing and optimizing the impact of

the tracing-based JIT configuration settings on system performance.
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2. Our experiments are carried out on both the synthetic benchmarks as well

as real systems. The empirical findings in this paper can be useful for both

software engineering and programming language researchers as well as prac-

titioners.

3. Compared to [59] which also used a search-based approach to automatically

tuning the JIT configuration settings, many of the details (e.g., the initial

setup, the configuration settings, and the evaluation details) are not clear.

It is not easy to reapply the approach to other Java-based systems or other

JIT compilers. In this paper, we have detailed our search-based configuration

tuning approach, (ESM-MOGA) to ease replication.

4. To enable replication and further research on this topic, we have provided a

replication package [16] which includes the implementation for our configu-

ration tuning framework, PyPyJITTuner, as well as the experimental data.

4.1.1 Chapter Organization

The organization of this chapter is as follows: Section 4.3 describes the exploratory

study that we have conducted to understand the relationship between JIT configu-

ration settings and its performance. Section 4.4 proposes our approach to automat-

ically tuning the JIT configuration parameters. Section 4.5 shows the result from
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      6 def test(): 
     7   even = 0 
     8   oddLarge = 0 
     9   oddSmall = 0 
    10   c = 0 
(*) 11   for i in range(1000000): 
(*) 12     if i%2 == 1: 
(*) 13       even += 1 
(*) 14     elif i * i <= 100: 
    15       oddSmall += 1 
(*) 16     elif i * i > 100 and i < 1000000: 
(*) 17       oddLarge += 1 
    18     else: 
    19       c += 3 
    20   return c 

Figure 4.1: A sample PyPy code snippet with the jitted code marked as “(*)”.

the case study conducted on three real word systems and evaluate the effective-

ness of our approach. Threats and validity is discussed in Section 4.7. Section 4.8

concludes this chapter.

4.2 Background

In this section, we will first give an overview of the JIT compilation process in Sec-

tion 4.2.1. Then we will explain PyPy’s JIT configuration setting in Section 4.2.2.

4.2.1 An Overview of the JIT Compilation Process

JIT compilers are introduced for systems executed by interpreters (e.g., Python,

PHP, and Ruby) or virtual machines (e.g., Java and C#) to further speed up the

system performance during runtime. By default, there are no JIT compilations
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upon the initial system startup and these systems are executed under the inter-

preted mode by their interpreters or virtual machines. Hence, their performance is

usually slower than natively executed systems (e.g., systems programmed in C or

C++), whose binaries are executed directly on top of the operating systems. To

cope with this limitation, the JIT compiler is introduced so that, during runtime,

various parts of the systems are converted into machine executable code (a.k.a.,

code jitting). However, the code jitting process is usually slow, as it takes time to

load and compile the corresponding code snippets. Hence, only the commonly used

(a.k.a., “hot”) code snippets are usually jitted [31, 73]. For such systems, there is

usually a warmup period after the initial system startup before these systems reach

the peak performance [30]. During the warmup period, the frequently executed

code will be profiled to locate the “hot” spots and various code snippets are being

jitted [70]. In general, there are two approaches for code jitting depending on their

granularity:

� Method-based JIT Compiling: if one method has been used many times

(a.k.a., “hot method”), the method-based JIT will compile this entire method

into the binary executable format. Hotspot (Oracle’s implementation of the

Java Virtual Machine) and Chakra (Microsoft’s JavaScript engine) use the

method-based JIT Compiling.
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� Trace-based JIT Compiling is more fine-grained, in which only the com-

monly executed code path (a.k.a., “hot path”) inside a method is compiled

into the binary executable format. PyPy and TracingMonkey (Mozilla’s

JavaScript engine) use the trace-based JIT Compiling.

For the method-based JIT compiler, there will be a threshold value (e.g., 1500 as

the default value for the configuration parameter -XX:CompileThreshold in Oracle’s

HotSpot JVM), which defines the number of invocations for a particular method

before this method is considered to be hot. As soon as a method has been called

1500 times, the whole method will be compiled into the binary executable format.

For the trace-based JIT compiler, the process is a bit more complicated. We

will use the sample code snippet shown in Figure 4.1 to explain. There can be

various configuration parameters which define a particular code path to be hot. For

example, in PyPy, there is a configuration parameter, called threshold, which defines

the number of times a loop has to be run before it can be considered hot. During

the system execution, the PyPy JIT compiler counts the number of iterations for

each loop and all code paths in the loop will be potential candidates for code jitting.

For example, the code lines marked with star (*) in Figure 4.1 are the resulting

jitted lines, if the method test is executed in PyPy under the default configuration

setting. After the loop reaches 1039 (the default value for threshold) iterations,

the JIT compiler starts to trace the code path in the next iteration. And the code
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path which contains the if branch, and the second elif branch will be recorded

and compiled into efficient machine code. The first elif and the else branches are

not jitted, as they are not in the code path of the traced iteration.

4.2.2 PyPy’s JIT Configuration

The types and the values of the JIT configuration parameters vary depending on

the programming languages and the compilers. For example, there are more config-

uration parameters for PyPy’s JIT compiler than Java’s JIT compiler. Even within

the same programming language, different language implementations may use dif-

ferent configuration parameters. For example, in Java, the configuration parameter

which indicates the threshold value for the number of invocations for a method

before code jitting is called -XX:CompileThreshold in Oracle’s HotSpot JVM [10],

and -Xjit:count for IBM’s JVM [7]. In this paper, we have selected PyPy’s JIT

configuration parameters as our case study subject, due to the popularity of the

Python programming language [51] and the fast execution under PyPy with its

efficient JIT compiler [31, 14]. The list of JIT configuration parameters can be ob-

tained through running the pypy --jit help command. For PyPy version 5.7.1,

which is the PyPy version used in this paper, there are 19 of them.
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4.3 Exploratory Study

To motivate the importance of this work, we have conducted an exploratory study

on the performance impact of PyPy’s JIT configuration settings. We seek to answer

the following three research questions:

� RQ1: How different is the system performance before and after its code has

been jitted?

When the system initially starts up, all of its code is executed under the

interpreted mode. The code jitting process will not start, until certain regions

of code have been repeatedly executed many times. In this RQ, we want to

quantify the performance differences between the warmup and the warmed

up phases.

� RQ2: What is the performance impact by varying JIT configurations?

The system after the warmup phase would achieve its peak performance. But

would the peak performance be different among different JIT configurations

settings (e.g., the default config, random configurations, or disabling JIT)?

In this RQ, we seek to find the performance impact of different JIT configu-

rations.

� RQ3: Do systems containing more jitted lines yield better performance?
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Different JIT configuration settings would result in different amount of source

code been jitted. Intuitively, a higher portion of the jitted code could lead to

more code being executed natively, and hence result in better performance.

However, the code jitting process is very resource heavy, which involves pro-

filing system executions and compiling the hot code path into the binary

executable format. In addition, the systems may need to constantly switch

between the two running modes (the interpreted vs. the native execution

mode). The goal of this RQ is to examine whether there is any relation

between the portions of the jitted code and the system performance.

The remaining three subsections in this section will address the above three

research questions. For each research question, we will first explain the experimen-

tation process. Then we will describe the data analysis techniques, present the

result findings, and discuss their implications.

(RQ1) How different is the system performance before and after its code

has been jitted?

During the benchmarking and the performance testing processes, it is considered as

a common practice to wait for a period of time (a.k.a., the warmup phase) for the

system to stabilize [32, 8], before starting the actual benchmarks or the performance

tests. During the warmup phase, various regions of the code are getting jitted and
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the system caches are slowly being filled up. Hence, the performance of the warmup

phase is generally considered as suboptimal and is discarded during the subsequent

performance analysis. In this RQ, we want to quantitatively compare the system

performance during and after the warmup phase.

Experiment

To tackle this research question, we selected the following two microbenchmark

suites, which assess the performance of different software systems:

� The PyPy benchmark suite is run daily on PyPy’s nightly builds and is mainly

used to compare the performance of various Python implementations (PyPy

vs. cPython). The benchmark suite consists of about 60 small Python pro-

grams, which perform various computation tasks like the n-queens solver,

HTML table building, etc. For each run of the benchmark, the same bench-

mark programs will be run under PyPy and cPython (the default Python

implementation). The performance results are uploaded and visualized in the

PyPy’s Speed Center [14]. In this exploratory study, we randomly selected

seven benchmark programs as shown in Table 4.1 for experimentation. We

further instrumented these benchmark programs to gather additional perfor-

mance information (e.g., individual request response time).
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� The TechEmpower Web Framework Benchmark suite1 [19], whose main ob-

jective is to evaluate among various web frameworks, consists of more com-

plicated web application-related tasks like JSON serializations, database ac-

cesses, and server-side template compositions. Different from the PyPy bench-

mark suite, whose programs are usually short-lived and computation inten-

sive, the TechEmpower benchmark suite executes on long running web appli-

cation servers built with various frameworks. For example, the benchmark

includes Java-based web frameworks (e.g., Jetty), as well as Python-based

web frameworks (e.g., Tornado and Flask). In this paper, we only focus on

the Django web application frameworks.

We ran the two microbenchmark suites under the default PyPy configuration

setting. To avoid measurement bias and errors [50], for the PyPy benchmark, in

which the studied programs are short-lived and computational intensive, we re-

peated the benchmark for 30 times. For the TechEmpower benchmark, which ex-

amines the performance of processing web requests for long-running servers, we set

the duration for each benchmark task to be two hours. During the benchmarking

process, resource utilizations (e.g., CPU, memory, and disk) for the servers were

monitored and recorded using pidstat [12]. We also added additional instrumenta-

tion using the JIT logging function from PyPy’s jitlog module to record the JIT

1To ease explanation, we will call this the TechEmpower benchmark in the rest of this paper.

58



Table 4.1: PyPy benchmark programs description.

