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ABSTRACT 

For more than a century mass spectrometry has been a well-known technique in the field 

of chemical analytics. Its selectivity and sensitivity has made it popular in various fields. From 

analysis of pure organics, its use is still being explored in the analysis of biomolecules, either 

purified or direct from tissue sections. For analyzing these vast arrays of molecules, typically the 

front end is modulated depending upon the need of the user. For direct analysis of a sample of 

interest, ionization techniques such as DESI, PS, MALDI, etc are incorporated into the front of the 

mass spectrometer. In this work, the ambient ionization techniques, DESI-MS and PS-MS was 

modulated for characterization, imaging and quantification of small molecules. The use of DESI-

MS and PS-MS in the field of forensics, microbiology and pharmaceutics is described. With the 

optimization of the front end modes, better sensitivity, selectively and robustness was ensured. 
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TLC    Thin Layer Chromatography 

TOCSY  Total Correlated Spectroscopy 

UV/UV-Vis spec Ultraviolet and Visible Absorption Spectroscopy 

%v/v   percent volume by volume (no. of mL of solute in total 100mL solution) 

%w/v   percent weight by volume (no. of grams of solute in 100mL solution) 
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CHAPTER ONE 

Introduction 

1.1 Mass Spectrometry 

Mass spectrometry is an indispensable analytical tool that is rapidly gaining a lot of 

attention due to its scope in qualitative and quantitative assessment of a wide array of compounds, 

in the fields of Chemistry, Biochemistry, Pharmacy and Medicine. (1) It employs detection of 

charged analytes after separation by electro and/or magnetic fields. 

The basic mass spectrometer setup consists of an ionization source, mass analyzer and a 

detector (Fig. 1.1).  The ionization source converts molecules in the sample into ions by addition 

or removal of electrons, or through protonation / deprotonation.(2) The charged gas-phase ions 

make their way into the mass analyzer, where they are separated according to their mass to charge 

ratio due to the presence of electric and/or magnetic field. Upon separation, the ions are later 

detected by a detector and the output is displayed on a computer screen. The separation of the 

analytes requires that the system is kept under vacuum. 

 

Figure 1.1: Typical mass spectrometer setup 

In 1912 the first mass spectrometer was created by J. J. Thomson for detection of stable 

isotopes of Neon-20 and Neon-22.(3) Since then, its use evolved from small inorganic compounds 

to detecting biological macromolecules. The detection of this wide array of analytes was made 

possible by the development of efficient ionization and powerful mass analyzers.(1) Initially 

detection was made possible from electron ionization in a vacuum chamber with a heated filament. 
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Filament-released electrons bombarded the analyte of interest, thereby charging it and making it 

suitable for detection. Later chemical ionization was explored, where a charged gas, typically 

methane, bombarded the molecules of interest. All these ionization techniques were really harsh 

on the molecules, which frequently led to their fragmentations.  

1.2 Electrospray Ionization (ESI) 

For detection of intact ions, the soft ionization technique ESI was developed. Electrospray 

ionization, involves exposure of a solvent to a high electric voltage that enable their electrolysis 

due to which protons build up in the system. When a positive voltage is applied to the capillary, 

positively charged ions start to accumulate at the tip of the spray needle capillary and the negative 

ions are retained in the capillary. Repulsion between positive ions in solution and positively 

charged capillary causes the formation of a Taylor cone at the capillary tip (3). Once coulombic 

repulsion exceeds the surface tension, the cone shatters to spray out individual droplets that are 

highly positively charged (Figure 1.2). Solvent in the charged droplets evaporates under 

atmospheric pressure as they make way towards the negatively charged slit. Desolvation gas, 

nitrogen, helps the process of solvent evaporation. The droplets continue to fission upon reaching 

Rayleigh limit, reducing in size until they are a few µm in radius, which is when the gas phase ions 

form as the residual solvent evaporates. Sometimes a slight increase in temperature is introduced 

to aid this overall process of evaporation. 

 ESI-MS is widely utilized to study non-covalent interactions because the species are 

retained in the gas-phase. In addition to mass, multiple reactions as well as the pathways each 

reaction follows can also be monitored simultaneously using this technique. ESI-MS allows for 

large non-volatile molecules to be analyzed directly from the liquid phase and is regularly coupled 

to other separation techniques such as high performance liquid chromatography (HPLC). This 
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mode of ionization later on paved its way towards ionization under ambient conditions.  

 

Figure 1.2: Schematics of positive mode ionization by ESI-MS. 

1.3 Ambient ionization mass spectrometry 

Ambient ionization technique eliminates the need of vacuum and enables the ionization of 

the analyte outside the mass spectrometer under ambient conditions. This technique was first 

introduced by Cooks et al. in 2004(2) with the introduction of DESI and later, on 2005 Cody et al 

introduced Direct Analysis in Real Time Mass Spectrometry (DART-MS)(4). Both these 

techniques were used for surface analysis under ambient conditions without the need of any sample 

preparation prior to analysis. While ambient ionization is very user friendly, it requires solvent 

optimization to ensure efficient desorption and ionization of the molecules of interest. In other 

words, analysis by this technique requires solvent optimization and thus suffers from selectivity 

and sensitivity issues. Nevertheless, this technique is growing in popularity for its ease of use and 

also since it allows spatial distribution of compounds to be determined by techniques like imaging 

mass spectrometry. Several ambient ionizations techniques have been explored. They differ in 

their modes of desorption / ionization. Table 1.1 summarizes them based on their modes of 

operation. 

Table 1.1: Different Ambient Ionization Techniques characterized by their modes of operation. 

Mode of operation Acronym Name Ref 

Spray and Solid-

Liquid extraction 

based Techniques 

DESI Desorption Electrospray Ionization (5) 

EASI Easy Ambient Sonic-Spray 

ionization 

(6) 
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PESI Probe Electrospray Ionization (7) 

ND-EESI Neutral Desorption Extractive 

Electrospray Ionization 

(8) 

AP-TD/SI Atmospheric Pressure thermal 

desorption-secondary ionization 

(9) 

LMJ-SSP Liquid Microjunction-Surface 

Sampling Probe 

(10) 

LESA Liquid Extraction Surface Analysis (11) 

ESA-Py Electrospray Assisted Pyrolysis 

Ionization 

(12) 

PS Paper Spray (13) 

TPD/ESI Thermal Probe Desorption 

Electrospray Ionization 

(14) 

Plasma-Based 

Techniques 

DART Direct Analysis in Real Time (15) 

FAPA Flowing Atmospheric Pressure 

Afterglow 

(16) 

LTP Low Temperature Plasma Probe  (17) 

DBDI Dielectric Barrier Discharge 

Ionization 

(18) 

--- Microplasmas (19) 

Chemical 

Sputtering/Ionization 

Techniques 

DAPCI Desorption Atmospheric Pressure 

Chemical Ionization 

(20) 

DCBI Desorption Corona Beam 

Ionization 

(21) 

ASAP Atmospheric Pressure Solid 

Analysis Probe 

(22) 

Multimode 

Techniques 

DEMI Desorption 

Electrospray/Metastable-induced 

Ionization 

(23) 

Laser 

Desorption/Ablation 

techniques 

LAESI Laser Ablation Electrospray 

Ionization 

(24) 

IR-LDESI Infrared Laser Desorption 

Electrospray Ionization 

(25) 

MALDIESI Matrix-Assisted Laser Desorption 

Electrospray Ionization  

(26) 

ELDI Electrospray-assisted Laser 

Desorption Ionization 

(27) 

IR-LAMICI Infrared Laser Ablation Metastable-

Induced Chemical Ionization 

(28) 

LS Laser Spray (29) 

Acoustic Desorption 

Methods 

LIAD-ESI Laser-Induced Acoustic 

Desorption-Electrospray Ionization 

(30) 

RADIO Radio-Frequency Acoustic 

Desorption and Ionization 

(31) 
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Others DAPPI Desorption Atmospheric Pressure 

Photo-Ionization 

(32) 

SwiFerr Switched Ferroelectric Plasma 

ionizer 

(33) 

BADCI Beta Electron-Assisted Direct 

Chemical Ionization 

(34) 

REIMS Rapid Evaporative Ionization Mass 

Spectrometry 

 

(35) 

 

1.3.1 Desorption electrospray ionization (DESI-MS & DESI-MSI) 

  Desorption electrospray ionization (DESI) is a widely used technique in the field of mass 

spectrometry. Its ease of direct analysis of any sample at ambient condition, with minimal to almost 

no sample preparation makes it convenient and user-friendly. DESI-MS uses a high voltage to 

generate charged solvent droplets under nitrogen gas flow. These droplets hit the sample surface 

to desorb the analyte into ionized species such as cationized gas phase molecules, deprotonated 

[M-H]-, or protonated [M+H]+ molecules. Further splash of the charged solvent droplets on the 

desorbed sample surface directs the ionized analytes into the inlet of the mass spectrometer for 

their detection.  

1.3.1.1 DESI ion source 

Figure 1.3 demonstrates a graphical representation of a typical DESI ion source. It consist 

of a pneumatically assisted solvent spray held at high voltage, typically 5kV. The solvent sprayer 

is mounted on a vertical rotating stage to modulate the impact angle/incident angle α from 0 to 

90°. Usually at an incidence of 55° the maximum ‘droplet pickup’ by the mass spectrometer inlet, 

representative by the best signal intensity, occurs at a collection angle (β) of 10°. The sample is 

held on a 3D moving stage. The movement of the moving stage helps alteration of the collection 

angle as well as the impact point of the solvent spray on the sample surface (36).  

The mechanism of surface solid-liquid extraction and “droplet pickup” has long been 
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assumed and studied using Phase Doppler Anemometry (PDA). It has been found that the charged 

solvent spray forms a thin mist film on the surface of the sample as can be viewed on top of a glass 

slide but not over a porous PTFE surface. Upon subsequent solvent spray, the momentum is 

transferred to the mist film which results in the production of progeny droplets. High voltage on 

the sprayer tip and the electric field from the inlet capillary of the mass spectrometer provides 

electrostatic forces that primarily result in droplet formation and accelerating their velocities in a 

simulated model. The nebulizer gas in the solvent spray assist in drying the droplets, which by 

hydrodynamic forces (nebulization pressure and pressure drop at the inlet of MS) can be captured 

by the mass spectrometer. Figure 1.4 shows the velocity distribution 0.4 µs after impact time when 

the most number of droplets have the highest speed indicated with red arrows and can reach the 

inlet of the mass spectrometer successfully (37). 

 

Figure 1.3:  Graphical representation of a typical DESI ion source. 

 

Figure 1.4 Velocity distribution of droplets 0.4µs after impact. 
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1.3.1.2 DESI imaging 

Imaging mass spectrometry is a powerful analytical and bioanalytical technique that not 

only allows identification of unknown compounds but also allows determination of their spatial 

distribution. DESI by virtue of its ease of sample preparation and ambient mode of ionization 

allows acquisition of 2D and 3D chemical ion images effortlessly. Since DESI utilizes solid-liquid 

phase extraction, choice of solvents and/or their combinations mainly drives the type of analyte 

molecules being imaged. Droplet pick-up lasts for a few milliseconds and hence is limited to 

capture of mostly small molecules in DESI-MSI. The resolution of a DESI image is determined 

by pixel size in the lateral direction and is limited to the diameter of the silica capillary carrying 

the droplet. Typically DESI produces ion images having 100-200µm in resolution. The 

requirement of a higher resolution image is a trade off with the acquisition speed. The total imaging 

acquisition time is dependent on the size of the tissue section under analysis, MS scan rate, raster 

speed and lateral resolution. For DESI-MSI if the resolution is decreased below 100µm, the spot 

area under analysis will overlap, which not only maps misleading ion intensity but also hampers 

the overall quality of the image (38).  

DESI-imaging involves cutting the sample of interest into thin sections (20-50µm) and 

fixing them on to glass slides. The glass slide having the sample under analysis is dried in a vacuum 

desiccator and mounted on an automatic 3D moving stage. DESI-solvent spray geometry is then 

adjusted for optimal acquisition of MS spectra. The moving stage then rasters through the surface 

of the article in horizontal lines at a certain speed determined by the scan rate and resolution 

selected for performing imaging. The space between two horizontal lines is the pixel size or 

resolution chosen to perform imaging. All the horizontal line spectra are then compiled with an 

imaging software such as the freeware BioMap, Image J and other commercially available variants 
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(i.e. MSI Quickview) to create 2D images of ion intensities over the sample surface coordinates. 

Likewise for acquisition of a 3D ion-image, a collection of representative 2D ion-images are 

compiled in 3D space within its topographical feature. It is a compromise between image quality 

and the cumulative acquisition time of all the 2D sections (39).   

1.3.1.3 DESI applications 

The ability to desorb an analyte from a surface depends on its interaction with the DESI spray 

solvent. Solubility is a key factor since the detection of the analyte is dependent on the solid-liquid 

surface extraction process. DESI has been used for a broad range of compounds including small polar 

or non-polar molecules or large polar molecules like proteins or peptides. It has been used in 

metabolomics studies to detect small biomolecule from animal (40–42), plant (43–45) or microbial 

(46–50) cell culture. In the pharmaceutical field it has been employed to analyse drugs or excipients 

(51,52). Forensics have also benefited by its detection of chemicals like explosives (20,53–57), inks 

(58–60), polymers etc (61).  Its application has also been successful for analysing peptides / proteins 

with molecular weights up to 66kDa (62,63). This mode of ionization is limited to the detection levels 

in the femtomolar range, but its reproducibility and quantitative assessment ability has been reported 

to be very robust, having inter-day variation below 10%. 

1.3.2 Paper Spray Mass Spectrometry (PS-MS) 

Paper Spray is also an ambient ionization technique, introduced by Cooks and coworkers 

in 2010 (13). It utilizes a triangular shaped paper held at high voltage (3-5kV) and kept about 4 

mm away from the inlet of the mass spectrometer (Figure 1.5). At the tip of the paper the analyte 

solution is spotted and upon solvent drizzle the analytes get extracted. The presence of an 

electrostatic field carries the charged droplets contaning the analyte molecule into the inlet of the 

mass spectrometer. This technique does not suffer matrix or salt suppression effects as only the 
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solvent-soluble analyte makes its way into the mass spectrometer (64). This allows a clean-up of 

sample mixture. Like ESI, the solvent coming in contact with the electrified paper forms Taylor 

cone at the tip and bursts, releasing charged progeny droplets containing the soluble analytes. The 

internal energy distribution and the size of the droplets is shown to be similar to nano-electrospray 

ionization (65). This technique has been employed for direct screening of complex mixtures  

(13,66,67). Dispensing paper in each run helps eliminate the carryover effect typically observed 

with LC-MS and GC-MS and thus improves the limit of quantitation (68,69). 

 

Figure1.5: Schematics of Paper Spray. 

1.4 Mass Analyzers 

Mass Analyzers are the heart of mass spectrometer. They only selects the ions of interest but 

also separates them according to their mass to charge ratio and respective intensities. All this 

typically happens under vacuum in an applied electric field. Several parameters define the 

performance of a mass analyzer. To list a few are, resolution (ability to separate ions having slight 

difference in their m/z ratios), mass accuracy (error percentage in calculating exact m/z values), 

scanning range of m/z, ability to perform tandem mass spectrometry and precision of isotopic 

pattern.  Some of the most commonly used analyzers are listed below:  

1. Quadrupole analyzer 
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a. Single 

b. Triple 

2. Ion traps  

a. Paul Traps (3D) 

b. Linear Ion traps (2D) 

3. Time-of-flight analyzer (TOF) 

4. TOF with Reflectron 

5. Magnetic Analyzer 

6. Ion Cyclotron Resonance (ICR) 

7. Orbitrap 

1.4.1 Linear Ion Trap  

Linear Ion Traps are typically designed like quadrupole with two end confining electrodes 

(70). Ion are confined radially with the application of a two dimensional (2D) radio frequency (RF) 

field and axially by stopping potential applied to end electrodes (71). Ramping the AC frequency 

sequentially ejects ions according to their masses. In case of tandem mass spectrometry (MS/MS), 

ramping the voltage causes all the stored ions to eject leaving behind only one selected. The 

selected ion then undergoes oscillation with He collision gas to produce fragment ions. Again, one 

single fragment ion can be selected, ejecting the other daughter ions and in this way MSn can be 

performed for structural elucidation. They offer advantage over Paul (3D) traps due to increased 

ion storage and ultimately greater total charge capacity space, which allows accurate 

quantification. Linear Ion trap can be used as a stand-alone analyzer in mass spectrometer or can 

be coupled with other analyzers like Orbitrap to offer better resolution translating into enhanced 

mass accuracy for studying ion-molecule chemistry (70,71). 
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1.4.2 Orbitrap 

Orbitraps are the newest mass analyzer, introduced in 2005 by Thermoelectronics (72). It 

consists of two outer barrel shaped electrode confining a central spindle shaped electrode, which 

allows it to work both as an analyzer and detector (Figure 1.6). As small packets of ions enter into 

the equator of the orbitrap, voltage is increased in the central spindle electrode, which forces ions 

to ‘electrodynamically squeeze’ in the central electrode (73). Upon cessation of the voltage ramp 

the ions get trapped inside the orbitrap.  The trapped ions oscillate radially around the central 

electrodes and in between the two outer electrodes. As the ions move closer to the inner surface of 

the outer electrode, they induces charge on the outer electrode detected as image current by 

differential amplifier (73). As they go back and forth around the space it generates sinusoidal 

signals of induced currents varying with time. Different ions have different image current, which 

translates into distinct frequencies by induced Fourier Transform (FT). These frequencies translate 

into different m/z. Unlike Fourier Transform-Ion Cyclotron Resonance (FT-ICR), Orbitrap does 

not require huge and expensive super conducting magnets. It also allows high transmission of 

signal resulting in one to two fold higher sensitivity than any other high accuracy mass analyzer 

(72–74). 

 

Figure 1.6: Orbitrap mass analyzer. (Figure copied from Thermo Fischer website) 
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1.5 Aim of my Thesis 

The ambient ionization technique, namely DESI-MS, is gaining attention due to its ease of 

use, requiring no sample preparation and its ability to detect compounds under ambient conditions 

along with providing information about their spatial distribution though imaging mass 

spectrometry (MSI). The aim of the research is to depict its potential as a means of qualitative and 

quantitative assessment of samples in the field of forensics, drug discovery, food and 

pharmaceutical industry. Chapter two focuses on identifying forgery with the use of 

Thermochromic ink. DESI- MS and DESI-MSI helped identify different fingerprints 

representative of the visible and invisible state of the ink without any sample extraction or 

pretreatment steps. In chapter three, DES-MS and DESI-MSI have been employed to detect and 

image drug compounds from microbial culture of actinobacteria. The analysis enabled detection 

of a potential drug candidate which is an analogue of lienomycin along with another drug moiety, 

Lysoliphin I previously identified to be released by this class of bacterium. With imaging mass 

spectrometry, this drug compounds were mapped during the bacterial lifecycle, as well as in the 

zone of inhibition in disc diffusion study carried out with the media extract on B. subtilis, E. coli 

and P. roqueforti. Chapters four and five discuss the use of DESI-MS as a quantitative tool for 

analysis of food and pharmaceutical products. TLC was coupled with DESI as a means of 

separation prior to quantifying. Three quantification methods were performed to quantify caffeine 

in energy drinks and active principals in eye drop preparations. All modes of quantification showed 

accuracy and robustness, further affirming DESI-MS use as a quantification tool that can be readily 

used in the food and pharmaceutical industries.   
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CHAPTER TWO 

Detection and imaging of thermochromic ink compounds in erasable pens 

using Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) 

A version of this chapter published in Rapid Communications in Mass Spectrometry: 

• Khatami, A., Prova, S. S., Bagga, A. K., Yan Chi Ting, M., Brar, G., & Ifa, D. R. (2017). 

Detection and imaging of thermochromic ink compounds in erasable pens using desorption 

electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 31(12), 

983-990. 
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2.1 Summary 

Thermochromic ink pens are widely accessible worldwide and have gained popularity 

among the general public. These pens are very useful to undo mistakes while writing important 

documents or exams. Yet, they are also extensively misused in committing crimes such as 

counterfeiting checks or wills. Thus, the forensics community is in need of techniques that will 

allow these forgeries to be detected rapidly, reliably and conveniently. Desorption Electrospray 

Ionization (DESI) coupled with an LTQ mass spectrometer was used to identify the ink 

components. Chemicals markers characteristic to the state of ink (visible or invisible) were 

identified and mapped in ink traces by the use of DESI-MS imaging (DESI-MSI). These markers 

can generate fingerprints in forged documents by the forensic experts. The markers were also 

characterized by conducting tandem mass spectrometry using paper spray in an Orbitrap LTQ 

mass spectrometer. 

