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Abstract 

 

Golf National Sport Organizations (NSOs) invest significant resources to help athletes achieve a 

top ranking. However, little objective data exists to inform this process. The Official World Golf 

Ranking (OWGR) may be a useful resource for benchmarking athlete progression. However, 

ranking data is retrospective, meaning that past data may not be relevant to inform 

current/future athletes. It is therefore necessary to appraise the OWGR data to determine 

whether such data is valid to inform future decision-making. Golfers who first obtained a top 

100 OWGR between 1990-2018 were divided into four age-based cohorts. An overall 

developmental pathway was defined consisting of; career ranking milestones (e.g. first top 

1000 ranking) and the time taken to transition between such milestones. Overall, a trend 

towards younger generations of golfers reaching milestones at significantly earlier ages and in 

less time was observed.  The findings in this thesis will allow NSOs to appropriately apply the 

OWGR to their decision-making processes. 
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1. General Introduction 

Introduction to the OWGR, Role of the Golf NSO, and AID Programs  

The Official World Golf Rankings (OWGR) provide a relative ranking of professional male 

golfers who compete in tournaments around the globe (Broadie & Rendleman Jr., 2013). These 

rankings are widely used to measure success in men’s professional golf. Furthermore, many 

golfers, coaches, and national sport organizations (NSOs) have considered the attainment of a 

top 100 OWGR as a significant career milestone (Golf Australia, 2019). Not only is such a 

ranking a reflection of being a successful professional, it paves the way for direct entry into 

major championships, world golf championships, and Olympic games – the most prestigious 

and lucrative tournaments of the sport (Broadie & Rendleman Jr., 2013, Golf News Net, 2019; 

PGA Tour, 2017). Due to the exposure athletes who play in these prestigious tournaments tend 

to garner, those who succeed in reaching this ranking benchmark often experience increased 

publicity and endorsement opportunities (Broadie & Rendleman Jr., 2013). Thus, the 

achievement of a top 100 OWGR increases the likelihood of professional golfers having a 

sustainable career in the sport. For NSOs, producing as many top athletes as possible is a 

priority as funding for high performance (HP) development programs is often linked to athletes’ 

success at the professional level (Brouwers, Sotiradou, & De Bosscher, 2015; Green & Houlihan, 

2006; Sam, 2012). 

With the mounting pressure to produce world-class athletes, NSOs attempt to utilize 

systematic and evidence-based strategies (commonly known as Athlete Identification and 

Development (AID) programs) to identify and develop athletes with the potential for success at 

elite levels of competition (Cobley, Schorer, & Baker, 2012; Johnston, Wattie, Schorer, & Baker, 
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2017;Vaeyens, Gullich, Warr, & Philippaerts, 2009; Vaeyens, Lenoir, Williams, & Philippaerts, 

2008). These HP programs generally encompass the entire AID process from grassroots sport 

participation to the point where elite athletes no longer require the support of their NSO 

(Gulbin, Crosser, Morley, & Weissensteiner, 2013). However, there is a need to progress our 

understanding of the transition period that ensues from when an amateur athlete turns 

professional to when they establish themselves at the professional level. 

This period of development has been defined by high rates of athlete drop out 

(Barreiros, Côté, & Fonseca, 2014).  Opportunities to compete at the highest levels are scarce, 

and thus the demands on the athlete to reach a certain level of performance rapidly increase 

(Stambulova, Pehrson, & Ollson, 2017). The transition from amateur to professional sport 

marks a crucial point in an athletes’ career, as what occurs during this timeframe will ultimately 

determine whether or not they succeed at the professional level. However, evidence-based 

information to support AID programs during this transition period in sports such as golf is 

scarce (Hayman, Polman, Taylor, Hemmings, & Borkoles, 2011; Hayman, Borkoles, Taylor, 

Hemmings, & Polman, 2014; Stambulova et al., 2017). If one of the goals of golf NSOs is to 

produce as many top 100 ranked athletes as possible, it seems logical that these organizations 

would want to be equipped with the evidence needed to give themselves the best likelihood to 

identify and develop these athletes (Golf Australia, 2019). Thus, in order to make stronger 

evidence-based decisions, the pathway that professional golfers take to the top 100 should be 

investigated. Gaining an understanding of how exceptional athletes continue to develop once 

they have entered their professional sporting systems could improve our knowledge of this 

unique stage of development and showcase potential factors that differentiate these athletes 
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from the rest of the field. Unearthing the ranking pathways of top 100 professional golfers will 

be a first step in contributing evidence-based information to inform both sides of AID programs. 

Athlete Development 

    Athlete Development (AD) programs focus on optimizing the development process by 

providing athletes with the appropriate resources (e.g. training, support, medical, psychological, 

nutrition, etc.) and learning environments based on their current developmental stage (Cobley 

et al.,2012; Vaeyens et al. 2008). However, numerous factors that are dynamic throughout the 

development process contribute to athletes’ outcomes (Baker & Horton, 2004). Therefore, 

outlining what these resources and learning environments may look like throughout the 

development process is a difficult task.  In order to assist in unpacking the complexity of the AD 

process, models/frameworks are utilized (Gulbin et al., 2013). AD models/frameworks are based 

on the previous experiences of successful athletes. They are used to provide guidelines of best 

practice in an organized manner, so that NSOs may use data to inform their own practices (Balyi 

& Hamilton, 2004; Côté , 1999; Gulbin et al., 2013). 

One prominent AD framework is the Foundations, Talent, Elite, Mastery (FTEM) 

framework, which outlines a developmental pathway that includes 10 differentiated stages, 

spanning from youth sport to the retirement years (Gulbin et al., 2013). Relevant to the current 

project, the framework consists of stages that encompass athletes’ transition from being an 

entry level professional (Stage T4) to having success at the professional level (Stage E2). At each 

stage various developmental drivers (i.e. psychological characteristics, training patterns, 

monetary resources, and family, peer, and coaching relationships) that may influence the AD 

process are discussed. However, the authors acknowledge that the FTEM is not a sport-specific 



 4 

framework, and the drivers presented are done so in a broad manner. The presentation of a 

broad framework is designed to allow NSOs and researchers alike, the flexibility to build upon 

the framework by incorporating their own sport-specific data and drivers (Gulbin, Croser, 

Morley, & Weissensteiner, 2014). However, sport-specific research on athlete transitions from 

high level amateur competition to successful professional careers is scarce.  

One sport-specific AD model that captures this unique and complex stage of 

development is derived from Stambulova and colleagues (2017) qualitative exploration of seven 

Swedish ice hockey players. Their analysis investigated the sequence of stages and relevant 

psychological content occurring during the transition from the amateur to professional level of 

Swedish ice hockey. The model describes this career transition as comprising four phases 

spanning four to six years: Preparation (athletes begin to participate in professional/senior 

competition while still on a junior team); Orientation (first year on a professional/senior team); 

Adaptation (second and third year on a professional/senior team); and, Stabilization (fourth 

year of professional/senior hockey) (Stambulova et al., 2017). Within each phase, the 

resources, barriers, and coping strategies that allow athletes to navigate through each stage of 

the pathway are outlined. However, as previously mentioned different sports may require 

unique developmental pathways. Therefore, this model is likely not generalizable to other 

sports.   