Program Description

ai Test the performance of simple AI solvers.

bm mako Benchmark for test the performance of Mako templates engine.

chaos Test the performance of the Chaos benchmark. Create chaosgame

like fractals.

django This will have Django generate a 100x100 table as many times as

you specify.

rietveld This will have Django render templates from Rietveld with canned

data as many times as you specify.

html5lib Test the performance of the html5lib parser.

pidigits Test the pidigit calculation performance.
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logs to the disk. The recorded JIT logs can be further parsed with VMProf [23]

to obtain the exact lines of code that were jitted. However, the recorded JIT logs

do not have timestamps to mark when a code snippet is jitted. To estimate the

exact timing when individual code snippets are jitted, we decided to periodically

take snapshots of the JIT log files. We took snapshots of the JIT log files after each

iteration of the PyPy benchmark and every minute for the TechEmpower bench-

mark. These snapshots would help us gain insights on the time and the location

of the jitted code regions. Finally, we also archived the benchmarking logs, so that

we can extract the response time for each individual request.
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Figure 4.2: Number of jitted lines and response time over 50 iterations for the

html5lib program from the PyPy benchmark suite.
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Data Analysis

We parsed the JIT logs using VMProf to obtain the regions of the jitted code

during each snapshot period. We also processed the benchmarking logs to extract

the response time for each iteration of the PyPy benchmark and the response time

for individual requests in the TechEmpower benchmark.

To understand the performance of the systems during and after the warmup

phase, we need to determine the duration of the warmup phase. For the PyPy

benchmark, we kept track of the amount of the jitted code during each iteration. We

considered the warmup phase to be completed, when the amount of the jitted code

remains stable during the remaining of the benchmarking run. Figure 4.2 shows the

result for the html5lib program from the PyPy benchmark. The topper subgraph

of Figure 4.2 shows the how the response time evolve over different number of

iterations. Since each program within the PyPy benchmark is repeatedly executed

30 times, we aggregated the response time for that iteration across the 30 runs using

boxplots. For example, the first boxplot contains all the response time values for

the first iteration during the 30 runs. The bottom subgraph of Figure 4.2 shows the

evolution of number of jitted lines across different iterations. The red dotted lines in

both subgraphs indicates the iteration when the number of the jitted lines becomes

stable. Hence, we considered the first 11 iterations as the warmup phase (“jitting”)
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and the remaining iterations (a.k.a., the 12th to the 50th iterations) as the warmed

up phase (“jitted”). The response time is the highest during the initial iteration,

and gets slowly improved when the amount of the jitted code increases. After the

11th iteration, the response time stabilizes. For the TechEmpower benchmark, we

used a similar approach as the PyPy benchmark and divided response time into

the warmup phase and the warmed up phase based on the time when the number

of jitted lines gets stabilized.

We applied statistical techniques to rigorously compare and quantify the differ-

ences between the response time distributions from the two phases. Statistical test

like the Wilcoxon Rank Sum (WRS) test would give us a rigorous measurement

if the distributions of the performance data from these two phases are different.

However, in some cases, even if the distributions are different, the differences be-

tween the two distributions can be small. For example, if the response time for one

request is long (e.g., more than five minutes) and the differences of the response

time between the two experiments are very small (e.g., one millisecond), such per-

formance differences would not be useful for our study, as it will not be noticed by

the end-users. Hence, we also need to quantify the strength of the differences be-

tween the two distributions, called the effect size [65]. In this paper, we used Cliff’s

Delta (CD) as our effect size measures. Both CD and WRS are non-parametric

techniques. Hence, they do not hold any assumptions regarding the distributions
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of the data. We consider two datasets as statistically different, when the p-value

from the WRS test is lower than 0.05. The strength of the differences and the

corresponding range of CD values [76] are shown below:

effect size =



trivial if |CD| < 0.147

small if 0.147 ≤ |CD| < 0.33

medium if 0.33 ≤ |CD| < 0.474

large if 0.474 ≤ |CD|

We used the following criteria to judge if the response time from the warmed

up phase (denoted as B) is getting better (>), worse (<), or relatively the same

(∼) as the warmup phase (denoted as A):

difference =


A > B if CD ≤ -0.33 and p-value < 0.05

A ∼ B if |CD| < 0.33 or p-value ≥ 0.05

A < B if CD ≥ 0.33 and p-value < 0.05

The p-values shown above are calculated from the WRS test. In other words,

B improves over A (B > A) when the WRS test and the CD value satisfy the

following three conditions: (1) the two distributions are statistically significantly

different (p-value < 0.05), and (2) the differences between the two distributions

have medium or large effect sizes, and (3) CD value is positive, indicating B is

smaller than A. The conditions for B degrades from A (B < A) is similar, except
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the CD value is negative, indicating B is bigger than A. If A and B are relatively the

same (B ∼ A), when there is no statistical difference between the two distributions

(a.k.a., p-value ≥ 0.05) or the effect size between A and B is small or trivial.

We extracted the performance data from the warmup and the warmed up phases

based on the time when the number of jitted lines stabilizes for all the runs of the

two microbenchmark suites. We compared the response time between the two

phases for each run. Table 4.2 shows the results.

Table 4.2 shows almost all the programs/scenarios (except one) for both mi-

crobenchmark suites exhibit better performance during the warmed up phase. How-

ever, in the PyPy benchmark suite, the ai program is not showing significant per-

formance improvement. This is because at the end of the the first iteration while

running the ai program, the majority of the code jitting process has already been

completed. Only a few lines from the test library, which does test setup, got jitted

during the benchmarking process (at the 34th iteration). These additional jitted

lines have no impact on the actual performance of the benchmark program. Thus,

the performance differences between the two phases are very small.
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Table 4.2: Comparing the response time between the warmup phase (A) and the

warmed up phase (B).

Performance # of scenarios in the # of scenarios in the

Difference PyPy benchmarks TechEmpower benchmarks

B < A 0 0

B ∼ A 1 0

B > A 6 6

Total # of scenarios 7 6

Findings: For most of the studied programs/scenarios, the performance in the

warmed up phase is statistically much better than the warmup phase. This

clearly highlights the huge performance gain contributed by the JIT compilations.

Implications: Only performance data from the warmed up phase can be repre-

sentative of the performance of systems due to the big difference in performance

between the warmup and the warmed up phase. Thus, performance analysts

should be careful when conducting the analysis and focus on the data after the

warmup phase. In addition, the warmup phase for each system should be as short

as possible, due to its inferior performance. Existing techniques for speeding up

the jitting processes [63, 47, 70] can be very useful in this aspect.
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(RQ2) What is the performance impact by varying JIT configurations?

In RQ1, we have found that the system performance significantly improves after

the warmup phase. Hence, the data during the warmup phase is normally discarded

during the performance analysis phase for a benchmark or a performance test. In

this RQ we only focus on the system performance after the warmup phase. We study

the performance impact of various JIT configuration settings. In particular, we

would like to (1) verify whether the system configured with the default configuration

setting would yield the optimal performance amongst other configuration settings,

and (2) measure the performance impact of the jitting process (a.k.a., comparing

the performance against completely disabling the jitting process).

Experiment

Similar to RQ1, we still used the same two microbenchmark suites as our experi-

mental subjects. However, instead of keeping the default JIT configuration setting,

we varied the values for the following six JIT configuration parameters: decay,

function threshold, threshold, loop longevity, trace eagerness, trace limit. Table 4.3

shows the detailed information about these six configuration parameters. We picked

these six parameters because we think they are tunable and can have an impact

on where and when certain regions of the source code will be jitted. Other pa-
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Table 4.3: List of relevant PyPy’s JIT configuration parameters and their

information.

Parameter Range Default Descriptions

decay [0, 1000] 40 The amount that PyPy decrease the

counters for each loop or function

periodically

function threshold (0,∞) 1619 Number of times a function must run

for it to become traced from start

loop longevity (0,∞) 1000 A parameter controlling how long

loops will be kept before being freed

threshold (0,∞) 1039 Number of times a loop has to run

for it to become hot

trace eagerness (0,∞) 200 Number of times a guard has to fail

before we start compiling a bridge

trace limit [0, 16385] 6000 Number of recorded operations

before we abort tracing with

ABORT TOO LONG
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Table 4.4: The JIT configurations chosen for performance evaluation.

Group Config threshold function threshold decay trace limit trace eagerness loop longevity

Default X 1039 1619 40 6000 200 1000

Group1

1
4
X 260 405 10 1500 50 250

1
2
X 520 810 20 3000 100 500

X 1039 1619 40 6000 200 1000

2X 2078 3238 80 12000 400 2000

4X 4156 6476 160 12000 800 4000

Group2

R1 64 101 120 375 200 2000

R2 519 809 5 375 200 2000

R3 519 101 20 1500 200 4000

R4 3117 1619 2 1500 25 2000

R5 259 4857 120 375 200 2000

Group 3 JIT Off - - - - - -

rameters like enable ops, inlining, and off need to be kept as default to enable the

jitting process; whereas other parameters: vec, vec all, vec cost are not included in

our study, as they are not relevant to the selected microbenchmark suites. Since

there can be many possible combinations of these parameter settings, due to time

constraints, we decided to run the two microbenchmark suites under the following

eleven configuration settings from three different groups:

1. Group 1 (Varying Default Configurations) consists of five configuration set-

tings (1
4
X, 1

2
X, X, 2X, and 4X) by mutating the default configuration setting.
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X refers to the default configuration setting. 2X means doubling the default

configuration values, whereas 1
2
X means cutting the default configuration val-

ues by half and rounding to the nearest integer values. As shown in Table 4.4,

the default PyPy JIT configuration setting, X, is: (1039, 1619, 40, 6000, 200, 1000),

which corresponds to the configuration parameters (threshold, function threshold,

decay, trace limit, trace eagerness, loop loogevity). Hence, the 2X setting

would be: (2078, 3238, 80, 12000, 400, 2000) and the 1
2
X setting would be:

(519, 809, 20, 3000, 100, 500). To avoid PyPy command line parsing errors,

when the value of parameter trace limit exceeds the upper bound, we just set

it to be two times of the default value (12000).

2. Group 2 (Randomly Generated Configurations) consists of five randomly gen-

erated configuration settings (R1 , R2 , R3 , R4 , and R5). For each parameter

in the configuration setting, we randomly generated an integer value within

the defined boundary. As we can see from Table 4.4, the randomly generated

JIT configurations in Group 2 are very different from the JIT configurations

from Group 1.

