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Abstract

The building footprints from satellite images play a significant role in massive applica-

tions and many demand footprints with regularized boundaries, which are challenging

to acquire. Recently, deep learning has made remarkable accomplishments in the re-

mote sensing community. In this study, we formulate the major problems into spatial

learning, semantic learning and geometric learning and propose a deep learning based

framework to accomplish the building footprint extraction with boundary regulariza-

tion. Our first two models, Post-Shape and Binary Space Partitioning Pooling Network

(BSPPN) integrate polygon shape-prior into neural networks. The other one, Region-

based Polygon GCN (R-PolyGCN) exploits graph convolutional networks to learn ge-

ometric polygon features. Extensive experiments show that our models can properly

achieve object localization, recognition, semantic labeling and geometric shape extrac-

tion simultaneously. The model performances are competitive with the state-of-the-art

baseline model, Mask R-CNN. Especially our R-PolyGCN, consistently outperforms

others in all aspects.
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Chapter 1

Introduction

1.1 Background and Motivation

Acquiring information about the structure on the surface of the earth without making

physical contact is generally achieved by the remote sensing techniques [1]. Satellite

images, as one of the most important remote sensing data sources, are widely utilized

in applications like digital mapping, land use analysis, disaster monitoring, climate

modeling and so on, which benefit from the spatial, spectral, temporal and radiometric

resolutions and the large-scale coverage of the satellite images. Among them, the satel-

lite images has played an indispensable role in the generation of the digital maps for the

Geographic Information System (GIS), for instance the google map1 or the Bing map2.

On a digital map, the building footprint information is essential for many tasks, such

as urban planning, smart city construction and so on, thus making the building foot-

print extraction a continuous heated topic in the community. Moreover, the building

footprints with regularized boundaries can provide polygons of vector representation,

1https://www.google.ca/maps
2https://www.bing.com/maps
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which possess stronger transferability over multiple GIS platforms thus having a wider

range of applications. For example, the regularized building polygons can produce

3D building models with higher accuracy [2, 3]. However, with dramatically growing

availability and accessibility of the satellite images, the extraction of the building foot-

prints has demanded higher quality yet has not been fully exploited due to the following

challenges.

(1) The building footprints on the GIS maps require the manual or semi-automatic

procedure to reach the high precision, which is quite time-consuming and labour-

intensive. For example, the OpenStreetMap (OSM)3 can provide building foot-

prints with fine-grained qualities, which are utilized by many open datasets to

improve the precision of their building annotations. Nevertheless, the OSM it-

self relies on massive amount of contributions from the online users to manually

correct and enhance the building footprints. Note that the amount of the satellite

images is always huge, which take plenty of time to process.

(2) The enormous diversity of the outlooks of the building roofs creates barriers for

large-scale building footprint extraction from satellite images. Many models can

well detect the footprints within small areas where the building roof outlooks are

alike but fail to generalize to other areas with buildings of different styles.

(3) The recognition and localization trade-off is challenging to balance. The high-

level features of the images present abstract semantic information to recognize

objects but lack the spatial information for the localization and it’s vice versa

for the low-level features. The sizes of satellite images are usually quite large

and contains buildings of various scales, thus making it more difficult to extract

3https://www.openstreetmap.org
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high level features to achieve correct recognition while preserving the spatial

resolution to produce accurate localization.

(4) The geometric potential of the satellite images has not been fulfilled. Due to the

pixel-wise and grid-based representation of the images, it’s fairly demanding to

learn the geometric information of polygon shapes. The geometric features are

vital for the problem of building boundary regularization, which can help to im-

prove the quality of the building footprints and produce vector-based outputs for

a wider range of applications. Previous works like [2, 3] adopt additional Light

Detection and Ranging (LiDAR) point cloud data rather than images solely to

provide a solution since the point clouds have more evident geometric attributes.

However, it’s not realistic to create large-scale maps with LiDAR point clouds

due to the fact that they are much more expensive than images.

In recent years, deep learning has brought about a revolution in Artificial Intelli-

gence (AI) and become prevailed in the fields of computer vision, speech recognition,

natural language processing, etc and it can produce superior performance compared to

many traditional techniques [4]. In the remote sensing community, deep learning is also

gaining more and more attention and popularity. We investigate the application status

of deep learning models to the topics of remote sensing and building footprint extrac-

tion by respectively counting the total numbers of the annual research papers on related

subjects. The statistic data are collected from the web of science website4. The results

are shown in the figures 1.1 and 1.2. It’s obvious that the research into deep learning for

remote sensing and building footprint extraction has sharply increased since 2015 and

is showing a rapidly growing trend at present. The deep learning models, Deep Neural

Networks (DNN) are able to automatically learn rich and abstract features from large

4https://apps.webofknowledge.com/

3



amount of training data and hold considerable ability of generalization to the testing

(new) data. Besides, they have been proven to achieve the state-of-the-art outcomes

in the area of computer vision, especially for the tasks of object detection and image

segmentation.

Figure 1.1: The number of annual research papers related to remote sensing and deep
learning.

Figure 1.2: The number of annual research papers related to building footprint extrac-
tion and deep learning.

Above all, motivated by the massive usage of the building footprints from satel-

lite images and the challenges of building footprint extraction plus building boundary

regularization and to take advantage of the powers of deep learning, in this study, we

will propose models based on deep neural networks with fully exploration and utiliza-

tion of the spatial, semantic and geometric information to perform automatic building

footprint extraction and tackle the problem of building boundary regularization.

4



1.2 Problem Domain

To build the deep learning frameworks to automatically extract building footprints with

boundary regularization from the satellite images, we formulate the problems into three

major parts: spatial learning, semantic learning and geometric learning.

1.2.1 Spatial Learning

Figure 1.3: Spatial learning: object detection. Red boxes are the bounding boxes of
buildings, which describe the building locations.

The spatial learning is targeted at the object localization problem, which in detail

is to detect the locations of the bounding boxes for building objects (figure 1.3). To

localize the objects in the image, the deep neural networks are designed to extract

spatial features of the objects. We first wrap the possible regions containing the objects

with features and then normalize the wrapped features into features of fixed size. In

this way, the spatial features are extracted and they are also referred as the Region of

Interest (RoI) features. Besides, the classification of the objects in the bounding boxes

are usually performed with the object localization at the same time. So here the object

localization is expanded to object detection.

5



Figure 1.4: Semantic learning: image segmentation. In the binary map at right side,
the white regions stand for the buildings while the black ones are the background.

1.2.2 Semantic Learning

The semantic learning is to classify the pixels of the image, which belongs to the im-

age segmentation task. In our study, since there are two classes, the buildings and the

background, the input image will be segmented into a binary map (figure 1.4). Deep

learning models are able to obtain semantic features at all levels, from low-level edges

to high-level object abstractions. High-level semantics are key to recognize the cate-

gories of the whole object while low-level and middle-level semantics play a significant

role in the classification at pixel-level. Therefore, the ways to combine the semantic

information of various levels from the networks are critical to the segmentation perfor-

mance.

1.2.3 Geometric Learning

Geometric learning in our study is to predict the shapes of polygons. As shown in the

figure 1.5, the footprints with irregular boundaries have no geometric properties while

those with regularized boundaries have the geometric shapes of polygons. We argue

that learning geometric information of polygons provides the solution to the bound-

ary regularization problem. In geometry, polygon shapes can be delineated as polygon

vertices or polylines (edges), which have non-grid structured representations. The geo-

6



metric features extracted from the deep neural networks can be grid-based features with

shape constrains like shape-prior. Non-grid features contain more geometric informa-

tion and can be learned through deep learning models as well. By geometric learning,

the optimal polygon shapes can be produced, thus generating building footprints with

regularized boundaries.

Figure 1.5: Geometric learning: polygon shape prediction.

1.3 Research Objectives

The major research objectives of this study are to establish deep learning models to pro-

vide solutions to the problems of automatic building footprints extraction with bound-

ary regularization from satellite images. The spatial learning, semantic learning and

geometric learning are supposed to be combined in our framework, which will be in-

troduced in the following section.

7



1.3.1 General Research Framework

Our general framework employs the typical supervised learning mechanism illustrated

in the figure 1.6. From the perspective of computer vision, our framework can be

viewed as the instance segmentation model (in the subsection 2.1.3) combined with

geometric learning, which can simultaneously recognize and localize multiple objects,

assign semantic labels at pixel-level and predict polygons of geometric shapes.

Figure 1.6: The general framework of our study.

The input data are satellite images and ground truth annotations of the building

footprints, which are referred as training data. The satellite images are first pre-processed

to inputs of appropriate formats for the neural networks. Our deep learning models are

composed of the backbone network and the building extraction network. The back-

bone network is designed as the feature encoder and object detector, which are able

to learn the spatial information and semantics at object level to localize and classify

the building objects. In addition, the backbone network extracts well-localized RoI

features, which are shared and utilized by the following networks. On the top of the

8



RoI features, the building extraction network is built for semantic and geometric learn-

ing to predict polygons of the building footprints with regularized boundaries. Two

types of architectures of the building extraction networks are created. One is to in-

tegrate polygon shape-prior into the image segmentation network and the integration

is executed in two ways, as post-processing (the Post-Shape model) or by injecting

within the network (the BSPPN model). The other, the R-PolyGCN is to utilize the

graph model as representations of the the non-grid structured polygons and employ the

Graph Convolutional Network (GCN) to learn the geometric shapes. Then the output

footprint polygons are compared with the ground truth through the specially designed

loss functions. The losses are computed and flow back to update the deep learning

models for the network optimization. The whole procedure is a regular training phase

of the supervised learning. The optimized models can be applied to the new dataset

(testing data) for new building footprint extraction tasks.

1.3.2 Contributions

As mentioned before, we identify the key problems and provide the general deep learn-

ing framework for the tasks of the building footprint extraction with boundary regular-

ization. In summary, the contributions of this study are as follows:

• we develop an unified deep learning framework to discover the spatial, semantic

and geometric information from the satellite images to specifically extract build-

ing footprints with regularized boundaries. The models are combinations of the

instance segmentation and geometric learning, which are able to simultaneously

recognize and localize multiple building objects, assign pixel-wise semantic la-

bels and predict polygons of geometric shapes.

• The polygon shape-prior is exploited by being integrated into the deep neural net-

9



works as the guidance to produce building footprints with more geometric prop-

erties, thus preserving more regularized boundaries. Two integration methods

are proposed. The Post-shape model integrate shape-prior at the post-processing

stage while the BSPPN model inject the shape-prior within the networks by a

specially designed polygon-region pooling layer.

• The conventional grid-based pixel representation is replaced with the non-grid

graph model to more geometrically represent the building polygons, which ben-

efits the regularization of building boundaries. To utilize the graph features, the

graph convolutional network is employed and combined with the instance seg-

mentation model to form our R-PolyGCN model.

• The BSPPN and R-PolyGCN models are both able to be trained end-to-end for

multi-task losses thanks to our specially designed training strategies.

• Extensive experiments and analyses are done to evaluate model performances.

1.4 Thesis Organization

This thesis is organized in 7 chapters. Chapter 1 introduces the background and motiva-

tion of our study and clarifies the problem domain and the research objectives. Chapter

2 reviews relevant research work as well as open datasets for building footprint extrac-

tion. In chapter 3, the first part of our framework, the backbone network is presented.

Chapter 4 and chapter 5 give detailed illustrations of our two types of building ex-

traction networks, the shape-prior integration networks and R-PolyGCN. Chapter 6

describes the adopted dataset, the experiments and the evaluation results. Finally, in

chapter 7, we draw the conclusion of this study and specify the future works.

10



Chapter 2

Related Work

In this chapter, the research work related to our study will be introduced. We will di-

vide the related work into four sections including the general deep learning models for

object detection and segmentation (section 2.1), solutions to the problems of building

footprint extraction (section 2.2) and building boundary regularization (section 2.3) and

the introduction to the relevant open datasets (section 2.4).