An example of using data to better understand a sports’ unique developmental pathway 

that better aligns with the broad structure of golf, can be seen in tennis. Similar to golf, the 

success of tennis players is measured by a ranking scale that aggregates points from different 

professional events around the world to provide a relative ranking of professional tennis 
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players (Reid & Morris, 2013). Furthermore, the top 100 ranking milestone has also been used 

in the tennis literature as the penultimate benchmark for athlete success (Reid & Morris, 2013; 

Kovacs et al., 2015). These similar benchmarks make comparing the sports less complex than 

attempting to make comparisons to team sports, for example, which do not rely on relative 

player ranking ladders as a primary means of assessing individual performance. 

 To provide evidence-based information regarding the pathway that amateurs take to 

reaching a top 100 world ranking, Reid and Morris (2013) described the ranking milestones and 

progression of the top 100 ranked Association of Tennis Professionals’ (ATP) players at the end 

of the 2009 season. Top 100 players earned their first ATP point at 16.9 years of age before taking 

4.5 years to transition to the Top 100 at 21.5. Further, those aspiring to crack the top 100 earned 

their first ATP ranking at the age of 16 or 17, and by the age of 19 were seen to be ranked inside 

the top 250. Athletes who earned ATP points younger ages were also more likely to achieve 

better ATP rankings. This type of data may be used to guide the expectations and decision-making 

of athletes, coaches, stakeholders, and policymakers in the sport (Reid & Morris, 2013). 

The lack of evidence on the transitions between stages of development emphasizes the 

need to enhance understanding of the sport-specific developmental trajectories athletes take, 

particularly from the elite amateur to elite professional ranks. More specifically, while the 

attainment of a top 100 ranking is a key milestone for aspiring golfers, little is known about the 

typical paths taken to reach this milestone. The OWGR offers a rich data source, as it tracks the 

ranking progression of every professional golfer on a week-by-week basis from when they gain 

their first professional ranking to retirement. Therefore, it is a valuable resource that can be used 

to understand the overall pathway athletes take to reach top ranking positions. Understandably 
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the rankings only outline the ranking trajectory and do not explain the cause of these rankings. 

Increased understanding of the trajectories that amateur golfers take to the top will allow 

stakeholders to better plan AD policies to give athletes the best chance to successfully reach their 

desired benchmarks. 

Athlete Identification 

 As NSOs strive to gain an edge in the international sporting arms race, athlete 

identification (AI) programs have become a staple in the athlete selection process (Hogan & 

Norton, 2000; Vaeyens et al., 2009). Such programs seek to identify athletes who are seen as 

having the highest potential for future success in professional sport (Cobley et al., 2012; Vaeyens 

et al., 2008). The idea is that potentially exceptional athletes who are identified at earlier points 

in time can be allocated available resources that NSOs offer through their AD programs (Cobley 

et al., 2012; Gulbin & Weissenstiener, 2013). The adoption of evidence-based approaches to 

provide the ‘correct’ resources to the ‘correct’ athletes at earlier stages in their development, 

seems like a logical course of action for NSOs to achieve the best return on their investments.  

However, the variables used in AI programs have been shown to have low predictive 

validity when attempting to discriminate between athletes of different skill levels (MacNamara 

& Collins, 2012; Johnston et al., 2017; Vaeyens et al., 2008).  For example, a systematic review 

conducted by Johnston et al. (2017) observed that anthropometric measures were seen to 

discriminate between selected and non-selected soccer players yet did not discriminate between 

different levels of Australian Rules Football players. Such gaps in knowledge mean that selecting 

the ‘correct’ athletes is no easy task. If the selection variables employed by NSOs for decision 
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making purposes are inaccurate, the wrong athletes may be selected or indeed deselected. Thus, 

potentially draining the already limited resources that NSOs have to offer (Kovacs et al., 2015). 

Due to the pitfalls in the current AI literature, it has been suggested that NSOs turn their 

focus to keeping as many athletes in the development system for as long as possible, especially 

during junior (i.e., under 18) sport (Vaeyens et al., 2008). However, in a sporting climate where 

finite resources exist for AD activities, at some point - particularly as athletes approach the 

professional level - selection decisions inevitably have to be made (Kovacs et al., 2015). As 

athletes progress through their careers, available spots in competitions become increasingly 

scarce. In addition, the cost of supporting athletes as they begin to reach these higher levels may 

increase considerably. For example, the average cost of supporting a professional tennis player 

who travels to approximately 30 tournaments per year and employs a coach along with other 

support staff can cost anywhere from 121,000 to 197,000 USD per year (Reid, Morgan, Churchill, 

& Bane, 2014). Clearly at such costs there are only a limited number of amateur athletes 

attempting to transition to the professional level that can be supported by their respective NSO. 

Despite the potential limitations of AI programs (e.g., low predictive validity of selection 

variables), evidence-based variables are still warranted to aid in making selection decisions.  

     It has been proposed that the accuracy of selection variables increases when predictions 

are made closer to the time of peak performance (Vaeyens et al., 2008). A potential explanation 

for this phenomenon is that the variables used in AI programs may not be useful indicators for 

selection at younger ages, as factors such as the athletes’ growth and environmental situations 

are likely to be in a continuous state of flux (Johnston et al., 2017; Vaeyens et al., 2008). Previous 

studies have supported the notion that prior youth and adolescent performance may not be a 



 8 

strong indicator of future athletic attainment. For example, in one multi-sport study, only one-

third of international pre-junior athletes (i.e., under 16) transitioned to the senior international 

level (Barreiros et al., 2014). Similarly, in tennis Brouwers, Bosscher, and Sotiriadou (2012) found 

low but significant correlations between under 14 tournament performance and future 

professional rankings. Additionally, when using a bottom-up perspective, they found that 43.2% 

of male under 14 tournament winners and 60% of female under 14 tournament winners reached 

a top 200 professional ranking. When examining athletes who previously held under 18 rankings 

on the International Tennis Federation (ITF) junior circuit, 65.8% of male and 64.4% of female 

junior top 20 players reached the top 200. Conversely, when the authors used a top-down 

perspective to determine the junior attainment of current and past top ranked professionals, 

23.5% of male and 18.4% of female top 20 professionals never reached a junior top 200 ranking. 

These results showcase the variability and subsequent issues with using junior performances for 

predicting later success. While the authors mentioned that junior success does not guarantee the 

same success at the professional level, they concluded under 18 ITF rankings were a better 

indicator of professional success than under 14 tournament results (Brouwers, Bosscher, & 

Sotiriadou 2012). Essentially, the closer predictions are made to adult peak performance, the 

more accurate they are at reflecting future success.   

     An example of using previous performance variables (i.e., rankings) to forecast success 

of amateur athletes as they transition to the professional game can be seen in an analysis 

conducted on ATP players by Reid et al. (2014). Athletes who competed between 1973 and 2011 

and obtained a ranking of 250 or better were sampled. To determine whether ranking trajectories 

were different for players of varying skill levels, ranking bands were used to group players by 
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their peak ATP ranking: 1-10,11-20, 21-50, 51-100, 101-175, and 176-250. Players in different 

peak ranking bands (i.e. 1-10 vs. 51-100) showed significant differences in their peak yearly 

rankings from first turning professional to reaching their peak ranking. When this approach was 

replicated for female tennis professionals competing for ranking positions on the Women’s 

Tennis Association (WTA) tour the same trends were observed. While the ages athletes reached 

certain ranking benchmarks were different, the finding that players who attained different peak 

rankings were distinguishable at relatively early ages was supported (Kovalchik, Bane & Reid, 

2017). 