3. Group 3 (JIT Off) consists of only one configuration setting, which sets the

parameter off to be true. This setting will completely disable the jitting

process.
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Similar to RQ1, to avoid the measurement errors and noise, we repeatedly ex-

ecuted each PyPy benchmark program for 30 times, and ran each TechEmpower

benchmark scenario for two hours. We also collected the same kind of performance

data (a.k.a., the resource utilization metrics, the JIT logs, and the benchmarking

logs) for further analysis.

Data Analysis

For each experiment, we first parsed the JIT log snapshots. Based on the time

when the number of jitted lines stabilizes, we divided the benchmark runs into the

warmup and the warmed up phase. We extracted response time from the warmed

up phase for further analysis. We used the same statistical analysis techniques as

in RQ1 to compare the response time among all the runs. For each program inside

the PyPy benchmark suite, we compared the performance between each pair of the

JIT configuration settings and identify the best performing configuration setting.

Similarly, we also located the best performing JIT configuration settings for each

scenario inside the TechEmpower benchmark suite. Table 4.5 shows the results.

There are ties when ranking the top performing configuration settings across differ-

ent programs/scenarios. We noted with a “*” besides a configuration setting if it

shares the first place with other configuration settings in any programs/scenarios.

As shown in Table 4.5, Only 3 out of the 7 programs from the PyPy benchmark
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Table 4.5: Number of best performing programs/scenarios under each JIT

configuration setting.

Settings
# of best performing programs/scenarios

PyPy Benchmark TechEmpoer Benchmark

1
4
X 1* 0

1
2
X 0 1*

X 3* 6*

2X 2* 1*

4X 1* 0

R1 0 0

R2 0 0

R3 2* 0

R4 1 0

R5 1 0

JIToff 0 0
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suite, where the default configuration setting yields the best performance. Fur-

thermore, there are many configuration settings which perform best for some PyPy

benchmarks (e.g. R4 , R5) or share the top performance with other configurations

(e.g. 1
4
X, 4X). For the TechEmpower benchmark suite, all of the scenarios perform

the best (with one scenario tied with 2X and 1
2
X) under the default configuration

setting.

To quantify the performance impact of the jitting process, we also compared the

performance of different JIT configuration settings against the JIT off setting. For

each JIT enabled configuration setting, we measured the number of programs/sce-

narios that perform worse (<), similar (∼), or better (>) than the JIT off setting.

Table 4.6 shows the result. The number of programs/scenarios whose performance

under jit enabled configurations is worse or no different than jit off is marked as

bold.

From Table 4.6, we can see that, among the PyPy benchmark suite, all the

JIT enabled configuration settings perform better than the JIT off setting, except

R1 in which the performance of two PyPy benchmark programs is even worse

than completely disabling the jitting process (a.k.a., JIT off)! Similarly, in the

TechEmpower benchmark suite, R1 is still the odd one, as none of its scenarios

is better than the JIT off setting. In addition, only three of the TechEmpower

scenarios under R5 are better than the JIT off setting.
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Table 4.6: Comparing the jitting performance against the configuration under JIT

off. The number of programs/scenarios whose performance under jitted

configuration is worse or no different than JIT off setting is highlighted in bold.

Configs
PyPy Benchmark TechEmpower Benchmark

< ∼ > < ∼ >

1
4
X 0 0 7 0 0 6

1
2
X 0 0 7 0 0 6

X 0 0 7 0 0 6

2X 0 0 7 0 0 6

4X 0 0 7 0 0 6

R1 2 0 5 5 1 0

R2 0 0 7 0 0 6

R3 0 0 7 0 0 6

R4 0 0 7 0 0 6

R5 0 0 7 2 1 3
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Findings: Programs/scenarios running under the default configuration setting

do not necessarily yield the best performance when comparing to other configu-

ration settings. The optimal JIT configuration setting can vary depending on the

programs/scenarios. The performance of some of the JIT enabled configurations

can be worse than turning JIT off.

Implications: PyPy’s JIT configuration settings have a big impact on the sys-

tem performance. It is important to find the optimal JIT configuration setting

for each system to achieve the best performance.

(RQ3) Do systems containing more jitted lines yield better performance?

In RQ2, we have found that the default JIT configuration setting does not neces-

sarily result in the optimal performance. Different JIT configuration settings would

result in different portions of the code been jitted. However, does more jitted code

always lead to better performance? In this RQ, we want to study the relationship

between these two aspects.

Experiment

We used the same data from RQ2 and did not run any additional experiment for

this RQ.
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Data Analysis

We first selected the configuration setting that has the best performance for each

program/scenario based on the results of RQ2. Then we also selected the config-

uration settings with the highest number of jitted lines. If there are two different

configuration settings corresponding to the above two criteria, we further performed

the WRS test and calculated the CD value between the performance data under

those configuration settings.

Table 4.7 shows the effect size between the best performing and the most jitted

configuration settings for each program/scenario. Since there can be ties in either

category, we compared all pairs of configuration settings from the best performing

category to the category of the largest portion of jitted code. We label True at the

third column, if there is at least one common configuration setting in both categories

for one program/scenario. In 71% (5
7
) of the programs in the PyPy benchmark suite

and all the scenarios in the TechEmpower benchmark suite, the best performing

configuration setting is different from the one that has the highest number of the

jitted lines. When comparing the performance differences, we compared all the

pairs of these configuration settings from the two categories. In the end, twelve

of the programs/scenarios have a medium to large effect size differences. In other

words, the results show that more jitted lines do not necessarily lead to better

75



Table 4.7: Comparison between the configuration settings yielded the best

performance and the configuration settings resulted in the most jitted code.

PyPy Benchmark TechEmpower Benchmark

Programs Effect Size Same Scenarios Effect Size Same

ai large False db large False

bm mako trivial,medium False fortune large False

chaos large False json large False

django large False plaintext large False

html5lib - True query large False

pidigits large True update large False

rietveld large False

performance. For the PyPy benchmark ‘html5lib’, we marked the effect sizes as

‘-’, since the best performing configuration settings and the highest amount of the

jitted code configuration settings are exactly the same. Hence, we do not calculate

the effect sizes for this case.
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Findings: JIT configuration settings, which resulted in the highest number of

the jitted lines, do not necessarily yield the best performance.

Implications: We cannot just arbitrary choose the configuration settings that

favor more jitted lines of code while tuning the system performance. A more

sophisticated approach is needed to locate the optimal configuration setting(s)

for one system.

4.4 Automatically Tuning the JIT Configuration Parame-

ters

In the previous section, we have found that PyPy’s JIT configuration settings do

have a significant impact on the system performance. Furthermore, there is no

straightforward way to recommend a performance-efficient JIT configuration set-

ting, since such setting can be application-dependent and a higher portion of the

jitted code does not necessarily result in better performance. Hence, in this section,

we will propose our automated approach, ESM-MOGA (Effect Size Measurement-

based Multi-Objective Genetic Algorithm), to tuning the JIT configuration param-

eters for one system.

Figure 4.3 provides an overview of our tool which we called the PyPyJITTuner.

It leverages a search-based technique called Multi-Objective Genetic Algorithm

(MOGA) [39] and a statical measure called effect size, for the exploration of the
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Figure 4.3: Overall process of PyPyJITTuner.

JIT configuration space. Genetic Algorithm (GA) is a search-based method inspired

by evolutionary biology, in which a population of solutions is evolved during each

generation. The solutions from the next generation should be generally better than

the previous generations evaluated based on some objective functions. MOGA is a

type of GA, in which multiple objectives are being considered. We chose MOGA, as

there can be multiple objectives associated with a system’s performance (e.g., op-

timizing the response time for multiple scenarios). One machine, which is deployed

with the tailored-version of the MOGA, acts as the configuration advisor. When

new solutions have been created, this machine continuously sends the JIT config-

uration settings (solutions) to the test scheduler machine, which will deploy and

configure the system under study (SUS). Once the test scheduler machine receives

these settings, it will reset the test environment (a.k.a., clean up the database, and

remove the testing data from the previous run), and start up the SUS under the

suggested JIT configuration setting. The same performance test (a.k.a., the same
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workload) will be executed. Once the test is completed, the performance data will

be collected and sent to the configuration advisor machine for further analysis. The

configuration advisor machine will evaluate the newly received performance data

against the data from other configuration settings and leverage the MOGA meth-

ods to select the best solutions and generate the next generation. If the solutions in

the next generation are good enough, the MOGA will stop the evolution and out-

put one or multiple “optimal” configuration settings. Otherwise, the MOGA will

continue with another round of iteration. The newly generated JIT configuration

settings will be sent to the test scheduler machine for another round of testing.

The rest of this section is organized as follows: Section 4.4.1 explains the general

idea behind the ESM-MOGA approach. Section 4.4.2 presents our performance

testing framework, and Section 4.4.3 describes briefly our implementation.

4.4.1 Tailoring MOGA for JIT Configuration Tuning

GA is a search-based method inspired by evolutionary biology. GA encodes the

candidate solutions into a set of values, called “chromosomes”. Inside the chro-

mosomes, the set of values, which are to be optimized are called the “genes”. GA

starts off with a population of the initial solutions and keeps iterating until any of

the termination criteria is met. During each iteration, GA improves the population

via crossover (combining existing solutions to produce new solutions), mutation
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(randomly changing some values in the solutions), and selection (picking the best

candidate solutions). The termination criteria can either be the optimization con-

ditions (e.g., the resulting solutions are better than a predefined threshold) or the

maximum number of iterations. The MOGA, which is a type of GA, evaluates mul-

tiple objectives simultaneously. In general, as illustrated in Figure 4.4, the MOGA

consists of six phases: the problem formulation phase, the initialization phase, the

tournament phase, the evolution phase, the selection phase, and the stopping phase.

The process of going through the tournament, the evolution, and the selection phase

can be repeated multiple times, with each iteration called one generation. At the

end of each generation, a new population will be produced. This process will be

repeated until any termination criteria described in the stopping phase is met.

Initialization Tournament Evolution Selection Stopping
Parents

+

P

Population

Q

N

Y

P = R

Testing 

Framework
Optimal

Configuration

Population

R

Population

P

JIT Configuration

Performance Data

JIT Configuration

Performance Data

Problem 

Formulation

Figure 4.4: The workflow for our tailored version of the MOGA method.