2.2 Introduction  

The introduction of pens featuring erasable ink in the late 1970s was one of the most 

compelling applications of invisible ink technologies (75–78). Erasable inks are convenient with 

numerous benefits. However, like any other device; they can be used for illegal purposes in 

counterfeiting checks or wills (79–81). Thus, forensics applications for detecting the trace ink 

compounds have been significantly amplified in recent years (81,82). Erasable ink can be classified 

into three groups based on their mode of erasing off ink traces. The first type are the rubber-

erasable pens in which ink from printing paper surfaces can be rubbed off with rubbers provided 

due to the binding affinity of the ink compounds with the paper fibers, similar to pencils. The 

second types are the thermochromic pens, where the printed ink changes colour with an alteration 

in temperature. A colour film dissolving pen is the third type of erasable pen which can transform 
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in its invisible form by the use of another special correction pen (83). The primary focus of this 

paper is on the thermochromic ink and its analysis in the visible and invisible state. Thermochromic 

dyes are based on mixtures of leuco dyes with supplementary chemicals, displaying a colour 

alteration, typically among the colourless and the colored leuco form, with respect to temperature 

change (84,85). 

In 2006 Pilot Pens Inc. introduced Pilot Frixion pens using thermochromic ink to the global 

market. The erasable ink composition mainly had solvent, colorant and resin film forming agent 

(85,86). The ink microcapsule consisted of an electron-donating organic dye that reacts with a 

developer compound which is electron-accepting in nature to give the ink color (85,87–90). The 

reaction medium along with the dye and developer had a crystalline substance (esters or ketone of 

long chain fatty acid) which was classified as a decolourant. At temperatures below 65°C the ink 

maintained its colored state due to reaction between the dye and the developer. During that time 

the crystalline substance was in the solid state. However, at temperatures above 65°C, heat causes 

the crystalline substance to melt and both the dye and developer dissolve, which hinders their 

interaction and renders the thermochromic ink colorless. At temperatures lower than -10°C the ink 

reverts back to its visible state as the crystalline substance restores its solid state (85,87–90).  

Forensics detection and identification of ink currently conducted are predominantly 

physical methods of a non-destructive nature which includes microscopy, irradiation with UV and 

infrared radiation, exposing the document to various dichroic filters or employing lycopodium 

powder to detect eraser remains (91,92). However, these methods are only limited to the detection, 

differentiation and identification of inks being used to conduct forgery, thus making it essential to 

resort to chemical analytical methods. Chemical analytical methods include performing TLC, high 

performance liquid chromatography (HPLC), mass spectrometry (field-desorption ionization 
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(FDI), laser desorption ionization (LDI), matrix-assisted laser desorption ionization (MALDI), and 

electrostatic method of detection (capillary electrophoresis and micellar electrokinetic capillary 

electrophoresis (MECE)) (80,89,93–95). These techniques typically rely on the separation of 

compounds from the original sample, thereby destroying the original sample (93). Conversely, 

desorption-electrospray ionization (DESI), as an ambient ionization technique is able to conduct 

analysis of a sample in its native state; this reduces sample preparation time, as well as eliminating 

the necessity of a matrix in the process, thereby making DESI-MS a more convenient, cost and 

time effective method for analysis of a mixture of compounds (59). Combined with Mass 

Spectrometry Imaging (MSI), DESI helps to attain both chemical and spatial information of 

multiple compounds in a sample with little or no sample preparation (58,59,96,97). Eberlin et al., 

2010 have illustrated the use of DESI-MS coupled with imaging as a convenient tool to chemically 

profile and map ink traces from authentic and counterfeiting bills (58). DESI-MSI being a 

minimally destructive technique can also provide valuable information of any restored sample 

even if the researcher lacks its former data. Furthermore, with the recent advancement of field 

portable miniature mass spectrometers, this mode of analysis will be of immense convenience to 

the mobile forensics specialists who are dedicated to operate in the field and are in constant need 

of fast reliable techniques that can perform onsite forensic analysis (98–100). 

In this study, desorption electrospray mass spectrometry coupled with imaging was 

employed to conduct an investigation of a commercially available Pilot FriXon erasable ball pen 

to detect and image erased writing ink traces. The compounds specific to the erased state of the 

writing ink were scrutinized by performing TLC and tandem mass spectrometry. Analysis of these 

compounds can generate useful fingerprints for forensics experts to profile forgery in written 

documents. 
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2.3 Result and Discussion 

2.3.1 DESI analysis of ink spots 

Study of the thermochromic ink resulted in the detection of numerous compounds with m/z 

245, 356, 467, 578, 689 and 800 in the visible state of the ink (Figure 2.1a). Upon examination, it 

was apparent that the difference between the ions detected were of a series of 111 Da. Kao YY 

and coworkers in their work on ink analysis by electrospray-assisted laser desorption ionization 

(ELDI) proposed that the ions evident are polymers of polyvinylpyrrolidone (PVP) [(C6H9NO)n] 

as Δm between the neighboring peaks of polymer ion series demonstrates a difference of 111 Da 

(86). Thus the polymer ion signals [245 + (111)n] were tentatively assigned as PVP (86). PVP is a 

water soluble polymer and is frequently found in several writing ink and jet printers ink 

composition as a polymeric flocculent to impart viscosity and adhesiveness in the overall 

formulation (101). In this work only one polymer ion series [245 + (111)n] was evident. The other 

series reported by Kao, Y.Y., et al. (86) were absent. This could be due to the different techniques 

used (ESI vs LDI), the ink colors used in the experiments or the different batches of ink 

formulations using different polymeric flocculent.  

Subsequently, the ink spot was exposed to heat (+75°C), where it transformed into the 

colourless (invisible) state. The alteration of the spectrum from the visible form resulted in the 

appearance of several new compounds with a mass to charge ratios (m/z) of 400, 405, 511, 615, 

786 and 851 (Figure 2.1b). Followed by the analysis of the ink spot in its invisible state, the ink 

was cooled at (-18°C) where it reverted back to its visible form. The spectrum acquired was nearly 

identical, displaying the same ion peaks as the original analysis of the ink spot with ions of m/z 

245, 356, 467, 578, 689 and 800 along with the presence of trace amount of heated compound 

markers of m/z 400, 405, 511, 615 which were detected specifically in the invisible state (Figure 
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2.1c). 

 

Figure 2.1: DESI-MS full scan spectra using an LTQ mass spectrometer in positive ion mode of 

the Pilot FriXion ink at a) room temperature (25° C) (original), b) heated (+75° C) (invisible state) 

and c) cooled (-18° C) reverted back to visible state. 

 

Analysis of the ions of m/z 245.1262, 356.1944, 578.3307 and 800.4678 by tandem mass 

spectrometry (MS/MS) employing an Orbitrap mass spectrometer resulted in fragments of m/z 

160.0733, 271.1416, 493.2780 and 715.4150 respectively (Figure 2.2). These were due to the loss 

of mass 85.0529 Da which was identified as C4H7NO (the ring structure of PVP). The MS/MS 

results also assisted in the hypothesis of the main ink compound of m/z 245 having a chemical 

formula of (C11H19NO5) with 0.41 ppm difference and the other polymeric unit of PVP were 

characterized by Xcalibur software with their probable chemical formulae and parts per million 

(ppm) difference (Table 2.1). Other MS/MS data upon CID fragmentation in Orbitrap mass 

spectrometer are also provided in the Appendix, section A (Figure A1 and A2).  
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Figure 2.2: Tandem MS (MS/MS) spectra of thermochromic ink compounds acquired on an 

Orbitrap mass spectrometer; A) m/z 245.1262, B) m/z 356.1944, C) m/z 578.3307 and D) m/z 

800.4678. Loss of 85.0529 Da was observed which was identified as C4H7NO. 

 

Table 2.1: Characterisation of polymeric unit of PVP specific to the visible and recurred state of 

the ink. 

m/z Exact mass (m/z) Possible chemical formulae Difference in ppm 

245 245.1262 C11H19O5N 0.41 

356 356.1944 C17H28O6N2 0.84 

467 467.2625 C23H37O7N3 2.01 

578 578.3307 C29H46O8N4 1.56 

689 689.3991 C35H55O9N5 1.16 

800 800.4675 C41H64O10N6 1.12 

911 911.5359 C47H73O11N7 0.99 

 

2.3.2 Paper spray analysis of ink 

Paper spray mass spectrometry was a parallel method to confirm the reproducibility of the 

data acquired using DESI-MS.  Paper spray has been proved to be a fast and sensitive technique 

for characterization of ink formulations and forgery (83,102). However, it requires analysis of cut 
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paper which cannot be performed on original valuable documents. 

The analysis of the thermochromic ink at room temperature by paper spray displayed 

identical results to that obtained by DESI-MS and ESI (Refer to Appendix, section A, Figure A3 

for comparison), depicting compounds of m/z 245, 356, 467, 578, 689 and 800 (Figure 2.3a). 

Similarly, the heated ink (+75°C) revealed an analogous spectrum with the DESI-MS having m/z 

405, 511, and 786 profiling the characteristic of the ink in its invisible state (Figure 2.3b). The 

cooled ink back to its visible state also showed an identical mass spectrum compared to DESI-MS. 

The results obtained from paper spray confirmed the reliability of DESI-MS; however unlike paper 

spray, DESI does not require the extraction of the sample (ink) or cutting of the document to 

conduct analysis, thus making it a minimally destructive technique.  

The exact masses of the compounds specific to the invisible and reappeared states of the 

ink were determined using the Orbitrap. These compounds were further characterised with 

probable chemical formulae having the least ppm difference using Xcalibur software (Table 2.2). 

The appearance of these compounds specific to the colourless and the recurred state of the 

thermochromic ink are valuable markers to identify any fabrication carried out with the document 

under question. Identification and characterization of such fingerprints for different 

thermochromic inks by DESI-MS could be useful for the forensic experts to detect forgery 

expediently. 
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Figure 2.3: Paper spray full scan spectra acquired on an Orbitrap mass spectrometer in positive-

ion mode of Pilot Frixion ball pen ink at a) room temperature (25°C) and b) heated Pilot Frixion 

ink at (+75°C), showing the matching profile characteristic of thermochromic ink analyzed by 

DESI-MS. 

 

Table 2.2: Characterisation of compounds specific to the invisible state of the ink detected by 

DESI-MS and paper spray. A fingerprint to detect forgery. 

m/z Exact mass (m/z) Possible chemical 

formulae 

Difference in ppm 

400 400.2837 C25H38O3N 2.40 

405 405.2386 C22H33O5N2 0.69 

511 511.3034 C29H41O5N3 1.30 

615 615.2832 C39H39O5N2 3.49 

851 851.2674 C60H37O5N 0.91 

 

2.3.3 Thin Layer Chromatography (TLC) 

Examination of the TLC plates using DESI-MS in positive ion mode allowed to observe 

the difference between heated and non-heated states of the ink. When the non-heated ink was run, 
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the presence of the heated markers were observed starting from the origin (RF 0) and the polymers 

separated based on their molecular weights (Table 2.3, Figure A4 and A5). When the heated ink 

was run, the same heated markers appeared from RF 0.438 to 1.0, along with the separated 

polymers (Figures A4 and A5). When the TLC plate was heated after the TLC run of the non-

heated (visible) ink, the results were the same as from the non-heated ink run.  Our hypothesis to 

explain these results is the presence of microcapsules in the ink formulation. The company’s patent 

US 20120014740 A1 referred to the presence of a dye mixture inside microcapsules (85). For the 

first experiment the heated markers are inside the microcapsules which hinders their migration 

through the TLC plate. After heating the ink, the microcapsules break open to release the heated 

markers allowing them to migrate through the TLC plate from RF 0.69 to 1.0. Optical images of 

the TLC plates are provided in the Appendix, section A (Figure A8). 

Table 2.3: TLC retention factors of ink components in the ink mixture. 

m/z Retention Factor (RF) 

Original Heated 

400, 405, 615, 786 

(Heated Markers) 

0.000-0.625 0.438 till 1 

245 0.781 0.781 

356 0.656 0.656 

467 0.500 0.500 

578 0.375 0.375 

689 0.300 0.300 

800 0.219 0.219 

 

In conclusion, the presence of the heated markers (m/z 400, 405, 615, and 786) in both the 

non-heated and heated spotted ink suggests that these compounds were not products of a reaction 

due to heat. Instead, these compounds were originally present in the ink composition and their 
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appearance is dependent on the treatment of the ink with heat. We speculate that the heated markers 

inside the microcapsules cannot be detected in the presence of the polymers due to ion suppression. 

On the other hand, if the heated markers are outside of the microcapsules, their signal will supress 

the polymer ion peaks (Figure 2.1a and 2.1b). 

2.3.4 Imaging 

DESI-MS imaging was conducted to map the ink components in both visible and invisible 

form drawn to simulate forgery. A number ‘7’ was printed on a PTFE surface with Pilot FriXion 

erasable pen; after 15 minutes, the number was erased with the exposure to heat (+75℃) for 10 

seconds. DESI-MS was used to characterize and run a two-dimensional image of the chemical 

compounds in its visible and invisible state (Figure 2.4).  

 

Figure 2.4: DESI images from a number drawn on PTFE paper acquired on a LTQ mass 

spectrometer. a) two-dimensional ion image of Pilot FriXion pen at room temperature (25°C), m/z 

245, 356 and 405; b) two-dimensional ion image of Pilot FriXion pen upon exposure to heat 

(+75°C), m/z 245, 356 and 405; c) two-dimensional ion image of Pilot Frixion pen upon cooling 

(-18°C), m/z 245, 356 and 405. 

 

Figure 2.4a shows the optical image (on the left) (original) and the mapped ion images of 

the ink compounds of number ‘7’ at room temperature (+25°C) (on the right) m/z 245, 356 and 



24 
 

405. Figure 2.4b displays the optical image of the erased number ‘7’ (on the left) (invisible state) 

upon exposure to temperature of (+75℃) and the mapped ion images of the ink compounds upon 

exposure to heat (on the right) m/z 245, 356 and 405. Figure 2.4c depicts the optical image of the 

cooled (-18℃) number ‘7’ (on the left) (visible state) and the mapped ion images of ink compounds 

(on the right) m/z 245, 356 and 405. Of note, the heated marker m/z 405 was only evident in the 

heated and reappeared state of the ink but absent in the original state (before heating) of the ink.  

Simultaneously, imaging was performed on paper written documents to check if the results 

were consistent with that acquired on a PTFE surface. The result obtained was identical with lower 

intensities and more background noise (Figure A6). ‘CRMS’ printed using a Pilot Fixon pen on a 

paper was mapped for ions; m/z 245, 356, and 405 at room temperature (Figure 2.5a), upon heating 

at +75°C (Figure 2.5b) and followed by cooling at -18°C (Figure 2.5c). All the images revealed 

similar results to that obtained by PTFE.  

Ion images of m/z 405 on both PTFE and printing paper illustrates the presence of this 

compound specifically on the heated and reappeared state of the ink (Figure 2.4b, 2.4c, 2.5b and 

2.5c). In the original state (non-heated) of the ink, m/z 405 was absent (Figure 2.4a and 2.5a). 

These results confirm that compounds like m/z 405 are useful markers to detect forgery. Whether 

the ink is in invisible state or restored back fully or in parts, imaging of ink traces will help to 

detect the presence and precise location of such markers, which will enable easy validation of 

malpractice while handing the document under investigation. Identifying such fingerprints using 

DESI-MS for various thermochromic inks could to be particularly beneficial to the forensic experts 

to profile forgery. Other ion images of the heated markers m/z 400, 578, 615 and 786 on both PTFE 

and printer paper are also provided in the Appendix, section A (Figure A7). 
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Figure 2.5: DESI images of ‘CRMS’ writing on letter format printing paper acquired on an LTQ 

mass spectrometer. a) two-dimensional ion image of Pilot FriXion pen at room temperature (25°C), 

m/z 245, 356 and 405; b) two-dimensional ion image of Pilot FriXion pen upon exposure to heat 

(+75°C), m/z 245, 356 and 405; c) two-dimensional ion image of Pilot FriXion pen upon cooling 

(-18°C), m/z 245, 356 and 405. 

 

2.4 Conclusion  

DESI-MS, as an ambient ionization technique, has been demonstrated to be exceedingly 

valuable in detecting ink chemical components specific to the invisible form and providing two-

dimensional ion images of thermochromic ink compounds which otherwise would have been 

difficult to detect with the naked eye.  Detection of a chemical fingerprint (m/z 400, 405, 786, and 

615) specific to the invisible and recurred state of ink will confirm the act of misconduct with the 

concerned document.  This method can be of practical use in forensic investigations to monitor 

and characterize visible and invisible ink components in various forged documents. Furthermore, 

the data collected by paper spray confirmed the accuracy of DESI-MS having similar mass spectra 

in both visible and invisible state. 

Since the forensics community is in search of a more cost effective and prompt method of analysis, 
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DESI-MS could be an effective tool in providing reliable, stable and reproducible data with good 

signal-to-noise ratio while requiring little to no sample preparation making DESI-MS less 

laborious and time-consuming. Correspondingly, DESI displayed an immense improvement 

compared to formerly reported techniques in ways such that it eliminates the need for original 

sample to be destroyed or damaged and allows reprocessing for further analysis when needed.  

2.5 Experimental  

2.5.1 Instruments and Materials 

Black Pilot FriXion Ball Erasable gel pen of 0.7 mm tip diameter was purchased from York 

University bookstore (Toronto, Canada) and was used throughout the analysis. Chemicals and 

solvents such as methanol and acetic acid were HPLC grade purchased from Sigma (Oakville, 

Canada). Printing paper (8.5 X 11 inch) was purchased from Staples (Toronto, Canada). 

Polytetrafluoroethylene (PTFE) and HPTLC platten Nano-Sil 20 (5 X 5cm) were purchased from 

Sigma (Oakville, Canada) and Macherey-Nagel (Düren, Germany), respectively.  Thermo 

Finnigan LTQ ion trap mass spectrometer (San Jose, CA, USA) and Thermo Scientific Orbitrap 

Elite mass spectrometer (San Jose, CA, USA) were the two mass spectrometers used to conduct 

the analyses for this study. 

2.5.2 DESI Ion Source Set Up and Parameters 

All MS and DESI imaging experiments were conducted using a Thermo Finnigan LTQ ion 

trap mass spectrometer. Data were acquired in the positive ion mode and processed using Xcalibur 

2.0 software (Thermo Fisher Scientific). Negative ion mode was performed initially; however, no 

relative difference in spectrum was observed between the heated and non-heated state of the ink.  

The ions intensities in the negative ion mode were also very low. The DESI ion source was custom-

built to fit the LTQ mass spectrometer. Furthermore, the capillary of the ion source was adjusted 
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to position at an incident angle of 52° to the X-Y stage for all experiments. The fused silica 

capillary voltage was set to 5 kV and the MS inlet capillary was set at 285℃. The outer diameter 

and the inner diameter of the fused silica capillary carrying the spray solvent were 150 μm and 50 

μm respectively. The distance of the silica capillary tip to the sample surface was 2.55 mm and 2 

mm approximately to the mass spectrometer inlet. Nitrogen gas (N2) and methanol were 

electrosprayed through the silica capillary tip which was positioned 2 mm above the sample plate 

into the MS inlet. A flow rate of 2.5 μL/min was maintained via a 500 mL syringe pump to prevent 

any damage to the surface of the paper under analysis (59). The MS injection time was 200 ms and 

3 microscans were averaged. The mass range was set to m/z 200-1000 in full scan mode in positive 

ion mode for all of the experiments. The pressure of the nebulizing nitrogen gas was set to 100 psi. 

For optimization, rhodamine cations generated from a spot of red Sharpie ink was scanned. The 

spectrum showed highly intense species of rhodamine B at m/z 443. Additionally, a detected 

compound, m/z 245 in the thermochromic ink was used to autotune the LTQ mass spectrometer 

parameters for all further experiments.   

2.5.3 DESI Analysis 

For investigation of ink components, a circle-filled dot of Pilot Frixion ink was printed on 

a sheet of PTFE and later analyzed by DESI-MS.  

For the characterization of the ink at room temperature (25°C), the Pilot Frixion erasable 

ball pen was used to draw a filled ink spot of 0.5 cm diameter on PTFE surface. The PTFE was 

cut into a 3 X 6 cm dimension rectangle and was fixed on a stainless steel sample plate using 

adhesive tapes. The stainless steel plate was then mounted on the DESI X-Y stage for analysis. A 

blank spectrum of the PTFE was obtained to observe the impurities on the surface and to normalize 

the signal before analyzing the erasable ink. For analysis of the heated ink, the same PTFE with 
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ink spot was heated with a laboratory blow dryer (~75℃) for 10 seconds and then analyzed again 

by DESI-MS. Furthermore, to analyse the ink upon cooling, the same ink spot was placed inside 

a freezer (-18℃) for 45 minutes followed by immediately examining it by DESI-MS to prevent 

additional contamination. 

For further identification of the compounds detected by DESI-MS, tandem mass 

spectrometry (MS/MS) was performed using an Orbitrap mass spectrometer. Ink was extracted 

from the pen by the use of a Hamilton syringe. The extracted ink was then mixed with methanol, 

centrifuged at 12000g for 3 minutes and the supernatant was collected. The supernatant was then 

analysed by Orbitrap. Flow rate was maintained at 3 µL/min and Orbitrap with Fourier transform 

mass spectrometry (FTMS) ion detector was used for the analysis. 