    While based on limited research, these findings support the notion that as athletes get 

closer to peak performance, certain variables may be used to discriminate between athletes of 

different skill levels to assist with selection decisions. Fortunately, like tennis, golf has a system 

that records the week-by-week ranking histories (i.e., OWGR) of male professionals from when 

they first turn professional to exit from the sport.  As a result, the OWGR could be used to predict 

athlete attainment in the same way that the ATP and WTA rankings have been previously used 

in tennis. In practice, AI programs should be multidimensional and encapsulate a number of 

different variables to provide the most comprehensive identification guidelines possible. 

However, to our knowledge no previous work has explored the selection variables that may 

discriminate between golfers of different skill levels as they transition from amateur to top 100 

professional status. Using the OWGR will be a useful first step to understanding AI variables at 

this stage of development in golf. 
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Generational Differences/ Methodological Issues with Retrospective Data in Sport 

  The data used to inform AID programs is commonly obtained from the previous 

experiences of successful athletes (Gulbin et al., 2013). A methodological issue that may arise 

when attempting to use retrospective data to inform current practice, is that generational 

differences may exist between past, present, and future athletes (Bane, Reid, & Morgan, 2014). 

Changes over time in sporting systems (i.e. in game play and developmental trajectories) may 

occur due to shifts in culture, values, social norms, equipment, and policy-making (Reid et al., 

2014; Kovalchik et al., 2017). These shifts may differently influence the trajectories of athletes 

developing across different generations, making it potentially inequitable to compare athletes 

who developed during different time periods. For example, Bruce, Farrow, and Raynor (2013) 

examined specific sporting milestones (e.g., age first participated in netball, started formal 

coaching, first competed against older athletes etc.) of female Australian netballers who 

competed for the senior and junior national teams. Notably, they found that the junior team 

athletes reached many of these milestones earlier than their senior team counterparts. The 

authors attributed these results to the possible generational shifts in the netball landscape. For 

example, they noted that compared to when the current senior national team athletes were 

developing, the junior athletes were being identified and selected at an earlier age. As well, the 

current junior athletes had been exposed to a more prominent, established, and televised 

professional netball league. These different experiences may have led to younger athletes 

having clearer goals and aspirations to participate in netball specific activities at younger ages 

than their older peers (Bruce et al., 2013). 
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In tennis, Bane, Reid, and Morgan (2014) realized the potential shortcomings that 

generational shifts (e.g. ranking structure, number of available tournaments for developing 

players, and equipment improvements) could have had on their previous sport-specific 

benchmarking methodology, and in turn its application to current and future athletes. They 

investigated whether the time to reach career milestones previously examined by Reid and 

Morris (2013) and Reid et al., (2014) changed over time. The findings were mixed; that is, the 

age athletes achieved their first ranking point remained consistent, yet the development time 

(i.e., time from first ATP point to first top 100 ranking) increased. The authors noted that these 

findings may encourage tennis associations to provide financial support to their athletes for 

longer periods of time, as the time taken to reach a financially sustainable position on the ATP 

tour is now longer than previously noted (Bane et al., 2014).  In contrast, over the last 25 years 

for WTA tour athletes, the age that players earned their first ranking point and reached the top 

100 has remained stable over time (Kovalchik et al., 2017). These gender-specific generational 

changes within the same sport, may be due to the fact that generational shifts may occur at 

different times and in different capacities for men’s and women’s sport. It is also likely that 

generational shifts may also be sport-specific. Therefore, each sporting domain may need to be 

viewed as its own entity, as generational shifts and their resulting changes that occur in one 

domain may not be generalizable to another.  

From a generational shift perspective, several documented changes have occurred in 

golf. Since 1996 the sport has become extremely popular, much of that has been said to be 

attributed to Tiger Woods’ emergence on the PGA Tour, dubbed the ‘Tiger-effect’ (Herrington, 

2016). Since Woods’ debut as a professional, prize purses at tournaments increased from 
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between $2.8 to $6.8 million to upwards of $10 million, due to the heightened interest in 

television rights and sponsorships (Peters, 2008). As well, there have been increases in both 

male and female junior golf participation, as well as the number of collegiate golf programs 

available for developing athletes to attend (Herrington, 2016). Thus, like Bruce and colleagues 

(2013) netball sample, golfers from current generations may have been exposed to increasingly 

prominent role models, lucrative career opportunities, and growing resources that younger 

generations were not exposed to.  

The policies and structures of professional golf tours worldwide have also changed. One 

of the more recent structural changes has occurred on the Professional Golfers’ Association 

(PGA) Tour - one of the major tours that contributes points to the OWGR. Traditionally, there 

were two ways to obtain full-time playing privileges on the PGA Tour. The first was through a 

single six round event known as “Qualifying School” (i.e., Q-school) while the second was 

through the season long Web.com tour (i.e., The major developmental tour under the PGA 

Tour). While the top 125 players on the PGA Tour money/points list at the end of each season 

retain their playing privileges/tour card, 50 new tour cards become available for players outside 

this ranking. In 1998, 35 of the 50 tour cards were allocated via Q-school, while the remaining 

15 were allocated to the top finishers on the Web.com tour year-end money list (Rhoads, 

2012). Since 1998, the PGA Tour has started to transition away from Q-school, by giving out a 

higher proportion of tour cards via the Web.com tour. Currently all 50 available PGA Tour cards 

are given out through the Web.com tour, as Q-school was completely phased out after the 

2012 season (PGATOUR, 2017). 
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While these golf-specific shifts are well-documented, their potential impact on player 

development trajectories over time are yet to be investigated. However, if the retrospective 

data of previously successful professional golfers is to be used to inform AID practices, the 

limitations of such data must be understood. Furthermore, the guidelines being suggested need 

to be based on the most relevant data available.  Examining the ranking trajectories of golfers 

from different generations will provide insight into whether generational shifts have influenced 

golfers’ development over time. Understanding the changes that define different generations 

of developing professional golfers will allow current and valid data to be applied to AID 

programs. The following manuscript seeks to identify a relevant sample cohort of top 100 

ranked golfers, so that the data may be used to inform both sides of the AID equation regarding 

the amateur to professional transition of male golfers. 
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Examining Generational Differences in the Ranking Trajectories of Top Ranked Golfers 
 
 
 
 

Examining Generational Differences in the  
Official World Ranking Trajectories (OWGR) of Top 100  

Ranked Golfers’ 
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Abstract 
 

For male professional golfers, the attainment of a top 100 Official World Golf Ranking 

(OWGR) is a significant career milestone. Golf National Sport Organisations (NSOs) allocate 

considerable resources to assisting golfers in their ascent up the ranking ladder. However, 

scientific data that can be used by NSOs to benchmark developing athletes and make decisions 

on where to allocate their finite financial and human capital is scarce. The OWGR offers a rich 

data source that may be used for benchmarking purposes. However, golf has undergone many 

changes over the last few decades; thus, before the ranking pathways can be investigated, it is 

crucial to appraise the temporal stability of such data and determine whether it is valid for use 

with current/future athletes. This study aimed to determine whether the ranking pathways of 

top 100 golfers have changed over time. Data were collected on 470 golfers who first entered 

the OWGR top 100 between 1 January 1990 and 31 December 2018. Golfers were assigned to 

cohorts based on their birth-year: Cohort 1 (1989-1999) (n=79); Cohort 2 (1979-1988) (n=153); 

Cohort 3 (1969-1978) (n=174); and Cohort 4 (1959-1986) (n=64). Key career ranking milestones 

(e.g. first turned professional, first top 1000 ranking, etc.), the time taken to transition between 

milestones, and development time (i.e., time between declaring professional status and entry 

into the top 100) were examined. Descriptive statistics were reported for each cohort and one-

way ANOVAs used to investigate temporal trends. A trend towards younger generations of 

golfers reaching milestones at significantly earlier ages and in less time was observed.  For 

instance, significant decreases in golfers’ development time were found over time at 3.22, 6.16, 

8.22, and 10.72 years for cohort 1,2,3, and 4, respectively. These results highlight the temporal 

instability of rankings data and the need to appraise such data before use with developing 
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athletes. Golf NSOs looking to benchmark athletes using OWGR data should delimit 

comparative data to athletes born after 1978.  