In this subsection, we will explain the ESM-MOGA approach by using a running

example. For illustration purposes, we assume the SUS in our running example is
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a simple e-commerce system, which consists of only three scenarios: login, browse,

and purchase.

4.4.1.1 Phase 0 - Problem Formulation

We formulated our problem of automated tuning of JIT configuration settings into a

multi-objective optimization problem. Our objective is to find one or more optimal

JIT configuration settings that yield the best performance in all the scenarios in

the system. Below we define our solution encoding and objectives:

� Solution Encoding: The ESM-MOGA requires us to encode its solution into

binary strings. As shown in Section 4.2.2, all the studied JIT configuration

parameters are integers and have a large range (a.k.a., many possible values).

Assume we use 232 as the upper bound for unbounded parameters, we have

to do 5.5e+45 performance tests if we want to try out all combinations which

is apparently impossible.

Hence, we decided to select eight representative values from the input domain

of each configuration parameter: (4X, 3X, 2X, X, 1
2
X, 1

4
X, 1

8
X, 1

16
X), where

X refers to the default value for that configuration parameter. We chose the

above eight levels, as these eight values cover a wide range of the input domain

and each configuration parameter value can be easily encoded into a binary

string of length three. In this way, the smallest configuration value ( 1
16
X),
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the default configuration value (X), and the largest configuration value (4X)

for each parameter are encoded as 111, 011, and 000, respectively. We set

the largest configuration values to be 4X, as Section 4.3 shows that large

JIT configuration settings usually do not yield good performance. We set

the smallest configuration values to be 1
16
X, as Section 4.3 shows very small

configuration settings could result in a high number of jitted code, but worse

performance. To ease explanation, in our running example, there are only

two configuration parameters. Hence, the default configuration setting can

be encoded as a binary string: 011011.

� Objectives: For a real world system, there can be more than one aspect

associated with the performance of the system. Examples of optimizing per-

formance aspects can be optimizing the resource utilizations (e.g., CPU, mem-

ory, and disk) or the responsiveness of different scenarios in a system. Some

of these concerns can be conflicting with each other. In our approach, we fo-

cus on optimizing the response time for different scenarios in a system. Each

objective refers to a list of response time for each scenario during the warmed

up phase, measured through performance testing. In our running example,

the objectives are to optimize the response time for the above three scenarios

in the e-commerce system.
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4.4.1.2 Phase 1 - Initialization

During the initialization phase, the ESM-MOGA defines an initial population (P)

consisting of n solutions. In our approach, P consists of the default configuration

setting, and n − 1 randomly generated configuration settings. The ESM-MOGA

will intentionally included the default configuration setting in the initial popula-

tion, as we want to ensure the default configuration setting is evaluated among its

alternatives and the final “optimal” setting(s) will be at least as good or better

than the readily available default configuration setting. Once the initialization pro-

cess is completed, the ESM-MOGA enters the iterative process of going through

the tournament, the evolution, and the selection phase to refine and improve its

population until any termination criteria is met.

To ease explanation, we set n = 4 in our running example and compose the

initial population (P) with the following solutions:

P =



C1 : 011011,

C2 : 001010,

C3 : 000101,

C4 : 101110

Once the initial population is generated, the solutions in the initial population

will be sent to the test scheduler machine in Section 4.4.2. Multiple performance
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tests with the same workload will be conducted under each given configuration

setting. The response time of the three scenarios under warmed up phase will be

collected as performance data and assigned as the objectives for each solution.

4.4.1.3 Phase 2 - Tournament

During the tournament phase, the ESM-MOGA will first randomly select two so-

lutions from a pool which contains all solutions of the current population. Then, a

pairwise comparison is done to recognize the better solution from the two. The bet-

ter solution will be used as one of the parents for the next phase. These evaluated

solutions will not be put back to the pool for efficient concerns. The process will

be repeated until all solutions in the pool have been evaluated pairwisely. In our

approach, the pairwise comparison is done using a pre-defined dominant compari-

son function and the dominating configuration setting (a.k.a., the better solution)

will be selected. In this dominant comparison function, the configuration setting A

dominates the configuration setting B, if the response time distributions under the

two configuration settings satisfy the following two criteria:

1. The response time for all the scenarios under A are statistically

no worse than under B: The response time under configuration A for one

scenario is statistically no worse than under B, if (1) the response time distri-

butions for that scenario under the two settings are not statistically signifi-
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cantly different under the WKS test, or (2) they are statistically significantly

different under the WKS test, but there is only a trivial to small effect size

calculated by the CD. This relation has to be held for all the scenarios when

comparing the two settings.

2. There is at least one scenario whose response time under A is statis-

tically better than under B: The response time under configuration A for

one scenario is statistically better than B, if the response time distributions

for that scenario under the two settings are statistically significantly different

under the WKS test and there is a medium to large effect size calculated by

the CD.

In other words, one configuration setting (A) only dominates the other one (B),

if (1) the performance of all the scenarios under A is at least as good as B, and (2)

there will be at least one scenario under A whose performance is better than B.

The dominance comparison among all the pairs of the configuration settings are

shown in Table 4.8. Each row in Table 4.8 corresponds to the comparison results of

one configuration setting pair. For example, the second row shows the comparison

results between configuration setting C1 and C3 . The response time for the login

scenario is statistically better under C1 than C3 . The performance of the other

two scenarios are statistically not different between the two settings. Hence, the
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Table 4.8: Dominance relations among the four configuration settings in our

running example. “�” means the the left configuration setting dominates the

right configuration setting, “≺” means the right configuration setting dominates,

and “≈” means there is no dominance relation.

Config Pairs Login Browse Purchase Dominance

(C1 , C2) Better Worse Better ≈

(C1 , C3) Better Equal Equal �

(C1 , C4) Better Better Equal �

(C2 , C3) Better Equal Equal �

(C2 , C4) Better Better Equal �

(C3 , C4) Equal Worse Worse ≺

configuration setting C1 dominates C3 . Assume, from the pool that contains all

solutions of population (P), we selected (C1 and C3), (C2 and C4) for pairwise

comparison. The two configuration settings, C1 and C2 , will be selected as parents

for the next phase.

4.4.1.4 Phase 3 - Evolution

During the evolution phase, the parents from the Tournament phase will undergo

the following two actions to produce new solutions:
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� Crossover: Two solutions from the Parents are randomly selected as par-

ents. A new solution will be created by randomly selecting some bits from

one solution and the remaining bits from another solution. In our running

example, C1 and C2 will be selected as parents. A new solution C5 (011010)

can be created by inheriting the first three bits from C1 and the remaining

bits from C2 .

� Mutation: Some of the newly produced solutions will be mutated by ran-

domly flipping some bits (a.k.a., turning 0s into 1s and 1s into 0s). For our

running example, after flipping the first and the last bits of C5 , it becomes

111011.

Similar as the Initialization phase, a performance test with the same workload

but a new configuration setting (C5) will be conducted. Once completed, the per-

formance data will be sent back as objectives for the new configuration setting.

The overall population (Q) at the end of this phase will consist of the new solu-

tions produced after the crossover and the mutation operations as well as existing

solutions from P.
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4.4.1.5 Phase 4 - Selection

In this phase, the “best” n solutions in Q will be selected with NSGA-II selec-

tion [39] [5]. It will first use the non-dominated sorting algorithm to sort the

solutions into different levels (L0 , L1 , ...). Solutions that were dominated by the

smallest number of solutions will be assigned to the top level (L0). Solutions in L0

are the “best” solutions in this iteration, followed by the solutions in L1 , and then

L2 , and so on. The solutions within the same levels (e.g., L0) are not dominant

over each other. For example, if configurations settings A and B are both within

L0 , it means that A and B are not dominant over each other. In other words,

some scenarios are better performed under A and whereas some other scenarios are

better performed under B. When selecting the top n solutions, we will first start

picking solutions from the top level (L0), followed by solutions from L1 , and so on.

If there are more solutions in a level than we needed (a.k.a., exceeding the total n

solutions), we will rank solutions within that level with crowding distance sorting

and select the top ranked solutions in that level.

Suppose for our running example, after sorting the solutions in Q using the

non-dominated sorting algorithm, they are divided into the following levels:
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Q =



L0 : C5 ,

L1 : C1 , C2 ,

L2 : C4

L3 : C3

Since at the end of the selection phase, only n solutions will be kept. Hence,

our resulting population (R) will be C1 , C2 , C4 , C5 .

4.4.1.6 Phase 5 - Stopping

During this phase, the resulting population Q formed during this generation will be

evaluated to decide whether its solutions are good enough comparing to the previous

generation. The main idea is to decide whether any progress has been made during

this generation. In other words, we want to check whether there are any better

solutions produced during this generation. We used the Mutual Dominance Rate

(MDR) [72] to measure the improvements made between the current population B

and the population A from the previous generation:

MDR(B,A) = dom(B,A)
‖B‖ − dom(A,B)

‖A‖ ,

where dom(A,B) is defined as the number of solutions in population A that

are dominated by at least one solutions in B. Hence, for our running example,

dom(P,R) would be 4, since all four solutions in P are dominated by at least one
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solutions in R. dom(R,P ) would be 1, since only C4 in R is dominated by the

solutions in P. Hence, MDR(R,P ) = 1
4
− 4

4
= −3

4
. The closer the MDR value

gets to −1, the larger the improvement has been made in the current generation.

If MDR is close to 0, it means little progress has been made to the population.

The iteration should be stopped if the improvement between two generations is

insignificant (a.k.a., |MDR| is smaller than some threshold values), or it has been

running for too long (e.g., over 100 iterations).

When the termination criterion is met, we will output the top configuration

settings for the current generation with the NSGA-II selection. Since there is only

one solution (C5) at L0 for our running example, C5 will be the optimal configuration

setting outputted.

4.4.2 Our Performance Testing Framework

For any newly generated solutions, we need to measure their performance using a

performance test. Each solution, which is sent to the test scheduler machine inside

the Testing Framework, will first be parsed into the corresponding JIT configura-

tion setting. The test scheduler machine will then start the system with the new

configuration setting and measure the system performance under a predefined work-

load. At the end of each performance test, performance data during the warmed

up phase will be collected and sent to the configuration advisor machine, so that
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they can be used as objectives to evaluate among solutions in the ESM-MOGA.