2.1 Deep Learning for Object Detection and Segmenta-

tion

Deep learning is the major techniques we will apply to build our models to solve the

computer vision problems. Hence, the basic concepts of deep learning for computer

vision and the classic and current deep learning models for the object detection and

segmentation are briefly reviewed in this section.
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2.1.1 Basic Deep Learning for Computer Vision

Basic deep learning models adopt a multi-layer structure to learn the data representa-

tion or features with multiple levels of abstraction [4]. The structure is referred as deep

neural networks. Compared to the traditional techniques that use hand-crafted features,

deep neural networks utilize a complicated combination of linear and non-linear opera-

tions to form a layer-by-layer connected architecture to automatically encode deep fea-

tures from input data. On the top of the features, different frameworks can be employed

to produce outcomes for specific tasks. The procedure from input data to outcomes is

referred as the feed forward of the networks. At the layer n of the network, the feed

forward can be defined as:

zn = wnan−1 +bn

an = σ(zn)

(2.1)

where an−1 and zn denote the input and output of the current layer n; wn and bn de-

note the weight and bias parameters of the layer, which apply a linear operation of

the input; σ denotes the activation function, which usually has nonlinear attributes. In

the supervised learning scenario, the network outcomes are compared with the ground

truth through a objective function, which is typically referred as the loss function and

calculate the distance between the network outcomes and the ground truth. In order

to make the outcomes closer to the ground truth, the networks are then optimized to

minimize the loss function. In detail, the gradients of the loss over the network param-

eters at the last layer are first computed and then propagated back through the whole

networks based on the chain rules. The network parameters are adjusted by their gra-

dients and gradually reach the optimal in a training loop. The optimization approach
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is referred as gradient descent and the whole procedure is called back-propagation [5].

The gradient calculation and the parameter update of the layer n at the training step i

can be formulated as:

∇Li(θ
n
i ) =

δLi

δθ n
i
=

δLi

δ zn
i

δ zn
i

δθ n
i

θ
n
i+1 = θ

n
i −η∇Li(θ

n
i )

(2.2)

where Li is the loss at step i and θ n
i is the network parameters of the layer n; ∇Li(θ

n
i )

denotes the gradient of the loss with regard to the parameters; the parameters θ n
i+1 at

the next step are updated with a learning rate η .

For computer vision tasks, a special form of neural networks, the Convolutional

Neural Networks (CNN) are commonly employed, whose major components are the

convolution layers and pooling layers. A classic CNN architecture is LeNet-5 [6] dis-

played in the figure 2.1 and we use it as an example for the structure of CNN. LeNet-5

Figure 2.1: LeNet-5: a typical CNN architecture.

was proposed to recognize and classify the images of the hand-writing characters. It

has 7 layers in a hierarchy structure including 3 convolution layers (C1, C3 and C5), 2

sub-sampling (pooling) layers (S2 and S4) and 1 fully connected layer. The convolu-

tion layers adopt 5×5 convolution filters with attributes of local connection and weight

sharing. The outputs of each layer are generally referred as features or feature maps.

At each convolution operation, the convolution filters are applied only at fixed-size of
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connected regions because of the strong correlation of the local values of the image or

the feature map. The same convolution filters are operated throughout the whole image

or feature map, which allows the different parts share the same weights and detect the

same visual patterns. The pooling layers merge the 4×4 regions and take the averages,

which can combine the locally similar semantics to generate more abstract high-level

features. The fully connected layer is applied to generate predictions from the feature

maps.

2.1.2 Models for Object Detection

Object detection is a heated topic in deep learning and computer vision community and

it is also our major concern in this study. The deep learning models for object detection

can be categorized into two groups: two-stage and one-stage models.

Two-stage models: these models generally utilize a two-stage detection pipeline:

the region proposal generation and the refined localization and classification, which

can be considered as a coarse-to-fine scheme. The Region-based Convolutional Neural

Network (R-CNN) is the meta-model for the two-stage models. The R-CNN model first

came up in the paper [7], which adopts a search algorithm to produce about 2000 region

proposals from the image and fed these regions into CNN to extract features. Then the

support vector machine (SVM) [8] is used to classify the regions and predict bounding

boxes based on the extracted features. Fast R-CNN [9] inputs the image into CNN first

to extract a feature map and crop the region proposals with the feature map to generate

the region of interest (RoI) features. For localization and classification, Fast R-CNN

employs the fully connected layer and the softmax function [10]. Compared to R-

CNN, Fast R-CNN applies CNN over the whole image once thus getting rid of feeding

2000 regions into CNN every time. However, both of them need a pre-processing step
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to generate the region proposals, which is a selective search algorithm and costs too

much time. To address the problem, Faster R-CNN [11] abandons the search algorithm

and designs a Region Proposal Network (RPN) to generate proposals from pre-defined

anchor boxes. The RPN utilizes the power of the convolution neural network to let

the region proposals directly be learned from the networks, thus speeding up the whole

process and improving the detection accuracy.

One-stage models: These models skip the stage of the region proposal generation

and directly apply the one-shot detection over densely sampling possible locations of

the input image. The advantage of the one-stage models over the two stage ones is

that they are more efficient because of their simplified and unified network design.

YOLO [12] splits the image into fixed-size of grids, on each of which the CNN is

applied to predict the bounding boxes and class probabilities. SSD [13] additionally

employs a series of convolution layers with decreasing sizes to extract the pyramid

of multi-scale features, on which objects of different sizes can be detected. Recent

works like [14, 15] accomplish the object detection by directly using CNN to detect

representative key points of objects like corner points or center points, from which the

bounding box predictions can be produced.

2.1.3 Models for Image Segmentation

Image segmentation is the core issue in our study and huge amount of efforts have also

been invested in this area by the deep learning researchers. Generally there are two

types of segmentation, semantic segmentation and instance segmentation, whose dif-

ferences are shown in the figure 2.2. The semantic segmentation is to assign the class

labels to every pixel of the image (in the middle part of the figure, image pixels are

labeled according to their categories) while the instance segmentation can also produce
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Figure 2.2: Semantic segmentation and instance segmentation1.

semantic pixel-wise labels but additionally predict instance-aware labels, that is, dis-

tinguish the individual objects (different chairs are separated using labels of different

colors in the right part of the figure).

Semantic segmentation models: Fully Convolutional Network (FCN) [16] is a

typical deep learning model for the semantic segmentation, which is illustrated in the

figure 2.3. The input image is fed into the common convolution layers and pooling

Figure 2.3: Architecture of FCN for semantic segmentation. The figure copyright is
owned by [16].

layers, at the end of which the down-sampled features are obtained. Here FCN learns a

deconvolution layers to up-sample the feature map to the resolution of the image size.

On the up-sampled feature map, pixel-wise prediction is applied to produce semantic

segmentation results. On the basis of FCN architecture, SegNet [17] and U-Net [18]

1https://towardsdatascience.com/review-deepmask-instance-segmentation-

30327a072339
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design a encoder-decoder structure where the decoder part is utilized to more precisely

learn the up-sampling of the feature map. To do so, SegNet passes the pooling indexes

from the encoder to the the decoder. U-Net transfers the features from the encoder to

those of the decoder to form a combination of features from different scales, allowing

it to be more capable of detecting small objects and segmenting images with dense

number of objects.

Instance segmentation models: Two approaches are generally adopted to achieve

instance segmentation. One is to first perform semantic segmentation over the image

and then apply instantiation by grouping connected pixels to identify individual objects.

This pipeline is utilized by DeepMask [19] and SharpMask [20]. The other approach

is put forward by Mask R-CNN [21], whose architecture is presented in the figure 2.4.

In short, Mask R-CNN first performs instantiation and then segmentation. The object

Figure 2.4: Architecture of Mask R-CNN for instance segmentation. The figure copy-
right is owned by [21].

detection network (almost same with Faster R-CNN) is employed to distinguish and

localize objects. The detection part can also generate well-localized RoI features, over

which the semantic segmentation model FCN is applied to obtain object masks. The

whole network has an end-to-end unified design. The segmentation accuracy of Mask

R-CNN surpasses the models adopting the first approach on most of the benchmarks.
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2.2 Building Footprint Extraction

Deep learning has been aggressively utilized for the building footprint extraction and

has outperformed many traditional methods. Most of the research works simply ap-

ply the existing CNN models or their variants, for instance, the segmentation models

introduced in the subsection 2.1.3. Hence, we divide the related works into semantic

segmentation models and instance segmentation models.

Semantic segmentation models: Early works [22] trained a basic CNN for build-

ing labeling, which only contains three layers including one convolution layer, one

pooling layer and one fully connected layer. It shows competitive results compared to

other complicated traditional algorithms but the simple CNN is quite sensitive to the

hype-parameter setting. More recent works employ more complex CNN models. [23]

designs a multi-layer perceptron (MLP) structure, which has a skip connection similar

to the U-Net to combine features of different scales. The SegNet is directly used by [24]

to train an additional loss representing the distance to the building boundary apart from

the pixel-wise classification loss. [25] utilizes the U-Net as the basic model with mul-

tiple constraints, which restrict the outputs from feature maps of different scales to be

compared with the ground truth images of corresponding scales. Other works adopt the

data-fusion idea to boost the segmentation performance and still use the semantic seg-

mentation models to deal with data of multi-sources. LiDAR point clouds and images

are combined in [26] through a U-Net model. [27,28] employ the U-Net architecture to

utilize the satellite images and GIS maps like OpenStreetMap, Google Map and so on

to take advantage of the more precise vectorized maps. Digital Surface Model (DSM)

serves as auxiliary data to the image data in [29] and a FCN model is adopted. Besides,

the generative models, Generative Adversarial Networks (GAN) are gaining more and

more interests and are recently applied to the semantic segmentation for the building
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footprint extraction. [30] designs a matching-GAN architecture, which modifies the ba-

sic GAN model by using a matching network as the alternative of the discriminator and

successfully applies the matching GAN to semantic segmentation tasks. [31] employs

the U-Net enhanced by the GAN model with spatial and channel attention mechanisms

to produce more discriminative prediction maps and tackle segmentation ambiguities.

Instance segmentation models: The application of the Mask R-CNN is explored

in [32] for the building extraction problem and achieves a satisfying instance segmen-

tation performance. [33] further improves the Mask R-CNN model by introducing the

rotational bounding boxes to enhance detection quality and stacking the receptive field

blocks to handle scale viability issues.

We find that the semantic segmentation models are fairly popular for the research of

building footprint extraction, especially the U-Net, which are able to recognize small

buildings. By contrast, the instance segmentation models are not fully explored and

still have huge potential to provide better solutions because the buildings in the large-

scale images are usually closely situated or connected (especially in the urban areas)

and the instance segmentation models are able to properly separate them.

2.3 Building Boundary Regularization and Geometric

Learning

The building boundary regularization is one of the center problems of our study, which

is typically associated with geometric learning of polygon shapes. Therefore, in this

section we will introduce several different solutions to the problem and many of them

adopt the geometric learning.

Traditional methods: Before the deep learning era, the building footprint extrac-
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tion relies more on the processing of the LiDAR point clouds than the images because

the point clouds hold the spatial locations of the points, which are more geometrically

meaningful. [2, 3] mainly use point cloud data and adopt a Binary Space Partitioning

(BSP) process and a Minimum Description Length (MDL) based algorithm to gen-

erate and optimize the building polygon shapes for building footprint detection and

boundary regularization. The papers also accomplish the 3D building roof reconstruc-

tion. [34] also employs similar shape optimization algorithms to extract regularized

building polygons from point clouds.

Image segmentation methods: Many segmentation models are specially designed

to attach attentions to the building boundaries or to learn more geometric information.

To fully exploit the boundary information, [35] feeds the fusion of the images and

Digital Elevation Model (DEM) to the SegNet model combined with extra edge and

boundary predictions produced from the FCN model and adopt a multi-task learning

(ensemble learning in the paper) strategy. [24,36,37] also utilize the multi-task learning

scheme to train additional boundary loss on FCN or U-Net models, among which [36,

37] claim that they can produce building boundaries with regularities. Moreover, some

conventional polygonal models such as the active contour (ACM) or snake model [38]

are recycled in the modern CNN architectures. The deep structured active contours

(DSAC) [39] and the deep active ray network (DARNet) [40] both integrate the ACM

model into their segmentation networks to learn richer geometric information to better

predict the polygon contours and delineate the building boundaries. Nevertheless, the

segmentation models still produce pixel-wise building polygons, which are unlikely to

output building polygons with perfectly smooth and regularized boundaries.

Polygon learning methods: There are also deep learning models trying to di-

rectly generate polygons instead of pixel-wise segmentation maps. Many of them do
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so by producing the optimal locations of the polygon vertices and linking the predicted

vertices with straight lines, which will intuitively produce polygons with regularized

boundaries. Simple works like [41] uses a fully connected layer to predict the coor-

dinates of the vertices, which falls short of the involvement of any geometric infor-

mation. PolyRNN [42] and PolyRNN++ [43] employ the recurrent neural networks

(RNN) to predict the locations of polygon vertices in sequence, that is, the current ver-

tex prediction is influenced by the previous predictions. These two models are applied

for semi-automatic annotation with bounding boxes provided, thus failing to produce

object detection results in their frameworks. [44] borrows the ideas of PolyRNN and

Mask R-CNN to build a unified pipeline to accomplish object detection and sequential

polygon vertex prediction and applies the framework on large-scale image datasets to

extract building footprints and road lines. CurveGCN [45] explores the usage of the

graph convolutional networks (GCN) to produce polygons as a graph representation,

which is much more efficient and utilize more geometric features than RNN models.