Keywords: Athlete Development, Athlete Identification, Golf, Generational Differences 
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Introduction 

Professional golfers compete on many organised tours worldwide, with each tour 

comprising a series of individual events. Golfers receive points for events based on their 

respective finishing position. The Official World Golf Rankings (OWGR) aggregate points from 

different tours to provide a relative ranking of male professional golfers (Broadie & Rendleman 

Jr., 2013). For many golfers, coaches, and national sport organisations (NSOs) the achievement 

of a top 100 ranking is a significant career milestone. Not only is it symbolic of success at the 

professional level, but it paves the way for direct entry into major championships, world golf 

championships, and Olympic games – the most prestigious and lucrative events of the sport 

(Golf News Net, 2019; PGA Tour, 2017). Additionally, it affects golfers’ endorsement income 

and creates further opportunities to forge a sustainable career through the sport (Broadie & 

Rendleman Jr., 2013. Producing top 100 golfers is also a key objective of golf NSOs, which 

typically rely on government funding to support their high-performance (HP) programs. With 

funding availability linked to athletes’ professional success, it is no surprise that a focus of golf 

NSOs is to produce as many top ranked athletes as possible (Brouwers, Sotiradou, & De 

Bosscher, 2015; Green & Houlihan, 2006; Sam, 2012; Golf Australia, 2019; Hayman, Borkoles, 

Taylor, Hemmings, & Polman, 2014).  

To give their athletes the best chance of professional success, NSOs employ Athlete 

Identification and Development (AID) programs. Athlete Identification (AI) is the process of 

identifying athletes seen as having the greatest potential for success in elite sport (Vaeyens, 

Lenoir, Williams, & Philippaerts, 2008) whereas Athlete Development (AD) focuses on 

optimising the development process by providing athletes with the appropriate resources (e.g., 
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specialist coaching, sports science/sports medicine services) and learning environments relative 

to their developmental stage (Cobley, Schorer, & Baker, 2012; Vaeyens et al. 2008). NSOs that 

advocate for best practice utilise systematic strategies based on the experiences of successful 

athletes to inform their AID programs and activities (Cobley et al., 2013; Johnston, Wattie, 

Schorer, & Baker, 2017; Vaeyens, Gullich, Warr, & Philippaerts, 2009; Vaeyens et al., 2008).    

In individual sports, AID programs in the HP stream encompass the development 

process from grassroots participation until athletes’ emergence as financially self-sufficient 

performers (Gulbin, Crosser, Morley, & Weissensteiner, 2013). If a goal of NSOs is to produce 

top ranked professional athletes, a logical step is to focus research efforts on the transition 

period from when golfers declare professional status to when they first reach the top 100. Golf 

NSOs allocate considerable resources to assisting athletes in their ascent up the ranking ladder. 

The costs associated with funding individual sport athletes are also extensive. For instance, 

golfers require an estimated $150,000 USD per year to play on the PGA Tour, $100,000 for the 

Champions Tour, and $55,000 for the Web.com (Bae, 2012), with similar values reported in 

tennis (Reid, Morgan, Churchill, & Bane, 2014). Due to financial limitations a limited number of 

athletes can be selected for targeted funding, thus NSOs attempt to maximise their return on 

investment by identifying the “correct” athletes for which to allocate their finite financial and 

human capital (Kovacs et al., 2015). While the attainment of a top 100 OWGR is a key milestone 

for aspiring golfers, there has been little research conducted to inform current AID programs 

regarding the pathway athletes take to reaching the top 100.  

 In recent years, there has been growing interest in the ranking milestones and 

progression of top 100 professional tennis players. In one study, Reid and Morris (2013) used 
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year-end rankings to establish benchmarks for players who reached the top 100 in the 

Association of Tennis Professionals (ATP) rankings. They found that on average top 100 players 

earned their first ATP ranking point at 16.9 years of age and took 4.5 years to transition to the 

top 100 at 21.5 years old. Players who earned their first ATP point at younger ages were also 

more likely to achieve better rankings. Notably, many players followed the same initial pathway 

as the best players yet failed to reach the top 100. To explore these skill-based differences, Reid 

et al., (2014) compared the ranking pathways of players who did and did not reach the top 100 

ATP at one point in their career. Players were grouped into “bands” of 1-10, 11-20, 21-50, 51-

100, 101-175, and 176-250 according to their peak career ranking. Players assigned to different 

ranking bands showed significant differences in their peak yearly rankings and these were 

observable from early on in the player’s careers.  More recently, Kovalchik, Bane, and Reid 

(2017) examined the ranking pathways of top female tennis professionals on the Women’s 

Tennis Association tour. While the age at which benchmarks occurred were different, like the 

Reid et al. (2014) study, players who reached different peak career rankings were 

distinguishable from an early age.  

 Knowledge of the ranking pathways of golfers who have successfully transitioned to a 

top 100 OWGR could inform both AI and AD. By benchmarking the ranking progression of 

current/future athletes against previous successful athletes, NSOs can identify those tracking 

towards professional success and allocate resources/funding accordingly (Allen, 

Vandenbogaerde, & Hopkins, 2014). From an AD perspective, the ranking profiles of top golfers 

could assist NSOs and coaches in the establishment of long- and short-term performance 

targets for their athletes. With limited resources available, improving the AID process by 
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providing a more objective basis for athlete selection and investment decisions is a critical focus 

for NSOs (Gulbin et al., 2013; Abbott & Collins, 2004). 

While rankings offer a rich source of data with which to inform AID programs, it is 

important to keep in mind that these data are retrospective in nature. A methodological issue 

when applying such data is that sporting systems may evolve over time due to shifts in the 

socio-cultural environment (Baker & Wattie, 2018; Twenge, 2009). These shifts can result in 

generational differences between past, present, and future athletes. For example, Bruce, 

Farrow, and Raynor (2013) examined the sporting milestones of 20 amateur and 19 

professional Australian netballers and found that younger athletes reported reaching 

milestones – such as age at which they first specialised in netball or attended regular training – 

earlier than their older peers.  The authors attributed this finding to possible temporal shifts in 

the netball landscape. In tennis, Bane, Reid, and Morgan (2014) analysed the weekly rankings of 

273 male professional players between 1985-2010 to examine historical trends in the time 

taken to reach career milestones. Results of the study indicated that the time between players 

earning their first professional ranking point and entry into the top 100 significantly increased 

over time.  