For our running example, a total of five performance tests with the same work-

load but different JIT configuration settings, which correspond to the four initial

solutions in P and the new solution in Q, will be run. Once each test is completed,

the test scheduler shuts down the SUS, collects the performance data (response

time for the individual scenarios, the resource utilization metrics, and JIT logs)

and sends the data to the configuration advisor machine.

4.4.3 Implementation

We implemented the ESM-MOGA using the NSGA-II algorithm [39], which is a

fast and efficient multi-objective genetic algorithm, from the DEAP framework

(Distributed Evolutionary Algorithms in Python) [3]. The framework contains

the relevant library functions for NSGA-II, like assigning crowding distance, non-

dominated sorting algorithm, and NSGA-II selection. We had to implement the

dominance function, and input encoding ourselves to fit into NSGA-II algorithm.

We re-implemented the non-dominate sorting and NSGA-II selection functions so

that they can use our dominance function to compare among solutions.

We also implemented the automated performance testing framework, which

leverages JMeter [1] as the load generator. The performance testing framework

can startup, initialize, execute, and stop a performance test under one particular
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Table 4.9: An overview of the three Python-based systems under study.

Name Version LOC Application Domain Technology Stack

Saleor 2017.07.0 48482 E-commerce Gunicorn,Tornado,Postgres,Django

Wagtail 1.12.1 85006 Content Management Gunicorn,Tornado,Postgres,Django

Quokka 0.2.1 34468 Content Management Gunicorn,Tornado,MongoDB,Flask

configuration setting.

4.5 Case Study

In this section, we evaluated the performance of our automated approach to tun-

ing the JIT configuration parameters on three Python-based open source systems:

Saleor [17], Wagtail [24], and Quokka [15]. As shown in Table 4.9, these three sys-

tems vary from system sizes, application domains, and technology stacks. All three

systems can be deployed on top of the Tornado WSGI server which uses Gunicorn

for worker process management. And they all require a database to be functional.

Saleor is an e-commerce system, built using the Django framework, and uses Post-

gres as its database. Wagtail shares the same technology stack as Saleor (a.k.a.,

Django and Postgres), but is from a different application domain: the Content

Management System (CMS). Although Quokka is also a CMS, it is built with the
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Flask framework and uses MongoDB as its database.

The rest of this section is organized as follows. Section 4.5.1 describes the case

study setup. Section 4.5.2 explains the case study results.

4.5.1 Case Study Setup

We deployed the above three systems on the same physical machines, which have the

following hardware configurations: Intel i7-4790 CPU, 16 GB memory, and 2 TB

hard-drive. JMeter was deployed on another physical machine with the following

hardware configuration: Intel(R) Core(TM)2 Duo CPU, 4 GB memory, 160 GB

hard-drive. And all machines have Ubuntu 14.04 deployed. The reason for the

separate deployment of JMeter and the SUSs is to ensure no overhead caused by

the load generator to the SUSs [64]. The version of the PyPy that we used for

evaluation is 5.7.1 which corresponds to Python version 2.7.13. Similar to the

exploratory study, we focused on the same six JIT configuration parameters. Hence,

each solution (a.k.a., configuration setting) requires 18 bits to be encoded into our

tailored MOGA method. For example, the default configuration setting would be

encoded as 011011011011011011. As for the rest of the MOGA configurations, we

set the initial population (P ) size as 40, and the mutation rate as 0.10 based on some

small trials. We also configured our termination criteria to be either |MDR| ≤ 0.1

holds for two consecutive generations or the MOGA has iterated for 10 generations.
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Table 4.10: Workload description for the three systems.

System Workload Mix Workload Intensity

Saleor

load index page

10 req/sec

load login page

login request

view category

view product

add product to cart

view cart

check out cart

select shipping method

select shipping address

payment

payment confirm

Wagtail

add blog(1)

add event(1)

edit blog(2)

view blog page(3)

view event page(3)

Quokka

add blog(1)

edit blog(2)

view blog(7)
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Table 4.10 shows the workload that we have set for the three systems. The

workload tries to simulate how real users use the systems in the field. The over-

all workload intensity (10 requests/sec) is the same for all three systems and the

workload mix for each system is shown below.

� For the e-commerce system, Saleor, the workload tries to mimic the purchas-

ing workflow from a real customer. Hence, we divided this scenario into 12

actions, which correspond to 12 different webpage operations. The overall

workload intensity (10 request/sec) corresponds to 10 different users per-

forming the above 12 actions at the same time. Hence, all the actions in this

workload are assigned with the same ratio in the workload mix.

� For the content management system, Wagtail, the workload tries to mimic

users reading, posting, and editing blogs or events. Since, in the majority

of the time, users will be viewing the blogs or events, we assigned a higher

ratio for these two actions. The scenarios of adding a new blog or a new

event happen the least frequently. Hence, they are assigned with the smallest

weight in the workload mix.

� Quokka’s workload is similar to Wagtail’s, as they are in the same applica-

tion domain. Since Quokka only supports reading/editing/adding blogs, we

adjusted the workload mix accordingly.
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As Section 4.3 indicates, only the performance data from the warmed up phase

is representative of the actual system performance. Hence, in the case study, we

want to make sure the system has been running long enough (a.k.a., finished the

warmup up phase). To properly decide the test duration, we first did a test run with

the default configuration setting, in which the predefined workload was executed

for three hours. We leveraged a similar technique as Alghmadi et al. [29] to test

when the system’s performance behavior gets repetitive, so that we can identify

the duration of the warmup phase. We divided the collected performance data

into intervals of every 20 minutes. Then we performed statistical analyses with the

WRS test and CD values on the response time between two adjacent time intervals.

We considered the system to be fully warmed up when the response time from the

two adjacent time intervals show insignificant difference for all scenarios (a.k.a.,

not statistically different by the WRS test or CD values show trivial to small effect

sizes).

We performed the above process in all three case study systems. We found

that all three systems finish the warmup phase in the first 40 minutes before their

performance behaviors start to be repetitive. Hence, for consistency concerns, we

set the test duration to be 50 minutes for each test and only used the data from the

last 10 minutes (a.k.a., the data from the warmed up phase) for further analysis in

the ESM-MOGA method.
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Table 4.11: Statistics after running the MOGA approach on the three case study

systems.

System # of # of Duration

Generations Configurations Evaluated (hour)

Saleor 3 100 36

Wagtail 7 199 67

Quokka 3 96 35

4.5.2 Case Study Results

For all the three systems, we applied our ESM-MOGA method with the aforemen-

tioned setup. Table 4.11 shows the runtime statistics for the ESM-MOGA method

after running on the three systems. The search algorithm all terminates under ter-

mination criteria |MDR| ≤ 0.1. For Saleor, it takes 36 hours and evaluated 100

solutions, 67 hours and 199 solutions for Wagtail, and 35 hours and 96 configuration

settings for Quokka. For all three systems, the ESM-MOGA method found optimal

solutions when it terminated.

For each system, we used the NSGA-II selection to select the top three con-

figuration settings. We compared the response time and the resource utilization

between the optimal configuration settings and the default configuration setting.
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Figure 4.5: Visualizing the response time distributions of different scenarios under

different configuration settings for Wagtail.

Table 4.12: Comparing the performance between the optimal configuration

settings and the default configuration setting for the three systems. The optimal

configurations are labelled as O
A

, O
B

, and O
C

. WS stands for the web server, and

DB stands for the database. “-” means the ESM-MOGA suggested optimal

configuration setting outperforms the default setting and “+” means otherwise.

System
Top Comparing scenarios Average differences (%) Average resource usage difference (%)

Configurations better equal worse min max WS CPU WS Memory DB CPU DB Memory

Saleor

O
A

12 0 0 -27.11 -56.17 -33.71 +24.80 -3.61 -0.24

O
B

12 0 0 -27.32 -58.93 -25.68 +31.97 -7.59 +1.18

O
C

12 0 0 -9.66 -60.28 -32.38 +12.74 -7.30 +0.84

Wagtail

O
A

5 0 0 -33.47 -45.10 -23.86 +158.71 -5.96 +1.55

O
B

5 0 0 -29.59 -44.93 -18.81 +202.53 -2.90 -2.04

O
C

5 0 0 -35.93 -44.28 -25.18 +157.94 -3.46 -3.34

Quokka

O
A

2 1 0 -9.39 -34.95 -15.39 +59.34 -13.80 -5.5688

O
B

3 0 0 -13.45 -22.71 -16.51 +61.08 -21.89 +0.942

O
C

1 2 0 -4.98 -25.44 -11.94 +62.03 -19.05 +2.21
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Figure 4.5 visually compares the response time distributions between the default

and the top three optimal configuration settings for Wagtail. Due to space lim-

itations, it only contains the performance comparisons of the three blog-related

scenarios inside Wagtail. Each sub-figure corresponds to one scenario. Within each

sub-figure, the four violin plots correspond to the response time distributions of that

scenario under the default and the three optimal configuration settings. Among all

the sub-figures, the response time under the default configuration setting is signif-

icantly much higher than the optimal configuration settings. A similar trend also

holds for the two event-related scenarios in Wagtail.

To quantify the differences between the optimal and the default configuration

settings, we performed the WRS test and CD test between the response time distri-

butions under each configuration pair. We used the same criteria as in Section 4.3

to judge whether one response time distribution is better, or same, or worse than

the other one. Table 4.12 shows the results. Each row corresponds to one opti-

mal configuration setting for one particular system. There are no orderings among

the top three optimal configurations (O
A

, O
B

, and O
C

). The second to the fourth

columns contain the number of scenarios which show better, equal, or worse dif-

ference when comparing this configuration setting against the default. For Saleor

and Wagtail, all the scenarios performed better under the suggested optimal con-

figuration settings. For Quokka, at least one scenarios performed better under the
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suggested optimal configuration settings, while the remaining scenarios performed

no worse than the default configuration setting. The fifth and the sixth columns

show the minimum and maximum percentage of differences when comparing the

average response time under the suggested configuration setting with the average

response time under the default for all scenarios. The percentage improvement in

terms of the average response time can vary between 5% to 60%.