However, like PolyRNN and PolyRNN++, CurveGCN is also used for annotation tasks

and is unable to perform object detection.

Shape-prior or shape-primitive learning methods: Shape-prior or shape-primitive

are essential to learn geometric shapes like polygons. Here we investigate some state-

of-the-art deep learning models integrated with them, even though many of the models

are not aimed to predict polygon shapes or extract building footprints but they are

rather promising to be applied to produce polygons with better qualities and improve

the building boundary regularization. [46, 47] both design a super-pixel pooling net-

work (SPPN) to combine the contexts of super-pixels into their models. Shape priors

with convolutional neural networks (SP-CNN) and tunable SP-CNN (TSP-CNN) [48]

create the shape-prior templates and design a learnable shape-prior layer to guide the
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networks to learn shape-prior information more appropriately to detect cell nucleus

with diverse shapes. ShapeMask [49] also creates a collection of shape-prior templates

by clustering the masks in the ground truth and the shape-prior is utilized to refine the

coarse mask prediction. The whole pipeline is incorporated into an unified instance

segmentation model. 3D shape-primitive RNN (3D-PRNN) [50] builds a generative

recurrent neural network to learn 3D primitive representations of objects. DeepPrimi-

tive [51] proposes a novel framework to learn the 2D shape-primitives and predict the

sequences and relations of the shape-primitives to represent a complete object.

2.4 Open Datasets for Building Footprint Extraction

To evaluate the models for the building footprint extraction, various open datasets are

publicly available. Generally the datasets comprise aerial or satellite images and build-

ing footprints annotated with pixel-wise labels or object-wised labels, which refers to

the coordinates of building polygons at object-level. The details of some state-of-the-

art datasets are presented here.

• Massachusetts datasets [22] cover about 340 km2 of the City of Boston with

151 RGB aerial images. The image size is 1500×1500 pixels for an area of 2.25

km2 and the image resolution is 100 cm, which is relatively lower than other

datasets. The annotations were made from OpenStreetMap2and rasterized into

binary images with building footprints as the foreground, thus indicating that

they are pixel-wise labels.

• ISPRS benchmark on urban object classification and 3D reconstruction [52]

provides aerial imagery for two cities, Vaihingen and Potsdam with 38 and 33

2https://www.openstreetmap.org
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image patches respectively. The Vaihingen images have a size of 6000× 6000

pixels and a high resolution of 5cm while the Potsdam images are of 2500×2500

pixels and 9cm resolution. All the images are 4-band of IRGB (near infrared, red,

green and blue) and are labeled at pixel-level for the landcover classification task

with six classes including impervious surfaces, building, low vegetation, tree, car

and clutter. The benchmark also contains corresponding digital elevation model

(DEM) data and the Point Cloud (PC) data of Vaihingen and Toronto for the 3D

building roof reconstruction task.

• Inria aerial image labeling benchmark [53] has satellite images for 10 cities

in Austria and USA. Each region has a area of about 81km2 covered by 36 image

tiles with the size of 1500×1500 pixels, the resolution of 30cm and RGB bands.

The images are pixel-wise labeled into building and non-building classes.

• Toronto city benchmark [54] covers about 712.5km2, a large region of the

greater Toronto area (GTA) with aerial images of 10 cm resolution. The anno-

tations consist of around 400,000 building footprints and 8,439km of road. The

building annotations include both pixel-wise labels and object-wised vectorized

polygons. Corresponding point cloud data are also provided.

• AIRS (Aerial Imagery for Roof Segmentation) dataset [55] covers about 457km2

of land of the city of Christchurch, New Zealand with aerial images of 7.5cm res-

olution and RGB bands. The annotations consist of over 220,000 buildings with

both pixel-wise and object-wised labels. In addition, the building roof outlines

are specially refined and aligned.

• SpaceNet building dataset [56] contains 24,586 satellite images covering a total

area of around 3011km2 for four cities, Las Vegas, Paris, Shanghai, and Khar-
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toum which are from four different continents with the coverage of both rural and

urban regions to bring about fairly high diversity of building roof styles. Various

types of images are provided, including single-band panchromatic, RGB images

and 8-band multi-spectral images with pan-sharpened and unpan-sharpened ver-

sions. The RGB images have the size of 650×650 pixels and resolution of 30cm

and each image covers 200m×200m area. 302,701 building footprints are anno-

tated at object-level.

The Statistics of the datasets are summarized in the table 2.1. For the building foot-

print extraction task, all the datasets mainly provide aerial images of RGB or multi-

spectral and some contain REM or point cloud as auxiliary data. The image resolution

ranges from several centimeters to one meter. The building footprints have two types

of annotations, including pixel-wise labels which refer to binary images with the pixels

Table 2.1: Statistics of state-of-the-art datasets for building footprint extraction

Dataset Massachusetts ISPRS Inria Toronto AIRS SpaceNet

Location Boston
Vaihingen/

Potsdam

10 cities in

Austria/ US
GTA Christchurch

Las Vegas, Paris,

Shanghai, Khartoum

Coverage(km2) 340 1.4/3.4 810 712.5 457 3011

Data Type RGB
IRGB+DEM

+PC
RGB RGB+PC RGB

single-band+

RGB+8-band

Image Amount - 38/33 360 - - 24586

Image Resolution

(cm/pixel)
100 5/9 30 10 7.5 30

Image Size (pixels) 1500×1500
6000×6000/

1500×1500
1500×1500 - - 650×650

Annotation Amount

(Building Polygons)
- - - >400,000 >220,000 302,701

Pixel-wise Labels yes yes yes yes yes yes

Object-wised Labels no no no yes yes yes
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of buildings categorized as foreground and object-wised labels, which are individual

building polygons with the coordinates of the polygon vertices. The pixel-wise im-

ages are equipped with only semantic information while the object-wised polygons are

able to provide additional geometric attributes, which are essential to learn the polygon

shapes of the buildings. Furthermore, note that the object-wised labels can be conve-

niently converted into the pixel-wise ones and the conversion process is irreversible,

which suggests that the object-wised labels are of potential for much wider range of

applications. Therefore, only the dataset with object-wised labels are considered, in-

cluding Toronto city benchmark, AIRS dataset and SpaceNet building dataset. In view

of the data diversity, we select SpaceNet dataset for our experiments because it covers

four cities with various building roof outlooks.

2.5 Summary

In this chapter, we present the related work. First, the basic concepts of deep learning

and CNN is introduced. Then we illustrate the object detection and image segmentation

models, which will be frequently adopted in our study. Next, the semantic segmenta-

tion and instance segmentation models for the building footprint extraction are demon-

strated, where we observe that instance segmentation models can be further utilized for

our applications. Lastly, solutions to the building boundary regularization are reviewed.

Most of the works employ geometric learning to predict building polygons with reg-

ularized boundaries. The models integrated with shape-prior or shape-primitive are

introduced. All of the research provide inspirations to our novel models.

25



Chapter 3

Backbone Network

In this chapter, we will introduce the backbone network. In deep learning models,

the backbone network like VGG-16 [57] is usually used to extract features from input

data. Our backbone network is also designed as a feature encoder. Besides, it also

has the function of object detection and localization with spatial and semantic learning.

Eventually, the backbone network will output well-localized region of interest features,

which will play a significant role in our following models in next chapters.

3.1 Overview

The backbone network is designed for feature encoding and building object detection

and localization. We utilize a combination of Residual Network (ResNet) [58] and

Feature Pyramid Network (FPN) [59] to extract deep features at multiple scales. To

detect and localize building objects, a two-stage object detection model is employed

including the Region Proposal Network (RPN) [11] and a localization layer, including

bounding box regression and classification layers. Besides, to obtain well-localized

26



Figure 3.1: Backbone Network

RoI features for each target building object, we also apply a RoIAlign layer [21] to

precisely crop the bounding boxes with the feature map. The localized RoI features

will be essential in the future tasks like pixel-wise segmentation or geometric shape

learning. The whole structure of the backbone network is illustrated as figure 3.1.

3.2 Feature Encoding

Figure 3.2 shows the details of the feature encoding network that we are using. It’s

divided into the bottom-up and the top-bottom pathways. At the bottom-up stage, the

image is input into a five-stage (C1 - C5) ResNet, where each stage of ResNet consists

of several convolution layers and applies 2×2 pooling at the last layer to downsample

the feature map to half size. The residual blocks are adopted in the convolution mod-

ules of the bottom-up part to make the networks deeper and the features better. The

top-down part of the network integrates features from different scales generated from

the bottom-up part. It first applies a 1× 1 convolution kernel to the current feature

27



Figure 3.2: Multi-Scale Deep Feature Encoding1

map and add it to its upsampled previous feature map element-wise. To reduce the

distortion effect of upsampling, it also learns a 3× 3 convolution kernel to output the

feature maps, which have different scales: P5 (32×32), P4 (64×64), P3 (128×128),

P2 (256× 256). The numbers 1-5 here represent the levels of scales of the feature

maps. Detecting objects at different scales is an essential task since our input satellite

images cover lager area of lands and contain many building objects with various sizes.

The multi-scale feature maps obtained from the feature encoding network are capable

of recognizing building objects from different scales compared to those using feature

maps of only one scale.

On the top of the multi-scale feature maps, we utilize a two-stage object detection

network (figure 3.3) including a RPN layer, a bounding box regression and classifica-

tion layer and a RoIAlign layer, which will be introduced in the following subsections.

1https://medium.com/@jonathan_hui/understanding-feature-pyramid-networks-for-

object-detection-fpn
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These three components are connected as our localization network to produce precisely

localized RoI features.

3.3 Localization

Figure 3.3: Localization Network2. In the end of the flowchart, N means the num-
ber of the bounding boxes detected; the box coordinates (x1, y1, x2, y2) refer to the
coordinates of the top-left and bottom-right corner points of the bounding boxes; the
box class (S f ,Sb) denotes the class scores for the labels of foreground (building) and
background (non-building).

The RPN first takes the features and pre-defined anchor boxes to generate the initial

proposed bounding boxes, which are used to crop with the feature maps to get the

cropped features. The RoI pooling is then operated on the cropped features to obtain

RoI features, which are fed into the box regression and classification layer to produce

the coordinates and class scores of the refined bounding boxes. Lastly, the multi-scale

feature maps and the final bounding boxes are input into the RoIAlign layer to generate

precisely localized RoI features.

2https://medium.com/@jonathan_hui/understanding-feature-pyramid-networks-for-

object-detection-fpn
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3.3.1 Region Proposal Network

Figure 3.4 shows the structure of the region proposal network (RPN). The inputs of

RPN are the multi-scale feature maps and pre-defined anchor boxes. For different

strides on the input image, we generate anchor boxes with different sizes and width-

to-height ratios. In our network, the stride values are assigned as {4,8,16,32,64}

Figure 3.4: Region Proposal Network. The image copyright is owned by [11].

and anchor box sizes and shapes are set as {32,64,128,256,512} and {0.5,1,2}. The

anchor shape here refer to the ratio of the width to the height of the box. In this way,

we can obtain 261888 anchor boxes and each anchor box corresponds to an unique

entry of the multi-scale feature maps. In the region proposal network, on each entry of

the feature maps, it will predict bounding box proposals for the corresponding anchor

boxes through a box regression layer and class scores through a classification layer. The

classification layer here is designed to distinguish positive and negative boxes, which

means the boxes contain objects or not. So the class scores of RPN are objectness

score. The bounding box proposals are then filtered by a Non-Maximum Suppression

(NMS) based on a threshold on the objectness score to reduce its total numbers and to

maintain the ratio of the positive and negative proposed boxes (usually 3:1). The box
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proposals are more close to object locations in the image compared to the input anchor

boxes but still need further improvement, which will be done in subsection 3.3.2.