Over the past few decades the game of golf has changed considerably. From a 

participation standpoint, greater television and media coverage and the rise of golf superstars 

like Tiger Woods have contributed to increased popularity of the sport (Chatterjee, Wiseman & 

Perez, 2002). Further, heightened interest in television and broadcast rights has resulted in 

increased PGA Tour prize purses from $2.8 to 6.0 million in 2000 to as large as $10 million in 

2005 (Peters, 2008). Golf has also benefited from advances in club and ball designs and 
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increasing physicality, which has contributed to a ~one yard per year increase in average driving 

distances on the PGA Tour from 256.89 in 1980 to 295.93 yards in 2018 (Wilco, 2018; O’Connor 

& Hawkes, 2013). These (and other) shifts may differently influence the ranking progression of 

golfers who developed across different generations thus affecting the validity of rankings data 

for use with current and future athletes; that is, it may be inequitable to compare athletes such 

as Tiger Woods and Jordan Spieth who turned professional 16 years apart. With this in mind, 

before the typical pathway to the top 100 can be described, it is crucial to determine any 

differences in the key career milestones of top golfers’ who developed across different time 

periods. The aim of this study was therefore to conduct an exploratory analysis to determine 

whether the ranking trajectories of top 100 golfers from different age cohorts have changed 

over time. 

Methods 

Data 

Ranking lists from 1988-2018 were obtained from the OWGR and comprised players’ 

names, country of origin, cumulative ranking points, and analogues weekly rankings. As the 

OWGR was established in 1986, only golfers who received a ranking after 1990 were included; 

this resulted in golfers who had played parts of their careers before 1986 being excluded from 

the sample to ensure that athletes’ full careers through the rankings were recorded. Data were 

collected on 470 players who first entered the OWGR top 100 between 1 January 1990 and 31 

December 2018. An overall developmental pathway was constructed which consisted of a 

series of career milestones that were identified based on benchmarks often used by NSOs to 

represent key points in players’ progression to the top 100. These include the age players: 
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declare professional status; first receive an OWGR (along with the respective ranking position); 

and, first reach the OWGR top 1000, 750, 500, 400, 300, 200, and 100. In addition, the time 

taken to transition between milestones (i.e., transition time – TT) and the total time taken from 

declaring professional status to first reaching the OWGR top 100 (i.e., development time – DT) 

was also determined. As the specific date players turned professional was not available, all 

dates were normalised to November 1st of the given year as this is the time most players turn 

professional.  

Statistical Analysis 

 Analyses were performed to determine whether career milestones changed over time. 

Players were assigned to one of four cohorts based on their birth-year: Cohort 1 (1989-1999) 

(n=79); Cohort 2 (1979-1988) (n=153); Cohort 3 (1969-1978) (n=174); and Cohort 4 (1959-1968) 

(n = 64). Using players’ birthdates and normalised dates of declaring professional status, 

descriptive statistics (means, standard deviations) were calculated for overall DT, TTs and 

career milestones for each cohort. To determine whether differences in the overall 

developmental pathways existed between cohorts, multiple one-way Welch analysis of variance 

(ANOVA) tests were conducted (unequal variances confirmed by Levene’s test). Post-hoc 

comparisons using Games-Howell tests were subsequently undertaken where a significant main 

effect was found. A Shapiro-Wilk Normality test confirmed non-normal distribution of data, and 

therefore Kruskal-Wallis (K-W) tests were also carried out to confirm all ANOVA results. All 

statistical procedures were conducted using SPSS v.25 for Macintosh (SPSS Inc., Chicago, IL., 

USA). 
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Results 

Figure 1 shows the mean ages that golfers from different cohorts reached career 

milestones. Golfers from relatively younger cohorts entered the professional ranks at 

significantly earlier ages than their older peers, with the exception of cohort 2 and 3. Younger 

golfers also obtained their first ranking earlier, with golfers from the youngest cohort being 

ranked before they declared professional status – reflected by the lower age value for first 

ranking compared to first turned professional in Figure 1. While they were first ranked at 

younger ages, younger golfers’ first absolute rankings were significantly higher (i.e., worse) than 

older golfers. A progressive and significant decrease in golfers’ average age at first top 1000, 

750, 500, 400, 300, 200, and 100 OWGR was observed across all cohorts. Significant decreases 

in golfers’ overall DT were also found over time (Table 2.1) at 3.22, 6.16, 8.22, and 10.72 years 

for cohort 1, 2, 3, and 4, respectively.  

TTs between milestones (most noticeably between top 1000 and top 300 career ranking 

milestones) were highly variable and signified largely non-significant portions of total DT. To 

look at the data in a different way, the percentage of time that athletes spent between career 

milestones throughout their careers were calculated. When time between first top 1000 and 

first top 300 rankings were collapsed, all cohorts were seen to spend similar amounts of time 

(within 2%) at this stage of their career. Considering this, to provide a more valuable 

representation of golfers’ overall development, TTs were collapsed and organised into three 

separate phases:  Phase 1 (first turned professional to first top 1000 ranking); Phase 2 (first top 

1000 to first top 300 ranking; and Phase 3 (first top 300 to first top 100 ranking). A linear 
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decline in TTs for all phases was observed across cohorts; yet, this was only significant for some 

cohorts.  

Discussion 

   The aim of this study was to investigate whether the overall developmental pathways of 

top 100 world ranked golfers changed over time. Golfers from younger age cohorts reached 

career milestones at progressively earlier ages and in less time than their older peers. TTs 

between milestones were relatively small, so to better represent development the pathway 

was collapsed into three phases. Once collapsed, a linear decline in phase TTs was observed 

across all cohorts; that is, younger cohorts transitioned between phases in less time. While TTs 

were not significantly different between all cohorts, this trend contributed to all younger 

cohorts having significantly quicker DTs than their relatively older peers.  Differences in DTs 

may be driven by generational shifts occurring during and preceding phases 1 of the pathway; 

that being, TT’s were only significant between all groups during phase 1. As well, the magnitude 

of TT differences between cohorts were greatest during phase 1. Overall, the results indicate a 

potential shift towards current and future top 100 ranked golfers emerging at significantly 

younger ages than have been seen in previous generations. 

Similar to our findings, a shift towards athletes reaching career milestones at earlier 

stages in their careers have also been observed in Australian netballers (Bruce et al., 2013). In 

contrast, increases in the DT (i.e., time from first ATP ranking to first top 100 ATP ranking) of 

top 100 tennis players have been reported over time (Bane, Reid, & Morgan, 2014). Together 

these findings suggest shifts in generational trends may be domain specific, as changes to 

sporting landscapes likely occur at different periods of time. Shifts in generational trends may 
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also be gender-specific (e.g., as suggested by Kovalchik et al., 2017), thus the current findings 

may only be relevant to male professional golfers.  

With this in mind, different sports may benefit from appraising their own data for 

gender-specific generational shifts before using such data to inform AID programs. That said, 

our results highlight the need to continue to explore how generational effects influence our 

understanding of the development and maintenance of performance. Much of the previous 

literature has focused on generational changes in the age athletes in sports such as tennis, golf, 

swimming, running, and triathlon reach peak performance (Gallo-Salazar, Salinero, Sanz, 

Areces, & del Coso, 2015; Schulz & Curnow, 1988). For instance, in Olympic track and field and 

swimming the age athletes reached peak performance remained fairly consistent over time 

(Gallo-Salazar et al., 2015). However, our results emphasize that generational effects may be 

much more nuanced than previously investigated. 

Importantly, our findings reflect the effect, not the cause of the developmental pathway 

differences observed amongst top 100 golfers from different generations. However, it is 

possible to speculate regarding the mechanisms that may be driving these changes. Since 1996, 

golf has experienced increases in both exposure and participation often attributed to the 

emergence of Tiger Woods, being referred to as the ‘Tiger-effect’ (Chatterjee et al., 2002; 

Herrington, 2016). Increases in exposure and cultural importance of a sport may lead to 

younger athletes having increasingly visible role models and enhanced opportunities to 

participate in the sport from the grassroots to professional level (Mutter & Pawlowski, 2014). 