2.5.4 Paper Spray  

Paper spray been proven to be beneficial to conduct analysis in real time and relatively 

easily and rapidly (83,102). Paper spray was performed to confirm the results obtained by DESI-

MS as well as to do tandem mass spectrometry of the chemicals specific to the heated ink state 

(m/z 400, 405, 511 and 615). Printing paper was cut in triangular form and was made to stand at 

the same height of the MS inlet using a clamp stand. The paper was held by a clip which was 

subjected to 5 kV during analysis. Distance between the inlet and paper tip was always maintained 

around 4 mm. At the tip of the paper an ink spot was made using Pilot Frixion erasable pen and 

during the time of analysis methanol was drizzled using a pipette to carry the ink components from 

the paper into the MS inlet because of the generated electric gradient. All the analyses were done 

in the positive ion mode and the mass range scanned was m/z 200-1000. 

2.5.5 TLC 

TLC was performed to separate the ink components both in its original and invisible form 
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to understand if the compound m/z 405 and 786 (invisible ink markers) are products of reaction 

between different compounds in the ink composition upon heating or is it a component of the ink 

itself. Thermochromic ink was spotted on glass based silica HPTLC plates. Sharpie red ink was 

simultaneously used as control. The mobile phase used was methanol with 1% acetic acid (acetic 

acid improved separation of the ink components on silica plate). After running, the plates were air 

dried and using DESI with methanol as the solvent, the dried plates were analysed from retention 

factor (RF) 0 to 1. All the analyses were performed in the positive ion mode. 

Two modes of heating were performed; heating the spotted ink on silica plate just prior to 

running it with methanol and acetic acid and heating the air dried developed silica plate before 

analysis by DESI-MS. 

2.5.6 DESI-MS Imaging 

DESI-MS imaging was conducted on both PTFE and printing paper surface to check the 

feasibility of using DESI to detect the heated markers of the ink on both kinds of surfaces.  

A number “7” was hand-written on a new piece of PTFE with the Pilot FriXion erasable 

pen. The sample was then placed on the X-Y moving stage and by the DESI ion source, solvent 

(methanol) was sprayed across the sample for 40 minutes. The dimension of the sample (number 

“7”) was 0.8 X1.0 cm. The second and the third DESI images were acquired from the heated and 

frozen ink lines respectively. For DESI-MS imaging, the DESI ion source and the sample stage 

parameters were set as follow: x-direction; 8000 μm, y-direction; 10000 μm, scan time; 0.94 ms, 

resolution, 200 microns; number of lines, 50; and total solvent volume; 235 μL. 

The word ‘CRMS’ was hand-written on a new piece of printing paper with the Pilot 

FriXion erasable pen. The sample was then placed on the X-Y moving stage and analysed for 35 

minutes. The dimension of the sample (CRMS) was 2.3 X 0.7 cm. The second and the third DESI 
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images of ‘CRMS’ were successively performed on the same written piece of paper upon heating 

and cooling the remaining ink traces respectively. For DESI-MS imaging, the DESI ion source 

and the sample stage parameters were set as follow: x-direction; 23000 μm, y-direction; 7000 μm, 

scan time; 0.52 ms, resolution, 200 microns; number of lines, 35; and total solvent volume; 157 

μL. 

The software BioMAP was used to create ion images in two-dimensional coordinates, 

Converter v3.0 was then used to translate Thermo Fisher LTQ ‘.raw’ files into a format compatible 

with the imaging software BioMAP. 
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CHAPTER THREE 

Characterization and Mapping of secondary metabolites of Streptomyces sp. 

from Caatinga by Desorption Electrospray Ionization Mass Spectrometry 

(DESI-MS) 

 A version of this paper is published in Analytical and Bioanalytical chemistry: 

• Rodrigues, J. P.*, Prova, S. S.*, Moraes, L. A. B., & Ifa, D. R. (2018). Characterization 

and mapping of secondary metabolites of Streptomyces sp. from caatinga by desorption 

electrospray ionization mass spectrometry (DESI–MS). Analytical and bioanalytical chemistry, 1-

10. (*equal contributor) 
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3.1 Summary 

The discovery of new secondary metabolites is a challenge to biotechnologists due to the 

emergence of superbugs and drugs resistance. The knowledge of biodiversity and the discovery of 

new microorganisms have become the major objective; thus, new habitat like extreme ecosystems 

become places of interest to research. In this context, Caatinga arises as an unexplored biome. The 

ecosystem of Caatinga is a rich habitat for thermophilic microbes. Its high temperature and dry 

climate influence selective microbes to flourish and establish. Actinobacteria (Caat 1-54 genus 

Streptomyces spp.) isolated from the soil of Caatinga was investigated to identify and map its 

secondary metabolites by desorption electrospray ionization mass spectrometry imaging (DESI-

MSI). With this technique, the production of bioactive metabolites was detected and associated 

with the different morphological differentiation stages within a typical Streptomyces spp. lifecycle. 

High-resolution mass spectrometry, tandem mass spectrometry, UV-Vis profiling and NMR 

analysis were also performed to identify the metabolite ions detected by DESI-MS. A novel 

compound, which is presumed to be an analogue of the antifungal agent Lienomycin, along with 

the antimicrobial compound Lysolipin I were identified in this study. The potency of these 

bioactive compounds was further studied by disc diffusion assays. These bioactive metabolites 

may prove to be useful leads in the pharmaceutical industry especially when there is an arising 

concern of increasing resistance to the available drugs options with the emergence of superbugs. 

Consequently, the unexplored habitat of Caatinga unveils new possibilities for new bioactive 

compounds that are yet to be discovered.  

3.2 Introduction 

The understanding of biodiversity and the discovery of new microorganisms have become 

an inevitable part in the field of biotechnology, due to their potentials in generating a rich and 
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assorted library of new bioactive compounds. With the emergence of superbugs and the increasing 

resistance to available drugs in the pharmaceutical field, exploration of new sources of bioactive 

metabolites became essential(103,104). Unexplored habitats such as marine, mountains and 

deserts are thus places of interest to many biotechnologists (105). Accordingly, Caatinga has a 

unique biome that is still unexplored for biological potential and may prove to be an important 

source for new active compounds (106,107). 

Caatinga is in the tropical zone having a hot semi-arid climate. Since the biome is located 

in semi-arid region, the soil has a lower amount of organic matter, with 50% being sedimentary 

and rich in groundwater (108). The average precipitation is about 250 to 1000 mm causing scarcity 

of water almost throughout the year (109). This molds the habitants in the ecosystem with a high 

resilience power because of their ability to adapt in extreme conditions.(110) The diversity of 

species is lower in relation to other biomes; however, there lies a high bioprospecting potential. 

Likewise the conditions are favorable for  actinomycetes microorganisms, which mainly establish 

themselves in different kind of soils (111).  

Actinomycetes have high GC (guanine-cytosine) content, Gram-positive bacteria with 

fungal morphology. Similarly to fungi it grows to form vegetative mycelium and produce spores 

(111). Although they have different characteristics in different biological backgrounds, their 

common features are assumed to be due to adaptation in similar ecological niches (112). Briefly, 

when the spore acquires suitable condition and nutrients, it germinates and grows into one or two 

germ tubes to become hyphaes. The vegetative hyphae grow perpendicular to form extension and 

branches also known as vegetative mycelium, which are evident over the surrounding substrate. 

Due to nutrient depletion and/or other factors, morphological differentiation causes the aerial 

hyphae to break open in air. The aerial hyphae fragments then start to divide to form chains of 
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prespore compartments that later mature into spores (113) (Appendix, section B, Figure B1). The 

spores typically can survive in the dormant state for a long time. Actinomycetes are a rich source 

of secondary metabolites having diverse biological activities. Overall, they contribute about 70% 

of the available antibiotics and various other non-antibiotic bioactive metabolites such as enzymes, 

enzyme inhibitors, immunological regulators, antioxidants which are of high commercial value 

and numerous practical uses. Among actinomycetes, the largest group studied is Streptomyces sp, 

accounting for up to 95% of the actinomycetes found in soil.(114,115) The actinobacterium was 

isolated from the rhizosphere of Caatinga, the part of the soil that is in direct contact with roots of 

the plants. It is a niche with great microbial diversity and likewise aids actinomycetes to reside and 

offer advantages to plants through the production of various bioactive compounds (116,117).  

Currently, identification and investigation of any active metabolite from a microbe 

involves its isolation by performing the conventional chromatographic techniques with 

spectrometric mode of detection eg. HPLC, GC, UV-Vis, NMR and MS. All of these techniques 

require multiple sets of analysis to be performed prior to their detection and identification, thereby 

making the overall process time consuming and laborious. Matrix-assisted laser desorption 

ionization mass spectrometry (MALDI-MS) offers to solve this problem, since it can be used 

directly on the colony for instantaneous detection of metabolites. However, the use of matrix to 

ionize analytes for detection purposes also requires time for sample preparation (118,119). 

Desorption electrospray ionization mass spectrometry (DESI-MS) on the other hand  being an 

ambient ionization technique, allows direct analysis of sample surfaces with almost no sample 

preparation and consequently is gaining popularity in various fields as a fast mode of analysis 

(40,120). Few studies involving DESI-MS have also been reported in the field of microbiology 

(121). The requirement of high spray and gas pressure to perform DESI hinders its use directly on 
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the agar plate or on soft uneven surfaces like fungi. Fungi, unlike bacteria, have soft and irregular 

morphology, due to the formation of spores and hyphae (46,49,122). In this work, actinobacteria 

were mapped for metabolites using DESI-MS imaging (DESI-MSI). Since actinobacteria have 

similar morphology to fungi, imprint DESI-MSI was performed for detection and mapping of 

metabolites (46,47). Along with imprint DESI-MSI, direct analysis and imaging of the bacteria 

was performed with the use of a glass slide inside an agar plate, as reported by Angolini et al, 2015 

(123).  

In this study, DESI-MS and DESI-MSI were used to detect, characterize and map 

secondary metabolites from actinobacteria Caat 1-54 colony (Streptomyces mashuensis, ATCC 

2934) isolated from Caatinga. Production of these metabolites was monitored by performing 

analysis with different culture duration lengths (4 and 14 days) to better understand the 

environmental impact on their release. High resolution mass spectrometry (HRMS), tandem mass 

spectrometry, NMR and UV profiling were also performed to probe the structural features of the 

major metabolites (Figure 3.1) detected by DESI-MS. Inhibition bioassays with fungi, Gram 

positive and Gram negative bacteria were also conducted to check the potency of crude growth 

media of the bacterium.  

 

Figure 3.1: Structures of compounds identified a) Lysolipin I and b) Lienomycin. 
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3.3 Results and Discussion  

3.3.1 DESI Analysis and Imaging 

DESI analysis of the bacteria directly from a glass slide after 4 days and 14 days of 

incubation, the ions of m/z 1229, 626, 634, 606 and 598 were observed (Figure 3.2). To check if 

there were other detectable secondary metabolites produced by the bacteria, an imprint of the top 

surface of colony was made on double sided tapes. DESI analysis of the imprint showed relatively 

high abundance of the metabolite m/z 598 from both 4 days and 14 days incubation colony 

(Appendix, section B, Figure B3). Interestingly m/z 606, 626, 634 and 1229 were absent on the 

spectrum obtained from the imprint. Hard imprinting (hard press on the tape for long duration) on 

the double sided tape, showed the presence of both m/z 598 and 1229 but at a relatively low signal 

intensity compared to direct analysis from a glass slide or soft imprint on tape. These observations 

led to the conclusion that the cream colored cells were the new dividing cells near to the media 

surface. As further cells divided the old ones were pushed to the top. Due to nutrition depletion 

the top layer dries up, and under stress, the bacteria (aged cells) produce the compound at m/z 598; 

upon pressing it hard to get an imprint, the aged cells cover the top of the tape along with some 

young cells from underneath, where ion of m/z 1229 becomes apparent. Since the dry aged 

bacterial cells residue resided at the top of the tape imprint, the signal to noise ratio of both the 

ions, m/z 598 and 1229, appeared low (Appendix, section B, Figure B3c). All the scans were 

performed several times (more than three times) and the profile obtained was reproducible.  

Our hypothesis was further supported by the results obtained by DESI imaging. Spatio-

temporal distribution of the compounds was checked by performing DESI-MSI. It was observed 

that the compound at m/z 1229 was only apparent both at the center and edges after 4 days of 

incubation (Figure 3.3) but only on the edges after 14 days of incubation. Optical images (Figure 
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3.3a and 3.3b) depict the presence of m/z 1229 ion was only evident at the cream colored region 

of the bacteria. This supports that the secondary metabolite at m/z 1229 was synthesized by the 

healthy young cells of the bacterial colony. When these young cells (cream colored) were covered 

by old cells (white colored) the signal for m/z 1229 declined, which is the reason while mapping  

the ion of m/z 1229 in the ion images the compound did not appear as a full solid circle.  

 

Figure 3.2: DESI-MS scan directly from a glass slide. a) DESI-MS scan of a colony after 4 days 

of incubation at 37°C on a potato agar plate. 7E01 represents the intensity of the most abundant 

ion. b) DESI-MS scan of a colony after 14 days of incubation at 37°C on a potato agar plate. 2E02 

represents the intensity of the most abundant ion.  

 

Figure 3.3: DESI-MS imaging (DESI-MSI) of a colony directly from a glass slide. a) DESI-MSI 

of a colony after 4 days of incubation at 37°C on a potato agar plate. b) DESI-MSI of a colony 

after 14 days of incubation at 37°C on a potato agar plate. 
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In contrast, the ion of m/z 598 appears at the top surface of the dried bacterial residue. 

Imprinting from the top surface by a tape helps to trap the dried surface on the sticky tape film and 

thus can be imaged adequately by DESI-MSI (Figure 3.4). The high gas pressure blows away most 

of the dried material while rastering through the colony surface for data acquisition during imaging 

directly from the glass slide.  Furthermore, spectra from the imprints showed the ion of m/z 583, 

which is a characteristic peak from the tape (Appendix, section B, Figure B3). The abundance of 

this ion assists in understanding the production pattern of the compound at m/z 598. Several scan 

analyses of tape imprints for both 4 and 14 days led to the conclusion that after 4 days of incubation 

the compound at m/z 598 is relatively less produced compared to the amount produced after 14 

days of incubation (Figure B3a, B3b, 4a and 4b) with respect to the ion at m/z 583.  

 

Figure 3.4: DESI-MS imaging (DESI-MSI) of an imprint of a colony on double-sided tape. a) 

DESI-MSI of an imprint of a colony after 4 days of incubation at 37°C on a potato agar plate. b) 

DESI-MSI of an imprint of a colony after 14 days of incubation at 37°C on a potato agar plate. 

 

Based on conventional analytical techniques associated with databases search such as the 

Dictionary of Natural Products and high resolution mass spectrometry and tandem mass 

spectrometry (described later in detail), the ion at m/z 1229 was identified as an analogue of 

Lienomycin and the ion at m/z 598 as Lysolipin I. Therefore, we hypothesize that the production 

of the Lienomycin analogue occurs during the formation of germ tube and vegetative mycelium. 
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On the other hand, Lysolipin I is associated with the sporulation stage (113). DESI-MS not only 

helps to identify and localize the metabolites, but also aids in understanding their roles in the 

bacterial life cycle under different environmental conditions. In conclusion, all these observations 

suggest that the bacteria under stress condition produce the compound m/z 598 whereas healthy 

viable bacterial cells produce mostly the metabolite m/z 1229.  This is also supported by the colony 

images obtained upon imaging them directly from glass slides, as after 4 days it is seen that the 

cream colored cells (optical image) and the spatiotemporal distribution of the compound at m/z 

1229 is relatively higher than that observed in the optical image and chemical images of colony 

after 14 days of incubation.  

Along with m/z 598, 605, 626, 634, and 1229, DESI-MS spectrum depicts that Caat 1-54 

also produces many other secondary metabolites at m/z 669, 707 and others, which have relatively 

low abundance or ionization efficiency in the current extraction solvent and thus needs other 

solvents or conventional means of characterization through separation by HPLC prior to their 

identification. 

3.3.2 High Resolution and Tandem Mass Spectrometry 

  The dried potato dextrose agar plates with the bacteria colony was soaked in DESI spray 

solvent, vortexed and centrifuged to obtain an extract which was further diluted 500 folds with the 

same solvent prior to direct infusion into the mass spectrometer to perform high resolution and 

tandem mass spectrometry. Initially, the crude extract was analysed by high resolution mass 

spectrometry (HRMS) to identify the compounds apparent while performing DESI-MS and DESI-

MSI. Remarkable amount of ions at m/z 598.1114, m/z 605.3605, m/z 625.8626, m/z 633.8497 and 

m/z 1228.7489 were observed in the DESI-MS scan. The HRMS spectrum (Appendix, section B, 

Figure B4) upon direct infusion showed presence of these ions that enabled their structural 
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identification through tandem mass spectrometry (MS/MS). Table 3.1 summarizes the mass 

discrepancies calculated between the proposed theoretical masses and the experimental parent and 

fragment ions observed. For all ions the difference observed was below 3.5 ppm. Among the 

tentatively identified ions, one of the secondary metabolites released by actinobacteria Caat 1-54 

have been previously isolated and identified using conventional analytical techniques, such as high 

performance liquid chromatography-mass spectrometry (HPLC-MS) and nuclear magnetic 

resonance (NMR)(124)  was Lysolipin I (Figure 3.1a), and other most abundant, readily ionized 

secondary metabolite detected and identified in this work is a new compound, an analogue of 

Lienomycin, the macrolide polyene pentaene (Figure 3.1b) (125).   

Table 3.1: Discrepancy between the observed and theoretical exact masses as observed with 

HRMS from the Orbitrap mass spectrometer. 

 

 

 

 

 

 

 

 

 

Lysolipin I was isolated for the first time in 1975 (126) from Streptomyces violaceoniger 

Tü 9629 and later from Streptomyces tandae Tü 4042 (127). It is an important antimicrobial 

polyketide, which has activity against a high range of Gram - positive bacteria and thus can be 

used as a lead compound for the development of drugs. Lysolipin I has a cyclic amide, which is 

Parent Ion Fragments 

Measured mass 

Calculated 

Exact Mass 

Formulae ppm Difference 

1228.7389  1228.7359 C67H106NO19 2.44 

 1210.7254 1210.7253 C67H104NO18 0.08 

 1192.7154 1192.7148 C67H102NO17 0.50 

 1174.7042 1174.7042 C67H100NO16 0 

 1156.6936 1156.6936 C67H98NO15 0 

 1064.6695 1064.6673 C61H94NO14 2.07 

 1046.6554 1046.6569 C61H92NO13 1.43 

605.3615  605.3627 [C67H104NO18 ]
+2 1.98 

625.8626  625.8628 [C67H106NO19Na ]+2 0.32 

633.8497  633.8498 [C67H106NO19K ]+2 0.16 

598.1114  598.1116 C29H25ClNO11 0.33 

 568.1019 568.1011 C28H23ClNO10 1.41 

 537.0578 537.0589 C27H18ClO10 2.05 
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rarely found in aromatic polyketide (ring F in Figure 3.1a). The compound is presumed to interact 

with a lipid carrier namely C55-bactoprenol, which is involved  in the cell wall synthesis of Gram 

positive bacteria (128). Collision-induced dissociation (CID) of the precursor ion of m/z 598 

(Lysolipin I ) having 35Cl isotope, showed fragment ions at m/z 568 and m/z 537, attributed due to 

the loss of CH2O (30 Da) from ring G and the sequence loss of CH3NH2 (61 Da) from ring F, 

respectively ( Appendix, section B, Figure B5a). 

Polyene antibiotic belongs to an enormous set of antifungal agents, produced mainly by 

Streptomyces. These compounds are amphipathic in nature and have been proposed to interact with 

sterols from membrane with their hydrophobic portion to form complexes; thus altering the 

permeability in fungi and yeast, but not in bacteria (129–135).  For the assignment of the ion at 

m/z 1229, along with UV-Vis profiling (Appendix, section B, Figure B4) and tandem mass 

spectrometry (Appendix, section B, Figure B5b), NMR experiments were also performed.  

Most polyene macrolides have a sugar moiety attached with macrocyclic ring by glycosidic 

bond. They usually have aminosugar, mycosamine, but in case of Lienomycin, there is a rhamnose 

(136). The loss of this neutral sugar was observed in the CID spectrum of m/z 1229, with the 

formation of a product ion of m/z 1064.6695 upon a neutral loss of 164 Da, Figure 3.5b. The other 

product ions were characterised as sequential losses of water, while the lactone ring remained 

intact. Amphotericin and nistatin are polyene macrolides and their fragmentation patterns reported 

by Ulrych et al.(137) were similar to that observed here for the m/z 1229 ion using the orbitrap 

mass spectrometry. For amphotericin and nystatin, a loss of 163 Da was attributed to the loss of 

the mycosamine moiety (Appendix, section B, Figure B7). While the fragmentation pattern of m/z 

1229 depicts a neutral loss of 164 Da relating to the loss of a neutral rhamnose moeity, reinforcing 

the hypothesis of its similarity with Lienomycin structure (Figure 3.1b). 
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The structural details of the macrolide compound as to the position of hydroxylation 

followed by double bonding are not determined due to the complexity of overall bulky molecule. 