Since each system consists of a web server and a database, we further compared

the CPU and the memory utilizations between the optimal and the default config-

uration settings. Last four columns in Table 4.12 shows the comparison results for

the resource utilizations. The CPU usage for both components drops. The decrease

in CPU is more significant in the web server, with the average improvement ranges

between 12% to 33.7%. However, the memory usage for the web server dramati-

cally increases (12.7% to 202.5%) across all the optimal configuration settings. We

suspect this may be due to the storage of the complied jitted code. For a more

detailed discussion, please refer to Section 4.6.4.

4.6 Discussions

In this section, we discussed the findings based on the case study results and their

implications.

100



4.6.1 Optimal Configurations across Different Systems

As we can see from the previous section (Section 4.5), the optimal configuration

settings obtained using ESM-MOGA significantly out-performed the default con-

figuration. In this subsection, we would like to compare the optimal configuration

settings against the default configuration setting in order to see if we can derive

some rules or provide some guidance for PyPy users when tuning the JIT configu-

ration settings for their systems.

For each of the studied systems above, we obtain its top three optimal configu-

ration settings, whose values are shown in Table 4.13. We also included the default

configuration setting in the table to ease comparison.

One common pattern as we can see from Table 4.13 is that trace eagerness is

significantly smaller in all the optimal configuration settings when comparing to the

default ones. trace eagerness refers to the eagerness to compile a non-jitted branch

within a loop. A system can go through various branches within a loop. A smaller

trace eagerness is preferred, so that the branch(es) corresponds to frequently ex-

ecuted scenarios will be jitted faster. There is no pattern found in the other five

configuration parameters, as they can be either bigger or smaller than the default

values among the nine optimal configuration settings.

We are also interested in understanding the correlation of JIT configuration
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Table 4.13: Top three optimal configuration settings for the three studied system.

System Config. decay function threshold loop longevity threshold trace eagerness trace limit

Saleor

OA 10 101 2000 129 25 12000

OB 2 1619 250 1039 12 12000

OC 2 1619 1000 3117 100 12000

Wagtail

OA 10 101 1000 1039 12 12000

OB 2 404 250 259 12 12000

OC 2 101 4000 4156 50 12000

Quokka

OA 80 404 500 519 12 12000

OB 2 3238 2000 4156 12 6000

OC 2 202 4000 4156 25 3000

Default - 40 1619 1000 1039 200 6000

Table 4.14: Spearman correlation between configuration and response time. The

large and very large correlation measures are shown in bold.

System Correlation decay function threshold loop longevity threshold trace eagerness trace limit

Saleor

corr. coeff. -0.5120 -0.1338 0.0291 0.1869 -0.2961 0.6293

p− value 6.057e-08 0.1864 0.7748 0.0638 0.0029 3.028e-12

scale large small trivial small small large

Wagtail

corr. coeff. -0.3719 -0.2750 0.1506 0.1392 -0.5446 0.5790

p− value 6.346e-08 8.452e-05 0.0336 0.0498 2.2e-16 2.2e-16

scale moderate small small small large large

Quokka

corr. coeff. -0.0403 -0.1932 0.1157 0.0568 0.0506 0.8024

p− value 0.7554 0.1323 0.3703 0.6608 0.6956 4.476e-15

scale trivial small small trivial trivial very large
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parameters to the system performance. We collected all the evaluated configuration

settings and the corresponding response time for different scenarios. We summed

up the average response time for all scenarios as the overall response time under

a JIT configuration setting. Then we calculated the Spearman’s rank correlation

between each configuration parameter and the overall response time. Spearman is

a non-parametric correlation metric measuring the strength of the relation between

the two variables. The scale of the Spearman’s ρ correlation coefficient is indicated

below [57]:

ρ =



trivial if 0 ≤ ρ < 0.1

small if 0.1 ≤ ρ < 0.3

moderate if 0.3 ≤ ρ < 0.5

large if 0.5 ≤ ρ < 0.7

very large if 0.7 ≤ ρ < 0.9

near perfect if 0.9 ≤ ρ ≤ 1.0

Table 4.14 shows the result of the correlation between each configuration pa-

rameter and the overall system performance. We highlight the cell in bold if the

correlation measure is “large” or “very large”. Each system has at least one config-

uration parameter which has a “large” or “very large” correlation measure. How-

ever, highly correlated configuration parameters vary among the three systems, ex-
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cept trace limit. A large trace limit enables the system to compile large frequently

executed loops, which can subsequently improve the system performance. Mean-

while, the three JIT configuration parameters function threshold, loop longevity and

threshold have very low correlations (small or trival) with the overall system per-

formance.
Findings: The configuration parameter trace eagerness should be generally

set lower than the default values in order to obtain better performance.

trace limit is highly correlated with the overall system performance, whereas

function threshold, threshold and loop longevity have no or weak correlations.

Implications: There are some general guidance in terms of tuning the PyPy JIT

configuration settings on web frameworks. However, the optimal configuration

settings are still highly system dependent. In this paper, we only evaluated

the impact of PyPy JIT configuration settings on benchmark programs or web

applications. However, Python is also popular in data statistic analysis and

machine learning (e.g. scipy, tensorflow), which could be time consuming to

train a model. One of the interesting future research area would be to derive

rules or general guidance to improve the performance of various machine learning

or statistic analysis packages by tuning their JIT configuration parameters.
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4.6.2 Top Configurations across Different Workloads

In the previous study, we compared the optimal JIT configuration settings and

it’s performance cross different applications under the same level of workload. In

this subsection, we want to compare the optimal JIT configuration settings under

different workloads. We selected Wagtail as our experiment subject.

In addition to the default Wagtail workload (10 req/sec), we generated two other

workloads for comparison: 15 req/sec and 5 req/sec, while keeping the workload

mixes. For each of newly generated workload, we ran PyPyJITTuner to derive

the optimal JIT configuration settings. For 15 req/sec workload, the framework

iterated for 5 generations before termination. And it takes 4 generations for the

PyPyJITTuner to be terminated under 5 req/sec workload. The resulting config-

uration settings yield significant performance gain (20% - 50%) when compared to

the default configuration setting.

Table 4.15 shows the actual performance for the top three configuration settings

under each workload. It shows the average response time for each scenario in mil-

liseconds, as well as various resource usage metrics like CPU and memory usage

for the web server and the database, respectively. In addition, it also shows the

number of jitted lines under each configuration setting. Although the workloads

are different, all the nine top optimal configuration settings share similar perfor-
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Table 4.15: Comparing the performance among the optimal configuration settings

under different workloads for Wagtail.

Experiments
Workload 5 req/sec 10 req/sec 15 req/sec

Top configs (O
A

O
B

O
C

) (O
A

O
B

O
C

) (O
A

O
B

O
C

)

add blog 1316.00 1286.00 1237.00 1276.00 1275.00 1191.00 1379.00 1428.00 1366.00

Response time add event 1104.00 1073.00 1090.00 1033.00 1190.00 1133.00 1326.00 1409.00 1375.00

per scenario edit blog 1077.00 1068.00 920.00 1025.00 1085.00 987.40 1080.00 1143.00 1100.00

(msec) view blog 102.50 104.60 111.00 101.30 109.00 104.90 119.00 115.40 117.10

view event 89.55 94.81 95.03 89.98 89.06 90.10 98.10 101.0 98.17

Resource usage

WS CPU (%) 27.89 25.62 23.82 46.16 48.04 44.27 61.63 62.19 63.27

WS Memory (MB) 2532.00 2229.00 1848.00 3337.00 3770.00 3214.00 2998.00 3123.00 2944.00

DB CPU (%) 0.21 0.22 0.21 0.41 0.40 0.40 0.61 0.59 0.59

DB Memory (MB) 87.49 87.85 86.96 90.58 93.90 95.09 97.84 97.90 95.20

JIT # of jitted lines 12987 9993 8780 11045 13065 12298 11002 11451 11402

mance in terms of response time for each scenario. The number of jitted lines are

similar across different workloads. As workload increases, the CPU and memory

consumption for both the web server and the database increases. Hence, in this

case, the workload intensity is the main reason behind the increase of memory and

CPU consumption of the two server components.

Table 4.16 shows the top three optimal JIT configuration settings under different

workloads. The optimal JIT configuration settings under different workloads share

very similar properties (e.g., large trace limit and small decay and trace eagerness

values).
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Table 4.16: Top three optimal configuration settings for Wagtail under different

workloads.

Workload decay function threshold loop longevity threshold trace eagerness trace limit

5 req/sec

2 404 250 129 12 12000

40 101 250 519 12 12000

20 404 500 1039 25 12000

10 req/sec

10 101 1000 1039 12 12000

2 404 250 259 12 12000

2 101 4000 4156 50 12000

15 req/sec

2 1619 125 3117 25 12000

2 1619 62 2078 25 12000

10 101 62 2078 25 12000

Default 1039 1619 40 6000 200 1000
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Findings: Varying the workload intensity would not impact the optimized JIT

performances. And different workloads would result in different optimal configu-

ration values. However, there are some common properties (e.g., large trace limit

and small decay and trace eagerness values) shared across them.

Implications: Researchers could further improve the efficiency of the ESM-

MOGA by developing machine learning algorithms to proactively eliminate some

of the performance deficient configuration settings from each generation.

4.6.3 Code Jitting vs. Performance

In Section 4.3, we have shown that more jitted lines do not necessarily lead to better

performance. Furthermore, the performance under some of the JIT configuration

settings are even worse than turning the JIT completely off! In this subsection, we

would like to perform a more in-depth study to find out the reasons.

In Figure 4.6, we plotted the number of jitted lines with respect to system

performance across all the runs we did for the Saleor system. And the red dotted

line shows the overall average response time under the JIT off configuration setting.

As the number of jitted lines increases, the average response time for the system

gradually decreases. As we can see from the figure, there are a few JIT configuration

settings which are even worse than turning the JIT off! We conducted further

analysis to understand the reason why some jitted code would even lead to worse
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Figure 4.6: Number of jitted lines and overall average response time among all

evaluated JIT configuration settings in Saleor. The red dotted line shows the

overall average response time with JIT turned off.
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performance.