Increased growth may also bring about the professionalization (i.e. sport resembling a 

professional environment such as increased practice time and intensity, access to specialised 
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coaches and support teams, increased media attention, etc.) of junior and amateur/college golf, 

a trend reported in other sports such as basketball, baseball, and football (Brower, 1979; Gould 

2009; Sheehan; 2000; Wheeler, 2004). Other influential changes in the sport that have occurred 

over the past few decades include advances in golf ball/club technology, and player support 

programs (i.e. increased funding, resulting in increased access to specialised coaching 

(technical, physical, and mental) (O’Connor & Hawkes, 2013). Accordingly, noticeable changes 

in player characteristics and training focuses concerning physical fitness abilities (with a shift 

towards a more physical/power game) have been observed (Torres-Ronda, Sanchez-Medina, 

Gonzalez-Badillo, 2011).  

From a policy perspective, system changes in professional golf have also influenced the 

OWGR structure. For instance, more opportunities to earn ranking points are now available 

with 18 developmental tours added to the OWGR system since 2009. The growth of the OWGR 

and golf in general has contributed to more players being ranked. At the beginning of 1990, 733 

athletes from 37 countries (16 athletes’ countries not reported) obtained at least one ranking 

point; compared to 2005 athletes from 60 countries in 2018. These greater opportunities may 

allow golfers to be ranked at earlier ages. Further, as developmental tours offer less rankings 

points, this change may explain why higher (i.e., worst) first absolute rankings were observed in 

golfers from older cohorts. These factors may have enabled golfers from younger cohorts to 

obtain rankings and be better prepared to succeed in a professional environment at earlier 

stages of their careers.  

The chief aim of this study was to determine whether data from previous generations is 

relevant to inform current and future AID programs. Applying outdated data may misinform AID 
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programs moving forward, regardless of the context behind such changes (Kovacs et al., 2015). 

Rankings data have previously been used to inform AID programs in tennis and swimming. For 

instance, the career pathways of top 100 ranked male and female tennis players were outlined 

using the ATP/WTA rankings (Reid & Morris, 2013; Kovacs et al., 2015). Researchers have also 

examined whether these rankings can be used to aid in identifying athletes who have the 

potential for lower (i.e., better) rankings. Analyses revealed that both the men’s and women’s 

rankings may be used for this purpose, as the ranking trajectories of athletes who reached 

lower peak rankings were distinguishable from their higher ranked peers from early stages of 

their careers (Reid et al., 2014; Kovalchik et al., 2017). In swimming, it was found that leading 

up to the Olympics, athletes should be ranked in the top 10 for their respective discipline to be 

a realistic medal contender (Trewin, Hopkins, & Pyne, 2004). Similarly, future studies may 

employ the OWGR data of relevant cohorts to outline developmental trajectories and 

discriminate between skill-level differences of male professional golfers. 

Despite the unique contribution of these analyses to understanding developmental 

trajectories of top 100 ranked golfers, several limitations exist. One limitation of this study was 

that the sample included athletes who were currently competing, which means that some 

cohorts may have an incomplete sample of athletes. Golf is unique in that athletes may remain 

competitive much later into their careers than those from other sports. On the Professional 

Golfers Association (PGA) rankings between 1948 and 1985, the average age of the 33 players 

who were ranked first during that period of time was 33.67 years (SD = 4.71), with a trend 

towards younger number 1 golfers closer to 1985 (Schultz & Curnow, 1988). When considering 

scoring average, PGA Tour players continue to improve their overall performance until around 
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age 30, and do not see performance decrements until the age of 43 (Baker, Deakin, Horton, & 

Pearce, 2007). When applied to our sample, these findings suggest that some age cohorts may 

consist of an incomplete sample of athletes. For example, since golfers do not peak until ~30 

years of age, athletes in cohort 1 who still have the opportunity to obtain a top 100 ranking at 

some point during their careers may not be included. As golfers maintain their performance 

until ~43 year of age, some of the relatively older cohorts may also be incomplete. With an 

incomplete sample of this nature, a conservative approach would be to include both cohort 1 

and 2 data to inform golf AID programs at least until a more complete dataset is available.  

Another limitation includes the possibility of a cut-point bias, as age cohort boundaries 

were assigned arbitrarily to the birth years of the sample. The cut-point of 10-year intervals 

between birth years were chosen to allow the sample to be split as evenly as possible while at 

the same time providing space for generational changes to be identified between the cohorts. It 

should also be noted that there was substantial intra-group variability for many milestones. This 

may be due to the fact that due to the cut-point bias, athletes at one end of the cohort may 

have been more affected by certain generational changes than others. Resulting in athletes 

having different developmental pathways than the rest of the cohort and skewing of the mean 

farther away from the median.  

It should also be considered that athletes develop in a non-linear and nuanced fashion 

(Gulbin, Weissensteiner, Oldenziel, & Gagne, 2013) and future AID work using the OWGR for 

benchmarking should consider this variability with caution. Further, generational shifts may be 

dependent on a particular country/region, or effect different regions at different times. In order 

to determine whether these shifts and subsequent changes in developmental pathways were 
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region-specific, the sample was split into four regions (Americas, Europe, Asia, and Oceania) 

and the original analysis replicated for each group. It was found that the generational trends 

observed in our original analysis were also present for each regional-group. While the overall 

trends of generational shifts were consistent across regions, the actual ages and times that 

athletes from different regions reached milestones fluctuated. Athletes from different regions 

may experience different developmental experiences and sporting systems (Bosscher et al. 

2008; Bosscher, De Knop, & Heyndels, 2003). Future benchmarking work may benefit from 

independently analyzing the pathways taken by athletes from different regions. 

Conclusion 

The results of the current study indicate that the OWGR trajectories of top 100 male 

professional golfers have changed over time. A trend towards younger generations of golfers 

reaching milestones at earlier ages and in less time was observed. The following 

recommendations are provided: 

 

• Golf NSOs and future researchers attempting to benchmark for their athletes using the 

OWGR data should use the data of athletes born after 1978  

• Regardless of the sport in question, retrospective data being used to inform AID programs 

should be appraised for current relevance. Generational shifts may be unique to a specific 

sport and impact the data in a sport-specific manner. While the results of this study may 

only be applicable to inform male professional golf, the methods may be replicated by NSOs 

and researchers from other sports to inform their own practice. 
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• NSOs should continue to update and monitor their data in order to be aware of any 

potential change in generational trends so that policies may continue to be updated based 

on their findings. Models of AID should not remain stagnant for extended periods of time. 

 

Collectively, these results highlight the pitfalls of using retrospective data to inform AID 

programs. However, when appraised and applied in an appropriate manner such data may still 

be useful to inform decision-making processes for current and future athletes. 
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Table 2.1. Descriptive statistics relating to First Absolute OWGR, DT and TT for Phase 1-3. 
 