The fragmentation profile and ultraviolet absorption spectrum suggest that the ion of m/z 1229 is 

a polyene pentane analogue of Lienomycin (Figure 3.1b). To support this hypothesis, NMR 

experiments were conducted in order to identify a few key aspects of the molecule. Due to the 

complexity and the instability of the isolated compound, the exact structure of the compound was 

not completely determined. 

Likewise, it is suggested that the antibiotic is an analogue of Lienomycin, a novel 

compound (C67H105NO19) not yet described in previous literatures, with the structural modification 

of a further hydroxylation and an additional C=C double bonding. In proposing this hypothesis, 

the difference between the theoretical mass and the observed mass obtained by HRMS was 2.44 

ppm. (Table 3.1) 

The other ions at m/z 605, 626 and 634 are doubly charged ions, observed by the profile 

shown in Figure B8 (Appendix, section B). The ions at m/z 626 and m/z 634 corresponds to the 

adducts [M+H+Na]+2  and [M+H+K]+2 respectively,  and m/z 605 corresponds to the doubly 

charged ion of the major fragment ion of m/z 1210, formed from the parent ion m/z 1229. All the 

observed masses showed below 3 ppm difference with their theoretical exact masses as presented 

in Table 3.1.  

3.3.3 UV-Visible Profiling 

A relatively large number of polyenes were recently reported as metabolites from 

actinomycetes (133). These molecules were characterised by the presence of a hydroxylated 

macrocyclic lactone ring, usually attached with a sugar moiety; typically they are recognised based 

on of the characteristic chromophoric property observed due to the presence of three to seven 
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conjugated double bonds in the macrolactone ring. These structures are commonly very large, 

bearing a lactone ring of 26-44 carbons atoms and are named as trienes, tetraenes, pentaenes, 

hexaenes and heptaenes, based on the number of conjugated double bonds. They also display 

unique physicochemical properties, which includes strong UV-visible light absorption and poor 

water solubility (138).  

The UV-Visible light absorption spectra of this set of compounds show characteristic 

multipeak pattern which is associated with the number of conjugated double bonds in the structure 

(130,138). Polyenes with five conjugated double bonds, (pentaenes), show UV bands around 317, 

331 and 349 nm (139). The absorption profile observed with the compound at m/z 1229 was similar 

having bands at 318, 333 and 349 nm (Appendix, section B, Figure B6). Thus the presence of three 

coincident peaks in the absorption profile assisted in characterising the ion at m/z 1229 as likely 

being a pentene (140), analogous of Lienomycin. Usually, purification of these compounds 

requires multiple chromatographic separations, but since concomitant degradation was also 

evident, rather than improving the purity level, impurities from degradation built up. However, in 

the region of 300 nm there was relatively low interference due to degradation products in the UV 

profile. 

3.3.4 NMR Analysis 

Upon isolation of the compound, the 1H and 13C spectra (Appendix, section B, Figures B9 

and B10 respectively) were acquired. The 1H NMR spectrum displayed signals in the vinylic 

region between δ5-7.5 along with alcohol related aliphatic hydrogen from δ3.5 to 4.5. Despite the 

low sensitivity, the 13C spectrum shows a peak at 169.4 ppm consistent with the presence of an 

ester carbon (C1). Several other signals between δ125.5 - δ137.0, δ60 - δ80 ppm and δ18.3 - δ46.5 

are representative of olefinic, carbinolic and aliphatic carbons respectively. The low sensitivity of 
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the 13C spectrum led to the indirect study of J (1H-13C) couplings using the HSQC-DEPT 

experiment as shown in Appendix, section B, Figure B11. 

Figure B11 distinctly shows four regions of vinylic hidrogens and 13C nuclei between δ7.5 

and δ5.3 in the hydrogen domain and δ140-120 in the 13C domain. There are also numerous peaks 

consistent with carbohydrate components between δ4.3 to 3 and δ85 to 60 in the hydrogen and 13C 

domains respectively. Methylene correlations can be seen from δ3.3 to 1.2 and δ50 to in the 

hydrogen and 13C domains respectively. In the upper right corner of the spectrum are correlations 

(blue) consistent with CH/CH3 groups. 

Additional longer range J (1H-13C) couplings can be viewed in the 2D HMBC spectrum as 

shown in Appendix, section B, Figure B12. This spectrum shows long range coupling between 

vinylic hydrogens (H23) and methylene (C24) at around δ40 as well as between vinylic hydrogens 

(H23) and carbinolic carbons (C25) near δ65. There is also unique long range correlation between 

hydrogen at δ0.93 and the carbonyl (C27) at δ210. This correlation is consistent with a carbonyl 

ketone carbon resonance.  

Finally, an experiment was performed to detect the presence of the nitrogen atom. Figure 

B13 (Appendix, section B) depicts the resultant spectrum obtained upon combining HMQC and 

15N NMR spectra; and it was possible to verify the existence of long distance nitrogen with 

correlation signals at δ120 with hydrogens at δ1.78. Due to the equidistant equivalence of the 

neighboring peaks, the central peaks represents a nitrogen atom in the molecule apparent as an 

NH2. 

3.3.5 Disc Diffusion Study 

A Disc diffusion study was performed to further verify the production of the antibacterial 

and antifungal agent identified as Lysolipin and Lienomycin analogues respectively by mass 
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spectrometry. Figure B14 depicts that the crude extract is active against fungus (P. roqueforti) and 

Gram- positive bacteria (B. subtilis) but inactive against Gram negative bacteria (E. coli). The plate 

from 14 days of Caat 1-54 incubation, produced a larger zone of inhibition than the media extracted 

after 4 days of incubation of Caat 1-54 and this can be attributed to the increased accumulation of 

the active metabolites in the culture media due to a prolonged time of incubation. Higher 

concentration of Lysolipin and Lienomycin analogue in the culture media resulted in an increased 

activity against bacteria and fungus. Again, the crude media proved to have a more potent 

antifungal effect than an antibacterial as comprehended from the size of the diameter of the zone 

of inhibition (Figure B14). An average diameter of 4 mm inhibition zone was measured from the 

P. roqueforti plate having discs with media obtained after 14 days of incubation for Caat 1-54. In 

case of B. subtilis the zone was measured to be around 2 mm in diameter from the same 14 days 

media extract. 

The zone of inhibition was imaged by DESI-MS using the moving stage to map the 

distribution of active components (Figure 3.5). It was found that compounds from the growth 

media uniformly diffused into the zone of inhibition, and at the point where the microbe (fungus 

or bacteria) starts re-establishing, their intensity was the least. All these observations reinforce that 

the compounds m/z 598 and 1229 are actually responsible for inhibition of growth of the bacteria 

and fungus, forming the clear zone of inhibition. Their radial diffusion from the disc onto the agar 

plate restricted the growth of the microbe around the disc, at the zone of inhibition (clear region); 

once the concentration reduces below the minimum inhibitory concentration, the microbe starts to 

re-establish. Figure 3.5i maps ions at m/z 699 from the fungal surface whereas  figure 3.5j and 3.5k 

map two ions at m/z 745 and 793 from agar plate to show that they have uniform intensity 

throughout the region mapped. The region where the disc was placed appeared dark when mapped 
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for the compounds from the growth media (Figure 3.5d-h). This led to the assumption that after 

the required incubation time the disc went dry and so imprinting from it did not result in sufficient 

amounts of compounds getting transferred to the PTFE surface. Again the radial diffusion from 

the disc itself reduced its actual concentration and thus appeared to be devoid of those compounds 

at that specific region. 

 

Figure 3.5:DESI-MS imaging of the zone of inhibition by imprinting on a PTFE surface. a) Optical 

image of the PTFE on the agar plate. b) Optical image of the agar plate with the red border enclosed 

area representing the region imaged. c) Optical image of the imprint on PTFE surface with the red 

border enclosed area representing the region imaged. d) Ion image showing the distribution of the 

m/z 626 ion in the region image. e) Ion image showing the distribution of the m/z 1229 ion in the 

region image. f) Ion image showing the distribution of the m/z 669 ion in the region image. g) Ion 

image showing the distribution of the m/z 606 ion in the region image. h) Ion image showing the 

distribution of the m/z 598 ion in the region image. i) Ion image showing the distribution of the 
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m/z 699 ion in the region image from the fungus. j) Ion image showing the distribution of the m/z 

745 ion in the region image from the agar plate. k) Ion image showing the distribution of the m/z 

793 ion in the region image from the agar plate. 

 

3.4 Conclusion 

Based on the morphological differentiation of Streptomyces, compounds identified in this 

work can be correlated with the life cycle of the bacterium. We hypothesize that the analogue of 

Lienomycin is produced during the initial step in the formation of the germ tube and vegetative 

mycelium. On the contrary, Lysolipin I may be a product of the sporulation stage. It is evident 

from this study that Caat 1-54 is an excellent source of useful secondary metabolites. The crude 

growth media do not require any sample preparation like isolation and/or concentration of the 

active compound to exhibit their activity and this demonstrates the efficacy of the compounds as 

an antifungal and anti-Gram-positive agent. Direct and imprint DESI-MSI show different 

distribution profiles of metabolites which reinforces the need for three dimensional mapping of the 

bacterial colony to enable detection and characterization of all the metabolites released by the 

bacterium at different stages of its lifespan. Ambient techniques such as DESI-MS and DESI-MSI 

proved to be very useful to monitor, characterize and map metabolites directly from the bacteria. 

In conclusion, Caatinga is a rich habitat that needs more attention to explore the prevalent wide 

range of thermophilic microbes. The region will be of high interest to biotechnologist as it will 

serve as a potential source of new lead compounds. 

3.5 Experimental 

3.5.1 Materials 

Yeast malt broth (ISP 2), Luria-Bertani (LB) medium, Potato dextrose agar (PDA), and 

Agar were purchased from Sigma-Aldrich (Oakville, ON, Canada). Chemicals (Formic acid, 
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Thiazolyl blue tetrazolium bromide/MTT, Resazurin sodium salt) and solvents (acetonitrile, 

methanol and water) were HLPC grade purchased from Sigma-Aldrich (Oakville, ON, Canada). 

Glass slides were purchased from Sigma-Aldrich (Oakville, ON, Canada) and 

Polytetrafluroethylene (PTFE) was imported from Bergohf (Germany).  12.7 mm x 33 m Scotch 

double sided tape, 3M, 665 was purchased from York University book store (Toronto, ON, Canada). 

100 X 15 mm Petri dishes and filter paper of medium porosity were purchased from Fisher 

Scientific (Pittsburg, PA, USA). Streptomyces sp. designated as Caat 1-54 characteristic of the 

Caatinga soil was obtained from Prof Dr Itamar Soares de Melo from EMBRAPA-Environment, 

Brazil. Penicillium sp. (P. roqueforti) was selectively grown from blue cheese sold in Shoppers 

Superstore (North York, ON, CA). York University (ON, Canada) Biology Department was 

generous to provide us with Escherichia coli (DH5-Alpha) and Bacillus subtilis 168 stains used in 

the teaching labs.  A Thermo Fischer Scientific LTQ mass spectrometer (San Jose, C.A., USA), a 

Thermo Scientific Orbitrap Elite mass spectrometer (San Jose, CA, USA) and Xevo TQ-S™ 

Waters equipped mass spectrometer (Milford, Massachusetts, USA) were used to conduct this 

study. Compounds were purified by LC-MS using, liquid chromatography Shimadzu (Sao Paulo, 

Brazil) with CBM-20ª, two pumps of LC-6DA and UV-Vis SPD-20A detector. Liquid 

Chromatograph Acquity-UPLC™ (Milford, Massachusetts, USA) coupled to a tandem mass 

spectrometer Xevo TQ-S™ Waters was used for UV-Visible profiling of the purified compound. 

A Bruker Advance III HD 600 (14,IT) spectrometer with a Triple Inverse TCI Cryo-probehead 

(Rheinstetten, Germany) was used for acquiring NMR data.  

3.5.2 Bacterial and Fungal Culture Conditions 

Autoclaved ISP-2 media were used to inoculate with Caat 1-54 glycerol stock. The culture 

was grown overnight (16-18 hours) at 37°C, 200 rpm.  Next day single spore was collected from 
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the flask using a 1000 µL pipette tip and was placed on top of a previously made PDA plate having 

glass slide underneath. The PDA plate with the bacteria was incubated at 37 °C for 4 to 14 days. 

After the required incubation time, the plates were stored at 4°C until further use to perform DESI-

MS and DESI-MSI experiments to map secondary metabolites. 

For performing disc diffusion assay, crude bacterial growth medium was used. The media 

extracts were obtained upon incubating Caat 1-54 in ISP-2 media at 37°C, 200 rpm for 4 and 14 

days. After the required incubation times, the medium was centrifuged to get rid of the bacterial 

residues followed by impregnating them on a disc made from filter papers. 

Penicillium sp. (P. roqueforti) was selectively grown from blue cheese. Briefly, using a 

pipette tip the blue fungi was scraped off from the cheese and was used to inoculate previously 

autoclaved distilled water. The resulting solution was incubated at 28°C without shaking for 48 

hours. After two days, 600 µL of the solution was spread on a previously made PDA plate using a 

glass rod and the plate was later incubated at 28°C for a further two days. 

For both E. coli and B. subtilis 168, the respective bacterial glycerol stock was used to 

inoculate autoclaved LB media. The seed culture was grown for 16-18 hours at 37°C for E. coli 

and 30°C for B. subtilis at 200 rpm. Next day 600 µL of the culture solution was poured on to LB 

agar plates to perform the disc diffusion study. The respective plates of E. coli and B. subtilis were 

incubated at their respective temperatures (30°C for B. subtilis, 37°C for E. coli) for another 16 

hours. 

3.5.3 DESI-MS and DESI-MSI Experiments 

After four and fourteen days of incubation of the Caat 1-54 strain on the PDA plate at 37°C, 

the solid media dried into a thin film. Prior to running DESI-MS and DESI-MSI experiments a 

glass slide having a single colony was separated from the dried plate (123) (Appendix, section B, 
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Figure B2) and was fixed on a custom built 2D moving stage by the use of adhesive tapes, or using 

a double-sided tape imprint from the colony adhered on a glass slide. Typical instrument parameter 

such as capillary voltage was set at 5 kV and the capillary temperature at 285°C. The mobile phase 

used was a mixture of methanol, water and formic acid in the ratio 9/0.9/0.1 respectively. The flow 

rate of the solvent was maintained at 5 µL/min with simultaneous nebulization by N2 gas set at 

100 psi. The sprayer was kept at an incident angle of 52-54°, 1-2 mm above the slide surface and 

2-4 mm away from the inlet of the mass spectrometer to maintain an overall collection angle of 

10-12° into the inlet of the mass spectrometer.  All the analysis was performed in positive ion 

mode scanning the mass range of m/z 500-1400. The MS injection time was set to 200 ms and 

three scans were averaged to obtain a spectrum. Data acquisition and management was performed 

using X-calibur 2.0 software from Thermofischer Scientific (San Jose, C.A., USA). 

For DESI imaging, the sprayer was rastered over the sample surface in the horizontal 

direction at a constant speed of 179 µm/s until 90 to 130 vertical rows were scanned to obtain a 

full image. DESI-MSI spatial resolution was achieved by setting the coordinate or pixel size to 

150 µm. Prideaux et al, 2014 reported that the resolution of DESI-MSI is restricted to the inner 

diameter of the capillary carrying the charged solvent and the distance it is placed away from the 

surface under analysis (38). In the study the inner capillary used to carry the charged solvent had 

a diameter of 50µm, so a pixel size set to 150 µm ensured greater area for solvent contact and 

thereby higher signal intensity and also minimal region of overlap between spots. No further 

reference was used to assess the resolution accuracy. BioMap imaging software compatible with 

the X-calibur spectral data was used to obtain ion images in two dimensional coordinates. 

3.5.4 High Resolution Mass Spectrometry 

To identify the secondary metabolites tandem mass spectrometry was performed using an 
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Orbitrap Elite mass spectrometer. An extract of the bacterial culture was made prior to performing 

high resolution analysis. Briefly, dried potato dextrose agar plates with the bacteria colony were 

soaked in 1 mL of methanol, water and formic acid (DESI spray solvent) solvent for 10 minutes. 

The mixture was vortexed for complete extraction of the metabolites from the plate. Further, it was 

centrifuged at 12000g for 2 minutes to separate the immiscible component from the miscible part. 

The resultant solution was diluted 500 folds with the same solvent prior to direct injection into the 

mass spectrometer to perform tandem mass spectrometry. The low rate was maintained at 5 µL/min 

and mass resolution was set at 120,000. The collison energy used was between 25-30% 

(manufacturer’s unit). The Orbitrap mass analyzer was used to discriminate between ion masses. 

3.5.5 Disc Diffusion Assay 

Caat 1-54 strain was grown in ISP-2 medium for 4 to 14 days at 37°C and 200 rpm. At the 

end of either 4 or 14 days the resultant media was separated from the bacteria by centrifugation at 

3000g for 3 minutes.  Discs were made using filter paper of medium porosity and by a paper punch. 

100 µL of the centrifuged media was used to soak each disc to be used for conducting the inhibition 

study. Using a glass rod B. subtilis, E. coli, and P. roqueforti were evenly spread on their respective 

agar plates from overnight seed culture.  Upon spreading, the culture solution was allowed to dry 

for some time (3-5 min) inside the bio safety cabinet. Using tweezers the soaked disk was placed 

at the center of the plate and pushed a little deeper for enhanced diffusion of the media components 

into the agar. Later the plate was incubated at 28°C for P. roqueforti for 48 hours and 16 hours for 

B. subtilis and E.coli at 30 and 37 °C respectively. Using a ruler the diameter of the zone of 

inhibition was measured. The imprint of the inhibition zone was also taken on the PTFE surface 

for further analysis about the distribution of the chemical determinants from the impregnated disc 

on the agar surface by DESI-MS. 
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As negative control, discs were soaked in autoclaved ISP-2 media prior to introduction in 

the respective culture plates of B. subtilis, E. coli, and P. roqueforti and were incubated for the 

same duration of time as the test plates. 

3.5.6 Isolation and Purification of Compounds 

The actinobacterium Caat 1-54 was fermented in large scale (6L). To isolate Lysolipin I, 

the crude extract was separated by preparative HPLC, using column Shim-Pack C18 (19 X 

250mm, 5µm). In the case of the Lienomycin analogue, the crude extract was pre-purified using 

size exclusion chromatography utilizing Sephadex (LH-20) as the stationary phase and methanol 

as the elution solvent. The fractions were analyzed by mass spectrometry to check their 

constituents. Fractions containing the ion at m/z 1229 were combined and separated by semi-

preparative HPLC, using C18 column Zorbax Eclipse XDB (Agilent 250 x 9.4 mmm, 5µm).  

For Lysolipin, the chromatographic conditions had a linear gradient with the mobile phase 

A (ultrapute water with 0.1% formic acid) and B (methanol with 0.1% formic acid) starting at 30 

%B and increasing to 98% within 10 minutes and keeping this percentage within the next 50 

minutes and finally returning to the initial condition at the flow of 16 mL/min. The λ (nm) scanned 

was 280 nm and 310 nm. 

For Lienomycin analogue, the chromatographic conditions were the linear gradient with 

the same mobile phase as for Lysolipin, starting at 30 % B and increasing to 50% within 5 min, 

followed by a further increase to 72% within 10 min and then to 80% B within the next 40 min 

and finally returning to its initial condition at the flow rate of 15 mL/min. The λ (nm) scanned was 

320 nm and 332 nm. 

Liquid Chromatography Shimadzu was used with CBM-20ª, two pumps of LC-6DA and 

UV-Vis SPD-20A detector. Data was acquired by Labsolution software. 
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3.5.7 UV-Vis Profiling 

 The UV analyses were characterized on a Liquid Chromatograph Acquity-UPLC™ 

coupled to a tandem mass spectrometer Xevo TQ-S™ Waters equipped with an electrospray ion 

source TQ-S mass spectrometer, quaternary pump and an automatic injector coupled to a PDA 

UPLC Acquity™ (Waters®). The chromatographic conditions were Ascentis Express HPLC 

Column F5 (10 cm x 2.1 mm, 2.7 μm), eluents A (acetonitrile with 0.1% formic acid) and B 

(ultrapure water with 0.1% formic acid) starting with 90% A and decreasing this percentage to 

10% A within 12 min, followed by returning to the initial condition within 15 min at a flow rate 

of 0.5 mL/min; scanning the region between 200 nm to 800 nm wavelength. Data was acquired 

with MassLynxV4.1 software (Waters Corp., Milford, MA, USA). 