3.3.2 Localization Layer

The multi-scale feature maps are cropped using the box proposals from RPN. In the

cropping process, we pick the feature maps to crop based on the size of the box pro-

posals according to the equation 3.1, following [59].

k = [k0 + log2(
√

wh/224)] (3.1)

where w,h are the wdith and height of the box proposal; k0 = 4 and k is the level of

scale (defined in 3.2) we select as the feature map to crop. Since the cropped features

have various sizes, we feed them into a RoI pooling layer to normalize them into RoI

features with the fixed size (14× 14). The cropping operation here involves a feature

scale selection, thus allowing the feature scales to match the size of the detected ob-

jects, which means feature maps with larger resolution correspond to smaller objects

and those with smaller resolution correspond to bigger objects. Finding these corre-

spondence takes advantage of the multi-scale feature maps and can exploit richer and

more accurate semantic information from different scales. Then like RPN, in the local-

ization layer, the box regression and classification layer is applied to the RoI features

to predict the coordinates and class scores of the bounding boxes. This second-time

localization can further refine the bounding box proposals generated from RPN. Note

that the class scores here are estimated probabilities for each class (building and non-

building).
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3.3.3 RoIAlign

Figure 3.5: RoIAlign. The image copyright is owned by [21].

The coordinates of the RoI features are usually floating numbers produced from the

box regression layer while the cropping and RoI pooling (in subsection 3.3.2) will sim-

ply convert them into integer numbers in a quantization process, thus causing rounding

errors and misalignment. Mask R-CNN [21] investigates that simple cropping and RoI

pooling are not sufficient to get precisely localized feature maps for pixel-wise seg-

mentation, which requires pixel-level accuracy. Therefore, it designs a RoIAlign layer

(in figure 3.5) to tackle the misalignment problem and improve the accuracy of the

RoI features. Instead of directly taking the integer of the floating RoI coordinates with

roundoff errors in the cropping and RoI pooling, RoIAlign reserve the floating coordi-

nates and use the differentiable bilinear interpolation to get the values of floating points

and the final localized RoI features.

3.4 Loss Design

For the whole backbone network, we need to calculate losses for the object detection

of two stages, RPN and box regression and classification. The loss functions for both

stages deal with two types of losses, box regression loss and classification score loss,

thus forming a multi-task training scenario.
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Following Faster R-CNN [11], the box deltas are calculated as inputs of the box re-

gression loss function rather than box coordinates. The deltas are defined as following:

tx = (x− xa)/wa, ty = (y− ya)/ha, tw = log(w/wa), th = log(h/ha),

t∗x = (x∗− xa)/wa, t∗y = (y∗− ya)/ha, t∗w = log(w∗/wa), t∗h = log(h∗/ha)

(3.2)

In the equation of box regression, x,y,w and h represent the coordinates of the

center point of the bounding box and its width and height. Respectively, x,xa,x∗ are for

the predicted box, anchor box and ground truth box (likewise for y,w,h). Our backbone

network will predict the box deltas (tx, ty, tw, th), which are equivalent to the regression

from an pre-defined anchor box to a predicted box. To compare the predicted box deltas

with the ground truth ones (t∗x , t
∗
y , t
∗
w, t
∗
h ), which represent the regression values from an

anchor box to its closest ground truth box, we adopt the smooth L1 loss:

Lreg(t, t∗) = ∑
i∈x,y,w,h

smoothL1(ti− t∗i ) (3.3)

where a smoothL1 loss [60] is used here:

smoothL1(x) =


0.5x2 if|x|< 1

|x|−0.5 otherwise

(3.4)

As for the classification score loss, we compute a binary cross entropy loss since

it’s a binary classification problem:

Lcls(p(y)) =−(ylog(p(y))+(1− y)log(1− p(y))) (3.5)

in which y is the class label predicted (0 or 1) and p(y) is the probability score for the
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class label.

When training RPN, the anchor boxes are assigned class labels as positive or neg-

ative, which we refer as objectness scores. The box proposals are also generated as a

coarse localization results. Therefore, based on equations 3.3 and 3.5, we define RPN

loss as:

Lrpn(pob j, trpn) =
1

Ncls

Ncls

∑
i=1

Lcls(pob j
i (y))+

1
Nbox

Nbox

∑
i=1

Lreg(t
rpn
i , t∗i ) (3.6)

where pob j and trpn are the objectness scores and proposed box deltas by RPN and Ncls

and Nbox are the number of all the boxes (both positive and negative) after NMS and the

number of the positive boxes. Only box deltas of positive ones are used for box regres-

sion since negative boxes containing no objects have no contributions here. Sometimes

we need to balance the classification loss and box regression loss with weight coeffi-

cients. However, according to [11], different coefficients make little difference to the

performance. So here we simply add the two losses without using any coefficients.

The localization layer classifies the boxes into two classes, building and non-building

and produces final location predictions of the bounding boxes. For these two tasks, we

compute a localization loss and a similar loss function design is adopted:

Lloc(pclass, t loc) =
1

Ncls

Ncls

∑
i=1

Lcls(pclass
i (y))+

1
Nbox

Nbox

∑
i=1

Lreg(t loc
i , t∗i ) (3.7)

where pclass and t loc are the class scores and the predicted bounding box deltas and Ncls

and Nbox are the number of all the boxes (both positive and negative) from RPN and

the number of the positive boxes. Since these losses will be trained with others in the

following chapters, the training strategies will be discussed later.
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3.5 Summary

In this chapter, the backbone network is introduced, which is utilized to extract multi-

scale features and classify and localize the target objects (buildings) from input images.

It is also designed to obtain well-localized RoI features, which are the fundamentals of

the framework in the next chapters. Overall, our backbone network is a typical two-

stage object detection network, which employs a coarse-to-fine pipeline. To train the

backbone network, a two-stage and multi-task loss function is presented.
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Chapter 4

Shape-prior Integration

Network

In this chapter, we will propose our first building extraction network following the

backbone network to address the problems of building extraction and boundary regu-

larization, an integration model of polygon shape-prior and deep neural networks. Two

ways of integration will be introduced.

4.1 Overview

On the top of the backbone network from chapter 3, we integrate shape-priors into the

model as the guidance to discover and learn polygon geometric information, specifi-

cally aiming to obtain more regularized building boundaries. The shape-prior integra-

tion is done in separately two ways: one is to apply a Minimum Description Length

(MDL) based model to iteratively optimize the shape of the building polygons at the

post-processing stage (outside of the neural network); the other is to inject the shape-
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prior within the network through a polygon region pooling layer, thus making network

trainable end-to-end. Both models are instance segmentation networks springing from

the meta framework for object instance segmentation, Mask R-CNN [21].

4.2 Post-Shape

The first way to integrate shape-prior, referred as post shape, is to utilize a MDL based

optimization as a post-processing step, which is a polygon shape optimization algo-

rithm and can specially exploit the distinct building geometric information. Before that

we combine the backbone network and a mask prediction network to design an instance

segmentation network to generate pixel-wise segmentation masks of building regions.

4.2.1 Mask Generation

Figure 4.1: Mask Prediction. A combination of the backbone network and a FCN
branch as the mask prediction network. The FCN is applied on the RoI features for
each target building.

As shown in figure 4.1, we predict the pixel-wise mask of the target building from

the localized RoI features extracted from the backbone network. The combination of

the backbone network and the mask prediction network is a typical instance segmenta-

tion model. To complete the segmentation task for each target building, a FCN (Fully

37



Convolutional Network) branch (figure 4.2) is adopted on each RoI feature to predict

the class probability of every pixel, that is to estimate whether it belongs to building

class or non-building. The FCN branch consists of several convolution, batch normal-

ization (Bn) and ReLU layers to learn the mask features and one deconvolution layer

to increase the resolution. Lastly, a sigmoid activation layer is added to produce the

pixel-wise mask logits, which can be used to compute the segmentation loss. The mask

logits have 2 channels, representing the probabilities for two classes, background (non-

building) and foreground (building). At the inference stage, a threshold 0.5 is used to

obtain a binary image from the foreground mask logits so that we can get the pixel-wise

segmentation mask for building and non-building regions.

Figure 4.2: FCN Branch. The input RoI feature (14×14×256) is first fed into several
3×3 convolution layers, batch normalization and ReLU layers. The convolution layers
here will not change the size or the depth of the input feature. Then a deconvolution
layer is used to double the feature size to 28× 28× 256. Two 1× 1 convolution ker-
nels are then applied to get a 28× 28× 2 feature map, which is fed into the sigmoid
activation layer to produce the mask logits.

4.2.2 Minimum Description Length based Post-processing

Figure 4.3: Post-processing for building boundary regularization. The initial mask
representing the building region (the red region) is the output of the mask prediction
network. By tracing the region border, the initial boundaries (red points) are obtained.
Then we take a coarse-to-fine step to get the regular boundaries (black lines).
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By tracing the border of a building regions, we can get the initial polygons for

the buildings. These polygon vertices correspond to building boundaries and have nor-

mally an irregular shape. To create the building polygons with more regular boundaries,

we utilize a MDL based optimization algorithm at the post-processing stage to convert

the outcome of the network into regularized polygons of buildings. Inspired by our pre-

vious work [61], the boundary regularization process takes the following coarse-to-fine

steps: initial modeling to get coarse boundaries and model optimization to refine the

boundaries. The optimization consists of two steps: hypotheses generation and MDL

optimization. The whole procedure is briefly illustrated in figure 4.3.

Initial modeling: The initial polygon points are first converted into simplified

shaped polygons, by the Douglas-Peucker (DP) [62] algorithm . A set of representative

line slopes are estimated based on the results of DP, with which the initial polygon is

adjusted by applying weighted least-square adjustment method.

Hypothesis Generation: A triplet of vertices are selected (non-selective to the se-

lection order) from the initial polygon, as described in figure 4.4. We label the triplet

points as Anchor Point (AP), Floating Point (FP) and Guiding Point (GP) in a sequen-

tial order. Then, we generate two basis lines: Floating Line (FL), which is a set of

AP and FP, and Guiding Line (GL), which is a set of GP and FP. A group of local hy-

pothetical models are generated by moving FP along GL following the representative

line directions estimated. We also allow the elimination of FP for hypothetical model

generation. In this case, new FP and GP are selected by shifting the previously selected

point triplet in a sequential order. Both clock-wise and counter-clockwise are selected

to generate local model hypotheses for each point triplet.

MDL Optimization: MDL framework is selected for determining an optimal model

hypothesis among the generated candidate models. The Description Length (DL) of a
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Figure 4.4: Hypotheses generation. The black nodes in the first figure are initial points
as input and second figure is processing the first anchor points and the third one is
processing the next anchor point. The red points represent the selection of hypotheses.

model in MDL framework is decomposed into two parts: (i) model closeness favoring

low residuals between boundary points extracted by boundary tracing algorithm and

hypothesized model; (ii) model complexity favoring simpler model with respect to the

number of vertices, the number of representative line slopes and closeness to orthogo-

nal angles. The detail of the MDL encoder adopted in this study is described in [2, 3].

The MDL optimization process is applied for determining the best model hypothesis

locally over point triplet selected. Then, a globally optimized hypothesis is chosen

by selecting a model to produce the minimum DL among all local optimum solutions.

The same process is sequentially applied to all point triplets. The optimization step

is able to produce building polygons which have the least localization errors as well

Figure 4.5: MDL based polygon optimization. The initial polygon is firstly quanti-
fied into vertex coordinates; in the figure we generate four different hypotheses and get
four models to describe the polygon; then a global optimization based on the model de-
scription length is applied to select the model with the highest closeness and the lowest
complexity. The polygon in the red square is selected here as the optimal outcome.
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as the most simple shapes ans most regularized boundaries. The overall optimization

procedure including the hypotheses generation is displayed in 4.5.

4.3 BSP Pooling Network

In addition to integrating the shape-prior outside of the network, we design the BSP

Pooling Network (BSPPN) to inject the polygon shape-prior within the common in-

stance segmentation network and train the network in an end-to-end fashion. We argue

that integrating the shape-prior within the network has three major benefits: with addi-

tional polygon shape cues, the segmentation network can produce more polygon-like

results and the boundaries can be more regularized; thanks to the deep neural network,

the polygon geometric information can be automatically and implicitly learned and

its expression complication and abstraction can be enhanced compared to those from

hand-crafted algorithm; the MDL based post-processing is quite time-consuming and

an end-to-end unified network has higher efficiency. We adopt a Binary Space Parti-

tioning (BSP) process to extract the polygon shape-prior and design a polygon region

pooling layer to integrate the shape-prior into the network. The incorporation of these

components and the backbone network (in chapter 3) is our unified BSP pooling net-

work (BSPPN).