Notes: **All groups significantly different from each other as determined by one-way ANOVA.  
Phase One (first turned professional to first top 1000 ranking); Phase Two (first top 1000 to first 
top 300 ranking); Phase Three (first top 300 to first top 100 ranking). 
aCohort 1 significantly different from Cohort 2; bCohort 1 significantly different from Cohort 3; 
cCohort 1 significantly different from Cohort 4; dCohort 2 significantly different from Cohort 3; 
eCohort 2 significantly different from Cohort 4; fCohort 3 significantly different from Cohort 4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Cohort 1 Cohort 2 Cohort 3 Cohort 4 

First absolute 
OWGR** 999.94 ± 207.82 836.71 ± 202.58 673.57 ± 150.33 598.20 ± 116.83 

Phase One TT**                                                                                        0.75 ± 1.20 1.56 ± 1.91 2.80 ± 2.23 4.49 ± 3.17 
Phase Two TTabce 0.90 ± 0.96 1.62 ± 1.79 2.14 ± 1.90 2.69 ± 2.93 
Phase Three TTabc 1.58 ± 1.60 2.97 ± 2.68 3.28 ± 3.18 3.54 ± 3.04 
Overall DT** 3.22 ± 2.23 6.16 ± 3.56 8.22 ± 4.05 10.72 ± 4.65 
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Figure 2.1 Mean ages that golfers from different cohorts reached career milestones. The shaded 
regions reflect the standard deviation and the individual dots show the specific ages that 
milestones were reached for each golfer.   
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3. General Thesis Discussion 
 
Summary  
 
   The aim of this thesis was to investigate whether the overall developmental pathways of 

top 100 world ranked golfers have changed over time. Overall the data suggested players from 

more current generational cohorts reached career milestones at significantly younger ages than 

their relatively older peers. As well, progressive decreases for younger athletes in the total 

amount of time taken from turning professional to reaching a top 100 OWGR (DT) were 

observed. These results appear to reflect a combination of younger athletes both turning 

profession at earlier ages and transitioning between defined career phases at quicker rates 

than their older counterparts. Interestingly, it may be what is occurring at the beginning of 

these athletes’ careers (i.e. phase 1) that is driving the overall effect of decreased DT. While 

linear declines in TTs were displayed for all younger cohorts during phases 2 and 3, the results 

were only significantly different when comparing athletes from cohort 1 to all others.  Phase 1 

was the only timeframe on the developmental pathway that saw all younger cohorts have 

significantly quicker TTs. Overall, top 100 athletes from younger cohorts were seen to move 

along the developmental pathway at quicker rates and reach career milestones at earlier ages 

than those from older cohorts.  

   While limited to a few studies, generational changes in other sports have been 

examined in the literature including netball, tennis, swimming, running, and triathlon (Bane et 

al., 2014; Bruce et al., 2013; Gallo-Salazar et al., 2015; Kovalchik, 2014; Kovalchik et al., 2017; 

Schulz & Curnow, 1988). However, in comparison to this study some studies have examined 

different phases of development (i.e. under 18/junior sport), and other sport-specific 
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benchmarks. For example, while our study examined the pathway top 100 ranked golfers take 

from the amateur to professional level, others have focused on understanding whether the 

overall career lengths and ages of peak performance have changed over time (Kovalchik, 2014; 

Gallo-Salazar et al., 2015; Schulz & Curnow, 1988). Additionally, Bruce et al., (2013) examined 

whether the ages netball athletes reached specific developmental milestones during their 

formative years had changed between already professional athletes and their junior national 

team counterparts. While the specific milestones and phase of development under examination 

were different than those employed in our study, similar trends were observed. Overall, 

younger netball players reached many milestones at significantly younger ages than their older 

peers. 

      Our results are perhaps better compared to the generational changes examined within 

tennis. As previously discussed, similar to golf, the success of tennis players has been associated 

with the attainment of a top 100 ranking and is measured by a ranking scale that aggregates 

points from different professional events around the world to provide a relative ranking of 

professional tennis players (Reid & Morris, 2013). Contrasting our findings, the age at which top 

100 ranked male and female tennis players obtain their first world ranking has stayed stable 

over time (Bane et al., 2014; Kovalchik et al., 2017). Further differences between the sports are 

present when comparing overall DT. On the male side of the game, DT for top 100 athletes has 

actually increased over time (Bane et al., 2014). While for top 100 female athletes, DT was seen 

to remain stable across generations (Kovalchik et al., 2017). This gives evidence to generational 

changes being sport-specific, as generational shifts (in policy, cultural importance etc.) that 

drive these changes may happen at different times and in different capacities for a particular 



 35 

sport. As well, different sports may have unique metrics for assessing performance, making it 

difficult to apply such findings to another domain (Brouwers et al., 2012). The findings in this 

study are novel to male professional golfers, as assessing generational changes to the 

developmental pathways of top 100 athletes in the sport had not previously been undertaken. 

   While the aim of our study was to investigate whether the overall developmental 

pathway of top 100 world ranked golfers had changed over time, another goal was to define a 

relevant sample of athletes to use when applying the OWGR data to AID programs in men’s 

golf. However, before a sample could be defined, we had to address a limitation within our 

sample. That being, some cohorts may be incomplete, as athletes who have the potential to 

eventually obtain a top 100 ranking but have yet to reach that benchmark would not be 

included. Golf may be unique as a sport since players can remain competitive into a much later 

age than athletes from other sports. For example, tennis players reached the peak of their 

careers around the age of 25 (Reid & Morris, 2013) while golfers may not reach the peak of 

their careers until around the age of 30 (Baker, Deakin, Horton, & Pearce, 2007; Schulz & 

Curnow 1988). Additionally, it has been observed that decrements from peak performance may 

not occur until around the age of 43 (Baker et al., 2007). If we assume golfers can peak up to 

the age of 30 in our sample, cohort 1 (athletes aged 20 to 29 at the end of 2018) is likely 

incomplete because athletes in cohort 1 still have the opportunity to obtain a top 100 ranking 

at some point during their careers and may not be included in the current sample. What needs 

to be considered however, is the other end of that assumption - the fact that golfers can 

maintain their performance until around the age of 43. This assumption means that golfers, 
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may still have the opportunity to obtain their first top 100 ranking between the ages of 30 and 

43.   

   To assess the degree to which a cohort may be incomplete, the turnover rate of the 

OWGR may be assumed to be fairly stable over time, so that younger cohorts may be compared 

to older ones that are assumed complete. At 45-49 years of age the latter half of cohort 3 may 

be assumed complete (n=92).  Cohort 2 for example consists of 82 athletes in the latter half and 

71 in the early half of the cohort, while cohort 1 consists of 67 and 12 athletes in the later and 

early halves respectively. Clearly, cohort 2 is a more complete sample than cohort 1. Comparing 

these cohorts to the latter half of cohort 3, cohort 2 clearly consists of a more complete sample 

of athletes than cohort 1. With an incomplete sample of this nature, it is possible cohort 1 is 

comprised of relatively early achievers, and therefore, the results observed for athletes from 

cohort 1 may be a statistical artefact due to having an incomplete sample. With this in mind, it 

seems that until a more complete sample is available to reappraise the data, a conservative 

approach would be advisable, which would be to use both cohort 1 and 2 data to inform AID 

programs in men’s golf. 

Future Directions 

  With a generationally relevant sample now defined, the OWGR may be used to provide 

benchmarking data to inform AID programs.  However, while the current analysis suggests an 

overall developmental pathway that players from both cohort 1 and 2 take to the top 100, the 

current data are not meant to be prescriptive. Further analyses need to be conducted on the 

relevant data in an appropriate manner before it may be applied to inform AID programs. 

Furthermore, ranking data have limited utility in practice and are simply a starting point to 
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inform these programs. Understanding the mechanisms behind these ranking pathways of top 

100 athletes would have greater value for informing the development of appropriate 

developmental pathways. Regardless, with limited knowledge to currently inform AID in golf, 

these ranking pathways serve as a first step to expanding these programs in the sport.       