3.5.8 NMR Analysis 

NMR experiments were conducted using Bruker Avance III HD 600 (14,IT) spectrometer 

with a Triple Inverse TCI Cryo-probehead. Experiments performed were 1H, proton decoupled 

13C, HMBC, HMQC, 15N HMBC and TOCSY to characterize the ion at m/z 1229. 
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CHAPTER FOUR 

Quantitative Assessment of 5-Hour Energy drink using Thin Layer 

Chromatography-Desorption Electrospray Ionization Mass Spectrometry 

(TLC-DESI-MS) 
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4.1 Summary 

In this study a simple analytical technique, thin Layer Chromatography coupled with 

desorption electrospray ionization mass spectrometry (TLC-DESI-MS), was used to establish the 

presence of trace amounts of illicit drugs in commercial energy drinks. Amphetamine, one of the 

most abused drug, was spiked in 5 Hour Energy Drink to develop a detection method using TLC-

DESI-MS. The detection limit (LOD) by this technique was determined to be 100pg.  

Caffeine is the energy-deriving ingredient in most energy drinks. Quantitative assessments 

were demonstrated by three DESI-MS modes of quantitation: (1) standard calibration utilizing 

TLC-DESI-MS analysis; (2) a calibration curve using the ratio between deuterated caffeine (d9) 

and standard caffeine through TLC-DESI-MS analysis; and (3) direct spot analysis by DESI-MS.  

Additionally, paper spray quantitation was also performed to check the reliability of the 

aforementioned quantitation methods by TLC-DESI-MS. The results retrieved from all methods 

showed reliability and reproducibility with less than 5% relative standard deviation. 

4.2 Introduction 

According to a 2013 survey, globally on an average about 30% of drivers abuse with 

amphetamine and 3% with cocaine (141). People mostly consume energy drinks to keep 

themselves awake and alert. Researchers at the University of Maryland’s School of Public Health 

concluded that consumption of sugars and energy drinks increases the likelihood that young adults 

will abuse with illicit drugs in later years (142).  

Determining the presence of illicit drugs in drinks is essential as it not only concerns the 

health of an individual taking it, but also the safety of others in a society. Truck drivers were found 

to mix amphetamine or other stimulants for non-medical use in their drinks (energy drinks or 

coffee) to keep them awake during long trips (141). Thus accurate determination of these 
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compounds is critical for prevention of illicit drug abuse. Energy drinks usually have caffeine as 

an active ingredient, but caffeine is not the only factor responsible for boosting energy. The drink 

also constains some vitamins such as B3, B6, B9 and B12 and an energy blend which comprises 

of malic acids, taurine, glucuronolactone, citicoline and amino acids (phenylalanine and tyrosine)  

(143). The focus of this study was to develop a simple analytical approach which will determine 

the presence of both caffeine and illicit drugs, if any, in an energy drink sample. Determination of 

the limit of detection (LOD) of illegal drugs is necessary to understand the extent to which the 

method can be applied to detect the drugs.  

Among most analytical techniques, mass spectrometry is one of the fastest growing 

technologies with various applications in the field of proteomics, environmental studies, food 

analysis and forensics (14,144). Desorption Electrospray Ionization (DESI) is a mode of ionization 

which allows surface analysis under ambient conditions (14,144,145). The method was introduced 

by Cooks and co-workers in 2004 (145) and the analysis of surfaces with an automated imaging 

system was demonstrated by Ifa et al in 2007.(146) DESI-MS is well known for its potential in 

detecting a broad range of compounds including small non-polar molecules or large polar 

molecules; applications include analysis of tanned porcine leather, sections of stems or seed from 

vegetables and more (145,147–152). 

The studies of beverages have been previously reported using high-performance liquid 

chromatography or gas chromatography coupled to mass spectrometery (LC-MS or GC-

MS).(153,154)  However, the use of solvent, sample and standard preparations along with the 

analysis period makes the overall process time-consuming (30,151,154). TLC-GC-MS and Paper 

Spray Mass Spectrometry (PS-MS) have been also used for the analysis of caffeine in 

beverages.(153,155) Coupling DESI-MS with TLC was reported previously as a relatively fast 
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and simple analytical approach for analysis of food, medical diagnostics, pharmaceutical mixtures, 

plant extracts, etc. (14,144,145,149,154,156–158) This technique helps to overcome the effect of 

ion suppression, thereby facilitating the detection of target compounds for quantitation purpose 

(30,144,149,154,157), especially detection of minute amounts (14,151,156,159–161).  

In this study, TLC-DESI-MS was coupled to a linear ion trap mass spectrometer for 

analysis of the 5-Hour Energy Drink. A well-known illicit drug, amphetamine was spiked in the 

drink to illustrate the separation of amphetamine and caffeine from other substances in the drink 

preparation by TLC. The developed TLC plate was later analyzed by DESI-MS. Two types of 5-

Hour Energy drinks were analyzed namely, Original Berry flavored and Extra Strength Berry 

flavored. The caffeine content mentioned in their label was 190mg in 57 mL for the Original 

strength, and 200mg in 57 mL for Extra Strength drink. Quantitative analysis with the use of a 

calibration curve was performed in two ways: (1) The ion intensity of caffeine was plotted against 

the respective concentration of caffeine standards, (2) ion intensity ratio of standard caffeine to 

deuterated (d9) caffeine was plotted against their respective standard caffeine concentration. As a 

rapid mode of analysis, caffeine content was also quantified by direct analysis of spots having 

energy drinks spiked with deuterated (d9) caffeine standard by DESI-MS. Additionally, Paper 

Spray Mass Spectrometry (PS-MS) using caffeine d9 spiked in energy drink samples was also used 

to validate the results obtained by TLC-DESI-MS.  

LOD of amphetamine was determined upon spiking energy drinks with standard 

amphetamine solution. The technique was designed to be fast, reliable and reproducible, so that it 

can be promptly used by forensic experts to detect even minimal levels of illicit drugs.  
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4.3 Results and Discussion 

4.3.1 High resolution and tandem mass spectrometry 

High resolution mass spectrometry and tandem mass spectrometry was performed using an 

Orbitrap mass spectrometer (Appendix, section B, Figure C1) to characterize the compounds 

present in the energy drink and standard amphetamine. The HRMS confirms the identity of the 

components in the 5-Hour Energy drink as reported by M. Sneha and co-workers using paper-

spray mass spectrometry analysis (155). 

Table 4.1: Exact mass measurements for components of 5-Hour Energy drink by ESI using the 

Orbitrap mass spectrometer. 

 

 Table 4.1 describes the accurate mass deviation of the parent and fragment ions from the 

exact mass value in terms of ppm difference. All mass differences calculated were within 7 ppm. 

Figure C2a and C2b show the MS/MS spectra of amphetamine and caffeine respectively, with 

their fragment ions produced upon introduction of collision energy. Under collision-induced 

dissociation, amphetamine loses its amine and methylamine to form fragment ions at m/z 119 and 

m/z 91, respectively (162). In the case of caffeine, methylamine and the carbonyl loss produces the 

fragment at m/z 138 (163). Niacinamide shows fragment ions at m/z 106 and m/z 80 due to the loss 

Parent 

compound 

Parent ion 

formulae 

Fragment ion 

formulae 

Experimental 

(m/z) 

Theoretical 

(m/z) 

Error 

(∆ppm) 

Amphetamine C9H13N  136.1120 136.1126 4.41 

 C9H11 119.0869 119.0861 6.72 

 C7H7 91.0542 91.0547 5.49 

Caffeine C8H10N4O2  195.0871 195.0882 5.63 

 C6N3H8O 138.0661 138.0667 4.35 

Niacinamide C6H6N2O  123.0550 123.0558 6.50 

 C6H4NO 106.0286 106.0293 6.60 

 C5H6N 80.0495 80.0500 6.25 

Phenylalanine C9H11NO2  166.0858 166.0868 6.02 

 C8H10N 120.0808 120.0813 4.16 

Pyridoxine C8H11NO3  170.0806 170.0817 6.46 

 C8H10NO2 152.0705 152.0712 4.60 
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of primary amine and amide, respectively (164,165). With phenylalanine, the loss of the carbonyl 

moiety along with a water molecule results in the formation of the fragment ion at m/z 120 (166); 

whereas for pyridoxine, the loss of a water moiety generates the fragment ion at m/z 152 (165,167). 

4.3.2 Optimization of DESI spray solvent and mobile phase for TLC 

The selection of a suitable solvent as the TLC mobile phase and DESI solvent spray is 

essential for effective separation and detection (14,149,151). For optimizing DESI spray solvent, 

several solvents and their combinations were tested using CH3OH, CH3CN, CH3CN / CH3OH and 

CH3CN / H2O (Appendix, section C, Table C1). Figure 4.1 shows a bar graph that depicts the 

desorption efficiency of ions at m/z 136, 195, 123, 166 and 170 for amphetamine, caffeine, 

niacinamide, phenylalanine and pyridoxine in each DESI solvent sprays while the TLC plate 

development and instrumental conditions were kept constant. It was found that the combination of 

CH3CN / H2O in the ratio 7:3 (v/v) enabled desorption of most components present in the energy 

drinks and also showed highest ion intensity for caffeine and amphetamine (Figure 4.1). Hence, it 

was chosen as the optimum DESI-MS spray solvent. 

The mobile phase plays a crucial role for efficient separation of all the compounds in the 

drink formulation. The separation helps eliminate ion suppression by specific components, and 

thereby aids in efficient detection and quantification of any specific component (14,161). 

Characterized components from the energy drink spiked with standard amphetamine were 

amphetamine, caffeine, niacinaminde, phenylalanine, and pyridoxine. Methanol and ethyl acetate 

composition were analyzed with and without 1.5% NH4OH as the mobile phase. Ammonium 

hydroxide was added as an additive as suggested by Brien et al in 1982 for analysis of 

amphetamine by TLC (168). For caffeine separation, non-polar solvents such as, ethyl acetate, 

benzene, acetone and chloroform were investigated (169).  
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Figure 4.1: Bar chart illustrates optimization of DESI spray solvent for efficient desorption and 

ionization of amphetamine (m/z 136) and energy drink components, namely caffeine (m/z 195), 

niacinamide (m/z 123), phenylalanine (m/z 166) and pyridoxine (m/z 170). 

 

With the inclusion of 1.5% NH4OH in the mobile phase, the retention factor (RF) for 

amphetamine and caffeine were calculated to be 0.13 and 0.71 respectively. Without 1.5% 

NH4OH, the amphetamine spot was at the initial point of spotting and the RF value for caffeine 

was 0.79.  Even though the separation between caffeine and amphetamine improved, the caffeine 

(m/z 195) spot had niacinamide (m/z 123) and pyridoxine (m/z 170) at the same position, while 

amphetamine (m/z 136) had phenylalanine (m/z 166) apparent at the same spot.  (Appendix, section 

C, Table C2). 

  The polarity indices of ethyl acetate and methanol are 4.4 and 5.1 respectively (169). To 

reduce the overall polarity of the mobile phase, the ethyl acetate amount was increased to check 

whether the less polar mobile phase enhances separation of most of the compounds in the energy 

drink; unfortunately the separation did not improve much. Based on RF value, the substances 

separated in the order of m/z 136, 166, 170, 123 and 195, starting from the origin of spotting to the 

solvent font (Appendix, section C, Table C2). The order indicated that caffeine travelled along the 
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solvent font. Consequently, caffeine was deduced to be the least polar in the mixture.  Therefore, 

chloroform (a more nonpolar solvent) (169), was used instead of ethyl acetate and the ratio 

examined initially was 1:1 (v/v) combination of chloroform and methanol. The separation 

improved remarkably, but amphetamine appeared to split into two spots (Appendix, section C, 

Figure C3). It was found that upon spiking amphetamine with energy drink the pH of the solution 

drops, which causes amphetamine to coexist in two forms with different retention times. To 

overcome this problem, the energy drink mixture with amphetamine was further treated with 

ammonium hydroxide solution (10% final concentration). The resultant mixture was spotted prior 

to plate development with CHCl3 / CH3OH (1:1, v/v) as the mobile phase. Upon analysis by DESI-

MS the plate showed amphetamine to be concentrated on a single spot (Appendix, section C, 

Figure C4). 

4.3.3 Lowest limit of detection of amphetamine 

In case of drug abuse with amphetamine taken in conjunction with energy drinks, TLC 

showed good separation of amphetamine from the energy drink components with the use of 

CHCl3/CH3OH (1:1, v/v) mobile phase, that enhanced its selectively and sensitivity by DESI-MS 

mode of detection. To identify the detection limit of amphetamine by this mode of analysis its 

lower limit of detection (LOD) was determined. It was found that 100 pg for 0.1 µL spot from 1.0 

µg/mL amphetamine had a signal to noise ratio (S/N) of 3.33. In the case of 0.5 µg/mL 

amphetamine (50 pg), the S/N ratio appeared as 2.27 with an ion intensity of 1.17E2. It can thus 

be concluded that small amounts, as low as 50pg can be readily detected by TLC-DESI-MS, as 

depicted in Figure 4.2. Hence, any trace of illicit drugs can be readily spotted. 
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Figure 4.2: Lower limit of detection for amphetamine content. 0.1µL of different concentration of 

amphetamine (a) 0.5µg/mL, (b) 1.0µg/mL and (c) 2.0µg/mL was spotted with 0.1 µL of berry 

energy drink on TLC plate and analyzed using CHCl3/CH3OH (1:1, v/v) as the mobile phase and 

CH3CN/H2O (7:3, v/v) as the DESI spray solvent. DESI spray solvent started just below the initial 

point. 

 

4.3.4 Quantitative Analysis of Caffeine in Energy Drinks 

4.3.4.1 Calibration curve using standard caffeine 

Quantitation was based on a calibration curve where the concentration of the analyte was 

directly proportional to its signal intensity or peak area. Based on the sample label, caffeine content 

in Berry Flavored and Extra-Strength 5-hour energy drinks were 3.33 mg/mL (190 mg in 57 mL) 

and 3.51 mg/mL (200 mg in 57 mL) respectively.  

Three independent runs were performed with the caffeine standards (Appendix, section C, 

Table C3). Figure 4.3 depicts the calibration curve generated upon plotting the average ion 

intensity of standard caffeine of the three runs against their respective concentration. From the 

derived equation of line, the concentration (x) of caffeine in the Berry flavored and Extra Strength 

drinks were calculated to be 4.28 ± 0.06 mg/mL and 4.83 ± 0.15 mg/mL respectively (Table 4.2). 

The derived concentration values reflect that berry flavored energy drink was about 29% and extra-
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strength energy drink had 38% more caffeine than the indicated label amount. 

 

Figure 4.3: Calibration curve of caffeine developed using ion intensity ratio of caffeine against 

caffeine standard concentration. All standards were prepared by serial dilution from a caffeine 

stock solution of concentration 12 mg/mL. 0.1µL of extra strength sample was spotted. 

CHCl3/CH3OH (1:1, v/v) and CH3CN/H2O (7:3, v/v) were used as the TLC mobile phase and DESI 

spray solvent respectively. 

 

Table 4.2: Analysis of energy drinks using a calibration curve for standard caffeine solution. Using 

the equation from the calibration curve and the ion intensities of caffeine (m/z 195) from energy 

drink samples, the concentration of caffeine in energy drinks was calculated. 

 

4.3.4.2 Calibration curve using ratio of deuterated and standard caffeine  

The ratio of the signal intensity of deuterated caffeine and standard caffeine was used to 

plot a calibration curve. Three independent runs allowed to calculate average ratio (Appendix, 

section C, Table C4), which were plotted against their respective standard caffeine concentration 

with error bars (Figure 4.4). From the ion intensity ratio calibration curve, the concentration of 
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caffeine in Berry Flavored and Extra Strength drink were found to be 4.28±0.012mg/mL and 

4.87±0.019 mg/mL respectively (Table 4.3). Subsequently, the percentage difference from the 

labeled amount observed was 29% and 39% respectively. 

 

Figure 4.4: Calibration curve of caffeine plotted using the ion intensity ratio of standard caffeine 

to deuterated caffeine-d9 against the respective standard caffeine concentration present in that 

mixture. All ion intensities are reported in Table C1 of the Appendix along with the calculation of 

ratios. CHCl3/CH3OH (v/v, 1:1) and CH3CN/H2O (v/v, 7:3) were used as the TLC mobile phase 

and DESI spray solvent respectively. 
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Table 4.3: Analysis of energy drinks using a calibration curve of the ratio between standard caffeine and d9-caffeine. Using the equation 

from the calibration curve and the ion intensity ratio of caffeine (m/z 195) from energy drink sample and standard deuterated caffeine 

(m/z 204), the concentration of caffeine in energy drinks was calculated. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Berry 

Flavored 

Ion Intensity Ratio 

between 

intensities 

Conc. 

derived/ 

mg/mL 

Extra 

Strength 

Ion Intensity Ratio 

between 

intensities 

Conc. 

derived/ 

mg/mL 
m/z 195 m/z 204 m/z 195 m/z 204 

Trial 1 5.34E+01 1.01E+02 5.29E-01 4.28 Trial 1 1.86E+01 3.09E+01 6.02E-01 4.87 

Trial 2 3.90E+01 7.36E+01 5.30E-01 4.29 Trial 2 1.83E+01 3.03E+01 6.04E-01 4.88 

Trial 3 4.71E+01 8.94E+01 5.27E-01 4.27 Trial 3 1.69E+01 2.82E+01 5.99E-01 4.85 

Average   5.28E-01 4.28 Average   6.02E-01 4.87 

RSD 

(%) 

  0.29 0.286 RSD 

(%) 

  0.39 0.384 



66 
 

4.3.4.3 Direct spot analysis of a mixture of deuterated caffeine standard and energy drink 

A spot test was performed using 3 mg/mL concentration of caffeine-d9 as a rapid, easy 

mode of analysis to assess the concentration in the energy drinks independent of instrumental or 

concentration variability. This method is based on a comparative assessment of a known 

concentration of deuterated caffeine with an unknown caffeine concentration in the energy drinks 

with respect to their relative ion counts/abundance as measured by DESI-MS. Figure C5 

(Appendix, section C) depicts the relative ion counts and abundance as observed from a spot 

having a 2.5X diluted berry flavored energy drink with 3 mg/mL deuterated caffeine standard. 

Based on the ion intensity ratio between m/z 195 and 204, actual concentration derived for Berry 

flavored and Extra Strength drink was 4.33 mg/mL and 4.81 mg/mL respectively (Table 4.4).  

By this mode of quantitation too, the percentage difference of caffeine was higher than 

20% of labeled caffeine content. To check batch variability of the energy drinks, new bottles of 

both types of 5 hour energy drinks were assessed for caffeine concentration by direct spot analysis. 

Both the energy drinks were found to have the same concentration ~4.50 mg/mL (Appendix, 

section C, Table C5). 

Table 4.4: Analysis of energy drinks by the direct spot analysis method. Ion intensity ratio of 

caffeine (m/z 195) from the energy drink sample and standard deuterated caffeine (m/z 204) were 

used to calculate the caffeine concentration in energy drinks. 

Berry 

flavored 

drink 

m/z 204 m/z 195 Conc. 

derived 

mg/mL 

 
Extra 

strength 

drink 

m/z 204 m/z 195 Conc. 

derived 

mg/mL 

Spot 1 6.85E+02 3.93E+02 4.30 Spot 1 5.93E+02 3.78E+02 4.78 

Spot 2 7.04E+02 4.26E+02 4.54 Spot 2 4.90E+02 3.13E+02 4.79 

Spot 3 6.39E+02 3.73E+02 4.38 Spot 3 5.84E+02 3.85E+02 4.94 

Spot 4 6.53E+02 3.56E+02 4.09 Spot 4 5.53E+02 3.47E+02 4.71 

Mean 4.33 Mean 4.81 

St Dev. 0.19 St Dev. 0.10 

RSD (%) 4.31 RSD (%) 2.08 
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4.3.4.4 Paper Spray 

Paper spray mass spectrometry (PS-MS) is a well-known analytical technique for rapid 

qualitative and quantitative assessment of complex mixtures. The same mixture of energy drinks 

used in direct spot method of quantitation was analyzed by PS-MS (Appendix, section C, Figure 

C6). Table 4.5 summarizes the ion intensity obtained in each scan for both types of 5-Hour Energy 

Drinks and the derived resultant concentration of caffeine, along with their mean, standard 

deviation and relative standard deviation (RSD) values. The concentration derived from paper 

spray mode of quantitation was similar to that of TLC-DESI-MS, reporting caffeine value for berry 

and extra strength energy drink to be 4.33 mg/mL and 4.50 mg/mL respectively.  Sneha et al, 2016 

reported that the concentration of 5- Hour Energy Drink to be 2.8 mg/mL by paper spray method. 

The difference in value can be attributed to their reported correlation coefficient, 0.86 (155). Of 

note, the literature did not report the coefficient of determination, R2 value of the calibration curve 

they generated. The time elapsed between performing the analysis after opening the energy drink 

bottles was not indicated. It was observed during our analysis that the caffeine degrades to its 

fragment ion at m/z 138 immensely in a span of 1 week upon coming in contact with air. 

Table 4.5: Analysis of 5-Hour Energy Drinks by paper spray mass spectrometry (PS-MS). Ion 

intensity ratio of the caffeine (m/z 195) from the energy drink sample and standard deuterated 

caffeine (m/z 204) were used to calculate the caffeine concentration in energy drinks. 