4.3.1 Binary Space Partitioning Process

A typical BSP algorithm [63] can recursively subdivide the image space into hypoth-

esis polygons with straight line segments. For our application, we borrow the idea of

classical BSP and modify it to generate polygon regions. In detail, we firstly detect

the edges of the input image and extract straight line segments from edges then extend
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the line to divide the image space into several polygon spaces. The whole process is

illustrated as below:

Figure 4.6: Our BSP process. From left to right are the input image, image edges,
straight line segments, polygon regions and BSP map.

We argue that the polygon regions of BSP map represent certain shape prior and

geometric features of the building polygon. The straight lines of the polygon regions

can also help to smooth and regularize the building boundaries.

4.3.2 BSP Pooling Layer

The pooling layer in deep neural network typically operates the pooling function over

n×n image grid regions. To integrate and utilize the BSP map as shape-prior in the net-

work, a BSP pooling layer, inspired by a super-pixel pooling network [46], is specially

designed to perform pooling operation over each polygon region in the BSP map rather

than regular grid regions. As shown in figure 4.7, with the feature map and BSP map

as inputs, the BSP pooling layer, a polygon-region pooling layer is able to generate

polygon-region constrained feature maps. Given that the height and width of the input

feature map is X, Y and its depth is C and the number of the polygons in BSP map is

K so that we have a input feature map (C, X, Y) and a BSP map (K, X, Y), in the BSP

pooling layer the pixel values from the feature map is averaged out if they belong to the

same polygon region in the BSP map. In this way, a (K, C) pooled feature map can be

generated. Then BSP un-pooling is used to restore the (K, C) pooled feature map back

to (X, Y) BSP feature map, which simply aggregates the features from C channels and
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fill them into corresponding polygon regions in the feature map.

Figure 4.7: BSP Pooling Layer:

More computation details of BSP pooling layer are presented here. Considering

that each element of the input feature map is Idi j (d = 1, ...,C; i = 1, ...,X ; j = 1, ...,Y )

and each polygon region of BSP map is Pt (t = 1, ...,K), the BSP pooling outcome for

each polygon region Bdt is calculated as:

Bdt =
1
Nt

∑
(i, j)∈Pt

Idi j (4.1)

in which (i, j) ∈ Pt means the elements in the feature map that belong to tth polygon

region and Nt denotes the total number of the elements in tth region.

For the back-propagation during the network training, the gradient update of BSP

pooling layer is defined as:

δBdt

δ Idi j
=


1
Nt

if(i, j) ∈ Pt

0 otherwise

(4.2)

In BSP pooling layer, the BSP map provides critical polygon shape information

to guide the pooling operation, which is constrained to collect features only from the
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same polygon region in the input feature map to represent one homogeneous feature

for the corresponding polygon region. In this way, we argue that the building polygon

shape-prior information is integrated into our network. Besides, integrating polygons

with more smooth boundaries from BSP process into the neural network can benefit

the boundary regularization task.

4.3.3 Architecture of BSP Pooling Network

Figure 4.8: BSPPN Architecture.

As illustrated in figure 4.8, our BSPPN combines the backbone network, BSP pro-

cess, BSP pooling layer and FCN to predict its segmentation masks for target buildings.

We first input the image into the backbone network to get the target buildings and cor-

responding RoI features. The images of the target buildings are input into the BSP

process to generate the BSP maps, which possess shape prior of polygon regions. Note

that BSP process happens outside of the network, thus not participating the network

training and not optimized by gradient descent. The RoI features are fed into a FCN

layer to output pixel-wise FCN feature maps. The FCN layer shares the same structure

of that in figure 4.2 except that we don’t apply sigmoid in this layer. Then our BSP

pooling layer is utilized to integrate the FCN feature maps and shape-prior from BSP

maps to obtain BSP feature maps. Finally, BSP feature maps and FCN feature maps
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are combined element-wise and a sigmoid is applied to get segmentation masks.

Compared to the building extraction framework in section 4.2, BSPPN utilizes

two types of feature maps, FCN and BSP feature maps for the mask prediction and

boundary regularization tasks. Both frameworks share the same pixel-wise FCN fea-

ture maps, which have different features among each element of the feature maps to

delineate mask predictions at pixel level. In contrast, BSP feature maps will predict

segmentation masks at polygon-region level because the features from one polygon

region are the same in BSP feature maps. By combining both FCN and BSP feature

maps, our BSPPN can additionally learn polygon geometric information and produce

more polygon-like mask predictions rather than purely pixel-wise segmentation masks.

The polygon shape-prior can also bring better regularized boundaries.

4.4 Loss Design

To accomplish building object detection and segmentation, three losses are calculated

including RPN loss and localization loss 3.4 from the backbone network and mask

prediction loss.

Because the backbone network is used in our shape-prior integration frameworks,

RPN loss and localization loss from the backbone network need to be calculated. For

the mask prediction, since it’s targeted to assign binary semantic class labels of building

and non-building to each pixel of the input image, the binary cross entropy loss is

employed:

Lmask(p(y)) =− 1
N

N

∑
i=1

(ylog(p(y))+(1− y)log(1− p(y))) (4.3)

where N denotes the total number of the pixels in the input image and p(yi) denotes the
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probability that the ith pixel belongs to class label y (0 and 1). Here p(y) is the output

of our networks.

Overall, the loss function for our shape-prior integration networks are:

LShape−prior = Lrpn +Lloc +Lmask (4.4)

Since all the losses are either smooth L1 loss or entropy loss and are regularized to

certain scale, we can train them in parallel.

4.5 Summary

In this chapter, we present two novel architectures to integrate building polygon shape-

prior into the existing instance segmentation model. The shape-prior integration is

aimed for polygon geometric information extraction to enhance building boundary reg-

ularization. Inspired by Mask R-CNN, we combine the backbone network, a object

detection model and a semantic segmentation model, FCN applied on each RoI fea-

ture to accomplish instance segmentation. Based on this, a polygon shape optimization

algorithm is applied to post process the output of the instance segmentation network.

In addition, shape-prior is injected in the middle of the network to form BSP pooling

network, which can obtain polygon based BSP features to guide the original networks

to learn more geometric information to better regularize the building boundaries.
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Chapter 5

Region-based Polygon GCN

In this chapter, we will present another building footprint extraction network, Region-

based Polygon GCN (R-PolyGCN), which is based on the object detection network and

the graph neural network [64], to achieve the building extraction and solve boundary

regularization problems via geometric learning.

5.1 Overview

Even integrated with polygon shape-prior, the models in the last chapter are no more

than traditional segmentation methods, which are intended to label every pixel of the

the images and are not capable of directly exploiting the geometric shape information

because the pixel-wise representation of the polygon shape has much less geometric

meaning than using vertices and edges to delineate polygons. Nevertheless, graph

model is exactly a representation of data structure with vertices and edges, which can

be employed to depict our building polygons with much richer geometric property.

The graph neural network can also be designed for convolution operations to allow the
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feature information exchange among vertices for geometric learning [45, 65]. Hence,

to leverage the geometric nature of the graph model and the graph neural network,

we combine the object detection backbone network in chapter 3 and a graph convolu-

tional network to propose our R-PolyGCN, a regional based GCN to specially detect

buildings from satellite images and directly predict the locations of polygon vertices

by implicitly learning the geometric polygon shapes. Then simply joining the vertices

in order with straight lines will result in building footprint extractions with much more

regularized boundaries.

5.2 Network Details

Figure 5.1: R-PolyGCN Architecture.

Inspired by [45], the architecture of R-PolyGCN is demonstrated in the figure 5.1.

Firstly, the backbone network is still utilized to detect the target buildings and pro-

vide well-localized RoI features. Next the geometric shapes of building polygons are

learned through GCN on these well-localized regions. From the RoI features we ad-

ditionally predict boundary masks and concatenate them as boundary features onto the

RoI feature map to obtain enhanced features. Since the major goal of our GCN is to

move the initial polygon vertices to the boundary of the target building polygons, we
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first generate initial vertices, which follow a pre-defined order. Then initial graph are

generated and the graph features for each vertex are interpolated from the enhanced

features. Next, graph features are fed into a multi-step and multi-layer graph convo-

lutional networks, which can predict the vertex offsets. By adding the vertex offsets

to the initial vertex coordinates and connecting the vertices we can acquire the final

polygon prediction. More details are introduced in the following sections.

5.2.1 Feature Enhancement

On the top of the RoI feature maps extracted from the backbone network, we specially

train two fully connected layers to predict polygon boundary masks including edge

masks and vertex mask of the target building. The boundary prediction represents the

pixel-wise probabilities of edges and vertices of the building polygon. The edge logits

and vertex logits of the predicted boundary are then concatenated with RoI features to

create an enhanced feature map, which is denoted as Fen in this chapter. The enhanced

features can outperform plain RoI features in terms of recognizing building boundaries

because of their confidence of polygon boundary existence.

5.2.2 Graph Initialization

The polygon vertices of the target building are initialized using N points, which are

allocated as the vertices of a regular polygon. Linking the initial vertices with straight

lines generates the initial polygon. Note that the number of the vertices per polygon

is unified and kept the same with the ground truth data and the vertices are in clock-

wise order, which makes the sequence of vertices well defined and the topology of

the polygon well reserved. Then the initial vertices are put at the central part of the

enhanced feature map Fen. Let vi = [xi,yi] denote the location of the ith vertex and
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V = (v1,v2, . . . ,vN) be the set of all polygon vertices, which serve as the initial nodes

of our graph model. The edges of the graph E are produced by connecting each node in

V with its four neighboring nodes. Linking nodes of the graph in this way allows five

neighboring nodes to exchange information and effect each other in GCN, which means

longer range geometric coherence. Lastly, we define the initial graph as G = (V,E).

For one node vi, based on its location in Fen the bilinear interpolation is adopted

to obtain its node features Fen(xi,yi) from the enhanced features. Then we concatenate

the node’s current location (xi,yi) and its node features in the following way:

fi = concat {Fen(xi,yi),xi,yi} (5.1)

where fi is the graph feature for the node vi and will be input into GCN. Therefore, the

input graph features for each vertex are a combination of the enhanced features and the

vertex location information.

5.2.3 Graph Convolutional Network

We employ a multi-step architecture here to achieve a coarse-to-fine polygon predic-

tion. At the first step, the initial graph features are fed into a GCN to get first-round

initial offsets of the polygon vertices. Then we adjust the locations of the vertices by

the predicted offsets and obtain new graph features interpolated from the enhanced

features again following the subsection 5.2.2. Then feed them into another GCN and

produce another vertex offsets in the second step. The procedure will be iterated in the

following steps so that we can get more and more accurate vertex locations as well as

polygon prediction. In this work, we adopt a three-step GCN.

Within each step, a multi-layer GCN is adopted. Assuming that N(vi) denotes the
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neighboring nodes connected to vi in the graph and wl
0, wl

1 are the network weight

parameters at the layer l, the basic graph convolution calculation for the node vi at this

layer is defined as:

f l+1
i = wl

0 f l
i + ∑

v j∈N(vi)

wl
1 f l

j (5.2)

where f l
i is the graph feature for node vi and f l+1

i is the output of the convolution.

Figure 5.2: GCN: Residual Block. A skip connection directly passes the identity of
the input X to the output while the GCN convolutions F(X) (equation 5.3 and 5.4)
are designed to learn residual information. The final output Y is a summation of the
residual and the identity (equation 5.5).

Instead of the basic convolution operations, we utilize a residual block from ResNet

[58] for our GCN inspired by [45, 66], which is displayed in figure 5.2. The computa-

tions of the residual block are formulated as:

rl
i = ReLU(wl

0 f l
i + ∑

v j∈N(vi)

wl
1 f l

j) (5.3)

rl+1
i = w̃l

0rl
i + ∑

v j∈N(vi)

w̃l
1rl

j (5.4)

f l+1
i = ReLU(rl+1

i + f l
i ) (5.5)
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in the equations above and in the figure 5.2, the first two equations are two-layer graph

convolutions same with equation 5.2, but are aimed to output the residual rl+1
i . The

convolution weights are wl
0,w

l
1, w̃

l
0 and w̃l

1. Then we add the residual rl+1
i and the

identity of the input f l
i . After a ReLU activation layer, the final output f l+1

i is obtained.

5.3 Loss Design

Apart from the object detection losses from the backbone network, we design the loss

functions for the boundary prediction and the GCN vertex prediction. The strategies of

training these losses together are also provided.

5.3.1 Loss Functions

To accomplish objection detection for well-localized regions of interest, we still need

to train the RPN loss and localization loss described in section 3.4. The rest of losses

are for the boundary prediction and polygon vertex prediction.