       From an identification perspective, benchmarking current/future athletes against previous 

successful athletes can assist NSOs in identifying those who are tracking towards professional 

success (Allen, Vandenbogaerde, & Hopkins, 2014). Furthermore, an understanding of the 

benchmarks athletes need to reach in order to succeed at higher levels can aid with providing 

athletes the appropriate resources required to develop and reach such benchmarks (Cobley et 

al., 2012). It has been noted that many different athlete development scenarios exist, and 

accepted that their development is a non-linear and nuanced process (Gulbin et al. 2013). Such 

nuance is displayed in our data, as the intra-group variability for many milestones was quite 

large at certain points throughout the pathway. However, while nuance and outliers in athlete 

experiences may always exist, the overall goal of NSOs is to increase the probability of 

successful athlete outcomes (Gulbin & Weissenstiener, 2013). With this goal in mind, and the 

notion that NSOs have significant control over the selection and planning process of its athletes, 

objective data to inform decision-making seem warranted. However, objective data to inform 

selection and development decisions in professional golf is to our knowledge limited. 

     As previously noted, overall athlete performance in professional golf is assessed in 

similar ways to tennis, as both use a relative ranking list. While golf has the OWGR, tennis has 

the ATP and WTA rankings, which have both been previously used to inform the sport with 

benchmarking data. Reid and Morris (2013) outlined some general ranking guidelines (i.e. age 
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at first ATP ranking, transition time from first ranking to first top 100 ranking, age at first top 

100, correlation between first ranking age and peak ranking, etc.) for players who finished in 

the top 100 on the 2009 year-end ATP rankings. On the women’s side, Kovacs et al. (2015) 

examined the ranking progression of athletes who were listed in the top 100 of the WTA 

ranking list in 2014. To examine ranking progression, the ages that athletes reached 5 key 

milestones (1000, 500, 300, 200, and 100) along with total time from first top 1000 ranking to 

first top 100 ranking were determined. In our analysis similar milestones were outlined which 

made up our overall development pathway. The first step to expanding the utility of the OWGR 

seems to lie with using the overall developmental pathway (as defined in our study) to carry out 

a descriptive analysis outlining the ranking progression for the generationally relevant sample. 

   In addition to understanding the ranking progression of top 100 male golfers, 

differences in trajectories between sexes (i.e. understanding the ranking trajectories of female 

golfers using the Rolex rankings) as well as athletes from different regions should be 

considered. Due to the differing rates of biological development for men and women, the ages 

they attain and transition between career milestones may differ (Schulz & Curnow, 1998; 

Kovalchik et al., 2017). It has been observed in track and field and swimming events, that 

women reach peak performance at younger ages than men (Schulz & Curnow, 1998). 

Furthermore, when comparing the ranking progression of male and female professional tennis 

players, females reached their first top 100 ranking at younger ages (Kovalchik et al., 2017).  

    Beyond developmental differences, distinctions in the policies that govern men’s and 

women’s competition within the same sport may also contribute to pathway differences.  For 

instance, in tennis the WTA restricts the number of tournaments women under the ager of 18 
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can compete in, while on the men’s tour no such restriction exists (Kovalchik et al., 2017). It 

seems reasonable that gender differences should be taken into consideration when examining 

developmental trajectories. The ranking pathways of males ranked in the OWGR and women 

ranked in the Rolex rankings should be analysed in isolation, with potential differences 

displayed. 

    These sex differences may also be relevant for understanding generational changes 

within a sport.  For instance, DT (defined for tennis professionals as the time from gaining a first 

ATP ranking to first top 100 ATP ranking) for male tennis players has increased over time (Bane 

et al., 2014). However, the same trend was not observed in females where DT has remained 

stable over time (Kovalchik et al., 2017). Therefore, males and females within the same sport 

may require independent generational analysis before applying their data to AID programs.  

   Developing golfers from different regions may also be susceptible to unique 

developmental experiences and sporting systems (Bosscher et al. 2008; Bosscher, De Knop, & 

Heyndels, 2003). For instance, the cultural importance of golf in a specific region may lead to 

athletes having different experiences in terms of available training, coaching, infrastructure, 

and competitive environments (Baker & Horton, 2004). As previously mentioned, the OWGR is 

a single ranking list that aggregate points from different tours to provide a relative ranking of 

male professional golfers (Broadie & Rendleman Jr., 2012). Professional golfers from a 

particular region may therefore play on a different tour than other athletes on their pathway to 

becoming a top 100 ranked golfer.  These tours may have their own unique qualification 

pathways and offer different world ranking points. As well, the strength of the overall field may 

dictate how easily or quickly a player destined for the top 100 may gain the appropriate ranking 
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points. For example, the OWGR system has been found to have a bias towards inflating the 

ranking of international tour players compared to those on the PGA Tour (Broadie & 

Rendleman Jr., 2013). This implies a player from Europe or Asia who is not as skilled as a player 

from the PGA Tour, will climb the ranking ladder at a quicker rate due to playing against easier 

competition. Due to such factors, future OWGR benchmarking work may benefit from 

considering the potential unique ranking trajectories of athletes from different regions.  

   Once the pathways of top 100 golfers are defined (with appropriate sex and regional 

considerations accounted for), the next step should be examining whether the OWGR and 

Rolex ranking trajectories have the ability to discriminate professional golfers at different skill 

levels. It has been previously observed in both men’s and women’s professional tennis that the 

ATP and WTA rankings could be used to aid in selecting athletes who have the most potential 

for future success. In two separate studies, professional male and female tennis players were 

grouped into “bands” of 1-10, 11-20, 21-50, 51-100, 101-175, and 176-250 according to their 

peak career ranking (Reid et al, 2014; Kovalchik et al., 2017). Players assigned to different 

ranking bands showed significant differences in their peak yearly rankings and these were 

distinguishable from an early age from early on in the player’s careers.  NSOs looking to use the 

OWGR and Rolex rankings to influence decision-making for AID purposes would benefit from 

conducting similar analyses. Whether or not the results show that such rankings can 

discriminate between skill levels will be informative to golf NSOs when deciding how much 

utility to give the ranking data in their decision-making processes. It should also be kept in mind 

that the ranking data explain the effect, not the cause of such rankings (Reid et al. 2014; 

Kovalchik et al., 2017). Future research also needs to focus on understanding the various 
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factors (i.e. training and social support) that may also influence successful amateur to 

professional transitions in golf. 

   While the current findings are only generalizable to male professional golfers, the 

methodologies of the current study could be useful to inform the practice of NSOs and 

researchers in other sports; that is, setting guidelines for their appraisal of data for generational 

changes, prior to applying it to inform their AID programs. Different types of metrics within the 

same sport may also need to be appraised for generational changes independently. For 

example, performance statistics in golf (i.e. driving distance, scoring average, shot gained, etc.) 

may undergo changes at both different times and in different capacities than the OWGR 

trajectories. While this study allows us to identify a generationally relevant sample for applying 

OWGR data, different metrics may need to be reappraised using similar methods to the current 

study. For best practice, NSOs should regularly appraise the various types of data they use to 

inform AID programs. In sum, models of AID should use the most up to date data available in 

order to avoid remaining stagnant for extended periods of time. 

 

Conclusion 

Overall, the findings of this study will allow relevant data from the OWGR to inform AID 

programs in men’s golf. However, on a wider scope, the contents herein should inform NSOs 

and researchers regarding the consequences of using outdated and possibly irrelevant data to 

inform AID programs. Additionally, the methodologies used in this study may offer solutions 

regarding how to effectively appraise sport-specific data for generational changes so that it may 

be applied responsibly to AID programs in the future. 
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