We focused on comparing the code structure under two configuration settings:

configuration A, which is a configuration with JIT enabled. As shown in Figure 4.6,

the performance of configuration A is worse than turning JIT off. For brevity, we

call the JIT off configuration as configuration B.

We first applied cProfile [21] to gather the high-level performance numbers for

Saleor. cProfile is a profiling tool for Python-based systems. It can provide infor-

mation like the execution time, the number of execution for each of the executed

functions. We enabled cProfile and ran the Saleor under the default workload twice:

one run under configuration A, and the other run under configuration B. After the

profiling, we extracted the total execution time and the frequency of the executions

for each function. Although the cProfile can provide us with function level profiling,

it cannot provide information on which lines are executed during runtime. Hence,

we implemented a simple tracer based on Python’s tracing library [22]. Since both

runs executed exactly the same workload, the lines of the executed source code

should be the same. Hence, we only ran our tracer once. Finally, we parsed the

jitted logs we collected for configuration A in order to know the exact lines of source

code that were jitted.

Based on the cProfiling results, we calculated the average execution time for each

function and computed their differences between the two configuration settings.
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We sorted the differences in decreasing order and selected top 30 functions whose

performance is worse in configuration A for manual examination.

We found that the main reason behind the worse performance is configuration

A is due to the overhead of time switching between the two execution modes (in-

terpreted vs. native execution). When a function is executed each time, PyPy will

be running under the default interpreted mode. When a code region is marked as

jitted, PyPy will switch from the interpreted mode to the native execution mode

and executed the compiled binary code. After the binary code is executed, PyPy

will have to switch back to interpreted mode to execute the rest of the function.

Executing the compiled binary code is much faster than running the same code

under the interpreted mode. However, the switching between the two executing

mode takes time. Figure 4.7 shows two such examples. The different text styles

are defined as follows:

� grey: not executed;

� bold: executed but not jitted;

� bold & highlighted: jitted under configuration A.

As we can see from the Figure 4.7, only a single line is jitted in both functions.

Both lines are related to Python list comprehension, which internally execute a

for loop. In both cases, PyPy has to switch the execution mode twice: starting
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def patch_vary_headers(response, newheaders): 

    """ 

    Adds (or updates) the "Vary" header in the given HttpResponse object. 

    newheaders is a list of header names that should be in "Vary". Existing 

    headers in "Vary" aren't removed. 

    """ 

    # Note that we need to keep the original order intact, because cache 

    # implementations may rely on the order of the Vary contents in, say, 

    # computing an MD5 hash. 

    if response.has_header('Vary'): 

        vary_headers = cc_delim_re.split(response['Vary']) 

    else: 

        vary_headers = [] 

    # Use .lower() here so we treat headers as case-insensitive. 

      existing_headers = set(header.lower() for header in vary_headers) 

    additional_headers = [newheader for newheader in newheaders 

                          if newheader.lower() not in existing_headers] 

    response['Vary'] = ', '.join(vary_headers + additional_headers) 

def get_javascript_catalog(locale, domain, packages): 

    app_configs = apps.get_app_configs() 

    allowable_packages = set(app_config.name for app_config in app_configs)  

    allowable_packages.update(DEFAULT_PACKAGES) 

    packages = [p for p in packages if p in allowable_packages] 

    paths = [] 

    # paths of requested packages 

    for package in packages: 

        p = importlib.import_module(package) 

        path = os.path.join(os.path.dirname(upath(p.__file__)), 'locale') 

        paths.append(path) 

 

    trans = DjangoTranslation(locale, domain=domain, localedirs=paths) 

    trans_cat = trans._catalog 

def patch_vary_headers(response, newheaders): 

   """ 

    Adds (or updates) the "Vary" header in the given HttpResponse object. 

    newheaders is a list of header names that should be in "Vary". Existing 

    headers in "Vary" aren't removed. 

    """ 

    # Note that we need to keep the original order intact, because cache 

    # implementations may rely on the order of the Vary contents in, say, 

    # computing an MD5 hash. 

    if response.has_header('Vary'): 

        vary_headers = cc_delim_re.split(response['Vary']) 

    else: 

        vary_headers = [] 

# Use .lower() here so we treat headers as case-insensitive.        

    existing_headers = set(header.lower() for header in vary_headers)     . 

    additional_headers = [newheader for newheader in newheaders 

                          if newheader.lower() not in existing_headers] 

    response['Vary'] = ', '.join(vary_headers + additional_headers) 

(a) Code snippet 1

def get_javascript_catalog(locale, domain, packages): 

    app_configs = apps.get_app_configs() 

    allowable_packages = set(app_config.name for app_config in app_configs)  

    allowable_packages.update(DEFAULT_PACKAGES) 

    packages = [p for p in packages if p in allowable_packages] 

    paths = [] 

    # paths of requested packages 

    for package in packages: 

        p = importlib.import_module(package) 

        path = os.path.join(os.path.dirname(upath(p.__file__)), 'locale') 

        paths.append(path) 

 

    trans = DjangoTranslation(locale, domain=domain, localedirs=paths) 

    trans_cat = trans._catalog 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

def patch_vary_headers(response, newheaders): 

   """ 

    Adds (or updates) the "Vary" header in the given HttpResponse object. 

    newheaders is a list of header names that should be in "Vary". Existing 

    headers in "Vary" aren't removed. 

    """ 

    # Note that we need to keep the original order intact, because cache 

    # implementations may rely on the order of the Vary contents in, say, 

    # computing an MD5 hash. 

    if response.has_header('Vary'): 

        vary_headers = cc_delim_re.split(response['Vary']) 

    else: 

        vary_headers = [] 

# Use .lower() here so we treat headers as case-insensitive.       

existing_headers = set(header.lower() for header in vary_headers) 

    additional_headers = [newheader for newheader in newheaders 

                          if newheader.lower() not in existing_headers] 

    response['Vary'] = ', '.join(vary_headers + additional_headers) 

 

 

 

 

 

 

 

 

def get_javascript_catalog(locale, domain, packages): 

    app_configs = apps.get_app_configs() 

    allowable_packages = set(app_config.name for app_config in app_configs)  

    allowable_packages.update(DEFAULT_PACKAGES) 

    packages = [p for p in packages if p in allowable_packages] 

    paths = [] 

    # paths of requested packages 

    for package in packages: 

        p = importlib.import_module(package) 

        path = os.path.join(os.path.dirname(upath(p.__file__)), 'locale') 

        paths.append(path) 

 

    trans = DjangoTranslation(locale, domain=domain, localedirs=paths) 

    trans_cat = trans._catalog 

(b) Code snippet 2

Figure 4.7: Two code snippets showing the executed code and the jitted code

under the two configuration settings: A vs. B. Configuration A is a jit-enabed

configuration shown in Figure 4.6. It has worse performance than configuration B,

which is JIT off. The colour scheme is defined as follows: grey coloured code is for

not executed code; bolded black coloured code is for executed but not jitted code;

and highlighted bold coloured code is for jitted code under configuration A.
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from the interpreted mode to the native execution mode and back. The time saved

under the native execution mode is much smaller than the time takes for switching

between the two modes, which causes the performance degradation in configuration

A (enabling JIT) when comparing against configuration B (JIT off).

Such jitting behavior can be explained using the configuration settings. The

configuration A is shown in Table 4.17. For reference, we also included the default

configuration values in the table. The ‘trace limit’ in configuration A is set to be

a very small value, which would only allow a small region of code to traced and

jitted. The smaller the jitted code region is, the less the performance gain code

jitting can bring. In this case, the overhead of frequently switching between the

two modes out-weights the gain from code jitting.

Findings: Enabling code jitting does not necessarily lead to good performance.

Some JIT configuration settings can perform worse than the disabling the JIT

completely. This is mainly due to the overhead of switching between the inter-

preted and the native execution mode.

Implications: Programming language researchers may look into adaptive JIT

compilation techniques, which can disable inefficient code jitting behavior during

runtime.
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Table 4.17: Configuration A and the default configuration.

JIT Configuration Parameter A Default

decay 5 40

function threshold 404 1619

loop longevity 1000 1000

threshold 4156 1039

trace eagerness 100 200

trace limit 374 6000

4.6.4 JIT vs. Memory Usage

The case studies have shown that by using our automated approach, we are able

to locate JIT configuration settings whose performance significantly outperform

the default configuration setting. The CPU for all the components are better or no

worse in the optimal configuration settings than the default. This is mainly because

the CPU can process the same amount of work much more efficiently when more

code is compiled into efficient machine code. However, the memory usage for the

Tornado web servers are much worse. The memory usage for the worker processes

for Wagtail even tripled in the optimal configuration settings. Hence, we want to

investigate whether there is any relation between the amount of code jitted and the
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Table 4.18: Spearman correlation between number of jitted line and memory

usage for each system.

System correlation p− value scale

Saleor 0.8244878 2.2e-16 very large

Wagtail 0.882144 2.2e-16 very large

Quokka 0.8549971 2.2e-16 very large

amount of memory used in the worker processes.

For all the performance tests in each case study, we processed the JIT logs to

obtain the amount of the jitted source code and extract the memory usage at the

end of the test. Then we calculated the Spearman’s rank correlation between the

lines of the jitted code and the amount of memory usage.

As shown in Table 4.18, there is a very large correlation between the memory

usage of the web server processes and the amount of the jitted code. In other

words, the larger the amount of the jitted code, the higher the memory usage for

the worker processes. As more code is jitted, a larger amount of compiled machine

code is generated. The generated machine code will be kept in the memory during

the system execution.
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Table 4.19: Runtime statistics for ESM-MOGA under different termination

criteria.

Saleor Wagtail Quokka

Stoppage Criteria T0 T1 T2 T0 T1 T2 T0 T1 T2

# of Generation 3 3 3 7 3 3 3 3 3

Evaluated Configurations 100 100 100 199 97 97 96 96 96

Duration (hours) 36 36 36 67 34 34 35 35 35

Findings: The improvement in response time using the JIT compilation process

is at the cost of higher memory usage.

Implications: More jitted code can generally lead to more responsive system.

However, the number of jitted lines should be kept in a moderate range as: (1)

more jitted code means higher memory usage, and (2) the configuration settings

with the highest amount of jitted lines will not guarantee the best performance.