Boundary prediction loss: in the subsection 5.2.1, the polygon boundary, includ-

ing vertex masks and edge masks are produced to enhance the features. Both masks

are binary. So the binary cross entropy loss function is applied to compute the vertex

mask loss Lv mask and edge mask loss Le mask:

Lv mask(pv(y)) =− 1
N

N

∑
i=1

(ylog(pv
i (y))+(1− y)log(1− pv

i (y))) (5.6)

Le mask(pe(y)) =− 1
N

N

∑
i=1

(ylog(pe
i (y))+(1− y)log(1− pe

i (y))) (5.7)

where pv(y) and pe(y) are the pixel-wise probability of vertex mask and edge mask; y
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is the binary class label 0 or 1; N is the total number of pixels. Therefore, we can have

the boundary prediction loss Lboun:

Lboun = Le mask +Lv mask (5.8)

Polygon localization loss: A polygon vertex location is denoted by its coordinates

v(x,y) and a polygon location is represented by its N vertices: p = {vi | i = 1,2, ...N}.

Assume our model has extracted K polygons, which are P = {pk | k = 1,2, ...K}. In the

subsection 5.2.2, the polygon vertices are defined in clock-wise order and our ground-

truth vertices are also in this order. Both point sets have the same amount of vertices

per polygon as well. Therefore, we can compute the polygon location difference or the

polygon distance between the GCN predicted polygon ppre and the ground-truth pgt by

using the geometric L1 distance, which is defined as:

L1(ppre, pgt) =
N

∑
i=1

(|xpre
i − xgt

i |+ |y
pre
i − ygt

i |) (5.9)

However, the vertex correspondences aren’t matched between these two point sets

since the starting vertices are unknown. To find such correspondences, we fix the

starting vertex of ground truth point sets and adopt an exhaust search for the optimal

corresponding starting vertex of the predicted sets, which means the predicted point

sets will be expanded by using every vertex of as the starting one. For one polygon,

assume that the number of the vertices per polygon is N. Then N different predicted

point sets are generated from original point set for the polygon. These point sets have

the same clock-wise order but N different starting vertices. The L1 distances will be

calculated between the ground truth point sets and all of N expanded predicted point

sets, thus resulting in N polygon distances. Among these distances, the smallest one
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will be selected as the polygon localization loss and the optimal correspondence of

vertices can also be found. Taking all K extracted polygons into account, we have

K ground truth polygons and the number of predicted polygons will be expanded to

K×N. Then the loss function for all the K polygons can be formulated as:

Lpoly(Ppre,Pgt) =
1
K

K

∑
k=1

min
j∈(0,1,...,N−1)

(L1(P
pre
(k+ j), Pgt

k )) (5.10)

where Lpoly denotes our polygon localization loss, which is an average polygon dis-

tance with vertex correspondences.

Overall, the total loss function for our R-PolyGCN is:

LR−PolyGCN = Lrpn +Lloc +Lboun +Lpoly (5.11)

5.3.2 Training Strategy

Training all the losses of R-PolyGCN is challenging and we provide some training

strategies. Most of our losses here are either entropy loss or smooth L1 loss, which

can be well trained in parallel. However, the reality of the polygon localization loss

is geometric point distance, which leads to obstacles when training with other losses

for several reasons. Firstly, the geometric point distance has various scales and is not

normalized. On the other hand, feasible and stable polygon localization loss can be

only obtained until the target building regions are stabilized, which happens when the

RPN loss and localization loss are small and stable. Before that, due to the region

localization is not fully optimized in the backbone network, incomplete building poly-

gons with less geometric meaning will be generated. Because our GCN model relies on

the polygon geometric features, the polygon localization loss will become unreason-
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able causing the GCN not well trained or even wrongly trained. To tackle the training

obstacles, the following strategies are utilized.

Polygon localization loss normalization: we first restrict the coordinates of the

polygon vertices to the range of 0 to 1. The polygon distance is then divided by the

vertex number of the polygon. A weight coefficient λ is added to the polygon localiza-

tion loss as well. Then our new loss function is:

LR−PolyGCN = Lrpn +Lloc +Lboun +λ
1
N

Lpoly (5.12)

where N is the number of vertices per polygon. λ will be considered as a hype-

parameter and referred as polygon localization weight. The parameter is set to belong

to {0.5,0.75,1.0,1.25} and will be fine-tuned during training. In this way, the polygon

localization loss is regularized to same scale as other losses, which allows balanced

losses to be trained.

Multi-stage training: The training is divided into majorly three stages. At the

early stage of the training, we only train the RPN and localization layer in the back-

bone network and the boundary prediction part and ”freeze” the GCN polygon vertex

prediction part. To do so, the gradient update of GCN will be shut down during the

back propagation. It’s intended to obtain stably localized regions for the target build-

ings by only training the backbone network. After certain epochs of training, the GCN

part begins to be trained to optimize the polygon prediction while keeping the back-

bone network frozen. Finally, the GCN part and the backbone network are trained

together to fine tune the whole network. By adopting the multi-stage training pipeline,

the negative effects that the backbone network can possibly bring to the GCN polygon

prediction can be avoided.
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5.4 Summary

In this chapter, our novel R-PolyGCN, a combination framework of the object detec-

tion network (the backbone network) and the graph neural network is demonstrated.

Rather than adopt a pixel-wise representation for polygons in typical image segmen-

tation models, we take advantage of the graph model, which uses vertices and edges

to represent polygons and naturally possesses the attributes of geometric shapes. The

graph convolution network is then employed to implicitly learn the geometric informa-

tion of polygon shapes to predict polygon vertex locations. Specifically, a multi-step

GCN is utilized to gradually adjust the polygon locations in a coarse-to-fine scheme.

The predicted polygon vertices are in the pre-defined order. Therefore, the building

boundary regularization can be accomplished by simply connecting the predicted ver-

tices with straight lines. Moreover, the loss function to learn polygon locations is

designed and the multi-stage training strategy is applied.
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Chapter 6

Experiments and Results

In this chapter, we will introduce the characteristics of the data (in the section 6.1) and

the entire experiments (in the section 6.2), from data acquisition and pre-processing,

implementation of the network models to the training and testing process. The ex-

perimental results will be presented (in the section 6.3), including the accuracy and

efficiency of building extraction and the performance of boundary regularization of our

three novel deep learning models and the baseline model. Furthermore, some variants

of our models will be compared and their limitations and problems will be discussed

(in the section 6.4).

6.1 Data Characteristics

We utilize the open dataset provided by the building extraction challenge of Deep-

Globe workshop [56] at Conference On Computer Vision and Pattern Recognition

(CVPR) 2018. The data contain high-resolution satellite images and ground truth for

the building footprints. The workshop adopts the SpaceNet building dataset introduced
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in section 2.4. The study area of this dataset consists of four cities (Las Vegas, Paris,

Shanghai, and Khartoum) and covers both urban and suburban regions. The four cities

are situated at four different continents, thus assuring the high diversity of the out-

looks of the building roofs. Sample images are shown in the figure 6.1. The images

(a) Las Vegas, North America (b) Paris, Europe

(c) Shanghai, Asia (d) Khartoum, Africa

Figure 6.1: Sample satellite images of the four cities located at four different conti-
nents.

are captured by the DigitalGlobe Worldview-3 Satellite with GeoTiff data format. The

image size is 650× 650 and the resolution is 30cm, which allows the image to cover

regions of 200m× 200m area. The entire dataset have 24,586 labeled satellite images

with 302,701 building footprint polygons fully annotated in the whole study area. The

annotations are object-wised and in the GeoJson format. However, DeepGlobe work-

shop only allowed 10,593 images with labeled files for public use. For the other image

scenes, the labeled files were not publicly provided and the prediction results could
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only be evaluated on the competition website1. The online evaluation system is still

alive after the workshop. Therefore, we selected the 10,593 public labeled images as

the dataset for our study and the dataset information is displayed in the table below.

Table 6.1: Information of the dataset for our study.

City Area (km2) Building Annotations Number of Images Data Amount (GB)

Vegas 216 108,328 3851 23

Paris 1030 16,207 1148 5.3

Shanghai 1000 67,906 4582 23.4

Khartoum 765 25,046 1012 4.7

Total 3011 217,487 10,593 56.4

6.2 Implementation Details

6.2.1 Data Pre-processing

The experimental data were acquired from Amazon Web Service (AWS) with licence

permitted by the DeepGlobe workshop. The dataset provides several types of satellite

images, from which we select the Pan-sharpened RGB images for our experiments.

Before inputting the images into our deep learning models, the data were pre-processed

in following steps.

(1) The raw RGB images are in 48 bits so we first transferred the 48-bit images into

24-bit RGB so that they can be displayed by most common image viewers.

(2) The building footprint annotations are in following format: {ImageId, BuildingId,

PolygonWKT-Pix, PolygonWKT-Geo}, where ImageId and BuildingId specify

the unique identity of the images and building instances; PolygonWKT-Pix and

PolygonWKT-Geo denote the coordinates of building polygon vertices in image
1https://competitions.codalab.org/competitions/18544
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space (x,y) and in geographical space (latitude, longitude). Both coordinates

are in Well Known Text (WKT)2 format. We deleted the geographic coordinates

that had no usage in our experiments and converted the original geojson files to

normal json format, which allowed us to load the data more easily. Besides, we

made sure that the polygon vertices were in clock-wise order.

(3) Next, extra ground truth data including the bounding boxes and the pixel-wise

labels were made from the building footprint annotations. For each annotated

polygon, the minimum and maximum coordinates (xmin,ymin,xmax,ymax) were

found and the top-left and bottom-right points of the corresponding bounding

box were (xmin,ymin) and (xmax,ymax). To obtain the pixel-wise labels, we utilized

the OpenCV3, an open source computer vision library to generate pixel-wise

polygon masks from the annotated polygon vertices. All types of annotations of

the ground truth are displayed in the figure 6.2.

(4) Based on the vertex coordinates, bounding boxes and polygon masks, we dis-

carded the blank images without any building footprints or those images with

building polygons of too small areas. The threshold for the polygon area is 50

pixels.

(5) To fit original images into desired neural networks, we reshaped them from 650×

650 to 1024×1024. Specifically, the images were firstly upsampled to 800×800

and a 112 padding was added. Accordingly, the sizes of annotations including the

polygon vertex coordinates, bounding boxes and polygon masks were changed

as well. To normalize the images, the pixel intensities were subtracted by the

mean RGB values (103.9,116.8,123.7) and were centered around 0.

2https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry
3https://opencv.org/
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(a) RGB image (b) Polygon annotations

(c) Bounding box annotations (d) pixel-wise mask annotations

Figure 6.2: Different types of annotations of the ground truth data.

(6) The pre-processed images of each city were further divided randomly into 70%

training samples, 15% validation samples and 15% testing samples along with

their ground truth data.

6.2.2 Network Implementations and Configurations

Our neural network models and training and inference codes were implemented with

Python 3.6 on Pytorch4 0.4.0, an open source deep learning platform. All the codes are

publicly released at our github site5. Next, the hype-parameter configurations of our

4https://pytorch.org/
5https://github.com/Miracle2333/
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networks and some model variants will be presented.

Backbone Network: the configurations of the backbone network is displayed in

the table 6.2. The Res-101 means that a 101-layer ResNet architecture is used and the

max box number denotes the maximum number of box proposals produced from RPN

layer. All the other parameters have already been introduced in chapter 3.

Table 6.2: Configurations of the backbone network

Items Configurations

Feature Encoding

Input Image Size (1024, 1024)

ResNet Layers Res-101

FPN Feature Sizes (32, 32), (64, 64), (128, 128), (256, 256)

RPN

Anchor Stride (4, 8, 16, 32, 64)

Anchor Shape (0.5, 1, 2)

Anchor Scale (32, 64, 128, 256, 512)

NMS Threshold 0.5

Max Box Number 256

Positive/Negative Ratio 1:3

Localization Layer RoI Size (28, 28)

The shape-prior integration models: our Post-Shape and BSPPN share similar

network configurations. The Post-Shape and BSPPN apply an additional FCN on the

RoI feature maps and the configurations of the FCN have been presented in the section

4.2. The MDL based post-processing algorithm in Post-Shape and the BSP process in

BSPPN were both implemented using C++ codes, which were complied on Qt plat-

form6. For BSPPN, we explored to use different types of inputs for the BSP process

to generate polygon shape-priors. In the original version, the images containing the

target buildings were directly input into the BSP process. Here the binary masks of the

buildings generated from the FCN layer were utilized as the alternative input so that

6https://www.qt.io
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we have a variant of our BSPPN model. The performances of these two variants of

BSPPN will be compared in later sections.