5-Hour Energy 

Drink samples 
m/z 195 m/z 204  

Conc. 

Derived 

(mg/mL) 

Mean 

(mg/mL) 

Std 

dev. 

RSD 

Berry Flavor 7.48E+01 1.33E+02 4.22 4.33 0.16 3.80 

8.56E+01 1.51E+02 4.25 

7.53E+01 1.25E+02 4.52 

Extra-Strength 6.29E+01 1.09E+02 4.33 4.43 0.09 2.01 

7.32E+01 1.23E+02 4.46 

6.96E+01 1.16E+02 4.50 
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Table 4.6: Caffeine concentration obtained by the three modes of quantitation. 

 

Method Berry Flavor (mg/mL) Extra Strength 

(mg/mL) 

Standard calibration 4.28 4.83 

Internal standard calibration 4.30 4.82 

Direct Spot Analysis 4.33 4.81 

Paper Spray 4.33 4.50 

 

4.4 Conclusion  

Based on the four models of quantitative assessment, the caffeine content in both Berry 

and Extra Strength 5-Hour Energy drinks was always found to be higher than the caffeine content 

labeled on these bottles. All these modes of assessment generated almost similar concentration 

values of caffeine within the same batch of energy drinks (Table 4.6). According to the label, the 

amount of energy blend is 1871 mg for Berry flavor and 1980 mg for Extra Strength per serving. 

Though the manufacturer mentioned that the caffeine content is 190 mg and 200 mg per serving 

for Berry flavor and Extra Strength 5-Hour Energy Drink respectively. Several other sources 

(170,171) claim that the label is misleading and often report the concentration to be higher than 

the labeled amount. Thus, the caffeine content is an unknown factor for consumers and it is stated 

to be equal to a premium cup of coffee or a 12 ounce cup of coffee, in the range of 100-330 mg 

for an original 5-Hour Energy shot and Extra Strength Energy shot respectively (143,172). Based 

on the quantitative analysis, the caffeine content in the Berry flavored and Extra Strength were 

also found to be 245 mg and 274 mg respectively in each serving and it is within the reported range 

of 200-300 mg on which there is no legal limit imposed by FDA for energy drinks (171). It was 

mentioned that lethal dose of caffeine surpasses 10 g for daily consumption for healthy individuals 

and so it is still not strictly controlled in the market (171,172). However, there are several reports 

that claim death of individuals due to combined consumption with alcohol or other pharmaceutical 

supplements and also upon continuous consumption of more than two bottles without any time 
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lapse between them (171,172).  

Among the quantitation methods described here by TLC-DESI-MS, the calibration curve 

using ratios of standard caffeine and deuterated caffeine is the most reliable. The ratio calculation 

eliminates the instrumental and environmental variations on ion intensity signals and also allows 

one to minimize the matrix effect by the use of the derived line equation. The calibration curve 

equation with intensity values are prone to changes with instrumental or surrounding variations 

that lead to signal intensity fluctuations. Again, direct spotting and paper spray are fast techniques, 

but have the limitation of taking into account the background noise signal too. The specificity can 

be enhanced with the implementation of tandem mass spectrometry in the above described process. 

Consideration of the signal intensity of the fragment ion peak specific to caffeine will enhance the 

precision of the quantitation mode.  

Simple analytical techniques such as TLC-DESI-MS, paper spray and spot analysis thus 

prove to be a reliable, robust method for qualitative and quantitative assessment of the energy 

drinks. It is also demonstrated to be equally effective in detecting trace amounts of amphetamine 

(as low as 50pg). Thus, this method illustrates the capability of DESI-MS to trace any illicit drug(s) 

which could be spiked in food, drinks, medicine etc. This analytical method could be implemented 

in the field of forensic science, drug analysis, environmental testing and biological testing due to 

its reliability, precision and reproducibility.  

4.5 Experimental 

4.5.1 Chemicals 

HPLC grade acetonitrile (CH3CN), HPLC grade methanol (CH3OH), Water (LC-MS 

CHROMASOLV®), caffeine standard and ammonium hydroxide (28% NH3 in H2O) were 

purchased from Sigma-Aldrich Co (Oakville, ON, Canada). HPLC grade ethyl acetate was 
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purchased from Caledon Laboratory Chemicals. Standard amphetamine (1 mg/mL) and 

isotopically labeled caffeine-d9 were from Cerilliant Corporation (Texas, USA) and Toronto 

Research Chemicals (Toronto, Canada) respectively. As samples, 5-Hour Energy Drinks from 

Living Essentials, LLC Farm, was purchased from a superstore (Scarborough, Canada).  

4.5.2 High Resolution (HRMS) and Tandem Mass Spectrometry (MSn) 

To confirm the identity of the compounds present in energy drink preparation and standard 

amphetamine solution, high resolution mass spectrometry (HRMS) and tandem mass spectrometry 

(MS/MS) were performed using a hybrid Thermo Fisher Orbitrap Elite Mass Spectrometer (San 

Jose, CA, USA). The energy drinks were diluted 50 folds and the amphetamine standard was 

spiked at a final concentration of 2 µg/mL. The resultant solutions were directly infused at a flow 

rate of 5 µL/min. The full scan spectrum of the resultant mixture was obtained in the mass range 

m/z 150-1000 and MS/MS of different components were conducted using collision energy between 

25-35% (manufacturer’s unit). 

4.5.3 TLC Analysis 

  Silica TLC glass based plate with thickness 250 µm was purchased from Sili Cycle Inc 

(Québec, Canada). The dimension of the plate was 5 x 5 cm.  A sharpie pen with rhodamine red 

ink (control), amphetamine standard (0.1µL of 1mg/mL) and energy drink samples (0.1µL of 

~3.5mg/mL) were spotted on the same plate surface, air dried and developed with the use of a 

suitable mobile phase. Several different solvent combinations were assessed as mobile phase for 

optimum compound separation (Appendix, section C, Table C2). Developed plates were air dried 

for 20 minutes prior to analysis by DESI-MS. 

4.5.4 Desorption Electrospray Ionization 

  DESI-MS was operated in full scan mode to scan a mass range from m/z 150 - 1000, in the 
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positive ion mode. The ion source was on a custom-built moving stage, operated by Galil motion 

control (WSDK) software, moving at a speed of 179 µm/s. Data was acquired using x-calibur 

software supported on a Thermo Finnigan LTQ Linear Ion-trap Mass Spectrometer (San Jose, CA, 

USA) at a set resolution of 150 µm. The emitter was set at +5kV, 2 mm above the sample surface, 

at an incident angle of 54o and a collection angle of 10o. The solvent spray had a flow rate of 5 

µL/min. As a nebulizer gas, 100 psi nitrogen was used to support the spraying process.  

4.5.5 Lowest limit of detection of amphetamine 

Amphetamine standards (0.5 µg/mL, 1.0 µg/mL and 2.0 µg/mL) were prepared by serial 

dilution of a 1 mg/mL stock solution. Aliquots of 0.1µL of all the concentrations were spotted on 

the TLC plate along with 0.1 µL of the energy drink samples, followed by development with 

CHCl3 / CH3OH (1:1) mobile phase. The developed plate was later analyzed by DESI-MS using 

CH3CN / H2O (7:3) spray solvent to check for the lowest concentration of the amphetamine that 

gives a signal to noise ratio of ≥3. 

4.5.6 Quantitative Analysis of Caffeine in Energy Drinks 

4.5.6.1 Calibration curve using standard caffeine 

Several different concentrations of caffeine standard (2, 3, 4, 5 and 6 mg/mL) were 

prepared from a 12 mg/mL stock by serial dilution. An aliquot of 0.1 µL of the prepared standards 

and 5-Hour Energy Drink (Berry Flavor and Extra Strength) were spotted on the TLC plate, 

developed and analyzed by DESI-MS. A calibration curve was plotted using the ion intensity of 

caffeine standards obtained by DESI-MS against their respective concentrations. The 

concentration of caffeine in both 5-Hour Energy Drinks was calculated using the equation of the 

line derived and the intensity obtained from the energy drink spots. 

4.5.6.2 Calibration curve using ratio of deuterated and standard caffeine  
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Caffeine standards were made of concentration 2 mg/mL, 3 mg/mL, 4 mg/mL and 5 mg/mL 

from a 16 mg/mL stock solution. Each standard solution was spiked with deuterated caffeine 

(caffeine-d9) standard at a final concentration of 3 mg/mL. LC-MS grade water was used to adjust 

the volume. Similarly, 3 mg/mL caffeine-d9 was also used to spike energy drink (Berry and Extra 

Strength) samples, resulting in a mixture having 3 mg/mL caffeine-d9 and 2.5X diluted Energy 

Drink sample.  

0.1 µL of the spiked standards  and energy drinks were spotted on the TLC plate, developed 

and analyzed by DESI-MS. Calibration curve generation was based on the intensity ratio of 

caffeine (m/z 195) and caffeine-d9 (m/z 204) against the respective concentration of the caffeine 

standard. Likewise, the actual caffeine concentration in both energy drinks was calculated using 

the derived line equation from the calibration curve and the dilution factor. 

4.5.6.3 Direct spot analysis of the mixture of deuterated caffeine standard and the energy 

drink 

Spot analysis of a mixture having energy drink sample with spiked deuterated caffeine 

standard was analyzed directly by DESI-MS. 3 mg/mL deuterated caffeine standard was spiked 

with the energy drink samples; 1µL of the resultant solution was spotted on a TLC plate and 

directly analyzed by DESI-MS.  Three scans were averaged and the resultant spectrum was 

collected for 1 minute. Three replicates were prepared and analyzed for each energy drink sample. 

The concentration of caffeine in the samples was determined using the equation, 
Icaffeine

Ideutrated caffeine
=

Ccaffeine

Cdeutrated caffeine
, where ‘I’ is the extracted Ion Intensity from the MS scan and ‘C’ is the 

corresponding concentration producing that intensity. Utilizing the dilution factor, the actual 

concentration of caffeine in the energy drink sample was calculated. Similarly, a new batch of both 

Berry Flavored and Extra Strength Energy Drink was further evaluated by this mode of 
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quantitation to evaluate the concentration consistency among batches.    

4.5.6.4 Paper Spray 

A mixture having 3mg/mL deuterated caffeine with 2.5X diluted energy drink sample was 

spotted on a triangular cut piece of printing paper, held at +5kV voltage in front of the inlet of an 

LTQ mass spectrometer. A combination of CH3CN / H2O mixture in the ratio 7:3 (v/v) respectively 

was sprayed on the paper piece and spectra were collected for 1 minute having 10 ms injection 

time. Three scans were averaged and three replicates were analyzed for each energy drink sample.  
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and Naphazoline, by desorption electrospray ionization and paper spray mass 
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5.1 Summary  

Pharmaceuticals play a crucial role in the treatment and cure of ailments. Ensuring its 

accurate dosage is thus very essential; as it not only influence its efficacy but also the safety of the 

patient taking it. Hence it necessitates a robust, reliable quantitative method which would ensure 

both. There have been numerous attempts at method development for specific ingredients (active 

or additive) in a pharmaceutical preparation. This encompasses both sample preparation and 

optimization of their mode of detection. In recent years mass spectrometry is of interest as it 

enables quantitation along with detection of impurities and thereby assesses the quality of the drug 

product. In this study, desorption electrospray ionization mass spectroscopy coupled with thin-

layer chromatography (TLC-DESI-MS) was employed to quantitate the active ingredients in 

ophthalmic preparations of Visine for Red Eye Original and Clear Eye Allergy.  Three different 

approaches that focused on the ion intensities generated by specific concentrations of the standard, 

deuterated standard, and sample analysed were used to quantitate the active principal ingredient. 

All three methods showed high accuracy with low ranges of error compared to the label stated 

concentration. Furthermore quantitation by paper spray was also performed as a mode to verify 

the results obtained by TLC-DESI-MS. This new mode of quantitation (TLC-DESI-MS) can be 

explored further to make it applicable for use in other fields like environmental, biochemical, and 

biomedical sciences. 

5.2 Introduction 

The viability of a medication relies on rigorous qualitative and quantitative analysis prior 

to its launch in the market (173,174). Determination of the exact concentration of a bioactive 

compound is crucial for the desired effects as well as to avoid side effects. Two currently available 

over the counter (OTC) redness relief eye drops (Visine for Red Eye Original and Clear Eyes 
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Allergy) were investigated in this study to develop a relatively fast, reliable mode of quantitation 

of the active principal in the formulation. Visine for Red Eye Original contains tetrahydrozoline 

as the active ingredient whereas naphazoline is the active component in Clear Eyes Allergy 

formulation with distinct concentrations of 0.05 and 0.012 % w/v respectively, as stated in their 

labels. Benzalkonium chloride is used as a preservative agent due to its antimicrobial activity and 

is present in both ophthalmic preparations (175). Minor ocular irritants cause eye redness. These 

imidazoline derivatives, tetrahydrozoline and naphazoline, are α-agonists whose main mechanism 

of action is by constricting conjunctival blood vessels thereby serving as redness relief compounds 

(176). 

A variety of techniques have been employed to quantify these active compounds including 

high-performance liquid chromatography (HPLC) using UV, and gas chromatography / mass 

spectrometry (177). However, desorption electrospray ionization mass spectrometry (DESI-MS) 

for quantitative measurements of tetrahydrozoline and naphazoline in ophthalmic solutions have 

not been previously reported.  

In this study, a simple analytical method for the quantification of tetrahydrozoline and 

naphazoline in OTC eye drops has been developed by the use of thin-layer chromatography 

coupled to DESI-MS. TLC was employed as a mode to separate the components of the eye drop 

preparation prior to their quantification by DESI-MS (146,147,178,179). It was previously 

reported that quantification utilizing TLC requires removal or scraping off the spot of interest for 

extraction prior to analysis. This results in the loss of material (177,180) and also the overall 

process is time-consuming. In contrast, coupling TLC with DESI-MS, the sample preparation step 

of extraction can be eliminated since DESI-MS is a surface analysis technique. In addition, TLC 
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allows separation of the active compounds, thereby minimizing ion-suppression that could affect 

the accuracy of the quantitative analysis (36,181–183). 

Three different approaches were used to quantify the active components of the two 

ophthalmic solutions. Calibration curves were generated using ion intensity obtained from specific 

concentrations of the standard, deuterated standard, and drug samples by DESI-MS. Since the 

concentration in the ophthalmic solutions is specified, the results obtained from the quantitative 

analysis were compared with label values.  

Quantitation by paper spray was also performed to verify the results obtained by TLC-

DESI-MS. Paper spray is a relatively fast, convenient, economical mode of analysis, requiring 

almost no sample preparation and quick assessment of ophthalmic preparations (83,155) . 

5.3 Results and Discussion  

5.3.1 Identification of Eye drop Components 

High resolution mass spectrometry and tandem mass spectrometry were performed using 

an LTQ Orbitrap Elite mass spectrometer (Thermo Scientific). Ophthalmic preparations being 

analysed had compounds at m/z 201 (tetrahydrozoline, active component of Visine for Red Eye 

Original sample), m/z 211 (naphazoline, active component of Clear Eye Allergy sample), m/z 304 

and m/z 332 were preservative compounds, benzalkonium chlorides differing in alkyl chain 

lengths, C12 and C14 respectively (Figure 5.1).  

 Accurate mass obtained by the Orbitrap mass spectrometer was compared with the exact 

monoisotopic mass of each compound to calculate the ppm difference. The ppm difference 

obtained for tetrahydrozoline and naphazoline (m/z 201, and 211) were 4.972 and 3.316 

respectively. For the preservative ions at m/z 304, and 332 the difference was calculated to be 

4.929 and 3.911 respectively. All four compounds demonstrated less than 5.0 ppm difference with 
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their exact monoisotopic mass, thereby confirming their identity (Table 5.1) (183,184).  

 

Figure 5.1: Structures of the active and preservative compounds present in Visine for red eye 

Original and Clear Eyes Allergy eye drops. 

 

Table 5.1: Identification of active components (tetrahydrozoline and naphazoline) and 

preservative using the LTQ Orbitrap Elite Mass Spectrometer. 

Compound m/z Molecular 

formula 

Theoretical 

MW (g/mol) 

Experimental 

MW (g/mol)* 

Δ ppm 

Tetrahydrozoline 201 C13H17N2 201.1392 201.1382 4.972 

Naphazoline 211 C14H15N2 211.1235 211.1228 3.316 

Benzalkonium 

chloride 

304 C21H39N 304.3004 304.2989 4.929 

Benzalkonium 

chloride 

332 C23H43N 332.3317 

 

332.3304 3.911 

 

Furthermore, tandem MS (MS/MS) was performed to elucidate their structural features 

based on their fragmentation profile. Figure D1 (Appendix, section D) illustrates the fragmentation 

profile of ions m/z 201, 211, 304, and 332. Tetrahydrozoline produces a base peak at m/z 131 which 

corresponds to the loss of the imidazoline group; whereas for naphazoline, m/z 141 was observed 

upon dissociation of the imidazoline group. Both C12 and C14 benzalkonium chloride lose toluene 

to produce fragment ions at m/z 212 and 240 respectively (175). 

5.3.2 DESI Spray Solvent Optimization  

The spray solvent influences the dissolution and desorption of an analyte from the surface 
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along with its ionization (36). The imidazoline group in both tetrahydrozoline and naphazoline is 

mainly responsible for ionizing the molecule and so they are expected to behave similarly. Both 

components were soluble in water and methanol (181). Methanol was chosen as the solvent spray 

for analysis as it is more volatile than water and this aid in better mist formation and ultimately 

faster drying of the droplets. All four compounds of interest were detected; however, their ion 

intensities were low. When composition of the solvent was changed to CH3OH:H2O (1:1, v/v), 

however, the ion counts decreased for both the active and preservative molecules. (Figure 5.2) 

 

Figure 5.2: Intensity observed of active (m/z 201, 211) and additive compounds (m/z 304, and 

332) ions while using different DESI spray solvent combinations. Refer to Appendix, section D. 

 

The solubility of a compound is dependent on its polarity (182). Since the compounds 

studied were soluble in CH3OH, CH3CN being more polar was anticipated to enhance their 

dissolution from the silica stationary plate (181). Ion intensities for m/z 201, 211 and 304 increased 

with pure CH3CN. In combination with water, in the ratio 1:1 (v/v), the intensities further 

improved.  Finally upon fine-tuning the ratio to 7:3 (v/v), in an attempt to enhance droplet 

formation of the spray solvent, it was found that desorption and ionization for all compounds was 

maximized. Hence this combination was used in the later part of the study (Figure 5.2). 
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5.3.3 TLC Mobile Phase Optimization  

To achieve optimum separation of the active ingredient from other compounds present in 

the ophthalmic preparations, different combinations of TLC solvents were tested. The active 

ingredients in the ophthalmic preparations were polar molecules whereas the preservative 

molecules had alkyl chains which made them less polar in nature. The hypothesis was to use a 

nonpolar solvent that would enable separation of both components since they have different 

polarities (181). Likewise, chloroform was used in combination with methanol in 2:3 (v/v) ratio, 

respectively. Certain degree of overlap was evident between the active components (m/z 201 and 

211) and the preservative molecules (m/z 304 and 332); which led to further modification of the 

solvent ratio to 1:1 that resulted in complete separation.  

Figure D2 and D3 illustrate the separation of tetrahydrozoline and naphazoline from 

benzalkonium chloride using the chloroform/methanol (1:1, v/v) combination. The retention 

factors (RF) calculated were 0.30 for tetrahydrozoline (m/z 201) and 0.34 for naphazoline (m/z 

211). Both, tetrahydrozoline and naphazoline, have an imidazoline group which made their 

interactions with the silica plate similar. Since m/z 304 and 332 were benzalkonium chlorides 

differing by two carbon atoms in the alkyl side chain, they were anticipated to appear at 

approximately the same RF; these were calculated to be 0.59 and 0.64 respectively for Visine for 

Red Eye Original and 0.55 for Clear Eye Allergy. The retention factor was determined by dividing 

the distance at which they appeared on the plate over the total distance travelled by the solvent 

front on the TLC plate.  

5.3.4 Limit of Detection (LOD) of Tetrahydrozoline and Naphazoline 

LOD for both tetrahydrozoline and naphazoline was determined to be 50 pg; with a signal 

to noise (S/N) ratio of 3.33 (Figure D4 and D5). 100 pg and 25 pg were also spotted on the TLC 
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plate to observe the S/N variation upon overall amount changed on the spot. 2-fold increase in 

load, increased the S/N slightly less than 2 fold (4 and 5.88 for 100pg, Figure D4 and D5). For 

quantitation purposes, it is ideal to have a signal 10 times higher than LOD, so that the variation 

in signal can be solely attributed to the changes in amount rather than external factors like matrix, 

temperature, etc. Also, in order to use a calibration curve, a specific range of concentration that 

depicts linearity is considered to be ideal. Furthermore, for efficient TLC separation, the spot 

needed to be concentrated at a small region. All these limitations led to spotting, 0.1 µL of 5 µg/mL 

- 100 µg/mL concentration range on TLC plates for quantitation purposes.    