One of the interesting future research work would be incorporating memory usage

as one of the objectives in the ESM-MOGA while searching for the optimal

configuration settings.
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4.6.5 Termination criteria

The above case studies show that among the three studied systems, all top three

configuration settings significantly outperform the default configuration setting.

We set (T0 :) |MDR| ≤ 0.1 in the hope that there is a higher chance to obtain

the optimal configuration settings, as solutions in the previous generation are good

enough so that little optimization can be made during the last generation before

termination. However, such conditions may be too strict and cost too much time

(≥ 35 hours as shown in Table 4.11). Many systems nowadays need to be updated

more frequently (e.g., daily or even a few times a day) under the continuous in-

tegration/continuous delivery processes. Hence, during the case studies, we also

examined the following two termination conditions: (1) (T1 :) |MDR| ≤ 0.25, and

(2) (T2 :) |MDR| ≤ 0.50, in the hope that the search process terminates earlier

(a.k.a., saving the time for searching), while we are still able to locate the optimal

solutions.

Table 4.19 shows the runtime statistics for ESM-MOGA under three different

termination criteria: T0 , T1 , and T2 . All termination criteria stopped at the same

number of generations for Saleor and Quokka. However, for Wagtail, the less strict

termination criteria T1 and T2 are met after the third generation. Hence, we also

extracted the top three configuration settings for Wagtail at the end of the third
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generation for further comparison.

We performed a pairwise comparison using the dominant comparison function

between the top three configuration settings under termination criteria T1 and T2

(a.k.a., stopped after the third generation) and the top three configuration settings

under termination criterion T0 (a.k.a., stopped after the seventh generation). The

results show that two out of the three top configuration settings under T0 dominate

all top three configuration settings under T1 and T2 . The other remaining top three

configuration settings under T0 show no dominance when comparing against one of

the top configuration settings under T1 and T2 . The system performance under the

top three configuration settings under T1 and T2 also shows large improvement for

all scenarios when comparing against the default setting.
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Findings: We have evaluated the ESM-MOGA under three different termination

criteria: (1) MDR ≥ 0.50, (2) MDR ≥ 0.25, and (3) MDR ≥ 0.10. The ESM-

MOGA can terminate successfully (a.k.a., finding the optimal solutions) under

all three criteria for the three case study systems. And the less strict termination

criteria T1 and T2 can obtain some configuration settings which are as good as

some top configuration settings under termination criterion T0 .

Implications: There are various configuration parameters within ESM-MOGA.

It requires further research to systemically tune ESM-MOGA configuration pa-

rameters in order to achieve the best performance (finding the optimal solutions

within the shortest amount of time). Furthermore, it would be beneficial to com-

pare ESM-MOGA against other hyper-parameter tuning techniques (e.g., Google

Viser [52]).

4.7 Threats to Validity

In this section, we will discuss the threats to validity.

4.7.1 Construct Validity

To avoid measurement errors and noise, we repeated each experiment 30 times [50].

We leveraged techniques from Alghmadi et al. [29] to determine the duration

of performance tests, when the performance behavior becomes repetitive. We have
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found that after 40 minutes under the default configuration settings for the three

systems, the performance behavior becomes repetitive. For consistency concerns,

we took additional 10 minutes of the performance data for our performance tests

for the warmed up period. We assumed the warmup period would be similar under

other configuration settings. To verify this threshold, we randomly sampled five

performance test from all performance testing runs in each case study. For each

sampled test, we divided the performance data into intervals of ten minutes and

compared the performance behavior among the adjacent intervals. Our analyses

confirmed that the performance behavior also became repetitive after 40 minutes

under these five sampled configuration settings.

Since the JIT logs do not contain timestamps, the only way to monitor the

jitting progress for PyPy is to periodically take snapshots of the existing JIT logs.

However, regularly taking snapshots of the JIT logs would bring huge performance

overhead for a server-based system. Hence, to minimize the measurement impact,

we did not take snapshots in the middle of the performance tests in our case study

in Section 4.5. Instead, we estimated the jitting progress by judging whether the

system performance behavior stabilizes (a.k.a., becoming repetitive).

Our approach, ESM-MOGA, is a tailed version of the Multi-Objective Genetic

Algorithm, which uses effect size measures to compare the results of different test

runs. MOGA is an efficient search-based technique, which automatically explores
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the solution space. It has been used widely in various software engineering research

areas (e.g., test case generation [28, 46, 78], software architecture [56], and bug

prediction [35]) and is shown to be highly effective. Although our case study results

show that the configurations derived from the ESM-MOGA approach yield much

better performance than the default configuration, the ESM-MOGA might not

be the most efficient approach to locate the optimal JIT configuration setting(s).

Furthermore, the search time that it takes to find the optimal solutions using ESM-

MOGA varies depending on the systems and their associated workload. One of the

future areas of research is to evaluate the effectiveness of various hyper-configuration

tuning techniques in the context of tuning JIT configuration parameters.

4.7.2 Internal Validity

We kept all the other factors (e.g., the versions of the systems, the deployment

infrastructure, and the workload) the same, while varying the JIT configuration

settings for each performance tests.

In this paper, we assumed the systems which undergo the JIT tuning process,

can handle the exercised workload. In other words, the systems are not in a bottle-

neck state when we tune their JIT configurations. It’s a common practice that the

top priority for bottlenecked systems would be performance diagnosis and migration

actions instead of tuning their JIT configuration settings.

121



We used the WRS test and the values from CD to implement our dominance

functions in the ESM-MOGA. WRS is a statistical test which compares the distri-

butions of two datasets. CD is an effect size measure, which indicates the strength

of the difference between two datasets. Both the WRS test and the CD are non-

parametric tests, which do not hold any assumptions regarding the underlying

distributions of the data. The two techniques have been used together in previous

works [49, 48] to evaluate the system performance between two alternatives.

4.7.3 External Validity

In this paper, we have conducted a case study on the performance impact of the

JIT configuration settings from PyPy. The experimented PyPy version is PyPy

5.7.1, which corresponds to Python version 2.7.13. The empirical findings in the

exploratory studies may not be generalizable to other Python versions (e.g, Python

3), other Python implementations (e.g., Jython), or other programming languages

(e.g., Java or C#).

Our case study results have shown that the optimal JIT configuration settings

vary from systems to systems. Our search-based configuration tuning framework

can be used to automatically search for configuration settings, which are much

better than the default. Our automated tuning technique can also be used to tune

the JIT performance of other programming languages, whose parameters are integer
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types. We plan to extend our approach in the future to accommodate other types

of configuration parameters (e.g., string, float and boolean types).

As each experiment requires starting the Python-based applications with a dif-

ferent set of configuration parameters, it is not yet practical to apply ESM-MOGA

techniques into the continuous integration and continuous delivery process. One of

the future areas of research is to look into techniques like transfer learning [62] to

infer the optimal configurations for the newer releases of the same systems or even

configuration parameters other systems.

4.8 Conclusion

The JIT compilation is introduced to improve the runtime performance of software

systems. During the system execution, various regions of the systems are compiled

into the binary executable format, so that they can be executed more efficiently.

In this paper, we have performed an empirical study on the performance impact

of PyPy’s JIT configuration settings. In particular, we have compared the perfor-

mance differences between the default and some other configuration settings. We

have shown that systems running under the default configuration setting does not

necessarily yield the best performance. In addition, we have shown that there is

no strong connection between the JIT coverage and the system performance and

the optimal JIT configuration settings are system dependent. To cope with such
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findings, we have developed a search-based approach, called ESM-MOGA, which

automatically tunes the JIT configuration settings for a given system. Case stud-

ies have shown that systems running under the resulting configuration settings are

significantly faster than the default configuration setting.
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5 Conclusions and Future work

Python, as one of the most popular programming language, has been widely used

by different domains, like science computing, web service, and data process, due

to its dynamic features, enriched library, and large community. Unfortunately, no

many empirical studies in the software engineering research field have been devoted

to Python-based applications. In this thesis, we have conducted an empirical study

on the evolution and the performance of PyPy, a Python-based compiler project.

In the first part of this thesis, we studied the evolution of PyPy and compared

our findings with the work of Lin et al. [69], who studied the fine-grained source

code changes on ten Python application across five domains (Web, Data processing,

Science computing, NLP, Media) and reported 11 interesting findings from four

dimensions. We first implemented a public available Python source code diffing

tool PyDiff and applied PyDiff on all PyPy’s historical commits. The result of the

replication study shows that 6 out of 9 findings in the original study doesn’t hold in

the PyPy project. The evolution pattern like change type frequency and dynamic
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change actions show significant differences between PyPy and the originally studied

projects.

PyPy mainly gains its performance via its JIT compiler. However, the tuning

of the JIT compiler configuration is usually ignored by the PyPy users and lead

to suboptimal performance. In the second part of the thesis, we performed an

exploratory study on PyPy’s JIT configuration parameters. Our study shows the

configuration of the JIT compiler can make a big difference to the performance of

applications running on the top of the compiler. Based on our findings, we proposed

our search-based configuration tuning approach, (ESM-MOGA) to tuning the JIT

configuration for the applications running on the top. Case studies on three open

source systems show that systems running under the resulting configuration settings

significantly out-perform (5% - 60% improvement in average peak performance) the

default configuration setting.

In the future, we plan to extend the scale of our replication study in source

code changes. In particular, we want to understand whether similar findings can

be found in Python applications from other domains. Also, we want to see if

this research can be applied to applications that are written by other dynamic

program languages (e.g. Java). For our work of JIT configuration tuning, we plan

to further expand the ESM-MOGA to accommodate more objectives (e.g., memory

and network efficiency) during its search process. We also would like to apply
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the ESM-MOGA on other Python-based applications or frameworks (e.g., machine

learning based frameworks like TensorFlow). In addition, we plan to explore the

use of data mining or experimental design techniques to further reduce the number

of performance tests conducted during the search process. Finally, we would like

to evaluate the effectiveness of various hyper-parameter tuning techniques in the

context of tuning JIT configurations.
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models for highly configurable systems. In: Proceedings of the 2015 10th

Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015. ACM

(2015)
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