R-PolyGCN: The key parameters for our R-PolyGCN model are summarized in

the table 6.3, in which 1+4 means that one node is connected with four neighboring

nodes in the graph. For R-PolyGCN, we experimented a variant model, which doesn’t

include the boundary prediction as the feature enhancement.

Table 6.3: Configurations of our R-PolyGCN model

Items Configurations

Number of Vertices per Polygon 16

Vertex Order Clock-wise

Connected Nodes in the Graph 1+4

GCN steps 3

Weight λ of Polygon Loss 0.75

6.2.3 Training and Testing Details

To accelerate the network training and inference, a powerful graphic processing unit

(GPU), NVIDIA Geoforce 1080 with 8GB memory has been utilized. For the training,

we adopt the pre-trained weights from ImageNet [67] to initialize our backbone net-

work, on the basis of which our three novel network models are trained. To train the

networks, all of the models utilize a epoch-by-epoch training scheme and each epoch

has 1000 steps of iterations. The batch size is set as 1 (we couldn’t increase it due to the

limited GPU memory) and we employ the Adam optimizer [68]. During the training

of Post-Shape and BSPPN, the initial learning rate is set as 10−4. We first train the

middle and end of the network, mainly the localization and FCN parts for 20 epochs

and then change the learning rate to 10−5 and train the FPN part for 5 epochs. Finally
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the learning rate is decreased to 10−6 and the whole network is fine-tuned for another

5 epochs. Following the training strategies in the subsection 5.3.2 for our R-PolyGCN

model, we initialize the learning rate as 10−4 and first train the backbone network for

10 epochs with the weight decay of 5× 10−7 per 100 steps. Then the boundary pre-

diction and GCN parts are trained for 15 epochs with the learning rate 3−5, which has

a weight decay of 10−8 per 10 steps. Finally, the whole network is fine-tuned together

for 5 epochs. After the training, the models are evaluated on the testing dataset. The

state-of-the-art instance segmentation model, Mask R-CNN is also trained and eval-

uated on the same dataset as the baseline. The training of Mask R-CNN follows the

same strategies of our BSPPN.

6.3 Experimental Results

A total of four deep learning models including our three novel networks and one base-

line were trained and evaluated, thus producing four sets of results. We first presented

the training results of the models and gave an qualitative overview of the building ex-

traction results and then compared the quantitative evaluation results primarily from

three perspectives, the building extraction accuracy, the computation efficiency and the

performance of the building boundary regularization.

6.3.1 Network Training Results

As mentioned in the subsection 6.2.3, the training has 30 epochs with 1000 steps per

epoch, thus 30,000 steps in total. In the figure 6.3, we plot the sum of all kinds of

losses and the average Intersection over Union (IoU) as the training results. The loss

value here is multiplied by 100 for visualization. As shown in the figure, the total
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losses of all of the models rapidly decrease in the first 10 epochs and then reach to a

stable convergence in the following epochs, which verifies the feasibility of our training

process. Since the neural network part of our Post-Shape is the same with Mask R-

CNN, they share one training result. The figure of the average IoU indicates that the

building extraction accuracy is increasing while the deep learning models are gradually

optimized during the training and proves our training works well.

(a) Post-Shape & Mask R-CNN (b) BSPPN

(c) R-PolyGCN (d) Average IoU

Figure 6.3: The training results of different models. For the figure (a), (b) and (c), the
horizontal axe is the training steps (30,000 in total) and the vertical axe is the sum of
all the losses. Note that the total loss is multiplied by 100 here. In the figure (d), the
change of the average IoU during training is also presented.

6.3.2 Overview of the Building Extraction Results

The building footprints extracted from the baseline model and our models are displayed

in the figure 6.4, where input RGB images are selected from all four cities. The results

are qualitatively analyzed to demonstrate the properties of our models and to prove that

they can conquer the challenges of building extraction mentioned in the chapter 1.
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Figure 6.4: Overview of results of building footprint extraction. From left to right are
RGB images and outputs of Mask R-CNN, our Post-Shape, BSPPN and R-PolyGCN.
Masks of different colors represent individual building footprints the models extract.

Automatic extraction procedure: our models are completely automatic work-

flows. At the inference stage, the input images are directly fed into the models and

processed to produce outcomes without the manual intervention.

Handling the diversity of building roof outlooks: As shown in the figure 6.4,

the building roofs of different colors, textures, orientations and shapes can be properly

detected by our models.
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Balance between recognition and localization: the models are capable of well

recognizing and localizing building objects at the same time. The recognition of build-

ing footprints are distinctive from other object categories like cars, parking lots, sports

courts, trees and so on, as observed from the figure 6.4. The extracted masks are also

precisely located at the correct places.

Distinguishing closely located buildings: Our models can not only detect individ-

ual buildings but also well distinguish the buildings closely situated with each other.

The effects are significant in the images with densely distributed buildings, which is

shown in the figure 6.5.

Figure 6.5: Buildings located closely are distinctively detected.
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Detection of buildings of various sizes: As shown in the figure 6.6, buildings of

large, middle and small sizes can be detected together, especially for the small build-

ings, which can be easily ignored in other detectors.

Figure 6.6: Buildings with various sizes are detected. The figures at left show the
buildings of all sizes can be well detected and figures at right show that the small
buildings can be spotted and localized.

Capture of geometric shapes of polygons: Equipped with geometric learning, our

models can predict polygon shapes of the buildings. From the figure 6.7, buildings of

various shapes, simple rectangles or complex polygon shapes, can be detected, even

some subtle components of the polygon shapes, like small turning corners or short

fluctuation of polylines can be captured. The boundaries of the building polygons are

also regular.
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Figure 6.7: Polygon shapes of the buildings are detected. The outlines the extracted
building footprints are used to represent the polygon shapes. The red points and green
lines are the detected polygon vertices and polylines.

6.3.3 Building Extraction Accuracy

We took advantage of the accuracy metrics provided by the DeepGlobe workshop,

which was computed by comparing the locations of the predicted building polygons

and the ground truth ones. Firstly, we utilized the metric of Intersection over Union

(IoU), which was calculated as:

IoU =
Area(A∩B)
Area(A∪B)

(6.1)
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where A and B denotes the predicted and the ground truth building polygons; IoU is

equal to the intersection area of A and B divided by their union area, which can be

illustrated in the following figure:

(a) Intersection area (b) Union area

Figure 6.8: Definition of IoU areas, referred as the red regions in the figures.

The predicted building polygon was counted as a true positive if it was the closest

(measured by the IoU) proposal to a labeled polygon and the IoU between the predic-

tion and the label was beyond the prescribed threshold of 0.5. Otherwise, the proposed

polygon was a false positive. The labeled polygon that were not detected or missed

in the predictions was denoted as false negative. After counting the number of true

positive polygons (TP), the number of false positive polygons (FP) and the number of

false negative polygons (FN), we employed the F1-score, which is a harmonic mean

of precision and recall, combining the accuracy in the precision measure and the com-

pleteness in the recall measure. Suppose there are N polygon labels for the ground

truth building footprints and M predicted polygons. The F1-score is calculated by the

following steps:

Precision =
T P

T P+FP
=

T P
M

(6.2)

Recall =
T P

T P+FN
=

T P
N

(6.3)

F1-score =
2×Precision×Recall

Precision+Recall
=

2×T P
M+N

(6.4)

70



The F-1 scores for all the four cities and a total score were computed from our three

models and the baseline model. The results are showed in the table 6.4. Compared

Table 6.4: Building extraction accuracy: F1-scores evaluated on different models

Models Las Vegas Paris Shanghai Khartoum Total

Baseline Mask R-CNN 0.881 0.760 0.646 0.578 0.717

Ours

Post-Shape 0.878 0.754 0.642 0.571 0.714

BSPPN 0.880 0.751 0.638 0.569 0.711

R-PolyGCN 0.892 0.786 0.682 0.612 0.744

to the state-of-art instance segmentation model, Mask R-CNN, our Post-Shape and

BSPPN, two shape-prior integration models show marginal accuracy decline mainly

due to the fact they rely on the algorithms like the BSP process for the generation of

polygon shape-prior, which are not optimized within the network and their parameters

need to be pre-determined manually and are not robustly adaptive to various inputs,

thus leading to unstable and unfavorable polygon shape-priors and the reduction of

the extraction accuracy. Our third model, R-PolyGCN consistently has the highest

detection accuracy over all other models and on the dataset of all cities. Note that

the relatively low F1-scores for Shanghai and Khartoum result from the annotation of

lower quality and much more buildings not orthogonal.

Because our dataset was acquired from the open challenge by the SpaceNet build-

ing dataset and DeepGlobe workshop, many participants had produced their results

which were recorded and ranked on the public leaderboards7,8. Note that our mehtod,

Post-Shpae also took part in the DeepGlobe challenge and was ranked at the fourth

place. To compare with these participants, we also applied our models on the same

testing data provided by the workshop, which only had raw images but no ground truth
7https://community.topcoder.com/longcontest/stats/?module=ViewOverview&rd=

16892
8http://deepglobe.org/leaderboard.html
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data. For evaluation, we can only submit the outcomes onto their online evaluation

system to obtain the results. The online evaluation system only provided the total F1-

score without the ones for individual cities. Hence, we compared the evaluation results

of the total F1-scores of our models with other top participants in the table below.

Table 6.5: Building extraction accuracy: comparison to other participants

Models or

Participants

Others: SS + PP Ours: IS + Shape

Wleite XD XD Lyft Pasco Post-Shape BSPPN R-PolyGCN

F1-score 0.643 0.693 0.736 0.739 0.713 0.710 0.742

Other participants include the top-2 winners of the SpaceNet competition, Wleite

and XD XD and top-2 ranked players of the challenge of the DeepGlobe workshop,

Lyft and Pasco. All of these participates adopted the semantic segmentation models

(SS) followed by post-processing algorithms (PP) and our approaches were the instance

segmentation models (IS) with geometric learning for polygon shapes. From the table

6.5, our Post-Shape and BSPPN models produced almost equivalent accuracy to those

of other participants while our R-PolyGCN outperformed all of them.

The results above reveal that the selection of the basic segmentation models and

the incorporation of the geometry of polygon shapes contribute to our accuracy gain.

The semantic segmentation models only produced pixel-wise semantic labels to clas-

sify buildings and the background and were unable to distinguish individual building

objects. To address the problem, the post-processing algorithms were employed to sep-

arate the building regions and generate building polygons from pixel-by-pixel masks.

Consequently, without post-processing, the SS models were not able to extract individ-

ual building objects while the combination of PP and SS were not capable of learning

any shape information, thus failing to produce polygons with geometric properties.

These strategies were what all the top participants adopted. On the contrast, our choice
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of the instance segmentation models can produce semantic labels as well as distinguish

individual building objects, where no more post-processing was needed. Besides, our

models exploited the polygon shape information as much as possible. Especially the

R-PolyGCN utilized the graph models to implicitly learn the geometric attributes of

polygons, which boosted the extraction accuracy.

6.3.4 Building Extraction Efficiency

Table 6.6: Training and inference times

Models
Training Time (h)

for 30k steps

Inference Time (s)

for one image

Baseline Mask R-CNN 13 0.27

Ours

Post-Shape 13 250

BSPPN 32 2.15

R-PolyGCN 9 0.18

The training and inference time of the models can represent the building extraction

efficiency. Therefore, we measured the training time for 30k steps with same training

data and batch size and the inference time per image for the same testing data for the

baseline and our models. The results in the table 6.6 indicate that our shape-prior

integration approaches, Post-Shape and BSPPN are much more time-consuming than

the baseline model, which primarily results from the MDL based shape optimization

process for the Post-Shape and the BSP process for BSPPN. Running outside of the

neural networks, these shape-prior generation processes are not able to utilize the GPU

resources to speed up their computation and they also cost huge amount of time due to

the iterations within them. Despite that Post-Shape and Mask R-CNN have almost the

same network architecture and they cost equal training time for the network, the MDL

based post-processing algorithm is much slower causing the inference of Post-Shape to
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be much less efficient. On the other hand, our R-PolyGCN shows its speed advantage

by saving around 30% training time and about 60% time at inference stage than the

baseline Mask R-CNN. For the high efficiency of R-PolyGCN, the credit is granted to

its straightforward and unified network design without any extra procedures outside of

the network compared to the shape-prior integration models. Given that Mask R-CNN

and our R-PolyGCN adopt similar structure for the backbone network, we argue the

phenomenon that the graph convolution network can directly output the outline of the

building rather than the whole polygon region from Mask R-CNN makes difference to

their efficiency performance.