5.3.5 Quantitative Analysis of Active Components 

5.3.5.1 Calibration Curve using Tetrahydrozoline and Naphazoline Standards 

Ion intensity or the area under the peak of the extracted ion chromatogram of DESI was 

plotted against the concentrations of tetrahydrozoline and naphazoline standard solutions spotted 

on the TLC plate to obtain calibration curves. 

 

Figure 5.3: Tetrahydrozoline calibration curve plotted using standard solutions of tetrahydrozoline 

at concentrations 5, 10, 20, 30, 50, 100 and 200 µg/mL with their respective ion intensities obtained 

by DESI-MS. Equation of the line derived was y = 65.477x+1643 with a correlation factor of (R2): 

0.9965. Raw data tabulated in Appendix, sections D1. 
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Figure 5.3 shows the resultant calibration curve with tetrahydrozoline standard; the 

equation of the line derived was y = 65.477x+1643, where y represents the ion count and x the 

corresponding concentration of the standard solution spotted.  

Table 5.2: Determination of tetrahydrozoline concentration in Visine Red Eye Original 

preparation from a calibration curve. 

Visine 

Original 

Dil. 

Factor Intensity  

 

Conc. in 

spot 

(µg/mL) 

Actual 

conc. in 

preparation 

(µg/mL) 

Area 

under 

peak 

Conc. in 

spot 

(µg/mL) 

Actual 

conc. in 

preparation 

(µg/mL) 

Run 1 
12.5X 5370 40.05 500.59 72343 41.29 516.11 

30X 3010 16.82 504.64 33517 16.92 507.58 

Run 2 
12.5X 2800 41.01 512.69 52629 42.40 529.96 

30X 1510 18.12 543.59 27740 17.80 534.15 

Run 3 
12.5X 4710 40.88 511.06 51926 41.70 521.31 

30X 3790 17.27 518.17 26152 16.96 508.87 

Mean    515.12   519.66 

SD    15.25   10.90 

% RSD    2.96   2.10 

 

Table 5.2 summarizes the tetrahydrozoline concentration (x) calculated for the two 

dilutions (12.5X and 30X) from the derived line equation. The average concentration calculated 

was 515.12 ± 15.25 µg/mL indicating a RSD of 2.96 % among the different inter-day runs 

conducted. This validates the robustness of this method in determining the unknown 

concentrations of tetrahydrozoline samples.  Data corresponding to ion counts and their respective 

area under peak for three independent runs are tabulated in table D1 and D2 of the appendix, 

section D.  
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Figure 5.4: Naphazoline calibration curve plotted using standard solutions of naphazoline standard 

solutions at concentrations 5, 10, 20, 30, 50, 80 and 100 µg/mL with their respective peak area 

obtained by DESI-MS. Equation of the line derived was y = 343.16x + 254.91 with a correlation 

factor (R2) of 0.9960. Raw data tabulated in Appendix, sections D4. 

 

Table 5.3: Determination of Naphazoline concentration in Clear Eye drop preparation from a 

calibration curve. 

Clear 

eye drop 

Dil. 

Factor Intensity  

 

Conc. in 

spot 

(µg/mL) 

Actual 

conc. in 

preparation 

(µg/mL) 

Area 

under 

peak 

Conc. in 

spot 

(µg/mL) 

Actual 

conc. in 

preparation 

(µg/mL) 

Run 1 
3X 1160 40.56 121.68 14017 41.39 124.17 

10X 423 12.44 124.43 4338 12.76 127.56 

Run 2 
3X 1470 40.85 122.56 19334 40.78 122.33 

10X 482 12.80 128.03 5940 12.34 123.40 

Run 3 
3X 786 41.30 123.91 9863 41.97 125.91 

10X 265 13.23 132.27 3745 14.22 142.17 

Mean    125.48   127.59 

SD    3.98   7.38 

% RSD    3.17   5.78 

 

The area under the resolved peak for the compound under investigation was also used to 

plot calibration curve for quantitative purposes. Figure 5.4 depicts the area under the peak of 

standard naphazoline plotted against their respective concentrations (5, 10, 20, 30, 50, 80 and 100 
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µg/mL). The average concentration in the Clear Eye Drop sample was determined to be 127.59 ± 

7.38 µg/mL; having a RSD of 5.8 % among runs (Table 5.3). These results also indicate the 

reliability of the quantitation method. Data corresponding to ion counts and their respective area 

under peak for three independent runs are tabulated in table D3 and D4 of the appendix, section 

D. 

 

5.3.5.2 Direct spot analysis of a mixture of deuterated standard and Visine from Red Eye 

Original sample 

Concentration is directly proportional to the ion intensity (Csample α Isample) observed in 

DESI-MS scan. Consequently, the deuterated tetrahydrozoline standard was spiked with the 

diluted samples of Visine red eye original preparation to calculate the concentration of 

tetrahydrozoline in the mixture using ion intensity ratios. Using the equation  
𝐼205

𝐼201
=

𝐶205

𝐶201
 , the 

original concentration of tetrahydrozoline present at the spot (C201) was determined. 

Three spots were analysed to calculate an average concentration (Table 5.4).  Average 

concentration was determined to be 514.01± 18.90 µg/mL. Comparing it with 500.00µg/mL, as 

stated on the label, a percentage difference of 2.80 % was found.  

Table 5.4: Determination of Tetrahydrozoline concentration in Visine Original preparation by 

direct spot analysis. 

Visine 

Original 

m/z 201 

Tetrahydrozoline 

m/z 205 

Deuterated 

Tetrahydrozoline 

Conc. in 

spot 

(µg/mL) 

Actual conc. 

in preparation 

(µg/mL) 

Spot 1 2.39E+03 1.16E+03 41.21 515.09 

Spot 2 3.62E+03 1.70E+03 42.58824 532.35 

Spot 3 2.75E+03 1.39E+03 39.56835 494.60 

Mean 41.12 514.01 

SD 1.51 18.90 

RSD 3.68 3.68 
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Since the ionizing group for both tetrahydrozoline and naphazoline is the same, equimolar 

concentration (20µg/mL) of both standard tetrahydrozoline and naphazoline were mixed and 

analysed by DESI-MS to check their ionizability by the DESI solvent spray. Figure D6 depicts the 

resultant spectrum obtained, which supports that they have almost the same ionization efficiency 

giving very similar ion abundance and intensity. Due to the commercial unavailability of 

deuterated naphazoline standard, standard tetrahydrozoline solution was used as an internal 

standard to quantify naphazoline in ophthalmic preparations, a practice also known as ‘internal 

addition’(185,186). 

Table 5.5: Determination of Naphazoline concentration in Clear eye drop preparation by direct 

spot analysis.  

Clear Eye drop m/z 201 m/z 211 
Conc. in spot 

(µg/mL) 

Actual conc. in 

preparation 

(µg/mL) 

Spot 1 2.41E+03 4.98E+03 41.33 123.98 

Spot 2 2.52E+03 5.34E+03 42.38 127.14 

Spot 3 2.68E+03 5.59E+03 41.72 125.15 

Mean 41.81 125.43 

SD 0.53 1.60 

RSD 1.27 1.27 

 

Likewise, the average naphazoline concentration of three spots containing 3X diluted Clear 

Eye Drop was calculated to be 125.43 ± 1.60 µg/mL (Table 5.5). Comparing it to the label amount 

of the eye preparation, 120.00 µg/mL, percentage difference was determined to be 4.52 %.  Figure 

5.5 depicts spectra obtained upon analysis of spot having Visine and Clear ophthalmic preparation 

spiked with deuterated tetrahydrozoline and standard tetrahydrozoline, respectively. 

Relative standard deviation from mean for both preparations were found below 5% which 

signifies that this method is can be used to determine the unknown concentration of the active 

component with high precision in a relatively short period of time. 
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Figure 5.5: Spot analysis by DESI-MS. a) MS spectrum showing the relative abundance observed 

upon simultaneous spotting 1µL of 20 µg/mL of the deuterated standard at m/z 205 (1.16 x103 ion 

count) with 12.5X diluted drug sample at m/z 201 (2.39x103 ion count) b) MS spectrum showing 

the relative abundance observed upon simultaneous spotting 1µL of 20 µg/mL of the 

tetrahydrazoline  standard at m/z 201 (2.41 x103 ion count) with 3X diluted clear eye drop sample 

at m/z 211 (4.98x103 ion count).  

Analytical accuracy is limited by instrumental variation including systematic and random 

errors. The temperature of the room where the instrument is kept, the pressure of nitrogen gas 

when the cylinder is replaced, or the temperature of the inlet are factors that affect ion intensity 

(187–189). Therefore, to minimize the effect of all these variations in signal intensity as well as 

the background matrix effect, it is recommended to acquire the data of samples and standards 

concurrently followed by generation of calibration curve.  

5.3.5.3 Calibration Curve using Deuterated Internal Standard Solution and Standard 

Solution of Active Component 

Figure 5.6 shows the calibration curve obtained upon plotting the ion intensity ratio over 

the concentration of standard tetrahydrozoline in the mixture. Average intensity ratio from three 
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replicates of 12.5X diluted tetrahydrazoline sample was found to be 2.043, having a standard 

deviation of 0.01 (Table D5). The concentration in the Original Red Eye sample calculated using 

the average ratio and the derived line equation was 501.50 µg/mL, showing only a deviation of 

0.3% from the true value (500µg/mL). 

 

Figure 5.6: Calibration curve plotted using the ratio of standard, tetrahydrozoline, at 

concentrations 5, 10, 20, 30, and 50 µg/mL with simultaneous spiking with 20 µg/mL deuterated 

standard, tetrahydrozoline-d4. The equation of the line derived was y = 0.0498x + 0.0434 with a 

correlation factor (R2) of 0.9978. 

 

5.3.5.4 Calibration Curve using Tetrahydrozoline Standard Solution and Naphazoline 

Standard Solution  

Calibration curve using standard tetrahydrozoline and standard naphazoline solution 

resulted in a trend line having a R2 value of 0.9977 (Figure 5.7). From the equation of line, the 

concentration of the 3X diluted sample was calculated to be 39.57µg/mL, which deviates only by 

1.08% from the true value (40µg/mL). This suggests high reliability of the method (Table D6). 

Furthermore, this approach eliminates the background matrix effect which limits analytical 

precision (147,188). 
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Figure 5.7: Calibration curve plotted using the ratio of standard, naphazoline, at concentrations 5, 

10, 20, 30, and 50 µg/mL with simultaneous spiking with 20 µg/mL deuterated standard, 

tetrahydrozoline-d4. The equation of the line derived was y = 0.0496x + 0.0645 with a correlation 

factor (R2) of 0.9977. 

 

5.3.5.5 Quantitation by Paper Spray 

Table 5.6: Calculations performed using relative ion intensities obtained by paper spray of  a 

solution having ophthalmic preparation with a deuterated standard. 

Visine 

m/z 201 m/z 205 

Spot 

Conc. 

µg/mL 

Actual Conc. 

µg/mL 

Average 

Conc./ 

µg/mL 

SD RSD 

6.35E+03 3.05E+03 41.64 520.49 

522.97 19.57 3.74 

 
6.36E+03 3.15E+03 40.38 504.76 

4.98E+03 2.29E+03 43.49 543.67 

Clear 

m/z 211 m/z 201 

Spot 

Conc. 

µg/mL 

Actual Conc. 

µg/mL 

125.97 5.31 4.21 

 
2.02E+03 1.01E+03 40.00 120.00 

2.95E+03 1.36E+03 43.38 130.15 

4.28E+03 2.01E+03 42.59 127.76 

 

Quantitation by paper spray of the active components for both ophthalmic preparations 

showed consistent results similar to those obtained upon performing TLC-DESI-MS (Figure 5.8 

and Table 5.6). The relative standard deviation among replicates was below 5.0 %, which further 

y = 0.0496x + 0.0645
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supports that these modes of quantitation are relatively fast, convenient, and reliable requiring 

almost no sample preparation. 

 

Figure 5.8: Spectra obtained after paper spray of mixtures having ophthalmic solution (Visine 

original and Clear Eye) and deuterated standard. 

 

5.4 Conclusion 

Desorption electrospray ionization mass spectroscopy (DESI-MS) is a versatile technique 

due to its rapid and reproducible mode of analysis under ambient condition with minimal sample 

preparation.(36,154,158,190–192) Thin-layer chromatography is also an effective, fast, and 

inexpensive approach. With appropriate mobile phase for the analyte under investigation, this 

method can provide good separation of any mixture of compounds (30,147,150,156,180). 

Coupling TLC with DESI MS facilitate accurate chemical identification and analysis of desired 

analytes. This work shows that TLC/DESI-MS and PS-MS  are promising approach for the 

quantification of active components present in minute concentration (145,151,157,159,193). It 
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served to differentiate them from contaminants and product of degradation in any formulation. It 

can thus be used effortlessly in quantity and quality control of pharmaceuticals (149,160). 

Quantification of tetrahydrozoline and naphazoline from Visine for red eye original and 

Clear eyes ophthalmic solutions were achieved by different approaches that focused on the ion 

intensities generated from specific concentrations of the standard, deuterated standard, and sample 

analysed. All the methods show high accuracy with low percentage of discrepancy from the label 

stated concentrations of the eye drop preparations. The limitation of the first two methods depends 

on instrumental variations and background effect hence it is recommended to acquire the data 

corresponding to the ion intensity of the sample and standards concurrently (149,187–189). 

5.5 Experimental 

5.5.1 Chemicals 

HPLC grade acetonitrile, methanol, chloroform, water, ammonium hydroxide solution 

(28% NH3 in H2O, > 99.99%) and acetic acid (> 99.99%) were purchased from Sigma Aldrich 

Corp., (Oakville, Canada). Ethyl acetate reagent (> 99.5% purity) was obtained from Caledon 

Laboratory Ltd (Georgetown, Canada). Tetrahydrozoline-d4, CAS registry no. [1246814-66-3], > 

96 % chemical purity, was purchased from Toronto Research Chemicals, Inc. (Toronto, ON, 

Canada). Tetrahydrozoline, and naphazoline, CAS registry no. [522-48-5], > 98 % and CAS 

registry no. [550-99-2], > 97.5 %, were purchased from Sigma Aldrich Corp., (Oakville, Canada). 

Visine for red eye original containing tetrahydrozoline 0.05% w/v and Clear Eyes Allergy with 

0.012% w/v of naphazoline were purchased from Shoppers Drug Mart (Toronto, Canada).  

5.5.2 High Resolution Mass Spectrometry (HRMS) and Tandem Mass Spectrometry 

(MS/MS) 

 To ensure the molecular identity of the ions, HRMS and MS/MS were performed using the 
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LTQ Orbitrap Mass Spectrometer (Thermo Scientific, San Jose, CA, USA). Visine Original Red 

Eye containing 0.05% w/v tetrahydrozoline was diluted 200 fold using CH3CN / H2O in 7:3 (v/v) 

combination. The resultant solution was directly injected at a flow rate of 5µL/min. The collision 

energy was varied from 21 to 42% (manufacturer unit) depending on the ion being analyzed.  The 

same procedure was followed for Clear Eyes Allergy sample which contained 0.012% w/v 

naphazoline.  

5.5.3 Thin-Layer Chromatography (TLC) 

 TLC was performed on silica plates 5 x 5 cm (250 µm thickness, glass backed, 60Å 

stationary phase); Silicycle Inc., (Quebec, Canada). Mobile phase checked were combinations of 

CHCl3 / CH3OH in ratios of 2:3 (v/v) and 1:1 (v/v). CHCl3 / CH3OH in ratio 1:1 (v/v) was found 

the optimum solvent and was continued over the rest of the experiments. Silica plates were washed 

with methanol and air dried prior to spotting. On the TLC surface, 0.1 µL of standards and samples 

were spotted.  

5.5.4 Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) 

 A DESI ion source coupled to a Finnigan LTQ Linear Ion Trap Mass Spectrometer with a 

custom built moving stage was used to conduct the experiments. X-calibur 2.0 software was used 

to acquire the data (Thermo Scientific, San Jose, CA USA). The LTQ parameters were as follow: 

spray voltage, 5 kV; MS injection time, 150 ms. The DESI source conditions were as follow: 

nitrogen sheath gas pressure, 100 psi; incident angle, 52-54°; tip-to-surface distance, 1.5-2 mm; 

tip-to-inlet distance, 3−4 mm. CH3CN / H2O (7:3, v/v) was used as the spray solvent and was 

delivered at a flow rate of 5.0 µL/min.  All mass spectra were obtained in positive ion mode. 

Scanning was performed towards the solvent font constantly at a speed of 179µm/s. Three scans 

were averaged. Red ink (rhodamine 6G, m/z 443) was used as a control prior to run, to optimize 
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the geometry of the DESI solvent spray. 

5.5.5 DESI-MS Spray Solvent Selection 

CH3OH 100%, CH3OH / H2O in ratio 1:1 (v/v), CH3CN 100 %, and CH3CN / H2O in 

combination 1:1 (v/v) and 7:3 (v/v) were tested as DESI spray solvents. Based on the observed ion 

count, the solvent or combination was varied until the highest and most reproducible ion signal 

was obtained for all the active principles. 

5.5.6 Determination of limit of detection (LOD) of the Tetrahydrozoline and Naphazoline 

Standard solution of tetrahydrozoline and naphazoline were prepared having concentration 

1 µg/mL. The solution was then serially diluted to obtain concentration, 100 ng/mL. 0.25 µL, 0.5 

µL and 1 µL of the solution were spotted on a TLC plate, prior to its analysis by DESI-MS. 

5.5.7 Quantitative Analysis of Active Components 

5.5.7.1 Calibration Curve using Tetrahydrozoline and Naphazoline Standards 

For the quantification of the active components, standards containing 5, 10, 20, 30, 50, 100, 

and 200 µg/mL of tetrahydrozoline were prepared by serial dilution using a 500 µg/mL stock 

solution. Similarly, naphazoline standards of 5, 10, 20, 30, 50, 80 and 100 µg/mL were prepared 

by serial dilution from a stock of 120 µg/mL.  

0.1 µL of the solutions were spotted and analyzed by TLC-DESI-MS. The ion intensity 

obtained was used to plot calibration curves which were used to determine the tetrahydrozoline 

and naphazoline concentration in the diluted Visine Red Eye (12.5X and 30X) and Clear Eye 

Allergy (3X and 10X) ophthalmic preparations.  

5.5.7.2 Direct spot analysis of mixture having Deuterated Standard and Ophthalmic solution  

Deuterated tetrahydrozoline standard (m/z 205) was spiked in 0.05 % w/v Visine Red Eyes 

preparation to make a mixture having 20 µg/mL deuterated tetrahydrozoline and 12.5X diluted 
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Visine Red Eyes ophthalmic preparation. The resultant solution was spotted on a TLC plate and 

the ion intensities were acquired for 1 minute by DESI-MS.   

The procedure was repeated with Clear Eye Allergy solution, making a resultant mixture 

having 20µg/mL standard tetrahydrozoline and 3X diluted clear eye drop ophthalmic preparation. 

5.5.7.3 Calibration Curve using Deuterated Internal Standard Solution and 

Tetrahydrozoline Standard Solution  

A fixed amount of the deuterated tetrahydrozoline, 20 µg/mL (final concentration), was 

spiked in aliquots containing different concentrations of the tetrahydrozoline standard (5, 10, 20, 

30, 50 µg/mL). The resultant solutions were spotted on the TLC plate and were developed using 

the CHCl3 / CH3OH (1:1, v/v) prior to the DESI-MS analysis. To obtain a calibration curve, the 

ion intensity ratio of the standard (m/z 201) to the deuterated standard (m/z 205) was plotted against 

the concentration of the standard (m/z 201). Three plates were analysed and their average ratio 

with standard deviation was plotted to obtain the calibration curve. 

The same procedure was repeated with naphazoline standards having final concentration 

of 5, 10, 20, 30, and 50 µg/mL, spiked with 20 µg/mL(final conc.) tetrahydrozoline standard. 

5.5.7.4 Paper Spray 

A printing paper was cut in triangular shapes and was held with a voltage clip infront of 

the MS inlet. The clip was subjected to 5kV. A solution of 20 µg/mL deuterated tetrahydrozoline 

standard (m/z 205) was spiked in 12.5X diluted sample of 0.05 % w/v Visine Red Eye prepartion. 

The resultant solution was spotted at the tip of the paper and CH3CN / H2O (7:3, v/v) was drizzled 

on the paper. MS scans were acquired averaging 3 micro scans having 10 ms injection time. 

Spotting was repeated three times and concentration values were calculated along with the relative 

standard deviation. 
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The same procedure was repeated with a 3X diluted sample of 0.012% w/v Clear Eye 

Allergy solution and 20 µg/mL of tetrahydrozoline standard (m/z 205) as the internal standard.  
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CHAPTER SIX 

Conclusion and Future Work 

6.1 Conclusion 

The work summarized in this thesis elaborates the usefulness of DESI-MS as a powerful 

ambient ionization technique for characterization, quantitation and imaging. The fact that it allows 

direct analysis of sample under ambient condition without any sample destruction, makes it a very 

suitable analytical tool for field operations. With the advent of potable mass spectrometers, this 

technique will gain popularity in the field of forensics, microbiology, pharmaceutics, food and drug 

industry, drug discovery, histology and many others that requires direct sampling. Incorporating a 

simple mode of separation technique like TLC, eliminated of ion suppression and enabled 

achievement of great linearity in quantitative assessment of pharmaceutics. Even at minute drug 

concentration this technique proves to be robust and sensitive enough to pick up slight variation in 

drug concentration. The identification of antibiotics like Lysolipin I and analogue of Lienomycin by 

direct sampling of microbial colony depicts its potential in field of microbiology and drug discovery.  