6.3.5 Boundary Regularization Performance

The performance of the building boundary regularization was evaluated and the figure

6.9 displayed building boundaries extracted from the baseline model and our models

and the ground truth. Since Mask R-CNN and BSPPN both outputed pixel-wise seg-

mentation results without vertex or line prediction, we used a contour tracing algorithm

in OpenCV to obtain the boundaries from the masks.

In terms of the regularization of building boundaries, we can observe that Mask

R-CNN shows almost no evidence to regularize the boundaries because of its nature

of grid-based pixel-by-pixel representation and lack of shape information; our BSPPN

holds slightly more capacity of regularizing the boundaries benefiting from the fusion

of shape-priors springing from the BSP process. However, due to the fact that the

generation of shape-priors is not robust and stable and the model still uses a pixel-by-

pixel representation to render polygons, BSSPN is unable to provide an ideal solution.

Among all these, our Post-Shape and R-PolyGCN models can produce boundary lines

closest to the ground truth with regularized characteristics. Post-Shape utilizes the
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Figure 6.9: Comparisons of the performance of building boundary regularization of
different models. Examples of building footprint extraction with focus on the bound-
aries (red points as vertices and green lines as polylines). From top to bottom are results
from: Mask R-CNN, Post-Shape, BSPPN and R-PolyGCN. The images at the last row
are the ground-truth.

polygon shape optimization algorithm as a post-processing step, which is able to learn

the regularity of the polygons. However, Post-Shape cannot be trained end-to-end and

its efficiency is too low. For R-PolyGCN, as a natural representation for the vertex,

edge and polygon, the graph model employed can provide a straightforward polygon

prediction based on their geometric features. Once the optimal polygon vertices are

acquired, connecting them by straight lines in a pre-defined order can easily produce

regularized boundaries.
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6.4 Discussions

6.4.1 Variants of Models and Ablation Study.

We build variants of our models, which are trained, evaluated and compared with the

original models. The variants include different hype-parameter settings, modifications

of network structures and so on.

Variants of BSPPN: The variants of BSPPN are made by changing the inputs of

the BSP process for the polygon shape-prior generation. Originally, the cropped images

containing the target buildings are the inputs. We think that the noises of images can

possibly disturb the BSP process. Especially the interior structure of the buildings

can negatively affect the polygon partitioning results because the structure inside the

buildings are useless in this study, thus leaving redundancy and noises. Therefore,

the binary masks, which are produced from the FCN layer and have homogeneous

interior structures, can be used as the alternative inputs of the BSP process. After the

modification, experiments show that the total F1-score increases from 0.711 to 0.719.

The BSP results produced from the two inputs are shown in the figure 6.10.

Figure 6.10: BSP maps generated from two different inputs: images and binary masks.
The figures at top row are the cropped images and their outputs from BSP process; the
figures at the bottom are the binary masks and their BSP maps.

Variants of R-PolyGCN: The R-PolyGCN has a boundary mask prediction within

the networks to enhance the features. We experiment to remove the boundary mask

prediction and feed the GCN with plain features. Meanwhile, the feature encoder of
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Table 6.7: Results of ablation study of R-PolyGCN

Model Variants Total F1-Scores

ResNet-50 0.718

ResNet-50 + Boundary 0.739

ResNet-101 0.722

ResNet-101 + Boundary 0.744

the backbone network is experimented with different choices including ResNet-101

and ResNet-50. The table 6.7 shows the results of the ablation study. From the table,

the models with the boundary prediction has a considerable accuracy gain compared

those without it. It indicates that the boundary masks provide necessary supplements

to the plain features. ResNet-101 with deeper layers than ResNet-50, however, has

limited contributions to the increase of the accuracy.

(a) 1-step (b) 2-step (c) 3-step

Figure 6.11: Results from GCN of different steps.
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Different numbers of iteration steps of GCN are also made as variants. We ex-

periment with 1-step, 2-step and original 3-step GCN structures, resulting in the total

F1-scores of 0.711, 0.739 and 0.744 respectively. The building extraction results of the

variants are displayed in the figure 6.11, which show that the 2-step GCN can produce

rough polygon shapes and achieve substantial enhancement compared to the results of

the 1-step GCN. The 3-step GCN shows marginal gain of the extraction accuracy but is

able to refine the building polygon shapes. The results indicate that more steps of GCN

might not increase the accuracy much and 3-step GCN can produce well-localized

building footprints with refined polygon shapes.

6.4.2 Problems of Our Models

The existing problems of our models are discussed here.

Problems of Post-Shape: Post-Shape shares the same architecture with Mask R-

CNN at the neural network parts. In addition to that, it employs a polygon shape opti-

mization algorithm as post-processing, which converts the pixel-wise segmentation re-

sults from Mask R-CNN to geometric polygons, thus regularizing the building bound-

aries. The first drawback of Post-Shape is that it cannot be trained end-to-end, which

means the shape optimization part is unable to be learned through the training of deep

neural networks. The shape optimization can only polish the polygon boundaries and

still heavily relies on the quality of the pixel-wise segmentation results. If some of the

segmentation outcomes are inaccurate, the post-processing is unable to correct them.

The second and the biggest problem of Post-Shape is that it is too time-consuming. It

averagely takes over 4 minutes to process one image. The longest processing time for

one image can be as much as 28 minutes.

Problems of BSPPN: As mentioned before, BSPPN integrates the polygon shape-
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prior within the networks in order to produce building polygons with more regularized

boundaries. However, the improvement of the regularization performance is not as

obvious as expected mainly due to the BSP process is not self-adaptive and not stable

enough. Besides, the grid-based pixel-wise representation without much geometric

properties, still has the limitations to render the polygon shapes.

(a) Simple buildings extracted with redundant vertices

(b) Complex buildings extracted with insufficient vertices

Figure 6.12: Problems of R-PolyGCN results. The fixed number of polygon vertices
causes unfavorable building footprint extractions.

Problems of R-PolyGCN: The shortcomings of R-PolyGCN are majorly the in-

flexibility of the initialization of the polygon graphs, where the polygons are initialized

with fixed number of and pre-defined order of the vertices. As shown in the figure

6.12, simple buildings are predicted as polygons with redundant vertices while com-

plex buildings have inadequate vertices to depict them, thus missing some polygon
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details or producing wrong polygons.

Another problem is that the geometric learning of GCN is implicit. Like most of

the deep learning models with the characteristic of ”black box”, the mechanism inside

GCN cannot be readily accessible, leading to poor interpretability of the models. In

terms of the loss functions, learning for the geometric shapes of polygons are simply

determined by the locations of the polygon vertices without taking other polygon geo-

metric into account, for instance, the interior angles, the parallel of polylines, the whole

polygon orientation and so on.

6.5 Summary

In this chapter, we introduce the adopted dataset and the data pre-processing. The im-

plementation details of our models is also presented. We cover the whole procedure of

the experiments and illustrate the qualitative and quantitative results, which reveal that

our models can properly solve the problems of the building footprint extraction with

boundary regularization. The comparison of the model performances shows that our

models are competitive with the state-of-the-art instance segmentation model Mask R-

CNN and our R-PolyGCN are consistently the most accurate, the most efficient and can

produce building footprints with superior regularized boundaries. Discussions on the

variants of the models are presented. Finally we discuss the problems of our models.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this study, we are aimed to develop a deep learning framework to automatically

extract building footprints with boundary regularization from satellite images. Firstly,

the massive applications of building footprints from satellite images and challenges of

the building footprint extraction and boundary regularization are investigated, which

are the major motivations of our study. We further formulate the main problems into

the tasks of spatial learning, semantic learning and geometric learning and propose

a general deep learning based framework, including the backbone network and the

building extraction network, with the combination of spatial, semantic and geometric

learning to provide a solution to the problem of the building footprint extraction with

boundary regularization. Related research work is also reviewed.

Our methodology is deep learning models composed of the backbone network and

the building extraction network. The backbone network has the functions of multi-

scale feature encoding and object detection and can produce the well-localized RoI
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features, which will be essential in the following building extraction network. We ex-

plore two pipelines to design the building extraction network. One is to integrate the

polygon shape-prior with the deep neural networks to take advantage the shape-prior

information. Two types of integration models are proposed, integrating the shape-

prior at the post-processing stage (Post-Shape) and injecting them within the network

(BSPPN). The former employs a MDL based polygon shape optimization algorithm

to process the segmentation masks produced from the networks; the latter specially

designs a polygon region based pooling layer, BSP pooling layer to inject the polygon

shape-prior produced from the BSP process into the networks. Our second building ex-

traction network is R-PolyGCN, which exploits the graph representation for polygons

and the graph convolutional networks for geometric learning. In total, three models,

Post-Shape, BSPPN and R-PolyGCN are proposed.

Comprehensive experiments are conducted on an open dataset. Pre-processing is

first applied to the raw satellite images and annotations. Then our three models and the

baseline model, Mask R-CNN are trained and evaluated. The qualitative results show

that our models can successfully perform the automatic extraction of building foot-

prints. The building extraction accuracy results show that our models are competitive

with the baseline model and the models from the top participants in the leaderboard of

the open building extraction challenge. Particularly, our R-PolyGCN outperforms all

the others in terms of extraction accuracy. The efficiency of the models are also anal-

ysed, which shows that the shape-prior integration models, Post-Shape and BSPPN are

more time-consuming than the baseline model while R-PolyGCN is the most efficient

one at both training and inference stages. We compare the performances of models

on the building boundary regularization and find that our Post-Shape and R-PolyGCN

demonstrate outstanding capacity to produce regular building boundaries. The exper-
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iments on the variants of the models and the ablation study are also carried out to

provide deeper views of the deep neural network models. Finally, the drawbacks and

limitations of our models are discussed.

7.2 Future Work

Based on the existing problems of our study and current development of the field, the

future directions of our work are summarized as follows:

• The backbone network can be further improved: utilizing the ideas of the

classic Faster R-CNN, our backbone network is a typical two-stage object de-

tection network, which relies on the selection and localization of anchor boxes

before the final localization layer. Recently, the one-stage networks are gaining

more and more attentions, which can directly detect bounding boxes from image

grids or key points instead of regression from the anchor boxes. The state-of-art

one stage models like [13, 69, 70] are showing competitive detection accuracy

with much higher efficiency and much easier training. Therefore, we can change

the backbone network to one-stage structure to simplify our networks while pre-

serving the performance.

• The shape-prior generation can be learned through neural networks: The

MDL based polygon optimization in our Post-Shape model and the BSP in our

BSPPN model are both generating polygon shape-prior outside of the neural net-

works, thus being unable to be optimized with the networks. The independence

causes the shape-prior generation process hard to control. These days many

conventional computer vision algorithms successfully become differentiable and

learnable layers of the neural network, like the superpixel generation in [71].
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Thus building the learnable networks for the polygon shape-prior generation is a

feasible and valuable direction.

• More geometric learning can be introduced into the GCN model: Even

though our R-PolyGCN is quite powerful to learn the geometric information,

it still relies on simple geometric features and more can be certainly added to

strengthen the GCN model, as mentioned in the subsection 6.4.2. One way is to

pose more constrains at the loss functions. For example, instead of pre-defining a

fixed number, we can take the number of polygon vertices as a learnable param-

eter and design a loss function to find the optimal number. Or the interior angles

of the polygons can be taken into consideration and put into the loss functions

given that many regularized polygons have the orthogonal angles. Moreover, the

interpretability of GCN can be further studied for a fuller utilization of the graph

models for geometry learning.

• More quantitative analysis on the building boundary regularization can be

conducted: The regularity of the polygon shapes or shape similarity can be

employed to measure the performance of the boundary regularization to provide

a more quantitative analysis.
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Glossaries

AI Artificial Intelligence

AP Anchor Point

BSP Binary Space Partitioning

BSPPN BSP Pooling Network

CNN Convolutional Neural Networks

DEM Digital Elevation Model

DL Description Length

DNN Deep Neural Networks

DSM Digital Surface Model

FCN Fully Convolutional Network

FL Floating Line

FP Floating Point

FPN Feature Pyramid Network

GAN Generative Adversarial Networks

GCN Graph Convolutional Network

GIS Geographic Information System

GL Guiding Line

GP Guiding Point

LiDAR Light Detection and Ranging

MDL Minimum Description Length

NMS Non-Maximum Suppression

OSM OpenStreetMap

PC Point Cloud

R-CNN Region-based Convolutional Neural Network
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ResNet Residual Network

RoI Region of Interest

RPN Region Proposal Network

R-PolyGCN Region-based Polygon GCN
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