This works also illustrates the use of paper spray mass spectrometry for characterization and 

quantitation of pharmaceutics. Paper spray has high potential in the field of analytical sciences. Even 

though it suffers from signal fluctuation, it is a reliable, inexpensive and quick method for easy 

assessment of the article of interest. Its ease of use will make it a valuable method in the field of illicit 

drug analysis. 

6.2 Future Work 

As future work different ink colors and different brands pen can be analyzed for identification 

of more invisible state markers in order to generate library that will be useful to detect forgery. 3D 

imaging of actinobacteria will enable comprehensive study about its secondary metabolites and will 
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also allow to determine their role in different stages of its lifecycle. The growth media of 

actinobacteria can also be tested against a resistant strain to further confirm the compounds identity. 

Again, analogue of lienomycin characterized in this work can be chemically hydrolyzed with acids 

to elaborately understand its fragmentation profile upon performing tandem mass spectrometry and 

also to locate the position of hydroxylation and double bonding. 

It will beneficial to use 3-D printing to make a device for holding paper while performing 

paper spray. This will ensure signal stability and reproducibility in paper spray data. Acquisition of 

sample signal along with an internal standard also limits signal fluctuation. Calibration curve with 

caffeine, tetrahydrazoline and naphazoline can also be acquired using PS-MS.  
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APPENDICES 

Appendix A: Supplementary Information for Chapter 2 

 

Figure A1: Tandem mass spectrometry (MS/MS) of thermochromic ink trace of m/z 467.1198 

using an Orbitrap mass spectrometer. 

 

 

Figure A2: Tandem mass spectrometry (MS/MS) of thermochromic ink trace of m/z 689.3655 

using an Orbitrap mass spectrometer. 
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Figure A3: a. DESI (+) LTQ mass spectrum of an ink spot on paper. b. ESI (+) Orbitrap mass 

spectrum of a solution of ink in CH3OH. c. Paper Spray (+) Orbitrap mass spectrum of an ink spot 

on paper. Intensities are higher for the Orbitrap compared to the LTQ.  

300 400 500 600 700 800 900 1000

m/z

10

20

30

40

50

60

70

80

90

100

R
e
la

ti
v
e

 A
b

u
n

d
a

n
c
e
 %

245

356

467

578

689
800

911

300 400 500 600 700 800 900 1000
m/z

0

10

20

30

40

50

60

70

80

90

100

R
e
la

ti
v
e

 A
b

u
n

d
a

n
c
e
 %

356.1952

245.1282

467.2617

615.2822689.4003

578.3369

800.4672

:

300 400 500 600 700 800 900 1000
m/z

0

10

20

30

40

50

60

70

80

90

100

R
e
la

ti
v
e

 A
b

u
n

d
a

n
c
e
 %

356.1944

245.1262

467.2625

578.3307
689.3991

800.4675

DESI-MS: 1.24E2
LTQ 

Paper spray –MS: 6.73E7
Orbitrap

ESI-MS: 1.88E8
Orbitrap

a)

b)

c)



116 
 

 

 

Figure A4: (+) DESI-MS selected ion monitoring (SIM) mass spectra of the ions m/z 405, 615, 

786 and 851 separated on TLC plate acquired on a LTQ mass spectrometer.  These data were 

obtained by running the DESI-spray across the eluted spots in the TLC plate as indicated in Figure 

A8. 
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Figure A5: (+) DESI-MS selected ion monitoring (SIM) mass spectra of polymers separated on a 

TLC plate acquired on a LTQ mass spectrometer. These data were obtained by running the DESI-

spray across the eluted spots in the TLC plate as indicated in Figure A8. 
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Figure A6: Signal intensity comparison of full scan spectra while imaging ‘CRMS’ on printing 

paper surface and ‘7’ on PTFE surface using a LTQ mass spectrometer. 
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Figure A7: DESI ion images of heated chemical markers at m/z 400, 578, 615 and 786 from a 

forged ‘7’ and ‘CRMS’ using a LTQ mass spectrometer. 

 

 

Figure A8: TLC plate optical images upon running heated (left) and non-heated ink (right). An 

ink spot was made for reference using a Sharpie red pen.  

Spray direction

t=0 min

t=1.6 min

Heated ink spot Non Heated ink spot
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Appendix B: Supplementary Information of Chapter 3 

 

Figure B1: Morphological differentiation stages of Streptomyces spp. 

 

Figure B2: Workflow depicting the processes underwent while analyzing secondary metabolites from 

CAAT 1-54 by DESI-MS/MSI and Orbitrap.  
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Figure B3: DESI-MS scan of colony after imprinting on double sided tape. a) DESI-MS scan of an imprint 

from the colony after 4 days of incubation at 37°C on potato agar plate for 4 days. 7.39E00 represents the 

intensity of the most abundant ion. b) DESI-MS scan of an imprint from the colony after 14 days of 

incubation at 37°C on potato agar plate for 14 days. 2E01 represents the intensity of the most abundant ion.  

c) DESI-MS scan of a hard imprint (pressing harder and longer) from the colony after 14 days of incubation 

at 37°C on potato agar plate for 14 days. 4.98E00 represents the intensity of the most abundant ion. 
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Figure B4: HRMS spectrum of crude extract. 

 

Figure B5: Tandem mass spectrometry a) m/z 598.1099 showing two fragment ions at m/z 568 and m/z 

537. b)  m/z 1229.7389 showing several fragment ions. 
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Figure B6: UV absorption profile of the ion at m/z 1229. 

 

 

Figure B7: Structures of sugars: a) Rhamnose and b) Mycosamine 
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Figure B8. Double charged ion profile of: a) m/z 605.3605, b) m/z 625.8626, c)m/z 633.8497 
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Figure B9: A 600 MHz 1H NMR spectrum of the compound of m/z 1228 in DMSO-d6. 

 

Figure B10: A 150 MHz 13C NMR spectrum of the compound of m/z 1228 in DMSO-d6. 
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Figure B11: 2D 1H-13C HSQC-DEPT spectrum of the sample in DMSO-d6. Contours indicating CH and 

CH3 correlations (positive) are shown in blue while CH2 (negative) are shown in red. 

 

Figure B12: 2D 1H-13C HMBC spectrum of the sample in DMSO-d6. 
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Figure B13. 15N-NMR spectrum of sample in DMSO-d6. 

 

 

Figure B14. Optical images of disc diffusion assay performed with a) P. roqueforti, b) B. subtilis, and c) 

E. coli. The first column is the negative control plates where the discs are impregnated with fresh autoclaved 

ISP 2 media. The second column shows the plates where the discs are impregnated with the media obtained 

after incubating CAAT 1-54 for 4 days at 37°C. The third column are of the plates where the discs are 

impregnated with the media obtained after incubating CAAT 1-54 for 14 days at 37°C. 
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Appendix C: Supplementary Information of Chapter 4 

Determination of solvent spray 

Table C1: Signal Intensity for Berry flavor energy drink and standard amphetamine. 

Compound CH3OH CH3CN CH3CN / CH3OH 

(70:30, v/v) 

CH3CN /H2O 

(70:30, v/v) 

m/z 136 2.78E3 4.89E3 1.50E2 5.52E2 

m/z 195 3.30E2 1.31E3 5.77E1 7.49E2 

m/z 123 4.82E2 7.92E2 3.38E1 4.21E2 

m/z 166 1.50E3 2.67E2 1.31E1 6.24E2 

m/z 170 6.35E2 No signal 1.31E2 2.02E3 

 

 

Determination of mobile phase 

Table C2: Relative retention factor for standard amphetamine and energy drink components at 

different mobile phase condition. 

Mobile Phase  

Combinations 

Relative Retention Factor (RF) 

m/z 136 m/z 195 m/z 123 m/z 166 m/z 170 

CH3OH + 1.5% NH4OH                                 0.33 0.70 0.72 0.64 0.74 

CH3OH /Ethyl Acetate (1:1) 0.04 0.79 0.64 0.23 N/A 

CH3OH /Ethyl Acetate (1:1)  

+ 1.5% NH4OH 

0.13 0.71 0.69 0.18 0.66 

CH3OH /Ethyl Acetate (2:3)   

+ 1.0% NH4OH 

0.16 0.84 0.81 0.15 0.76 

CH3OH /CHCl3 (2:3) 0.03 *0.98 0.72 0.23 0.78 

CH3OH / CHCl3 (1:1) 0.03 *0.85 0.78 0.38 0.65 

 

50 mL of methanol with 1.5% NH4OH contains 28% NH3 is used as TLC solvent. 0.1 µL of 

standard amphetamine, 0.3 µL of Berry flavor energy drink are spotted on the TLC plate. 

*mean of RF value from standard caffeine, berry and extra-strength samples. 

0.1µL of stock amphetamine and 0.1µL of both samples were spotted for TLC separation and analyzed 

by DESI-MS. RF values for m/z 195, m/z 123, m/z 166 and m/z 170 are averaged from the results of 

both berry and extra-strength sample.  
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Concentration of caffeine in 5-hour Energy drink- Berry flavor 

190mg caffeine in 57 mL: 
190 𝑚𝑔

57 𝑚𝐿
= 3.33𝑚𝑔/𝑚𝐿 

Concentration of caffeine in 5-hour Energy drink- Extra strength 

200mg caffeine in 57 mL: 
200 𝑚𝑔

57 𝑚𝐿
= 3.51𝑚𝑔/𝑚𝐿 

Table C3:  Caffeine standard calibration curve Caffeine concentration versus ion intensity. 

 

Table C4:  Data for internal standard calibration curve. 

Caffeine standard 

(mg/mL) 

Ion ratio between m/z 195 and m/z 204 Average 

ratio 

RSD 

Trial 1 Trial 2 Trial 3 

2 0.582 0.562 0.578 0.574 0.018437 

3 0.994 0.987 0.989 0.990 0.003642 

4 1.234 1.281 1.243 1.253 0.01991 

5 1.517 1.563 1.548 1.543 0.015204 

6 1.872 1.849 1.867 1.863 0.006493 

 

Table C5: Spot analysis of new batch of 5 hour Energy drink sample on TLC plate using 3mg/mL of 

caffeine-d9.   
m/z 195 m/z 204 Ratio 

Intensity 

Spot  

Concentration 

(mg/mL) 

Concentration 

(mg/mL) 

Berry 2.71E+02 4.48E+02 0.60 1.80 4.50 

Extra strength 2.55E+02 4.13E+02 0.62 1.85 4.63 

 

 

Conc./ mg/mL Trail 1 Trial 2 Trial 3 Average RSD % 

2 2.28E+02 1.78E+02 8.77E+01 1.65E+02 43.2 

3 3.64E+02 2.78E+02 1.29E+02 2.57E+02 46.3 

4 4.78E+02 3.29E+02 1.94E+02 3.34E+02 42.6 

5 5.68E+02 4.34E+02 2.67 E+02 4.23E+02 35.7 

Berry 504 368 210 361 40.80 

Extra 572 411 239 407 40.88 
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Figure C1:  Full scan spectrum obtained using orbitrap mass spectrometer. Components from the 

50X extra strength energy drink were detected are: niacinamide (A), phenylalanine (C), pyridoxine 

(D) and caffeine (E). Amphetamine (2µg/mL) was spiked and is labeled as B. 

 

Figure C2: MS2 ion spectra of the protonated caffeine molecule at m/z 195 and amphetamine m/z 

136 using orbitrap mass spectrometer: (a) MS2 spectrum of m/z 136 using 22% collision energy; (b) 

MS2 spectrum of m/z 195 using 30% collision energy. 
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Figure C3: Ion chronogram mapping 5-hour energy drink components and standard amphetamine 

from a TLC plate developed with chloroform and methanol (1:1) prior to analysis by DESI-MS with 

acetonitrile/ water(7: 3) as the spray solvent.  
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Figure C4: Ion chronogram of a mixture having energy drink spiked with amphetamine standard. 

0.1µL amphetamine (1 mg/mL) and 0.1µL extra strength sample were mixed followed by ammonium 

hydroxide treatment(10% final concentration). TLC plate developed using Chloroform/methanol 

(1:1)  as the mobile phase and analysed by DESI-MS with CH3CN /H2O (7:3) as spray solvent to map 

ions: Amphetamine (m/z 136), caffeine (m/z 195), niacinamide (m/z 123), pyridoxine (m/z 170) and 

phenylalanine (m/z 166).  
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Figure C5: Zoomed spectrum from DESI-MS analysis of a spot having 2.5X diluted berry sample 

and 3 mg/mL deuterated caffeine standard.  

 

Figure C6: Spectra obtained upon performing paper spray with mixture of energy drink spiked with 

deuterated caffeine. Top panel is 2.5X diluted berry flavored drink with deuterated caffeine spiked to 

make a final concentration of 3mg/mL. The bottom panel is 2.5X diluted extra strength energy drink 

with deuterated caffeine spiked to make a final concentration of 3mg/mL 
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Appendix D: Supplementary Information of Chapter 5 

Table D1: Data used to plot standard curve of ion intensity of tetrahydrozoline at different standard 

concentrations. 

Conc. 

(µg/mL) 

Total Ion Intensity for m/z 201 Average 

ion 

intensity 

Standard 

deviation Series 1 Series 2 Series 3 

200 21800 11700 10930 14810 6065.75 

100 10780 5390 7340 7836.67 2729.11 

50 7060 3630 5050 5246.67 1723.44 

30 4070 2250 4720 3680 1280.35 

20 3670 1890 3780 3113.33 1060.86 

10 2690 1280 3280 2416.67 1027.63 

5 1206 497 3009 1570.67 1295.10 

12.X 5370 2800 4710 4293.33 1334.70 

30X 3010 1510 3790 2770 1158.79 

R2 0.9946 0.9914 0.9915 0.9965 ---- 

 

Table D2: Area under the peak of tetrahydrozoline at different standard concentrations of 

tetrahydrazoline. 

Conc. 

(µg/mL) 

Area under the chronogram peak of m/z 

201 

Average Std Dev. 

Series 1 Series 2 Series 3 

200 316419 205742 212080 244747 62150.62 

100 179473 118569 117021 138354.33 35618.22 

50 98248 69819 72037 80034.67 15812.15 

30 53435 46098 40766 46766.33 6360.89 

20 32984 27647 27912 29514.33 3007.74 

10 19396 15947 16676 17339.67 1817.76 

5 7149 4250 5190 5529.67 1479.05 

R2 0.9933 0.9883 0.9921 0.9923  

12.5X 72343 52629 51926 58966 11590.15 

30X  33517 27740 26152 29136.33 3875.97 
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Table D3: Ion intensity peak of naphazoline at different standard concentrations. 

Conc. 

(µL/mL) 

Total Ion Intensity for m/z 211  Average Std Dev 

Series 1 Series 2 Series 3 

100 2790 3670 1890 2783.33 890.0187

264 

80 2080 2820 1540 2146.67 642.60 

50 1480 1573 831 1294.67 404.23 

30 786 1161 656 867.67 262.22 

20 659 641 321 540.33 190.16 

10 411 488 242 380.33 125.83 

5 204 255 131 196.67 62.32 

R2 0.9931 0.9909 0.9898 0.9964  

3X 1160 1470 786 1138.67 342.50 

10X 423 482 265 390 112.20 

 

Table D4: Area under the elution peak of naphazoline at different standard concentrations. 

Conc. 

(µg/mL) 

Area under the chronogram 

peak of m/z 211 

Average area Standard 

Deviation 

Series 1 Series 2 Series 3 

100 45554 23372 34925 34617 11094.21 

80 40248 17369 25904 27840.33 11561.76 

50 22194 10976 15607 16259 5637.35 

30 15491 7866 11410 11589 3815.65 

20 10667 5715 7653 8011.67 2495.41 

10 3914 2988 3077 3326.33 510.88 

5 1774 1022 1323 1373 378.49 

R2 0.9915 0.9919 0.9925 0.9960 ------ 

3X 19334 9863 14017 14404.67 4747.39 

10X 5940 3745 4338 4674.33 1135.49 
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Table D5: Quantitation by calibration curve plotted using relative intensity ratio of mixture having standard and deuterated 

tetrahydrozoline. Three runs were performed in three separate plates. Their average ratio and standard deviation was plotted to obtain 

the calibration curve. 

 

 

Table D6: Quantitation by calibration curve plotted utilizing relative intensity ratio of mixture having standard naphazoline and 

deuterated tetrahydrozoline. Three runs were performed in three separate plates. Their average ratio and standard deviation was plotted 

to obtain the calibration curve. 

 

 

 
m/z 201 m/z 205 ratio 

  

Sample 

(g/mL) 

run 1 run 2 run 3 run 1 run 2 run 3 run 1 run 2 run 3 Average 

Ratio 

SD 

5 73.7 77.6 75.65 277 300 294.5 0.266 0.259 0.257 0.261 0.005 

10 4.41E+02 4.39E+02 4.40E+02 8.27E+02 8.29E+02 8.48E+02 0.533 0.530 0.519 0.527 0.007 

20 4.98E+02 4.60E+02 4.75E+02 4.41E+02 4.19E+02 4.28E+02 1.129 1.098 1.110 1.112 0.016 

30 6.94E+02 6.77E+02 6.71E+02 4.45E+02 4.36E+02 4.54E+02 1.560 1.553 1.477 1.530 0.046 

50 6.92E+03 7.69E+03 7.13E+03 2.67E+03 3.11E+03 2.87E+03 2.592 2.473 2.484 2.516 0.066 

12.5X 903 871 887 443 424 435.5 2.038 2.054 2.037 2.043 0.010 

Sample 

(g/mL) 

m/z 205 m/z 211 ratio 
Average 

Ratio 
SD 

run 1 run 2 run 3 run 1 run 2 run 3 run 1 run 2 run 3 

5 3600 3810 3830 959 969 947 0.266 0.254 0.24 0.256 0.010 

10 2750 3520 2710 1576 2030 1560 0.573 0.577 0.576 0.575 0.002 

20 1360 2460 1980 1430 2820 2210 1.05 1.15 1.12 1.105 0.048 

30 1590 1820 1670 2440 2770 2800 1.53 1.52 1.68 1.578 0.086 

50 652 1330 1130 1640 3290 2880 2.52 2.47 2.55 2.513 0.038 

3X 643 848 469 1290 1730 954 2.01 2.04 2.03 2.027 0.015 
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Figure D1: MS/MS spectra of active and additive components using LTQ Orbitrap Elite Mass 

Spectrometer. A: Fragmentation of tetrahydrozoline (m/z 201). B: Naphazoline fragmentation (m/z 

211). C: Fragmentation of benzalkonium chloride of C12 alkyl side chain (m/z 304). D: 

Benzalkonium chloride of C14 alkyl side chain (m/z 332).  
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Figure D2: Chronograms and full spectrum of Visine for red eye original sample showing the 

separation of the active component from the preservative by DESI-MS. Chloroform: methanol 

(1:1) was the TLC mobile phase used. Acquisition time per line was 3.30 min. A: Tetrahydrozoline 

chronogram (m/z 201; RF: 0.30). B: Chronogram of benzalkonium chloride C12 alkyl side chain 

(m/z 304; RF: 0.59). C: Benzalkonium chloride C14 alkyl side chain chronogram (m/z 332; RF: 

0.64). D: Full spectrum of the sample showing m/z 201, 304 and 332 peaks. 
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Figure D3: Chronograms and full spectrum of Clear Eyes Allergy sample showing the separation 

of the active component from the preservative by DESI-MS. Chloroform: methanol (1:1) was the 

TLC mobile phase used. Acquisition time per line was 3.38 min. A: Naphazoline chronogram (m/z 

211, RF: 0.34). B: Chronogram of benzalkonium chloride C12 alkyl side chain (m/z 304; RF: 0.55). 

C: Benzalkonium chloride C14 alkyl side chain chronogram (m/z 332; RF: 0.55). D: Full spectrum 

of the sample showing m/z 211, 304 and 332 peaks.  
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Figure D4: Signal to noise (S/N) variation upon changes on the spot amount of tetrahydrozoline. 

LOD of tetrahydrozoline was determined to the 50 pg giving a S/N ratio of 3.33. 

 

 

Figure D5: Signal to noise (S/N) variation upon changes on the spot amount of naphazoline. LOD 

of Naphazoline was determined to the 50 pg having a S/N ratio of 3.33. 
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Figure D6. Zoomed spectrum showing relative abundance of both Tetrahydrozoline (m/z 201) and 

Naphazoline (m/z 211) by DESI-MS upon spotting a mixture having equimolar concentration (20 

µg/mL each) of both on a TLC plate. 

 

 

 

 

 

 

 

 

 


